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- 17.12 - - BREAK
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TP6-TrainFFNN

5 14.01 13h-16h 3 (C5) CNN, RNN

→(14/01) Part 1 due

TP7-LSTM

TP8-HFTrain

6 15.01 13h-16h 3 Projects

7 28.01 13h-16h 3 (C6) Encoder-decoder, transformer TP9-Biais

- 04.02 - - BREAK →(09/01) Part 1 due

8 11.02 13h-16h 3 (C7) Current challenges → project defences



Reminder: Feed Forward Neural Network

Let’s go back on:
- general architecture
- computation through the network



Summary

- an architecture with ‘layers’

- dense inputs: ‘word 

embeddings’

- hidden layers = learning a 

representation
- a linear function

- a non-linear function

input layer hidden layers output layer
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Feed Forward NN: computation

z  = x1w1 + x2w2 + b
y = σ(z) 
   = 1 / (1+exp(−z))
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Feed Forward: computation through the network
embedding layer

binary

x: ( ,  )

W2: ( ,  )

b2: ( ,  )

h2 = x.W2 + b2 : ( ,  )

y = h2.W3 : ( ,  )



Feed Forward: computation through the network
embedding layer

binary

x: (1, 12)

W2: (12, 3)

b2: (3, 1)

h2 = x.W2 + b2 : (1, 3)

y = h2.W3 : scalar



Feed Forward NN: computation
See an example with a single unit:

http://renom.jp/notebooks/tutorial/beginners_guide/feedforward_example_1/
notebook.html

See a full example:

http://renom.jp/notebooks/tutorial/beginners_guide/feedforward_example_2/
notebook.html

http://renom.jp/notebooks/tutorial/beginners_guide/feedforward_example_1/notebook.html
http://renom.jp/notebooks/tutorial/beginners_guide/feedforward_example_1/notebook.html
http://renom.jp/notebooks/tutorial/beginners_guide/feedforward_example_2/notebook.html
http://renom.jp/notebooks/tutorial/beginners_guide/feedforward_example_2/notebook.html


Content
Training a Neural Network

1. Non-linear functions
2. Output function
3. Loss and regularization
4. Training and backpropagation 
5. Recap: Hyper-parameters

Practical session: testing varied 
learners and hyper-parameters



Non-linear activation functions
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- Power of the neural networks: introduction of non linearity
- Take a linear combination of an input, and pass through a non-linear 

function = activation function



Activation functions
Combining functions: If we have two linear functions, then their combination is also a 

linear function

- f(x)=Ax+b 

- g(x) = Cx + d

- What is f(g(x))?

f(g(x)) = A(Cx+d) + b 

             = ACx + (Ad+b) → i.e. Mx + v (AC is a matrix and Ad+b is a vector)

→ Combining linear functions does not add new power
→ We need non-linear functions: which one could be used?



- range x → [0,1]
- was the canonical function 
- considered deprecated, other 

functions prove to work much better 
empirically
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- range x → [-1,1]
- Hard-tanh: approximation of tanh 

which is faster to compute
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- clips each value x < 0 at 0

- train faster

- less computationally expensive operation

- Be careful:

- Many ReLU units "die" →gradients = 0 forever

- Solution: careful learning rate choice
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Common non-linearities
- Currently: no good theory as to which non-linearity to apply in which conditions 

→ choosing a good non-linearity for a given task is for the most part an empirical 

question 

→ Sigmoid considered to be deprecated ; both ReLU and tanh work well, experiment 

with both

Note: why not other functions? these ones have gradients that are easy to compute!



Common non-linearities
# In pytorch, most non-linearities are in torch.functional (we have it imported as F)
# Note that non-linearities typically don't have parameters like affine maps do.
# That is, they don't have weights that are updated during training.
import torch
import torch.nn as nn
import torch.nn.functional as F

data = torch.randn(2, 2)
print(data)
print(F.relu(data))

tensor([[-0.5404, -2.2102],
        [ 2.1130, -0.0040]])
tensor([[0.0000, 0.0000],
        [2.1130, 0.0000]])

OUT



Output transformation function

What do we do with 

all these 

calculations?

How do we get our 

class prediction?

input layer hidden layers output layer 20



Output transformation function: SoftMax

Softmax function, or normalized exponential 
function: 

- it’s also a non-linearity, but only used at the 
end

- squashes a vector in the range (0, 1)
- all the resulting elements add up to 1

→ takes in a vector of real numbers 
→ returns a probability distribution  (i.e. vector of 
class probabilities)
→ used to transform a score into a probability

21



SoftMax function

- During training: transform the output to compute the loss

- At test time, used to compute the predictions

# Softmax is also in torch.nn.functional
data = torch.randn(5)
print(data)
print(F.softmax(data, dim=0))
print(F.softmax(data, dim=0).sum())  # Sums to 1 because it is a distribution!
print(F.log_softmax(data, dim=0))  # theres also log_softmax

tensor([ 1.3800, -1.3505,  0.3455,  0.5046,  1.8213])
tensor([0.2948, 0.0192, 0.1048, 0.1228, 0.4584])
tensor(1.)
tensor([-1.2214, -3.9519, -2.2560, -2.0969, -0.7801])

OUT
Using the log-softmax 
will punish bigger 
mistakes in likelihood 
space higher.



Objective function

→ same as for linear models

The objective function is the function that your network is being trained to minimize, in which 

case it is often called a loss function or cost function.

1. choose a training instance, 

2. run it through your neural network, 

3. compute the loss of the output

4. update the parameters of the model accordingly

- if your model is completely confident in its answer, and its answer is wrong, your 

loss will be high

- if it is very confident in its answer, and its answer is correct, the loss will be low

- in any case, we need to modify the parameters if the model is wrong



Understanding the cross-entropy loss 
For example, in the case of Binary Classification, cross-entropy is given by:

l = - ( y log(p)  +  (1 - y) log(1 - p) )

where:

● p is the predicted probability, and y is the indicator ( 0 or 1)  in the case of binary classification

Let's walk through what happens for a particular data point. Let's say the correct indicator is i.e, y=1. In this case,

l = - (  1×log(p) + (1 - 1)  log(1 - p)  ) 

 

source: https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx 

https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx
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=> log < 0
=> loss > 0
=> high loss, 
bad prediction!

https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx


Understanding the cross-entropy loss 
For example, in the case of Binary Classification, cross-entropy is given by:

l = - ( y log(p)  +  (1 - y) log(1 - p) )

where:

● p is the predicted probability, and y is the indicator ( 0 or 1)  in the case of binary classification

Let's walk through what happens for a particular data point. Let's say the correct indicator is i.e, y=1. In this case,

l = - (  1×log(p) + (1 - 1)  log(1 - p)  ) = - (  1×log(p)  )
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- our loss function will reward the model for giving a correct prediction (high value of p) with a low loss;

- however, if the probability is lower, the value of the error will be high (bigger negative value), and therefore it penalizes 

the model for a wrong outcome.

- Extension to multi-class: 

- The cross-entropy is computed over a distribution of probability (thus SoftMax over the scores)

source: https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx 

https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx


With Pytorch
For binary classification (1 output), you can either:

- apply nn.BCELoss to a sigmoid layer

- apply nn.BCEWithLogitsLoss to your output layer: combines a Sigmoid layer and the BCELoss in one single 

class.

For multi-class classification (2 or more labels), you can either:

- apply nn.NLLLoss to a LogSoftmax layer

- apply nn.CrossEntropyLoss to your output layer: combines nn.LogSoftmax() (log(softmax(x))) and 

nn.NLLLoss() in one single class. 

https://pytorch.org/docs/1.10.1/nn.html#loss-functions 

https://pytorch.org/docs/1.10.1/generated/torch.nn.BCELoss.html#torch.nn.BCELoss
https://pytorch.org/docs/1.10.1/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss
https://pytorch.org/docs/1.10.1/nn.html#loss-functions


Where we are

To summarize:

- we have inputs represented as vectors
- from them, we can compute some (output) values = computation 

using linear + non linear functions based on some parameters W
- the output values are transformed into a probability distribution 

(using SoftMax) 
- then we compute the loss based on the gold class and the 

probabilities
- finally, we need to update the parameters W depending on the loss
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Training

Stochastic Gradient Descent:  looking for the minimum of the loss 

→ linear models: gradient-based methods work well since convex objective function

→ neural networks (non-linear): 

- not convex, thus may get stuck in a local minima, but good results in practice
- gradient calculation is hard for complex NN, but can be done efficiently using the 

backpropagation algorithm = computing the derivatives of a complex expression using 
the chain rule, while caching intermediary results

“Deep Learning, to a large extent, is really about 
solving massive nasty optimization problems”



Remember derivatives?

- Maximum and minimum are 
located where derivative = 0

- Max or min? Look at the value 
of the derivative around the 
critical values = gives the 
direction, the slope of the 
curve, the rate of change



Gradient = multiple derivatives
The gradient is the derivative of a multi-variable function / a partial derivative with respect to its inputs.

→ if a function takes multiple variables, such as x and y, it will have multiple derivatives: the value of the 

function f(x,y) will change when we “wiggle” x (df/dx) and when we wiggle y (df/dy).

→ We can represent these multiple rates of change in a vector, with one component for each derivative. 

Thus, a function that takes 3 variables will have a gradient with 3 components

→ If we have two variables, then our 2-component gradient can specify any direction on a plane. Likewise, 

with 3 variables, the gradient can specify any direction in 3D space to move to increase our function.



Gradient?!

The gradient is a fancy word for derivative, rate of change of a function. It’s a vector (a direction to move) that:

- Points in the direction of greatest increase of a function 
- The higher the gradient, the steeper the slope
- Is zero at a local maximum or local minimum (because there is no single direction of increase) → stop learning

Imagine a blindfolded man who wants to climb to the top 
of a hill with the fewest steps along the way as possible: 

- He might start climbing the hill by taking really big steps 
in the steepest direction

- As he comes closer to the top, however, his steps will 
get smaller and smaller to avoid overshooting it. 



Gradient 

- a gradient = a vector that contains the direction of the steepest step 

- Now, once we have the direction we want to move in, we must 

decide the size of the step we must take → the learning rate. 

- At any point of our curve, we can define a plane that is tangential 
to the point. 

- Then, we can have infinite directions on this plane. Out of them, 
precisely one direction will give us the direction in which the 
function has the steepest ascent. This direction is given by the 
gradient.

- The direction opposite to it is the direction of steepest descent. 
This is how the algorithm gets its name. We perform descent 
along the direction of the gradient → Gradient Descent.



Gradient descent

Goal finding a minimum (it’s more about hiking down to the bottom of a valley)

- w is the weight vector to be updated
- the minus sign refers to the minimization part of gradient descent, take the opposite 

direction of the gradient
- the alpha in the middle is the learning rate 
- the gradient term ( Δf(w) ) is simply the direction of the steepest ascent

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/ 

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/


Gradient descent

Goal: find the values of w and b that correspond to 
the minimum of the cost function

- initialize w and b with some random numbers
- Gradient descent then starts at that point 
- takes one step after another in the steepest 

downside direction
- until it reaches the point where the cost 

function is as small as possible.

https://builtin.com/data-science/regression-machine-learning
https://builtin.com/data-science/regression-machine-learning


Learning rate

Learning rate: determines how big the steps of the gradient descent are

→ we must set the learning rate to an appropriate value, which is neither too low nor too high

- if the steps it takes are too big, it may not 
reach the local minimum because it 
bounces back and forth between the 
convex function 

- If we set the learning rate to a very small 
value, gradient descent will eventually 
reach the local minimum but that may take 
a while



Does it work?
A good way to make sure gradient descent runs properly is by plotting the cost function during training

- put the number of iterations on the x-axis and the 
value of the cost-function on the y-axis

- see the value of your cost function after each 
iteration of gradient descent, 

→ provides a way to easily spot how appropriate your 
learning rate is

- the cost function should decrease after every 
iteration

- When the cost remains more or less on the same 
level, it has converged



Gradient descent



Type of Gradient Descent
Three types of gradient descent, differ in the amount of data they use: 

Batch gradient descent (vanilla gradient descent): calculates the error for each example, but the 

model get updated only after all training examples have been evaluated (after each training epoch).

- computational efficient, produces a stable error gradient and a stable convergence

- the stable error gradient can sometimes result in a state of convergence +  the entire training 

dataset has to be in memory



Type of Gradient Descent
Stochastic gradient descent (SGD) calculates the error AND update the parameters for each training 

example within the dataset 

- Depending on the problem, this can make SGD faster than batch gradient descent

- The frequent updates are more computationally expensive + the frequency of those updates 

can result in noisy gradients, which may cause the error rate to jump around instead of slowly 

decreasing.



Type of Gradient Descent
Mini-batch gradient descent: it’s a combination of the concepts of SGD and batch gradient 
descent. It simply splits the training dataset into small batches and performs an update for 
each of those batches. 

- balance between the robustness of stochastic gradient descent and the efficiency of 
batch gradient descent

Common mini-batch sizes range between 50 and 256 (but no clear rule).

This is the go-to algorithm when training a neural network.

https://builtin.com/data-science/recurrent-neural-networks-and-lstm


Gradient descent
- Compute gradient of parameters with regard to loss function to find minimum→ 

take steps in right direction

- Size mini-batch: balance between better estimate and faster convergence

- Gradients over different parameters (weight matrices, bias terms, embeddings, ...) 

efficiently calculated using backpropagation algorithm (i.e. compute the gradient of 

the cost function)

- No need to carry out derivations yourself: automatic tools for gradient computation

https://www.deeplearning.ai/ai-notes/optimization/ 

https://www.deeplearning.ai/ai-notes/optimization/


And now what is backpropagation?
Δf(wn) est le gradient de f en wn → comment calcule-t-on ce gradient ?

- Normalement on devrait calculer les dérivés partielles et les évaluer mais calculer les fonctions dérivées partielles est 
très coûteux si la fonction est compliquée et il y a autant de dérivées partielles que de paramètres (des millions !)

- La backpropagation permet de faire ça de manière efficace : on ne calcule que la valeur de la dérivée partielle au 
point considéré et non pas la fonction dérivée partielle

→ Cf l’image ci-après pour la fonction f(x,a,b)  (= graphe de calcul, par lequel on peut représenter tout NN)

w1, …, wn

Le fonctionnement de l’algorithme :
- algorithme feedforward: calculs dans le sens 

forward/direct et on note les résultats des calculs 
pour chaque noeud (en bleu)

- Ensuite on parcourt les noeuds dans le sens 
inverse, pour calculer la dérivée partielle de f par 
rapport au noeud (en rouge)

- pour calculer les valeurs des dérivées partielles de 
chaque nœud, on a besoin des valeurs des nœuds 
parents, d’où la nécessité de faire Feedforward

https://apprendre-le-deep-learning.com/comprendre-backpropagation/ 

f(x, a, b) = (x * a + b)2

https://apprendre-le-deep-learning.com/comprendre-backpropagation/


General workflow 

- Data preparation (preprocessing, choose embeddings, choose combination if 
needed e.g. concatenation, sum, average)

- Network design / Hyper-parameters (number of hidden layers, activation 
function, size of the layers, optimizer, learning rate…)

- Initialize weights (random embeddings, weights of the hidden layers, bias)
- For each epoch:

- select a subset of training examples
- compute predicted outputs for this subset
- compute loss w.r.t. these predictions
- update the weights w.r.t. the loss, i.e. looking at the gradients + using backpropagation 

- At the end of an epoch: decide whether to stop training
- Return the model (i.e. the final weights)



General workflow and variations

- Data preparation (preprocessing, choose embeddings, choose combination if 
needed e.g. concatenation, sum, average)

- Network design (number of hidden layers, type of non-linearity, size of the 
layers…)

- Initialize weights (random embeddings, weights of the hidden layers, bias)
- For each epoch:

- select a subset of training examples
- compute predicted outputs for this subset
- compute loss w.r.t. these predictions
- update the weights w.r.t. the loss, i.e. looking at the gradients + using backpropagation 

- At the end of an epoch: decide whether to stop training
- Return the model (i.e. the final weights)



Embeddings

• Often pre-trained word embeddings 

• Unsupervised: only requires plain text, so can be trained on a lot of data, fast algorithms 

available

• It helps a model start from an informed position

• Often: model is initialized with pretrained word embeddings, and then fine-tuned 

depending on task



Training: initialization
• Shuffling: shuffle training set with each epoch

• Learning rate: balance between proper convergence and fast convergence

• Minibatch: balance speed/proper estimate; efficient using GPU:

- Estimating gradient over entire training set before taking step is computationally 

heavy

- Compute gradient for small batch of samples from training set

- Learning rate λ: size of step in right direction

- Improvements: momentum, adaptive learning rate



Training: initialization
• Parameters of network are initialized randomly

• Magnitude of random samples has effect on training success

• effective initialization schemes exist

https://www.deeplearning.ai/ai-notes/initialization/ 

https://www.deeplearning.ai/ai-notes/initialization/


Regularization
Training correspond to finding the parameters Ө that minimizes the loss function L(Ө):

Ô = argminӨ L(Ө) = argminӨ 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) + λ R(Ө)

→ Multi-layer networks can be large and have many parameters = prone to overfitting 

- Common regularizers work: L1, L2, elastic-net

- L2 regularization / weight decay: it’s crucial to tune the regularization strength λ



Regularization using dropout training

Idea: reducing the reliance of each unit in the hidden layer on other units in the hidden layers, helping units 

to act more independently, preventing the network to rely on specific weights 

Method: 

- randomly dropping (=setting to 0) ‘part’ of the neurons in the network (or in a specific layer) in each 

training example i.e. randomly set some of the values of h1 (h2, …) to 0 at each training round

- ‘part’ of the neurons = parameter: probability p that a given unit will drop out, often 0.5

- at test time: no dropping, but we need to adjust the weights, i.e. multiplying the weights by p

https://medium.com/analytics-vidhya/a-simple-introduction-to-dropout-regularization-with-code-5279489dda1e 

(Srivastava et al. JMLR 2014)

https://medium.com/analytics-vidhya/a-simple-introduction-to-dropout-regularization-with-code-5279489dda1e


Dropout with Pytorch
class Model(nn.Module): 

def __init__(self, p=0.0): 
super().__init__() 
self.drop_layer = nn.Dropout(p=p) 

def forward(self, inputs): 
return self.drop_layer(inputs) 

model = Model(p=0.5) 
# Train model as usual
…
# switching to eval mode 
model.eval()

Calling this will change the behavior of 
layers such as Dropout, BatchNorm, etc.

https://pytorch.org/docs/stable/g
enerated/torch.nn.Dropout.html 

https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html


Architecture and hyper-parameters
Many possible variations

- Number of hidden layers
- Activation functions
- Size of the hidden layers
- Size of the embeddings + type of embeddings + frozen or not
- Learning rate
- Epochs number
- Regularization technique 
- Optimizer (SGD, Adam …)
+ Now, often, people gives results of several runs with different initializations



Sources and references

- https://pytorch.org/tutorials/beginner/nlp/deep_learning_tutorial.html
- https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
- https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
- http://www.awebb.info/probability/2017/05/18/cross-entropy-and-log-likelihood.html
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