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Schedule 
2024-2025

1 26.11 13h-16h 3 (C1) ML Reminder + Intro DL TP1-POO

2 03.12 13h-16h 3 (C2) Intro DL (2h) + Embeddings (1h) TP2-FFNN

3 10.12 13h-16h 3 (C3) Embeddings(1h30) + start projects TP3-Embed

- 17.12 - - BREAK

(holidays)

4 07.01 13h-16h 3 (C4) Training a NN TP5-HFData

TP6-TrainFFNN

5 14.01 13h-16h 3 (C5) CNN, RNN

→(14/01) Part 1 due

(TP7-LSTM) TP6 ensemble

Finir TP5 + TP8-HFTrain

6 15.01 13h-16h 3 Projects

7 28.01 13h-16h 3 (C6) Encoder-decoder, transformer TP9-Biais

- 04.02 - - BREAK →(09/01) Part 1 due

8 11.02 13h-16h 3 (C7) Current challenges → project defences



Content

Problem: encoding sentences?

- Continuous BoW

- Convolutional NN

- Recurrent NN

Practical session with RNN



Beyond words

- Embeddings are not restricted to words

- Can equally be computed for sentences, paragraphs, documents

- Important trend in current research, with application in e.g. machine 

translation, information extraction..



Encoding sentences
How to represent variable number of features, e.g. words in a sentence?

- Continuous Bag of Words (CBOW): sum embedding vectors of 
corresponding features

- no ordering info e.g. ”not good quite bad” = ”not bad quite good”
- Convolutional layer

- ’Sliding window’ approach that takes local structure into account
- Combine individual windows to create vector of fixed size

- Recurrent layer
- Allow to take into account the whole history / sequence



Continuous Bag of words
Variable number of features 

- Feed-forward network assumes fixed 
dimensional input

- How to represent variable number of features, e.g. 
words in a sentence, document? 

- Continuous Bag of Words (CBOW): sum 
embedding vectors of corresponding features



Specialized architectures

The Feed-forward neural networks are general purpose classification 

architectures: not tailored specifically for language data or sequences.

Today: 1D CNN and RNN

- CNN: specialized at identifying informative ngrams in a sequence of 

text, regardless of their position but while taking local ordering 

patterns into account

- RNN: designed to capture subtle patterns and regularities in 

sequences



Feature extraction
CNN and RNN architectures are primarily used as feature extractors

- not a standalone component
- rather used to produce a vector (or a sequence of vectors) that are then 

fed into further parts of the network

The network is trained end-to-end: the convolutional/recurrent part and the 
predicting part are trained jointly:

- the vectors resulting from the first part capture aspects of the input 
useful for the task

RNN are more used than CNN for text-based applications



Convolutional Neural Network (CNN)

- [LeCun and Bengio, 1995]
- from vision community: great success as object detectors: recognizing an 

object from a predefined category (e.g. “cat”, “bicycles”) regardless of its 
position in the image [Krizhevsky et al. 2012]

- images: the architecture is usually 2D (grid) convolutions (or 3D with colors)
- text: 1D (sequence)

→ NLP: [Collobert et al. 2011]: semantic role labelling; [Kalchbrenner et al. 2014; 
Kim 2014]: sentiment and question-type classification



Convolutional Neural Network (CNN)
2 parts:

- Convolutions: the goal is to extract features specific to each input by 
compressing them ; the input goes through filters

- Classification: the output of the convolutional layers is given as input of an 
MLP



Convolutional Neural Network (CNN)
- Certain layers are not fully connected but locally connected 

(convolutional layers, pooling layers)

→ fully = connect all the neurons in one layer to all the neurons in the next 
layers, i.e. with an image of size 1024x1024 and an hidden layer of the same 
size ⇒ 1024x1024x1024x1024 = 1 billion parameters!



Convolutional Neural Network (CNN)
- Certain layers are not fully connected but locally connected 

(convolutional layers, pooling layers)

→ fully = connect all the neurons in one layer to all the neurons in the next 
layers, i.e. with an image of size 1024x1024 and an hidden layer of the same 
size ⇒ 1024x1024x1024x1024 = 1 billion parameters!

→ local connections: each hidden unit doesn’t need to compute features 
about the image, it only needs to compute features about its region

= locally connected layer

https://towardsdatascience.com/ml-intro-7-local-connections-and-spatial-parameter-sharing-abbreviat
ed-convolutional-layers-b419e629d2d0 

https://towardsdatascience.com/ml-intro-7-local-connections-and-spatial-parameter-sharing-abbreviated-convolutional-layers-b419e629d2d0
https://towardsdatascience.com/ml-intro-7-local-connections-and-spatial-parameter-sharing-abbreviated-convolutional-layers-b419e629d2d0


Convolutional Neural Network (CNN)
- Certain layers are not fully connected but locally connected 

(convolutional layers, pooling layers)
- Convolution preserves the spatial relationship between pixels by learning 

image features using small squares of input data
- same, local cues appear in different places in input (cf. vision)



CNN (intuition)
- define a window size
- go through the picture, using some step
- compute some operation on each filter window: linear function of the pixel 

values
- give you some value representing the sub-part (“receptive field”)
- at the end: a “feature map / activation map / convolved feature”, with a 

smaller shape
original picture

parameter
= filter / kernel / 
feature detector

Convolution computation



CNN (intuition)
original picture parameter

= filter

Convolution computation

element-wise multiplication: 
(1x1)+(1x0)+(1x1)+(0x0)+(1x1)+(1x0)+(0x1)+(0x0)+(1x1
)
= 1+0+1+0+1+0+0+0+1
= 4



Filters
Filter = feature detector

→ different values of the filter will produce 
different feature maps



Setting
→ In practice, a CNN learns the values of these filters during training 

- Depth: number of filters

Feature map

Here: 3 distinct filters 
producing 3 different feature 
maps = stacked 2d matrices
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→ In practice, a CNN learns the values of these filters during training 

- Depth: number of filters
- Stride: number of pixel by which we slide our filter window (larger stride, smaller 

feature map)

Feature map

Here: 3 distinct filters 
producing 3 different feature 
maps = stacked 2d matrices



Setting
→ In practice, a CNN learns the values of these filters during training 

- Depth: number of filters
- Stride: number of pixel by which we slide our filter window (larger stride, smaller 

feature map)
- Introducing non-linearity (ReLU): used after a convolution operation, replace all 

negative value in the feature map by zero

Feature map



The pooling step
Spatial Pooling (or subsampling or 
downsampling) reduces the 
dimensionality of feature map but retains 
the most important information

- different types: Max, Average, Sum etc.

- Max Pooling: define a spatial neighborhood 
(for example, a 2×2 window) and take the 
largest element from the rectified feature 
map within that window

here done 
for each 
feature map 
separately



Pooling 
The function of Pooling is to progressively reduce the spatial size of the input 
representation. In particular, pooling:

- makes the input representations (feature dimension) smaller and more 
manageable

- reduces the number of parameters and computations in the network, therefore, 
controlling overfitting

- makes the network invariant to small transformations, distortions and translations 
in the input image (a small distortion in input will not change the output of Pooling 
– since we take the maximum / average value in a local neighborhood). 

- helps us arrive at an almost scale invariant representation of our image (the exact 
term is “equivariant”). This is very powerful since we can detect objects in an image 
no matter where they are located.

https://en.wikipedia.org/wiki/Overfitting


Full network
Two convolution steps:

- the 2nd convolution layer performs convolution on the output of the first Pooling Layer 
using six filters to produce a total of six feature maps

- these layers: extract useful features, introduce non-linearity, reduce feature dimensions
- Fully connected layer (MLP): classification + learn feature combinations

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ 
https://dennybritz.com/posts/wildml/understanding-convolutional-neural-networks-for-nlp/ 

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://dennybritz.com/posts/wildml/understanding-convolutional-neural-networks-for-nlp/


More on CNN
- pooling is not 

necessary after each 
conv

- unlimited number of 
conv

- What about text?



CNN for text data

- Goal: identify indicative local features (n-grams) in large structure, 

combine them into fixed size vector

- Convolution: apply filter to each window (linear transformation + 

non-linear activation )

- Pooling: combine by taking maximum



CNN for text data
- define a window size 
- go through the 

sentence
- compute some 

operation on each 
window

- return a vector for 
each window

- combine them using 
pooling

word -> 2-dim embedding
+ concatenation

Filter Max-pooling



CNN for text data
- main idea: apply the same parameterized function over all k-grams in the sequence
- creates a sequence of m vectors, each representing a particular k-gram
- the representation is sensitive to the identity and order of the words within a 

k-gram
- but the same representation will be used for a k-gram regardless of its position

Padding: add padding-words to each side of the sequence → wide convolution (vs 
narrow)

*PAD*

the

actual

service

*PAD* the

the actual

actual service

… …



Pooling
- Most frequent: max-pooling
- k-max pooling : top-k values in each dimension are retained, instead of 

only the best one = pool the k most active indicators, preserve orders
- Average pooling: taking the average value of each vector
- (dynamic pooling: different pooling for different subpart of the input)

1 2 3

9 6 5

2 3 1

7 8 1

3 4 1

9 8 5

Max pooling

9 6 3

7 8 5

2-Max pooling

9 6 3 7 8 5
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CNN for NLP
Variations:

- several convolutional layers, 
each with a different window 
size

-  convolution over syntactic 
trees [Ma et al, 2015]: each 
window is around a node in 
the syntactic tree

Less adapted for text data: we 
need more than just local 
compositions

https://arxiv.org/pdf/1510.03820.pdf
https://dennybritz.com/posts/wildml/understanding-convolutional-neural-networks-for-nlp/ 

https://arxiv.org/pdf/1510.03820.pdf
https://dennybritz.com/posts/wildml/understanding-convolutional-neural-networks-for-nlp/


Recurrent Neural Networks (RNN)

- Handle structured data of arbitrary sizes
- Recurrent networks for sequences: 

- a type of artificial neural network designed to recognize patterns in sequences of 
data (e.g. text, genomes, numerical times series data emanating from sensors, stock 
markets)

- (Recursive networks for trees)
- parsing can be down with recurrent network: a stack is seen as a sequence for 

transition-based parsing



RNN
Encoding arbitrary length sequences into a fixed size vector:

- CBOW: no ordering, no structure
- CNN: improvement, but only local patterns
- RNN: represent arbitrarily sized structured input as fixed-size vectors, 

paying attention to structured properties
- gated architectures: LSTM, GRU are very powerful at capturing regularities in 

sequential inputs
- RNNs condition the next word on the entire sequence history



RNN
- Main idea:  

- if we have data in a sequence such that one data point depends upon the 
previous data point 

- → modify the neural network to incorporate the dependencies between 
these data points

- RNNs have the concept of ‘memory’ = store the states or information of previous 
inputs to generate the next output of the sequence.

e.g. to predict the next word in a sentence, you need the previous outputs/words

- vs In Feedforward Networks, every output is independent of the previous output: 
the output at time t is independent of output at time t-1 



RNN: modèle de langue
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RNN abstraction

- a sequence of input: x
1
, x

2
, …., x

n
- a sequence of output: y

1
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, …, y

n
- idea: y

i
 depends on x

i
 but also x

1
, …, x

i-1
- we have a recursive function R:

- takes the current input vector x
i
 

- and a vector representing the current state of 
memory s

i-1
- output: a new state vector s

i

- the final representation y
i
 is based on this 

state s
i

- in practice: y
i
 = s

i
 or y

i 
= a subpart of s

i
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RNN abstraction
￼

Unroll the recursion

The same parameters are shared 
across all time steps

- s1 depends on x1
- s2 depends on x1, x2
- s2 depends on x1,x2,x3

→ sn (and yn) depends on the 
entire input = encoding of the 
input sequence
→ training must set 
parameters in order to have a 
state that conveys useful info

Notations:
- states: 

noted s or h 
- h and y 

sometimes 
merged



RNN abstraction
- Consider recurrent neural network as 

very deep neural network with shared 
parameters across computation

- Backpropagation through time

each neuron receives (weighted) inputs + its own value at t-1



RNN abstraction
- Consider recurrent neural network as 

very deep neural network with shared 
parameters across computation

- Backpropagation through time

Notations:
- states: 

noted s or h 
- h and y 

sometimes 
merged

each neuron receives (weighted) inputs + its own value at t-1



RNN training

What kind of supervision? RNN does not do much on its own, it’s a 
trainable component

→ the RNN learns to encode properties of the input sequences that are 
useful for the further prediction task

Some common architectures:

- Acceptor / Encoder: based on the final output (e.g. text classification)
- Transducer: an output for each input (e.g. language modeling)

- Encoder-decoder: one RNN to encode sequence into vector representation, 
another RNN to decode into sequence (e.g. machine translation)



Acceptor
The supervision signal is based on the final state / output vector yn

→ Acceptor: we observe the final state, and decide on an outcome, e.g.:

- Read characters of a word one by one and use the final state to 
predict the POS [Ling et al. 2015]

- Read a sentence and based on the final state decide if it conveys 
positive or negative sentiment [Wang et al 2015]

- Read a sequence of words and decide whether it’s a valid 
noun-phrase

The RNN’s output vector is fed into a fully connected layer or an MLP 
which make the prediction (same loss as previously)



Encoder
Similar: uses only the final output vector yn

- but here, the prediction is not solely on the basis of this vector
- the final vector is treated as an encoding of the information in the 

sequence
- and is used as additional information together with other signals

e.g. Extractive document summarization:

- run over the document with a RNN: yn summarizes the document
- then yn is used with other features to select the sentences to be kept



Transducer
Producing an output yi for each input read 

e.g. Sequence tagger:

- x1:n are feature representations for the n words of a sentence
- yi is used for predicting the tag assigned to word i (based on words w1:i)

Used for CCG super-tagging [Xu et al, 2015]

Natural use case = language modeling: the sequence of words x1:i is used to 
predict a distribution over the (i+1)th word [Mikolov 2012, Mikolov et al 2010, 
Sundermeyer et al. 2016]

- special cases: RNN generator, encoder-decoder, conditioned-generation 
with attention

 



Variations: Multi-layer RNN

- multiple layers of RNNs, deep RNN [Hihi and 

Bengio, 1996]

- input of next layer is output of RNN layer below it

- Empirically shown to work better



Variation: Bi-directional RNN
- Input sequence both forward and backward to different RNNs
- Representation is concatenation of forward and backward state 
- Represent both history and future
- [Graves, 2008; Schuster and Paliwal, 1997]

idea: for sequence tagging, using 
the history x1:i is useful, but 
following words xi:n could also be 
useful 

→ similar to a window representing 
the surrounding words

2 separate states 
- s

i
f (forward, based on x1,x2,...,xi)

- s
i
b (backward, based on xn, xn-1,...,xi)



Bi-RNN
The output yi is the concatenation of the output of each RNN forward and 
backward:

yi = [RNNf(x1:i);RNNb(xn:i)]

- very effective for tagging tasks: one output for each input [Irsoy and Cardie 2018]
- useful as a general-purpose trainable feature-extracting component whenever a 

window around a word is required

￼



Concrete RNN architectures

Concrete architecture: a function s
i
 = R(x

i
, s

i-1
)



Concrete RNN architectures
Simple-RNN or Elman Network [Elman, 1990; Mikolov, 2012]



Concrete RNN architectures
Simple-RNN or Elman Network [Elman, 1990; Mikolov, 2012]

- a linear transformation 
of input and prev state

- a non-linear activation 
(tanh or ReLU)



Concrete RNN architectures
Simple-RNN or Elman Network [Elman, 1990; Mikolov, 2012]

- effective for sequence tagging 
[Xu et al, 2015] and language 
modeling

- hard to train: vanishing 
gradients = hard to capture 
long-range dependencies

- a linear transformation 
of input and prev state

- a non-linear activation 
(tanh or ReLU)



Gating architectures: LSTM and GRU
- Long short term memory networks (LSTM) and Gated Recurrent Unit 

(GRU)
- In practice, simple RNNs only able to remember narrow context 

(vanishing gradient)
- LSTM: complex architecture able to capture long-term dependencies 

through gating mechanisms 

hidden state
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Gating architectures
Idea: controlling the memory

e.g. using a binary vector as a gate to decide what to keep or forget

→ gate vectors are used to control access to the memory state



Gating architectures
We do not use these binary vectors as gates in practice, because we need 
gates to be:

- not static (conditioned on the input and state)
- learned during training 
- thus not binary (differentiable)

→ we use vectors of real numbers, then pass through a sigmoid function [0,1]

- values in x corresponding to near one: pass / written to memory
- values in x corresponding to near zero: block / forgotten



LSTM
[Hochreiter and Schmidhuber, 1997]



LSTM
[Hochreiter and Schmidhuber, 1997]

Forget gate

input gate output gate

- https://penseeartificielle.fr/comprendre-lstm-gru-fonctionnement-schema/ 

https://penseeartificielle.fr/comprendre-lstm-gru-fonctionnement-schema/


LSTM

Values of the gates:
- linear combination of the input xj and 

the previous state hj-1
- + tanh / sigmoid 

splits state into 2 parts:

- cj = cell state, preserve the 
memory, controlled through gates

- hj = working memory, hidden 
state

3 gates: input forget output
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a than allows to 
normalize 
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GRU
• LSTM: effective, but complex, computationally expensive

• GRU: cheaper alternative that works well in practice [Cho et al. 2014; Chung 
et al. 2014]



GRU
- reset gate (r): how much information from previous hidden state needs to be 

included (reset with current information?)
- upgate gate (z): controls updates to hidden state (how much does hidden state 

need to be updated with current information?)
- yj = sj
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- upgate gate (z): controls updates to hidden state (how much does hidden state 

need to be updated with current information?)
- yj = sj

r control access to the previous state and compute update



GRU
- reset gate (r): how much information from previous hidden state needs to be 

included (reset with current information?)
- upgate gate (z): controls updates to hidden state (how much does hidden state 

need to be updated with current information?)
- yj = sj

 

r control access to the previous state and compute update

 

new state = interpolation of 
previous state and update, 
controlled by z



RNNs
- GRU effective for language modeling and machine translation, but still no 

consensus on which architecture is the best [Jozefowicz et al. 2015]
- Variants with non gated architecture [Mikolov et al 2014; Le et al, 2015]
- Initialisation: bias and forget gate close to 1 for LSTM [Jozefowicz et al 

2015]
- Drop-out: only on the non-recurrent connection (in between layers in 

deep-RNNs) or variational RNN dropout method = same dropout across 
time steps [Gal, 2015]



Recursive Neural Networks

• Generalization of RNNs from sequences to (binary) trees

• Linear transformation + non-linear activation function applied 

recursively throughout a tree

• Useful for parsing



Sources

- https://www.wikiwand.com/fr/R%C3%A9seau_neuronal_convolutif
- Nice intro: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
- More details: https://cs231n.github.io/convolutional-networks/  
- (picture, bad explanation) https://datascientest.com/convolutional-neural-network
- https://www.quora.com/What-are-recurrent-neural-network-algorithms 
- https://medium.com/analytics-vidhya/recurrent-neural-network-and-its-variants-de75f9ee063
- https://machinelearningmastery.com/an-introduction-to-recurrent-neural-networks-and-the-math-that-powers-them/
- https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
- https://karpathy.github.io/2015/05/21/rnn-effectiveness/
- https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
- https://github.com/pytorch/examples/tree/master/word_language_model
- https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html
- https://www.pluralsight.com/guides/natural-language-processing-with-pytorch 
- https://stats.stackexchange.com/questions/335321/in-a-convolutional-neural-network-cnn-when-convolving-the-image-is-th

e-opera
- https://penseeartificielle.fr/comprendre-lstm-gru-fonctionnement-schema/ 
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