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Schedule 
2023-2024

1 28.11 13h30-15h30 2 (C1) ML Reminder + (TP ML) + TP POO

2 05.12 13h30-15h30 2 (C2) Intro DL + TP2

3 12.12 13h30-16h 2.5 (C3) Embeddings + TP3

4 19.12 13h30-16h 2.5 TP4 + Start projects 

(holidays)

5 09.01 13h-16h 3 (C4) Training a NN + TP5 + TP6

→Assignments Part 1 due

6 16.01 13h-16h 3 (C5) CNN, RNN + TP7 + TP8

7 23.01 13h-16h 3 Projects

8 01.02 13h-16h 3 (C6) Encoder-decoder, transformer + TP9

9 06.02

ou 
13?

13h-16h 3 (C7) Current challenges 

→ Assignments Part 2 due + project defenses 



Neural methods for NLP
- 1980’s: Symbolic NLP

- rule-based approach, hand-written rules 
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming 

- 1990’s: ‘Statistical’ NLP
- learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors
- large annotated corpora
- handcrafted features
- rather fast to train, still good baselines

- ≃ 2010: ‘Neural’ NLP 
- combine linear and non-linear functions, over dense inputs
- (very) large annotated corpora and very large unannotated corpora
- improved performance (in general), no feature engineering
- harder to interpret (“black box”)
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A bit more of history: The brain inspired metaphor
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Brain’s computation is based on computation units called neurons (Perceptron, 
Rosenblatt, 1957):

- A neuron has scalar inputs and outputs
- Each input has an associated weight to control its importance
- The neuron multiplies each input by its weight and then sums them = linear 

combination
- If the weighted sum is greater than the activation potential, the neuron is said to 

“fire” = produce a single binary output
- The neurons are connected 

to each other, forming a 
network: the output of a 
neuron may feed into the 
inputs of one or more 
neurons



Artificial neuron
Using a binary output: not very practical

→ We prefer having small change in weight leading to small change in output
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‘Statistical’ vs ‘neural’ models

Standard approach:

- linear model trained over high-dimensional but very sparse feature 

vectors

Neural approach: 

- non-linear neural networks over dense input vectors
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Content
Introduction to Deep Learning

1. Introducing non linearity
2. Feed-forward architecture
3. Common activation functions
4. Output Transformation 

functions
Practical session 2: walk 
through code in PyTorch
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Introducing non-linearity
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XOR problem: exclusive “or”

→ return a true value if the two inputs are not equal and a false value if they are equal.

But it’s impossible to find w, b such that:

- (0,0).w + b < 0 

- (0,1).w + b >= 0 

- (1,0).w + b >= 0

- (1,1).w + b < 0



Solution: non-linear input transformations

If we transform the points using:  ф(x1, x2) = [x1 x x2, x1 + x2]

The problem becomes linearly separable:

- ф(0,0) = (0, 0) → 0

- ф(0,1) = (0, 1) → 1

- ф(1,0) = (0, 1) → 1

- ф(1,1) = (1, 2) → 0

The function ф mapped the data into a representation that is suitable for linear classification, we can find:

f(x) = ф(x).W + b
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Solution: non-linear input transformations
If we transform the points using:  ф(x1, x2) = [x1 x x2, x1 + x2]

The problem becomes linearly separable:

- ф(0,0) = (0, 0) → 0

- ф(0,1) = (0, 1) → 1

- ф(1,0) = (0, 1) → 1

- ф(1,1) = (1, 2) → 0

The function ф mapped the data into a representation that is suitable for linear classification, we can find:

f(x) = ф(x).W + b

Note: here the transformed data has the same dimension as the original, but often we’ll need to map to a 
higher dimensional space.

Note: SVM = defining a priori generic mapping functions vs NN = trainable mapping functions
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Feed-Forward Architecture
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Feed-Forward Architecture
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Multi-layer Perceptron

- best known, standard 
neural network 
approach

- Fully connected layers
- Can be used as 

drop-in replacement 
for typical classifiers 

input layer hidden layers output layer



Feed-Forward Architecture
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Multi-layer Perceptron

- best known, standard 
neural network 
approach

- Fully connected layers
- Can be used as 

drop-in replacement 
for typical classifiers 

input layer hidden layers output layer

Let’s focus on that part



Neural networks: basics
- Layers are made of neurons = building blocks of neural networks

- A single neuron works like logistic regression, we know that! 
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Neural networks: basics
- Layers are made of neurons = building blocks of neural networks

- A single neuron works like logistic regression, we know that! 

Reminder: LR model yields probability of an instance belonging to a 

particular class based on the instance’s features weighted by the 

model’s parameters
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Logistic Regression

- Spam (binary) classification

- We take word frequency as features 

feature fi weight wi

pharmacie 0.4

viagra 1.2

meilleure 0.2

offre 0.2

demande -0.8

transmets -1.7

bias 0.1
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Logistic Regression

- Spam (binary) classification

- We take word frequency as features 

feature fi weight wi

pharmacie 0.4

viagra 1.2

meilleure 0.2

offre 0.2

demande -0.8

transmets -1.7

bias 0.1

x1: “Pharmacie en ligne: viagra meilleure offre!”

score(x1) =  0.4×1+1.2×1+0.2×1+0.2×1+(−0.8)×0+(−1.7)
×0+0.1 = 2.1

x2: “Suite à votre demande, je vous transmets notre 
meilleure offre”

score(x2) = 0.4×0+1.2×0+0.2×1+0.2×1+(−0.8)×1+(−1.7)
×1+0.1 = −2.0 
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score(x) = W.x + b



Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities
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- Linear scores are transformed using non-linear logistic function → range [0,1]

24

what is a non-linear function ?
- the corresponding graph is not a line: “a function that 

does not graph into a straight line and does not have a 
constant slope”
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what is a non-linear function ?
- the corresponding graph is not a line: “a function that 

does not graph into a straight line and does not have a 
constant slope”

how do we get probabilities?
- map the values to the range we want e.g.:

- -4 here is mapped to stg close to 0
- -2 still below 0.5
- 0 mapped to ?
- 2 mapped to ?
- closer to 4-6 mapped to ?
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- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities
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what is a non-linear function ?
- the corresponding graph is not a line: “a function that 

does not graph into a straight line and does not have a 
constant slope”

how do we get probabilities?
- map the values to the range we want e.g.:

- -4 here is mapped to stg close to 0
- -2 still below 0.5
- 0 mapped to ? → 0.5
- 2 mapped to ? → close to 1
- closer to 4-6 mapped to ? → closer and closer to 1



Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function → range [0,1]

27



Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function → range [0,1]

28

The logistic function does exactly these desired computations:
- It maps an input real number → [0, 1]

- Large negative number → 0
- Large positive number → 1
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- Large negative number → 0
- Large positive number → 1

i.e. from our previous example on spam:



Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities
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The logistic function does exactly these desired computations:
- It maps an input real number → [0, 1]

- Large negative number → 0
- Large positive number → 1

i.e. from our previous example on spam:

score(x) = W.x + b
→ score(x) = f(W.x + b) avec f une fct non linéaire



Logistic Regression
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Logistic Regression
softmax = generalisation of the logistic 
function taking a vector as input 
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https://www.wikiwand.com/fr/Fonction_logistique_(Verhulst)
https://www.wikiwand.com/fr/Vecteur


Neuron = Logistic Regression

These are the exact computations of a single neuron
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w.x = w1x1 + w2x2 + w3x3 + 1



Neuron = Logistic Regression

These are the exact computations of a single neuron

35

w.x = w1x1 + w2x2 + w3x3 + 1

y = f( w.x )



Neuron = Logistic Regression

These are the exact computations of a single neuron

- We can feed an input vector to a bunch of LR functions and get an output vector

36

w.x = w1x1 + w2x2 + w3x3 + 1

y = f( w.x )



Neuron = Logistic Regression

These are the exact computations of a single neuron

- We can feed an input vector to a bunch of LR functions and get an output vector
- which can be fed to another layer of LR functions

37

w.x = w1x1 + w2x2 + w3x3 + 1

y = f( w.x )



Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

38

feed an input vector to a bunch of LR functions

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

input layer hidden layers output layer
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers
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feed an input vector to a bunch of LR functions

input = x: < x1, x2, x3, x4 >
1st LR function: h11 = f(w1.x)
2nd LR function: h12 = f(w2.x)
3rd LR function: h13 = f(w3.x)

Question: what is the shape of the w1/w2/w3?
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input layer hidden layers output layer



Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

41

feed an input vector to a bunch of LR functions

input = x: < x1, x2, x3, x4 >
1st LR function: h11 = f(w1.x)
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers
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feed an input vector to a bunch of LR functions

input = x: < x1, x2, x3, x4 >
1st LR function: h11 = f(w1.x)
2nd LR function: h12 = f(w2.x)
3rd LR function: h13 = f(w3.x)
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End of hidden layer 1 = a vector h1 of dimension?
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers
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feed an input vector to a bunch of LR functions

input = x: < x1, x2, x3, x4 >
1st LR function: h11 = f(w1.x)
2nd LR function: h12 = f(w2.x)
3rd LR function: h13 = f(w3.x)

Question: what is the shape of the w1/w2/w3?
→ vectors of 4 values, one for each input feature

End of hidden layer 1 = a vector h1 of dimension 3
h1 = < h11, h12, h13>

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

input layer hidden layers output layer



Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
44

feed an “input” vector to a bunch of LR functions
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h11
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h13

h21

h22

h23

Then, we can repeat the process!



Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
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Then, we can repeat the process!

feed an “input” vector to a bunch of LR functions



Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
46
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Then, we can repeat the process!

= Deep learning
(here Depth = 2)

feed an “input” vector to a bunch of LR functions



Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
47
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
48
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
50
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
51
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
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W¹ = w11 w21 w31
  w12 w22 w32
  w13 w23 w33
  w14 w24 w34

 = w1 =w2 =w3



Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer

Parameters of the network (Ө)
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
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Linear algebra (what? why?)

Linear algebra is the branch of mathematics concerning linear equations and linear 
functions and their representations through matrices and vector spaces. (Wikipedia)

→ “Under the hood, the feed forward neural network is just a composite function, that 
multiplies some matrices and vectors together. It is not that vectors and matrices are the 
only way to do these operations but they become highly efficient if you do so. (..) neural 
networks are computationally expensive, so they require this nice trick to make them 
compute faster. It’s called vectorization. They make computations extremely faster. This 
is one of the main reasons why GPUs are required for deep learning, as they are 
specialized in vectorized operations like matrix multiplication.”

https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fca1494 
60

https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-learning/
https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fca1494


Linear algebra

- Scalar: A single number (rank 0 tensor) 

- Vector : A list of values (rank 1 tensor)

- Matrix: A two dimensional list of values (rank 2 tensor)

- Tensor: A multi dimensional matrix with rank n.

Operations: 

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right 

of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = √∑(x
i
)2 

- Matrix multiplication
61https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html 
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Linear algebra
- Scalar: A single number (rank 0 tensor) 
- Vector : A list of values (rank 1 tensor)
- Matrix: A two dimensional list of values (rank 2 tensor)
- Tensor: A multi dimensional matrix with rank n.

Operations: 

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right 
of the matrix)

- Dot product: between 2 vectors, return a scalar
- Dimension / shape of a matrix: row by column
- Norm is the size of the vector, e.g. L2 = √∑(x

i
)2

- Matrix multiplication: 
- The new matrix takes the rows of the 1st matrix and columns of the 2nd matrix
- The number of columns of the 1st matrix must equal the number of rows of the 2nd
- The product of an M x N matrix and an N x K matrix is an M x K matrix. 
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- The product of an M x N matrix and an N x K matrix is an M x K matrix. 
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Linear algebra
- Scalar: A single number (rank 0 tensor) 
- Vector : A list of values (rank 1 tensor)
- Matrix: A two dimensional list of values (rank 2 tensor)
- Tensor: A multi dimensional matrix with rank n.

Operations: 

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right 
of the matrix)

- Dot product: between 2 vectors, return a scalar
- Dimension / shape of a matrix: row by column
- Norm is the size of the vector, e.g. L2 = √∑(x

i
)2

- Matrix multiplication: 
- The new matrix takes the rows of the 1st matrix and columns of the 2nd matrix
- The number of columns of the 1st matrix must equal the number of rows of the 2nd
- The product of an M x N matrix and an N x K matrix is an M x K matrix. 
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Linear algebra
- Scalar: A single number (rank 0 tensor) 
- Vector : A list of values (rank 1 tensor)
- Matrix: A two dimensional list of values (rank 2 tensor)
- Tensor: A multi dimensional matrix with rank n.

Operations: 

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right 
of the matrix)

- Dot product: between 2 vectors, return a scalar
- Dimension / shape of a matrix: row by column
- Norm is the size of the vector, e.g. L2 = √∑(x

i
)2

- Matrix multiplication: 
- The new matrix takes the rows of the 1st matrix and columns of the 2nd matrix
- The number of columns of the 1st matrix must equal the number of rows of the 2nd
- The product of an M x N matrix and an N x K matrix is an M x K matrix. 
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MxN . NxK = MxK



Let’s try
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Compute the value for 
the first neuron in 
the hidden layer

h1?



Let’s try
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Compute the value for 
the first neuron in 
the hidden layer



Let’s try
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input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer: 
w shape?  
      



Let’s try
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input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer: 
w shape? 2x3 (input x hidden)
w = [ w11  w12  w13 ]
    [ w21  w22  w23 ]

output: x.W → shape?  
      



Let’s try
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input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer: 
w shape? 2x3 (input x hidden)
w = [ w11  w12  w13 ]
    [ w21  w22  w23 ]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < >  
      



Let’s try
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input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer: 
w shape? 2x3 (input x hidden)
w = [ w11  w12  w13 ]
    [ w21  w22  w23 ]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < x1*w11 + x2*w21    >  
      



Let’s try
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input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer: 
w shape? 2x3 (input x hidden)
w = [ w11  w12  w13 ]
    [ w21  w22  w23 ]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < x1*w11 + x2*w21   x1*w12 + x2*w22    x1*w13 + x2*w23 >  
      



Let’s try
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input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer: 
w shape? 2x3 (input x hidden)
w = [ w11  w12  w13 ]
    [ w21  w22  w23 ]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < x1*w11 + x2*w21   x1*w12 + x2*w22    x1*w13 + x2*w23 >  
      
Try with:  x = < 0  1 >  and W =  [ 10  20  30 ]
    [ 100 200 300 ] 

x.W = < ? ? ? >



Let’s try
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input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer: 
w shape? 2x3 (input x hidden)
w = [ w11  w12  w13 ]
    [ w21  w22  w23 ]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < x1*w11 + x2*w21   x1*w12 + x2*w22    x1*w13 + x2*w23 >  
      
Try with:  x = < 0  1 >  and W =  [ 10  20  30 ]
    [ 100 200 300 ] 

x.W = < 100 200 300 >



Let’s try
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input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer: 
w shape? 2x3 (input x hidden)
w = [ w11  w12  w13 ]
    [ w21  w22  w23 ]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < x1*w11 + x2*w21   x1*w12 + x2*w22    x1*w13 + x2*w23 >  
      
Try with:  x = < 0  1 >  and W =  [ 10  20  30 ]
    [ 100 200 300 ] 

x.W = < 100 200 300 >



Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
80

h1 h2 yx

h1 -> x.W1 = (1xdin).(dinxdh1) -> (1x3)
h2 -> h1.W2 = (1xdh1).(dh1xdh2) -> (1x3)
y  -> h2.W3 = (1xdh2).(dh2xdout) -> (1x2)



Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input 
layer

hidden 
layers

output 
layer

81

h1 h2 yx

- layer = vector resulting from each linear 
transformation

- the outer-most linear transform results in 
the output layer

- if dout = 1 : regression or binary classif
- if dout > 1: classif MC

- the other linear transforms result in hidden 
layers

- each hidden layer is followed by a 
non-linear activation

- the bias vector can be forced to 0 (= 
“dropped”) as here in the last layer

- layers resulting from linear transformations 
are often referred to as fully connected or 
affine (other types: pooling or convolutional 
layers)



Summary
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a feed-forward 

network is simply 

a stack of linear 

models separated 

by nonlinear 

functions



Summary
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- MLP1 = universal approximator: it can approximate a large family of functions [Hornik et al. 1989; 

Cybenko, 1989]. Why going beyond MLP1?

- theoretical results do not discuss the learnability of the NN: a representation exists, but we 

don’t know how easy or hard it is to set the parameters based on training data and learning 

algorithm

- + does not guarantee that a training algorithm will find the correct function

- + it does not state how large the hidden layer should be

→ in real worlds conditions: there is benefit at trying more complex architectures

Representation power:



Practical session

Walk through code in PyTorch:
- sentiment classification
- feed-forward Neural Network, with BoW representation of documents
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Sources

- Parts of the course borrowed, with a few modifications, to P. Muller
- Softmax: https://www.wikiwand.com/fr/Fonction_softmax
- https://www.deeplearningbook.org/ 
- https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fca1494 
- https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html
- https://blog.paperspace.com/dataloaders-abstractions-pytorch/
- https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwo

rk/
- https://www.i2tutorials.com/explain-softmax-activation-function-and-difference-between-sigmoid-and-soft

max-function/
- http://perso.ens-lyon.fr/jacques.jayez/Cours/LHPST/Deep_Learning_in_NLP_1.pdf
- https://krisbolton.com/a-quick-introduction-to-artificial-neural-networks-part-1
-
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https://krisbolton.com/a-quick-introduction-to-artificial-neural-networks-part-1


Matrix multiplication
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Matrix multiplication



Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B



Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B
- ligne 1, col 2 (c12) = ligne 1 A X col 2 B



Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B
- ligne 1, col 2 (c12) = ligne 1 A X col 2 B
- ligne 1, col 3 (c13) = ligne 1 A X col 3 B



Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B
- ligne 1, col 2 (c12) = ligne 1 A X col 2 B
- ligne 1, col 3 (c13) = ligne 1 A X col 3 B
- ligne 2, col 1 (c21) = ligne 2 A X col 1 B



Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B
- ligne 1, col 2 (c12) = ligne 1 A X col 2 B
- ligne 1, col 3 (c13) = ligne 1 A X col 3 B
- ligne 2, col 1 (c21) = ligne 2 A X col 1 B
- ligne 2, col 2 (c22) = ligne 2 A X col 2 B
- ligne 2, col 3 (c23) = ligne 2 A X col 3 B



Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B
- ligne 1, col 2 (c12) = ligne 1 A X col 2 B
- ligne 1, col 3 (c13) = ligne 1 A X col 3 B
- ligne 2, col 1 (c21) = ligne 2 A X col 1 B
- ligne 2, col 2 (c22) = ligne 2 A X col 2 B
- ligne 2, col 3 (c23) = ligne 2 A X col 3 B

on garde :
- le nb de lignes 

de A
- le nb de 

colonnes de B



Matrix multiplication

Dimension?



Matrix multiplication

Dimension?

A:   (2 x 2)
B:   (2 x 3)



Matrix multiplication

Dimension?

A:   (2 x 2)
B:   (2 x 3)
A*B: (2 x 3)



Matrix multiplication

Dimension?

A:   (2 x 2)
B:   (2 x 3)
A*B: (2 x 3)

?



Matrix multiplication

Dimension?

A:   (2 x 2)
B:   (2 x 3)
A*B: (2 x 3)
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Dimension?

A:   (2 x 2)
B:   (2 x 3)
A*B: (2 x 3)



Matrix multiplication

Dimension?

A:   (2 x 2)
B:   (2 x 3)
A*B: (2 x 3)



Matrix multiplication

Dimension?

A:   (2 x 2)
B:   (2 x 3)
A*B: (2 x 3)



What was wrong?



What was wrong?

h2 = w4.x1 + w5.x2
h3 = w3.x1 + w5.x2
or
change W (but w3 
appears twice 😖)


