
Neural Methods 
for NLP

Master LiTL --- 2023-2024
chloe.braud@irit.fr

https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl 

128/11/2023

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl


Goals
- Understand what are Neural Networks and why everybody is so crazy about 

them
- Being able to train and evaluate a deep learning model

- understand the hyper-parameters, being able to optimize a DL model
- understand the varied architectures, their underlying motivations, their use
- understand the input: what are (word) embeddings? 
- how to build a model for a specific application: classification, sequence labelling, generation

- Having an idea of the limitations and current challenges

Practical sessions / Assignments:

- Library: PyTorch 
- Environment: Google Colaboratory 

2



Schedule 
2023-2024

1 28.11 13h30-15h30 2 (C1) ML Reminder + TP ML + TP POO

2 05.12 13h30-15h30 2 (C2) Intro DL + TP2

3 12.12 13h30-16h 2.5 (C3) Embeddings + TP3

4 19.12 13h30-16h 2.5 Start projects 

(holidays)

5 09.01 13h-16h 3 (C4) Training a NN + TP4 

→Assignments Part 1 due

6 16.01 13h-16h 3 Projects

7 23.01 13h-16h 3 (C5) CNN, RNN + TP5

8 01.02 13h-16h 3 (C6) Encoder-decoder, transformer + TP6

→ Assignments Part 2 due

9 06.02 13h-16h 3 (C7) Current challenges 

→ project defenses 



Schedule 
2023-2024

1 28.11 13h30-15h30 2 (C1) ML Reminder + TP ML + TP POO

2 05.12 13h30-15h30 2 (C2) Intro DL + TP2

3 12.12 13h30-16h 2.5 (C3) Embeddings + TP3

4 19.12 13h30-16h 2.5 Start projects 

(holidays)

5 09.01 13h-16h 3 (C4) Training a NN + TP4 

→Assignments Part 1 due

6 16.01 13h-16h 3 Projects

7 23.01 13h-16h 3 (C5) CNN, RNN + TP5

8 01.02 13h-16h 3 (C6) Encoder-decoder, transformer + TP6

→ Assignments Part 2 due

9 06.02 13h-16h 3 (C7) Current challenges 

→ project defenses 



Projects
System: - Read a research paper on the chosen task 

- (Implement a non neural baseline system)
- Compare with a neural architecture 
- Augment the system within a multilingual / cross-domain setting

Topics: - Text classification: sentiment analysis, fake news detection, …
- Sequence labelling: named entity recognition, POS tagging, …

Assignments 
(groups 2-3):

- 09/01 : Pre-processing code + report part 1
- Code : data pre-processing 
- Report Part 1 : description of the data and related work

- 01/02 : Code + report part 2
- Code for training and evaluating the system 
- Report Part 2 : describe the system and present the results

- 06/02 : Oral presentation (10-15 mn)



Bibliography and resources
Personal note: I have a PhD in Sciences du Langage. I’m now a researcher in Computer Science. I’m in 
between Human and Computer science, I’m interested in both aspects. I’m going to give you some 
mathematical and technical notions about what’s behind, mostly to show that it’s not so complicated (it can 
get very complex, but not the basics). There are many many good resources for more details.

- Neural Network Methods for NLP, Y. Goldberg
- Online courses: 

- Neural Nets for NLP, G. Neubig, 
- Stanford courses with C. Manning (official website: https://web.stanford.edu/class/cs224n/)
- En français : https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home  

- J. Eisenstein course: 
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

I used other resources to build this course, I’ll try to give all the sources used. 

6

https://www.youtube.com/playlist?list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://web.stanford.edu/class/cs224n/
https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf


Neural Methods 
for NLP

Master LiTL --- 2022-2023
chloe.braud@irit.fr

https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl 

Course 1: Machine Learning (reminder) 

7

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl


Neural methods for NLP
- 1980’s: Symbolic NLP

- rule-based approach, hand-written rules 
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming 

- 1990’s: ‘Statistical’ NLP
- learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors
- large annotated corpora
- handcrafted features
- rather fast to train, still good baselines

- ≃ 2010: ‘Neural’ NLP 
- combine linear and non-linear functions, over dense inputs
- (very) large annotated corpora and very large unannotated corpora
- improved performance (in general), no feature engineering
- harder to interpret (“black box”)

8



Neural methods for NLP
- 1980’s: Symbolic NLP

- rule-based approach, hand-written rules 
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming 

- 1990’s: ‘Statistical’ NLP
- learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors
- large annotated corpora
- handcrafted features
- rather fast to train, still good baselines

- ≃ 2010: ‘Neural’ NLP 
- combine linear and non-linear functions, over dense inputs
- (very) large annotated corpora and very large unannotated corpora
- improved performance (in general), no feature engineering
- harder to interpret (“black box”)

9



Machine Learning for NLP

Applications:

- NLP applications: spam filtering, spell checking, machine translation, summarization, web search, 
recommendation systems, sentiment analysis, hate speech detection…

- NLP tasks: sentence splitting, tokenization, POS tagging, NER, syntactic parsing, semantic parsing, discourse 
parsing, event identification, detecting language change, representation learning, speech recognition... 

Data investigation:

- Looking at how works your model could help understanding your data/problem:
- e.g. Age or Gender bias in models: Gender Bias in Part-of-Speech Tagging and Dependency Parsing 

Data, A. Garimella, C. Banea, D. Hovy, & R. Mihalcea. ACL 2019 
- (Linguistic) Hypothesis checking

- e.g. Scientific fraud: specific writing style? Is writing style predictive of scientific fraud?, C. Braud and A. 
Søgaard. EMNLP 2017

- For 'fun': e.g. see T. Van de Cruys' book of poetry generated via ML 
10



Content
Statistical Learning

1. Learning problems
2. Workflow and terminology
3. Linear classification
4. Representation function
5. Basics of POO
Practical session 0: basics of 
POO, implement a ML model with 
Scikit

11



Content

1. Learning problems
2. Workflow and terminology
3. Linear classification
4. Representation function
5. Basics of POO
Practical session 0: basics of 
POO, implement a ML model with 
Scikit

ML ≈ DL

12

Statistical Learning



Content

1. Learning problems
2. Workflow and terminology
3. Linear classification
4. Representation function
5. Basics of POO
Practical session 0: basics of 
POO, implement a ML model with 
Scikit

ML ≠ DL

ML ≈ DL

13

Statistical Learning



Learning problems and scenarios

Most common learning problem in NLP: classification

Most common scenario: supervised learning

→ using pre-trained word embeddings is in fact doing semi-supervised 

learning

14



The different tasks

- Classification: predict a categorical label for each item
- single label: each instance is assigned a single label

- binary: 2 labels, e.g. an email is either a spam or not
- multi-class: > 2 labels, e.g.  sentiment is either positive, negative or neutral

- multi-label: each instance is assigned multiple labels, e.g. The Lord of the Ring is 
classified as: Adventure, Fantasy, Drama

- Sequence labeling / structured prediction: predict a categorical label for each member of a sequence
- e.g. POS tagging, NER...
- can be seen as performing independent classification tasks on each item
- but performance are improved when taking into account the dependence between the 

elements
- Regression: Predict a real value for each item

- e.g.: prediction of stock values, variations of economic variables, house prices..
- rarer for NLP, but e.g. data with depression “scores” (DAIC) 15



The different tasks
- Clustering: Partition items into homogeneous regions

- kind of classification but without classes known a priori
- can be useful if you don't have manual labels or want to explore your data 
- often used for very large data sets

- e.g.: in social network analysis, attempt to identify “communities” within large groups of 
people.

- Ranking: Order items according to some criterion (e.g. Web search) 
- Dimensionality reduction or manifold learning: Transform an initial representation of items into a 

lower-dimensional representation (for pre- processing or visualisation) 

16



The learning scenarios
Depend on the annotations you have: 

Supervised learning: 

- we have a set of labeled examples as training data 

- most common for classification and regression

17



The learning scenarios
Depend on the annotations you have: 

Supervised learning: 

- we have a set of labeled examples as training data 

- most common for classification and regression

Unsupervised learning:

- we only have unlabeled training data

- e.g.: Clustering and dimensionality reduction 

- often hard to evaluate 

18



The learning scenarios
Semi-supervised learning: the training sample consists of both labeled and unlabeled data 

19



The learning scenarios
Semi-supervised learning: the training sample consists of both labeled and unlabeled data 

easier to obtain!

20



The learning scenarios
Semi-supervised learning: the training sample consists of both labeled and unlabeled data 

Very hard in practice, but many variations: 
- labeled + automatically labeled data

- e.g. sentiment analysis with smileys as (noisy) labels 
- labeled + external resource giving constraints

- e.g. POS tagging with a dictionary
- labeled + labeled data for another task

- multi-task learning 
- labeled + unlabeled: pre-trained word embeddings 

Especially used for transfer learning / domain adaptation: 
- e.g. building a model for a new language or for a new genre of texts 

easier to obtain!

21



Supervised classification
Supervised classification:

- the most common scenario for NLP (with supervised structured prediction)
- supervised: input = labeled data points
- classification: assign a category/class to each item, e.g.

- is a word a VERB or a NOUN? 
- Is a document talking about Sport or Politics or Economy? 

Binary vs Multi-class:

2 classes (e.g. positive/negative, comedy/drama) vs more than 2 classes (e.g. positive/negative/neutral, any genre)

Distinction that has an impact 

- on the algorithm: various strategies to deal with MC problems
- on evaluation: various metrics 
- but rather transparent with scikit: algorithms/functions can be used for both binary and MC problems

22



Machine Learning: workflow and terminology

The different steps when doing machine learning: 

- (1) preparing data, 
- (2) learning and tuning, 
- (3) predicting and evaluating

Terminology:

- input
- model and parameters
- train/dev/test sets

23



Machine Learning
Start with:

- a set of labelled data = data points + (gold) labels
- a function that could be used to compute a label for a data point 

Learning a model:

- Goal: try to get the best function, i.e. that finds the right/gold label 
- Process: iterate over the examples, and adjust the parameters of the function to avoid errors

Evaluating the model:

- Goal: evaluate the performance of the learned model
- Process: once the model is learned / trained, make predictions over unseen data and compute 

some performance metrics 

24



Machine Learning
Start with:

- a set of labelled data = data points + (gold) labels → supervised setting
- a function that could be used to compute a label for a data point → classification

Learning a model:

- Goal: try to get the best function, i.e. that finds the right/gold label 
- Process: iterate over the examples, and adjust the parameters of the function to avoid errors

Evaluating the model:

- Goal: evaluate the performance of the learned model
- Process: once the model is learned / trained, make predictions over unseen data and compute 

some performance metrics 

25



Machine Learning
Start with:

- a set of labelled data = data points + (gold) labels → supervised setting
- a function that could be used to compute a label for a data point → classification

Learning a model:

- Goal: try to get the best function, i.e. that finds the right/gold label most often
- Process: iterate over the examples, and adjust the parameters of the function to avoid errors

Evaluating the model:

- Goal: evaluate the performance of the learned model
- Process: once the model is learned / trained, make predictions over unseen data and compute 

some performance metrics 

26



Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to 
predict a 
label

learning some 
function f with 

parameters 

Compute 
score using 

some 
performance 
metrics

Cat

Represented 
by some 
features

?

Evaluating

output

Data preparation

27



Workflow: (1) Data preparation
- Define the problem: task? labels? 
- Collect (labeled) data: datasets available online, scikit toy datasets, scrap data…
- Randomly partition your data, i.e. shuffle then split:

- Train / dev / test: e.g. 80-10-10 (or use pre-defined split), in gal train > test 
- Train / test + cross-fold on training set for tuning

- Data description: you need to know your data! 
- Number of training/evaluation examples
- Class distribution: number of examples per class 
- Vocabulary, language, genre, etc…

- Feature extraction/engineering: critical step, reflects prior knowledge 
- Possibly linguistic pre-processing: POS tagging, parsing, NER, etc... 
- Vectorization, normalization 

28



Workflow: (1) Data preparation
- Define the problem: task? labels? 
- Collect (labeled) data: datasets available online, scikit toy datasets, scrap data…
- Randomly partition your data, i.e. shuffle then split:

- Train / dev / test: e.g. 80-10-10 (or use pre-defined split), in gal train > test 
- Train / test + cross-fold on training set for tuning

- Data description: you need to know your data! 
- Number of training/evaluation examples
- Class distribution: number of examples per class 
- Vocabulary, language, genre, etc…

- Feature extraction/engineering: critical step, reflects prior knowledge 
- Possibly linguistic pre-processing: POS tagging, parsing, NER, etc... 
- Vectorization, normalization 

29



Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to 
predict a 
label

learning some 
function f with 

parameters 

Compute 
score using 

some 
performance 
metrics

Cat

Represented 
by some 
features

?

Evaluating

output

Data preparation

30



Workflow: (2) Learning + Tuning
- Choose a learning algorithm: crucial, especially if training is long 

- Advice: try first with a fast algorithm

- Train: at each training step, 

- update values for the parameters 

- the values for the hyper-parameters are fixed 

- Tune: 

- identify the tunable hyper-parameters 

- search the best values for the hyper-parameters 

31



Learning algorithms for classification
- Naive Bayes

- Linear classifiers:

- perceptron 

- passive-aggressive 

- Logistic Regression aka MaxEnt

- linear SVM

- Non linear SVM 

- Neural networks

See the doc on supervised learning

See the tutorial: working with text

32

https://scikit-learn.org/stable/supervised_learning.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html


Workflow: (2) Learning + Tuning
- Choose a learning algorithm: crucial, especially if training is long 

- Advice: try first with a fast algorithm

- Train: at each training step, 

- update values for the parameters 

- the values for the hyper-parameters are fixed 

- Tune: 

- identify the tunable hyper-parameters 

- search the best values for the hyper-parameters 

33



Model and learning function
Remember that we are learning a function:

- Target function: the true function f we want to learn / 

approximate.

- Hypothesis (sometimes called model): a function h that 

we hope is similar to the target.

34

Apprentissage supervisé :

- À partir de l’échantillon d’apprentissage S = {(x
i
 , y

i
 )}

1,m 

- on cherche une loi de dépendance sous-jacente

Par exemple une fonction h aussi proche possible de f (fonction cible) avec f telle que y
i
 =f(x

i
) 

many possible hypothesis



Learning a model
Remember that we want to avoid errors, find the best hypothesis:

- Loss function: measures the difference, or loss, between a predicted label and a true label.
- L:Y ×Ŷ → ℝ       ~ ‘count the number of times’ y ≠ ŷ (also called cost)
- zero-one loss, squared loss, hinge loss...

The learning algorithm tries to get the smaller possible loss on the examples it is given: 
- if the predicted label is wrong

- modifies the values of the weights w so that next time we compute the label, we get the right one i.e. ŷ = w.x
- if the predicted label is right, don’t modify anything (except if we want some margin)

The parameters W and b are set to minimize L (usually, the sum of the losses over the training examples)

L(Ө) = 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) → The loss should decrease with learning (less and less errors)

Thus training correspond to finding this minimum (= optimization problem):

Ô = argminӨ L(Ө) = argminӨ 1/n ∑
i=1..n

 L(f(xi ; Ө), yi)

35



Workflow: (2) Learning + Tuning
- Choose a learning algorithm: crucial, especially if training is long 

- Advice: try first with a fast algorithm (for DL= smaller layers, smaller input size…) 

- Train: at each training step, 

- update values for the parameters 

- the values for the hyper-parameters are fixed 

- Tune: 

- identify the tunable hyper-parameters 

- search the best values for the hyper-parameters 

36



Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to 
predict a 
label

learning some 
function f with 

parameters 

Compute 
score using 

some 
performance 
metrics

Cat

Represented 
by some 
features

?

Evaluating

output

Data preparation

37



Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to 
predict a 
label

learning some 
function f with 

parameters 

Compute 
score using 

some 
performance 
metrics

Cat

Represented 
by some 
features

?

Evaluating

output

Data preparation

Tuning

setting 
hyper-

parameters 

38



Tuning / Optimization
- We learn the parameters of the model (or weights, w or θ)
- We set values for the hyper-parameters associated to the learner

→ Tuning = searching for the best values for hyper-parameters e.g. smoothing, regularization strength etc

Tuning process:

1. identify the hyper-parameters of your model (SciKit: estimator.get_params()) 
2. choose the right performance metrics to optimize (accuracy, F1, rouge …)
3. choose the right procedure → always set apart a test set:

a. use a validation / development set:
i. define a set of possible values for each hyper-parameter

ii. train a model for each subset of values and evaluate on the dev set 
iii. compare the results: keep the model giving the best score on dev 
iv. evaluate (only) this model on the test set

b. n-fold cross-validation: esp. when small amount of data 
i. very easy with scikit: grid-search cross-validation 

39



Learning is not memorizing
Consistent model:

- no error on train set

- but poor performance on test,

i.e. memorize the data, unable to generalize 

40



Overfitting
- Very complex decision surface: no generalization to unseen data 

- Less complex: might generalize better in spite of some errors

→ Solution = regularization: constraining a model to make it simpler

= add a regularization term to minimize the complexity of the model, i.e. an hyper-parameter corr. to the 

strength of the regularization 

"The green line represents an overfitted model and the black line represents a 

regularized model. While the green line best follows the data, it is too dependent on 

the training data" (Mohri) 

41



Learning a model
Remember that we want to avoid errors, find the best hypothesis:

- Loss function: measures the difference, or loss, between a predicted label and a true label.
- L:Y ×Ŷ → ℝ       ~ ‘count the number of times’ y ≠ ŷ (also called cost)
- zero-one loss, squared loss, hinge loss...

The learning algorithm tries to get the smaller possible loss on the examples it is given: 
- if the predicted label is wrong

- modifies the values of the weights w so that next time we compute the label, we get the right one i.e. ŷ = w.x
- if the predicted label is right, don’t modify anything (except if we want some margin)

The parameters W and b are set to minimize L (usually, the sum of the losses over the training examples)

L(Ө) = 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) → The loss should decrease with learning (less and less errors)

Thus training correspond to finding this minimum (= optimization problem):

Ô = argminӨ L(Ө) = argminӨ 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) + λ R(Ө)

42

Regularization



Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to 
predict a 
label

learning some 
function f with 

parameters 

Compute 
score using 

some 
performance 
metrics

Cat

Represented 
by some 
features

?

Evaluating

output

Data preparation

Tuning

setting 
hyper-

parameters 

43



Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to 
predict a 
label

learning some 
function f with 

parameters 

Compute 
score using 

some 
performance 
metrics

Cat

Represented 
by some 
features

?

Evaluating

output

Data preparation

Tuning

setting 
hyper-

parameters 

44



(3) Prediction + Evaluation
Using the final values for parameters and hyper-parameters, evaluate on test

- Use your model to make predictions on the unseen test data (ypred ) 

- Compute a score by comparing y
true

 and y
pred

 for each example in the test 

- Compare to other systems: baselines, state-of-the-art...

It is important to:

- Keep track of the values used (final and tested) for the hyper-parameters for reproducibility!

- Choose a / several relevant evaluation metrics 

- Propose relevant baselines

45



Classification metrics
For classification, we mostly use:

- Global scores: accuracy, averaged F1 

- Per class scores: precision, recall, F1

- + confusion matrix: better understand the system behaviour

Accuracy is the most common metrics:

- fraction of correctly predicted samples 

- e.g. 90 well predicted over 100 examples: accuracy = 90%

- issue esp. with imbalanced data, 

- e.g. Cancer detection: 90 non cancer, 10 cancer is 90% a good score for predicting cancer?

- we want to predict well the positive class

46



Evaluating a model
Report one or several metrics:

- depend on the setting (binary or multi-class) and task 
- classification: Accuracy, Macro/weighted F1, prec/rec/F1 per class 

Compare to other systems:

- baselines: simplest feature/algo, dummy classifier (most frequent class) 
- state-of-the-art: systems from the literature, reported or reproduced, compare different algorithms
- compare different feature sets
- compare different datasets: prove the robustness of your method over different genres, languages…

Try to understand your model:

- Scikit: classifiers have a coef_ parameters that allows to inspect the weights associated to each feature
- eli5: a library to debug ML models, compatible with Scikit, see the doc 

- try to relate observed behaviour to a priori knowledge, esp. linguistic 

47



Input: examples, features and labels
Examples or samples / instances / data points = items of data used for learning or evaluating (m examples)

Features = set of attributes associated to an example (n features) 

A set of examples: a matrix X of size m×n

- 1 example = 1 row, i.e. a vector x of size n

Labels = values assigned to examples; for classification:

- General label set: Y of p classes
- Labels for all examples = a list of size m, e.g. ytrue 

- 1 label for 1 example = 1 value y in the list 
- labeled example = a pair (x, y)

Dataset for ML = X and ytrue 

48



Model, Parameters and hyper-parameters
Model: what we learn is a model of our data

- We sometimes call model the weights learned, i.e. the importance that the model associates 

with each feature 

- e.g. Sentiment analysis: 'love':+10, 'hate':-42, ‘green’:0…
- Weights are saved in a vector w (or θ) of size n(+1)

- Each of these weights is a parameter/coefficient of the model

Hyper-parameters (or free parameters, part of the model):

- there could be parameters dependent on the learning algorithm used 

- setting the values for these hyper-parameters is called tuning the model 

49



Train / Dev / Test sets
Training sample/set: examples used to train a learning algorithm, to learn/fit a model

Development/validation set: examples used to tune the hyper-parameters of a learning algorithm

Test/evaluation set: examples used to evaluate the performance of a learning algorithm

- The test set is separate from the train/dev sets

- The test set is not made available in the learning stage

Searching for the best model on the test set = 

50



Linear classification

- Binary classification: linear functions, weight matrix and bias

- Reminder: Logistic Regression = linear scores + logistic function

- Loss function

ML → DL: 

- Change here = power of non linearity 

- → LR performed by each neuron 

51



Why Linear classifiers?
Remember that: ML is about finding a function h that best approximate the 

target function f 

- Searching over the set of all possible functions is very hard

- We thus restrict ourselves over specific families of functions, the hypothesis 

class e.g. the space of all linear functions with d
in

 inputs and d
out

 outputs
- inject the learner with inductive bias: a set of assumptions about the desired solution

- facilitate procedures for searching solutions

- The hypothesis class also determines what can and cannot be represented 

by the learner!

52



Linear Classifiers
Hypothesis class = high-dimensional linear functions, of the form:

f(x) = W.x + b             with x ∈ Rd_in, W ∈ Rd_inxd_out, b ∈ Rd_out

- Searching over the space of functions = searching over the space of parameters, i.e. finding the best Ө = 

W, b.

- Sometimes, to make the parameterization explicit, we write: f(x ; W, b)

- In binary classification, w is a vector

Recall on linear algebra:  W.x  = Σ
j
 w

j
 x

j 
= w

0
.x

0
 + w

1
.x

1
 + ... + w

n
.x

n
 (+b) 

With n features, we have:

- a data point: x =< x
0
, x

1
, ..., x

n
 > 

- the weights: w =< w
0
, w

1
, ..., w

n
 >

53



Linear Classifiers 
The decision boundary is a linear function of the input: in the binary case, it's a line (2 dimensions / 

features), a plane (3 d) or an hyperplane (n d) separating the two classes 

54

w

x=(x1,x2)

h

w.h = 0
w.x > 0
w.z < 0

z=(z1,z2)



Linear Classifiers 
The decision boundary is a linear function of the input: in the binary case, it's a line (2 dimensions / 

features), a plane (3 d) or an hyperplane (n d) separating the two classes 

55

x=(x1,x2)

w.h = 0
w.x > 0
w.z < 0

z=(z1,z2) w

h

w

h’

w’’

h’’



Introducing non-linearity
SVM with non-linear kernel

- mapping of the original input feature space to a higher-dimensional feature space,

- with the hope that data may be linearly separable in this new space 

56



Introducing non-linearity
SVM with non-linear kernel

- mapping of the original input feature space to a higher-dimensional feature space,

- with the hope that data may be linearly separable in this new space 

Neural Network: keep 
non-linearity and 
transformation of the input 
space.

57



Loss functions: training as optimization

The goal of the algorithm is to return a function f() that accurately maps input examples to their desired labels

- i.e. a function such that the predictions ŷ = f(x) over the training set are accurate

- the loss function is used to quantify the loss suffered when predicting ŷ while the true label 
is y

- L(ŷ,y): assigns a numerical score (a scalar) to a predicted output ŷ given the true expected output y

- Should be bounded from below: minimum attained only for cases where the prediction is correct

- The parameters W and b are set to minimize L (usually, the sum of the losses over the training examples)

L(Ө) = 1/n ∑
i=1..n

 L(f(xi ; Ө), yi)

Thus training correspond to find this minimum:

Ô = argminӨ L(Ө) = argminӨ 1/n ∑
i=1..n

 L(f(xi ; Ө), yi)
58



Loss functions: training as optimization

The goal of the algorithm is to return a function f() that accurately maps input examples to their desired labels

- i.e. a function such that the predictions ŷ = f(x) over the training set are accurate

- the loss function is used to quantify the loss suffered when predicting ŷ while the true label is 
y

- L(ŷ,y): assigns a numerical score (a scalar) to a predicted output ŷ given the true expected output y

- Should be bounded from below: minimum attained only for cases where the prediction is correct

- The parameters W and b are set to minimize L (usually, the sum of the losses over the training 

examples)

L(Ө) = 1/n ∑
i=1..n

 L(f(xi ; Ө), yi)

Thus training correspond to find this minimum:

Ô = argminӨ L(Ө) = argminӨ 1/n ∑
i=1..n

 L(f(xi ; Ө), yi)Minimizing errors 59



Loss functions: training as optimization

The goal of the algorithm is to return a function f() that accurately maps input examples to their desired labels

- i.e. a function ŷ  such that the predictions ŷ = f(x) over the training set are accurate

- the loss function is used to quantify the loss suffered chen predicting ŷ while the true label is y

- L(ŷ,y): assigns a numerical score (a scalar) to a predicted output ŷ given the true expected output y

- Should be bounded from below: minimum attained only for cases where the prediction is correct

- The parameters W and b are set to minimize L (usually, the sum of the losses over the training 

examples)

L(Ө) = 1/n ∑
i=1..n

 L(f(xi ; Ө), yi)

Thus training correspond to find this minimum:

Ô = argminӨ L(Ө) = argminӨ 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) + λ R(Ө)

Regularization

Minimizing errors 60



Loss functions: training as optimization

The goal of the algorithm is to return a function f() that accurately maps input examples to their desired labels

- i.e. a function ŷ  such that the predictions ŷ = f(x) over the training set are accurate

- the loss function is used to quantify the loss suffered chen predicting ŷ while the true label is y

- L(ŷ,y): assigns a numerical score (a scalar) to a predicted output ŷ given the true expected output y

- Should be bounded from below: minimum attained only for cases where the prediction is correct

- The parameters W and b are set to minimize L (usually, the sum of the losses over the training 

examples)

L(Ө) = 1/n ∑
i=1..n

 L(f(xi ; Ө), yi)

Thus training correspond to find this minimum:

Ô = argminӨ L(Ө) = argminӨ 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) + λ R(Ө)

Regularization

Minimizing errors

Same for NN: We’ll go 
back to loss functions 
later

61



Summary
- Linear functions: a great class of hypothesis for ML, worked for decades
- Non-linearity: seems useful, since many problems are non linear, e.g. XOR 

problem
- Learning is about solving an optimization problem, i.e. minimizing a 

function called the loss (while keeping the complexity of the model 
‘reasonable’). 

62



Representation function

- “Feature engineering”: 
- choose features, e.g. words, POS, NE, gaze, meta-data …
- represent information (vectorizing, normalizing): bow, n-grams ; TF-IDF, …

ML → DL: change here = NN seen as representation learners

ML → DL: sparse vs dense inputs 

63



Feature representation
Main issue: 

- how to represent text? 

e.g. how to transform a sentence into a vector of numerical values?

Bag-of-Words (BOW):

- one vector where each dimension is a word in our vocabulary

- if the word / feature is present in the document, associate a specific value

64



BOW: One-hot encoding

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

18 words / dimensions
65



BOW: One-hot encoding

66

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1



67

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

BOW: One-hot encoding



68

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

BOW: One-hot encoding



69

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

BOW: One-hot encoding



70

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

BOW: One-hot encoding



71

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1
- The other words: value = 0 → present in the training data, 

but not in this specific sentence / document

BOW: One-hot encoding



72

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1
- The other words: value = 0 → present in the training data, 

but not in this specific sentence / document

BOW: One-hot encoding



Easy to use: now the computer can “read” your sentence

            The elephant sneezed at the sight of potatoes.

            <1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0> 

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important
- Normalizing with TF-IDF: take into account the distribution of the words in the entire 

corpus
- “the”: very frequent but not very crucial
- “magnificent”: rare, but crucial

73

Bag-of-Words



Easy to use: now the computer can “read” your sentence

            The elephant sneezed at the sight of potatoes.

            <1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 0> 

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important (?)
- Normalizing with TF-IDF: take into account the distribution of the words in the entire 

corpus
- “the”: very frequent but not very crucial
- “magnificent”: rare, but crucial

74

Bag-of-Words

‘the’



Easy to use: now the computer can “read” your sentence

            The elephant sneezed at the sight of potatoes.

            <1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 0> 

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important
- Normalizing with TF-IDF: take into account the distribution of the words in the 

entire corpus
- “the”: very frequent but not very crucial
- “magnificent”: rare, but crucial

75

Bag-of-Words



Bag of any features: one-hot encoding
Can be used to take into account any information, e.g. POS tags:

     The/D elephant/N sneezed/V at/P the/D sight/N of/P potatoes/N

76

1 1 1 1 0

D  N  V  P  A

We can encode any information: 
- presence of a syntactic relation
- presence of a Named Entity / numbers /dates / amounts
- word associated to a sense if disambiguated
- words in the next sentence
- semantic classes…

Also extra-linguistic features : gender of the writer, number of likes ...



One-hot representation

- Defining features has to be done manually: require expertise and tests

- A word is represented with a one-hot vector: easy to implement

77



Problems and extensions
1. Very high dimensional: 

- 18 dimensions for the previous sentence but could be 100k dimensions! 

- Curse of dimensionality (nb of parameters proportional to nb of features) and 

sparsity (many many zeros): makes learning hard, prone to overfitting

- Solutions:

- ignoring specific words, e.g. stop words

- keeping only the most frequent / highest TF-IDF

- grouping words: semantic categories, clusters (Brown)

78



Problems and extensions
1. Very high dimensional: 

- 18 dimensions for the previous sentence but could be 100k dimensions! 
- Curse of dimensionality (nb of parameters proportional to nb of features) and 

sparsity (many many zeros): makes learning hard, prone to overfitting

- Solutions:
- ignoring specific words, e.g. stop words
- keeping only the most frequent / highest TF-IDF
- grouping words: semantic categories, clusters (Brown)

2. Bag-of-Words representation ignores word ordering and context
- crucial: “I don’t know why I like this movie.” vs “I don’t like this movie and I know why.”
- solutions: n-grams, i.e. use combination of multiple words e.g. trigrams “do not like”...

- but even more dimensions!

⇒ Representation learning = power of Neural Networks 
79



Basics of OOP (POO in French)

80

Object Oriented Programming:

- a programming paradigm (vs functional e.g. Camel / Haskell, logic e.g. Prolog, 
descriptive e.g. LateX / HTML…)

- many languages: Ada, C++, Python, Java

Python: multi paradigme = 

- object but also functional, and structured (hierarchical organization of the code, 
small pieces of code, extensive use of control and repetition, block structures…)

→ Python libraries are based on the object paradigm: description of classes that can 
be used to perform some operation



Objects 

An object is:

- a concept, an idea, an entity in the world
- that as different properties / features / an internal structure
- and also has a specific behavior / a way to interact with other entities
- analogy with real world: 

- we have different types of entities e.g. cars, computers, cats… and also abstract ones such as time 
or a client 

- with different ‘behaviours’: cars start, run, stop, turn … computers start, bug… cats meow..
- we want to represent them in the computer through their properties and 

behaviors

Object = a data structure that can answer to specific messages

81



Objects and classes
Class-based OOP: objects are instances of classes = types

- we have different types of entities in the world, such as cars or cats
- we have different instances of the same type: my cat is different from my neighbors’ 

cat

Class = object type: 

- extend the notion of type such as int, char etc
- used to define the properties of the corresponding entities and how they interact, e.g. 

Car

Object = class instance: 

- a specific entity pertaining to a class, e.g. my_car

82



Objects and classes
Class-based OOP: objects are instances of classes = types

- we have different types of entities in the world, such as cars or cats
- we have different instances of the same type: my cat is different from my neighbors’ 

cat

Class = object type: 

- extend the notion of type such as int, char etc
- used to define the properties of the corresponding entities and how they interact, e.g. 

Car

Object = class instance: 

- a specific entity pertaining to a class, e.g. my_car (of type Car)

83



Classes
→ The modelization step is crucial: how well we define these classes will make 
for a good, reusable, easy to modify code (or not)

- To define a specific type of object we need to give:
- a specific collection of data = fields, attributes, properties
- a specific collection of behaviors = methods, procedures 

84



Classes
→ The modelization step is crucial: how well we define these classes will make 
for a good, reusable, easy to modify code (or not)

- To define a specific type of object we need to give:
- a specific collection of data = fields, attributes, properties
- a specific collection of behaviors = methods, procedures 

85

Note that we have:
- names for attributes
- verbs for methods

→ a very useful convention



Classes in Python

86

Notebook: https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing 

class Car:
Here we define the properties and behavior

def __init__( arguments)
- the constructor = the method 

explaining how to create a new object 
of this type

- details all the properties / attributes / 
fields 

https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing


Classes in Python

87

Notebook: https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing 

class Car:
Here we define the properties and behavior

def __init__( arguments)
- the constructor = the method 

explaining how to create a new object 
of this type

- details all the properties / attributes / 
fields 

when calling it:
- just use the name of the class = calls 

the constructor
- the arguments can be used to specify 

the value for the newly created object

https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing


Classes in Python

88

Notebook: https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing 

class Car:
Here we define the properties and behavior

def __init__( arguments)
- the constructor = the method 

explaining how to create a new object 
of this type

- details all the properties / attributes / 
fields 

when calling it:
- just use the name of the class = calls 

the constructor
- the arguments can be used to specify 

the value for the newly created object

When I create / instantiate a specific object / instance: I specify the 
unique shape of my object, its personal attributes

https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing


Methods

def present(self, 
arguments):

I can define a method that 
describes a possible 
behavior of my object

89

- the method is then ‘applied’ to an object / an instance of the class
- in its definition, the method can use the fields of the object (here self.name or self.color)



So, what is self?

self is used within a class 
definition to refers to the 
current instance, to ‘myself’

→ self.name ⇒ the name of the 
instance I’m currently defining

90



So, what is self?

self is used within a class 
definition to refers to the current 
instance, to ‘myself’

→ self.name ⇒ the name of the 
instance I’m currently defining

Why it is important?

→ we can modify the current 
object’s data fields e.g. self.color 

91



So, what is self?

self is used within a class definition to 
refers to the current instance, to ‘myself’

→ self.name ⇒ the name of the instance 
I’m currently defining

Why it is important?

→ we can modify the current object’s 
data fields 

→ we can make use of another instance 
of the same type within a class definition

92



So, what is self?

self is used within a class definition to 
refers to the current instance, to ‘myself’

→ self.name ⇒ the name of the instance 
I’m currently defining

Why it is important?

→ we can modify the current object’s 
data fields 

→ we can make use of another instance 
of the same type within a class definition

93

Exercise…



So, what is self?

self is used within a class definition to 
refers to the current instance, to ‘myself’

→ self.name ⇒ the name of the instance 
I’m currently defining

Why it is important?

→ we can modify the current object’s 
data fields 

→ we can make use of another instance 
of the same type within a class definition

94



Summary 

- class: defines a type of objects, by 
specifying: 

- its properties = fields ie. 
self.my_first_property = [initialize 
with specific value or using argument 
of the constructor]

- its behavior ie.                                                                    
def i_can_do_that( self, [arguments])

- an object (a variable) is an instance of a 
class that has:

- specific values for the properties
- on which we can call all the methods defined in 

the class

95



Summary 

- class: defines a type of objects, by 
specifying: 

- its properties = fields ie. 
self.my_first_property = [initialize 
with specific value or using argument 
of the constructor]

- its behavior ie.                                                                    
def i_can_do_that( self, [arguments])

- an object (a variable) is an instance of a 
class that has:

- specific values for the properties
- on which we can call all the methods defined in 

the class

96

Side note: Python recommends UpperCamelCase for class names, 
CAPITALIZED_WITH_UNDERSCORES for constants, and snake_case for other names.

https://www.wikiwand.com/en/Python_(programming_language)


Inheritance
- used to define 

types and 
subtypes

- parent class: the 
most abstract / 
prototypical 

- child class(es): 
implement distinct 
features

97

Parent class:
A person has: 

- a name 
- an idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post



Inheritance
- used to define 

types and 
subtypes

- parent class: the 
most abstract / 
prototypical 

- child class(es): 
implement distinct 
features

98

Parent class:
A person has: 

- a name 
- an idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post

here is where you say 
that it’s a child class of 
Person



Inheritance
- used to define 

types and 
subtypes

- parent class: the 
most abstract / 
prototypical 

- child class(es): 
implement distinct 
features

99

Parent class:
A person has: 

- a name 
- an idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post

here is where you say 
that it’s a child class of 
Person

+ you can call the 
constructor of the 
parent to fill the 
corresponding fields 
using super



Inheritance 

100

Parent 
class:
A person has: 

- a name 
- an 

idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post

Exercise…



Inheritance 

101

Parent 
class:
A person has: 

- a name 
- an 

idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post

Exercise…

Note that:
- We can also call the method from 

the class Person on an employee 
object



Inheritance 

102

Parent 
class:
A person has: 

- a name 
- an 

idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post

Exercise…

Note that:
- We can also call the method from 

the class Person on an employee 
object

- We can redefine  a method: here 
details() is defined in both classes, 
but here it’s the version in 
Employee class that will be used



Summary 

- class: defines a type of objects, by 
specifying: 

- its properties = fields ie. 
self.my_first_property = [initialize 
with specific value or using argument 
of the constructor]

- its behavior ie.                                                                    
def i_can_do_that( self, [arguments])

- an object (a variable) is an instance of a 
class that has:

- specific values for the properties
- on which we can call all the methods defined in 

the class

103
+ an object has the properties and the methods of his parents



Ok, so why does that matter?...

They are all 
classes

104



Same in PyTorch

- Here we define a class that 
defines a specific type of 
network + it inherits from the 
class nn.Module

105



Same in PyTorch

- Here we define a class that 
defines a specific type of 
network + it inherits from the 
class nn.Module

- The constructor tells us that 
this network has 

- different properties: conv1 and 
conv2, fc1, fc2 and fc3 

- a method called forward(..)

106



Same in PyTorch

- Here we define a class that 
defines a specific type of 
network + it inherits from the 
class nn.Module

- The constructor tells us that this 
network has different 
properties: conv1 and conv2, 
fc1, fc2 and fc3 ; and that it has 
a method called forward(..)

- Here we instantiate an object of 
this class, thus a concrete 
network of this type

107



TP1: Sentiment analysis with Scikit

In the practical session, we will implement a system for sentiment 

classification of movie reviews. 

- pre-process data (BoW, n-grams)

- train and evaluate a model

- compare different algorithms

- investigate model decisions

108



Sources

- Foundations of Machine Learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, MIT Press

- Comparing SVM and NN:

- Short answer: On small data sets, SVM might be preferred. 

https://stats.stackexchange.com/questions/510052/are-neural-networks-better-than-svms

- https://www.baeldung.com/cs/svm-vs-neural-network

- https://dair.ai/notebooks/nlp/2020/03/19/nlp_basics_tokenization_segmentation.html

- https://www.infoq.com/presentations/nlp-practitioners/

- https://github.com/sebastianruder/NLP-progress

- Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. 

Hüllermeier, E., Waegeman, W. Mach Learn 110, 457–506 (2021). 

https://doi.org/10.1007/s10994-021-05946-3 (Picture on hypothesis space)

-

109

https://stats.stackexchange.com/questions/510052/are-neural-networks-better-than-svms
https://www.baeldung.com/cs/svm-vs-neural-network
https://dair.ai/notebooks/nlp/2020/03/19/nlp_basics_tokenization_segmentation.html
https://www.infoq.com/presentations/nlp-practitioners/
https://github.com/sebastianruder/NLP-progress
https://doi.org/10.1007/s10994-021-05946-3

