Neural Methods
for NLP

Master LiTL --- 2023-2024
chloe.braudeirit.fr

https://gitlab.irit.fr/melodi/andiamo/teaching _chraud/master_litl

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Schedule
2023-2024

09.01

16.01

23.01

01.02

13.02

13h-16h

13h-16h

13h-16h

13h-16h

13h-16h

(C4) Traininga NN + TP5 + TP6

(C5) CNN, RNN + TP7 + TP8
—(15/01) Assignments Part 1 due

Projects
(C6) Encoder-decoder, transformer + TP9

(C7) Current challenges + project defenses

— (12/02) Assignments Part 2 due

Reminder: Feed Forward Neural Network

Let’s go back on:

- general architecture
- computation through the network

summary

an architecture with ‘layers’
dense inputs: ‘word
embeddings’

hidden layers = learning a
representation

- alinear function
- anon-linear function

input layer

hidden layers

output layer

Feed Forward NN: computation

Z =XIW1+XxX2wW2+Db

y = 0(2)
=1/ (1+exp(-2z))

X1

/

—>Yy

Feed Forward NN: computation

X1
Z =X1W1+X2Ww2 + b N"l
y = 0(z) Z \
=1/ (1+exp(-2)) o(z) —> Yy
b J

input output

Feed Forward NN: computation

X1

=1/ (1+exp(-2z))

Z = X1W1+x2w2+ b N"l
y = 0(z) yA \
o(z)
b J

T

linear combination

input

—Y

output

Feed Forward NN: computation

X1

=1/ (1+exp(-2z))

Z = X1W1+x2w2+ b N"l
y = 0(z) yA \
o(z)
b J

T

linear combination

input

activation function

—Y

output

Feed Forward: computation through the network

layer1 layer2
input layer hidden layer layer3

embedding layer

output layer

e Y - binary
h'=g(xW'+b") (2) |
h? = g(h'W? + b?) 1
O T 8
y = h?W3 (4)
x:(,) 7 |8 ,
wa: () 10 |11
b2: (,)
h2=xW2+b2:(,) 4x3 pixels

y=h2W3:(,)

Feed Forward: computation through the network

layer1 layer2
input layer hidden layer layer3

embedding layer

output layer

e Y - binary
h' = g(xW' +b") (2)
2 W2 | w2 1
h® = g(h"W* + b%) -7
- 4 b
y = h?W3 (4)
x: (1, 12) 7 3 ,
W2: (12, 3) =111
b2:(3,1)
h2 =xW2+b2:(1, 3) 4x3 pixels

y =h2.W3 : scalar

Feed Forward NN: computation

See an example with a single unit:

http://renom.jp/notebooks/tutorial/beginners guide/feedforward example 1/
notebook.html

See a full example:

http://renom.jp/notebooks/tutorial/beginners guide/feedforward example 2/
notebook.html

http://renom.jp/notebooks/tutorial/beginners_guide/feedforward_example_1/notebook.html
http://renom.jp/notebooks/tutorial/beginners_guide/feedforward_example_1/notebook.html
http://renom.jp/notebooks/tutorial/beginners_guide/feedforward_example_2/notebook.html
http://renom.jp/notebooks/tutorial/beginners_guide/feedforward_example_2/notebook.html

Non-linear functions
Output function

[On[en[Loss and regularization

Training and backpropagation

Recap: Hyper-parameters

Training a Neural Network

Practical session: testing varied
learners and hyper-parameters

Non-linear activation functions

- Power of the neural networks: introduction of non linearity
Take a linear combination of an input, and pass through a non-linear

function = activation function

Inputs Weights Sum Non-Linearity Output
13

Activation functions

Combining functions: If we have two linear functions, then their combination is also a
linear function

- fix)=Ax+b
- g(x)=Cx+d
- What is f(g(x))?

flg(x)) = A(Cx+d) + b
= ACx + (Ad+b) — i.e. Mx + v (AC is a matrix and Ad+b is a vector)

— Combining linear functions does not add new power
— We need non-linear functions: which one could be used?

Sigmoid (logistic) function

1
0(X) = 136

1-

range x — [0,1]

was the canonical function
considered deprecated, other
functions prove to work much better

empirically

15

Hyperbolic tangent (tanh) function

range x — [-1,1] tanh(x) = Zzzxx—1
Hard-tanh: approximation of tanh +
which is faster to compute 1.0 —
///
hard tanh 05} ¥
-1 ifx<-—1 /
HardTanh(x) = { x F=lm=mg=] 0ol //
1 ifx>1
05} //
//
L
A0 1

s “ k] 1 1 e ' 2 3 . B

clips each valuex<0atO0

train faster

less computationally expensive operation

Be careful:

Many RelLU units "die" —gradients = 0 forever

Solution: careful learning rate choice

Rectified linear unit (RelLU)

ReLU(x) = max(0, x)

rectifier

17

Common non-linearities

- Currently: no good theory as to which non-linearity to apply in which conditions

— choosing a good non-linearity for a given task is for the most part an empirical

guestion

— Sigmoid considered to be deprecated ; both ReLU and tanh work well, experiment
with both

Note: why not other functions? these ones have gradients that are easy to compute!

Common non-linearities

In pytorch, most non-linearities are in torch.functional (we have it imported as F)
Note that non-linearities typically don't have parameters like affine maps do.
That is, they don't have weights that are updated during training.

import torch
import torch.nn as nn
import torch.nn.functional as F

data = torch.randn(2, 2)
print(data)
print(F.relu(data))

ouT

tensor([[-0.5404, -2.2102],
[2.1130, -0.0040]])

tensor([[0.0000, 0.0000],
[2.1130, 0.0000]])

Output transformation function

What do we do with
all these
calculations?

How do we get our
class prediction?

output layer

Output transformation function: SoftMax

Softmax function

?oftmax function, or normalized exponential X=Xq...Xk
unction: e
- it’s also a non-linearity, but only used at the SOﬂmaX(X’) o E}‘:1 e¥i
end
- squashes a vector in the range (0, 1) Output ~ Softmax Brobabiiities
- all the resulting elements add up to 1 ayer HElivalien IYeeysn
1.3 0.02
— takes in a vecI;c)oLolf re;l nutr)nbers f 5 1 ezi 0.90
returns a probability distribution (i.e. vector o
~ pre Y (2.2 |t —|0.05
class probabilities) K >
— used to transform a score into a probability 0.7 Zj:l € 0.01
1.1 0.02

21

SoftMax function

- During training: transform the output to compute the loss
- At test time, used to compute the predictions

Softmax is also in torch.nn.functional

data = torch.randn(5)

print(data)

print(F.softmax(data, dim=0))

print(F.softmax(data, dim=0).sum()) # Sums to 1 because it is a distribution!
print(F.log_softmax(data, dim=0)) # theres also log softmax

.~ A~ A~ A~

ouT

tensor([1.3800, -1.3505, 0.3455, 0.5046, 1.8213])
tensor([0.2948, 0.0192, 0.1048, 0.1228, 0.4584])
tensor(1.)

Using the log-softmax
will punish bigger
mistakes in likelihood
space higher.

Objective function

— same as for linear models

The objective function is the function that your network is being trained to minimize, in which
case it is often called a loss function or cost function.

choose a training instance,
run it through your neural network,
compute the loss of the output

> wnN e

update the parameters of the model accordingly
- if your model is completely confident in its answer, and its answer is wrong, your
loss will be high
- if itis very confident in its answer, and its answer is correct, the loss will be low
- inany case, we need to modify the parameters if the model is wrong

Understanding the cross-entropy loss

For example, in the case of Binary Classification, cross-entropy is given by:
I=-(ylog(p) + (1-y)log(1-p))
where:
e pisthe predicted probability, and y is the indicator (0 or 1) in the case of binary classification

Let's walk through what happens for a particular data point. Let's say the correct indicator is i.e, y=1. In this case,
I =-(1xlog(p) +)

source: https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDASNTMx

https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx

~
h

Understanding the cross-entropy loss

For example, in the case of Binary Classification, cross-entropy is given by: 0

—
~
wi
o~
v

I=-(ylog(p) + (1-y)log(1-p))

where:

e pisthe predicted probability, and y is the indicator (0 or 1) in the case of binary classification

Let's walk through what happens for a particular data point. Let's say the correct indicator is i.e, y=1. In this case,
I'=-(1xlog(p) +) =-(1xlog(p))

- the value of loss | thus depends on the probability p;
- our loss function will reward the model for giving a correct prediction (high value of p) with a low loss;

- however, if the probability is lower, the value of the error will be high (bigger negative value), and therefore it penalizes
the model for a wrong outcome.

source: https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDASNTMx

https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx

Understanding the cross-entropy loss

For example, in the case of Binary Classification, cross-entropy is given by: 0

—
~
wi
o~
v

I=-(ylog(p) + (1-y)log(1-p))

high value of p

where: => |Og >0
e pisthe predicted probability, and y is the indicator (0 or 1) in the case of binary classification => IOSS <0
=> |low loss,

Let's walk through what happens for a particular data point. Let's say the correct indicator isi.e, y=1. In 1 OOd
= - 1xlog(p) +)=~ (1xiog(p)) &

prediction!
- the value of loss | thus depends on the probability p;

- our loss function will reward the model for giving a correct prediction (high value of p) with a low loss;

- however, if the probability is lower, the value of the error will be high (bigger negative value), and therefore it penalizes
the model for a wrong outcome.

source: https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDASNTMx

https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx

Understanding the cross-entropy loss

For example, in the case of Binary Classification, cross-entropy is given by: 0

—
~
w
-
v
o

I=-(ylog(p) + (1-y)log(1-p)) low value of p

where: => |Og <0
e pisthe predicted probability, and y is the indicator (0 or 1) in the case of binary classification => IOSS >0

L Ik through what h f lar d L h d 1.1 => high loss,
et's walk through what happens for a particular data point. Let's say the correct indicator is i.e, y=1. In { . L.

_ _ bad prediction!
I'=-(1xlog(p) +) =-(1xlog(p))

- the value of loss | thus depends on the probability p;
- our loss function will reward the model for giving a correct prediction (high value of p) with a low loss;

- however, if the probability is lower, the value of the error will be high (bigger negative value), and therefore it penalizes
the model for a wrong outcome.

source: https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5SNTMx

https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx

Understanding the cross-entropy loss

For example, in the case of Binary Classification, cross-entropy is given by: 0

I=-(ylog(p) + (1-y)log(1-p))

where:

~
h

—
~
wi
o~
v

p is the predicted probability, and y is the indicator (0 or 1) in the case of binary classification

Let's walk through what happens for a particular data point. Let's say the correct indicator is i.e, y=1. In this case,
I'=-(1xlog(p) +) =-(1xlog(p))

the value of loss | thus depends on the probability p;

our loss function will reward the model for giving a correct prediction (high value of p) with a low loss;

however, if the probability is lower, the value of the error will be high (bigger negative value), and therefore it penalizes
the model for a wrong outcome. Z y; log (§;)

Extension to multi-class:

The cross-entropy is computed over a dlstrlbutlon of probability (thus SoftMax over the scores)

source: https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDASNTMx

https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx

With Pytorch

For binary classification (1 output), you can either:

- apply nn.BCELoss to a sigmoid layer
- apply nn.BCEWithLogitsLoss to your output layer: combines a Sigmoid layer and the BCELoss in one single
class.

For multi-class classification (2 or more labels), you can either:

- apply nn.NLLLoss to a LogSoftmax layer
- apply nn.CrossEntropyLoss to your output layer: combines nn.LogSoftmax() (log(softmax(x))) and
nn.NLLLoss() in one single class.

https://pytorch.org/docs/1.10.1/nn.html#loss-functions

https://pytorch.org/docs/1.10.1/generated/torch.nn.BCELoss.html#torch.nn.BCELoss
https://pytorch.org/docs/1.10.1/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss
https://pytorch.org/docs/1.10.1/nn.html#loss-functions

Where we are

To summarize:

- we have inputs represented as vectors

- from them, we can compute some (output) values = computation
using linear + non linear functions based on some parameters W

- the output values are transformed into a probability distribution
(using SoftMax)

- then we compute the loss based on the gold class and the
probabilities

- finally, we need to update the parameters W depending on the loss

Where we are

To summarize:

- we have inputs represented as vectors

- from them, we can compute some (output) values = computation
using linear + non linear functions based on some parameters W

- the output values are transformed into a probability distribution
(using SoftMax)

- then we compute the loss based on the gold class and the
probabilities

- finally, we need to update the parameters W depending on the loss

Training

Stochastic Gradient Descent: looking for the minimum of the loss

— linear models: gradient-based methods work well since convex objective function

— neural networks (non-linear):

- not convex, thus may get stuck in a local minima, but good results in practice

- gradient calculation is hard for complex NN, but can be done efficiently using the
backpropagation algorithm = computing the derivatives of a complex expression using
the chain rule, while caching intermediary results

A B

“Deep Learning, to a large extent, is really about

solving massive nasty optimization problems”

'V”'. ‘

A convex objective function A non-convex objective function

Remember derivatives?

Maximum and minimum are
located where derivative =0

Max or min? Look at the value

of the derivative around the
critical values = gives the
direction, the slope of the
curve, the rate of change

Maxima and minima & the derivative

Maximum Minimum

f'(x) positive on the left
f'(x) negative on the right

f(x)=0 f(x)>0

>0

f'(x) negative on the left
f'(x) positive on the right

f(x)>0

Gradient = multiple derivatives

The gradient is the derivative of a multi-variable function / a partial derivative with respect to its inputs.

— if a function takes multiple variables, such as x and y, it will have multiple derivatives: the value of the

function f(x,y) will change when we “wiggle” x (df/dx) and when we wiggle y (df/dy).

— We can represent these multiple rates of change in a vector, with one component for each derivative.

Thus, a function that takes 3 variables will have a gradient with 3 components

— If we have two variables, then our 2-component gradient can specify any direction on a plane. Likewise,

with 3 variables, the gradient can specify any direction in 3D space to move to increase our function.

Gradient?!

The gradient is a fancy word for derivative, rate of change of a function. It’s a vector (a direction to move) that:

- Points in the direction of greatest increase of a function
- The higher the gradient, the steeper the slope
- Is zero at a local maximum or local minimum (because there is no single direction of increase) — stop learning

Imagine a blindfolded man who wants to climb to the top
of a hill with the fewest steps along the way as possible:

- He might start climbing the hill by taking really big steps
in the steepest direction

- As he comes closer to the top, however, his steps will
get smaller and smaller to avoid overshooting it.

Gradient

- At any point of our curve, we can define a plane that is tangential to

Steepest Ascent

— Steepest Descent

the point.

- Then, we can have infinite directions on this plane. Out of them, _
precisely one direction will give us the direction in which the function il i ‘;“‘\‘;‘\\ \\\\\\\\
has the steepest ascent. This direction is given by the gradient. w W

- The direction opposite to it is the direction of steepest descent. This is N

how the algorithm gets its name. We perform descent along the
direction of the gradient, hence, it's called Gradient Descent. Ty x

\\ Direction of Steepest Descent
(Opposite of Gradient)

- agradient = a vector that contains the direction of the steepest
step the blindfolded man can take

- Now, once we have the direction we want to move in, we must
decide the size of the step we must take. The size of this step is
called the learning rate.

Gradient descent

Goal finding a minimum (it’s more about hiking down to the bottom of a valley)
Repeat Until Convergence {

m

w(—w—a*VwZLm(w)
1

- w is the weight vector to be updated t

- the minus sign refers to the minimization part of gradient descent, take the opposite
direction of the gradient

- the alpha in the middle is the learning rate

- the gradient term (Af(w)) is simply the direction of the steepest ascent

https: //blog.paperspace.com /intro-to-optimization-in-deep-learning-gradient-descent/

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

Gradient descent

Goal: find the values of w and b that correspond to
the minimum of the cost function

- initialize w and b with some random
numbers

- Gradient descent then starts at that point

- takes one step after another in the steepest
downside direction

- until it reaches the point where the cost
function is as small as possible. - S

~0.75_; og1-00

Real Trajectory of G.D.

https://builtin.com/data-science/regression-machine-learning
https://builtin.com/data-science/regression-machine-learning

Learning rate

How big the steps are gradient descent takes into the direction of the local minimum are
determined by the learning rate.

— we must set the learning rate to an appropriate value, which is neither too low nor too high

- if the steps it takes are too big;, it may not Big learning rate Small learning rate
reach the local minimum because it
bounces back and forth between the
convex function
- If we set the learning rate to a very small
value, gradient descent will eventually
reach the local minimum but that may take
a while

Does it work?

A good way to make sure gradient descent runs properly is by plotting the cost function during training

- put the number of iterations on the x-axis and the

value of the cost-function on the y-axis
- see the value of your cost function after each
iteration of gradient descent,

— provides a way to easily spot how appropriate your

learning rate is

- the cost function should decrease after every
iteration

- When the cost remains more or less on the same

level, it has converged

4

low learning rate

high learning rate

good learning rate

Gradient descent

y B Local
aximum N

Saddle Point

&Local Minimum
! X

Type of Gradient Descent

Three types of gradient descent, differ in the amount of data they use:

Batch gradient descent (vanilla gradient descent): calculates the error for each example, but the
model get updated only after all training examples have been evaluated (after each training epoch).

- computational efficient, produces a stable error gradient and a stable convergence
- the stable error gradient can sometimes result in a state of convergence + the entire training
dataset has to be in memory

Type of Gradient Descent

Stochastic gradient descent (SGD) calculates the error AND update the parameters for each training

example within the dataset

- Depending on the problem, this can make SGD faster than batch gradient descent
- The frequent updates are more computationally expensive + the frequency of those updates
can result in noisy gradients, which may cause the error rate to jump around instead of slowly

decreasing.

Type of Gradient Descent

Mini-batch gradient descent.: it's a combination of the concepts of SGD and batch gradient
descent. It simply splits the training dataset into small batches and performs an update for
each of those batches.

- balance between the robustness of stochastic gradient descent and the efficiency of
batch gradient descent

Common mini-batch sizes range between 50 and 256 (but no clear rule).

This is the go-to algorithm when training a neural network.

https://builtin.com/data-science/recurrent-neural-networks-and-lstm

Gradient descent

- Compute gradient of parameters with regard to loss function to find minimum—
take steps in right direction

- Size mini-batch: balance between better estimate and faster convergence

- Gradients over different parameters (weight matrices, bias terms, embeddings, ...)
efficiently calculated using backpropagation algorithm (i.e. compute the gradient of
the cost function)

- No need to carry out derivations yourself: automatic tools for gradient computation

https://www.deeplearning.ai/ai-notes/optimization/

https://www.deeplearning.ai/ai-notes/optimization/

Repeat Until Convergence {

m

And now what is backpropagation? e
}

w1, ..., wn

Af(wn) est le gradient de f en wn — comment calcule-t-on ce gradient ?
- Normalement on devrait calculer les dérivés partielles et les évaluer mais calculer les fonctions dérivées partielles est
trés colteux si la fonction est compliquée et il y a autant de dérivées partielles que de paramétres (des millions !)
- La backpropagation permet de faire ¢ca de maniére efficace : on ne calcule que la valeur de la dérivée partielle au
point considéré et non pas la fonction dérivée partielle
— Cf I'image ci-aprées pour la fonction f(x,a,b) (= graphe de calcul, par lequel on peut représenter tout NN)

Le fonctionnement de l'algorithme :

- algorithme feedforward: calculs dans le sens
forward/direct et on note les résultats des calculs
pour chaque noeud (en bleu)

- Ensuite on parcourt les noeuds dans le sens
inverse, pour calculer la dérivée partielle de f par
rapport au noeud (en rouge)

- pour calculer les valeurs des dérivées partielles de
chaque nceud, on a besoin des valeurs des nceuds
parents, d’ou la nécessité de faire Feedforward

da

b=7 % =30

PIeMIOIPOd]

2
<

https://apprendre-le-deep-learning.com/comprendre-backpropagation/

7

Backpropagation

https://apprendre-le-deep-learning.com/comprendre-backpropagation/

General workflow

- Data preparation (preprocessing, choose embeddings, choose combination if
needed e.g. concatenation, sum, average)

- Network design (humber of hidden layers, type of non-linearity, size of the
layers...)

- Initialize weights (random embeddings, weights of the hidden layers, bias)

- For each epoch:

select a subset of training examples

compute predicted outputs for this subset

compute loss w.r.t. these predictions

update the weights w.r.t. the loss, i.e. looking at the gradients + using backpropagation
- At the end of an epoch: decide whether to stop training

- Return the model (i.e. the final weights)

General workflow and variations

- Data preparation (preprocessing, choose embeddings, choose combination if
needed e.g. concatenation, sum, average)

- Network design (humber of hidden layers, type of non-linearity, size of the
layers...)

/Initialize weights (random embeddings, weights of the hidden layers, bias)

- For each epoch:

select a subset of training examples

compute predicted outputs for this subset

compute loss w.r.t. these predictions / \

update the weights w.r.t. the loss, i.e. looking at the gradients + using backpropagation
- At the end of an epoch: decide whether to stop training

- Return the model (i.e. the final weights) \

Embeddings

e Often pre-trained word embeddings

e Unsupervised: only requires plain text, so can be trained on a lot of data, fast algorithms

available
e It helps a model start from an informed position

e Often: model is initialized with pretrained word embeddings, and then fine-tuned

depending on task

Training: initialization

e Shuffling: shuffle training set with each epoch
e Learning rate: balance between proper convergence and fast convergence
e Minibatch: balance speed/proper estimate; efficient using GPU:

- Estimating gradient over entire training set before taking step is computationally
heavy

- Compute gradient for small batch of samples from training set

- Learning rate A: size of step in right direction

- Improvements: momentum, adaptive learning rate

Training: initialization

e Parameters of network are initialized randomly
e Magnitude of random samples has effect on training success

o effective initialization schemes exist

https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/

Regularization

Training correspond to finding the parameters © that minimizes the loss function L(©):
O = argming L(©) = argming 1/n 3 _ _L(f(xi; ©), yi) + AR(©)
— Multi-layer networks can be large and have many parameters = prone to overfitting

- Common regularizers work: L1, L2, elastic-net
- L2 regularization / weight decay: it’s crucial to tune the regularization strength A

Regularization using dropout training

(a) Standard Neural Net (b) After applying dropout

Idea: reducing the reliance of each unit in the hidden layer on other units in the hidden layers, helping units
to act more independently, preventing the network to rely on specific weights

Method:

- randomly dropping (=setting to 0) ‘part’ of the neurons in the network (or in a specific layer) in each
training example i.e. randomly set some of the values of h1 (h2, ...) to 0 at each training round
- ‘part’ of the neurons = parameter: probability p that a given unit will drop out, often 0.5
- at test time: no dropping, but we need to adjust the weights, i.e. multiplying the weights by p

https://medium.com/analytics-vidhya/a-simple-introduction-to-dropout-regularization-with-code-5279489ddale

(Srivastava et al. JMLR 2014)

https://medium.com/analytics-vidhya/a-simple-introduction-to-dropout-regularization-with-code-5279489dda1e

https://pytorch.org/docs/stable/g

D [0 p out Wlth Py[D r[h enerated/torch.nn.Dropout html

class Model(nn.Module):
def __init_ (self, p=0.0):
super().__init_ ()
self.drop_layer = nn.Dropout(p=p)

def forward(self, inputs):
return self.drop_layer(inputs)

model = Model(p=0.5)
Train model as usual

Calling this will change the behavior of

switching to eval mode
layers such as Dropout, BatchNorm, etc.

model.eval()

https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html

Architecture and hyper-parameters

Many possible variations

- Number of hidden layers

- Activation functions

- Size of the hidden layers

- Size of the embeddings + type of embeddings + frozen or not

- Learning rate

- Epochs number

- Regularization technique

- Optimizer (SGD, Adam ...)

+ Now, often, people gives results of several runs with different initializations

Sources and references

https://pytorch.org/tutorials/beginner/nlp/deep learning tutorial.html
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
http://www.awebb.info/probability/2017/05/18/cross-entropy-and-log-likelihood.html
https://stackoverflow.com/questions/65192415/pytorch-logsoftmax-vs-softmax-for-crossentropyloss
https://betterexplained.com/articles/vector-calculus-understanding-the-gradient/
https://socratic.org/questions/how-do-you-find-local-maximum-value-of-f-using-the-first-and-second-derivative-t-8
https://builtin.com/data-science/gradient-descent

https://www.wikiwand.com/en/Gradient_descent

https://www.deeplearning.ai/ai-notes/optimization/ and https://www.deeplearning.ai/ai-notes/initialization/
https://discuss.pytorch.org/t/should-i-remove-dropout-layer-when-testing-my-trained-model/15581
http://neuralnetworksanddeeplearning.com/chap2.html
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
https://apprendre-le-deep-learning.com/comprendre-backpropagation/

https://www.youtube.com/watch?v=gPVVsw20WdM
https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDASNTMx

https://pytorch.org/tutorials/beginner/nlp/deep_learning_tutorial.html
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
http://www.awebb.info/probability/2017/05/18/cross-entropy-and-log-likelihood.html
https://stackoverflow.com/questions/65192475/pytorch-logsoftmax-vs-softmax-for-crossentropyloss
https://betterexplained.com/articles/vector-calculus-understanding-the-gradient/
https://socratic.org/questions/how-do-you-find-local-maximum-value-of-f-using-the-first-and-second-derivative-t-8
https://builtin.com/data-science/gradient-descent
https://www.wikiwand.com/en/Gradient_descent
https://www.deeplearning.ai/ai-notes/optimization/
https://www.deeplearning.ai/ai-notes/initialization/
https://discuss.pytorch.org/t/should-i-remove-dropout-layer-when-testing-my-trained-model/15581
http://neuralnetworksanddeeplearning.com/chap2.html
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
https://apprendre-le-deep-learning.com/comprendre-backpropagation/
https://www.youtube.com/watch?v=gPVVsw2OWdM
https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx

