Neural Methods
for NLP

Master LiTL --- 2023-2024
chloe.braudeirit fr

https://gitlab.irit.fr/melodi/andiamo/teaching _chraud /master_litl

28/11/2023

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Goals

Understand what are Neural Networks and why everybody is so crazy about
them

Being able to train and evaluate a deep learning model
- understand the hyper-parameters, being able to optimize a DL model
- understand the varied architectures, their underlying motivations, their use
- understand the input: what are (word) embeddings?
- how to build a model for a specific application: classification, sequence labelling, generation

Having an idea of the limitations and current challenges

Practical sessions / Assignments:

Library: PyTorch
Environment: Google Colaboratory

Schedule
2023-2024

-_—

w

28.11

05.12

12.12

19.12

09.01

16.01

23.01

01.02

06.02

13h30-15h30

13h30-15h30

13h30-16h

13h30-16h

13h-16h

13h-16h

13h-16h

13h-16h

13h-16h

2 (C1) ML Reminder + TP ML + TP POO

2 (C2) Intro DL + TP2

2.5 (C3) Embeddings + TP3

2.5 Start projects
(holidays)

3 (C4) Training a NN + TP4
—Assignments Part 1 due

3 Projects

3 (C5) CNN, RNN + TP5

3 (C6) Encoder-decoder, transformer + TP6
— Assignments Part 2 due

3 (C7) Current challenges

— project defenses

Schedule
2023-2024

-_—

w

28.11

05.12

12.12

19.12

09.01

16.01

23.01

01.02

06.02

13h30-15h30

13h30-15h30

13h30-16h

13h30-16h

13h-16h

13h-16h

13h-16h

13h-16h

13h-16h

2 (C1) ML Reminder + TP ML + TP POO

2 (C2) Intro DL + TP2

2.5 (C3) Embeddings + TP3

2.5 Start projects
(holidays)

3 (C4) Training a NN + TP4
—Assignments Part 1 due

3 Projects

3 (C5) CNN, RNN + TP5

3 (C6) Encoder-decoder, transformer + TP6

— Assignments Part 2 due

3 (C7) Current challenges

— project defenses

Projects

System:

Topics:

Assignments
(groups 2-3):

Read a research paper on the chosen task

(Implement a non neural baseline system)

Compare with a neural architecture

Augment the system within a multilingual / cross-domain setting

Text classification: sentiment analysis, fake news detection, ...
Sequence labelling: named entity recognition, POS tagging, ...

09/01 : Pre-processing code + report part 1

- Code : data pre-processing

- Report Part 1 : description of the data and related work
01/02 : Code + report part 2

- Code for training and evaluating the system

- Report Part 2 : describe the system and present the results
06/02 : Oral presentation (10-15 mn)

Bibliography and resources

Personal note: | have a PhD in Sciences du Langage. I'm now a researcher in Computer Science. I'm in
between Human and Computer science, I'm interested in both aspects. I'm going to give you some
mathematical and technical notions about what's behind, mostly to show that it's not so complicated (it can

get very complex, but not the basics). There are many many good resources for more details.

- Neural Network Methods for NLP, Y. Goldberg

- Online courses:

- Neural Nets for NLP, G. Neubig,
Stanford courses with C. Manning (official website: https://web.stanford.edu/class/cs224n/)

En francais : https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home

- J. Eisenstein course:
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

| used other resources to build this course, I'll try to give all the sources used.

https://www.youtube.com/playlist?list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://web.stanford.edu/class/cs224n/
https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

Neu

‘2l Methods
or NLP

https://gitlab.iri

Master LiTL --- 2022-2023
chloe.braud@irit.fr

Lfr/melodi/andiamo/teaching _chraud/master _lit|

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Neural methods for NLP

- 1980’s: Symbolic NLP

- rule-based approach, hand-written rules
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming

- 1990’s: ‘Statistical’ NLP

- learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors
- large annotated corpora

- handcrafted features ‘ learin

- rather fast to train, still good baselines

- =2010: ‘Neural’ NLP

- combine linear and non-linear functions, over dense inputs Keras

- (very) large annotated corpora and very large unannotated corpora

- improved .performance (in general), no feature engineering N PYT b RCH
- harder to interpret (“black box”) |-

Tensor

Neural methods for NLP

- 1980’s: Symbolic NLP

rule-based approach, hand-written rules
advantages: based on linguistics expertise, very precise
inconvenients: lack of coverage, time consuming

- 1990's: ‘Statistical’ NLP

learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors

- large annotated corpora MALLET
- handcrafted features ‘ learn F
- rather fast to train, still good baselines ?WFKA
- =2010: ‘Neural’ NLP
- combine linear and non-linear functions, over dense inputs Keras
- (very) large annotated corpora and very large unannotated corpora
- improved performance (in general), no feature engineering N PYT b RCH
- harder to interpret (“black box”) li

Tensor

Machine Learning for NLP

Applications:

- NLP applications: spam filtering, spell checking, machine translation, summarization, web search,
recommendation systems, sentiment analysis, hate speech detection...

- NLP tasks: sentence splitting, tokenization, POS tagging, NER, syntactic parsing, semantic parsing, discourse
parsing, event identification, detecting language change, representation learning, speech recognition...

Data investigation:

- Looking at how works your model could help understanding your data/problem:
- e.g. Age or Gender bias in models: Gender Bias in Part-of-Speech Tagging and Dependency Parsing
Data, A. Garimella, C. Banea, D. Hovy, & R. Mihalcea. ACL 2019
- (Linguistic) Hypothesis checking

- e.g. Scientific fraud: specific writing style? Is writing style predictive of scientific fraud?, C. Braud and A.

Sggaard. EMNLP 2017
- For'fun': e.g. see T. Van de Cruys' book of poetry generated via ML

10

. Learning problems
. Workflow and terminology
. Linear classification

[Onten[. Representation function
5. Basics of POO

Statistical Learning

Practical session 0: basics of
P00, implement a ML model with
Scikit

. Learning problems
. Workflow and terminology
. Linear classification

[Dﬂ[en[. Representation function
5. Basics of POO

Statistical Learning

Practical session 0: basics of
P00, implement a ML model with
Scikit

. Learning problems

. Workflow and terminology
. Linear classification
(ontent . Representation function
5. Basics of POO

Statistical Learning

Practical session 0: basics of
P00, implement a ML model with
Scikit

Learning problems and scenarios

Most common learning problem in NLP: classification

Most common scenario: supervised learning

— using pre-trained word embeddings is in fact doing semi-supervised
learning

14

The different tasks

- Classification: predict a categorical label for each item
- single label: each instance is assigned a single label
- binary: 2 labels, e.g. an email is either a spam or not
- multi-class: > 2 labels, e.g. sentiment is either positive, negative or neutral
- multi-label: each instance is assigned multiple labels, e.g. The Lord of the Ring is
classified as: Adventure, Fantasy, Drama
- Sequence labeling / structured prediction: predict a categorical label for each member of a sequence
- e.g. POS tagging, NER...
- can be seen as performing independent classification tasks on each item
- but performance are improved when taking into account the dependence between the
elements
- Regression: Predict a real value for each item
- e.g.: prediction of stock values, variations of economic variables, house prices..
- rarer for NLP, but e.g. data with depression “scores” (DAIC)

15

The different tasks

- Clustering: Partition items into homogeneous regions

- kind of classification but without classes known a priori

- can be useful if you don't have manual labels or want to explore your data

- often used for very large data sets

- e.g.:in social network analysis, attempt to identify “communities” within large groups of
people.
- Ranking: Order items according to some criterion (e.g. Web search)
- Dimensionality reduction or manifold learning: Transform an initial representation of items into a
lower-dimensional representation (for pre- processing or visualisation)

16

The learning scenarios

Depend on the annotations you have:
Supervised learning:

- we have a set of labeled examples as training data
most common for classification and regression

17

The learning scenarios

Depend on the annotations you have:
Supervised learning:

- we have a set of labeled examples as training data
- most common for classification and regression

Unsupervised learning:

- we only have unlabeled training data
- e.g.: Clustering and dimensionality reduction
- often hard to evaluate

18

The learning scenarios

Semi-supervised learning: the training sample consists of both labeled and unlabeled data

19

The learning scenarios

Semi-supervised learning: the training sample consists of both labeled and unlabeled data

easier to obtain!

20

The learning scenarios

Semi-supervised learning: the training sample consists of both labeled and unlabeled data

Very hard in practice, but many variations:
- labeled + automatically labeled data
- e.g.sentiment analysis with smileys as (noisy) labels
- labeled + external resource giving constraints
- e.g. POS tagging with a dictionary
- labeled + labeled data for another task
- multi-task learning
- labeled + unlabeled: pre-trained word embeddings

easier to obtain!

Especially used for transfer learning / domain adaptation:
- e.g. building a model for a new language or for a new genre of texts

21

Supervised classification

Supervised classification:

- the most common scenario for NLP (with supervised structured prediction)
- supervised: input = labeled data points
- classification: assign a category/class to each item, e.g.

- isaword a VERB or a NOUN?

- Is a document talking about Sport or Politics or Economy?

Binary vs Multi-class:
2 classes (e.g. positive/negative, comedy/drama) vs more than 2 classes (e.g. positive/negative/neutral, any genre)
Distinction that has an impact

- on the algorithm: various strategies to deal with MC problems
- on evaluation: various metrics
- but rather transparent with scikit: algorithms/functions can be used for both binary and MC problems

22

Machine Learning: workflow and terminology

The different steps when doing machine learning:

- (1) preparing data,
- (2) learning and tuning,
- (3) predicting and evaluating

Terminology:

- input
- model and parameters
- train/dev/test sets

23

Machine Learning

Start with:

- aset of labelled data = data points + (gold) labels
- afunction that could be used to compute a label for a data point

Learning a model:

- Goal: try to get the best function, i.e. that finds the right/gold label
- Process: iterate over the examples, and adjust the parameters of the function to avoid errors

Evaluating the model:

- Goal: evaluate the performance of the learned model
- Process: once the model is learned / trained, make predictions over unseen data and compute
some performance metrics

24

Machine Learning

Start with:

- aset of labelled data = data points + (gold) labels — supervised setting
- afunction that could be used to compute a label for a data point — classification

Learning a model:

- Goal: try to get the best function, i.e. that finds the right/gold label
- Process: iterate over the examples, and adjust the parameters of the function to avoid errors

Evaluating the model:

- Goal: evaluate the performance of the learned model
- Process: once the model is learned / trained, make predictions over unseen data and compute
some performance metrics

25

Machine Learning

Start with:

- aset of labelled data = data points + (gold) labels — supervised setting
- afunction that could be used to compute a label for a data point — classification

Learning a model:

- Goal: try to get the best function, i.e. that finds the right/gold label most often
- Process: iterate over the examples, and adjust the parameters of the function to avoid errors

Evaluating the model:

- Goal: evaluate the performance of the learned model
- Process: once the model is learned / trained, make predictions over unseen data and compute
some performance metrics

26

Supervised classification

Data preparation

Input Data / Training set

(Labeled examples)

Data points x gold Labels y

Represented

by some
features

Cat

Sandwich

Training

Test set

learning some
function f with
parameters

Evaluating

output
Cat Tres hren, T

@,

Use f to Compute
predict a score using

label some

performance

metrics

27

Workflow: (1) Data preparation

- Define the problem: task? labels?

- Collect (labeled) data: datasets available online, scikit toy datasets, scrap data...

- Randomly partition your data, i.e. shuffle then split:
- Train / dev/ test: e.g. 80-10-10 (or use pre-defined split), in gal train > test
- Train / test + cross-fold on training set for tuning
- Data description: you need to know your data!
- Number of training/evaluation examples
- Class distribution: number of examples per class
- Vocabulary, language, genre, etc...
- Feature extraction/engineering: critical step, reflects prior knowledge
- Possibly linguistic pre-processing: POS tagging, parsing, NER, etc...
- Vectorization, normalization

28

Workflow: (1) Data preparation

- Define the problem: task? labels?

- Collect (labeled) data: datasets available online, scikit toy datasets, scrap data...

- Randomly partition your data, i.e. shuffle then split:
- Train / dev/ test: e.g. 80-10-10 (or use pre-defined split), in gal train > test
- Train / test + cross-fold on training set for tuning
- Data description: you need to know your data!
- Number of training/evaluation examples
- Class distribution: number of examples per class
- Vocabulary, language, genre, etc...
- Feature extraction/engineering: critical step, reflects prior knowledge
- Possibly linguistic pre-processing: POS tagging, parsing, NER, etc...
- Vectorization, normalization

29

Supervised classification

Data preparation

Input Data / Training set

(Labeled examples)

Data points x gold Labels y

Represented

by some
features

Cat

Sandwich

Training

learning some
function f with
parameters

Test set

Evaluating

output
Cat Tres hren, T

@,

Use f to Compute
predict a score using

label some

performance

metrics

30

Workflow: (2) Learning + Tuning

- Choose a learning algorithm: crucial, especially if training is long
- Advice: try first with a fast algorithm
- Train: at each training step,
- update values for the parameters
- the values for the hyper-parameters are fixed
- Tune:
- identify the tunable hyper-parameters
- search the best values for the hyper-parameters

i1

Learning algorithms for classification

Naive Bayes
Linear classifiers:
perceptron
passive-aggressive
Logistic Regression aka MaxEnt
linear SVM
Non linear SVM
Neural networks

See the doc on supervised learning

See the tutorial: working with text

32

https://scikit-learn.org/stable/supervised_learning.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

Workflow: (2) Learning + Tuning

- Choose a learning algorithm: crucial, especially if training is long
- Advice: try first with a fast algorithm
- Train: at each training step,
- update values for the parameters
- the values for the hyper-parameters are fixed
- Tune:
- identify the tunable hyper-parameters
- search the best values for the hyper-parameters

33

Model and learning function

Remember that we are learning a function:

- Target function: the true function f we want to learn /
approximate.

- Hypothesis (sometimes called model): a function h that
we hope is similar to the target.

Apprentissage supervisé :

- A partir de I’échantillon d’apprentissage S = {(x, ¥y}
- on cherche une loi de dépendance sous-jacente

© N Q
B of ><_ 2]
+ a i + a
e +BO Q ot + 7,60
e et + 'e) SE 5F
; \/@\/O
o - o) = ¢}
+ " I + 4 L
+ 4 + 4
O O
i &
* o + O
+ @) -+ ©)
+ +
0O © ®) 0O o) © @)

many possible hypothesis

Par exemple une fonction h aussi proche possible de f (fonction cible) avec f telle que y. =f(x)

34

Learning a model

Remember that we want to avoid errors, find the best hypothesis:

- Loss function: measures the difference, or loss, between a predicted label and a true label.
- LYXY >R ~‘countthe number of times’ y # ¥ (also called cost)
- zero-one loss, squared loss, hinge loss...

The learning algorithm tries to get the smaller possible loss on the examples it is given:
- if the predicted label is wrong
- modifies the values of the weights w so that next time we compute the label, we get the right one i.e. ¥ = w.x
- if the predicted label is right, don’t modify anything (except if we want some margin)

The parameters W and b are set to minimize L (usually, the sum of the losses over the training examples)
L(©)=1/n 3}, L(f(xi; ©), yi) — The loss should decrease with learning (less and less errors)
Thus training correspond to finding this minimum (= optimization problem):

0 = argming L(©) = argming 1/n Y _ _L(f(xi; ©), yi)

35

Workflow: (2) Learning + Tuning

- Choose a learning algorithm: crucial, especially if training is long

- Advice: try first with a fast algorithm (for DL= smaller layers, smaller input size...)
- Train: at each training step,

- update values for the parameters

- the values for the hyper-parameters are fixed
- Tune:

- identify the tunable hyper-parameters

- search the best values for the hyper-parameters

36

Supervised classification

Data preparation

Input Data / Training set

(Labeled examples)

Data points x gold Labels y

Represented

by some
features

Cat

Sandwich

Training

learning some
function f with
parameters

Test set

Evaluating

output
Cat Tres hren, T

@,

Use f to Compute
predict a score using

label some

performance

metrics

37

Supervised classification

hyper-
;/// parameters
Input Data / Training set /
(Labeled examples) Test set
Data points x gold Labels y output
— Y v
Q\j{\; \ j
Cat
Represented
by some learning some Use f to Compute
features function f with predict a score using
parameters label some
performance
. metrics
Sandwich
38

Tuning / Optimization

- We learn the parameters of the model (or weights, w or 0)
- We set values for the hyper-parameters associated to the learner

— Tuning = searching for the best values for hyper-parameters e.g. smoothing, regularization strength etc

Tuning process:

1. identify the hyper-parameters of your model (SciKit: estimator.get_params())
2. choose the right performance metrics to optimize (accuracy, F1, rouge ...)
3. choose the right procedure — always set apart a test set:
a. use avalidation / development set:
i. define a set of possible values for each hyper-parameter
ii. train a model for each subset of values and evaluate on the dev set
iii. compare the results: keep the model giving the best score on dev
iv. evaluate (only) this model on the test set
b. n-fold cross-validation: esp. when small amount of data
I. very easy with scikit: grid-search cross-validation

39

Learning Is ngt memorizing

Consistent model:

- no error on train set
- but poor performance on test,

i.e. memorize the data, unable to generalize

\Eneur

erreur sur base
d'apprentissage

Sur-apprentissage
erreur sur base

de test

Arrét de 'apprentissage

Overfitting

40

Overfitting

- Very complex decision surface: no generalization to unseen data
- Less complex: might generalize better in spite of some errors

"The green line represents an overfitted model and the black line represents a
regularized model. While the green line best follows the data, it is too dependent on
the training data" (Mohri)

— Solution = regularization: constraining a model to make it simpler

= add a regularization term to minimize the complexity of the model, i.e. an hyper-parameter corr. to the

strength of the regularization

41

Learning a model

Remember that we want to avoid errors, find the best hypothesis:

- Loss function: measures the difference, or loss, between a predicted label and a true label.
- LYXY >R ~‘countthe number of times’ y # ¥ (also called cost)
- zero-one loss, squared loss, hinge loss...

The learning algorithm tries to get the smaller possible loss on the examples it is given:
- if the predicted label is wrong
- modifies the values of the weights w so that next time we compute the label, we get the right one i.e. ¥ = w.x
- if the predicted label is right, don’t modify anything (except if we want some margin)

The parameters W and b are set to minimize L (usually, the sum of the losses over the training examples)
L(©)=1/n 3}, L(f(xi; ©), yi) — The loss should decrease with learning (less and less errors)
Thus training correspond to finding this minimum (= optimization problem):

. Regularization
O = argming L(6) =argming 1/n . _L(f(xi; ©), yi) + AR(O)

42

Supervised classification

hyper-
;/// parameters
Input Data / Training set /
(Labeled examples) Test set
Data points x gold Labels y output
— Y 2t
Q\j{\; \ j
Cat
Represented
by some learning some Use f to Compute
features function f with predict a score using
parameters label some
performance
. metrics
Sandwich
43

Supervised classification

hyper-
parameters

‘///
Input Data / Training set /
(Labeled examples) Test set

Data points x gold Labels y output
— Y — ZUL
& ‘/ \ j
Cat
Represented
by some learning some Use f to Compute
features function f with predict a score using
parameters label some
performance
. metrics
Sandwich
44

(3) Prediction + Evaluation

Using the final values for parameters and hyper-parameters, evaluate on test

- Use your model to make predictions on the unseen test data (ypred)

- Compute a score by comparingy, and Yored for each example in the test

true

- Compare to other systems: baselines, state-of-the-art...
It is important to:

- Keep track of the values used (final and tested) for the hyper-parameters for reproducibility!
- Choose a / several relevant evaluation metrics
- Propose relevant baselines

43

Classification metrics

For classification, we mostly use:

- Global scores: accuracy, averaged F1
- Per class scores: precision, recall, F1
-+ confusion matrix: better understand the system behaviour

Accuracy is the most common metrics:
- fraction of correctly predicted samples
- e.g. 90 well predicted over 100 examples: accuracy = 90%
- issue esp. with imbalanced data,
- e.g. Cancer detection: 90 non cancer, 10 cancer is 90% a good score for predicting cancer?
- we want to predict well the positive class

46

Evaluating a mode|

Report one or several metrics:

- depend on the setting (binary or multi-class) and task
- classification: Accuracy, Macro/weighted F1, prec/rec/F1 per class

Compare to other systems:

baselines: simplest feature/algo, dummy classifier (most frequent class)
state-of-the-art: systems from the literature, reported or reproduced, compare different algorithms

compare different feature sets
- compare different datasets: prove the robustness of your method over different genres, languages...

Try to understand your model:

- Scikit: classifiers have a coef parameters that allows to inspect the weights associated to each feature
- eli5: a library to debug ML models, compatible with Scikit, see the doc
- try to relate observed behaviour to a priori knowledge, esp. linguistic

47

Input; examples, features and labels

Examples or samples / instances / data points = items of data used for learning or evaluating (m examples)
Features = set of attributes associated to an example (n features)
A set of examples: a matrix X of size mxn
- 1lexample =1row, i.e. a vector x of size n
Labels = values assigned to examples; for classification:

- General label set: Y of p classes

- Labels for all examples = a list of size m, e.g. ytrue
- 1label for 1 example = 1 value y in the list

- labeled example = a pair (x, y)

Dataset for ML = X and ytrue

48

Model, Parameters and hyper-parameters

Model: what we learn is a model of our data

- We sometimes call model the weights learned, i.e. the importance that the model associates
with each feature
- e.g. Sentiment analysis: 'love':+10, 'hate':-42, ‘green’:0...
- Weights are saved in a vector w (or 6) of size n(+1)
- Each of these weights is a parameter/coefficient of the model

Hyper-parameters (or free parameters, part of the model):

there could be parameters dependent on the learning algorithm used
- setting the values for these hyper-parameters is called tuning the model

49

Train / Dev / Test sets

Training sample/set: examples used to train a learning algorithm, to learn/fit a model
Development/validation set: examples used to tune the hyper-parameters of a learning algorithm

Test/evaluation set: examples used to evaluate the performance of a learning algorithm
- The test set is separate from the train/dev sets

- The test set is not made available in the learning stage -\
TRAIN

Searching for the best model on the test set =

DEV

TEST

-
es |
wn
(D
1)
(&)
Q

Linear classification

- Binary classification: linear functions, weight matrix and bias
- Reminder: Logistic Regression = linear scores + logistic function
- Loss function

ML — DL:

- Change here = power of non linearity
- — LR performed by each neuron

11

Why Linear classifiers?

Remember that: ML is about finding a function h that best approximate the
target function f

- Searching over the set of all possible functions is very hard
- We thus restrict ourselves over specific families of functions, the hypothesis

class e.g. the space of all linear functions with d_inputs and d_ outputs
- inject the learner with inductive bias: a set of assumptions about the desired solution
- facilitate procedures for searching solutions

- The hypothesis class also determines what can and cannot be represented

by the learner!

Bl

Linear Classifiers

Hypothesis class = high-dimensional linear functions, of the form:
f(x) =W.x+b with x € R%-" W € Rd-imd.out | & Rd.out

- Searching over the space of functions = searching over the space of parameters, i.e. finding the best © =
W, b.

- Sometimes, to make the parameterization explicit, we write: f(x ; W, b)

- In binary classification, w is a vector

Recall on linear algebra: W.X =2 W. Xx.=wW_Xx_+ W_.X, +...+w .x (+b)
joj 0°0 171 n"'n
With n features, we have:

- adata point: x =< Xop Xpp oeer X >
- the weights: w =< Wy Wy ooy W >

23

Linear Classifiers

The decision boundary is a linear function of the input: in the binary case, it's a line (2 dimensions /
features), a plane (3 d) or an hyperplane (n d) separating the two classes

Decision boundary:

Prediction:
= wyp. b: aline : ; s
Y = wo-To + if § = w-x > 0, predict positive class. ‘
X=(x1,x2
. M o e
N z=(z1,z2)
e o S LN w.h=0
s LT S w.x>0
_ % ” w.z<0
“y=%1 Example of a linear decision boundary
y=2x+l for binary classification. 3

Linear Classifiers

The decision boundary is a linear function of the input: in the binary case, it's a line (2 dimensions /
features), a plane (3 d) or an hyperplane (n d) separating the two classes

Decision boundary:

Prediction:
= wy. b: a line : ; s
Y = wo-To + if § = w-x > 0, predict positive class. ‘
XF(X1,%X2
. \ ® X2
N z=(z1,z2)
_ i et T e w.h =0
y=5+1 o d St N W.X > O
_ x > w.z<0
“y=%1 Example of a linear decision boundary
y=2x+l for binary classification. 39

Sepal width

Sepal width

Introducing non-linearity

SVM with non-linear kernel

- mapping of the original input feature space to a higher-dimensional feature space,

- with the hope that data may be linearly separable in this new space

SVC with linear kernel

Sepal length

SVC with RBF kernel

Sepal length

LinearSVC (linear kernel)

Sepal width

o

Sepal length

SVC with polynomial (degree 3) kernel

Sepal width

o

Sepal length

¥ Label

15

.
10
. o3y _095%55 5
o N ®
.
g &9 A
0s & K
.
ik s ’ﬁ .l . :
° -~ .
. -, &)
0.0 . > .
. ot o
s “
4 . . P
L4 ' b . .
-05 . . ®
€e e
ROR Ses
'. ..‘ - o
-1.0 . .' ot - P
N -10 -05 0.0 oS 10
X Label

Data projected to R”2 (nonseparable)

1eqen 2

12

1.0

08

06 1

04

02

Data in R™ 3 (separable)

\ | -
.
o - o*
. ot *%e S
. -
% ‘ti S e, TS
v., Koot C oy
r. . 2.
. .
i‘b_.; :"}‘;.
aigd
05 i
5 —— -10
YL 00 i Lo 05 90 -0s
X Label

16

Introducing non-linearity

SVM with non-linear kernel

Neural Network: keep
non-linearity and
transformation of the -input
space.

- mapping of the original input feature space to a higher-dimensional feature space,
- with the hope that data may be linearly separable in this new space

SVC with linear kernel

Sepal width

Sepal length

SVC with RBF kernel

Sepal width

Sepal length

LinearSVC (linear kernel)

Sepal width

o

Sepal length

SVC with polynomial (degree 3) kernel

Sepal width

o

Sepal length

Data projected to R”2 (nonseparable)

Y Label

Data in R™ 3 (separable)
.
i 14 1 .
’o. <
. .
/B 12 8 * .
. e
5 apree ol
A 10 (" e o e s \,’.
- ~ L L SCINCT A8 Vg
§ o8 o T e
‘. g .
.e 06 1
o
. 04
IR 02 ‘x&‘_ ‘1‘ .
N ok S Tk
10 ——
0o s —— .. oo
¥ lape, 05
= 1 X Label

Loss functions: training as optimization

The goal of the algorithm is to return a function f() that accurately maps input examples to their desired labels

- i.e. a function such that the predictions ¥ = f(x) over the training set are accurate
- the loss function is used to quantify the loss suffered when predicting y while the true label
isy
- L(y,y): assigns a numerical score (a scalar) to a predicted output ¥ given the true expected output y
- Should be bounded from below: minimum attained only for cases where the prediction is correct
- The parameters W and b are set to minimize L (usually, the sum of the losses over the training examples)

L(©)=1/n} . _L(f(xi; ©),yi)
Thus training correspond to find this minimum:

0= argming L(©) = argming 1/n . L(f(xi; ©), yi)
58

Loss functions: training as optimization

The goal of the algorithm is to return a function f() that accurately maps input examples to their desired labels

i.e. a function such that the predictions y = f(x) over the training set are accurate
- the loss function is used to quantify the loss suffered when predicting y while the true label is
y
- L(y,y): assigns a numerical score (a scalar) to a predicted output ¥ given the true expected output y
- Should be bounded from below: minimum attained only for cases where the prediction is correct
- The parameters W and b are set to minimize L (usually, the sum of the losses over the training
examples)

L(©)=1/n Zi=1__n L(f(xi ; ©), yi)

Thus training correspond to find this minimum: T

0 = argming L(é) M:H?ém?.r?; £ Z:;lron'i.ﬁ(ii ; ©), vi) »

Loss functions: training as optimization

The goal of the algorithm is to return a function f() that accurately maps input examples to their desired labels

i.e. a function y such that the predictions ¥ = f(x) over the training set are accurate
- the loss function is used to quantify the loss suffered chen predicting y while the true label is y

- L(y,y): assigns a numerical score (a scalar) to a predicted output ¥ given the true expected output y
- Should be bounded from below: minimum attained only for cases where the prediction is correct
- The parameters W and b are set to minimize L (usually, the sum of the losses over the training
examples)

L©)=1/n Zi=1--n L(F(xi ; ©), i) Regularization

Thus training correspond to find this minimum: —

0 = argming L(©) = i e i;0),yi)+AR(©)
Minimizing errors b0

Same for NN: We’ll go
back to loss functions

Loss functions: training as optimization |ecer

The goal of the algorithm is to return a function f() that accurately maps input examples to their desired labels

i.e. a function y such that the predictions ¥ = f(x) over the training set are accurate
- the loss function is used to quantify the loss suffered chen predicting y while the true label is y

- L(y,y): assigns a numerical score (a scalar) to a predicted output ¥ given the true expected output y
- Should be bounded from below: minimum attained only for cases where the prediction is correct
- The parameters W and b are set to minimize L (usually, the sum of the losses over the training
examples)

L©)=1/n Zi=1--n L(F(xi ; ©), i) Regularization

Thus training correspond to find this minimum: —

0 = argming L(©) = i e i;0),yi)+AR(©)
Minimizing errors bl

summary

- Linear functions: a great class of hypothesis for ML, worked for decades

- Non-linearity: seems useful, since many problems are non linear, e.g. XOR
problem

- Learning is about solving an optimization problem, i.e. minimizing a
function called the loss (while keeping the complexity of the model
‘reasonable’).

b2

Representation function

- “Feature engineering”:

- choose features, e.g. words, POS, NE, gaze, meta-data ...
- represent information (vectorizing, normalizing): bow, n-grams ; TF-IDF, ...

ML — DL: change here = NN seen as representation learners

ML — DL: sparse vs dense inputs

63

01101000 91110101
01101101 01102001
01101110 01112042

Feature representation

Main issue:

- how to represent text?
e.g. how to transform a sentence into a vector of numerical values?
Bag-of-Words (BOW):

- one vector where each dimension is a word in our vocabulary
- if the word / feature is present in the document, associate a specific value

b4

BOW: One-hat encoding

The e'?Phant sneezed - First, build a vocabulary: identify all the word in your data
at the sight of potatoes. - Ifthe word is present in the sentence / document, value = 1
f\

—
()
[<
E
B
|_.a
—
()
—
E

0] 1 0 0

SENCER NS ,i;\\QQ @6\ $ Q&Q 6@@ & & L}Q& & \\\§\° N Q@
NOK é& N § S &
S

18 words / dimensions

BOW: One-hat encoding

The el?Phant sneezed - First, build a vocabulary: identify all the word in your data
at the sight of potatoes. - Ifthe word is present in the sentence / document, value = 1
f\
1‘0000110‘10‘01‘101000
'b\@@\\@;\\g,&{\\Qq,@\&&.g?@@@\&§z
T &S RN RN &
& f

66

BOW: One-hat encoding

The e'?Phant sneezed - First, build a vocabulary: identify all the word in your data
at the sight of potatoes. - Ifthe word is present in the sentence / document, value = 1
f\

(=)
o
o

1
(- $. & & & © & & & &2 ® & © 2 D
%\Q'b@@c’,&@\&& Q&zé\f’g\@, "\SL}&?Q?:\',@&’\@ xS \\Q@Q
& R N & S A
&

67

BOW: One-hat encoding

The el?Phant sneezed - First, build a vocabulary: identify all the word in your data
at the sight of potatoes. - Ifthe word is present in the sentence / document, value = 1
f\

%@é\@@"&\é@’@s&&-%‘\'&@@’@&@
¥ A S K & » &S &
\Q\QT] %r f R
Q¥
QS\‘Q

68

BOW: One-hat encoding

The el?Phant sneezed - First, build a vocabulary: identify all the word in your data
at the sight of potatoes. - Ifthe word is present in the sentence / document, value = 1
f\

BOW: One-hat encoding

The el?Phant sneezed - First, build a vocabulary: identify all the word in your data
at the sight of potatoes. - Ifthe word is present in the sentence / document, value = 1
__/_-\

BOW: One-hat encoding

The elephant sneezed
at the sight of potatoes.

|

- First, build a vocabulary: identify all the word in your data

- Ifthe word is present in the sentence / document, value = 1

- The other words: value = 0 — present in the training data,
but not in this specific sentence / document

Y

71

BOW: One-hat encoding

The elephant sneezed - First, build a vocabulary: identify all the word in your data

at the sight of potatoes. - Ifthe word is present in the sentence / document, value = 1

- The other words: value = 0 — present in the training data,
but not in this specific sentence / document

IR

72

Bag-of-Words

Easy to use: now the computer can “read” your sentence
The elephant sneezed at the sight of potatoes.

<1o0,0,00,1,1,0,1,0,0,1,1,0,1,0,0, 0>

A

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important
Normalizing with TF-IDF: take into account the distribution of the words in the entire

corpus
“the”: very frequent but not very crucial
- “magnificent”: rare, but crucial

73

Bag-of-Words

Easy to use: now the computer can “read” your sentence
The elephant sneezed at the sight of potatoes.

<1o0,0001,1,0,1,0,0,1,1,0,2,0,0, 0>

A

Varied flavors:
. ‘the’
- Binary
- Raw frequencies: some words are repeated = more important (?)
Normalizing with TF-IDF: take into account the distribution of the words in the entire

corpus
“the”: very frequent but not very crucial
- “magnificent”: rare, but crucial

74

N .
Bag-of-Words Wy = theyxlog e

tf, = frequency of xiny
df = number of documents containing x

Easy to use: now the computer can “read” your SENteN ... within documenty N - total number of documents
The elephant sneezed at the sight of potatoes.

<1o0,0,00,1,1,0,1,0,0,1,1,0, 2,0, 0, 0>

A

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important
- Normalizing with TF-IDF: take into account the distribution of the words in the

entire corpus
“the”: very frequent but not very crucial
- “magnificent”: rare, but crucial

75

Bag of any features: one-hat encoding

Can be used to take into account any information, e.g. POS tags:

The/D elephant/N sneezed/V at/P the/D sight/N of/P potatoes/NA

o
—
o
o
o
RN
RN

T1o0jojojof11yojp1fopoyp1y|1

T & S S TS
Q\Q&' Q\,Q'Q Q
< We can encode any information:
- presence of a syntactic relation
- presence of a Named Entity / numbers /dates / amounts
- word associated to a sense if disambiguated
- words in the next sentence
- semantic classes...
Also extra-linguistic features : gender of the writer, number of likes ...

One-hat representation

- Defining features has to be done manually: require expertise and tests
- A word is represented with a one-hot vector: easy to implement

[00000000000000010000] D

[0coo0o000]10000000000000]

o~

77

Problems and extensions —

blogpost
a about

sentiment COO|
analysis

1. Very high dimensional:

- 18 dimensions for the previous sentence but could be 100k dimensions!

- Curse of dimensionality (nb of parameters proportional to nb of features) and
sparsity (many many zeros): makes learning hard, prone to overfitting

- Solutions:
- ignoring specific words, e.g. stop words
- keeping only the most frequent / highest TF-IDF
- grouping words: semantic categories, clusters (Brown)

78

Problems and extensions

1. Very high dimensional:
- 18 dimensions for the previous sentence but could be 100k dimensions!
- Curse of dimensionality (nb of parameters proportional to nb of features) and

sparsity (many many zeros): makes learning hard, prone to overfitting

- Solutions:
- ignoring specific words, e.g. stop words
- keeping only the most frequent / highest TF-IDF
- grouping words: semantic categories, clusters (Brown)

2. Bag-of-Words representation ignores word ordering and context
- crucial: “I don’t know why .7 vs “I don’t like this movie and | know why.”
- solutions: n-grams, i.e. use combination of multiple words e.g. trigrams “do not like”...
- but even more dimensions!

blogpost
a about

sentiment COO|
analysis

= Representation learning = power of Neural Networks

79

Basics of 00P (POO in French)

Object Oriented Programming:

- a programming paradigm (vs functional e.g. Camel / Haskell, logic e.g. Prolog,
descriptive e.g. LateX / HTML...)
- many languages: Ada, C++, Python, Java

Python: multi paradigme =

- object but also functional, and structured (hierarchical organization of the code,
small pieces of code, extensive use of control and repetition, block structures...)

— Python libraries are based on the object paradigm: description of classes that can

be used to perform some operation
80

Objects

An object is:

- aconcept, an idea, an entity in the world
- that as different properties / features / an internal structure
- and also has a specific behavior / a way to interact with other entities

- analogy with real world:
- we have different types of entities e.g. cars, computers, cats... and also abstract ones such as time
or a client
- with different ‘behaviours’: cars start, run, stop, turn ... computers start, bug... cats meow..

- we want to represent them in the computer through their properties and
behaviors

Object = a data structure that can answer to specific messages

81

Objects and classes

Class-based OOP: objects are instances of classes = types

- we have different types of entities in the world, such as cars or cats
- we have different instances of the same type: my cat is different from my neighbors’

cat
Class = object type:

- extend the notion of type such as int, char etc
- used to define the properties of the corresponding entities and how they interact, e.g.

Car
Object = class instance:

- aspecific entity pertaining to a class, e.g. my_car

82

Objects and classes

Class-based OOP: objects are instances of classes = types

- we have different types of entities in the world, such as cars o
- we have different instances of the same type: my cat is different from my ne|ghbors

cat
Class = object type:

- extend the notion of type such as int, char etc

- used to define the properties of the corresponding entities and how they interact, e.g.

Car
Object = class instance:

- aspecific entity pertaining to a class, e.g. my_car (of type Car)

83

Classes

— The modelization step is crucial: how well we define these classes will make
for a good, reusable, easy to modify code (or not)
- To define a specific type of object we need to give:

- aspecific collection of data = fields, attributes, properties
a specific collection of behaviors = methods, procedures

N\

N /
Data
Behavior

color: purple
sum() -1 '] .] size: medium
multiply() LU buttons: 15
divide() Bee '
[N

[T & paniel Dia:z

Classes

— The modelization step is crucial: how well we define these classes will make
for a good, reusable, easy to modify code (or not)

To define a specific type of object we need to give:

- aspecific collection of data = fields, attributes, properties
a specific collection of behaviors = methods, procedures

\ /
Data
Behavior

Note that we have:
sum() [0 N color: purple

sietsl e - names for attributes
multiply()

Cividol =0 buttons: 15 - verbs for methods
aen

> a very useful convention

[T & paniel Dia:z

83

Classes in Python

Notebook: https://colab.research.google.

com/drive/l1oPha9EekRpg5Uvm227xBlumZ0Z3f8UNF2usp=sharing

class Car:
Here we define the properties and behavior

def __init__(arguments)

- the constructor = the method
explaining how to create a new object
of this type

- details all the properties / attributes /
fields

Car:

init (self, name, color, year):

self.name = name

self.color = color
self.year = year

86

https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing

Classes in Python

Notebook: https://colab.research.google.com/drive/l1oPha9EekRpa5Uvm227xBlumZ0Z3f8UNF?usp=sharing

class Car:
Here we define the properties and behavior

Car:
init (self, name, color, year):

self.name = name

def __init__(arguments)

- the constructor = the method self.color = color
explaining how to create a new object self.year = year
of this type
- details all the properties / attributes /
fields
when calling it: Car(

- just use the name of the class = calls
the constructor
- the arguments can be used to specify

the value for the newly created object o

https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing

Classes in Python

Notebook: https://colab.research.google.com/drive/l1oPha9EekRpa5Uvm227xBlumZ0Z3f8UNF?usp=sharing

class Car:
Here we define the properties and behavior

Car:
init (self, name, color, year):

self.name = name

def __init__(arguments)

- the constructor = the method self.color = color
explaining how to create a new object self.year = year
of this type
- details all the properties / attributes /
fields
when calling it: Car(
- just use the name of the class = calls
the constructor When | create / instantiate a specific object / instance: | specify the
- the arguments can be used to specify unique shape of my object, its personal attributes
the value for the newly created object 8

https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing

Car:
init (self, name, color, year):
self.name = name

Methods

def present(self, self.year = year
arguments): present(self):

retur Hey! I am '+self.name+', I am '+self.color+' and I appeared in '+str(self.year)

| can define a method that
describes a possible © v car - car(

behavior of my object s RN,

'Hey! I amFlash McQueen, I am red and I appeared in 2006’

- the method is then ‘applied’ to an object / an instance of the class
- inits definition, the method can use the fields of the object (here self.name or self.color)

89

50, what Is se1f?

se'lf is used within a class

init_ (self, name, color, year)

definition to refers to the E

self.color = color

current instance, to ‘myself’ e

f present(self):
retur Hey! I am '+self.name+ I am '+self.color+' and I appeared in '+stri(self.year)

— self.name = the name of the
instance I'm currently definiag

[2] my car = Car('Flash McQueen', 'red', 2006)
my car.present()

'Hey! I am Flash McQueen, I am red and I appeared in 2006’

90

50, what Is se1f?

self is used within a class

[1 Car:
definition to refers to the current s e
1 1 4 self.color = color
instance, to ‘myself e
— self.name = the name of the tir eyl T e “raaltomsamsiy =iaalSesett coloes and | agpaxtet 1 yetn(ssit yasr)
instance I'm currently defining be_painted(sel, new color):

Why it is important?

— we can modify the current e
ObJeCt,S data flelds e°g° Se IS0 |Or 'Hey! I am Flash McQueen, I am red and I appeared in 2006’

5! my car.be painted('purple')
my car.present()

'Hey! I am Flash McQueen, I am purple and I appeared in 2006’

91

50, what Is se1f?

Car:
init (self, name, color, year):
self.name = name

self is used within a class definition to self.color = color
. . , self.year = year
refers to the current instance, to ‘myself

f present(self):

Hey! I am '+self.name+ I am '+self.color+

— self.name = the name of the instance

be painted(self, new color):

Ilm Currently deflnlng self.color = new color
love(self, other car):
Why |t |S |mportant7 return self.name+' is in love with '+other car.name

— we can modify the current object’s
data fields

— we can make use of another instance
of the same type within a class definition

I in '+stri(self.year)

92

50, what Is se1f?

Car:
init (self, name, color, year):
self.name = name

self is used within a class definition to self.color = color
. . , self.year = year
refers to the current instance, to ‘myself

f present(self):

Hey! I am '+self.name+ I am '+self.color+

— self.name = the name of the instance

be painted(self, new color):

Ilm Currently deflnlng self.color = new color
love(self, other car):
Why |t |S |mportant7 return self.name+' is in love with '+other car.name

— we can modify the current object’s
data fields

— we can make use of another instance

of the same type within a class definition)
Exercise..

I in '+stri(self.year)

93

50, what Is se1f?

Car:
init (self, name, color, year):
self.name = name

self is used within a class definition to self.color = color
. . , self.year = year
refers to the current instance, to ‘myself

f present(self):

Hey! I am '+self.name+ I am '+self.color+' and I appeared in '+stri(self.year)

— self.name = the name of the instance

be painted(self, new color):

Ilm Currently deflnlng self.color = new color
love(self, other car):
Why it is important? TELUET cotl Tane b e

— we can modify the current object’s
data fields

— we can make use of another instance ,
oy - @ sally = car('Sally Carrera blue', 2006)
of the same type within a class definition my car.love(sally)

'Flash McQueen is in live with Sally Carrera

94

summary

class: defines a type of objects, by

speufymg
its properties = fields ie.
self.my_first_property = [initialize
with specific value or using argument
of the constructor]

- its behavior ie.

def i_can_do_that(self, [arguments])

an object (a variable) is an instance of a

class that has:
- specific values for the properties
- on which we can call all the methods defined in
the class

init (self, name, idnumber):
self.name = name
self.idnumber = idnumber

f display(self):
print(self.name)
print(self.idnumber)

f details(self):
print("My name is {}".format(self.name))
print("IdNumber: {}".format(self.idnumber))

95

summary

class: defines a type of objects, by
speufymg #init i , —
its propertles fields ie. init (self, name, idnumber):

self.my_first_property = [initialize sl il
with specific value or using argument

self.idnumber = idnumber

of the constructor] f display(self):
- its behavior ie. pr‘}nt(self.hame]
def i_can_do_that(self, [arguments]) PrNEGRRLE- dimber)
an object (a variable) is an instance of a f details(self):
. print("My name is {}".format(self.name))
ClaSS that has print("IdNumber: {}".format(self.idnumber))

- specific values for the properties
- on which we can call all the methods defined in
the class

Side note: Python recommends UpperCamelCase for class names,
CAPITALIZED_WITH_UNDERSCORES for constants, and snake_case for other names.

96

https://www.wikiwand.com/en/Python_(programming_language)

Inheritance

used to define
types and
subtypes

parent class: the
most abstract /
prototypical

child class(es):
implement distinct
features

init (self, name, idnumber):
self.name = name
self.idnumber = idnumber

f display(self):
print(self.name)
print(self.idnumber)

f details(self):

is {}".format(self.name))
ber: {}".format(self.idnumber))

bloyee(Person) :

init (self, name, idnumber, salary, post):

super(). init (name, idnumber)
self.salary = salary
self.post = post

f details(self):

print(“My name is {}".format(self.name))
print("IdNumber: {}".format(self.idnumber))
print[("Post: {}".format(self.post)f]

Parent class:
A person has:

- aname

- anidnumber

I~

Child class:
An employee also has:
- aname
- anidnumber
but in addition it has:
- asalary
- apost

97

Inheritance

used to define
types and
subtypes

parent class: the
most abstract /
prototypical

child class(es):
implement distinct
features

init (self, name, idnumber):
self.name = name
self.idnumber = idnumber

f display(self):
print(self.name)
print(self.idnumber)

f details(self):
print("M me 1
print("IdNumber:

(}".format(self.name))
{}".format(self.idnumber))

<
I

1nit {(5el
super(). init (name, idnumber)
self.salary = salary
self.post = post

f details(self):

print(“My name is {}".format(self.name))
print("IdNumber: {}".format(self.idnumber))
print[("Post: {}".format(self.post)f]

Parent class:
A person has:
- aname
- anidnumber

, name, idnumber, salary, post):

here is where you say
that it’s a child class of
Person

Child class:
An employee also has:
- aname
- anidnumber
but in addition it has:
- asalary
- apost

98

Inheritance

used to define
types and
subtypes

parent class: the
most abstract /
prototypical

child class(es):
implement distinct
features

+ you can call the
constructor of the
parent to fill the
corresponding fields
using super

init (self, name, idnumber):
self.name = name
self.idnumber = idnumber

f display(self):
print(self.name)
print(self.idnumber)

f details(self):
print("My name 1
print("IdNumber:

.format(self.name))
{}".format(self.idnumber))

init (seif, name, idnumber, salary, post):
super(). init (name, idnumber)
self.salary = salary
self.post = post

f details(self):

print(”"My name is {}".format(self.name))
print (" IdNum {~‘.format(self.idnumber))
print[("Post: {}".format(self.post)f]

Parent class:
A person has:
- aname
- anidnumber

here is where you say
that it’s a child class of
Person

Child class:
An employee also has:
- aname
- anidnumber
but in addition it has:
- asalary
- apost

99

Inheritance

init (self, name, idnumber):
self.name = name
self.idnumber = idnumber

f display(self):
print(self.name)
print(self.idnumber)

details(sel
print (" (}".format(self.name))
print("Idt {}".format(self.idnumber))

son) :

ihit (self, name, idnumber, salary, post):
)

super(). init (name, idnumber
self.salary = salary
self.post = post

details(self):
print("M is {}".format(self.name))
print({}".format(self.idnumber))

print|(|"Post }".format(self.post)])

Parent
class:
A person has:
- ahame
- an
idnumber

Child class:

- aname

- anidnumber
but in addition it has:

- asalary

- apost

An employee also has:

Exercise..

100

Inheritance

=

init (self, name, idnumber):

self.name = name
self.idnumber = idnumber

f display(self):
print(self.name)
print(self.idnumber)

details(self):
print("My
print("IdN

.format(self.name))
'.format(self.idnumber))

Employee(Person) :

idnumber,
idnumber

init (self, name,
super(). init (name,
self.salary = salary
self.post = post

details(self):
print("My 1 s {1".format(self.name))

print("Ic {}".format(self.idnumber))
print|(|"Post]

1. format (self.post)[)

Parent
class:
A person has:
- ahame
- an
idnumber

salary, post):
)

Employee('Rahul

a.display()
a.details()

, 886012, 200000, "Inte

Note that:

Child class:

- aname

- anidnumber
but in addition it has:

- asalary

- apost

An employee also has:

We can also call the method from
the class Person on an employee
object

101

Inheritance

=

init (self, name, idnumber):

self.name = name
self.idnumber = idnumber

f display(self):
print(self.name)
print(self.idnumber)

getails(self):
print("My
print("IdN

.format(self.name))
'.format(self.idnumber))

Employee(Person) :

init (self, name,
super(). init (name,
self.salary = salary
self.post = post

idnumber,
idnumber

details(self):
print("My 1 s {1".format(self.name))

print("Ic {}".format(self.idnumber))
print|(|"Post]

1. format (self.post)[)

e — 0 00O

Parent
class:
A person has:
- ahame
- an
idnumber

salary, post):
)

Employee('Rahul

a.display()
a.details()

, 886012, 200000,

Note that:

Child class:

- aname
- anidnumber
but in addition it has:
- asalary

- apost

An employee also has:

We can also call the method from
the class Person on an employee
object

We can redefine a method: here
details() is defined in both classes,
but here it’s the version in
Employee class that will be used

102

summary

class: defines a type of objects, by
speufymg #init i , —
its propertles fields ie. init (self, name, idnumber):
self.my_first_property = [initialize S
with specific value or using argument

self.idnumber = idnumber

of the constructor] f display(self):
- its behavior ie. pr‘}nt(self.hame]
def i_can_do_that(self, [arguments]) PrNEGRRLE- dimber)
an object (a variable) is an instance of a f details(self):
. print("My name is {}".format(self.name))
ClaSS that has print("IdNumber: {}".format(self.idnumber))

- specific values for the properties
- on which we can call all the methods defined in
the class

+ an object has the properties and the methods of his parents

103

0k, so why does that matter?...

sklearn.linear_model: Linear Models

The sklearn.linear_model module implements a variety of linear models.

Th ey a re a I I User guide: See the Linear Models section for further details.

The following subsections are only rough guidelines: the same estimator can fall into multiple categories, depending on its
C | a S S e S parameters.
Linear classifiers

linear_model.LogisticRegression([penalty, ...]) Logistic Regression (aka logit, MaxEnt) classifier.
linear_model.LogisticRegressionCV(*[, Cs, ...]) Logistic Regression CV (aka logit, MaxEnt) classifier.
linear_model.PassiveAggressiveClassifier(*) Passive Aggressive Classifier.

linear_model.Perceptron(*[, penalty, alpha, ...]) Linear perceptron classifier.
linear_model.RidgeClassifier([alpha, ...]) Classifier using Ridge regression.
linear_model.RidgeClassifiercV([alphas, ...]) Ridge classifier with built-in cross-validation.
linear_model.SGDClassifier([loss, penalty, ...]) Linear classifiers (SVM, logistic regression, etc.) with SGD training.
linear_model.SGDOneClassSVM([nu, ...]) Solves linear One-Class SVM using Stochastic Gradient Descent.

sklearn.linear_model.LogisticRegression

class sklearn.linear model.LogisticRegression(penalty='12', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True,
intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs’, max_iter=100, multi_class='auto’, verbose=0,
warm_start=False, n_jobs=None, I1_ratio=None) [source]

104

Same in PyTorch

import torch
import torch.nn as nn
import torch.nn.functional as F

Here we define a class that

defines a specific type of
network + it inherits from the
class nn.Module

class Net(nn.Module): «—
def __init__(self):
super(Net, self).__init__()
self.convl = nn.Conv2d(1l, 6, 5)
self.conv2 = nn.Conv2d(o, 16, 5)
selL fcl = nn.Linear(lé * 5 % 5, 120) from image di
self.fc2 = nn.Linear(120, 84)

self.fc3 = nn.Linear(84, 10)

def forward(qel*, x)

X = F max poolZd(F relu(seif convl(x)), (,, 2))

X = F max poolZd(F relu(gc‘f conv2(x)),
x = torch.flatten(x, 1) atten all dimensi X
x = F.relu(self.fcl(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()

print(net)

105

Same in PyTorch

import torch
import torch.nn as nn
import torch.nn.functional as F

- Here we define a class that
defines a specific type of

1 inp put channels, 5x5 square convolutic network + it inherits from the

el AT class nn.Module

ST 200 o e Venons 0 % 5 55 - The constructor tells us that

this network has
- different properties: conv1 and
conv2, fc1, fc2 and fc3

class Net(nn.Module):

def __init__(self):
uper(Net, self).__init__()

self.fcl = nn.Linear(16 = 5 » 5, 120
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(el x):

X = F max poolZd(F relu(e f convl(x)) (2))

X = F max poolZd(F relu(e f conv2(x))) a methOd C&”Ed forward(“)
x = torch. flatten(x 1) 4 n all dimensions
x = F.relu(self.fcl(x))
x = F. relu(elf.fc2(x))
x = self.fc3(x)
return x
net = Net()

print(net)

106

Same in PyTorch

import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):

def __init__(self):
uper(Net, self).__init__()
self.convl = nn.Conv2d(1l, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5
self.fcl = nn.Linear(16 % 5 x 5, 120) # 545 from image
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(el x):

X = F max poolZd(F relu(>".conv1(x)) (2))

max poolZd(F relu(~L

X = F conv2(x)) 2)

x = torch. flatten(x 1) 4 n all dimensi
x = F.relu(self.fcl(x))

x = F. relu(self.ch(x))

x = self.fc3(x)

return x

net = Net()
print(net)

Here we define a class that
defines a specific type of
network + it inherits from the
class nn.Module

The constructor tells us that this
network has different
properties: conv1 and conv2,
fc1, fc2 and fc3 ; and that it has
a method called forward(..)
Here we instantiate an object of
this class, thus a concrete
network of this type

107

TP1: Sentiment analysis with Scikit

In the practical session, we will implement a system for sentiment
classification of movie reviews.

- pre-process data (BoW, n-grams)
- train and evaluate a model

- compare different algorithms

- investigate model decisions

108

Sources

- Foundations of Machine Learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, MIT Press
- Comparing SVM and NN:
- Short answer: On small data sets, SVM might be preferred.
https://stats.stackexchange.com/questions/510052/are-neural-networks-better-than-svms

- https://www.baeldung.com/cs/svm-vs-neural-network
- https://dair.ai/notebooks/nlp/2020/03/19/nlp_basics_tokenization_segmentation.html
- https://www.infog.com/presentations/nlp-practitioners/
- https://github.com/sebastianruder/NLP-progress

- Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods.

Hillermeier, E., Waegeman, W. Mach Learn 110, 457-506 (2021).
https://doi.org/10.1007/s10994-021-05946-3 (Picture on hypothesis space)

109

https://stats.stackexchange.com/questions/510052/are-neural-networks-better-than-svms
https://www.baeldung.com/cs/svm-vs-neural-network
https://dair.ai/notebooks/nlp/2020/03/19/nlp_basics_tokenization_segmentation.html
https://www.infoq.com/presentations/nlp-practitioners/
https://github.com/sebastianruder/NLP-progress
https://doi.org/10.1007/s10994-021-05946-3

