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Problem: encoding sentences?

- Continuous BoW
- Convolutional NN
- Recurrent NN

Practical session with RNN



Beyond words

- Embeddings are not restricted to words
- Can equally be computed for sentences, paragraphs, documents
- Important trend in current research, with application in e.g. machine

translation, information extraction..



Encoding sentences

How to represent variable number of features, e.g. words in a sentence?

Continuous Bag of Words (CBOW): sum embedding vectors of
corresponding features
- no ordering info e.g. "not good quite bad” = "not bad quite good”

Convolutional layer
- 'Sliding window' approach that takes local structure into account
- Combine individual windows to create vector of fixed size
Recurrent layer
- Allow to take into account the whole history / sequence



Continuous Bag of words

Variable number of features

Feed-forward network assumes fixed

dimensional input

- How to represent variable number of features, e.g.
words in a sentence, document?

Continuous Bag of Words (CBOW): sum
embedding vectors of corresponding features
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Specialized architectures

The Feed-forward neural networks are general purpose classification
architectures: not tailored specifically for language data or sequences.

Today: 1D CNN and RNN

- CNN: specialized at identifying informative ngrams in a sequence of
text, regardless of their position but while taking local ordering
patterns into account

- RNN: designed to capture subtle patterns and regularities in
sequences



Feature extraction

CNN and RNN architectures are primarily used as feature extractors

- not a standalone component
- rather used to produce a vector (or a sequence of vectors) that are then

fed into further parts of the network

The network is trained end-to-end: the convolutional/recurrent part and the
predicting part are trained jointly:

- the vectors resulting from the first part capture aspects of the input
useful for the task

RNN are more used than CNN for text-based applications



Convolutional Neural Network (CNN)

- [LeCun and Bengio, 1995]
- from vision community: great success as object detectors: recognizing an

object from a predefined category (e.g. “cat”, “bicycles”) regardless of its
position in the image [Krizhevsky et al. 2012]
- images: the architecture is usually 2D (grid) convolutions (or 3D with colors)

- text: 1D (sequence)

— NLP: [Collobert et al. 2011]: semantic role labelling; [Kalchbrenner et al. 2014;
Kim 2014]: sentiment and question-type classification



Convolutional Neural Network (CNN)

2 parts:

Convolutions: the goal is to extract features specific to each input by
compressing them ; the input goes through filters

Classification: the output of the convolutional layers is given as input of an
MLP

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +RelU Connected Connected
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Convolutional Neural Network (CNN) 0:8

Certain layers are not fully connected but locally connected Qﬁ*Q
(convolutional layers, pooling layers) Q%Q

— fully = connect all the neurons in one layer to all the neurons in the next
layers, i.e. with an image of size 1024x1024 and an hidden layer of the same
size = 1024x1024x1024x1024 = 1 billion parameters!



Convolutional Neural Network (CNN])

X

- Certain layers are not fully connected but locally connected Q | \Q

/TSN

(convolutional layers, pooling layers) (Y @

— fully = connect all the neurons in one layer to all the neurons in the next
layers, i.e. with an image of size 1024x1024 and an hidden layer of the same
size = 1024x1024x1024x1024 = 1 billion parameters!

K

— local connections: each hidden unit doesn’'t need to compute features
about the image, it only needs to compute features about its region
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https://towardsdatascience.com/ml-intro-7-local-connections-and-spatial-parameter-sharing-abbreviat
ed-convolutional-layers-b419e629d2d0
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Convolutional Neural Network (CNN)

- Certain layers are not fully connected but locally connected
(convolutional layers, pooling layers)

- Convolution preserves the spatial relationship between pixels by learning
image features using small squares of input data

- same, local cues appear in different places in input (cf. vision)

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
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Image quelconque

define a window size
go through the picture, using some step m | = -
compute some operation on each filter window: linear function of the pixel
values

give you some value representing the sub-part (“receptive field”)

at the end: a “feature map / activation map / convolved feature”, with a
smaller shape

Convolution computation original picture
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Image Fgatvuc:_:e ol1l1lo0lo0 = filter / kernel /
feature detector



CNN (intuition)

original picture

parameter
= filter

Image

Convolved
Feature

Tendi do e :

Convolution computation
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Operation Filter Convolved
Image
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Filter = feature detector
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Setting

— In practice, a CNN /earns the values of these filters during training

- Depth: number of filters

Here: 3 distinct filters
Feature map producing 3 different feature
maps = stacked 2d matrices
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Setting

— In practice, a CNN /earns the values of these filters during training

- Depth: number of filters
- Stride: number of pixel by which we slide our filter window (larger stride, smaller
feature map)

Here: 3 distinct filters
Feature map producing 3 different feature
maps = stacked 2d matrices
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Setting

— In practice, a CNN /earns the values of these filters during training

- Depth: number of filters

- Stride: number of pixel by which we slide our filter window (larger stride, smaller
feature map)

- Introducing non-linearity (ReLU): used after a convolution operation, replace all
negative value in the feature map by zero

Input Feature Map Rectified Feature Map
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The pooling step

Spatial Pooling (or subsampling or
downsampling) reduces the
dimensionality of feature map but retains
the most important information

- different types: Max, Average, Sum etc.

- Max Pooling: define a spatial neighborhood

(for example, a 2x2 window) and take the
largest element from the rectified feature
map within that window

Max(1, 1,5,6) =6

max pool with 2x2 filters
and stride 2
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Pooling

The function of Pooling is to progressively reduce the spatial size of the input
representation. In particular, pooling:

- makes the input representations (feature dimension) smaller and more
manageable

- reduces the number of parameters and computations in the network, therefore,
controlling overfitting

- makes the network invariant to small transformations, distortions and translations
in the input image (a small distortion in input will not change the output of Pooling
- since we take the maximum / average value in a local neighborhood).

- helps us arrive at an almost scale invariant representation of our image (the exact
term is “equivariant”). This is very powerful since we can detect objects in an image
no matter where they are located.


https://en.wikipedia.org/wiki/Overfitting

Full network

Two convolution steps:

- the 2nd convolution layer performs convolution on the output of the first Pooling Layer
using six filters to produce a total of six feature maps

- these layers: extract useful features, introduce non-linearity, reduce feature dimensions

- Fully connected layer (MLP): classification + learn feature combinations

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +RelU Connected Connected
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More on CNN

- pooling is not
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CNN for text data

- Goal: identify indicative local features (n-grams) in large structure,
combine them into fixed size vector

- Convolution: apply filter to each window (linear transformation +
non-linear activation )

- Pooling: combine by taking maximum



CNN for text data

define a window size
go through the

Se nte n Ce the quick brown fox jumped over the lazy dog
Com pute Some the quick brown
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CNN for text data

- main idea: apply the same parameterized function over all k-grams in the sequence

- creates a sequence of m vectors, each representing a particular k-gram

- the representation is sensitive to the identity and order of the words within a
k-gram

- but the same representation will be used for a k-gram regardless of its position

Padding: add padding-words to each side of the sequence — wide convolution (vs
narrow)

*PADx Q00O

the 0000

actual 909000

service @9 90O

*PAD* the
the actual

actual service



Pooling

- Most frequent: max-pooling

- k-max pooling : top-k values in each dimension are retained, instead of
only the best one = pool the k most active indicators, preserve orders

- Average pooling: taking the average value of each vector

- (dynamic pooling: different pooling for different subpart of the input)

Max pooling

1 2 |3
9 |8 |5
9 |6 |5
2 3 |1 2-Max pooling
7 ' 8 1 9 6 |3 9 6 |3 7 |8 5



Pooling

- Most frequent: max-pooling

- k-max pooling : top-k values in each dimension are retained, instead of
only the best one = pool the k most active indicators, preserve orders

- Average pooling: taking the average value of each vector

- (dynamic pooling: different pooling for different subpart of the input)

Max pooling

1 2 |3
9 8 5
9 6 |5
2 3 |1 2-Max pooling
7 ' 8 1 9 6 |3 9 6 |3 7 |8 5



Pooling

- Most frequent: max-pooling

- k-max pooling : top-k values in each dimension are retained, instead of
only the best one = pool the k most active indicators, preserve orders

- Average pooling: taking the average value of each vector

- (dynamic pooling: different pooling for different subpart of the input)

Max pooling

1 2 |3
9 |8 |5
9 6 5
2 3 |1 2-Max pooling
7 8 1 9 6 3 9!6 [3 |7 |8 |5



+ activation function

convolution

1-max softmax function
3 regularization
\ + y pooliig vy A inthislayer
3 region sizes: (2,3,4) 2 feature L
t : 2 filters for each region maps for 6 univariate 2 classes
sen e;cxesmatnx size each vectors :|
totally 6 filters region size concatenated
together to form a
V . t . single feature
ariations: vector

- several convolutional layers,
each with a different window |
Size like

. . this

- convolution over syntactic  move

trees [Ma et al, 2015]: each  muen
. o . |
window is around a node in

the syntactic tree

Less adapted for text data: we
need more than just local
compositions
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Recurrent Neural Networks (RNN)

- Handle structured data of arbitrary sizes

- Recurrent networks for sequences:

- atype of artificial neural network designed to recognize patterns in sequences of
data (e.g. text, genomes, numerical times series data emanating from sensors, stock
markets)

- (Recursive networks for trees)

- parsing can be down with recurrent network: a stack is seen as a sequence for

transition-based parsing



RNN

Encoding arbitrary length sequences into a fixed size vector:

- CBOW: no ordering, no structure
- CNN: improvement, but only local patterns
- RNN: represent arbitrarily sized structured input as fixed-size vectors,

paying attention to structured properties

- gated architectures: LSTM, GRU are very powerful at capturing regularities in
sequential inputs

- RNNSs condition the next word on the entire sequence history



RNN

- Main idea:
- if we have data in a sequence such that one data point depends upon the
previous data point
- — modify the neural network to incorporate the dependencies between
these data points
- RNNs have the concept of ‘memory’ = store the states or information of previous
inputs to generate the next output of the sequence.

e.g. to predict the next word in a sentence, you need the previous outputs/words

- vs In Feedforward Networks, every output is independent of the previous output:
the output at time tis independent of output at time t-1



RNN: modele de langue
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RNN: modele de langue

o
- £
= v} ]
@ ar.. c
o o
ey 2
L G >




RNN: modele de langue
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RNN: modele de langue




RNN: modele de langue
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RNN abstraction

- asequence of input: Xpp Xop veney X —}_> 1
- asequence of output: Yo Yor oon Y, I
- idea:y depends onx butalsox,, ..., x_, e ] x

- we have a recursive function R:
- takes the current input vector x.
- and a vector representing the current state of
memorys. yi =0(si)
- output: a new state vector s.
- the final representation y, is based on this

state Si
- inpractice:y, =s ory =asubpart of s

RNN*(.\'l;n: SU) =V1:n

S; =R(S,'_1..\',')

X; = Rd”". .y' (= Rd"“’. Si = R/ (dul!{).



RNN abstraction

. Si-1 —> R0 }—;\Si
- asequence of input: xl@...., X_ -
- asequence of output: y5V., ..., Y
) 17 72 n
- idea:y dependsonx butalsox,, ..., x_, [o ]

- we have a recursive function R:
- takes the current input vector x.
- and a vector representing the current state of
memory's. yi =0(si)
- output: a new state vector s.
- the final representation y. is based on this

state Si
- inpractice:y = s ory =a subpart of s,

RNN*(.\' l;n:SO) =VY1:n

A =R(Si_1..l‘i)

X € Rd""'. Yi € Rd““’. $; € R‘f(d“"”).



RNN abstraction

a sequence of input: xl@...., X

n

- asequence of output: y1® Y, o]
ta

- idea:y dependsonx butalsox,, ..., x

i-1
- we have a recursive function R:

. RNN™(x1:n; 50) =Y1:n
- takes the current input vector x.

- and a vector representing the current state of memory s, | i =0)
- output: a new state vector s. si =R(s;-1.x;)
- the final representation y. is based on this state s,

- inpractice:y, =s ory =a subpart of s o . Ha
- m our v D ( l'.'H)
.liER . y,’ER , 5,‘6&‘ .



RNN abstraction

a sequence of input: xl@...., X

n
- asequence of output: Y, Y,

[

- idea:y. depends on x. butalsox,, ..., x.

- we have a recursive function R:

. RNN™(x1:n; 50) =Y1:n
- takes the current input vector x.

- and a vector representing the current state of memory s, | i =0)
- output: a new state vector s. si =R(s;-1.x;)
- the final representation y. is based on this state s,

- inpractice:y, =s ory =a subpart of s o . Ha
- m our v D ( l'.'H)
.liER . y,’ER , 5,‘6&‘ .



RNN abstraction

- aseqguence of input: xl@...., X_

- asequence of output: Y, Y,

- idea:y. depends on x. butalsox,, ..., x.
- we have a recursive function R:

- takes the current input vector x.

- and a vector representing the current state of memor
- output: a new state vector s. s;i =R(sj-1.%;)

- the final representation y. is based on this state s,

- inpractice:y, =s ory =a subpart of s

RNN*(.\' l;n:SO) =VY1:n
yi =0(s;)

X € Rd""'. Yi € Rd““’. $; € R‘f(d“"”).



RNN abstraction

n
- asequence of output: Y, Y,

- aseqguence of input: xl@...., X

- idea:y. depends on x. butalsox,, ..., x.
- we have a recursive function R:

- takes the current input vector x.

- and a vector representing the current state of memor
- output: a new state vector s. s;i =R(sj-1.%;)

- the final representation y. is based on this stat@
- inpractice:y, =s ory =a subpart of s

RNN*(.\' l;n:SO) =VY1:n
yi =0(s;)

X € Rd""'. Yi € Rd““’. $; € R‘f(d“"”).



RNN ahstraction
- aseqguence of input: xl@...., X ‘_»‘ e }_> -

n
- asequence of output: yl@ Y é

- idea:y. depends on x. butalsox,, ..., x.
- we have a recursive function R:

. RNN™(x1:n; 50) =Y1:n
- takes the current input vector x.

- and a vector representing the current state of memor yi =0(si)

- output: a new state vector s, si =R(s;-1.x;)
- the final representation y. is based on this state s

- in practice:

X € Rd""'. Yi € Rd““’. $; € R‘f(d“"”).
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RNN ahstraction

Unroll the recursion Vi

So—»‘ R,0 HS‘ R,0 }—»SZI R,
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RNN ahstraction

Unroll the recursion

Yi e
A
//.‘....'. r —L - ----\\ -
’/ \\ SO_> R? O
Si-1 —»’ R, O }—» Si :
A
X1

3 X4 X5

X2 X

N

The same parameters are shared
across all time steps




{0BJ;
s4 =R(s3.x4)

RNN abstraction S

52
———"—

=R(R(R(s1.x2),x3),x4)

51
o et e,

=R(R(R(R(s9,x1).Xx2),Xx3).Xx4).

Unroll the recursion Vi ¥2 y3 V4 ys

T ‘ : T }_, | T 1
G A so_>‘ RO 'L RO 52’ R,0 P»{ R0 }ﬁ” KO }_'SS
Si-1 —»’ ) }—» §i E

T 3 X4 Xs
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X1 X2 X
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The same parameters are shared
across all time steps
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RNN ahstraction

Unroll the recursion

s4 =R(s3.x4)
§3
o g w—r—

=R(R(s2.x3),x4)

52
——— —

=R(R(R(s1.x2),x3),x4)

51

= et e,

=R(R(R(R(s9,x1).Xx2),Xx3).Xx4).

s1 depends on x1
s2 depends on x1, x2
s3 depends on x1,x2,x3

G e g so_>‘ R,0 }ﬂ.{ RO }ﬂ.‘ R0 ’ﬁ.{ R0 }ﬁ.| R0 }—»s;
Si-1 —»’ R, O }—» Si :

X1 X2 X

N

3 X4 X5

across all time steps

The same parameters are shared
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RNN ahstraction

Unroll the recursion

s4 =R(s3,x4)

53

e w——

=R(R(s2.x3),x4)

52
——— —

=R(R(R(s1.x2),x3),x4)
51
= et e,

=R(R(R(R(s9,x1).Xx2),Xx3).Xx4).

y a LTJ kst

N

- sl dependsonxl

- s2depends on x1, x2

- s3 depends on x1,x2,x3
— sn (and yn) depends on the
entire input = encoding of the
input sequence

X1 X2 X3

— g N so_>‘ R, 0 }ﬂ.{ R0 }ﬂ.‘ R, O ’ﬁ.{ RO }24 R0 }—»s;
}—> EH i

X4 Xs

across all time steps

The same parameters are shared




1081
- sl dependson xl

. ” - s2depends on x1, x2
R N N a bstra [tl D n :R(’Ié?;'-;.\;,\)..u) - s2 depends on x1,x2,x3
— sn (and yn) depends on the
. entire input = encoding of the
=R(R(R(s1,%2), ¥3), ¥a) input sequence
. — training must set

=R(R(R(R(s0.x1).¥2).X3).X4). | parameters in order to have a
state that conveys useful info

s4 =R(s3.x4)

Unroll the recursion Vi v y3 Va Vs

P 1T

G e T s0_>‘ RO }ﬂ.{ R O }ﬂ.‘ RO }ﬁ.{ R O }ﬁ.| R0 }—»s;
8i-1 —»’ R, 0O }—» Si A T | B SRR B LI ¢ !
| T
X;

X1 X2 X3 X4 X5

The same parameters are shared
across all time steps




1081
- sl dependson xl

. ” - s2depends on x1, x2
R N N a bstra [tl D n :R(’Ié?;'-;.\;,\)..u) - s2 depends on x1,x2,x3
— sn (and yn) depends on the
. entire input = encoding of the
=R(R(R(s1,%2), ¥3), ¥a) input sequence
. — training must set

=R(R(R(R(s0.x1).¥2).X3).X4). | parameters in order to have a
state that conveys useful info

s4 =R(s3.x4)

Unroll the recursion Vi v y3 Va Vs

1 1 1 1 ]

G e T s0_>‘ RO }ﬂ.{ R O }ﬂ.‘ RO }ﬁ.{ R O }ﬁ.| R0 }—»s;
Sbl——*’ R, 0O %—» Si A T | B SRR B LI ¢ !
| T
X;

Notations: xq Xy X3 %4 X
- states:
noted s or h
- h and y [:::]
sometimes
merged

The same parameters are shared
across all time steps




each neuron receives (weighted) inputs + its own value at t-1

RNN ahstraction

oo ololele
Consider recurrent neural network as - A\”/\”/A
very deep neural network with shared "
parameters across computation rere earene
Backpropagation through time . ro
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each neuron receives (weighted) inputs + its own value at t-1
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RNN abstraction O
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RNN training

What kind of supervision? RNN does not do much on its own, it’s a
trainable component

— the RNN learns to encode properties of the input sequences that are
useful for the further prediction task

Some common architectures:

- Acceptor / Encoder: based on the final output (e.g. text classification)

- Transducer: an output for each input (e.g. language modeling)
- Encoder-decoder: one RNN to encode sequence into vector representation,
another RNN to decode into sequence (e.g. machine translation)



Acceptor

The supervision signal is based on the final state / output vectory_
— Acceptor: we observe the final state, and decide on an outcome, e.g.:

- Read characters of a word one by one and use the final state to
predict the POS [Ling et al. 2015]

- Read a sentence and based on the final state decide if it conveys
positive or negative sentiment [Wang et al 2015]

- Read a sequence of words and decide whether it's a valid
noun-phrase

The RNN'’s output vector is fed into a fully connected layer or an MLP
which make the prediction (same loss as previously)



Encoder

Similar: uses only the final output vectory_

- but here, the prediction is not solely on the basis of this vector
- the final vector is treated as an encoding of the information in the

sequence
- and is used as additional information together with other signals

e.g. Extractive document summarization:

- run over the document with a RNN:y_summarizes the document
- theny is used with other features to select the sentences to be kept



Transducer

Producing an output y. for each input read
e.g. Sequence tagger:

- X,., are feature representations for the n words of a sentence
- y |s used for predicting the tag assigned to word i (based on words w. )

Used for CCG super-tagging [Xu et al, 2015]

Natural use case = language modeling: the sequence of words x, .. is used to
predict a distribution over the (i+1)th word [Mikolov 2012, I\/I|kolov et al 2010,
Sundermeyer et al. 2016]

- special cases: RNN generator, encoder-decoder, conditioned-generation
with attention



Variations: Multi-layer RNN

- multiple layers of RNNs, deep RNN [Hihi and

Bengio, 1996] Bt B Ve
- input of next layer is output of RNN layer below it
- Empirically shown to work better




Variation; Bi-directional RNN

- Represent both history and future 2 separate states
- [Graves, 2008; Schuster and Paliwal, 1997] | - s, (forward, based on x1,x2,...,xi)
sib (backward, based on xn, xn-1,.

idea: for sequence tagging, using
the history x, . is useful, but
following words x._ could also be
useful

— similar to a window representing
the surrounding words

Input sequence both forward and backward to different RNNs
Representation is concatenation of forward and backward state
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Bi-RNN

The outputy. is the concatenation of the output qf_'@_fach RNN forward and
backward: <
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- very effective for tagging tasks: one output for each input [Irsoy and Cardie 2018]
- useful as a general-purpose trainable feature-extracting component whenever a
window around a word is required



Concrete RNN architectures

Concrete architecture: a function s = R(x, s. ,)
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Concrete RNN architectures

Simple-RNN or ElIman Network [EIman, 1990; Mikolov, 2012]

S;i =Rspnn(Xi,8i-1) = g(si-1 W* + xin + b)
Yi =0spnn(Si) = 8i

s;,y; €R% x; e R¥%, W* e R&*ds Ws ¢ R%*ds p e R%,
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Concrete RNN architectures

Simple-RNN or ElIman Network [EIman, 1990; Mikolov, 2012]

S;i =Rspnn(Xi,8i-1) = g(si-1 W* + xin + b)

Yi =0gnn($i) = 8

a linear transformation
of input and prev state
a non-linear activation
(tanh or RelU)
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Concrete RNN architectures

Simple-RNN or ElIman Network [EIman, 1990; Mikolov, 2012]

S;i =Rspnn(Xi,8i-1) = g(si-1 W* + xin + b)

Yi =0gnn($i) = 8

s;,p; €ER% x; e R Wx e R%*ds s g RésXds

effective for sequence tagging
[Xu et al, 2015] and language
modeling

hard to train: vanishing
gradients = hard to capture
long-range dependencies

a linear transformation
of input and prev state
a non-linear activation
(tanh or RelU)
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Gating architectures: LSTM and GRU

Long short term memory networks (LSTM) and Gated Recurrent Unit

(GRU)
In practice, simple RNNs only able to remember narrow context

(vanishing gradient)
LSTM: complex architecture able to capture long-term dependencies

through gat|ng meChan|SmS forget gate cell state
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Gating architectures: LSTM and GRU

Long short term memory networks (LSTM) and Gated Recurrent Unit

(GRU)
In practice, simple RNNs only able to remember narrow context

(vanishing gradient)
LSTM: complex architecture able to capture long-term dependencies

through gating mEChanisms forget gate cell state

—m b > !c
i < i ? & h hidden state
71 1< L = t

X(

input gate output gate

c !
t1 %

h
t1




Gating architectures

|dea: controlling the memory

e.g. using a binary vector as a gate to decide what to keep or forget |
s'e—g‘®x+_(l—g)®(s)
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— gate vectors are used to control access to the memory state



Gating architectures

We do not use these binary vectors as gates in practice, because we need
gates to be:

- not static (conditioned on the input and state)
- learned during training
- thus not binary (differentiable)

— we use vectors of real numbers, then pass through a sigmoid function [0,1]

- values in x corresponding to near one: pass / written to memory
- values in x corresponding to near zero: block / forgotten



LSTM

[Hochreiter and Schmidhuber, 1997]
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LSTM

[Hochreiter and Schmidhuber, 1997]
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https://penseeartificielle.fr/comprendre-Istm-gru-fonctionnement-schema/
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LSTM

forget gate cell state
splits state into 2 parts:

- ¢j = cell state, preserve the
memory, controlled through gates

- hj = working memory, hidden Gt
state

3 gates: input forget output

Values of the gates:
- linear combination of the input X; and
the previous state hj_1
- + tanh / sigmoid X

t input gate output gate




LSTM

splits state into 2 parts:

- ¢j =cell state, preserve the memory,
controlled through gates
- hj =working memory, hidden state

Sj = Rierm(8j-1,xj) Hlcj; hj]

¢i =fOcj-1+i 0Oz
h; =0 © tanh(c;)

i =o(x; W +hj_1W"")
f=0(xjW* + h;_wh)

0 =0(x;W*° + hj_who)

z = tanh(x; W** + hj_y Wh?)

Yi = OLSTM(Sj) =hj

sj € R x; e R%™, ¢j, hj.i,f.0,z e R% W*° e R whe ¢ Ran*dn,



LSTM

splits state into 2 parts:

- ¢j = cell state, preserve the memory,
controlled through gates
- hj=working memory, hidden state

Sj = RLSTM(Sj—l--\’j) =[L'I'Zhj]

cj =f®cj_1 +i Oz

i =0 O tanh(cj)
3 gates: _ )
input =0 (x; W + hj_ W)
forget o(x; W +hj_Wh)
output
P =0 (x;W*° + hj_1Who)
- — . Xz . hz
cell state z =tanh(xj W** + hj 1 W"?)

Yi = OLSTM(Sj) =hj

sj € R x; e R%™, ¢j, hj.i,f.0,z e R% W*° e R whe ¢ Ran*dn,



LSTM

splits state into 2 parts:

- ¢j = cell state, preserve the memory,
controlled through gates
- hj=working memory, hidden state

Sj = Rierm(8j-1,%j) =[cj; hj]

3 gates:
input
forget
output

cj =f®cj_1+i®:

hj =0 © tanh(c;)

=0(x; wxi +h,~_1W’”')
o(x; W + hj_wh)
=0 (x; W*° +hj_1"/ho)

cell state

z =tanh(x; W** + hj_ whz)

Yi = OLSTM(Sj) =hj

Values of the gates:
- linear combination of the input X; and
the previous state hj_1
- + tanh / sigmoid

sj €R¥ x; e R, ¢j hj,i, f,0,ze R%, W*° e R whe ¢ Rn=dn,




previous cell state.

forget gate output

ST @}dﬁ'

splits state into 2 parts:

- ¢j = cell state, preserve the memory,
controlled through gates
- hj=working memory, hidden state

A gate allows to forget
/ select information

Sj = Risrm(sj—-1,%j) =[c,':hj]

cj cj—1+ IOz
i =0 O tanh(cj)
3 gates: . .
input =0 (x; W + hj_ W)
forget o(x; W + hj_Wh)
output
P =0 (x;W*° + hj_1Who)

z =tanh(x; W** + hj_ whz)

Yi = OLSTM(Sj) =hj

sj € R x; e R%™, ¢j, hj.i,f.0,z e R% W*° e R whe ¢ Ran*dn,



previous cell state.

forget gate output
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previous cell state.

forget gate output
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previous cell state.

forget gate output
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previous cell state.

forget gate output
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controlled through gates @
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GRU

« LSTM: effective, but complex, computationally expensive

* GRU: cheaper alternative that works well in practice [Cho et al. 2014; Chung
et al. 2014]
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GRU

- reset gate (r): how much information from previous hidden state needs to be
included (reset with current information?)

- upgate gate (z): controls updates to hidden state (how much does hidden state
need to be updated with current information?)

- Y75

hy l/

z =0(x;W** +5; 1 W**)

fos 25
I $j = Rgru(sj-1.%j) =(1-2)Osj—1 +z0O5Sj
>

r=o(x;W*" +s; 1W*)

sj =tanh(x; W*S + (r © 5sj—1)W*§)

yj = Ogru(sj) =s;

A | sj,§5 €R%, x; eRI¥, z,r eR%, W*° e RIxXds pyso g Rdsxds,



GRU

reset gate (r): how much information from previous hidden state needs to be

included (reset with current information?)
upgate gate (z): controls updates to hidden state (how much does hidden state

need to be updated with current information?)

- y_] = SJ
state is not split
fos 25
sj = Rgru(8j-1.%j) =(1-2) Osj—1 +zO§j
he B z =0 (xjW** +sj_1W*)
i o (D) - J J=l
() > 2 gates
r=o(x;W*" +s;_1W*")
X ~ X)- sj =tanh(x; W** + (r © sj-1)W?¥)
Ty Zt ht
o (0} tanh
- yj = Ogrul(s;j) =s;
=
-
Xy sj,5j € R% x; e RY, z,r e R%, W¥° g RIxXds pyso g Rdsxds,




GRU

reset gate (r): how much information from previous hidden state needs to be

included (reset with current information?)
upgate gate (z): controls updates to hidden state (how much does hidden state

need to be updated with current information?)

- .= S.
yJ J
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. r control access to the previous state and compute update
o
xy sj.s5 €R%, x; eR¥, z,r eR%, W*° ¢ R¥*% Wse g R4xds,




GRU

reset gate (r): how much information from previous hidden state needs to be

included (reset with current information?)
upgate gate (z): controls updates to hidden state (how much does hidden state

need to be updated with current information?)
_ new state = dinterpolation of
- YE"sj previous state and update,
controlled by z
h, sj = Rgru(sj-1,%;) Sj—l @S}
z=0(x;W** +s;_1W?**)
hIJ 1 ﬁ — f\\ I ! !
(X ) (+) 2 r=o(x;W*" +s; 1W*)
> sj =tanh(x; W*S + (r © 5sj—1)W?*§)
X X):
'y ~1 ht
(0] (0] tanh .
r control access to the previous state and compute update
1
[ 7 sj,Sj €R%, x; e R, z,r e R%, W*° g Rixxds| Wse g Résxds,
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RNNS

- GRU effective for language modeling and machine translation, but still no
consensus on which architecture is the best [Jozefowicz et al. 2015]

- Variants with non gated architecture [Mikolov et al 2014; Le et al, 2015]

- Initialisation: bias and forget gate close to 1 for LSTM [Jozefowicz et al
2015]

- Drop-out: only on the non-recurrent connection (in between layers in
deep-RNNs) or variational RNN dropout method = same dropout across
time steps [Gal, 2015]

RNN LSTM
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Recursive Neural Networks

e Generalization of RNNs from sequences to (binary) trees

e Linear transformation + non-linear activation function applied
recursively throughout a tree S

e Useful for parsing 7,/ -




Sources

- https://www.wikiwand.com/fr/R%C3%A9seau_neuronal_convolutif

- Nice intro: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

- More details: https://cs231n.github.io/convolutional-networks/

- (picture, bad explanation) https://datascientest.com/convolutional-neural-network

- https://www.quora.com/What-are-recurrent-neural-network-algorithms

- https://medium.com/analytics-vidhya/recurrent-neural-network-and-its-variants-de75f9ee063

- https://machinelearningmastery.com/an-introduction-to-recurrent-neural-networks-and-the-math-that-powers-them/

- https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

- https://karpathy.github.io/2015/05/21/rnn-effectiveness/

- https://colah.github.io/posts/2015-08-Understanding-LSTMs/

- https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

- https://github.com/pytorch/examples/tree/master/word language model

- https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

- https://www.pluralsight.com/guides/natural-language-processing-with-pytorch

- https://stats.stackexchange.com/questions/335321/in-a-convolutional-neural-network-cnn-when-convolving-the-image-is-th
e-opera

- https://penseeartificielle.fr/comprendre-Istm-gru-fonctionnement-schema/
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