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Neural methods for NLP

- 1980’s: Symbolic NLP

- rule-based approach, hand-written rules
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming

- 1990’s: ‘Statistical’ NLP

- learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors
- large annotated corpora

- handcrafted features ‘ learin

- rather fast to train, still good baselines

- =2010: ‘Neural’ NLP

- combine linear and non-linear functions, over dense inputs Keras

- (very) large annotated corpora and very large unannotated corpora

- improved .performance (in general), no feature engineering N PYT b RCH
- harder to interpret (“black box”) |-

Tensor
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A bit more of history: The brain inspired metaphor

Brain’s computation is based on computation units called neurons (Perceptron,
Rosenblatt, 1957):

- A neuron has scalar inputs and outputs

- Each input has an associated weight to control its importance

- The neuron multiplies each input by its weight and then sums them = linear
combination

- If the weighted sum is greater than the activation potential, the neuron is said to
“fire” = produce a single binary output Rucleus

- The neurons are connected gz, we  Woxo

to each other, forming a = = =
network: the output of a w1

. —_>
neuron may feed into the
. Wa X2 /
inputs of one or more => ,
neurons (f axon branches

\/ s

dendrites axon terminals )



Artificial neuron

Using a binary output: not very practical

— We prefer having small change in weight leading to small change in output
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‘Statistical’ vs ‘neural’ models

Standard approach:

- linear model trained over high-dimensional but very sparse feature
vectors

Neural approach:

- non-linear neural networks over dense input vectors



. Introducing non linearity

. Feed-forward architecture

. Common activation functions
[OH[EH[ . Output Transformation

Introduction to Deep Learning functions

Practical session 2: walk
through code in Pylorch




Introducing non-linearity

' e O
0 ® ®
XOR problem: exclusive “or” g i 3

— return a true value if the two inputs are not equal and a false value if they are equal.

But it’s impossible to find w, b such that:

Input 1 Input 2 | Output
(0,0)w+b<0 0 0

(0,1))w+b>=0
(1,0)w+b>=0
(1,1))w+b<0

= =0
Ol
Hlolele)

10



Solution: non-linear input transformations

2 [
If we transform the points using: ¢p(x1, x2) = [x1 x x2, x1 + x2]
. 1
The problem becomes linearly separable: L
d(0,00=(0,0)—0 0| '@
d(0,1)=(0,1) > 1
d(1,00=(0,1) — 1 0 1 2

d(1,1)=(1,2) >0

The function Cb mapped the data into a representation that is suitable for linear classification, we can find:

f(x)=d(x).W +b

11



Solution: non-linear input transformations

2 @
If we transform the points using: dp(x1, x2) = [x1 x x2, x1 + x2]
The problem becomes linearly separable: . ®
- @(0,0)=(0,0)—0 ,
- d(0,1)=(0,1)—1 0 ®
- ®(1,0)0=(0,1) —1 0 1 )

P(1,1)=(1,2) >0
The function d) mapped the data into a representation that is suitable for linear classification, we can find:
f(x) = Pp(x).W + b

Note: here the transformed data has the same dimension as the original, but often we’ll need to map to a
higher dimensional space.

Note: SVM = defining a priori generic mapping functions vs NN = trainable mapping functions b



Feed-Forward Architecture




Feed-Forward Architecture

Multi-layer Perceptron

- best known, standard
neural network
approach

- Fully connected layers

- Can be used as
drop-in replacement
for typical classifiers

input layer

hidden layers

output layer
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Feed-Forward Architecture

Multi-layer Perceptron

best known, standard
neural network
approach

Fully connected layers
Can be used as
drop-in replacement
for typical classifiers

Let’s focus on that part

e}VO\V»

A'A

ﬁ

Hidden 6

Hdde 2

input layer hidden layers output layer
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Neural networks: basics

- Layers are made of neurons = building blocks of neural networks

- Asingle neuron works like logistic regression, we know that!

16



Neural networks: basics

- Layers are made of neurons = building blocks of neural networks
- Assingle neuron works like logistic regression, we know that!

Reminder: LR model yields probability of an instance belonging to a
particular class based on the instance’s features weighted by the

model’s parameters

17



Logistic Regression

Spam (binary) classification
We take word frequency as features

feature f,
pharmacie
viagra
meilleure
offre
demande
transmets

bias

weight w.
0.4
1.2
0.2
0.2
-0.8
-1.7

0.1
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Logistic Regression

- Spam (binary) classification
- We take word frequency as features

score(x) = Wex + b

x,: “Pharmacie en ligne: viagra meilleure offre!

score(xl) = 0.4x1+1.2%x1+0.2x1+0.2x1+(-0.8)x0+(-1.7)
Xx0+0.1 = 2.1

feature f,
pharmacie
viagra
meilleure
offre
demande
transmets

bias

weight w.
0.4
1.2
0.2
0.2
-0.8
-1.7

0.1
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Logistic Regression

- Spam (binary) classification
- We take word frequency as features

score(x) = Wex + b

x,: “Pharmacie en ligne: viagra meilleure offre!”

score(x,) =
xP+0.1 = 2.1

+1.2x1+0.2x1+0.2x1+(-0.8)x0+(-1.7)

X,: “Suite a votre demande, je vous transmets notre

meilleure offre”

score(xz) = 0.4%0+1.2x0+0.2x1+0.2x1+(-0.8)x1+(-1.7)
x1+0.1 = -2.0

feature fi

viagra
meilleure
offre
demande
transmets

bias

weight w.

1.2
0.2

0.2

-1.7

0.1

22



Logistic Regression

Linear scores in range [—, +0]: difficult to interpret, we’d rather have probabilities

23



Logistic Regression

- Linear scores in range [—, +°°]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function — range [0,1]

1

05

what is a non-linear function ?

- the corresponding graph is not a line: “a function that
does not graph into a straight line and does not have a
constant slope”

24



Logistic Regression

- Linear scores in range [—, +°°]: difficult to interpret, we’d rather have probabilities
- Linear scores are transformed using non-linear logistic function — range [0,1]

1_
what is a non-linear function ?

- the corresponding graph is not a line: “a function that
does not graph into a straight line and does not have a
0.5 constant slope”

how do we get probabilities?
- map the values to the range we want e.g.:
g - -4 here is mapped to stg close to O
- -2 still below 0.5
- O mappedto?
- 2 mappedto?
- closer to 4-6 mapped to ? 25




Logistic Regression

- Linear scores in range [—, +°°]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function — range [0,1]

1

what is a non-linear function ?

- the corresponding graph is not a line: “a function that
does not graph into a straight line and does not have a
constant slope”

how do we get probabilities?
- map the values to the range we want e.g.:

-4 here is mapped to stg close to 0

-2 still below 0.5

0 mapped to ? — 0.5

2 mapped to ? — closeto 1

closer to 4-6 mapped to ? — closer and closer to 1

26



Logistic Regression

- Linear scores in range [—<, +°]: difficult to interpret, we’d rather have probabilities
- Linear scores are transformed using non-linear logistic function — range [0,1]

1

v

logistic function|(s——)




Logistic Regression

- Linear scores in range [—<, +°]: difficult to interpret, we’d rather have probabilities

- Linear scores are transformed using non-linear logistic function — range [0,1]

1

05

logistic function (

S .
T+ex

)

The logistic function does exactly these desired computations:

- It maps an input real number — [0, 1]
- Large negative number — 0
- Large positive number — 1

28



Logistic Regression

- Linear scores in range [—<, +°]: difficult to interpret, we’d rather have probabilities
- Linear scores are transformed using non-linear logistic function — range [0,1]

14 —

The logistic function does exactly these desired computations:
- It maps an input real number — [0, 1]

Large negative number — 0
0:5 1 ‘ - Large positive number — 1
/ i.e. from our previous example on spam:
— — T T 1
1 ~ f(score(x1)) = ﬁ@ =.89 gpAM
— I~
f(score(x2)) = )= 12

logistic function (;—5=)



Logistic Regression

- Linear scores in range [—<, +°]: difficult to interpret, we’d rather have probabilities
- Linear scores are transformed using non-linear logistic function — range [0,1]

14 —

The logistic function does exactly these desired computations:
- It maps an input real number — [0, 1]

Large negative number — 0
0:5 ' - Large positive number — 1
/ i.e. from our previous example on spam:
— — e
1 ~ f(score(x1)) = m@ =.89 gpAM
— I~
f(score(x2)) = )= 12

logistic function (14_1?) score(x) =W.x + b

— score(x) = f(W.x + b) avec f une fct non linéaire




Logistic Regression

INPUT

10
20
100
200

y=Ax+b

LINEAR
FUNCTION

LOGITS

13
1.2
4.5
4.8

S=g(y)

LOGISTIC
FUNCTION

SOFTMAX

ay)

0:1
0.1
0.4
0.4

D(S, L)

CROSS
ENTROPY
FUNCTION

TRUE LABELS

PPk OO

i1



Logistic Regression

INPUT

10
20
100
200

y=Ax+b

LINEAR
FUNCTION

LOGITS

13
1.2
4.5
4.8

softmax = generalisation of the logistic
function taking a vector as input

S=g(y)

LOGISTIC
FUNCTION

i

SOFTMAX

ay)

0:1
0.1
0.4
0.4

D(S, L)

CROSS
ENTROPY
FUNCTION

TRUE LABELS

PPk OO
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https://www.wikiwand.com/fr/Fonction_logistique_(Verhulst)
https://www.wikiwand.com/fr/Vecteur

Neuron = Logistic Regression

These are the exact computations of a single neuron

~bias

activation function
7

Tl

14
inputs

~ weights

33



Neuron = Logistic Regression

These are the exact computations of a single neuron

14
inputs

~bias

~ weights

activation function
7

__»

L]

w.X=wI1Ix1l+w2x2+w3x3+1

34



Neuron = Logistic Regression

These are the exact computations of a single neuron

14
inputs

~bias

~ weights

activation function
7

__»

]

BN

y=f(wx)

w.X=wI1Ix1l+w2x2+w3x3+1

35



Neuron = Logistic Regression

These are the exact computations of a single neuron

~bias

activation function
7

AT

y=f(wx)

~weights | W.X = Wlx1 + w2x2 + w3x3 + 1

- We can feed an input vector to a bunch of LR functions and get an output vector

36



Neuron = Logistic Regression

These are the exact computations of a single neuron

~bias

activation function
7

AT

y=f(wx)

~weights | W.X = wlx1l + w2x2 + w3x3 +1

- We can feed an input vector to a bunch of LR functions and get an output vector
- which can be fed to another layer of LR functions

37



Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

Y

Ve @

feed an input vector to a bunch of LR functions

L

input layer

hidden layers

output layer
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

feed an input vector to a bunch of LR functions

input layer hidden layers output layer
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

feed an input vector to a bunch of LR functions

input = x: < x1, x2, x3, x4 >

1st LR function: h11 = f(w1.x)
2nd LR function: h12 = f(w2.x)
3rd LR function: h13 = f(w3.x)

Question: what is the shape of the wl/w2/w3?

input layer

hidden layers

output layer

40




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

feed an input vector to a bunch of LR functions

input = x: < x1, x2, x3, x4 >

1st LR function: h11 = f(w1.x)
2nd LR function: h12 = f(w2.x)
3rd LR function: h13 = f(w3.x)

Question: what is the shape of the wl/w2/w3?
— vectors of 4 values, one for each input feature

input layer

hidden layers

output layer

41




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

feed an input vector to a bunch of LR functions

input layer

hidden layers

output layer

input = x: < x1, x2, x3, x4 >

1st LR function: h11 = f(w1.x)

2nd LR function: h12 = f(w2.x)
3rd LR function: h13 = f(w3.x)

Question: what is the shape of the wl/w2/w3?
— vectors of 4 values, one for each input feature

End of hidden layer 1 = a vector hl of dimension?
1




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

feed an input vector to a bunch of LR functions

input = x: < x1, x2, x3, x4 >

1st LR function: h11 = f(w1.x)
2nd LR function: h12 = f(w2.x)
3rd LR function: h13 = f(w3.x)

Question: what is the shape of the wl/w2/w3?
— vectors of 4 values, one for each input feature

End of hidden layer 1 = a vector h1 of dimension 3
input layer hidden layers output layer h1=<h11, h12, h13> 5




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

feed an “input” vector to a bunch of LR functions

Then, we can repeat the process!

input layer hidden layers output layer

44




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

feed an “input” vector to a bunch of LR functions

Then, we can repeat the process!

input layer hidden layers output layer
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

feed an “input” vector to a bunch of LR functions

input layer

hidden layers

output layer

Then, we can repeat the process!

= Deep learning
(here Depth = 2)

46




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer hidden layers output layer




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

X ht h? y

input layer hidden layers output layer




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

X ht h? y

input layer hidden layers output layer

NNpLp2(X) =y (1)
h! = g&xW' +b") (2
h? = g(h'W? + b?)
(3)
y = h?W? (4)
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

fonctions
linéaires

NNyLp2(X) =Y (1)

h' = g(xW'+b") (2)
= g(h'W? + b?)

input layer

hidden layers

output layer

(3)
y = h?W? (4

30




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

X

hl h2

fonctions

NNyLp2(X) =Y (1)

h' = g(xW' +b") (2)
= g(h'W? + b?)

linéaires

Y fonctions non

linéaires

input layer

hidden layers

output layer

(3)
y = h?W? (4

11




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

X

ht h?

y

input layer

hidden layers

output layer

NNpyLp2(X) =Y (1)
h! = g&xW' +b") (2
h? = g(h'W? + b?)
(3)
y = h*W? (4)

X: vector of size dj, =
y: vector of size doyt =
h', h2: vectors of size Ghiggen =

pl4




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

X

hl h2

y

input layer

hidden layers

output layer

NNpLp2(X) =y (1)
h! = g&xW' +b") (2
h? = g(h'W? + b?)
(3)
y = h?W? (4)

X: vector of size di, =4
y: vector of size doyt =
h', h2: vectors of size Ghiggen =
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

X

hl h2

y

input layer

hidden layers

output layer

NNpLp2(X) =y (1)
h! = g&xW' +b") (2
h? = g(h'W? + b?)
(3)
y = h?W? (4)

X: vector of size dj, =4
y: vector of size dpyt = 2
h', h2: vectors of size Ahiggen =

24




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

X

hl h2

y

input layer

hidden layers

output layer

NNpLp2(X) =y (1)
h! = g&xW' +b") (2
h? = g(h'W? + b?)
(3)
y = h?W? (4)

X: vector of size di, =4
y: vector of size dpyt = 2
h', h2: vectors of size dhiggen = 3

23




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input layer

hidden layers

output layer

NNpLp2(X) =Y (1)
h' = gOlWY)+ b') (2)

h2 — g(h1@+ b?)
(3)
y= h@ (4)

X: vector of size dj, =4
y: vector of size dpyt = 2
h', h2: vectors of size dhiggen = 3

W1,W2,w3f size [4 x 3],[3 x 31.13 x 2]

b1, b2: 'bias vectors of size dhiggen = 3
g(+): non-linear activation function (elementwise)
56



NNyLp2(X) =Y
' = g+ bY)

(1)
(2)

wll w21 w31l h2 = g(h1@ b2)(3)

wl2 w22 w32
w13 w23 w33 h@
wl4 w24 w34 y -

=wl=w2 =w3

x: vector of size di, =4
y: vector of size dpyt = 2

(4)

h', h2: vectors of size dhiggen = 3

W‘,W2,W3f size [4 x 3],[3 x 31 13 x 2]
b, b2: "bias’ vectors of size Ahiggen = 3

input layer

hidden layers

output layer

g(+): non-linear activation function (elementwise)
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Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

NNpLp2(X) =Y (1)
h! = g(xW' +b?) (2)
h? = g(h'W? + b?)
(3)
y = h*W? (4)

X: vector of size dj, =4
y: vector of size dpyt = 2
h', h2: vectors of size dhiggen = 3

Parameters of the network (06)

input layer

hidden layers

output

layer

W1, W2 W3: matrices of size [4 x 3],[3 x31.13 x 2]
b', b2: 'bias’ vectors of size dhiggen = 3
g(+): non-linear activation function (elementwise)
58



NNpyLp2(X) =Y (1)

Feed-forward architecture ! — gOW! +b) (2)

h? = g(h'W? + b?)
Multi-layer perceptron with 2 hidden layers (3)
X ht h2 y y = h?W? (4)

A NNupipa(x) = (g%(g' (W +bH)yW2 + p2))W3

input layer hidden layers output layer -




Linear algebra (what? why?)

Linear algebra is the branch of mathematics concerning linear equations and linear
functions and their representations through matrices and vector spaces. (Wikipedia)

— “Under the hood, the feed forward neural network is just a composite function, that
multiplies some matrices and vectors together. It is not that vectors and matrices are the
only way to do these operations but they become highly efficient if you do so. (..) neural
networks are computationally expensive, so they require this nice trick to make them
compute faster. It’s called vectorization. They make computations extremely faster. This
is one of the main reasons why GPUs are required for deep learning, as they are
specialized in vectorized operations like matrix multiplication.”

60

https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fcal494



https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-learning/
https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fca1494

Linear algehra

- Scalar: A single number (rank 0 tensor)

- Vector : A list of values (rank 1 tensor)

- Matrix: A two dimensional list of values (rank 2 tensor)
- Tensor: A multi dimensional matrix with rank n.

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = \/Z(xi)2

- Matrix multiplication

https://ml-cheatsheet.readthedocs.io/en/latest/linear algebra.html 61



https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html

Linear algehra

1 2 3 Tranpose 1 4
- Scalar: A single number (rank 0 tensor) & B 6 |y =>' 2 &
- Vector : Alist of values (rank 1 tensor) Original matrix 5 @
- Matrix: A two dimensional list of values (rank 2 ten ©oforder2x3 L _J3x2

- Tensor: A multi dimensional matrix with rank n. Transpose matrix
of order3x 2

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = \/Z(xi)2

- Matrix multiplication

https://ml-cheatsheet.readthedocs.io/en/latest/linear algebra.html iYa
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Linear algehra

- Scalar: A single number (rank 0 tensor)

- Vector : A list of values (rank 1 tensor) )

- Matrix: A two dimensional list of values (rank 2 tensor) [ a b ] ol ' = [a.\‘ + b_\']
- Tensor: A multi dimensional matrix with rank n. y

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar
- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = \/Z(xi)2

- Matrix multiplication

https://ml-cheatsheet.readthedocs.io/en/latest/linear algebra.html 63
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Linear algEbra [g;g] é § |:1.so.21.0:|

- Scalar: A single number (rank 0 tensor)

- Vector : Alist of values (rank 1 tensor) |:2 Dj| |:5j| [S
- Matrix: A two dimensional list of values (rank 2 tensor) 0, %83 3 40 "2
2x2

- . . . 21 3x3
- Tensor: A multi dimensional matrix with rank n.

o wo

0
0
1

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar
- Dimension / shape of a matrix: row by column
- Norm is the size of the vector, e.g. L2 = \/Z(xi)2
- Matrix multiplication

https://ml-cheatsheet.readthedocs.io/en/latest/linear algebra.html 04
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Linear algehra

- Scalar: A single number (rank 0 tensor)

- Vector : A list of values (rank 1 tensor)

- Matrix: A two dimensional list of values (rank 2 tensor)
- Tensor: A multi dimensional matrix with rank n.

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = \/Z(xi)2

- Matrix multiplication

https://ml-cheatsheet.readthedocs.io/en/latest/linear algebra.html 65
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Linear algehra

- Scalar: A single number (rank O tensor) A .
: a—> |1 7 3 3 a - ap

- Vector : A list of values (rank 1 tensor) ) 5 4| : 2 = ! 1

- Matrix: A two dimensional list of values (rank 2 tensof}2™7 ' D

- Tensor: A multi dimensional matrix with rank n.

o * o *

A B C

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = \/Z(xi)2

- Matrix multiplication:

- The new matrix takes the rows of the 1st matrix and columns of the 2nd matrix
- The number of columns of the 1st matrix must equal the number of rows of the 2nd

- The product of an M x N matrix and an N x K matrix is an M x K matrix. -



Linear algehra | :

- Scalar: A single number (rank O tensor) B

- Vector : A list of values (rank 1 tensor) | \_/

- Matrix: A two dimensional list of values (rank 2 tensor)

- Tensor: A multi dimensional matrix with rank n. A § B - C
Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = \/Z(xi)2

- Matrix multiplication:

- The new matrix takes the rows of the 1st matrix and columns of the 2nd matrix
- The number of columns of the 1st matrix must equal the number of rows of the 2nd

- The product of an M x N matrix and an N x K matrix is an M x K matrix. -



Linear algehra | :

- Scalar: A single number (rank 0 tensor)

m
- Vector : A list of values (rank 1 tensor) | | |
- Matrix: A two dimensional list of values (rank 2 tensor)
- Tensor: A multi dimensional matrix with rank n. A § B - C

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = \/Z(xi)2

- Matrix multiplication:

- The new matrix takes the rows of the 1st matrix and columns of the 2nd matrix
- The number of columns of the 1st matrix must equal the number of rows of the 2nd

- The product of an M x N matrix and an N x K matrix is an M x K matrix. s



Linear algehra | :

- Scalar: A single number (rank 0 tensor)

m
- Vector : A list of values (rank 1 tensor) |
- Matrix: A two dimensional list of values (rank 2 tensor)
- Tensor: A multi dimensional matrix with rank n. A § B - C

Operations:

- Transpose of a matrix: mirror image of the matrix across the diagonal line (from top left to the bottom right
of the matrix)

- Dot product: between 2 vectors, return a scalar

- Dimension / shape of a matrix: row by column

- Norm is the size of the vector, e.g. L2 = \/Z(xi)2 MxN . NxK = MxK

- Matrix multiplication:

- The new matrix takes the rows of the 1st matrix and columns of the 2nd matrix
- The number of columns of the 1st matrix must equal the number of rows of the 2nd
- The product of an M x N matrix and an N x K matrix is an M x K matrix.
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>>> 1mport numpy as np

’ >>> def sig(x):
LE[ S [ry return 1/(1+np.exp(-x))

Hidden layer

Output layer
Input layer

Compute the value for
the first neuron 1in
the hidden layer

| @ NNpLp2(X) =Y (1)

| h! = g(xW' +b') (2)
5 - h? = g(h'W? + b?)

(3)
y = h?W? (4)



>>> 1mport numpy as np

Let's tr >>> def sig(x):

y — return 1/(1+np.exp(-x))

Hidden layer
Output layer
Input layer
(ﬁgmoid(Z.ﬁ)}
\ =093 )
\ ’ Compute the value for
1 the first neuron 1in
P the hidden layer
o
hs g

; - >>> h=0.5%1+1.2*3+5%-0.3

>>> s1g(Ch)
0.9308615796566531




Let's try

Input Layer

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape?

Output Layer

72



Let's try

Input Layer

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [ wll wl2 wl3 ]

[ w21 w22 w23 ]

output: x.W > shape?

73



Let's try

Input Layer

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [ wll wl2 wl3 ]

[ w21 w22 w23 ]

output: x.W > shape? 1x2 . 2x3 = 1x3 > Ok
h = <

74



Let's try

Input Layer

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [ wll wl2 wl3 ]

[ w21 w22 w23 ]

output: x.W > shape? 1x2 . 2x3
h = < x1*wll + x2*w21

1x3 > 0Ok
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Let's try

Input Layer

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [ wll wl2 wl3 ]

[ w21 w22 w23 ]

output: x.W > shape? 1x2 . 2x3 = 1x3 > Ok
h = < x1*wll + x2*xw21 x1xwl2 + x2*xw22

X1xwl3 + x2*xw23 >
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Let's try

Input Layer Hidden Layer

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [ wll wl2 wl3 ]

[ w21 w22 w23 ]

1x3 > 0Ok

output: x.W > shape? 1x2 . 2x3

h = < x1*xwll + x2*w21 X1xwl2 + Xx2*xw22 X1xwl3 + x2*xw23 >

Try with: x =<0 1> and W [ 10 20 30 ]

[ 100 200 300 ]
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Let's try

Input Layer Hidden Layer

input layer: x = < x1 x2 > shape: 1x2

weights for the hidden layer:
w shape? 2x3 (input x hidden)
w = [ wll wl2 wl3 ]

[ w21 w22 w23 ]

1x3 > 0Ok

output: x.W > shape? 1x2 . 2x3

h = < x1*xwll + x2*w21 X1xwl2 + Xx2*xw22 X1xwl3 + x2*xw23 >

Try with: x =<0 1> and W [ 10 20 30 ]

[ 100 200 300 ]

Xx.W = < 100 200 300 >

78



Let's try

input layer: x = < x1 x2 > shape: 1x2 >>> x=np.array([0,1])

>>> W = np.array( [[10,20,30],[100, 200, 300]] )
weights for the hidden layer: 2o X
w shape? 2x3 (input x hidden) S:?wI& 1D
w= [ wll wl2 wl3 ] array([[ 10, 20, 301,
[ w21l w22 w23 ] [100, 200, 300]11)
>>> np.dot(x, W)
output: x.W > shape? 1x2 . 2x3 = 1x3 > Ok array([100, 200, 300])

h = < x1*xwll + x2*w21 X1xwl2 + Xx2*xw22 X1xwl3 + x2*xw23 >

Try with: x =<0 1> and W [ 10 20 30 ]

[ 100 200 300 ]

Xx.W = < 100 200 300 > 79



NNpyLp2(X) =Y (1)

Feed-forward architecture ! — gxW! + b1 (2

h? = g(h'W? + b?)

Multi-layer perceptron with 2 hidden layers (3)

y = h?W?3 (4)

X: vector of size dj, =4
y: vector of size dpyt = 2
h', h2: vectors of size dhiggen = 3

hl -> x.Wl1 = (1xd, ).(d. xd ) —-> (1x3)
h2 -> hl.w2 (1xd,,).(d xd ) —-> (1x3)
y —> h2.W3 (1xd,,) . (dxd_.) -> (1x2)

W1, W2 W3: matrices of size [4 x 3],[3 x 3],[3 x 2]
b1, b2: ’bias’ vectors of size dhiggen = 4

input layer

hidden layers

g(+): non-linear activation function (elementwise)

output layer "




Feed-forward architecture

Multi-layer perceptron with 2 hidden layers

input hidden output
layer layers layer

layer = vector resulting from each linear
transformation
the outer-most linear transform results in
the output layer
- if dout =1 : regression or binary classif
- if dout > 1: classif MC
the other linear transforms result in hidden
layers
each hidden layer is followed by a
non-linear activation
the bias vector can be forced to 0 (=
“dropped”) as here in the last layer
layers resulting from linear transformations
are often referred to as fully connected or
affine (other types: pooling or convolutional

layers) "



summary

LOGISTIC REGRESSION

INPUT

1 LAYER NEURAL NETWORK

INPUT

LINEAR
FUNCTION

LOGITS

NON

LINEAR
FUNCTION

NON-
LINEAR
OUTPUT

Input Layer | |

1 Hidden Layer

LINEAR
FUNCTION

LINEAR
FUNCTION

LOGITS SOFTMAX
SOFTMAX
FUNCTION

LOGITS SOFTMAX
SOFTMAX
FUNCTION

Readout Layer

CROSS
ENTROPY
FUNCTION

CROSS
ENTROPY
FUNCTION

LABELS

LABELS
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‘ 1 LAYER NEURAL NETWORK

summary

NON-

INPUT LOGITS LINEAR LOGITS SOFTMAX LABELS
OUTPUT
LINEAR CROSS
LINEAR NON SOFTMAX
FUNCTION LINEAR FHBCTION FUE)Y ::Elm?.zn
FUNCTION
Representation power:
| Input Layer | | 1 Hidden Layer | | Readout Layer |

- MLP1 = universal approximator: it can approximate a large family of functions [Hornik et al. 1989;
Cybenko, 1989]. Why going beyond MLP1?

- theoretical results do not discuss the learnability of the NN: a representation exists, but we
don’t know how easy or hard it is to set the parameters based on training data and learning
algorithm

-+ does not guarantee that a training algorithm will find the correct function

- +it does not state how large the hidden layer should be

— in real worlds conditions: there is benefit at trying more complex architectures &



Practical session

Walk through code in PyTorch:

- sentiment classification
- feed-forward Neural Network, with BoW representation of documents

84



Sources

- Parts of the course borrowed, with a few modifications, to P. Muller

- Softmax: https://www.wikiwand.com/fr/Fonction_softmax

- https://www.deeplearningbook.org/

- https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fcal494

- https://ml-cheatsheet.readthedocs.io/en/latest/linear _algebra.html

- https://blog.paperspace.com/dataloaders-abstractions-pytorch/

- https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward neuralnetwo
rk/

- https://www.i2tutorials.com/explain-softmax-activation-function-and-difference-between-sigmoid-and-soft
max-function/

- http://perso.ens-lyon.fr/jacques.jayez/Cours/LHPST/Deep_Learning_in_NLP_1.pdf

- https://krisbolton.com/a-quick-introduction-to-artificial-neural-networks-part-1
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Matrix multiplication

m n
n
m
I
Multiplication of Matrices
A B
m X n n xp

Dimensions of AB 86



Matrix multiplication

m

n

A .

Multiplication of Matrices

B = C

AEw LUC
THE MATH EXPERT

A . B
m X n nxp
Equal

Dimensions of AB

a,,

@

a,

“.‘1

a, a,

ay, Qs

a, a,,

a,, Gy a,)

c=a,b,ta.b,t+a,b,tab,

) R

it by, b, b,
b,, b,, by,

m

bll 1’5: bﬂ

4x3

2x3

Cp=ayb,;tanh,tasbitab,

“u‘ b,, |by| b,




Dans la matrice résultante
- ligne 1, col 1 (cll) = ligne 1 A X col 1 B

Matrix multiplication

m n

c,=a,b,tolb,ta b, tab,

[ b,/b, b ;.

I / |:(II a, a; (l_,,] b‘: [) [):: '.: ('l:]

b, b, b,
[)4: b:: bu

Qy Gy Gy Qs

A - B = C

Multiplication of Matrices o cuemath

2x4 4x3 2x3

A ) B cy=ayb,;tasb,tanb,tab,

! i b, b, b

i1 [Dy2) Oy

Y
a, a,da;a, h‘x l)‘, I)” Cny Cpp Gy
Equal n (O Ont _ by
a, a, a, a,, /,\' h h“ Cy(Cyy) Cys

Dimensions of AB b, bl b,



Dans la matrice résultante
- ligne 1, col 1 (cll) = ligne 1 A X col 1 B

Ma[l’lx multlp“[a[lon - ligne 1, col 2 (cl2) = ligne 1 A X col 2 B

m n

c,=a,b, ta.b,Ya b, ta.b,

[ b,/ b,

I W | aza,aul | b, h b., c_-“
A . B = C @, Ay Gy ay, b, b., b, N 2 2

bu b:: bu
Multiplication of Matrices r Tt " :

2x4 4x3 2x3

>
o

cy=ayb,;tasb,tanb,tab,

mxXn nxp ///~—~\\\\\
! i b, b, b

: ) G
! a, a,da;a, b, |b.) b.. Cny Cpp Gy
Equal n 1 ) _

a, a, a, a., b, b, b, Cu(Cx) Cs

Dimensions of AB b, b, b,



Matrix multiplication -

m n
n
m
I
Multiplication of Matrices r Tt
A . B
m X n nxp
.
Equal

Dimensions of AB

Dans la matrice résultante

- ligne 1, col 1 (cll) =
ligne 1, col 2 (cl2) =
ligne 1, col 3 (cl3)

c=a,b,ta

[[5,] b,

/ |:ax a,; d (l_,] [)‘: h:: ,)3:

a, a, a, a, hn Dis. Dis

1)41 [)4: bu

2%x4 4x3

ligne 1 A X col 1 B
ligne 1 A X col 2 B
ligne 1 A X col 3 B

b, ta i +a.b,

2x3

¢cy=a,b ta.b,tab,+a.b,

o] )

I b 2 13
b,, b, b,
/)\, h: h:'-

by b b

a5 Qi Gy Gis
a, Qa, Gy a,)



Dans la matrice résultante

- ligne 1, col 1 (cll) = ligne 1 A X col
. . . . - ligne 1, col 2 (cl2) = ligne 1 A X col
atrlx mu [lp |[a[|0n - ligne 1, col 3 (c13) = ligne 1 A X col
- ligne 2, col 1 (c21) = ligne 2 A X col
m n
n
c,=a,b,tglb,ta.b,tab,
m [ b, b, I)H.
| [uI a, a, (1_4] b, b, b, [ Cin)Ciz Ciy ]
. = @, Ay Gy ay, b, b., b, N ‘n Cn
A B ¢ i by be b,
Multiplication of Matrices ) ’
2x4 4x3 2x3
A . B ¢y=a,bta.b,.tab.+a,b,
m X n nxp /\
. by ol B
! Eu” a, a, 114] b. 1b.lb.. [ Cii Ci; (',;]
Equal 1717 = 4
a, a, ay a,, b,, |b,,| b, Cy(Ca) Cos

Dimensions of AB b, b, b,

B WN R
W W W W



Matrix multiplication

m n
n
m
I
Multiplication of Matrices e ki e
A . B
m X n nxp
N
Y
Equal

Dimensions of AB

ligne 1,

ligne
ligne
ligne
ligne
ligne

1

N NN

-

a,

@

a,

ax

)

)

-

-

col 1 (cll) = ligne 1
col 2 (cl12) = ligne 1
col 3 (c13) = ligne 1
col 1 (c21) = ligne 2
col 2 (c22) = ligne 2
col 3 (c23) = ligne 2

a, a

a, a,,

a,, a,

Dans la matrice résultante

c¢=a,b, ta,b,tab,ta.b,

(/\‘

’l; l).:

3 g b,| b,, b, Ci)Ciz Cos
ay| |\b) b, by| | € €n

a,, a,,

b, b, b,
4x3 2Xx3

Crp=a,btaqh,tanbytab,

o] )

)IT I)‘ 13

Qi h:! I’:: h.‘i
ail | b, b, b|

by b b

> x> X >
X X X X X X

col
col
col
col
col
col

WINEFE WN -
(VSR os B e v R v Ve



Dans la matrice résultante

- ligne 1,
[ [ ) [ ) ) _ -L_igne l,
Matrix multiplication - viene .
- ligne 2,
m n - ljgne 2,
n - ligne 2,
m
| E
A - B C
Multiplication of Matrices - o
A . B
m X n nxp on garde
- le nb de lignes

Y l de A
Equal - -l-e nb de a,,
colonnes de B a,

Dimensions of AB

col
col
col
col
col
col

1

WNRWN

(cll)
(cl2)
(c13)
(c21)
(c22)
(c23)

= ligne

ligne
ligne

ligne
ligne
ligne

NNNKRHRR

c¢=a,b, ta,b,tab,ta.b,

a, a, a

a,, a, a

]

[).‘3 ,)::
b,, b.,
I’-‘ i [)3:

C)Cis iy
a Cii L 'Con

4x3

2x3

Cy=4a, /7.;“ (l-..h:_;'- (1‘.21)__,'% (I;‘.l);_.

o] )

a, a, a

a, a, a

)y 1bys
b,, b,,
b, |b,,
b, b,

b,,
h{;
by

> x> X >
X X X X X X
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Matrix multiplication

1 2 5 & ¥
5 = B =
3 4 8 9 10

Multiplication of two matrixes:

. L
Dimension: A * B = [



Matrix multiplication

Multiplication of two matrixes:

Dimension? A * B =
A: (2 x 2)

B: (2 x 3)



Matrix multiplication

Multiplication of two matrixes:

Dimension? A * B =
A: (2 x 2)

B: (2 x 3)

AxB: (2 x 3)
A‘kB:



Matrix multiplication

. . ?
Dimension? A * B =
A: (2 x 2)

B: (2 x 3)

AxB: (2 x 3)
A‘kB:



Matrix multiplication

Multiplication of two matrixes:

D4 L, 1*5 + 2*8
imension? A+ B =
A: (2 x 2)

B: (2 x 3)

AxB: (2 x 3)
A‘kB:



Matrix multiplication

Multiplication of two matrixes:

D4 L, 1*5 + 2*8 1*6 + 2*9 1*7 + 2*10
imension? A+ B =
A: (2 x 2)

B: (2 x 3)

AxB: (2 x 3)
A‘kB:



Matrix multiplication

Multiplication of two matrixes:

D4 L, 1*5 + 2*8 1*6 + 2*9 1*7 + 2*10
imension? A+ B =
A: (2 x 2)

B: (2 x 3)

AxB: (2 x 3) 2% 24 27
A*B =



Matrix multiplication

Multiplication of two matrixes:

Dimens< on? 1%25 <k 288 156 % 2885 ‘137 £ 2%10

A*B =
3%5 + 4*8 3%6 + 4%9 3*7 + 4%10
A: (2 x 2)
B: (2 x 3)
AxB: (2 x 3) 21 28 27
A*B=

47 54 61



What was wron: x= [21] et ot e

wl w2
W= |wd w5 | matrix ( the weights for hidden layer 1)
x3 wé
the output is given by
I wl w2 1
2| =|wd w5 |. [ = ’ l (the product of vector and matrices)
h3 x3 wé x

this is done by taking each row of the first matrix and doing elemnt wise
multiplication with each column of the second matrix.

thus,
h = wl.x1 + w2.x2
h2 = w3.x1 + w3.x2
h3 = w5.x1 +wé.x2



What was wron: x=

vector (input layer)
wl w2
W =|wd4 w5 | matrix ( the weights for hidden layer 1)
x3 wé
the output is given by

I wl w2 1
| =|ws wsl|.|* 2] (the product of vector and matrices)
h3 3 we| ¥

this is done by taking each row of the first matrix and doing elemnt wise
multiplication with each column of the second matrix.

thus,
h2 = w4.x1 + w5.x2
h3 = w3.x1 + w5.x2 M = wl.x1 + w2.x2
or h2 = w3.x1 + w3.x2
change W (but w3 h3 = w5.x1 + wé.x2

appears twice &2)



