Neural Methods
for NLP

Master LiTL --- 2023-2024
chloe.braudeirit.fr

https://gitlab.irit.fr/melodi/andiamo/teaching _chraud/master_litl

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Schedule
2023-2024

1 28.11 13h30-15h30 2 (C1) ML Reminder + (FRP-Mk) + TP POO
2 0512 13h30-15h30 2 (C2) Intro DL + TP2 (part1)
3 1212 13h30-16h 25 (C3) Embeddings + TP2 (part2) + TP3
4 19.12 13h30-16h 2.5 TP4 + Start projects
(holidays)
5 09.01 13h-16h 3 (C4) Training a NN + TP5 + TP6
6 16.01 13h-16h 3 (C5)CNN,RNN +TP7 + TP8
—(15/01) Assignments Part 1 due
7 23.01 13h-16h 3 Projects
8 01.02 13h-16h 3 (C6) Encoder-decoder, transformer + TP9
9 13.02 13h-16h 3 (C7) Current challenges + project defenses

— (12/02) Assignments Part 2 due

.
RN NS. I<1> I<2> <t> .’E<t+1>

- allow to condition on the entire history
- can act as language models — learning the likelihood of occurrence of a word based on
the previous sequence of words (or based on characters, sentences, paragraphs)

— make them suitable for use as generators: generating natural language sequences
Combining encoding + generation = encoder-decoder / sequence to sequence

- =conditioned generators: the generated output is conditioned on a complex input
- based on RNNs and/or Attention mechanisms

TP: library Transformers (HuggingFace)

RNN generators

RNN transducer: Producing an output y. for each input

— use this architecture to do sequence generation

- ldea:

- tying the output at time i with its input at time i+1, i.e. using the predicted
token as next input

- at each step, select the output with the highest probability (or use
beam-search for finding a global high-probability output)

RNN Generator

predict a distribution over
the next output
choose a token t.
its embedding vector is fed
as input of the next ste
stop when generating a
‘end-of-sequence’ symbol
</s>

the . black . fox — jumped =N </s>
|| I'| I|l |
—— [L —— [— _— | — — | - _—
:’\’___V_predictﬂ_,} (\\predict'_’} C . predictﬂ) ' (_upredict_:} o predictﬂ/}

mowm%mHMW“}
R T IR T

[<s>] [tlJe] [blatk] []ox] [;umped]

N\ \
\

<5> > the > black ‘\""> Jfox > jumped

RNN Generator

[Sutskever et al. 2011]: generation of sentences using a character based RNN
- ability to condition on long histories
- the produced text resembles fluent English
- and show sensitivity to properties such as nested parenthesis

For more analysis on RNN-based character-level language models [Karpathy et al. 2015]

Encoder-Decoder

Real power of RNN transducer: Conditioned generation framework

- Until now: = generating the next token t.
- based on the previously generated tokens t1:j
- Conditioned generation = generating the next token tj+1
- based on the previously generated tokens t;
-+ an additional conditioning context c (represented as a vector)

at

Conditioned generati
e Ty VT g

each stage:

the context vector c is
concatenated to the
input (predicted) t
and the concatenation
is fed into the RNN to
produce the next
prediction

perl(_t perlLt) | \predmt‘ | |\pr6dl(_t\ | \predut\)

Yoo - : I T
1)’1 , yz s y3 . I)’4 .' TYS
50’ RO }__>'sl ‘ RO }__>52 ‘ RO }H_WS”{ R O }__>'s“ ‘ R O

:f:"'.concatﬂ'\ (‘conc 1t ’\ conc: 1t (concat)| (" concat)
I it ~.. <3 g Ry > e o | SRy -
o | FC| RV | T

! | [e | e | -
| I | | |
| 'l |
E[<s] Elthe] \ Epua) \ Efex] | Efjumped

S the N black N jbx N Jumped

<§>

Conditioned generati
e Ty VT g

|
Cpredict predm\ | Gpredic) | Cpredic) | Cpredict)

at each stage: | _ ,' E I Y
y1 | Y2 Y3 | Y4 .' YS

- the context vector c is so, - lsl‘ R ‘ sz‘ s ’.sw - '54‘ -

concatenated to the

input (predicted) tj T | T T '. l[

- and the concatenation Feoncat s | Cconcat)| (concat T e
is fed into the RNN to Ll) T * y | e
produce the next e | &1 | e | e
prediction Efs) . E{black] E[fox] E[jumped]

<s> > black S fox S jumped

at

Conditioned generatmp

each stage:

the context vector c is
concatenated to the
input (predicted) t
and the concatenation
is fed into the RNN to
produce the next
prediction

p_redlit

|
1)’1 1

black

|
|

predlct y |

"]
|
Y2 :

TT

J 4 -
. "‘c
E[<s]

<§>

:\‘ concat _ DY

d conc at)

3 l;>

Elthe]

S the

fox —.

|

(predict)

T
%, RO }'i>‘ R O }_24 R O }Hﬂ»{ R O }_i.‘ R O

(concat)

(concat)

Elbtack]

jumped —_

(_predict)

i |
| |
l IY“ :

1

(concat)|
.

</5>

(predict)

T,

’\._3

E[jumped]

lI‘\\ .
~> jumped

C

4

Conditioned generation

What can be encoded in the context vector c? anything that we find useful!

- use the topic associated with documents to generate texts conditioned

on the topic
- rating / sentiment associated to a review: generate reviews with a

specific polarity
- inferred properties, automatically derived from texts: if a sentence is
written in first person, the level of vocabulary ...

= some fixed-length vectors

— another popular approach: c is itself a sequence of words

Conditioned generation

What can be encoded in the context vector c? anything that we find useful!

- use the topic associated with documents to generate texts conditioned

on the topic
- rating / sentiment associated to a review: generate reviews with a

specific polarity
- inferred properties, automatically derived from texts: if a sentence is
written in first person, the level of vocabulary ...

= some fixed-length vectors

— another popular approach: c is itself a sequence of words

Typical example: Machine translation

Encoder builds a Target sentence
e.g. : Machine translation representation of the source T saw a cat on a maf <eos>|
. . . and gives it to the decoder
- encoding the input in source \ |
language = produce a
- decoder: use the T
representation to condition the Decoder uses this source
P . |s| ?Mne,,nnKOTﬁ e /‘s\/\aTe:eos>| representation to generate
output in target language I" "saw” “cat” “on” "mat the target sentence
decoder = generator of target Source sentence
language

Basic architecture of all the
models presented in this course

Seqéseq
Sequence to sequence (seg2seq) [Cho et al, 2014; Sutskever et al

2014] — cis itself a sequence of words

- source sequence x,. (e.g. a sentence in French)
- target output sequence t,. (e.g. its translation in English)

Note: The length of the input can be different of the length of the
output

L

General idea

Encoder

0000 —>

I

saw

on

S Buaen KOTHO Ha Mare <eos>

Decoder

previous history

previous history

Pipeline:

feed source and previously
generated target words into a
network;

get vector representation of
context (both source and previous
target);

from this vector representation,
predict a probability distribution
for the next token.

Output layer

classification part:

- vector
representation of
dimension d

- we need a vector of
size | V|

— linear layer to
perform the
transformation (then
softmax)

Encoder

Q000

Q0000

0000

o] |10 O
o] |10 O
o] |10 O
ol |0 O

4 BMAeN KOTHO Ha MaTe <eos>
T “saw” “cat” “on" “mat”

Transform h linearly
fromsizedto |V] - the
vocabulary size

d-sized

vector

Decoder

000

!

000

l\ !

Q0000
0000
000

(cooo]

<bos> I saw a cat

J

source

previous history

[VItokens P(x|I saw a cat,
4 BUAen KOTHO Ha MaTe <eos>)

| e softmax

layer

000000000 <—

: vector representation
of context (source and
previous history)

Word embeddings

get probability
distribution for
the next token

process source and
previous history

the — black - fox —._ jumped — </s>

Encoder-decoder .;ip.’rllicr;: .;:’p;eLi'ct_‘:; pL | <fr{rjdiﬁcf> | xf.PfcI‘ﬁ?Ft

TYI 'I TYz I'I]Yz l'l 1 Y4 ;’l I

*>{ Rp, Op }—‘—" Rp, Op }H—»‘ Rp, Op H Rp, Op }—>‘ Rp, OD

Simplest architecture: 2 RNNs T | J | J T T

— y

. \ comdt :’\’:_"'C()ncat:\; ; concat) ' C (_concat _ M »i concat D
- encoding the source sentence — e e
. ' \ | \ : E | : x | | \
X.. using an RNN [e | | e | | < | e | e
1:.n g E[<s>] A l'l,l E[fbe] A‘ I‘.I E[blatk] ‘, ‘I". E[fax] 3 !'. E[jumped] Al
- using another RNN (decoder) R
<5> N N the \ N\, black N R Jfox N Jumped |
~ . \\-a,_. s) ,//I‘

to generate the output t..

I

E[a] E[(anditianing] E[sequente] E[</s>]

[<s>]

<5> a conditioning sequence </s>

the = black s fox R jumped oFRE Y

E Nco d Er- d ECo d el ~;ﬁPrliicf; ::Prjdfct‘:: ;'ijdictﬁ:: ’ :jgrl]icf; ,;jprlﬁf-t;
,TH'T”'WW:’T

ﬁ,{ Rp, Op }—‘—»‘ Rp, Op Fi»’ Rp, OD Rp:0p }_,‘ Rp, OD

Simplest architecture: 2 RNNs T | J | J T T

(" Lomdt) | (concat)| :’\/__ L()l’lLdt %) ' (concat M C _concat 3

- encoding the source sentence Ry | I e U L o
X,.. using an RNN — last state oS ' L | |
- using another RNN (decoder) to
generate the output t,,

—»‘ RpE, O }—»‘ RE, O }—»‘ Rg, O }—»{ Rg, O }—» Rz
F4[<.v>] E[a] E[(anditioning] E[sequente] E[</.s‘>]

<s> a conditioning sequence </s>

the — black —. fox —_ jumped T Y

Encoder-decoder L) o] | b | e
predict_:) i x\ prcdict:) \ predict;‘_} i (predict:} I :\ prcdict:)

A l 'l | N | K |I r

no| 2 | s | ya | ys

r bl l r A | r bl [ri——n I" r
A»‘ Rp, Op }_:i,‘ Rp, Op %‘ Rp, Op }j—”»‘ Rp, Op %‘ Rp, Op ’
L a ll L a I‘ L Kl ‘I I.._.].— 4] ||‘ [4
| J ‘I J || II'
l l ’ = |“ I ——

"

Simplest architecture: 2 RNNs

. L;mut/ xcz)nutu : (/c()m;t | \L;)nmt\, [w;’:.-cc)11czlfj:)
- encoding the source sentence 5\] |]
X, using an RNN — last state | < | < el | e | .
1:[‘ g E[<s>] A E[fbe] l"l E[blatk] *l ‘I". E[fax] 3 !' E[jumped] Al

- using another RNN (decoder) T P
Sy the \ N\, black Neg Jfox Ny Jumped :’,’

to generate the output t.,

— predicted output + : . - . . .
encoding of the input _"E}—"E}_"ﬂ}_’{ﬂ}—"ﬂ‘

F4[<s>] E[a] E[(anditionin gl E[sequente]

<s5> a conditioning sequence

Encoder-Decoder

- originally built to solve Seq2Seq problems

- useful to map sequences of size n to sequences of length m
- encoder = summarizing the source sentence as a vector ¢

- encoder and decoder are trained jointly:

— supervision only for decoder, but propagation all the way back to the
encoder

— use of cross-entropy loss, as usual
Some modifications:

- e.g. encoder and decoder can have several layers
- decoding: greedy (most probable token) or beam-search (keep several
hypothesis)

Encoder-Decoder

Applications examples:

Machine translation: in [Sutskever et al. 2014], they feed the source sentence in
reverse (then x_is the first word) + approach with 8 layers of high-dimensional
LSTMs — computationally expensive

Email auto-response: map an email to a short answer [Kannan et al 2016] with
LSTMs as encoder and decoder

Morphological inflection: input is a base word + inflection request, the output is
an inflected form. [Faruqui et al 2016]: character level seq2seq.

Other uses: almost any task can be formulated this way (but there could be
better, easier to learn architectures). It has also been used for e.g. sentence
compression by deletion [Filippova and Altun, 2013], POS tagging and NER
[Gillick et al 2106], syntactic parsing using constituency bracketing decisions
[Vinyals et al 2014]

https://arxiv.org/pdf/1409.3215.pdf

Learned representation

In [Sutskever et al. 20141 (MT) they looked at the last encoder state and
visualize several examples

151

sl OT was given a card by her in the garden
3r C Mary admires John 10F o Inthe %ar'den, she gave me a.car'd

2t O Mary is in love with John | She gave me a card in the garden
1t

or 0

o
. ©John admires Mary Mary respects John

- . [O She was given a card by me in the garden
2t 0Joh I th
) sf o n lovepslii Many ©In the garden, I gave her a card
-3} =10
4
=15
st OJohn respects Mary © I gave her a card in the garden
-6 . L : . ' l : .) -20

-8 -6 -4 -2 0 2 4 6 8 10 -15 -10 -5 0 5 10 15 20

https://arxiv.org/pdf/1409.3215.pdf

Encoder-Decoder: Other conditioning contexts

- The encoder can be also a single word, a CBOW encoding, or generated by
another network

- The context can encode extra-linguistic information: user information
(age, gender ...) e.g. dialogue generation [Li et al 2016]
Image captioning: encoding input image (using a CNN) and the vector is
used as conditioning context for an RNN generator trained to predict
image description

Unsupervised sentence similarity

Use encoder-decoder framework to produce vector representations of sentences
— we want similar sentences to have similar vectors (rather ill-defined...)
Unsupervised approaches (trained using un-annotated data) using encoder-decoder:

- an encoder RNN is used to produce context vectors ¢
- then used by an RNN decoder to perform a task: the information important

from the sentence for the task are captured in ¢
- finally: the encoder is used to generate sentence representations ¢

— the similarity relies on the task

Unsupervised sentence similarity

Auto-encoding:

- the decoder attempts to reconstruct the input sentence
- may not be ideal, not considering similar sentences with similar meaning but different words

Machine translation:

- trained to translate sentences from English to another language
- encode what is needed to translate properly: sentences translated similarly will have similar
vectors; requires a large parallel corpus

Skip-thoughts [Kiros et al 2015]:

- one decoder is trained to reconstruct the previous sentence, and a second decoder the
following sentence
- extend the distributional hypothesis from words to sentences; impressive results

Conditioned generation with attention

Encoder-decoder = the input sentence is encoded into a single vector

- the encoder vector ¢ must contain all the information required
- but itis hard for the encoder to compress the sentence
- the generator must be able to extract the information from this fixed-length
vector
- but for the decoder, different information may be relevant at different
steps

This compression in one representation is suboptimal — attention mechanism
[Bahdanau et al 2014; Luong et al 2015]

https://arxiv.org/pdf/1409.0473.pdf

Attention o

Score d'alignement P - e
(Attention) i i O

———

[representanon]——-[represemauon}—h’ representation }—b[represemauonj——b[representanon H IGPIQSBHEIOE)—F‘FGDFQSGHIBDCn]

- at different steps, let a model ‘focus’ on different parts of the input

|dea:

More formally:

- the input sentence corresponds to a set of vectors, all source tokens / RNN states
(not only the final state)

- at each step, the decoder decides on which parts of the encoding input it should
focus / which source parts are more important

Attention

we try to align the current state of the decoder with relevant inputs from the encoder

1 2 4
Score d'alignement —— s e
e T — T -
(Attenton) B e i,
e —— e -y
e o T P
e
SR e
e
B — G
"c'"‘\
fepresentation——»|représeniation représeniation —»{représentation — représentaton —» tation

= 0 6 @

Attention

Weight normalization

05 0.1 0.85
Normalisation
1 2 4

Score d'alignement
(Attention)

Attention

context vector = use the attention weights to make a weighted sum of the
encoder inputs

Vecteur de contexte : 0.05*"Je"+0.1*"suis"+0.85*"étudiant"

0.05 0.1 0.85
[Normalisation
1 2 4

Score d'alignement

(Attention)

[repnésernaﬁon r—b[reptmnhbon replésmtahon}—P[représentabon représentation représentation représentatlon

)) bs BB OB B @

Attention

The context vector is combined to the current state of the decoder to make a
prediction

‘ Vecteur de contexte

Poids d'attention » h o=

Nonnallsatlon

Score d'alignement ‘F\"’\‘
(Attention) = ——

[
[neptésenhﬁorl-—.[repf&mhﬁon}—.[mm&mhﬁm}—-[reptésmhﬁm]—-[mprésenhﬁon}—’[repl'ésenmﬁmq—l[reptésenfaﬁon]-’

el B B BN

Attention output: weighted sum of
encoder states with attention weights

Attention weights: distribution
over source tokens

A model can learn to “pay

attention” to the most relevant

source tokens for each step

Attention S
score(hy, si) N\

9 How relevant is

scalarT out source token k

for target step t?
Attention 9 P
function A

in in /

[0000]

Encoder state
fortokenk: s,

(0000]

Decoder state
atstept: h;

@0 e e

066

"n w " w

cat” on

CRON X

0000

"nw

Encoder

mat"

0000

4 BuAaen KOTHO Ha MarTe <eos>
"T" “saw

s "
(@) @ O O
-|O (@] BN (©] I [®)
>) — —>
O O ol 10
O O ol |0
O O ol |O
O O o |0
O O ol |0
@) @) O O

<bos> I saw a

Decoder

Encoder-decoder with attention

Steps:

- encode an input sequence x,. using a RNN — produce n state vectors c,._

- the decoder compute the relevance of the c.. / which of the vectorsc,.
it should attend to — context vector c' — (c,. , t”.)

- the context vector is used to generate the next token

plti+1 = k | ’Al:j-xl:n) = _f.(O('Sj.,.l))
Sj+1 = R(s;, [fj:c'f])
¢/ = attend(cy:n, fl;‘,-)

f- - ([' | ’A ' x) note: f is a function that maps the RNN state to
J P\l 1:j—-1,*1:n)- a distribution over words, e.g. softmax

</s>

[s
— %0, Rp, Op }__k Rp, OD
| | B T T T
/ concat \

tncoder-cecoder with % ™ T T
attention Geded | (el . <'preficg; ff.’“f@ <f‘mefisf>
— Op }_.{ Rp, Op }_, -

(concat) (u)ncat \' ,' C concat) \’ concat)
~~ = | - R

L g E e ey
r | T Il xl
o I é3 f é4

: _ﬂA 5
' tl c1 g [| € | |
E[fox] E[jumped]

| \
| Co
| |

E[«s] E[se] || Eplack)

<> the \l, > black Sfox Jumped
g W N e e o
C »fxttencil___/. ___fttten(.i___/. >\‘__:1tten(yi____' p) /_Gflttenc‘lﬂ) .__»_fittenc.l_“. D

e AN, oM =45 49

—— Blg > Bl {e——| Bl |m—— Bl [——
E[a] E[mndilioning] E[sequmte] E[</:>]
</5>

E[<
s>]
conditioning sequence

A

<5>

' Blp |k

tncoder-decodaer with ,

attention

the black- ~ fox jumped
Cpredict) (predict) | (predict) (predict)
E

-

T

y2

-

|

1
- —_— r—_— _— r r
%0, R}y, Op %i» Rp, Op ’__>‘ Rp, Op }J% Rp, Op }i>

</s>

|

._»predlctﬂ D

B

OD

L l 4 Lﬁ
((.1)!1&:11:) C L;)D(.ilt \' ,' < (.Ol‘ltdt \’ LOH(.dt /" concdt 2D
R % | % KLY Y
Y (Y | Y (
|' <o |w| c1 f) | c3 | ¢4
| | i I
E[<s>] E[tbe] | E[[:Iatk] E[fax] E[jumped]
<5> the \\l, > black Sfox Jumped
]) /\x:ltte nﬁd____) C attind/
> Blp —— Blp [¥——

output: c,

E[a] E[mnditioning]

Bi-RNN Encoder
Efs)

conditioning

<5>

E[sequmte]

.\'c’ql{t’ﬂff.’

E[/ss]

</s>

tncoder-decodaer with

attention

RNN Decoder

the
(predict) (predict)
s
Y1 y2

black—._

fox

l I
|
f‘\'""predicf“’)

T

-

output: S;

S S
—| Rp, Op |—1>

1

1

_/'".--.' . --».\\
C concat)

. ‘4_14

output: c,

Bi-RNN Encoder

jumped

|

TSR
-_‘___prcdlc_t_/.

B

- | f—_— —_—
) $3 S4
Rp, Op ’—.'T" Rp, Op }—" Rp, Op }—>
LA }I \l.". L 4 L a L
| \
|

-]

|
I
~ concat) (concat)

</s>
A

B R
._»predm_t_/)

]
Y5

\ Rp, O |

1

a

ST R T s
\'_(_.()nca_t_“ /‘l '.' \t_oncilt) __concat (_concat
' A PR T’f
|\ | R
\ Y
| C4

s I 4

|
|
|

3

e

E[jumpe({]

|I CO | Cl | | (|
E[«s] E[se] \ | Elblack] E(fox]
<s5> the \\l,‘ » black Sfox Jumped
Guttend) Cattend) “oCattend) - Cattend) o attend)
=— Bl g > Blp < > Bl |—— Blp ——
E[<:>] E[a] E[mnditioning] E[sequmte] E[</:>]
conditioning sequence </5>

a

<5>

tncoder-decodaer with

attention

RNN Decoder

output: S;

Attention

output: c,

the b

A

(‘_’_‘_'predici:j;.

J
Y1

—_— [.
s S I's
——>| Rp, Op }-—1> Rp, Op ’-%"
2 L LA }I \l.". L
| II
|

1

1

(R_concaa_)
_4_14
) l".

II Co

E[<s>]

5>

Bl

P —

P SRR TR,
C A__»predm_t_")

- —

fox

lack—._

R

-
|
Y2 |

-

|

| |

- —_ | |

7 soncat N |
A'_(_.()nca_t_” P,

.

|

the

|

ST RN
‘____predmf__/,

N

2

Ebtack)

jumped

|

TSR
-_‘___prcdlc_t_/.

B

Rp, Op }ﬁ" Rp, Op }l% Rp, Op ‘

T s SN
{ .‘(.Ol‘ltdt P, o5 L

1

(concat)
2 | <3

Efux]
Sfox

Bi-RNN Encoder

T

E[s)

<5>

a

< > Bl < > Blg < >
E[a] E[mnditioning]
conditioning

</s>
A

B R
._»predm_t_/)

)
Ys

1

E aticaES
_n_concdt_”__)
Ak
| \
| \

| &

E[jumpe({]
Jumped

C _»»fl_ttenc.l_

E[sequmte]

.\'c’gl{t’)l[f.’

AT O
(_atte nd) _ .

tncoder-decodaer with

attention

Attention

output: c,

Gy =

BIE

~—

Bi-RNN Encoder

Efs)

<5>

|

TA

|

|

/ attend \ \ >

</s>

the black . fox jumped
J X A
1 Ill _I_ _T_ _—
(predlct\; @ predmt) \’ predmt} (prcdlct; ¢ predmt\/‘
I ey wil N il i i
Y1 y2 T Y3 T Y4 Ys
S [S1 [S4 o
RNN Decoder | —> Rp 0p }-—> Rp, Op ’——»‘ Rp, Op }—>{ Rp, Op }—»‘ Rp, Op ‘
| T | T T T T
l I
output: s C c'om;tt (L();Zat; | < concat) /L;)nt:lt: ((.Oll(.dt\/
B o e S S S
: c l' C1 ." ! éz [C3 ,‘ C4
E[<s>] E[tbe] | E[l)la(k] E[fa.\‘] E[jumpe({]
3 N, black Sfox Jumped
fijﬁ%ftwi%:> Catend) Caend)

= > Blg = > Blg ~< > Blg < > Blg
E[a] E[mnditioning] E[S&’ql‘fﬂf e] E[‘/ s>
a conditioning sequence </s>

tncoder-decodaer with

attention

RNN Decoder

output: S;

Attention

output: c,

Bi-RNN Encoder

the blackv-..\\

/ 1 \
(‘_’_‘_'_‘ljredi&_'_j;. C }rediE_t_'_)
e i

Y y2

<5>

fox

1

- P
/___predlct_/,

|

T

%0, R}y, Op %i» Rp, Op ’__>‘ Rp, Op }_>{ Rp, oD

jumped

1

s .,
._‘__prcdut_/.

T

</s>

|

._»predlc_t_. D

xn

OL)

.
<(.()?l:.at>| ' < (.Ol‘ltdt \’ LOH(.dt /" concdt 2D
Iy KLY KLY LY
e || | & | | e
E[tbe] | E[[:Iatk] E[fax] E[jumped]
"‘.\ |
s the N, black Sfox Jumped
@ attend” C attend 9] \ > nd P /" attend D) (] attend N
- W- —
_// I\‘ >
— BIE —— Blp ——| Blg ——] Blp |—— Blg
E[<:>] E[a] E[mnditioning] E[sequmte] E[</:>]
a conditioning sequence </5>

Attention Is @ weighted average

Attention is a function that takes some sequence X as input and output some
sequence Y

where each vector in Y is simply a weighted average of the vectors in X

The (attention) weights show how much the model attends to each input in X when
computing the output

Yi|1 06 |07 | 02 |-0.1 05x|03|-12| 04| 0.1 | X4
. !
“\\\\\\ | : i

.

N

X =word embeddings
Y = composite of the input word embeddings

02x|04|[03]|05[-13]| X5

https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60al6d86b5cl

https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1

encoder states with attention weights N attention” to the most relevant

°
- source tokens for each step
— Attention weights: distribution
over source tokens

Attention

Attention output: weighted sum of g A model can learn to “pay
o
o

score(hy, si)

[]
e o How relevant is
sca\arT out f" urce toke “"7
r :
L mrermen] (O targetstep t
function

o
]

Encoder state Decoder state
for token k: s, atstept: hy

/

0000

0000
I

0000
[0000]

S BuAen KOTHO Ha MaTe <eos>

At each decoder step, attention T oot a0 TS @
Encoder Decoder
- receives attention input: a decoder state ht and all encoder states ;

- computes attention scores: For each encoder state sk, attention computes its
"relevance" for this decoder state ht. Formally, it applies an attention function
which receives one decoder state and one encoder state and returns a scalar value
score(ht, sk);

. computes attention weights: a probability distribution - softmax applied to
attention scores;

. computes attention output: the weighted sum of encoder states with attention
weights.

Encoder-Decoder with attention

Attention output Ci(t) = ai‘)sl + agt)Sz e a,(,f)gm - a,(f)sk
. “source context for decoder step t” k=3
(weighted
sum)

t) _ eXp(SCOI'e(ht, Sk))

Attention weights = .
ionweig ?k ZI’;I exp(SCOFe(huSi))

“attention weight for source token k at decoder step t

1..m

n

\ (softmax)

Attention scores score(he, si), k= 1..m
t
[“How relevant is source token k for target step t?”
Attention input $15 52 w02 Sm he

all encoder states one decoder state

Encoder-Decoder with attention

Attention output

(weighted
sum)

Attention weights

\ (softmax)

Attention scores

|

Attention input

all encoder states

Ci(t) = agt)sl * a;(zt)sz stk ar(rg)sm = Z al(<t)sk
k=1

“source context for decoder step t”

t) _ eXp(SCOI'e(ht, Sk)) -
a,’ =cm —,k=1..m
' e, exp(score(hy, s;))

“attention weight for source token k at decoder

sTcore(ht,sk),k =1..m

“How relevant is source token k for target step t?”

815825 oy Sy h,
one decoder state

Dot-product
N
X § S,

score(hy, sg) = hT s,

Bilinear
KT >
@®
X X o] Sk
(@]

score(hg, si) = hf Ws,

Multi-Layer Perceptron

0000 0000
| I
>
o~

—
(%)
=

i
wr
X tanh || W, | X

score(hg, si) = wl - tanh(W, [he, s])

Encoder-decoder with attention | ¢/ = attend(eran. fr:))

— the attention weights a
1.

2.
3.

the attend(.) function should be trainable, parameterized [Bahdanau et al 2014]
soft attention: at each stage, gives the decoder a weighted average of the vectors c..

mj are chosen by the attention mechanism:
produce unnormalized weights based on the decoder state at time j, s. and the state
of the encoder h / ci (using dot product or more complex function)

Dot-product Bilinear Multi-Layer Perceptron
>< g XX;}%‘\ Xtanhx;,
score(h,,sg) = hY s, score(h,,s;) = hT W, score(hg, si) = wa - tanh(W, [he, s,])

normalize the weights into a probability distribution (sum to 1) using softmax
the final context vectoris ; i
¢/ =) ajy-e

i=1

cncoaer-decoaer
With attention

The complete attend function is then:

attend(¢q:p, fl;j) =¢J

n
-7 =Z > e
C opy G
i=1

J
[y

&{il = MLP™([s;: ¢;]).

o’ = softmax(a

and the entire sequence-to-sequence generation with attention is given by:

p(tiv1 =k | f1:j, X1:n) = f(Odec(sj+1))

8741 = Ruec(sy, [fj:¢7])

n
o o= B o
C E @iy - €
i=1

Cl:n = biRNN:nC(xl:n)

J
(1]

&[{.] = MLP™([s;: ¢;])

o/ = softmax(a

f}' St p(’j I ;l:j—lvxl:n)

f(z) = softmax(MLP°*(z))

MLP;ltt([Sj;ci]) = vtanh([Sj:Ci]U + b)

Encoder-decoder with attention

- why using attention vectors instead of the x. directly?

— take into account the context (window) + trainable (may learn properties
e.g. the position of x))

- computationally more complex (but really powerful)

- helps interpretability: at each stage of the decoding process, we can look
at the produced attention weights and see which parts of the input were
used

Application: Machine translation

State-of-the-art architecture for MT: [Bahdanau et al 2015] bi-GRU, beam-search ;
some improvements:

- Sub-word units [Sennrich et al 2016]: allow to deal with highly inflected
languages (and restrict size of the vocabulary). Also character level [Chung et al
2016]

- Linguistic annotations: [Sennrich and Haddow 2016] the sentence is run
through a pipeline incl. POS tagging, syntactic parsing, lemmatization. Each
word is then supplemented with a vector encoding this info (concatenated) —
linguistic info is useful even with powerful NN architectures!

- Incorporating monolingual data for translation models [Sennrich at al 2016]

Application: Machine translation

State-of-the-art architecture for MT: [Bahdanau et al 2015] bi-GRU, beam-search ;
some improvements:

- Sub-word units [Sennrich et al 2016]: allow to deal with highly inflected
languages (and restrict size of the vocabulary). Also character level [Chung et al
2016]

- Linguistic annotations: [Sennrich and Haddow 2016] the sentence is run
through a pipeline incl. POS tagging, syntactic parsing, lemmatization. Each
word is then supplemented with a vector encoding this info (concatenated) —
linguistic info is useful even with powerful NN architectures!

- Incorporating monolingual data: previously, systems were based on a
translation model (parallel data) + a separate language model (monolingual
data), but seq2seq models does not allow such a separation. [Sennrich at al
2016]: train a translation model from target to source, use it to translate a
large-monolingual-corpus-of target sentences, add-the resulting pairs-(source;

Machine translation

Visualization of the alignment

from [Bahdanau et al 2015]

I=
c O
Q —
©
5 2 5
(] o ¢C
_(]C.) ul o = O
O C ~ 5 U
= © O 5 W W
LI _":'-

accord
sur
la
zone
économique
européenne
a
été
signé
en
aolt
1992

<end>

Area

was

signed
in

August
1992

<end>

https://arxiv.org/pdf/1409.0473.pdf

[[¥)

Speech recogniti

Aud

-
R

Hypothesis
~ HEE

Time

Source : Chan, Jaitly, Le, Vinyals : Listen, attend and spell : A neural

network for large vocabulary conversational speech recognition.
ICASSP 2016

black . fox jumped </s>
I A

A

1 Ill
]
bE

y3
B | - L-‘ P—_— P—_—
|
%i* Rp, Op ’-%" Rp, Op }ﬁ" Rp, Op }l% Rp, Op ‘
Lﬁ_.l :I \l."'l L 4 L a L
| l[

Encoder-decoder with
attention and RNNS

RNN Decoder

: B

y2

-

a

'/'---: ~ e N | | ‘/'.---.- :-\ I/’"--- ~ -»,4__\'
A'_(_.()nc at P, (_.‘foncd_ty_) \...fom'df.../' (S
T IR I

i [

|

| &

\ | é3 |

| ‘ (%)
E[fa.\‘]

Ebtack)
the g Sfox
ttend atte :{d""_) (“attend)

output: S;
E[jumpe({]

Attention @at
N e

> Bl 1

output: c,
——| Blgp |—— BIg > Bl |——

Bi-RNN Encoder T
E[a] E[mnditioning] E[sequmte]
</s>

E[<
s>]
conditioning sequence

Jumped

5 '-"attcndv“). " > attend D 4

- \ =

s
¥

.\-_

A

A

<5> a

Encoder-decoder with

attention a

10 RNNS

RNN Decoder

now what 1if

we try to
remove the

RNNs?

output: S;

Attention

output: c,

black—._

J 1 \
|
- ol i

7 P
.___»prcdlc_t_/) ‘

A

Bi-RNN Encoder

'y A
Y1 Y2 T ¥3)'5
1 st | . s¢ | -
Rp, Op RD,OD RDaOD RD,OD Rp, Op
p Lﬁ
Y A W N TRy X 'y
| ¢ f | éz f & f 54
E[tbe] E[l)latk] E[fa.\‘] E[jumpelﬂ
|
the » black Sfox Jumped
@ “t mend \ > attend) attend) Catt ¢ nd
//,,.- |
— BIE —— Blg |——| Bl ——{ Bl < Blg
E[<s>] E[a] E[mnditioning] E[sequmte] E[</x>]
a conditioning sequence </5>

<5>

«‘/-.'-_ 1¢ '--..\
‘\._.xprcdmt_/,

fox jumped

| 1

e et
-__prcdlc_t_/.

.

</s>

A

B R
._»predmtg)

A

Seg2seq without Seg2seq with Transformer

Attention is all you need

processing RNN/CNN RNN/CNN attention
within encoder

processing RNN/CNN RNN/CNN attention
within decoder

Transformer models:
decoder-encoder static fixed- attention attention
interaction sized vector

- also takes sequence as input
- but based on attention mechanism without the RNN architecture
- =itis not required to read in any order the sequence

— make it easier to parallelize computation: thus to train on larger corpora, leading to
BERT, GPT language models

[Vaswani et al 2017] https://arxiv.org/abs/1706.03762 : new state-of-the-art on

Machine translation (with “only” 3.5 days on eight GPUs :D), high performance for
constituency parsing

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://arxiv.org/abs/1706.03762
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

I arrived at the bank after crossing the ... _street?

G e n e ra | i d e a What does bank mean in this sentence?

T've no idea: let's wait I don't need to wait - T
until I read the end ». see all words at oncel!

..river?

- When encoding a sentence, RNNs

won't understand what bank RNNs Transformer
means until they read the whole O(N) steps to process a Constant number of steps

sentence with length N to process any sentence
sentence,

- Transformer's encoder tokens
interact with each other all at once.

General idea

- When encoding a sentence, RNNs
won't understand what bank
means until they read the whole
sentence,

- Transformer's encoder tokens
interact with each other all at once.

I arrived at the after crossing the ...

..Street?
What does bank mean in this sentence?

I've no idea: let's wait
until I read the end

RNNs

O(N) steps to process a
sentence with length N

Transformer

Constant number of steps
to process any sentence

..river?

I don't need to wait - I
see all words at oncel

Transformer’s encoder: at each step, tokens look at each other = self-attention,

extract information and try to understand each other better in the context of the

whole sentence

General idea

- When encoding a sentence, RNNs

won't understand what bank
means until they read the whole
sentence,

- Transformer's encoder tokens
interact with each other all at once.

I arrived at the after crossing the ...

..Street? _.river?

What does bank mean in this sentence?

I've no idea: let's wait

I don't need to wait - I
until I read the end S

see all words at oncel

RNNs

O(N) steps to process a
sentence with length N

Transformer

Constant number of steps
to process any sentence

Transformer’s encoder: at each step, tokens look at each other = self-attention,

extract information and try to understand each other better in the context of the

whole sentence

Transformer’s decoder: tokens predicted also interact with each other + look at the

encoder states

Self-Attention ~ B o R ~

0.3 x| 12|-06|-01| 09 | dog

e

02x|04|03|05]|-13]ran

Self-Attention = Attention over the sequence itself

Transformer model: relies entirely on self-attention to compute representations of
its input and output (without using sequence aligned RNNs or convolution)

— the model must understand how the words relate to each other in the context of the
sentence

- used for reading comprehension, abstractive summarization, textual
entailment and learning task-independent sentence representations [Cheng et
al 2016, Parikh et al 2016, Lin et al 2017, Paulus et al 2017]

“CGT”

Each vector receives three representations (“roles”) D D E U D D

l] X : Query: vector from which e
the attention is looking E
“Hey there, do you have this information?” '

- Key: vector at which the query
[wdx -

looks to compute weights

“Hi, I have this information - give me a large weight!”

[] X = Value: their weighted sumiis

attention output
“Heres the information I have!”

—>{0 0 OH——{0 00

o
\ﬁ
Attention is a “query” on the inputs, that we ?
map to a “key” to operate on a specific input

<. 9 Buaen KOTHO Ha MaTte <eos>
with a specific “value” I' Ssaw” “cat” “on” “mat”

saw

“CGT”

Each vector receives three representations (“roles”) D D E D U U

l] X : Query: vector from which e
the attention is looking E
“Hey there, do you have this information?” '

,,,,,,,

s .
°l Key: vector at which the query X X
<[=[] |
[] l of looks to compute weights softmax

“Hi, I have this information - give me a large weight!”

[] X = Value: their weighted sumiis

attention output
“Heres the information I have!”

—>{0 0 OH——{0 00

(Cogd<
—>(000

Note: masked attention for the decoder = 1t
can’t look ahead

9 BuAen KOTHO Ha Mate <eos>
I

“ Y“saw” “cat” "on" “"mat”

query key

The 07 06 -04 05 -09 02 The

[] [)
(omputing attention
ran | -1.2 | 0.1 0.9 -1.0 | 03 | 0.7 | ran

- first: assigns to each word a query vector and a key vector

- compute a compatibility function: assigns a score to each pair of words indicating
how strongly they should attend to one another, using dot product between one
query and one key W;; = qikj

dog 03 -02 04 e |-10 03 | -07 | ran = -0.6

- then normalize the scores: to be positive and sum to one (softmax)

query key score softmax
dog 03 02 04 e |05 -09 02 The = 0.4 0.4 Final
attention
weights
dog 03 -02 04 e |11 03 05 dog = 0.6 0.5

dog 03 -02 04 o] -1.0 | 03 -0.7 ran = -0.6 0.1

Computing attention

query: interaction between
Xi and other xj to compute
an attention score xi, Xj (<
current state of the
decoder)

key: used to compute the
weights when another xj is
the query (sim. to sk)
value: used for the final
computation of yj, for the
weighted sum (sk to
compute c)

wd|<

“Hey there, do you have this information?”

(W[[] =

Each vector receives three representations (“roles”)

— E Query: vector from which
the attention is looking

X] _[C] Key: vector at which the query
K ol =

) lookstocompute weights

Value: their weighted sum is
attention output

(00 9]

“Heres the information I have!”

Bmuaen KOTHO Ha

“SC(W”

“CGT"

uonu

MmaTte <eos>
L) mGT"

Computing attention

[CLS]
the
cat
sat

(-) on
the
mat

[SEP]
the

dog
lay
on
the
floor

[SEP]

query: the word that
is paying attention /
qguerying the other
words

Query q

II |

https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-

workings-of-attention-60a16d86b5cl

key: the word to compatibility
which attention is score +
being paid normalized

Key k q x k (elementwise) q-k Softmax
ETNITITTITANN NI | [CLS]
(W TIETHTINNN T (I T AT the
MENICOTONTD T @ o
I I O T
MITTHIT AT W on
MTTTTITT TN MOTOmTImrmn @ the
NI 71T 0 NTTTTIT W0 @ me
[REOrir Ty [TITTTIT T iserl
[T TTTITINTT [T THN I T the
NI CITATT O @ deg
DTN OOOTTTmD @ e
I TIITIED ICTTATAImAL O on
EHITIE T | TN @ te
TN OO e mrTnd floor
L peaar ra [TITTIT 11— sEm

https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1

Self-Attention

Layer:| 5 §| Attention:| Input - Input v

The_ The_
. . . animal_ animal_
Visualization: didn._ Siins.
- the model puts a large attention t t
weight between “the” and “animal’ °'°:5— 0;055—
fn . / ’ the_ the_
and “it", allowing to ‘understand ahact. ——
that “it” refers to “animal” hecause_ because_
it_ it_
— similar to the memory of RNNs, "tvjz— ::is-
allow to keep an history tire tire

d d

Multi-head attention

Multiple attention mechanisms = called heads

- operate in parallel to one another / independently focus on different things

— expand ability to focus on many positions
— enables the model to capture a broader range of relationships between words

- the attention heads do not share parameters, each head learns a unique
attention pattern

— |f we do the same self-attention calculation eight different times with different
weight matrices, we end up with eight different attention matrices, and all these

matrices are combined

Multi-head attention

idea: understanding the role of a word
in a sentence requires understanding
how it is related to different parts of
the sentence

- e.g. insome languages, subjects
define verb inflection (e.g.,
gender agreement), verbs define
the case of their objects...

— each word is part of many relations

— several attention results
concatenated

i

¢ ¢ 4

109000

A A A

| |

4 suaen KOTHO Ha Marte <eos>

heads work
independently

Multi-head attention

Layer:| 5 §| Attention:| Input - Input s

- orange head: focuses on "-The The
“animal” animal_ animal_
- green head: focuses on “tired” didn_ didn_
[Voita et al 2019]: some heads play ¢ ¢
interpretable roles cross_ cross_
the_ the_
- positional: attend to neighbors atraat —
- syntactic: learn major syntactic because_ because._
relations it_ =t
- rare tokens: attend to the least was_ was_
frequent tokens 0 too_
tire tire

d d

https://aclanthology.org/P19-1580.pdf

Multi-heads

Positional heads Syntactic heads (subject — verb)

o
N

thus [|
; " that1
there" 0.85 .
) c onl
il 2 make)s/- -
nQy 0.6 2
point = me-
el 048 love []
waiting | al= | .
for 9 you
miracles- 0.2'® more
<eo0s>: L '
0 PmoLcoSg A U <eoSTL__ v |
£ 2 "3 579 9 m2gee3ge A
= B S T © O cc Y EZLs Y
S =V ©ow 27 g g
£ = v

https://lena-voita.github.io/nlp course/seg2seq and attention.html

S
o

attention weights

©
I

o
o

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

The beqst

Feed-forward network:
after taking information from
other tokens, take a moment to

think and process this information \

T

Encoder self-attention: —_|

tokens look at each other

queries, keys, values
are computed from
encoder states

\

Residual connections
and layer normalization _

Output
Probabilities

N \(
\ \ \ T LAdd & Norm
\ \ q
\ \ B \ Feed /
\‘ \\ N Forward
\ \ 4
s 1 \ Add & Norm /
(" LAdd & Norm Mutti-Head | -H
\\ Feed Attention
Forward
\ 7 J e
|
Nix Y Add & Norm
f—>| Add & Norm | VI
| Multi-Head Multi-Head | < D
Attention Attention
, VO T 1t
_ J . —,
Positional & ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Feed-forward network:
after taking information from
other tokens, take a moment to

think and process this information

T

Decoder-encoder attention:
target token looks at the source

queries — from decoder states; keys

and values from encoder states

T

ecoder self-attention (masked):

tokens look at the previous tokens

queries, keys, values are computed
from decoder states

Transformer: Attention 1is
all vou need,Vaswani et

al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beqst

Residual connections
and layer normalization _

\

Output
Probabilities

Feed-forward network:
after taking information from
other tokens, take a moment to

think and process this information

N (Eerirm o
\ \\ \\ Feed / T
1 \ b Forward
Feed-forward network: % — g _
. . . \ A 1 - .
after taking information from Ry Add & Norm / écoder-encoder attention:
m ¥
other tokens, take a moment to \Q;FeledL] Wu-Head | target token looks at the source
think and process this information | [\| Forward }Aﬁe}nt'on N queries - from decoder states; keys
T U and values from encoder states
\ Add & Norm
Nx | (AdTarom T T
Encoder self-attention: —_|) Masked
= Multi-Head Multi-Head - i .
tokens look at each other | Attention Attention Decoder self attentloh (masked):
. X) R F tokens look at the previous tokens
] — ;
g?g!g;kiﬁ’d\@gﬁj . - . g queries, keys, values are computed
P ot D @ Positional from decoder states
encoder states Encoding Encoding
Input Output
Embedding Embedding
/ I I \ Transformer: Attention 1is
Inputs Outputs all you need,Vaswani et
(shifted right) al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beast .

\

lal connections
and layer normalization _

Output
Probabilities

Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

[N (Wre
\ \
\ T Feed / T
1 \ b Forward
Feed-forward network: ¥ = Decod g _
. . . \ A | - .
after taking information from (" -1 ¥ e / SEEREl SIHAAR liCTILANE:
other tokens. take a moment to \Q&?‘Tﬁ] Mut-Head). target token looks at the source
. .. . ee i .
think and process this information V| Forward }Aﬁe}nt'on N queries - from decoder states; keys
& and values f coder states
Nix Y Add & Norm T
. Add & Norm g
Encoder self-attention: \—_|) Mesked
~ Multi-Head Multi-Head s i .
tokens look at each other | Attention Afismion | < Decoder self attentloh (masked):
x 3 1y ¥ okens look at the previous token
j ' \ /N / querie mputed
SHEERARLIES THehn ot D @ Positional from decoder states
encoder states Encoding Encoding
Input Output
Embedding Embedding
/ I I \ Transformer: Attention is
Inputs Outputs all you need,Vaswani et
(shifted right) al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beast .

\

lal connections
and layer normalization _

Output
Probabilities

Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

[N (PEEANC)
\ \
\ T Feed "4 T
' \ b Forward g
Feed-forward network: ¥ = Decod g _
. . . \ A | - .
after taking information from el) Add & Norm ERUal-BlEmsRl aLenbon:
other tokens. take a moment to \Q&dF&.'\:ﬁl Mut-Head). arget token looks at the source
. .. . ee i .
think and process this information V| Forward }Aﬁe}m'c’” N queries - from decoder states; keys
& and values f coder states
Nix Y Add & Norm T
. Add & Norm g
Encoder self-attention: \—_|) Mesked
~ Multi-Head Multi-Head s i .
tokens look at each other | Attention | Decoder self attentloh (masked):
x 3 1y ¥ okens look at the previous token
j ' \ /N / querie mputed
are computed from Positional S & Positional from decoder states
encoder states Encoding Encoding
Input Output
Embedding Embedding
/ I I \ Transformer: Attention is
Inputs Outputs all you need,Vaswani et
(shifted right) al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beast .

\

lal connections
and layer normalization _

Output
Probabilities

Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

[N (PEEANC)
\ \
\ T Feed "4 T
' \ b Forward g
[Feed-forward network: \] ¥ = Decod g _
- - - \ A | - .
after taking information from el) Add & Norm ERUal-BlEmsRl aLenbon:
other tokens. take a moment to \Q&dF&.'\:ﬁl Mut-Head). arget token looks at the source
. .. . ee i .
think and process this information V| Forward }Aﬁe}m'c’” N queries - from decoder states; keys
& and values f coder states
Nix Y Add & Norm T
. Add & Norm g
Encoder self-attention: \—_|) Mesked
~ Multi-Head Multi-Head s i .
tokens look at each other | Attention | Decoder self attentloh (masked):
x 3 1y ¥ okens look at the previous token
j ' \ /N / querie mputed
are computed from Positional S & Positional from decoder states
encoder states Encoding Encoding
Input Output
Embedding Embedding
/ I I \ Transformer: Attention is
Inputs Outputs all you need,Vaswani et
(shifted right) al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beast .

\

lal connections
and layer normalization _

Output
Probabilities

Feed-forward network:]
after taking information from
other tokens, take a moment to
think and process this information

[N (Wre
\ \
\ T Feed / T
' \ N Forward T
[Feed-forward network: \] ¥ = Decod g _
- - - \ R | - .
after taking information from q 1 w Add & Norm ecoaer-encoder attention:
other tokens. take a moment to \Q&?‘Tﬁ] Mutt-Head . arget token looks at the source
. .. . ee i .
think and process this information | [\| Forward }Aﬁe}m'm N queries - from decoder states; keys
Ui and values f coder states
Nix Y Add & Norm T
. Add & Norm ~
Encoder self-attention: \—_|) Mesked
= Multi-Head Multi-Head = i .
tokens look at each other | Attention Afismion | < Decoder self attentloh (masked):
x 3 1y ¥ okens look at the previous token
j ' \ /N / querie mputed
are computed from Positional & & Positional from decoder states
encoder states Encoding Encoding
Input Output
Embedding Embedding
/ I I \ Transformer: Attention is
Inputs Outputs all you need,Vaswani et
(shifted right) al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beqst

In the paper:

a stack of 6 encoders (could be
any number, do not share
weights) and same number of
decoders

each encoders passes its
output to the next encoder

am a student

ENCODER

4

1 g

ENCODER P (DECODER]
4@ 4

ENCODER [DECODER]
4 4

ENCODER (DECODER]
i &

ENCODER (DECODER J
4 4

ENCODER [DECODER]
4 [}

[)

DECODER

f

suis étudiant

The beqst

each encoder = self-attention layer + FFNN (2 linear + ReLU)
each decoder: add attention over the source

?
(Feed Forward
—_— t \ 2
(Feed Forward) (Encoder-Decoder Attention
)

S A

[)
(Self-Attention)H (Self-Attention

t

Transformers

Many elements in the model:

- self-attention

- multi-head

- non linearities (MLP)

- layer normalizations (improve convergence stability)
- residual connections (ease the learning)

- positional embeddings

Transformers

Many elements in the model:

- self-attention

- multi-head

- non linearities (MLP)

- layer normalizations (improve convergence stability)
- residual connections (ease the learning)

- positional embeddings

Sequence ordering?

Add a representation of the position:

- fixed representation
- orlearned representation

Philipp Dufter, Martin Schmitt, Hinrich Schutze :
Position Information in Transformers : An Overview.

“token x on position k”

Input is sum of two
embeddings: for
token and position

tokens

positions

O o] |O o] |O
HOJ: (|OHO O+
O}: :|9] |O o] 10
A

Encoder
[¢) @) o @)
(@)) (@) @)
(@) O (©) O

‘BUAEN | KOTHO
i SOWS G Teat”
0 ik 2

<e0s> '

.......

Sequence ordering?

Add a representation of the position:

- fixed representation
- orlearned representation

Philipp Dufter, Martin Schmitt, Hinrich Schutze :
Position Information in Transformers : An Overview.

“token x on position k”

Input is sum of two
embeddings: for
token and position

tokens

positions

O o] |O o] |O
HOJ: (|OHO O+
O}: :|9] |O o] 10
A

Encoder
[¢) @) o @)
(@)) (@) @)
(@) O (©) O

‘BUAEN | KOTHO
i SOWS G Teat”
0 ik 2

<e0s> '

.......

Sequence ordering?

Add a representation of the position:

- ordinal = absolute position “token x on position k”
- fixed representation to encode relative

position Input is sum of two
- learned representation embeddings: for

. , , oo . token and position
Philipp Dufter, Martin Schmitt, Hinrich Schutze :

Position Information in Transformers : An Overview. tokens

— not having info hurts for some tasks, but not all of positions
them: but present in all models

Sinha et al. Masked Language Modeling and the
Distributional Hypothesis : Order Word Matters
Pre-training for Little, EMNLP 2021

Encoder

Source

- Very clear explanation (and nice pictures / videos):
https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

- https://ledatascientist.com/a-la-decouverte-du-transformer/

- https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/
notebooks/hello_t2t.ipynb

- https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-dee
p-learning/

- https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-atte
ntion-60a16d86b5cl

- https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWEF-Ci7V7vVUoxmQ?usp=sharing

- https://www.analyticsvidhya.com/blog/2020/08/build-a-natural-language-generation-nlg-system-
using-pytorch/
- https://www.kaggle.com/ab971631/beginners-guide-to-text-generation-pytorch/notebook

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
https://ledatascientist.com/a-la-decouverte-du-transformer/
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/
https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://www.analyticsvidhya.com/blog/2020/08/build-a-natural-language-generation-nlg-system-using-pytorch/
https://www.analyticsvidhya.com/blog/2020/08/build-a-natural-language-generation-nlg-system-using-pytorch/
https://www.kaggle.com/ab971631/beginners-guide-to-text-generation-pytorch/notebook

More general view on attention

General idea:

- attention is a query on the input
- that we align with a key
- to operate over an input value

duery
Quen _

Keys I O l O] I ® l @ l O]
Values l cay + l “Qy + ' “a@y + l g+ l rAs = ' Output features

| am eating an apple

More general view on attention

General idea:

until now (with RNNs):

attention is a query on the input « come from the decoding state S;
- that we align with a key

representations c.

- to operate over an input value

c

Keys

Values

Query B

b B Beo Beo B
I Ca@y + I cay + ' “a@g + l c 0y + l @ = . QOutput features

—corresponding to the input

«also c; used to weight the context vector

am

eating

an apple

Self-Attention

Self-Attention (or intra-attention): attention mechanism relating different positions of a
single sequence in order to compute a representation of the sequence.

Idea: decomposing the input into varied functions of x. wrt the attention computation:

- query: interaction with other X, to compute attention score X, X, — some ¢ = qui

- key: computation of the weights for the output of another X, viewed as the query —
some k. =W, x.

- value: final weighting to compute the output y,—somev, _W x,

Wij = qikj . attention score X Xj

outputry, = ZWU. v,

Self-Attention

Self-Attention (or intra-attention): attention mechanism relating different positions of a
single sequence in order to compute a representation of the sequence.

Idea: decomposing the input into varied functions of x. wrt the attention computation:

- query: interaction with other X, to compute attention score X, X, — some ¢ = qui

- key: computation of the weights for the output of another X, viewed as the query —
some k. =W, x.

- value: final weighting to compute the output y,—somev, _W x,

w;; = qikj : attention score x,, X;

outputry, = ZWU. v,

Self-Attention

Self-Attention (or intra-attention): attention mechanism relating different positions of a
single sequence in order to compute a representation of the sequence.

Idea: decomposing the input into varied functions of x. wrt the attention computation:

- query: interaction with other X, to compute attention score X, X, — some ¢ = qui

- key: computation of the weights for the output of another X, viewed as the query —
some k. =W, x.

- value: final weighting to compute the output y,—somev, _W x,

w;; = qikj : attention score x,, X; + normalization = attention weights

outputry, = ZWU. v,

Self-Attention

Self-Attention (or intra-attention): attention mechanism relating different positions of a
single sequence in order to compute a representation of the sequence.

Idea: decomposing the input into varied functions of x. wrt the attention computation:

- query: interaction with other X, to compute attention score X, X, — some ¢ = qui

- key: computation of the weights for the output of another X, viewed as the query —
some k. =W, x.

- value: final weighting to compute the output y,—somev, _W x,

w;; = qi.kj : score d’attention X;/X; + normalization = attention weights

output:y, = ijij v;

