
Neural Methods
for NLP

Master LiTL --- 2023-2024
chloe.braud@irit.fr

https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Course 2: Introduction to Deep Learning

1

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Schedule
2023-2024

1 28.11 13h30-15h30 2 (C1) ML Reminder + (TP ML) + TP POO

2 05.12 13h30-15h30 2 (C2) Intro DL + TP2

3 12.12 13h30-16h 2.5 (C3) Embeddings + TP3

4 19.12 13h30-16h 2.5 TP4 + Start projects

(holidays)

5 09.01 13h-16h 3 (C4) Training a NN + TP5 + TP6

→Assignments Part 1 due

6 16.01 13h-16h 3 (C5) CNN, RNN + TP7 + TP8

7 23.01 13h-16h 3 Projects

8 01.02 13h-16h 3 (C6) Encoder-decoder, transformer + TP9

9 06.02

ou
13?

13h-16h 3 (C7) Current challenges

→ Assignments Part 2 due + project defenses

Neural methods for NLP
- 1980’s: Symbolic NLP

- rule-based approach, hand-written rules
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming

- 1990’s: ‘Statistical’ NLP
- learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors
- large annotated corpora
- handcrafted features
- rather fast to train, still good baselines

- ≃ 2010: ‘Neural’ NLP
- combine linear and non-linear functions, over dense inputs
- (very) large annotated corpora and very large unannotated corpora
- improved performance (in general), no feature engineering
- harder to interpret (“black box”)

3

Neural methods for NLP
- 1980’s: Symbolic NLP

- rule-based approach, hand-written rules
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming

- 1990’s: ‘Statistical’ NLP
- learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors
- large annotated corpora
- handcrafted features
- rather fast to train, still good baselines

- ≃ 2010: ‘Neural’ NLP
- combine linear and non-linear functions, over dense inputs
- (very) large annotated corpora and very large unannotated corpora
- improved performance (in general), no feature engineering
- harder to interpret (“black box”)

4

Neural methods for NLP
- 1980’s: Symbolic NLP

- rule-based approach, hand-written rules
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming

- 1990’s: ‘Statistical’ NLP
- learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors
- large annotated corpora
- handcrafted features
- rather fast to train, still good baselines

- ≃ 2010: ‘Neural’ NLP
- combine linear and non-linear functions, over dense inputs
- (very) large annotated corpora and very large unannotated corpora
- improved performance (in general), no feature engineering
- harder to interpret (“black box”)

5

A bit more of history: The brain inspired metaphor

6

Brain’s computation is based on computation units called neurons (Perceptron,
Rosenblatt, 1957):

- A neuron has scalar inputs and outputs
- Each input has an associated weight to control its importance
- The neuron multiplies each input by its weight and then sums them = linear

combination
- If the weighted sum is greater than the activation potential, the neuron is said to

“fire” = produce a single binary output
- The neurons are connected

to each other, forming a
network: the output of a
neuron may feed into the
inputs of one or more
neurons

Artificial neuron
Using a binary output: not very practical

→ We prefer having small change in weight leading to small change in output

7

‘Statistical’ vs ‘neural’ models

Standard approach:

- linear model trained over high-dimensional but very sparse feature

vectors

Neural approach:

- non-linear neural networks over dense input vectors

8

Content
Introduction to Deep Learning

1. Introducing non linearity
2. Feed-forward architecture
3. Common activation functions
4. Output Transformation

functions
Practical session 2: walk
through code in PyTorch

9

Introducing non-linearity

10

XOR problem: exclusive “or”

→ return a true value if the two inputs are not equal and a false value if they are equal.

But it’s impossible to find w, b such that:

- (0,0).w + b < 0

- (0,1).w + b >= 0

- (1,0).w + b >= 0

- (1,1).w + b < 0

Solution: non-linear input transformations

If we transform the points using: ф(x1, x2) = [x1 x x2, x1 + x2]

The problem becomes linearly separable:

- ф(0,0) = (0, 0) → 0

- ф(0,1) = (0, 1) → 1

- ф(1,0) = (0, 1) → 1

- ф(1,1) = (1, 2) → 0

The function ф mapped the data into a representation that is suitable for linear classification, we can find:

f(x) = ф(x).W + b

11

Solution: non-linear input transformations
If we transform the points using: ф(x1, x2) = [x1 x x2, x1 + x2]

The problem becomes linearly separable:

- ф(0,0) = (0, 0) → 0

- ф(0,1) = (0, 1) → 1

- ф(1,0) = (0, 1) → 1

- ф(1,1) = (1, 2) → 0

The function ф mapped the data into a representation that is suitable for linear classification, we can find:

f(x) = ф(x).W + b

Note: here the transformed data has the same dimension as the original, but often we’ll need to map to a
higher dimensional space.

Note: SVM = defining a priori generic mapping functions vs NN = trainable mapping functions
12

Feed-Forward Architecture

13

Feed-Forward Architecture

14

Multi-layer Perceptron

- best known, standard
neural network
approach

- Fully connected layers
- Can be used as

drop-in replacement
for typical classifiers

input layer hidden layers output layer

Feed-Forward Architecture

15

Multi-layer Perceptron

- best known, standard
neural network
approach

- Fully connected layers
- Can be used as

drop-in replacement
for typical classifiers

input layer hidden layers output layer

Let’s focus on that part

Neural networks: basics
- Layers are made of neurons = building blocks of neural networks

- A single neuron works like logistic regression, we know that!

16

Neural networks: basics
- Layers are made of neurons = building blocks of neural networks

- A single neuron works like logistic regression, we know that!

Reminder: LR model yields probability of an instance belonging to a

particular class based on the instance’s features weighted by the

model’s parameters

17

Logistic Regression

- Spam (binary) classification

- We take word frequency as features

feature fi weight wi

pharmacie 0.4

viagra 1.2

meilleure 0.2

offre 0.2

demande -0.8

transmets -1.7

bias 0.1

18

Logistic Regression

- Spam (binary) classification

- We take word frequency as features

feature fi weight wi

pharmacie 0.4

viagra 1.2

meilleure 0.2

offre 0.2

demande -0.8

transmets -1.7

bias 0.1

x1: “Pharmacie en ligne: viagra meilleure offre!

score(x1) = 0.4×1+1.2×1+0.2×1+0.2×1+(−0.8)×0+(−1.7)
×0+0.1 = 2.1

19

score(x) = W.x + b

Logistic Regression

- Spam (binary) classification

- We take word frequency as features

feature fi weight wi

pharmacie 0.4

viagra 1.2

meilleure 0.2

offre 0.2

demande -0.8

transmets -1.7

bias 0.1

x1: “Pharmacie en ligne: viagra meilleure offre!

score(x1) = 0.4×1+1.2×1+0.2×1+0.2×1+(−0.8)×0+(−1.7)
×0+0.1 = 2.1

20

score(x) = W.x + b

Logistic Regression

- Spam (binary) classification

- We take word frequency as features

feature fi weight wi

pharmacie 0.4

viagra 1.2

meilleure 0.2

offre 0.2

demande -0.8

transmets -1.7

bias 0.1

x1: “Pharmacie en ligne: viagra meilleure offre!

score(x1) = 0.4×1+1.2×1+0.2×1+0.2×1+(−0.8)×0+(−1.7)
×0+0.1 = 2.1

21

score(x) = W.x + b

Logistic Regression

- Spam (binary) classification

- We take word frequency as features

feature fi weight wi

pharmacie 0.4

viagra 1.2

meilleure 0.2

offre 0.2

demande -0.8

transmets -1.7

bias 0.1

x1: “Pharmacie en ligne: viagra meilleure offre!”

score(x1) = 0.4×1+1.2×1+0.2×1+0.2×1+(−0.8)×0+(−1.7)
×0+0.1 = 2.1

x2: “Suite à votre demande, je vous transmets notre
meilleure offre”

score(x2) = 0.4×0+1.2×0+0.2×1+0.2×1+(−0.8)×1+(−1.7)
×1+0.1 = −2.0

22

score(x) = W.x + b

Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities

23

Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function → range [0,1]

24

what is a non-linear function ?
- the corresponding graph is not a line: “a function that

does not graph into a straight line and does not have a
constant slope”

Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function → range [0,1]

25

what is a non-linear function ?
- the corresponding graph is not a line: “a function that

does not graph into a straight line and does not have a
constant slope”

how do we get probabilities?
- map the values to the range we want e.g.:

- -4 here is mapped to stg close to 0
- -2 still below 0.5
- 0 mapped to ?
- 2 mapped to ?
- closer to 4-6 mapped to ?

Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function → range [0,1]

26

what is a non-linear function ?
- the corresponding graph is not a line: “a function that

does not graph into a straight line and does not have a
constant slope”

how do we get probabilities?
- map the values to the range we want e.g.:

- -4 here is mapped to stg close to 0
- -2 still below 0.5
- 0 mapped to ? → 0.5
- 2 mapped to ? → close to 1
- closer to 4-6 mapped to ? → closer and closer to 1

Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function → range [0,1]

27

Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function → range [0,1]

28

The logistic function does exactly these desired computations:
- It maps an input real number → [0, 1]

- Large negative number → 0
- Large positive number → 1

Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function → range [0,1]

29

The logistic function does exactly these desired computations:
- It maps an input real number → [0, 1]

- Large negative number → 0
- Large positive number → 1

i.e. from our previous example on spam:

Logistic Regression

- Linear scores in range [−∞, +∞]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function → range [0,1]

30

The logistic function does exactly these desired computations:
- It maps an input real number → [0, 1]

- Large negative number → 0
- Large positive number → 1

i.e. from our previous example on spam:

score(x) = W.x + b
→ score(x) = f(W.x + b) avec f une fct non linéaire

Logistic Regression

31

Logistic Regression
softmax = generalisation of the logistic
function taking a vector as input

32

https://www.wikiwand.com/fr/Fonction_logistique_(Verhulst)
https://www.wikiwand.com/fr/Vecteur

Neuron = Logistic Regression

These are the exact computations of a single neuron

33

Neuron = Logistic Regression

These are the exact computations of a single neuron

34

w.x = w1x1 + w2x2 + w3x3 + 1

Neuron = Logistic Regression

These are the exact computations of a single neuron

35

w.x = w1x1 + w2x2 + w3x3 + 1

y = f(w.x)

Neuron = Logistic Regression

These are the exact computations of a single neuron

- We can feed an input vector to a bunch of LR functions and get an output vector

36

w.x = w1x1 + w2x2 + w3x3 + 1

y = f(w.x)

Neuron = Logistic Regression

These are the exact computations of a single neuron

- We can feed an input vector to a bunch of LR functions and get an output vector
- which can be fed to another layer of LR functions

37

w.x = w1x1 + w2x2 + w3x3 + 1

y = f(w.x)

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

38

feed an input vector to a bunch of LR functions

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

input layer hidden layers output layer

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

39

feed an input vector to a bunch of LR functions

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

input layer hidden layers output layer

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

40

feed an input vector to a bunch of LR functions

input = x: < x1, x2, x3, x4 >
1st LR function: h11 = f(w1.x)
2nd LR function: h12 = f(w2.x)
3rd LR function: h13 = f(w3.x)

Question: what is the shape of the w1/w2/w3?

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

input layer hidden layers output layer

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

41

feed an input vector to a bunch of LR functions

input = x: < x1, x2, x3, x4 >
1st LR function: h11 = f(w1.x)
2nd LR function: h12 = f(w2.x)
3rd LR function: h13 = f(w3.x)

Question: what is the shape of the w1/w2/w3?
→ vectors of 4 values, one for each input feature

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

input layer hidden layers output layer

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

42

feed an input vector to a bunch of LR functions

input = x: < x1, x2, x3, x4 >
1st LR function: h11 = f(w1.x)
2nd LR function: h12 = f(w2.x)
3rd LR function: h13 = f(w3.x)

Question: what is the shape of the w1/w2/w3?
→ vectors of 4 values, one for each input feature

End of hidden layer 1 = a vector h1 of dimension?

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

input layer hidden layers output layer

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

43

feed an input vector to a bunch of LR functions

input = x: < x1, x2, x3, x4 >
1st LR function: h11 = f(w1.x)
2nd LR function: h12 = f(w2.x)
3rd LR function: h13 = f(w3.x)

Question: what is the shape of the w1/w2/w3?
→ vectors of 4 values, one for each input feature

End of hidden layer 1 = a vector h1 of dimension 3
h1 = < h11, h12, h13>

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

input layer hidden layers output layer

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
44

feed an “input” vector to a bunch of LR functions

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Then, we can repeat the process!

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
45

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Then, we can repeat the process!

feed an “input” vector to a bunch of LR functions

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
46

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Then, we can repeat the process!

= Deep learning
(here Depth = 2)

feed an “input” vector to a bunch of LR functions

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
47

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
48

h1 h2 yx

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
49

h1 h2 yx

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
50

h1 h2 yx

fonctions
linéaires

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
51

h1 h2 yx

fonctions
linéaires

fonctions non
linéairesx1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
52

h1 h2 yx

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
53

h1 h2 yx

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
54

h1 h2 yx

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
55

h1 h2 yx

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
56

h1 h2 yx

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
57

h1 h2 yx

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

W¹ = w11 w21 w31
 w12 w22 w32
 w13 w23 w33
 w14 w24 w34

 = w1 =w2 =w3

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer

Parameters of the network (Ө)

58

h1 h2 yx

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
59

h1 h2 yx

x1

x2

x3

x4

h11

h12

h13

h21

h22

h23

Linear algebra (what? why?)

Linear algebra is the branch of mathematics concerning linear equations and linear
functions and their representations through matrices and vector spaces. (Wikipedia)

→ “Under the hood, the feed forward neural network is just a composite function, that
multiplies some matrices and vectors together. It is not that vectors and matrices are the
only way to do these operations but they become highly efficient if you do so. (..) neural
networks are computationally expensive, so they require this nice trick to make them
compute faster. It’s called vectorization. They make computations extremely faster. This
is one of the main reasons why GPUs are required for deep learning, as they are
specialized in vectorized operations like matrix multiplication.”

https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fca1494
60

https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-learning/
https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fca1494

Linear algebra

- Scalar: A single number (rank 0 tensor)

- Vector : A list of values (rank 1 tensor)

- Matrix: A two dimensional list of values (rank 2 tensor)

- Tensor: A multi dimensional matrix with rank n.

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right

of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = √∑(x
i
)2

- Matrix multiplication
61https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html

https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html

Linear algebra

- Scalar: A single number (rank 0 tensor)

- Vector : A list of values (rank 1 tensor)

- Matrix: A two dimensional list of values (rank 2 tensor)

- Tensor: A multi dimensional matrix with rank n.

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right

of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = √∑(x
i
)2

- Matrix multiplication
62https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html

https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html

Linear algebra

- Scalar: A single number (rank 0 tensor)

- Vector : A list of values (rank 1 tensor)

- Matrix: A two dimensional list of values (rank 2 tensor)

- Tensor: A multi dimensional matrix with rank n.

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right

of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = √∑(x
i
)2

- Matrix multiplication
63https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html

https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html

Linear algebra

- Scalar: A single number (rank 0 tensor)

- Vector : A list of values (rank 1 tensor)

- Matrix: A two dimensional list of values (rank 2 tensor)

- Tensor: A multi dimensional matrix with rank n.

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right

of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = √∑(x
i
)2

- Matrix multiplication
64https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html

https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html

Linear algebra

- Scalar: A single number (rank 0 tensor)

- Vector : A list of values (rank 1 tensor)

- Matrix: A two dimensional list of values (rank 2 tensor)

- Tensor: A multi dimensional matrix with rank n.

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right

of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = √∑(x
i
)2

- Matrix multiplication
65https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html

https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html

Linear algebra
- Scalar: A single number (rank 0 tensor)
- Vector : A list of values (rank 1 tensor)
- Matrix: A two dimensional list of values (rank 2 tensor)
- Tensor: A multi dimensional matrix with rank n.

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar
- Dimension / shape of a matrix: row by column
- Norm is the size of the vector, e.g. L2 = √∑(x

i
)2

- Matrix multiplication:
- The new matrix takes the rows of the 1st matrix and columns of the 2nd matrix
- The number of columns of the 1st matrix must equal the number of rows of the 2nd
- The product of an M x N matrix and an N x K matrix is an M x K matrix.

66

Linear algebra
- Scalar: A single number (rank 0 tensor)
- Vector : A list of values (rank 1 tensor)
- Matrix: A two dimensional list of values (rank 2 tensor)
- Tensor: A multi dimensional matrix with rank n.

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar
- Dimension / shape of a matrix: row by column
- Norm is the size of the vector, e.g. L2 = √∑(x

i
)2

- Matrix multiplication:
- The new matrix takes the rows of the 1st matrix and columns of the 2nd matrix
- The number of columns of the 1st matrix must equal the number of rows of the 2nd
- The product of an M x N matrix and an N x K matrix is an M x K matrix.

67

Linear algebra
- Scalar: A single number (rank 0 tensor)
- Vector : A list of values (rank 1 tensor)
- Matrix: A two dimensional list of values (rank 2 tensor)
- Tensor: A multi dimensional matrix with rank n.

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar
- Dimension / shape of a matrix: row by column
- Norm is the size of the vector, e.g. L2 = √∑(x

i
)2

- Matrix multiplication:
- The new matrix takes the rows of the 1st matrix and columns of the 2nd matrix
- The number of columns of the 1st matrix must equal the number of rows of the 2nd
- The product of an M x N matrix and an N x K matrix is an M x K matrix.

68

Linear algebra
- Scalar: A single number (rank 0 tensor)
- Vector : A list of values (rank 1 tensor)
- Matrix: A two dimensional list of values (rank 2 tensor)
- Tensor: A multi dimensional matrix with rank n.

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar
- Dimension / shape of a matrix: row by column
- Norm is the size of the vector, e.g. L2 = √∑(x

i
)2

- Matrix multiplication:
- The new matrix takes the rows of the 1st matrix and columns of the 2nd matrix
- The number of columns of the 1st matrix must equal the number of rows of the 2nd
- The product of an M x N matrix and an N x K matrix is an M x K matrix.

69

MxN . NxK = MxK

Let’s try

70

Compute the value for
the first neuron in
the hidden layer

h1?

Let’s try

71

Compute the value for
the first neuron in
the hidden layer

Let’s try

72

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape?

Let’s try

73

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [w11 w12 w13]
 [w21 w22 w23]

output: x.W → shape?

Let’s try

74

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [w11 w12 w13]
 [w21 w22 w23]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < >

Let’s try

75

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [w11 w12 w13]
 [w21 w22 w23]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < x1*w11 + x2*w21 >

Let’s try

76

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [w11 w12 w13]
 [w21 w22 w23]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < x1*w11 + x2*w21 x1*w12 + x2*w22 x1*w13 + x2*w23 >

Let’s try

77

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [w11 w12 w13]
 [w21 w22 w23]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < x1*w11 + x2*w21 x1*w12 + x2*w22 x1*w13 + x2*w23 >

Try with: x = < 0 1 > and W = [10 20 30]
 [100 200 300]

x.W = < ? ? ? >

Let’s try

78

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [w11 w12 w13]
 [w21 w22 w23]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < x1*w11 + x2*w21 x1*w12 + x2*w22 x1*w13 + x2*w23 >

Try with: x = < 0 1 > and W = [10 20 30]
 [100 200 300]

x.W = < 100 200 300 >

Let’s try

79

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [w11 w12 w13]
 [w21 w22 w23]

output: x.W → shape? 1x2 . 2x3 = 1x3 → Ok
h = < x1*w11 + x2*w21 x1*w12 + x2*w22 x1*w13 + x2*w23 >

Try with: x = < 0 1 > and W = [10 20 30]
 [100 200 300]

x.W = < 100 200 300 >

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer
80

h1 h2 yx

h1 -> x.W1 = (1xdin).(dinxdh1) -> (1x3)
h2 -> h1.W2 = (1xdh1).(dh1xdh2) -> (1x3)
y -> h2.W3 = (1xdh2).(dh2xdout) -> (1x2)

Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input
layer

hidden
layers

output
layer

81

h1 h2 yx

- layer = vector resulting from each linear
transformation

- the outer-most linear transform results in
the output layer

- if dout = 1 : regression or binary classif
- if dout > 1: classif MC

- the other linear transforms result in hidden
layers

- each hidden layer is followed by a
non-linear activation

- the bias vector can be forced to 0 (=
“dropped”) as here in the last layer

- layers resulting from linear transformations
are often referred to as fully connected or
affine (other types: pooling or convolutional
layers)

Summary

82

a feed-forward

network is simply

a stack of linear

models separated

by nonlinear

functions

Summary

83

- MLP1 = universal approximator: it can approximate a large family of functions [Hornik et al. 1989;

Cybenko, 1989]. Why going beyond MLP1?

- theoretical results do not discuss the learnability of the NN: a representation exists, but we

don’t know how easy or hard it is to set the parameters based on training data and learning

algorithm

- + does not guarantee that a training algorithm will find the correct function

- + it does not state how large the hidden layer should be

→ in real worlds conditions: there is benefit at trying more complex architectures

Representation power:

Practical session

Walk through code in PyTorch:
- sentiment classification
- feed-forward Neural Network, with BoW representation of documents

84

Sources

- Parts of the course borrowed, with a few modifications, to P. Muller
- Softmax: https://www.wikiwand.com/fr/Fonction_softmax
- https://www.deeplearningbook.org/
- https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fca1494
- https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html
- https://blog.paperspace.com/dataloaders-abstractions-pytorch/
- https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwo

rk/
- https://www.i2tutorials.com/explain-softmax-activation-function-and-difference-between-sigmoid-and-soft

max-function/
- http://perso.ens-lyon.fr/jacques.jayez/Cours/LHPST/Deep_Learning_in_NLP_1.pdf
- https://krisbolton.com/a-quick-introduction-to-artificial-neural-networks-part-1
-

85

https://www.wikiwand.com/fr/Fonction_softmax
https://www.deeplearningbook.org/
https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fca1494
https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html
https://blog.paperspace.com/dataloaders-abstractions-pytorch/
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/
https://www.i2tutorials.com/explain-softmax-activation-function-and-difference-between-sigmoid-and-softmax-function/
https://www.i2tutorials.com/explain-softmax-activation-function-and-difference-between-sigmoid-and-softmax-function/
http://perso.ens-lyon.fr/jacques.jayez/Cours/LHPST/Deep_Learning_in_NLP_1.pdf
https://krisbolton.com/a-quick-introduction-to-artificial-neural-networks-part-1

Matrix multiplication

86

Matrix multiplication

Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B

Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B
- ligne 1, col 2 (c12) = ligne 1 A X col 2 B

Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B
- ligne 1, col 2 (c12) = ligne 1 A X col 2 B
- ligne 1, col 3 (c13) = ligne 1 A X col 3 B

Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B
- ligne 1, col 2 (c12) = ligne 1 A X col 2 B
- ligne 1, col 3 (c13) = ligne 1 A X col 3 B
- ligne 2, col 1 (c21) = ligne 2 A X col 1 B

Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B
- ligne 1, col 2 (c12) = ligne 1 A X col 2 B
- ligne 1, col 3 (c13) = ligne 1 A X col 3 B
- ligne 2, col 1 (c21) = ligne 2 A X col 1 B
- ligne 2, col 2 (c22) = ligne 2 A X col 2 B
- ligne 2, col 3 (c23) = ligne 2 A X col 3 B

Matrix multiplication
Dans la matrice résultante :
- ligne 1, col 1 (c11) = ligne 1 A X col 1 B
- ligne 1, col 2 (c12) = ligne 1 A X col 2 B
- ligne 1, col 3 (c13) = ligne 1 A X col 3 B
- ligne 2, col 1 (c21) = ligne 2 A X col 1 B
- ligne 2, col 2 (c22) = ligne 2 A X col 2 B
- ligne 2, col 3 (c23) = ligne 2 A X col 3 B

on garde :
- le nb de lignes

de A
- le nb de

colonnes de B

Matrix multiplication

Dimension?

Matrix multiplication

Dimension?

A: (2 x 2)
B: (2 x 3)

Matrix multiplication

Dimension?

A: (2 x 2)
B: (2 x 3)
A*B: (2 x 3)

Matrix multiplication

Dimension?

A: (2 x 2)
B: (2 x 3)
A*B: (2 x 3)

?

Matrix multiplication

Dimension?

A: (2 x 2)
B: (2 x 3)
A*B: (2 x 3)

Matrix multiplication

Dimension?

A: (2 x 2)
B: (2 x 3)
A*B: (2 x 3)

Matrix multiplication

Dimension?

A: (2 x 2)
B: (2 x 3)
A*B: (2 x 3)

Matrix multiplication

Dimension?

A: (2 x 2)
B: (2 x 3)
A*B: (2 x 3)

What was wrong?

What was wrong?

h2 = w4.x1 + w5.x2
h3 = w3.x1 + w5.x2
or
change W (but w3
appears twice 😖)

