diff --git a/modules/llm/Mistral-7b/Mistral-7b_fine_tune.py b/modules/llm/Mistral-7b/Mistral-7b_fine_tune.py index 4c9d6ece025132702dcc1832addea1d9decae8b3..a41fc61c30d68dd36a930fbe39e5d816fa49af10 100644 --- a/modules/llm/Mistral-7b/Mistral-7b_fine_tune.py +++ b/modules/llm/Mistral-7b/Mistral-7b_fine_tune.py @@ -56,13 +56,13 @@ def fine_tune(base_model, new_model): # Training Arguments # Hyperparameters should beadjusted based on the hardware you using training_arguments = TrainingArguments( - per_device_train_batch_size=1, - gradient_accumulation_steps=4, - num_train_epochs=6, + per_device_train_batch_size=2, + gradient_accumulation_steps=1, + num_train_epochs=2, learning_rate=1e-4, logging_steps=2, optim="adamw_torch", - save_strategy="epoch", + save_strategy="steps", output_dir="./results" ) diff --git a/modules/llm/Mixtral-8x7b/Mixtral-8x7b_fine_tune.py b/modules/llm/Mixtral-8x7b/Mixtral-8x7b_fine_tune.py index 7f40b7f9dec89e5c1da97fc9f476adc3d19ece1e..d9e8126498f942694ecf7215d6bb21bf9c9e35f9 100644 --- a/modules/llm/Mixtral-8x7b/Mixtral-8x7b_fine_tune.py +++ b/modules/llm/Mixtral-8x7b/Mixtral-8x7b_fine_tune.py @@ -70,13 +70,13 @@ def fine_tuned(base_model, new_model): model=model, train_dataset=train_data, args=TrainingArguments( - per_device_train_batch_size=1, - gradient_accumulation_steps=4, - num_train_epochs=6, + per_device_train_batch_size=2, + gradient_accumulation_steps=1, + num_train_epochs=2, learning_rate=1e-4, logging_steps=2, optim="adamw_torch", - save_strategy="epoch", + save_strategy="steps", output_dir="./results" ), data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)