
Neural Methods
for NLP

Master LiTL --- 2024-2025
chloe.braud@irit.fr

https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

126/11/2024

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Goals
- Understand what are Neural Networks: the motivations and steps from linear to

neural models
- Being able to train and evaluate a deep learning model

- understand the hyper-parameters, being able to optimize a DL model
- understand the varied architectures, their underlying motivations, their use
- understand the input: what are (word) embeddings?
- how to build a model for a specific application: classification, sequence labelling, generation

- Having an idea of the limitations and current challenges

Practical sessions / Assignments:

- Libraries: PyTorch, HuggingFace
- Environment: Google Colaboratory

2

Schedule
2024-2025

1 26.11 13h-16h 3 (C1) ML Reminder + Intro DL TP1-POO

2 03.12 13h-16h 3 (C2) Intro DL + Embeddings TP2-FFNN

3 10.12 13h-16h 3 (C3) Embeddings + start projects TP3-Embed

- 17.12 - - BREAK

(holidays)

4 07.01 13h-16h 3 (C4) Training a NN TP5-HFData

TP6-TrainFFNN

5 14.01 13h-16h 3 (C5) CNN, RNN TP7-LSTM

TP8-HFTrain

6 21.01 13h-16h 3 Projects

7 28.01 13h-16h 3 (C6) Encoder-decoder, transformer TP9-Biais

- 04.02 - - BREAK

8 11.02 13h-16h 3 (C7) Current challenges → project defences

→Part 1 due

→Part 2 due

Projects
System: - Read a research paper on the chosen task

- (Implement a non neural baseline system)
- Compare with a neural architecture
- Augment the system within a multilingual / cross-domain setting

Topics: - Text classification: sentiment analysis, fake news detection, …
- Sequence labelling: named entity recognition, POS tagging, …

Assignments
(groups 2-3):

- 07/01 : Pre-processing code + report part 1
- Code : data pre-processing
- Report Part 1 : description of the data and related work

- 09/02 : Code + report part 2 (+ corrected Part 1)
- Code for training and evaluating the system
- Report Part 2 : describe the system and present the results

- 11/02 : Oral presentation (10-15 mn)

Bibliography and resources
There are many many good resources for more details.

- Neural Network Methods for NLP, Y. Goldberg
- Online courses:

- Neural Nets for NLP, G. Neubig,
- Stanford courses with C. Manning (official website: https://web.stanford.edu/class/cs224n/)
- En français : https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home

- J. Eisenstein course:
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

I used other resources to build this course, I’ll try to give all the sources used.

5

https://www.youtube.com/playlist?list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://web.stanford.edu/class/cs224n/
https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

Neural Methods
for NLP

Master LiTL --- 2024-2025
chloe.braud@irit.fr

https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Course 1: Machine Learning (reminder)

6

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Neural methods for NLP
- 1980’s: Symbolic NLP

- rule-based approach, hand-written rules
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming

- 1990’s: ‘Statistical’ NLP
- learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors
- large annotated corpora
- handcrafted features
- rather fast to train, still good baselines

- ≃ 2010: ‘Neural’ NLP
- combine linear and non-linear functions, over dense inputs
- (very) large annotated corpora and very large unannotated corpora
- improved performance (in general), no feature engineering
- harder to interpret (“black box”)

7

Neural methods for NLP
- 1980’s: Symbolic NLP

- rule-based approach, hand-written rules
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming

- 1990’s: ‘Statistical’ NLP
- learn rules automatically = (mostly linear) functions, with high-dimensional, sparse feature vectors
- large annotated corpora
- handcrafted features
- rather fast to train, still good baselines

- ≃ 2010: ‘Neural’ NLP
- combine linear and non-linear functions, over dense inputs
- (very) large annotated corpora and very large unannotated corpora
- improved performance (in general), no feature engineering
- harder to interpret (“black box”)

8

Machine Learning for NLP

Applications:

- NLP applications: spam filtering, spell checking, machine translation, summarization, web search,
recommendation systems, sentiment analysis, hate speech detection…

- NLP tasks: sentence splitting, tokenization, POS tagging, NER, syntactic parsing, semantic parsing, discourse
parsing, event identification, detecting language change, representation learning, speech recognition...

Data investigation:

- Looking at how works your model could help understanding your data/problem:
- e.g. Age or Gender bias in models: Gender Bias in Part-of-Speech Tagging and Dependency Parsing

Data, A. Garimella, C. Banea, D. Hovy, & R. Mihalcea. ACL 2019
- (Linguistic) Hypothesis checking

- e.g. Scientific fraud: specific writing style? Is writing style predictive of scientific fraud?, C. Braud and A.
Søgaard. EMNLP 2017

- For 'fun': e.g. see T. Van de Cruys' book of poetry generated via ML
9

Content
Statistical Learning

1. Learning problems
2. Workflow and terminology
3. Linear classification
4. Representation function
5. Basics of POO
Practical session 0: basics of
POO, implement a ML model with
Scikit

10

Content

1. Learning problems
2. Workflow and terminology
3. Linear classification
4. Representation function
5. Basics of POO
Practical session 0: basics of
POO, implement a ML model with
Scikit

ML ≈ DL

11

Statistical Learning

Content

1. Learning problems
2. Workflow and terminology
3. Linear classification
4. Representation function
5. Basics of POO
Practical session 0: basics of
POO, implement a ML model with
Scikit

ML ≠ DL

ML ≈ DL

12

Statistical Learning

Learning problems and scenarios

Most common learning problem in NLP: classification

Most common scenario: supervised learning

→ using pre-trained word embeddings is in fact doing semi-supervised

learning

13

The different tasks

- Classification: predict a categorical label for each item
- single label: each instance is assigned a single label

- binary: 2 labels, e.g. an email is either a spam or not
- multi-class: > 2 labels, e.g. sentiment is either positive, negative or neutral

- multi-label: each instance is assigned multiple labels, e.g. The Lord of the Ring is
classified as: Adventure, Fantasy, Drama

- Sequence labeling / structured prediction: predict a categorical label for each member of a sequence
- e.g. POS tagging, NER...
- can be seen as performing independent classification tasks on each item
- but performance are improved when taking into account the dependence between the

elements
- Regression: Predict a real value for each item

- e.g.: prediction of stock values, variations of economic variables, house prices..
- rarer for NLP, but e.g. data with depression “scores” (DAIC) 14

The different tasks
- Clustering: Partition items into homogeneous regions

- kind of classification but without classes known a priori
- can be useful if you don't have manual labels or want to explore your data
- often used for very large data sets

- e.g.: in social network analysis, attempt to identify “communities” within large groups of
people.

- Ranking: Order items according to some criterion (e.g. Web search)
- Dimensionality reduction or manifold learning: Transform an initial representation of items into a

lower-dimensional representation (for pre- processing or visualisation)

15

The learning scenarios
Depend on the annotations you have:

Supervised learning:

- we have a set of labeled examples as training data

- most common for classification and regression

16

The learning scenarios
Depend on the annotations you have:

Supervised learning:

- we have a set of labeled examples as training data

- most common for classification and regression

Unsupervised learning:

- we only have unlabeled training data

- e.g.: Clustering and dimensionality reduction

- often hard to evaluate

17

The learning scenarios
Semi-supervised learning: the training sample consists of both labeled and unlabeled data

18

The learning scenarios
Semi-supervised learning: the training sample consists of both labeled and unlabeled data

easier to obtain!

19

The learning scenarios
Semi-supervised learning: the training sample consists of both labeled and unlabeled data

Very hard in practice, but many variations:
- labeled + automatically labeled data

- e.g. sentiment analysis with smileys as (noisy) labels
- labeled + external resource giving constraints

- e.g. POS tagging with a dictionary
- labeled + labeled data for another task

- multi-task learning
- labeled + unlabeled: pre-trained word embeddings

Especially used for transfer learning / domain adaptation:
- e.g. building a model for a new language or for a new genre of texts

easier to obtain!

20

Supervised classification
Supervised classification:

- the most common scenario for NLP (with supervised structured prediction)
- supervised: input = labeled data points
- classification: assign a category/class to each item, e.g.

- is a word a VERB or a NOUN?
- Is a document talking about Sport or Politics or Economy?

Binary vs Multi-class:

2 classes (e.g. positive/negative, comedy/drama) vs more than 2 classes (e.g. positive/negative/neutral, any genre)

Distinction that has an impact

- on the algorithm: various strategies to deal with MC problems
- on evaluation: various metrics
- but rather transparent with scikit: algorithms/functions can be used for both binary and MC problems

21

Machine Learning: workflow and terminology

The different steps when doing machine learning:

- (1) preparing data,
- (2) learning and tuning,
- (3) predicting and evaluating

Terminology:

- input
- model and parameters
- train/dev/test sets

22

Machine Learning
Start with:

- a set of labelled data = data points + (gold) labels
- a function that could be used to compute a label for a data point

Learning a model:

- Goal: try to get the best function, i.e. that finds the right/gold label
- Process: iterate over the examples, and adjust the parameters of the function to avoid errors

Evaluating the model:

- Goal: evaluate the performance of the learned model
- Process: once the model is learned / trained, make predictions over unseen data and compute

some performance metrics

23

Machine Learning
Start with:

- a set of labelled data = data points + (gold) labels → supervised setting
- a function that could be used to compute a label for a data point → classification

Learning a model:

- Goal: try to get the best function, i.e. that finds the right/gold label
- Process: iterate over the examples, and adjust the parameters of the function to avoid errors

Evaluating the model:

- Goal: evaluate the performance of the learned model
- Process: once the model is learned / trained, make predictions over unseen data and compute

some performance metrics

24

Machine Learning
Start with:

- a set of labelled data = data points + (gold) labels → supervised setting
- a function that could be used to compute a label for a data point → classification

Learning a model:

- Goal: try to get the best function, i.e. that finds the right/gold label most often
- Process: iterate over the examples, and adjust the parameters of the function to avoid errors

Evaluating the model:

- Goal: evaluate the performance of the learned model
- Process: once the model is learned / trained, make predictions over unseen data and compute

some performance metrics

25

Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to
predict a
label

learning some
function f with

parameters

Compute
score using

some
performance
metrics

Cat

Represented
by some
features

?

Evaluating

output

Data preparation

26

Workflow: (1) Data preparation
- Define the problem: task? labels?
- Collect (labeled) data: datasets available online, scikit toy datasets, scrap data…
- Randomly partition your data, i.e. shuffle then split:

- Train / dev / test: e.g. 80-10-10 (or use pre-defined split), in gal train > test
- Train / test + cross-fold on training set for tuning

- Data description: you need to know your data!
- Number of training/evaluation examples
- Class distribution: number of examples per class
- Vocabulary, language, genre, etc…

- Feature extraction/engineering: critical step, reflects prior knowledge
- Possibly linguistic pre-processing: POS tagging, parsing, NER, etc...
- Vectorization, normalization

27

Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to
predict a
label

learning some
function f with

parameters

Compute
score using

some
performance
metrics

Cat

Represented
by some
features

?

Evaluating

output

Data preparation

28

Workflow: (2) Learning + Tuning
- Choose a learning algorithm: crucial, especially if training is long

- Advice: try first with a fast algorithm

- Train: at each training step,

- update values for the parameters

- the values for the hyper-parameters are fixed

- Tune:

- identify the tunable hyper-parameters

- search the best values for the hyper-parameters

29

Learning algorithms for classification
- Naive Bayes

- Linear classifiers:

- perceptron

- passive-aggressive

- Logistic Regression aka MaxEnt

- linear SVM

- Non linear SVM

- Neural networks

See the doc on supervised learning

See the tutorial: working with text

30

https://scikit-learn.org/stable/supervised_learning.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

Workflow: (2) Learning + Tuning
- Choose a learning algorithm: crucial, especially if training is long

- Advice: try first with a fast algorithm

- Train: at each training step,

- update values for the parameters

- the values for the hyper-parameters are fixed

- Tune:

- identify the tunable hyper-parameters

- search the best values for the hyper-parameters

31

Model and learning function
Remember that we are learning a function:

- Target function: the true function f we want to learn /

approximate.

- Hypothesis (sometimes called model): a function h that

we hope is similar to the target.

32

Supervised learning :

- Based on a training sample S = {(x
i
 , y

i
)}

1,m

- we look for a on cherche an underlying law of dependence / regularities

e.g. a function h as close as possible to f (the target function) with y
i
= f(x)

many possible hypothesis

Learning a model
Remember that we want to avoid errors, find the best hypothesis:

- Loss function: measures the difference, or loss, between a predicted label and a true label.
- L:Y ×Ŷ → ℝ ~ ‘count the number of times’ y ≠ ŷ (also called cost)
- zero-one loss, squared loss, hinge loss...

The learning algorithm tries to get the smaller possible loss on the examples it is given:
- if the predicted label is wrong

- modifies the values of the weights w so that next time we compute the label, we get the right one i.e. ŷ = w.x
- if the predicted label is right, don’t modify anything (except if we want some margin)

The parameters W and b are set to minimize L (usually, the sum of the losses over the training examples)

L(Ө) = 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) → The loss should decrease with learning (less and less errors)

Thus training correspond to finding this minimum (= optimization problem):

Ô = argminӨ L(Ө) = argminӨ 1/n ∑
i=1..n

 L(f(xi ; Ө), yi)

33

Workflow: (2) Learning + Tuning
- Choose a learning algorithm: crucial, especially if training is long

- Advice: try first with a fast algorithm (for DL= smaller layers, smaller input size…)

- Train: at each training step,

- update values for the parameters

- the values for the hyper-parameters are fixed

- Tune:

- identify the tunable hyper-parameters

- search the best values for the hyper-parameters

34

Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to
predict a
label

learning some
function f with

parameters

Compute
score using

some
performance
metrics

Cat

Represented
by some
features

?

Evaluating

output

Data preparation

35

Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to
predict a
label

learning some
function f with

parameters

Compute
score using

some
performance
metrics

Cat

Represented
by some
features

?

Evaluating

output

Data preparation

Tuning

setting
hyper-

parameters

36

Tuning / Optimization
- We learn the parameters of the model (or weights, w or θ)
- We set values for the hyper-parameters associated to the learner

→ Tuning = searching for the best values for hyper-parameters e.g. smoothing, regularization strength etc

Tuning process:

1. identify the hyper-parameters of your model (SciKit: estimator.get_params())
2. choose the right performance metrics to optimize (accuracy, F1, rouge …)
3. choose the right procedure → always set apart a test set:

a. use a validation / development set:
i. define a set of possible values for each hyper-parameter

ii. train a model for each subset of values and evaluate on the dev set
iii. compare the results: keep the model giving the best score on dev
iv. evaluate (only) this model on the test set

b. n-fold cross-validation: esp. when small amount of data
i. very easy with scikit: grid-search cross-validation

37

Learning is not memorizing
Consistent model:

- no error on train set

- but poor performance on test,

i.e. memorize the data, unable to generalize

38

Overfitting
- Very complex decision surface: no generalization to unseen data

- Less complex: might generalize better in spite of some errors

→ Solution = regularization: constraining a model to make it simpler

= add a regularization term to minimize the complexity of the model, i.e. an hyper-parameter corr. to the

strength of the regularization

"The green line represents an overfitted model and the black line represents a

regularized model. While the green line best follows the data, it is too dependent on

the training data" (Mohri)

39

Learning a model
Remember that we want to avoid errors, find the best hypothesis:

- Loss function: measures the difference, or loss, between a predicted label and a true label.
- L:Y ×Ŷ → ℝ ~ ‘count the number of times’ y ≠ ŷ (also called cost)
- zero-one loss, squared loss, hinge loss...

The learning algorithm tries to get the smaller possible loss on the examples it is given:
- if the predicted label is wrong

- modifies the values of the weights w so that next time we compute the label, we get the right one i.e. ŷ = w.x
- if the predicted label is right, don’t modify anything (except if we want some margin)

The parameters W and b are set to minimize L (usually, the sum of the losses over the training examples)

L(Ө) = 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) → The loss should decrease with learning (less and less errors)

Thus training correspond to finding this minimum (= optimization problem):

Ô = argminӨ L(Ө) = argminӨ 1/n ∑
i=1..n

 L(f(xi ; Ө), yi) + λ R(Ө)

40

Regularization

Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to
predict a
label

learning some
function f with

parameters

Compute
score using

some
performance
metrics

Cat

Represented
by some
features

?

Evaluating

output

Data preparation

Tuning

setting
hyper-

parameters

41

Supervised classification

Data points x gold Labels y

Cat

Sandwich

Input Data / Training set
(Labeled examples)

Training

Test set

Use f to
predict a
label

learning some
function f with

parameters

Compute
score using

some
performance
metrics

Cat

Represented
by some
features

?

Evaluating

output

Data preparation

Tuning

setting
hyper-

parameters

42

(3) Prediction + Evaluation
Using the final values for parameters and hyper-parameters, evaluate on test

- Use your model to make predictions on the unseen test data (ypred)

- Compute a score by comparing y
true

 and y
pred

 for each example in the test

- Compare to other systems: baselines (on dev first), state-of-the-art...

It is important to:

- Keep track of the values used (final and tested) for the hyper-parameters for reproducibility!

- Choose a / several relevant evaluation metrics

- Propose relevant baselines

43

Classification metrics
For classification, we mostly use:

- Global scores: accuracy, averaged F1

- Per class scores: precision, recall, F1

- + confusion matrix: better understand the system behaviour

Accuracy is the most common metrics:

- fraction of correctly predicted samples

- e.g. 90 well predicted over 100 examples: accuracy = 90%

- issue esp. with imbalanced data,

- e.g. Cancer detection: 90 non cancer, 10 cancer is 90% a good score for predicting cancer?

- we want to predict well the positive class

44

Evaluating a model
Report one or several metrics:

- depend on the setting (binary or multi-class) and task
- classification: Accuracy, Macro/weighted F1, prec/rec/F1 per class

Compare to other systems:

- baselines: simplest feature/algo, dummy classifier (most frequent class)
- state-of-the-art: systems from the literature, reported or reproduced, compare different algorithms
- compare different feature sets
- compare different datasets: prove the robustness of your method over different genres, languages…

Try to understand your model:

- Scikit: classifiers have a coef_ parameters that allows to inspect the weights associated to each feature
- eli5: a library to debug ML models, compatible with Scikit, see the doc

- try to relate observed behaviour to a priori knowledge, esp. linguistic

45

Input: examples, features and labels
Examples or samples / instances / data points = items of data used for learning or evaluating (m examples)

Features = set of attributes associated to an example (n features)

A set of examples: a matrix X of size m×n

- 1 example = 1 row, i.e. a vector x of size n

Labels = values assigned to examples; for classification:

- General label set: Y of p classes
- Labels for all examples = a list of size m, e.g. ytrue

- 1 label for 1 example = 1 value y in the list
- labeled example = a pair (x, y)

Dataset for ML = X and ytrue

46

Model, Parameters and hyper-parameters
Model: what we learn is a model of our data

- We sometimes call model the weights learned, i.e. the importance that the model associates

with each feature

- e.g. Sentiment analysis: 'love':+10, 'hate':-42, ‘green’:0…
- Weights are saved in a vector w (or θ) of size n(+1)

- Each of these weights is a parameter/coefficient of the model

Hyper-parameters (or free parameters, part of the model):

- there could be parameters dependent on the learning algorithm used

- setting the values for these hyper-parameters is called tuning the model

47

Train / Dev / Test sets
Training sample/set: examples used to train a learning algorithm, to learn/fit a model

Development/validation set: examples used to tune the hyper-parameters of a learning algorithm

Test/evaluation set: examples used to evaluate the performance of a learning algorithm

- The test set is separate from the train/dev sets

- The test set is not made available in the learning stage

Searching for the best model on the test set =

48

Linear classification

- Binary classification: linear functions, weight matrix and bias

- Reminder: Logistic Regression = linear scores + logistic function

- Loss function

ML → DL:

- Change here = power of non linearity

- → LR performed by each neuron

49

Why Linear classifiers?
Remember that: ML is about finding a function h that best approximate the

target function f

- Searching over the set of all possible functions is very hard

- We thus restrict ourselves over specific families of functions, the hypothesis

class e.g. the space of all linear functions with d
in

 inputs and d
out

 outputs
- inject the learner with inductive bias: a set of assumptions about the desired solution

- facilitate procedures for searching solutions

- The hypothesis class also determines what can and cannot be represented

by the learner!

50

Linear Classifiers
Hypothesis class = high-dimensional linear functions, of the form:

f(x) = W.x + b with x ∈ Rd_in, W ∈ Rd_inxd_out, b ∈ Rd_out

- Searching over the space of functions = searching over the space of parameters, i.e. finding the best Ө =

W, b.

- Sometimes, to make the parameterization explicit, we write: f(x ; W, b)

- In binary classification, w is a vector

Recall on linear algebra: W.x = Σ
j
 w

j
 x

j
= w

0
.x

0
 + w

1
.x

1
 + ... + w

n
.x

n
 (+b)

With n features, we have:

- a data point: x =< x
0
, x

1
, ..., x

n
 >

- the weights: w =< w
0
, w

1
, ..., w

n
 >

51

Linear Classifiers
The decision boundary is a linear function of the input: in the binary case, it's a line (2 dimensions /

features), a plane (3 d) or an hyperplane (n d) separating the two classes

52

w

x=(x1,x2)

h

w.h = 0
w.x > 0
w.z < 0

z=(z1,z2)

Linear Classifiers
The decision boundary is a linear function of the input: in the binary case, it's a line (2 dimensions /

features), a plane (3 d) or an hyperplane (n d) separating the two classes

53

x=(x1,x2)

w.h = 0
w.x > 0
w.z < 0

z=(z1,z2) w

h

w

h’

w’’

h’’

Introducing non-linearity
SVM with non-linear kernel

- mapping of the original input feature space to a higher-dimensional feature space,

- with the hope that data may be linearly separable in this new space

54

Introducing non-linearity
SVM with non-linear kernel

- mapping of the original input feature space to a higher-dimensional feature space,

- with the hope that data may be linearly separable in this new space

Neural Network: keep
non-linearity and
transformation of the input
space.

55

Summary
- Linear functions: a great class of hypothesis for ML, worked for decades
- Non-linearity: seems useful, since many problems are non linear, e.g. XOR

problem
- Learning is about solving an optimization problem, i.e. minimizing a

function called the loss (while keeping the complexity of the model
‘reasonable’).

56

Representation function

- “Feature engineering”:
- choose features, e.g. words, POS, NE, gaze, meta-data …
- represent information (vectorizing, normalizing): bow, n-grams ; TF-IDF, …

ML → DL: change here = NN seen as representation learners

ML → DL: sparse vs dense inputs

57

Feature representation
Main issue:

- how to represent text?

e.g. how to transform a sentence into a vector of numerical values?

Bag-of-Words (BOW):

- one vector where each dimension is a word in our vocabulary

- if the word / feature is present in the document, associate a specific value

58

BOW: One-hot encoding

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

18 words / dimensions
59

BOW: One-hot encoding

60

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

61

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

BOW: One-hot encoding

62

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

BOW: One-hot encoding

63

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

BOW: One-hot encoding

64

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

BOW: One-hot encoding

65

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1
- The other words: value = 0 → present in the training data,

but not in this specific sentence / document

BOW: One-hot encoding

66

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1
- The other words: value = 0 → present in the training data,

but not in this specific sentence / document

BOW: One-hot encoding

Easy to use: now the computer can “read” your sentence

 The elephant sneezed at the sight of potatoes.

 <1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0>

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important
- Normalizing with TF-IDF: take into account the distribution of the words in the entire

corpus
- “the”: very frequent but not very crucial
- “magnificent”: rare, but crucial

67

Bag-of-Words

Easy to use: now the computer can “read” your sentence

 The elephant sneezed at the sight of potatoes.

 <1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 0>

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important (?)
- Normalizing with TF-IDF: take into account the distribution of the words in the entire

corpus
- “the”: very frequent but not very crucial
- “magnificent”: rare, but crucial

68

Bag-of-Words

‘the’

Easy to use: now the computer can “read” your sentence

 The elephant sneezed at the sight of potatoes.

 <1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 0>

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important
- Normalizing with TF-IDF: take into account the distribution of the words in the

entire corpus
- “the”: very frequent but not very crucial
- “magnificent”: rare, but crucial

69

Bag-of-Words

Bag of any features: one-hot encoding
Can be used to take into account any information, e.g. POS tags:

 The/D elephant/N sneezed/V at/P the/D sight/N of/P potatoes/N

70

1 1 1 1 0

D N V P A

We can encode any information:
- presence of a syntactic relation
- presence of a Named Entity / numbers /dates / amounts
- word associated to a sense if disambiguated
- words in the next sentence
- semantic classes…

Also extra-linguistic features : gender of the writer, number of likes ...

One-hot representation

- Defining features has to be done manually: require expertise and tests

- A word is represented with a one-hot vector: easy to implement

71

Problems and extensions
1. Very high dimensional:

- 18 dimensions for the previous sentence but could be 100k dimensions!

- Curse of dimensionality (nb of parameters proportional to nb of features) and

sparsity (many many zeros): makes learning hard, prone to overfitting

- Solutions:

- ignoring specific words, e.g. stop words

- keeping only the most frequent / highest TF-IDF

- grouping words: semantic categories, clusters (Brown)

72

Problems and extensions
1. Very high dimensional:

- 18 dimensions for the previous sentence but could be 100k dimensions!
- Curse of dimensionality (nb of parameters proportional to nb of features) and

sparsity (many many zeros): makes learning hard, prone to overfitting

- Solutions:
- ignoring specific words, e.g. stop words
- keeping only the most frequent / highest TF-IDF
- grouping words: semantic categories, clusters (Brown)

2. Bag-of-Words representation ignores word ordering and context
- crucial: “I don’t know why I like this movie.” vs “I don’t like this movie and I know why.”
- solutions: n-grams, i.e. use combination of multiple words e.g. trigrams “do not like”...

- but even more dimensions!

⇒ Representation learning = power of Neural Networks
73

Basics of OOP (POO in French)

74

Object Oriented Programming:

- a programming paradigm (vs functional e.g. Camel / Haskell, logic e.g. Prolog,
descriptive e.g. LateX / HTML…)

- many languages: Ada, C++, Python, Java

Python: multi paradigme =

- object but also functional, and structured (hierarchical organization of the code,
small pieces of code, extensive use of control and repetition, block structures…)

→ Python libraries are based on the object paradigm: description of classes that can
be used to perform some operation

Objects

An object is:

- a concept, an idea, an entity in the world
- that as different properties / features / an internal structure
- and also has a specific behavior / a way to interact with other entities
- analogy with real world:

- we have different types of entities e.g. cars, computers, cats… and also abstract ones such as time
or a client

- with different ‘behaviours’: cars start, run, stop, turn … computers start, bug… cats meow..
- we want to represent them in the computer through their properties and

behaviors

Object = a data structure that can answer to specific messages

75

Objects and classes
Class-based OOP: objects are instances of classes = types

- we have different types of entities in the world, such as cars or cats
- we have different instances of the same type: my cat is different from my neighbors’

cat

Class = object type:

- extend the notion of type such as int, char etc
- used to define the properties of the corresponding entities and how they interact, e.g.

Car

Object = class instance:

- a specific entity pertaining to a class, e.g. my_car

76

Objects and classes
Class-based OOP: objects are instances of classes = types

- we have different types of entities in the world, such as cars or cats
- we have different instances of the same type: my cat is different from my neighbors’

cat

Class = object type:

- extend the notion of type such as int, char etc
- used to define the properties of the corresponding entities and how they interact, e.g.

Car

Object = class instance:

- a specific entity pertaining to a class, e.g. my_car (of type Car)

77

Classes
→ The modelization step is crucial: how well we define these classes will make
for a good, reusable, easy to modify code (or not)

- To define a specific type of object we need to give:
- a specific collection of data = fields, attributes, properties
- a specific collection of behaviors = methods, procedures

78

Classes
→ The modelization step is crucial: how well we define these classes will make
for a good, reusable, easy to modify code (or not)

- To define a specific type of object we need to give:
- a specific collection of data = fields, attributes, properties
- a specific collection of behaviors = methods, procedures

79

Note that we have:
- names for attributes
- verbs for methods

→ a very useful convention

Classes in Python

80

Notebook: https://colab.research.google.com/drive/1x1cDbQbu87RGFHRavwC2YRhGvNDj1MhK?usp=sharing

class Car:
Here we define the properties and behavior

def __init__(arguments)
- the constructor = the method

explaining how to create a new object
of this type

- details all the properties / attributes /
fields

https://colab.research.google.com/drive/1x1cDbQbu87RGFHRavwC2YRhGvNDj1MhK?usp=sharing

Classes in Python

81

Notebook: https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing

class Car:
Here we define the properties and behavior

def __init__(arguments)
- the constructor = the method

explaining how to create a new object
of this type

- details all the properties / attributes /
fields

when calling it:
- just use the name of the class = calls

the constructor
- the arguments can be used to specify

the value for the newly created object

https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing

Classes in Python

82

Notebook: https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing

class Car:
Here we define the properties and behavior

def __init__(arguments)
- the constructor = the method

explaining how to create a new object
of this type

- details all the properties / attributes /
fields

when calling it:
- just use the name of the class = calls

the constructor
- the arguments can be used to specify

the value for the newly created object

When I create / instantiate a specific object / instance: I specify the
unique shape of my object, its personal attributes

https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing

Methods

def present(self,
arguments):

I can define a method that
describes a possible
behavior of my object

83

- the method is then ‘applied’ to an object / an instance of the class
- in its definition, the method can use the fields of the object (here self.name or self.color)

So, what is self?

self is used within a class
definition to refers to the
current instance, to ‘myself’

→ self.name ⇒ the name of the
instance I’m currently defining

84

So, what is self?

self is used within a class
definition to refers to the current
instance, to ‘myself’

→ self.name ⇒ the name of the
instance I’m currently defining

Why it is important?

→ we can modify the current
object’s data fields e.g. self.color

85

So, what is self?

self is used within a class definition to
refers to the current instance, to ‘myself’

→ self.name ⇒ the name of the instance
I’m currently defining

Why it is important?

→ we can modify the current object’s
data fields

→ we can make use of another instance
of the same type within a class definition

86

So, what is self?

self is used within a class definition to
refers to the current instance, to ‘myself’

→ self.name ⇒ the name of the instance
I’m currently defining

Why it is important?

→ we can modify the current object’s
data fields

→ we can make use of another instance
of the same type within a class definition

87

Exercise…

So, what is self?

self is used within a class definition to
refers to the current instance, to ‘myself’

→ self.name ⇒ the name of the instance
I’m currently defining

Why it is important?

→ we can modify the current object’s
data fields

→ we can make use of another instance
of the same type within a class definition

88

Summary

- class: defines a type of objects, by
specifying:

- its properties = fields ie.
self.my_first_property = [initialize
with specific value or using argument
of the constructor]

- its behavior ie.
def i_can_do_that(self, [arguments])

- an object (a variable) is an instance of a
class that has:

- specific values for the properties
- on which we can call all the methods defined in

the class

89

Summary

- class: defines a type of objects, by
specifying:

- its properties = fields ie.
self.my_first_property = [initialize
with specific value or using argument
of the constructor]

- its behavior ie.
def i_can_do_that(self, [arguments])

- an object (a variable) is an instance of a
class that has:

- specific values for the properties
- on which we can call all the methods defined in

the class

90

Side note: Python recommends UpperCamelCase for class names,
CAPITALIZED_WITH_UNDERSCORES for constants, and snake_case for other names.

https://www.wikiwand.com/en/Python_(programming_language)

Inheritance
- used to define

types and
subtypes

- parent class: the
most abstract /
prototypical

- child class(es):
implement distinct
features

91

Parent class:
A person has:

- a name
- an idnumber

Child class:
An employee also has:

- a name
- an idnumber

but in addition it has:
- a salary
- a post

Inheritance
- used to define

types and
subtypes

- parent class: the
most abstract /
prototypical

- child class(es):
implement distinct
features

92

Parent class:
A person has:

- a name
- an idnumber

Child class:
An employee also has:

- a name
- an idnumber

but in addition it has:
- a salary
- a post

here is where you say
that it’s a child class of
Person

Inheritance
- used to define

types and
subtypes

- parent class: the
most abstract /
prototypical

- child class(es):
implement distinct
features

93

Parent class:
A person has:

- a name
- an idnumber

Child class:
An employee also has:

- a name
- an idnumber

but in addition it has:
- a salary
- a post

here is where you say
that it’s a child class of
Person

+ you can call the
constructor of the
parent to fill the
corresponding fields
using super

Inheritance

94

Parent
class:
A person has:

- a name
- an

idnumber

Child class:
An employee also has:

- a name
- an idnumber

but in addition it has:
- a salary
- a post

Exercise…

Inheritance

95

Parent
class:
A person has:

- a name
- an

idnumber

Child class:
An employee also has:

- a name
- an idnumber

but in addition it has:
- a salary
- a post

Exercise…

Note that:
- We can also call the method from

the class Person on an employee
object

Inheritance

96

Parent
class:
A person has:

- a name
- an

idnumber

Child class:
An employee also has:

- a name
- an idnumber

but in addition it has:
- a salary
- a post

Exercise…

Note that:
- We can also call the method from

the class Person on an employee
object

- We can redefine a method: here
details() is defined in both classes,
but here it’s the version in
Employee class that will be used

Summary

- class: defines a type of objects, by
specifying:

- its properties = fields ie.
self.my_first_property = [initialize
with specific value or using argument
of the constructor]

- its behavior ie.
def i_can_do_that(self, [arguments])

- an object (a variable) is an instance of a
class that has:

- specific values for the properties
- on which we can call all the methods defined in

the class

97
+ an object has the properties and the methods of his parents

Ok, so why does that matter?...

They are all
classes

98

Same in PyTorch

- Here we define a class that
defines a specific type of
network + it inherits from the
class nn.Module

99

Same in PyTorch

- Here we define a class that
defines a specific type of
network + it inherits from the
class nn.Module

- The constructor tells us that
this network has

- different properties: conv1 and
conv2, fc1, fc2 and fc3

- a method called forward(..)

100

Same in PyTorch

- Here we define a class that
defines a specific type of
network + it inherits from the
class nn.Module

- The constructor tells us that this
network has different
properties: conv1 and conv2,
fc1, fc2 and fc3 ; and that it has
a method called forward(..)

- Here we instantiate an object of
this class, thus a concrete
network of this type

101

TP1: Sentiment analysis with Scikit

In the practical session, we will implement a system for sentiment

classification of movie reviews.

- pre-process data (BoW, n-grams)

- train and evaluate a model

- compare different algorithms

- investigate model decisions

https://colab.research.google.com/drive/1icJsbnjykYRpvNiJYJDDzip9RV

WVhL-O?usp=sharing
102

https://colab.research.google.com/drive/1icJsbnjykYRpvNiJYJDDzip9RVWVhL-O?usp=sharing
https://colab.research.google.com/drive/1icJsbnjykYRpvNiJYJDDzip9RVWVhL-O?usp=sharing

Sources

- Foundations of Machine Learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, MIT Press

- Comparing SVM and NN:

- Short answer: On small data sets, SVM might be preferred.

https://stats.stackexchange.com/questions/510052/are-neural-networks-better-than-svms

- https://www.baeldung.com/cs/svm-vs-neural-network

- https://dair.ai/notebooks/nlp/2020/03/19/nlp_basics_tokenization_segmentation.html

- https://www.infoq.com/presentations/nlp-practitioners/

- https://github.com/sebastianruder/NLP-progress

- Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods.

Hüllermeier, E., Waegeman, W. Mach Learn 110, 457–506 (2021).

https://doi.org/10.1007/s10994-021-05946-3 (Picture on hypothesis space)

-

103

https://stats.stackexchange.com/questions/510052/are-neural-networks-better-than-svms
https://www.baeldung.com/cs/svm-vs-neural-network
https://dair.ai/notebooks/nlp/2020/03/19/nlp_basics_tokenization_segmentation.html
https://www.infoq.com/presentations/nlp-practitioners/
https://github.com/sebastianruder/NLP-progress
https://doi.org/10.1007/s10994-021-05946-3

