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Goals
- Understand what are Neural Networks: the motivations and steps from linear to 

neural models
- Being able to train and evaluate a deep learning model

- understand the hyper-parameters, being able to optimize a DL model
- understand the varied architectures, their underlying motivations, their use
- understand the input: what are (word) embeddings? 
- how to build a model for a specific application: classification, sequence labelling, generation

- Having an idea of the limitations and current challenges

Practical sessions / Assignments:

- Libraries: PyTorch, HuggingFace 
- Environment: Google Colaboratory 
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Schedule 
2024-2025

1 26.11 13h-16h 3 (C1) ML Reminder + Intro DL TP1-POO

2 03.12 13h-16h 3 (C2) Intro DL + Embeddings TP2-FFNN

3 10.12 13h-16h 3 (C3) Embeddings + start projects TP3-Embed

- 17.12 - - BREAK

(holidays)

4 07.01 13h-16h 3 (C4) Training a NN TP5-HFData

TP6-TrainFFNN

5 14.01 13h-16h 3 (C5) CNN, RNN TP7-LSTM

TP8-HFTrain

6 21.01 13h-16h 3 Projects

7 28.01 13h-16h 3 (C6) Encoder-decoder, transformer TP9-Biais

- 04.02 - - BREAK

8 11.02 13h-16h 3 (C7) Current challenges → project defences

→Part 1 due

→Part 2 due



Projects
System: - Read a research paper on the chosen task 

- (Implement a non neural baseline system)
- Compare with a neural architecture 
- Augment the system within a multilingual / cross-domain setting

Topics: - Text classification: sentiment analysis, fake news detection, …
- Sequence labelling: named entity recognition, POS tagging, …

Assignments 
(groups 2-3):

- 07/01 : Pre-processing code + report part 1
- Code : data pre-processing 
- Report Part 1 : description of the data and related work

- 09/02 : Code + report part 2 (+ corrected Part 1)
- Code for training and evaluating the system 
- Report Part 2 : describe the system and present the results

- 11/02 : Oral presentation (10-15 mn)



Bibliography and resources
There are many many good resources for more details.

- Neural Network Methods for NLP, Y. Goldberg
- Online courses: 

- Neural Nets for NLP, G. Neubig, 
- Stanford courses with C. Manning (official website: https://web.stanford.edu/class/cs224n/)
- En français : https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home  

- J. Eisenstein course: 
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

I used other resources to build this course, I’ll try to give all the sources used. 
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Neural Methods 
for NLP

Master LiTL --- 2024-2025
chloe.braud@irit.fr

https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl 

Course 1: Machine Learning (reminder) 
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Neural methods for NLP
- 1980’s: Symbolic NLP

- rule-based approach, hand-written rules 
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming 

- 1990’s: ‘Statistical’ NLP
- learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors
- large annotated corpora
- handcrafted features
- rather fast to train, still good baselines

- ≃ 2010: ‘Neural’ NLP 
- combine linear and non-linear functions, over dense inputs
- (very) large annotated corpora and very large unannotated corpora
- improved performance (in general), no feature engineering
- harder to interpret (“black box”)
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Machine Learning for NLP

Applications:

- NLP applications: spam filtering, spell checking, machine translation, summarization, web search, 
recommendation systems, sentiment analysis, hate speech detection…

- NLP tasks: sentence splitting, tokenization, POS tagging, NER, syntactic parsing, semantic parsing, discourse 
parsing, event identification, detecting language change, representation learning, speech recognition... 

Data investigation:

- Looking at how works your model could help understanding your data/problem:
- e.g. Age or Gender bias in models: Gender Bias in Part-of-Speech Tagging and Dependency Parsing 

Data, A. Garimella, C. Banea, D. Hovy, & R. Mihalcea. ACL 2019 
- (Linguistic) Hypothesis checking

- e.g. Scientific fraud: specific writing style? Is writing style predictive of scientific fraud?, C. Braud and A. 
Søgaard. EMNLP 2017

- For 'fun': e.g. see T. Van de Cruys' book of poetry generated via ML 
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Content
Statistical Learning

1. Learning problems
2. Workflow and terminology
3. Linear classification
4. Representation function
5. Basics of POO
Practical session 0: basics of 
POO, implement a ML model with 
Scikit
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Learning problems and scenarios

Most common learning problem in NLP: classification

Most common scenario: supervised learning

→ using pre-trained word embeddings is in fact doing semi-supervised 

learning

13



The different tasks

- Classification: predict a categorical label for each item
- single label: each instance is assigned a single label

- binary: 2 labels, e.g. an email is either a spam or not
- multi-class: > 2 labels, e.g.  sentiment is either positive, negative or neutral

- multi-label: each instance is assigned multiple labels, e.g. The Lord of the Ring is 
classified as: Adventure, Fantasy, Drama

- Sequence labeling / structured prediction: predict a categorical label for each member of a sequence
- e.g. POS tagging, NER...
- can be seen as performing independent classification tasks on each item
- but performance are improved when taking into account the dependence between the 

elements
- Regression: Predict a real value for each item

- e.g.: prediction of stock values, variations of economic variables, house prices..
- rarer for NLP, but e.g. data with depression “scores” (DAIC) 14



The different tasks
- Clustering: Partition items into homogeneous regions

- kind of classification but without classes known a priori
- can be useful if you don't have manual labels or want to explore your data 
- often used for very large data sets

- e.g.: in social network analysis, attempt to identify “communities” within large groups of 
people.

- Ranking: Order items according to some criterion (e.g. Web search) 
- Dimensionality reduction or manifold learning: Transform an initial representation of items into a 

lower-dimensional representation (for pre- processing or visualisation) 
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The learning scenarios
Depend on the annotations you have: 

Supervised learning: 

- we have a set of labeled examples as training data 

- most common for classification and regression
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The learning scenarios
Depend on the annotations you have: 

Supervised learning: 

- we have a set of labeled examples as training data 

- most common for classification and regression

Unsupervised learning:

- we only have unlabeled training data

- e.g.: Clustering and dimensionality reduction 

- often hard to evaluate 
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The learning scenarios
Semi-supervised learning: the training sample consists of both labeled and unlabeled data 
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The learning scenarios
Semi-supervised learning: the training sample consists of both labeled and unlabeled data 

easier to obtain!
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The learning scenarios
Semi-supervised learning: the training sample consists of both labeled and unlabeled data 

Very hard in practice, but many variations: 
- labeled + automatically labeled data

- e.g. sentiment analysis with smileys as (noisy) labels 
- labeled + external resource giving constraints

- e.g. POS tagging with a dictionary
- labeled + labeled data for another task

- multi-task learning 
- labeled + unlabeled: pre-trained word embeddings 

Especially used for transfer learning / domain adaptation: 
- e.g. building a model for a new language or for a new genre of texts 

easier to obtain!
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Supervised classification
Supervised classification:

- the most common scenario for NLP (with supervised structured prediction)
- supervised: input = labeled data points
- classification: assign a category/class to each item, e.g.

- is a word a VERB or a NOUN? 
- Is a document talking about Sport or Politics or Economy? 

Binary vs Multi-class:

2 classes (e.g. positive/negative, comedy/drama) vs more than 2 classes (e.g. positive/negative/neutral, any genre)

Distinction that has an impact 

- on the algorithm: various strategies to deal with MC problems
- on evaluation: various metrics 
- but rather transparent with scikit: algorithms/functions can be used for both binary and MC problems
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Machine Learning: workflow and terminology

The different steps when doing machine learning: 

- (1) preparing data, 
- (2) learning and tuning, 
- (3) predicting and evaluating

Terminology:

- input
- model and parameters
- train/dev/test sets
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Machine Learning
Start with:

- a set of labelled data = data points + (gold) labels
- a function that could be used to compute a label for a data point 

Learning a model:

- Goal: try to get the best function, i.e. that finds the right/gold label 
- Process: iterate over the examples, and adjust the parameters of the function to avoid errors

Evaluating the model:

- Goal: evaluate the performance of the learned model
- Process: once the model is learned / trained, make predictions over unseen data and compute 

some performance metrics 
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Machine Learning
Start with:

- a set of labelled data = data points + (gold) labels → supervised setting
- a function that could be used to compute a label for a data point → classification

Learning a model:

- Goal: try to get the best function, i.e. that finds the right/gold label most often
- Process: iterate over the examples, and adjust the parameters of the function to avoid errors

Evaluating the model:

- Goal: evaluate the performance of the learned model
- Process: once the model is learned / trained, make predictions over unseen data and compute 

some performance metrics 
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Supervised classification
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Workflow: (1) Data preparation
- Define the problem: task? labels? 
- Collect (labeled) data: datasets available online, scikit toy datasets, scrap data…
- Randomly partition your data, i.e. shuffle then split:

- Train / dev / test: e.g. 80-10-10 (or use pre-defined split), in gal train > test 
- Train / test + cross-fold on training set for tuning

- Data description: you need to know your data! 
- Number of training/evaluation examples
- Class distribution: number of examples per class 
- Vocabulary, language, genre, etc…

- Feature extraction/engineering: critical step, reflects prior knowledge 
- Possibly linguistic pre-processing: POS tagging, parsing, NER, etc... 
- Vectorization, normalization 
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Workflow: (2) Learning + Tuning
- Choose a learning algorithm: crucial, especially if training is long 

- Advice: try first with a fast algorithm

- Train: at each training step, 

- update values for the parameters 

- the values for the hyper-parameters are fixed 

- Tune: 

- identify the tunable hyper-parameters 

- search the best values for the hyper-parameters 
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Learning algorithms for classification
- Naive Bayes

- Linear classifiers:

- perceptron 

- passive-aggressive 

- Logistic Regression aka MaxEnt

- linear SVM

- Non linear SVM 

- Neural networks

See the doc on supervised learning

See the tutorial: working with text
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Workflow: (2) Learning + Tuning
- Choose a learning algorithm: crucial, especially if training is long 

- Advice: try first with a fast algorithm

- Train: at each training step, 

- update values for the parameters 

- the values for the hyper-parameters are fixed 

- Tune: 

- identify the tunable hyper-parameters 

- search the best values for the hyper-parameters 
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Model and learning function
Remember that we are learning a function:

- Target function: the true function f we want to learn / 

approximate.

- Hypothesis (sometimes called model): a function h that 

we hope is similar to the target.
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Supervised learning :

- Based on a training sample S = {(x
i
 , y

i
 )}

1,m 

- we look for a on cherche an underlying law of dependence / regularities

e.g. a function h as close as possible to f (the target function) with y
i 
= f(x)

many possible hypothesis



Learning a model
Remember that we want to avoid errors, find the best hypothesis:

- Loss function: measures the difference, or loss, between a predicted label and a true label.
- L:Y ×Ŷ → ℝ       ~ ‘count the number of times’ y ≠ ŷ (also called cost)
- zero-one loss, squared loss, hinge loss...

The learning algorithm tries to get the smaller possible loss on the examples it is given: 
- if the predicted label is wrong

- modifies the values of the weights w so that next time we compute the label, we get the right one i.e. ŷ = w.x
- if the predicted label is right, don’t modify anything (except if we want some margin)

The parameters W and b are set to minimize L (usually, the sum of the losses over the training examples)

L(Ө) = 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) → The loss should decrease with learning (less and less errors)

Thus training correspond to finding this minimum (= optimization problem):

Ô = argminӨ L(Ө) = argminӨ 1/n ∑
i=1..n

 L(f(xi ; Ө), yi)

33



Workflow: (2) Learning + Tuning
- Choose a learning algorithm: crucial, especially if training is long 

- Advice: try first with a fast algorithm (for DL= smaller layers, smaller input size…) 

- Train: at each training step, 

- update values for the parameters 

- the values for the hyper-parameters are fixed 

- Tune: 

- identify the tunable hyper-parameters 

- search the best values for the hyper-parameters 
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Tuning / Optimization
- We learn the parameters of the model (or weights, w or θ)
- We set values for the hyper-parameters associated to the learner

→ Tuning = searching for the best values for hyper-parameters e.g. smoothing, regularization strength etc

Tuning process:

1. identify the hyper-parameters of your model (SciKit: estimator.get_params()) 
2. choose the right performance metrics to optimize (accuracy, F1, rouge …)
3. choose the right procedure → always set apart a test set:

a. use a validation / development set:
i. define a set of possible values for each hyper-parameter

ii. train a model for each subset of values and evaluate on the dev set 
iii. compare the results: keep the model giving the best score on dev 
iv. evaluate (only) this model on the test set

b. n-fold cross-validation: esp. when small amount of data 
i. very easy with scikit: grid-search cross-validation 
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Learning is not memorizing
Consistent model:

- no error on train set

- but poor performance on test,

i.e. memorize the data, unable to generalize 
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Overfitting
- Very complex decision surface: no generalization to unseen data 

- Less complex: might generalize better in spite of some errors

→ Solution = regularization: constraining a model to make it simpler

= add a regularization term to minimize the complexity of the model, i.e. an hyper-parameter corr. to the 

strength of the regularization 

"The green line represents an overfitted model and the black line represents a 

regularized model. While the green line best follows the data, it is too dependent on 

the training data" (Mohri) 

39



Learning a model
Remember that we want to avoid errors, find the best hypothesis:

- Loss function: measures the difference, or loss, between a predicted label and a true label.
- L:Y ×Ŷ → ℝ       ~ ‘count the number of times’ y ≠ ŷ (also called cost)
- zero-one loss, squared loss, hinge loss...

The learning algorithm tries to get the smaller possible loss on the examples it is given: 
- if the predicted label is wrong

- modifies the values of the weights w so that next time we compute the label, we get the right one i.e. ŷ = w.x
- if the predicted label is right, don’t modify anything (except if we want some margin)

The parameters W and b are set to minimize L (usually, the sum of the losses over the training examples)

L(Ө) = 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) → The loss should decrease with learning (less and less errors)

Thus training correspond to finding this minimum (= optimization problem):

Ô = argminӨ L(Ө) = argminӨ 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) + λ R(Ө)

40
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(3) Prediction + Evaluation
Using the final values for parameters and hyper-parameters, evaluate on test

- Use your model to make predictions on the unseen test data (ypred ) 

- Compute a score by comparing y
true

 and y
pred

 for each example in the test 

- Compare to other systems: baselines (on dev first), state-of-the-art...

It is important to:

- Keep track of the values used (final and tested) for the hyper-parameters for reproducibility!

- Choose a / several relevant evaluation metrics 

- Propose relevant baselines
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Classification metrics
For classification, we mostly use:

- Global scores: accuracy, averaged F1 

- Per class scores: precision, recall, F1

- + confusion matrix: better understand the system behaviour

Accuracy is the most common metrics:

- fraction of correctly predicted samples 

- e.g. 90 well predicted over 100 examples: accuracy = 90%

- issue esp. with imbalanced data, 

- e.g. Cancer detection: 90 non cancer, 10 cancer is 90% a good score for predicting cancer?

- we want to predict well the positive class
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Evaluating a model
Report one or several metrics:

- depend on the setting (binary or multi-class) and task 
- classification: Accuracy, Macro/weighted F1, prec/rec/F1 per class 

Compare to other systems:

- baselines: simplest feature/algo, dummy classifier (most frequent class) 
- state-of-the-art: systems from the literature, reported or reproduced, compare different algorithms
- compare different feature sets
- compare different datasets: prove the robustness of your method over different genres, languages…

Try to understand your model:

- Scikit: classifiers have a coef_ parameters that allows to inspect the weights associated to each feature
- eli5: a library to debug ML models, compatible with Scikit, see the doc 

- try to relate observed behaviour to a priori knowledge, esp. linguistic 
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Input: examples, features and labels
Examples or samples / instances / data points = items of data used for learning or evaluating (m examples)

Features = set of attributes associated to an example (n features) 

A set of examples: a matrix X of size m×n

- 1 example = 1 row, i.e. a vector x of size n

Labels = values assigned to examples; for classification:

- General label set: Y of p classes
- Labels for all examples = a list of size m, e.g. ytrue 

- 1 label for 1 example = 1 value y in the list 
- labeled example = a pair (x, y)

Dataset for ML = X and ytrue 
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Model, Parameters and hyper-parameters
Model: what we learn is a model of our data

- We sometimes call model the weights learned, i.e. the importance that the model associates 

with each feature 

- e.g. Sentiment analysis: 'love':+10, 'hate':-42, ‘green’:0…
- Weights are saved in a vector w (or θ) of size n(+1)

- Each of these weights is a parameter/coefficient of the model

Hyper-parameters (or free parameters, part of the model):

- there could be parameters dependent on the learning algorithm used 

- setting the values for these hyper-parameters is called tuning the model 
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Train / Dev / Test sets
Training sample/set: examples used to train a learning algorithm, to learn/fit a model

Development/validation set: examples used to tune the hyper-parameters of a learning algorithm

Test/evaluation set: examples used to evaluate the performance of a learning algorithm

- The test set is separate from the train/dev sets

- The test set is not made available in the learning stage

Searching for the best model on the test set = 
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Linear classification

- Binary classification: linear functions, weight matrix and bias

- Reminder: Logistic Regression = linear scores + logistic function

- Loss function

ML → DL: 

- Change here = power of non linearity 

- → LR performed by each neuron 
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Why Linear classifiers?
Remember that: ML is about finding a function h that best approximate the 

target function f 

- Searching over the set of all possible functions is very hard

- We thus restrict ourselves over specific families of functions, the hypothesis 

class e.g. the space of all linear functions with d
in

 inputs and d
out

 outputs
- inject the learner with inductive bias: a set of assumptions about the desired solution

- facilitate procedures for searching solutions

- The hypothesis class also determines what can and cannot be represented 

by the learner!
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Linear Classifiers
Hypothesis class = high-dimensional linear functions, of the form:

f(x) = W.x + b             with x ∈ Rd_in, W ∈ Rd_inxd_out, b ∈ Rd_out

- Searching over the space of functions = searching over the space of parameters, i.e. finding the best Ө = 

W, b.

- Sometimes, to make the parameterization explicit, we write: f(x ; W, b)

- In binary classification, w is a vector

Recall on linear algebra:  W.x  = Σ
j
 w

j
 x

j 
= w

0
.x

0
 + w

1
.x

1
 + ... + w

n
.x

n
 (+b) 

With n features, we have:

- a data point: x =< x
0
, x

1
, ..., x

n
 > 

- the weights: w =< w
0
, w

1
, ..., w

n
 >

51



Linear Classifiers 
The decision boundary is a linear function of the input: in the binary case, it's a line (2 dimensions / 

features), a plane (3 d) or an hyperplane (n d) separating the two classes 
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Linear Classifiers 
The decision boundary is a linear function of the input: in the binary case, it's a line (2 dimensions / 

features), a plane (3 d) or an hyperplane (n d) separating the two classes 
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Introducing non-linearity
SVM with non-linear kernel

- mapping of the original input feature space to a higher-dimensional feature space,

- with the hope that data may be linearly separable in this new space 
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Introducing non-linearity
SVM with non-linear kernel

- mapping of the original input feature space to a higher-dimensional feature space,

- with the hope that data may be linearly separable in this new space 

Neural Network: keep 
non-linearity and 
transformation of the input 
space.
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Summary
- Linear functions: a great class of hypothesis for ML, worked for decades
- Non-linearity: seems useful, since many problems are non linear, e.g. XOR 

problem
- Learning is about solving an optimization problem, i.e. minimizing a 

function called the loss (while keeping the complexity of the model 
‘reasonable’). 
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Representation function

- “Feature engineering”: 
- choose features, e.g. words, POS, NE, gaze, meta-data …
- represent information (vectorizing, normalizing): bow, n-grams ; TF-IDF, …

ML → DL: change here = NN seen as representation learners

ML → DL: sparse vs dense inputs 
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Feature representation
Main issue: 

- how to represent text? 

e.g. how to transform a sentence into a vector of numerical values?

Bag-of-Words (BOW):

- one vector where each dimension is a word in our vocabulary

- if the word / feature is present in the document, associate a specific value
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BOW: One-hot encoding

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

18 words / dimensions
59



BOW: One-hot encoding
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- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1
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- If the word is present in the sentence / document, value = 1

BOW: One-hot encoding
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- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

BOW: One-hot encoding
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- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1
- The other words: value = 0 → present in the training data, 

but not in this specific sentence / document

BOW: One-hot encoding
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- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1
- The other words: value = 0 → present in the training data, 

but not in this specific sentence / document

BOW: One-hot encoding



Easy to use: now the computer can “read” your sentence

            The elephant sneezed at the sight of potatoes.

            <1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0> 

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important
- Normalizing with TF-IDF: take into account the distribution of the words in the entire 

corpus
- “the”: very frequent but not very crucial
- “magnificent”: rare, but crucial
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Easy to use: now the computer can “read” your sentence

            The elephant sneezed at the sight of potatoes.

            <1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 0> 

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important (?)
- Normalizing with TF-IDF: take into account the distribution of the words in the entire 

corpus
- “the”: very frequent but not very crucial
- “magnificent”: rare, but crucial
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Bag-of-Words

‘the’



Easy to use: now the computer can “read” your sentence

            The elephant sneezed at the sight of potatoes.

            <1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 0> 

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important
- Normalizing with TF-IDF: take into account the distribution of the words in the 

entire corpus
- “the”: very frequent but not very crucial
- “magnificent”: rare, but crucial
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Bag of any features: one-hot encoding
Can be used to take into account any information, e.g. POS tags:

     The/D elephant/N sneezed/V at/P the/D sight/N of/P potatoes/N

70

1 1 1 1 0

D  N  V  P  A

We can encode any information: 
- presence of a syntactic relation
- presence of a Named Entity / numbers /dates / amounts
- word associated to a sense if disambiguated
- words in the next sentence
- semantic classes…

Also extra-linguistic features : gender of the writer, number of likes ...



One-hot representation

- Defining features has to be done manually: require expertise and tests

- A word is represented with a one-hot vector: easy to implement
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Problems and extensions
1. Very high dimensional: 

- 18 dimensions for the previous sentence but could be 100k dimensions! 

- Curse of dimensionality (nb of parameters proportional to nb of features) and 

sparsity (many many zeros): makes learning hard, prone to overfitting

- Solutions:

- ignoring specific words, e.g. stop words

- keeping only the most frequent / highest TF-IDF

- grouping words: semantic categories, clusters (Brown)
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Problems and extensions
1. Very high dimensional: 

- 18 dimensions for the previous sentence but could be 100k dimensions! 
- Curse of dimensionality (nb of parameters proportional to nb of features) and 

sparsity (many many zeros): makes learning hard, prone to overfitting

- Solutions:
- ignoring specific words, e.g. stop words
- keeping only the most frequent / highest TF-IDF
- grouping words: semantic categories, clusters (Brown)

2. Bag-of-Words representation ignores word ordering and context
- crucial: “I don’t know why I like this movie.” vs “I don’t like this movie and I know why.”
- solutions: n-grams, i.e. use combination of multiple words e.g. trigrams “do not like”...

- but even more dimensions!

⇒ Representation learning = power of Neural Networks 
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Basics of OOP (POO in French)

74

Object Oriented Programming:

- a programming paradigm (vs functional e.g. Camel / Haskell, logic e.g. Prolog, 
descriptive e.g. LateX / HTML…)

- many languages: Ada, C++, Python, Java

Python: multi paradigme = 

- object but also functional, and structured (hierarchical organization of the code, 
small pieces of code, extensive use of control and repetition, block structures…)

→ Python libraries are based on the object paradigm: description of classes that can 
be used to perform some operation



Objects 

An object is:

- a concept, an idea, an entity in the world
- that as different properties / features / an internal structure
- and also has a specific behavior / a way to interact with other entities
- analogy with real world: 

- we have different types of entities e.g. cars, computers, cats… and also abstract ones such as time 
or a client 

- with different ‘behaviours’: cars start, run, stop, turn … computers start, bug… cats meow..
- we want to represent them in the computer through their properties and 

behaviors

Object = a data structure that can answer to specific messages
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Objects and classes
Class-based OOP: objects are instances of classes = types

- we have different types of entities in the world, such as cars or cats
- we have different instances of the same type: my cat is different from my neighbors’ 

cat

Class = object type: 

- extend the notion of type such as int, char etc
- used to define the properties of the corresponding entities and how they interact, e.g. 

Car

Object = class instance: 

- a specific entity pertaining to a class, e.g. my_car
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Objects and classes
Class-based OOP: objects are instances of classes = types

- we have different types of entities in the world, such as cars or cats
- we have different instances of the same type: my cat is different from my neighbors’ 

cat

Class = object type: 

- extend the notion of type such as int, char etc
- used to define the properties of the corresponding entities and how they interact, e.g. 

Car

Object = class instance: 

- a specific entity pertaining to a class, e.g. my_car (of type Car)
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Classes
→ The modelization step is crucial: how well we define these classes will make 
for a good, reusable, easy to modify code (or not)

- To define a specific type of object we need to give:
- a specific collection of data = fields, attributes, properties
- a specific collection of behaviors = methods, procedures 
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Classes
→ The modelization step is crucial: how well we define these classes will make 
for a good, reusable, easy to modify code (or not)

- To define a specific type of object we need to give:
- a specific collection of data = fields, attributes, properties
- a specific collection of behaviors = methods, procedures 
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Note that we have:
- names for attributes
- verbs for methods

→ a very useful convention



Classes in Python
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Notebook: https://colab.research.google.com/drive/1x1cDbQbu87RGFHRavwC2YRhGvNDj1MhK?usp=sharing  

class Car:
Here we define the properties and behavior

def __init__( arguments)
- the constructor = the method 

explaining how to create a new object 
of this type

- details all the properties / attributes / 
fields 

https://colab.research.google.com/drive/1x1cDbQbu87RGFHRavwC2YRhGvNDj1MhK?usp=sharing


Classes in Python
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Notebook: https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing 

class Car:
Here we define the properties and behavior

def __init__( arguments)
- the constructor = the method 

explaining how to create a new object 
of this type

- details all the properties / attributes / 
fields 

when calling it:
- just use the name of the class = calls 

the constructor
- the arguments can be used to specify 

the value for the newly created object

https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing


Classes in Python

82

Notebook: https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing 

class Car:
Here we define the properties and behavior

def __init__( arguments)
- the constructor = the method 

explaining how to create a new object 
of this type

- details all the properties / attributes / 
fields 

when calling it:
- just use the name of the class = calls 

the constructor
- the arguments can be used to specify 

the value for the newly created object

When I create / instantiate a specific object / instance: I specify the 
unique shape of my object, its personal attributes

https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing


Methods

def present(self, 
arguments):

I can define a method that 
describes a possible 
behavior of my object

83

- the method is then ‘applied’ to an object / an instance of the class
- in its definition, the method can use the fields of the object (here self.name or self.color)



So, what is self?

self is used within a class 
definition to refers to the 
current instance, to ‘myself’

→ self.name ⇒ the name of the 
instance I’m currently defining
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So, what is self?

self is used within a class 
definition to refers to the current 
instance, to ‘myself’

→ self.name ⇒ the name of the 
instance I’m currently defining

Why it is important?

→ we can modify the current 
object’s data fields e.g. self.color 
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So, what is self?

self is used within a class definition to 
refers to the current instance, to ‘myself’

→ self.name ⇒ the name of the instance 
I’m currently defining

Why it is important?

→ we can modify the current object’s 
data fields 

→ we can make use of another instance 
of the same type within a class definition
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So, what is self?

self is used within a class definition to 
refers to the current instance, to ‘myself’

→ self.name ⇒ the name of the instance 
I’m currently defining

Why it is important?

→ we can modify the current object’s 
data fields 

→ we can make use of another instance 
of the same type within a class definition
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Exercise…



So, what is self?

self is used within a class definition to 
refers to the current instance, to ‘myself’

→ self.name ⇒ the name of the instance 
I’m currently defining

Why it is important?

→ we can modify the current object’s 
data fields 

→ we can make use of another instance 
of the same type within a class definition
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Summary 

- class: defines a type of objects, by 
specifying: 

- its properties = fields ie. 
self.my_first_property = [initialize 
with specific value or using argument 
of the constructor]

- its behavior ie.                                                                    
def i_can_do_that( self, [arguments])

- an object (a variable) is an instance of a 
class that has:

- specific values for the properties
- on which we can call all the methods defined in 

the class
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Summary 

- class: defines a type of objects, by 
specifying: 

- its properties = fields ie. 
self.my_first_property = [initialize 
with specific value or using argument 
of the constructor]

- its behavior ie.                                                                    
def i_can_do_that( self, [arguments])

- an object (a variable) is an instance of a 
class that has:

- specific values for the properties
- on which we can call all the methods defined in 

the class
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Side note: Python recommends UpperCamelCase for class names, 
CAPITALIZED_WITH_UNDERSCORES for constants, and snake_case for other names.

https://www.wikiwand.com/en/Python_(programming_language)


Inheritance
- used to define 

types and 
subtypes

- parent class: the 
most abstract / 
prototypical 

- child class(es): 
implement distinct 
features

91

Parent class:
A person has: 

- a name 
- an idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post



Inheritance
- used to define 

types and 
subtypes

- parent class: the 
most abstract / 
prototypical 

- child class(es): 
implement distinct 
features
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Parent class:
A person has: 

- a name 
- an idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post

here is where you say 
that it’s a child class of 
Person



Inheritance
- used to define 

types and 
subtypes

- parent class: the 
most abstract / 
prototypical 

- child class(es): 
implement distinct 
features

93

Parent class:
A person has: 

- a name 
- an idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post

here is where you say 
that it’s a child class of 
Person

+ you can call the 
constructor of the 
parent to fill the 
corresponding fields 
using super



Inheritance 
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Parent 
class:
A person has: 

- a name 
- an 

idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post

Exercise…



Inheritance 
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Parent 
class:
A person has: 

- a name 
- an 

idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post

Exercise…

Note that:
- We can also call the method from 

the class Person on an employee 
object



Inheritance 
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Parent 
class:
A person has: 

- a name 
- an 

idnumber

Child class:
An employee also has: 

- a name 
- an idnumber

but in addition it has:
- a salary 
- a post

Exercise…

Note that:
- We can also call the method from 

the class Person on an employee 
object

- We can redefine  a method: here 
details() is defined in both classes, 
but here it’s the version in 
Employee class that will be used



Summary 

- class: defines a type of objects, by 
specifying: 

- its properties = fields ie. 
self.my_first_property = [initialize 
with specific value or using argument 
of the constructor]

- its behavior ie.                                                                    
def i_can_do_that( self, [arguments])

- an object (a variable) is an instance of a 
class that has:

- specific values for the properties
- on which we can call all the methods defined in 

the class

97
+ an object has the properties and the methods of his parents



Ok, so why does that matter?...

They are all 
classes
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Same in PyTorch

- Here we define a class that 
defines a specific type of 
network + it inherits from the 
class nn.Module
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Same in PyTorch

- Here we define a class that 
defines a specific type of 
network + it inherits from the 
class nn.Module

- The constructor tells us that 
this network has 

- different properties: conv1 and 
conv2, fc1, fc2 and fc3 

- a method called forward(..)
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Same in PyTorch

- Here we define a class that 
defines a specific type of 
network + it inherits from the 
class nn.Module

- The constructor tells us that this 
network has different 
properties: conv1 and conv2, 
fc1, fc2 and fc3 ; and that it has 
a method called forward(..)

- Here we instantiate an object of 
this class, thus a concrete 
network of this type
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TP1: Sentiment analysis with Scikit

In the practical session, we will implement a system for sentiment 

classification of movie reviews. 

- pre-process data (BoW, n-grams)

- train and evaluate a model

- compare different algorithms

- investigate model decisions

https://colab.research.google.com/drive/1icJsbnjykYRpvNiJYJDDzip9RV

WVhL-O?usp=sharing 
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https://colab.research.google.com/drive/1icJsbnjykYRpvNiJYJDDzip9RVWVhL-O?usp=sharing
https://colab.research.google.com/drive/1icJsbnjykYRpvNiJYJDDzip9RVWVhL-O?usp=sharing


Sources

- Foundations of Machine Learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, MIT Press

- Comparing SVM and NN:

- Short answer: On small data sets, SVM might be preferred. 

https://stats.stackexchange.com/questions/510052/are-neural-networks-better-than-svms

- https://www.baeldung.com/cs/svm-vs-neural-network

- https://dair.ai/notebooks/nlp/2020/03/19/nlp_basics_tokenization_segmentation.html

- https://www.infoq.com/presentations/nlp-practitioners/

- https://github.com/sebastianruder/NLP-progress

- Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. 

Hüllermeier, E., Waegeman, W. Mach Learn 110, 457–506 (2021). 

https://doi.org/10.1007/s10994-021-05946-3 (Picture on hypothesis space)

-
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https://stats.stackexchange.com/questions/510052/are-neural-networks-better-than-svms
https://www.baeldung.com/cs/svm-vs-neural-network
https://dair.ai/notebooks/nlp/2020/03/19/nlp_basics_tokenization_segmentation.html
https://www.infoq.com/presentations/nlp-practitioners/
https://github.com/sebastianruder/NLP-progress
https://doi.org/10.1007/s10994-021-05946-3

