diff --git a/microservices/trainer/trainer.py b/microservices/trainer/trainer.py
index 49d8941ddf46e89518f06a2075f61c548206b72c..00314706d9e38a866b7bbea1f7f1eee9611b92e2 100644
--- a/microservices/trainer/trainer.py
+++ b/microservices/trainer/trainer.py
@@ -19,10 +19,6 @@ from transformers.utils import (
 import trainer_pb2_grpc
 
 is_busy = False
-MAX_LENGTH = 256
-
-global_tag2id = global_id2tag = global_label2id = global_id2label = global_tokenizer = global_n_labels = global_fondation_model_id = None
-
 
 class TrainerServicer(trainer_pb2_grpc.TrainerServicer):
     def StartTraining(self, request, context):
@@ -56,27 +52,157 @@ def serve():
 
 
 def training_process(training_data, fondation_model_id, finetuned_repo_name, huggingface_token):
-    global_fondation_model_id = fondation_model_id
-    global_tag2id = {'action': 1, 'actor': 2, 'artifact': 3, 'condition': 4, 'location': 5, 'modality': 6, 'reference': 7,
+    MAX_LENGTH = 256
+    tag2id = {'action': 1, 'actor': 2, 'artifact': 3, 'condition': 4, 'location': 5, 'modality': 6, 'reference': 7,
               'time': 8}
-    global_id2tag = {v: k for k, v in global_tag2id.items()}
-    global_label2id = {
+    id2tag = {v: k for k, v in tag2id.items()}
+    label2id = {
         'O': 0,
-        **{f'{k}': v for k, v in global_tag2id.items()}
+        **{f'{k}': v for k, v in tag2id.items()}
     }
-    global_id2label = {v: k for k, v in global_label2id.items()}
+    id2label = {v: k for k, v in label2id.items()}
 
     train_ds = Dataset.from_list(training_data)
 
     from transformers import AutoTokenizer
-    tokenizer = AutoTokenizer.from_pretrained(global_fondation_model_id)
-    print("post load tokenizer")
+    tokenizer = AutoTokenizer.from_pretrained(fondation_model_id)
+
+    def get_token_role_in_span(token_start: int, token_end: int, span_start: int, span_end: int):
+        if token_end <= token_start:
+            return "N"
+        if token_start < span_start or token_end > span_end:
+            return "O"
+        else:
+            return "I"
+
+    def tokenize_and_adjust_labels(sample):
+        tokenized = tokenizer(sample["text"],
+                              return_offsets_mapping=True,
+                              padding="max_length",
+                              max_length=MAX_LENGTH,
+                              truncation=True)
+
+        labels = [[0 for _ in label2id.keys()] for _ in range(MAX_LENGTH)]
+
+        for (token_start, token_end), token_labels in zip(tokenized["offset_mapping"], labels):
+            for span in sample["tags"]:
+                role = get_token_role_in_span(token_start, token_end, span["start"], span["end"])
+                if role == "I":
+                    token_labels[label2id[f"{span['tag']}"]] = 1
+
+        return {**tokenized, "labels": labels}
+
     tokenized_train_ds = train_ds.map(tokenize_and_adjust_labels, remove_columns=train_ds.column_names)
 
     from transformers import DataCollatorWithPadding
     data_collator = DataCollatorWithPadding(tokenizer, padding=True)
 
-    n_labels = len(global_id2label)
+    n_labels = len(id2label)
+
+    def divide(a: int, b: int):
+        return a / b if b > 0 else 0
+
+    def compute_metrics(p):
+        predictions, true_labels = p
+
+        predicted_labels = np.where(predictions > 0, np.ones(predictions.shape), np.zeros(predictions.shape))
+        metrics = {}
+
+        cm = multilabel_confusion_matrix(true_labels.reshape(-1, n_labels), predicted_labels.reshape(-1, n_labels))
+
+        for label_idx, matrix in enumerate(cm):
+            if label_idx == 0:
+                continue # We don't care about the label "O"
+            tp, fp, fn = matrix[1, 1], matrix[0, 1], matrix[1, 0]
+            precision = divide(tp, tp + fp)
+            recall = divide(tp, tp + fn)
+            f1 = divide(2 * precision * recall, precision + recall)
+            metrics[f"recall_{id2label[label_idx]}"] = recall
+            metrics[f"precision_{id2label[label_idx]}"] = precision
+            metrics[f"f1_{id2label[label_idx]}"] = f1
+
+        f1_values = {k: v for k, v in metrics.items() if k.startswith('f1_')}
+        macro_f1 = sum(f1_values.values()) / len(f1_values)
+        metrics["macro_f1"] = macro_f1
+
+        return metrics
+
+    class RobertaForSpanCategorization(RobertaPreTrainedModel):
+        _keys_to_ignore_on_load_unexpected = [r"pooler"]
+        _keys_to_ignore_on_load_missing = [r"position_ids"]
+
+        def __init__(self, config):
+            super().__init__(config)
+            self.num_labels = config.num_labels
+            self.roberta = RobertaModel(config, add_pooling_layer=False)
+            classifier_dropout = (
+                config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+            )
+            self.dropout = nn.Dropout(classifier_dropout)
+            self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+            # Initialize weights and apply final processing
+            self.post_init()
+
+        @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+        def forward(
+                self,
+                input_ids: Optional[torch.LongTensor] = None,
+                attention_mask: Optional[torch.FloatTensor] = None,
+                token_type_ids: Optional[torch.LongTensor] = None,
+                position_ids: Optional[torch.LongTensor] = None,
+                head_mask: Optional[torch.FloatTensor] = None,
+                inputs_embeds: Optional[torch.FloatTensor] = None,
+                labels: Optional[torch.LongTensor] = None,
+                output_attentions: Optional[bool] = None,
+                output_hidden_states: Optional[bool] = None,
+                return_dict: Optional[bool] = None,
+        ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+            r"""
+            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+                Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+            """
+            return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+            outputs = self.roberta(
+                input_ids,
+                attention_mask=attention_mask,
+                token_type_ids=token_type_ids,
+                position_ids=position_ids,
+                head_mask=head_mask,
+                inputs_embeds=inputs_embeds,
+                output_attentions=output_attentions,
+                output_hidden_states=output_hidden_states,
+                return_dict=return_dict,
+            )
+            sequence_output = outputs[0]
+            sequence_output = self.dropout(sequence_output)
+            logits = self.classifier(sequence_output)
+
+            loss = None
+            if labels is not None:
+                loss_fct = nn.BCEWithLogitsLoss()
+                loss = loss_fct(logits, labels.float())
+            if not return_dict:
+                output = (logits,) + outputs[2:]
+                return ((loss,) + output) if loss is not None else output
+            return TokenClassifierOutput(
+                loss=loss,
+                logits=logits,
+                hidden_states=outputs.hidden_states,
+                attentions=outputs.attentions,
+            )
+
+    class TrainingMetricsCallback(TrainerCallback):
+        def __init__(self):
+            self.macro_f1 = []
+            self.steps = []
+            self.counter = 0
+
+        def on_evaluate(self, args, state, control, metrics=None, **kwargs):
+            if metrics is not None:
+                if 'eval_macro_f1' in metrics:
+                    self.macro_f1.append(metrics['eval_macro_f1'])
+                    self.counter += 1
+                    self.steps.append(self.counter)
 
     training_args = TrainingArguments(
         output_dir="./models/fine_tune_bert_output_span_cat",
@@ -97,6 +223,9 @@ def training_process(training_data, fondation_model_id, finetuned_repo_name, hug
 
     metrics_callback = TrainingMetricsCallback()
 
+    def model_init():
+        return RobertaForSpanCategorization.from_pretrained(fondation_model_id, id2label=id2label, label2id=label2id)
+
     trainer = Trainer(
         model_init=model_init,
         args=training_args,
@@ -112,140 +241,5 @@ def training_process(training_data, fondation_model_id, finetuned_repo_name, hug
     tokenizer.push_to_hub(finetuned_repo_name, use_auth_token=huggingface_token)
 
 
-def model_init():
-    return RobertaForSpanCategorization.from_pretrained(global_fondation_model_id, id2label=global_id2label, label2id=global_label2id)
-
-
-def get_token_role_in_span(token_start: int, token_end: int, span_start: int, span_end: int):
-    if token_end <= token_start:
-        return "N"
-    if token_start < span_start or token_end > span_end:
-        return "O"
-    else:
-        return "I"
-
-
-def tokenize_and_adjust_labels(sample):
-    tokenized = global_tokenizer(sample["text"],
-                                 return_offsets_mapping=True,
-                                 padding="max_length",
-                                 max_length=MAX_LENGTH,
-                                 truncation=True)
-
-    labels = [[0 for _ in global_label2id.keys()] for _ in range(MAX_LENGTH)]
-
-    for (token_start, token_end), token_labels in zip(tokenized["offset_mapping"], labels):
-        for span in sample["tags"]:
-            role = get_token_role_in_span(token_start, token_end, span["start"], span["end"])
-            if role == "I":
-                token_labels[global_label2id[f"{span['tag']}"]] = 1
-
-    return {**tokenized, "labels": labels}
-
-
-def divide(a: int, b: int):
-    return a / b if b > 0 else 0
-
-
-def compute_metrics(p):
-    predictions, true_labels = p
-
-    predicted_labels = np.where(predictions > 0, np.ones(predictions.shape), np.zeros(predictions.shape))
-    metrics = {}
-
-    cm = multilabel_confusion_matrix(true_labels.reshape(-1, global_n_labels), predicted_labels.reshape(-1, global_n_labels))
-
-    for label_idx, matrix in enumerate(cm):
-        if label_idx == 0:
-            continue  # We don't care about the label "O"
-        tp, fp, fn = matrix[1, 1], matrix[0, 1], matrix[1, 0]
-        precision = divide(tp, tp + fp)
-        recall = divide(tp, tp + fn)
-        f1 = divide(2 * precision * recall, precision + recall)
-        metrics[f"recall_{global_id2label[label_idx]}"] = recall
-        metrics[f"precision_{global_id2label[label_idx]}"] = precision
-        metrics[f"f1_{global_id2label[label_idx]}"] = f1
-
-    f1_values = {k: v for k, v in metrics.items() if k.startswith('f1_')}
-    macro_f1 = sum(f1_values.values()) / len(f1_values)
-    metrics["macro_f1"] = macro_f1
-
-    return metrics
-
-
-class RobertaForSpanCategorization(RobertaPreTrainedModel):
-    _keys_to_ignore_on_load_unexpected = [r"pooler"]
-    _keys_to_ignore_on_load_missing = [r"position_ids"]
-
-    def __init__(self, config):
-        super().__init__(config)
-        self.num_labels = config.num_labels
-        self.roberta = RobertaModel(config, add_pooling_layer=False)
-        classifier_dropout = (
-            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
-        )
-        self.dropout = nn.Dropout(classifier_dropout)
-        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
-        self.post_init()
-
-    @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
-    def forward(
-            self,
-            input_ids: Optional[torch.LongTensor] = None,
-            attention_mask: Optional[torch.FloatTensor] = None,
-            token_type_ids: Optional[torch.LongTensor] = None,
-            position_ids: Optional[torch.LongTensor] = None,
-            head_mask: Optional[torch.FloatTensor] = None,
-            inputs_embeds: Optional[torch.FloatTensor] = None,
-            labels: Optional[torch.LongTensor] = None,
-            output_attentions: Optional[bool] = None,
-            output_hidden_states: Optional[bool] = None,
-            return_dict: Optional[bool] = None,
-    ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
-        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-        outputs = self.roberta(
-            input_ids,
-            attention_mask=attention_mask,
-            token_type_ids=token_type_ids,
-            position_ids=position_ids,
-            head_mask=head_mask,
-            inputs_embeds=inputs_embeds,
-            output_attentions=output_attentions,
-            output_hidden_states=output_hidden_states,
-            return_dict=return_dict,
-        )
-        sequence_output = outputs[0]
-        sequence_output = self.dropout(sequence_output)
-        logits = self.classifier(sequence_output)
-
-        loss = None
-        if labels is not None:
-            loss_fct = nn.BCEWithLogitsLoss()
-            loss = loss_fct(logits, labels.float())
-        if not return_dict:
-            output = (logits,) + outputs[2:]
-            return ((loss,) + output) if loss is not None else output
-        return TokenClassifierOutput(
-            loss=loss,
-            logits=logits,
-            hidden_states=outputs.hidden_states,
-            attentions=outputs.attentions,
-        )
-
-
-class TrainingMetricsCallback(TrainerCallback):
-    def __init__(self):
-        self.macro_f1 = []
-        self.steps = []
-        self.counter = 0
-
-    def on_evaluate(self, args, state, control, metrics=None, **kwargs):
-        if metrics is not None:
-            if 'eval_macro_f1' in metrics:
-                self.macro_f1.append(metrics['eval_macro_f1'])
-                self.counter += 1
-                self.steps.append(self.counter)
-
-
 if __name__ == '__main__':
     serve()