Neural Methods
for NLP

Master LiTL --- 2023-2024
chloe.braudeirit.fr

https://gitlab.irit.fr/melodi/andiamo/teaching _chraud/master_litl

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Schedule
2023-2024

w

12.12

19.12

09.01

16.01

23.01

01.02

13.02

13h30-16h

13h30-16h

13h-16h

13h-16h

13h-16h

13h-16h

13h-16h

2.5 (C3) Embeddings + TP2 (part2) + TP3
2.5 TP4 + Start projects

(holidays)
3 (C4) Traininga NN + TP5 + TP6

3 (C5) CNN, RNN + TP7 + TP8
—(15/01) Assignments Part 1 due

3 Projects
3 (C6) Encoder-decoder, transformer + TP9
3 (C7) Current challenges + project defenses

— (12/02) Assignments Part 2 due

Why dense representations?

[0 n[e n[. Word embeddings with DL
. Pre-trained word embeddings
; . Feeding the network
Cours 3 - embeddings ng]

Word embeddings in practice

The input layer

The input layer

input

What did we do during the practical
session? How was built the input?

input layer

hidden layers

output layer

The input layer

input

What did we do during the practical
session? How was built the input?

hidden layers

output layer

The input layer

input

What did we do during the practical
session? How was built the input?

Filtre
This movie Fais movie
i s
excellent excellent |~

input layer hidden layers output layer

The input layer

input

What did we do during the practical
session? How was built the input?

Filtre
This movie Fais movie
is s
excellent excellent |~
movie: [1, 0, 0, O]

excellent: [0, 0, 1, O]
> combined: [1, 0, 1, 0]

input layer hidden layers output layer

The input layer

input

What did we do during the practical
session? How was built the input?

Filtre
This movie Fais movie
is s
excellent excellent |~
movie: [1, 0, 0, O]

excellent: [0, 0, 1, O]
> combined: [1, 0, 1, 0]

— usual way: dense vectors

input layer

hidden layers

output layer

Standard vs neural approach

Standard approach:

- linear model trained over high-dimensional but very sparse feature
vectors
- requires to manually specify the important features

Neural approach:

- non-linear neural networks over dense input vectors
- automatically induce important features

10

Standard vs neural approach

Standard approach:

- linear model trained over high-dimensional but very sparse feature
vectors
- requires to manually specify the important features

Neural approach:

- non-linear neural networks over dense input vectors
- automatically induce important features

11

Feature representation

One-hot vs Dense

- One-hot: each feature is its own dimension

: : o [coo0o00000000000010000] ?
- Dimensionality is same as number of features

- Each feature is completely independent from one another

- Dense: each feature is a d-dimensional vector
- Dimensionality is d

?.'lll'...l.ll.l-l

- Similar features have similar vectors

12

Feature representation

One-hot vs Dense

- One-hot: each feature is its own dimension

: : o [coo0o00000000000010000] ?
- Dimensionality is same as number of features

- Each feature is completely independent from one another

- Dense: each feature is a d-dimensional vector

- Dimensionality is d

?.'lll'...l.ll.l-l

e.g. [1.9 2.5 38.4 0.01 12.42]
> i.e. “smaller”, real-valued

- Similar features have similar vectors

13

Feature representation

One-hot vs Dense

- One-hot: each feature is its own dimension

: : o [coo0o00000000000010000] ?
- Dimensionality is same as number of features

- Each feature is completely independent from one another

- Dense: each feature is a d-dimensional vector

- Dimensionality is d

?.'lll'...l.ll.l-l

e.g. [1.9 2.5 38.4 0.01 12.42]
> i.e. “smaller”, real-valued

- Similar features have similar vectors

14

Feature representation

Why dense?

- Discrete approach often works surprisingly well in NLP
- n-gram language models
- POS-tagging, parsing
- sentiment analysis

- Still, a very poor representation of word meaning

- no notion of similarity
- limited inference

15

Word representation

- Discrete approach: no notion of similarity

[c0ooo00000000000010000] i

/
[coooooloooo0000000000] ’

Similarity measure: cosinus
I A a = apple [1,0,0]
b A b p =pear [0,1,0]

Cos(a,p) =a.p/(||all| [[p]])

a.p=1x0+0x1+0x0=0

),_) — and cos(0) — angle 90°

Word representation

Discrete approach: no notion of similarity

[c0ooo00000000000010000] j
{
[coooooloooo0000000000] \

Expected!

17

WO rd d i S'[I'i b uti D n “You shall know a word by the company it keeps.” A
—J.R. Firth m

- Rather old idea: distributional hypothesis — 1950's!

Example (from Tim van der Cruys):

- delicious sooluceps

- sweet sooluceps

- stale sooluceps

- freshly baked sooluceps

— GQuess what is a sooluceps ?

18

WO rd d i S'[I'i b uti D n “You shall know a word by the company it keeps.” ._ﬂ
—JI.R. Firth “

Example (from Tim van der Cruys):

Rather old idea: distributional hypothesis — 1950's!

delicious sooluceps
sweet sooluceps

stale sooluceps

freshly baked sooluceps

Food!

— GQuess what is a sooluceps ?

Looking at the context of use of a word, you can guess its
meaning

19

Representing the meaning of words using context

Before neural networks:

build a matrix over all the words appearing in a /i.""".".".'"
corpus ST ERY L0 E1) LLL
- count the number of time words appear &] Bl LRI ERT R BNl RN

together
reduce the dimensions (e.g. PCA) E

20

Representing the meaning of words using context

Before neural networks:

s.-lll-l.ll.ll.l-l
Z

m=N [] . l.l H= N
; H=-N i ul

build a matrix over all the words appearing in a
corpus

count the number of time words appear & EL] EEREEY T BNl B
together
reduce the dimensions (e.g. PCA) A

Now: Train a neural network to build a
representation

massive amount of data
- task = predicting a linguistic unit (word,
sentence...)

21

Feature representation

Why dense?

I u
- Better representation of word meaning;: | -
B HI
L’ ‘ []
- ﬁ-
I

- similar words have similar vectors
- allows inference (talk about that later)

- What happens if we use a sparse vector as
input of a NN?

. One-hot word vectors: Word embeddings:
- thefirst layer = learns a dense - Sparse - Dense
. . - High-di ional - L -di ional
embedding vector over each input _ yiiqicoea - Learned fron data

22

Feature combinations

Traditional NLP:

specify interactions of features

e.g. ‘word is jump, tag is V and previous word is they

crucial because it introduces more dimensions — linearly separable
but the space of combinations is very large, time consuming

Non-linear network:

- only specify core features

- non-linearity takes care of finding indicative feature combinations

- (Note: it was also the case with non linear kernel methods, but with these methods,
training becomes very slow when the size of the data increases, ie. scales linearly
with the size of the training set vs NN scales linearly with the size of the network)

23

Word embeddings with Deep Learning

How can we define vectors representing word meaning?
— we want to be able to represent similarity between words

We could use semantic attributes as dimensions of the vector, e.g. animated, animal, like

coffee... — very complicated to find these attributes -Eg
B © °© 0o Eachwordgetsa
| Woman ERAEUINE 1x3 vector
B @ o
m- 1 1 0 G %
— prince . IRIETE! Similar words...
1 1 1 similar vectors
BT -
—e R
BCIE o5 o5

Word embeddings with Deep Learning

How can we define vectors representing word meaning?
— we want to be able to represent similarity between words

We could use semantic attributes as dimensions of the vector, e.g. animated, animal, like
coffee... — very complicated to find these attributes

Central idea of DL: the neural network learns representations of the features, rather than
requiring the programmer to design them

- let the word embeddings be parameters in our model,
- and then be updated during training

25

Word embeddings with Deep Learning

How can we define vectors representing word meaning?
— we want to be able to represent similarity between words

We could use semantic attributes as dimensions of the vector, e.g. animated, animal, like
coffee... — very complicated to find these attributes

Central idea of DL: the neural network learns representations of the features, rather than
requiring the programmer to design them

- let the word embeddings be parameters in our model,
- and then be updated during training

26

Word embeddings with Deep Learning

Word embeddings are a representation of the *semantics* of a word, efficiently
encoding semantic information that might be relevant to the task at hand.

27

Word embeddings with Deep Learning

Word embeddings are a representation of the *semantics* of a word, efficiently
encoding semantic information that might be relevant to the task at hand.

- dimensions = “latent semantic attributes”: but not directly interpretable

d d2 d3
t LELERRET] LN LRLL LR pomme | —2.34 -1.01 0.33

Word embeddings with Deep Learning

Word embeddings are a representation of the *semantics* of a word, efficiently
encoding semantic information that might be relevant to the task at hand.

- dimensions = “latent semantic attributes”: but not directly interpretable
- “relevant to the task at hand”:
- for example “bad” and “good” need to have opposite vectors for sentiment
classification but not for POS tagging
- the domain is crucial: typical example of “avocat” — mostly used with one
meaning for cooking and another one when referring to a lawyer
- leads to an important issue: words often have several meanings...

29

Word embeddings with Deep Learning

Word embeddings are a representation of the *semantics* of a word, efficiently
encoding semantic information that might be relevant to the task at hand.

- dimensions = “latent semantic attributes”: but not directly interpretable
- “relevant to the task at hand”:
- for example “bad” and “good” need to have opposite vectors for sentiment
classification but not for POS tagging
- the domain is crucial: typical example of “avocat” — mostly used with one
meaning for cooking and another one when referring to a lawyer
- leads to an important issue: words often have several meanings...
- you can embed anything: POS, morphological information, parse tree etc

— ldea: initialize randomly real-valued vectors for each word, and let the

model update the parameters to learn the representation y

Word embeddings with Deep Learning

Word embeddings: semantic representation of the words, used as basic
features

Similar words have similar embeddings

Each word / is represented with a (unique) vector v. € Rd

d is typically between 50 and 1000

di do ds3

i................. pomme | —2.34 -1.01 0.33
SOl I B I poire | —2.28 -1.20 0.1

= X1 EI1 LETERTY BNl EY voiture | —0.20 1.02 2.44

i1

Word embeddings with Deep Learning

- Word embeddings: semantic representation of the words, used as basic

features
- Similar words have similar embeddings

one-hot: it’s an
“embedding” of
the words but

- Each word i is represented with a (unique) vector v. € RY high-dimensional

- dis typically between 50 and 1000

and not dense,
not real-valued

b.........-...---. pOmme
; l-..--.---...-... p0|re

@-.-...--'I..-.... VOlture

di do ds3
—2.34 -1.01 0.33
—2.28 -1.20 0.11
—0.20 1.02 2.44

32

Pre-trained word embeddings

- Considering the embeddings as trainable parameters is very cool:
they can be updated while performing the task, thus adapted to the
task

- But building good word representations require a massive amount of
data: we need to see each word many times with varied contexts

— probably not enough with your training set

Solution: pre-train word embeddings on massive amount of data and

then use them as is / as initialization
33

Popular pre-trained word embeddings

Word2Vec (Google, [Mikolov et al. 2013])

If two different words have very similar “contexts” (that is, what words are likely to
appear around them), then our model needs to output very similar results for these
two words. And one way for the network to output similar context predictions for these two
words is if the word vectors are similar. So, if two words have similar contexts, then
our network is motivated to learn similar word vectors for these two words! Ta da!

34

https://code.google.com/archive/p/word2vec/
https://arxiv.org/pdf/1301.3781.pdf

Pre-trained word embeddings

General idea:

- Use words as input,
with one-hot encoding

- Learn a task on words

- But we don’t really care
about the task

- Hidden layer = the new
representation of the
word = embeddings

" sea

Input layer

100 ..

0

[salit |[010..0
EE T
— J[%.1 .0
| great || 00 ..100
seasoning 000 ..1

Embedding
Weights

wl

Hidden layer

7l _(V)_/" |

Qutput layer

seasoning | |10 0 @ .

.1

35

Pre-trained word embeddings

General idea:

Use words as input,
with one-hot encoding
Learn a task on words
But we don’t really care
about the task

Hidden layer = the new
representation of the
word = embeddings

Input layer

sea ‘v 100..0
salt || @010..0
is J\;ee1..e

a \’e..1 . 0
great || 90 ..100
seasoning 000 ..1

Embedding
Weights

wl
Hidden layer

7 T\ (V)_/"

Output layer

seasoning ||10 0 @ .. 1

=1 0.4 9.2 .. 4.3
1.3 5.4 ... 6.7
-4.5 3.2 .. -5.3]

wordZvec

The learning task = a classifier predicting which words appear in the context of a target
word (or vice versa). This classifier induces a dense vector representation of words
- input: text corpus
- output: a vector representation for each word
- 2 flavors:
- CBOW: uses each of these contexts to predict the current word w
- SkipGram: use the current word w in order to predict its neighbors (i.e., its
context)
— To limit the number of words in each context, use a parameter called window size

| . | Cats 0.434 0.2390.123 0.934
g:s""gm :;e the best ' Fridays 0.126 0.996 0.453 0.124
i | LB Boxes 0.924 0.534 0.195 0.845

In every small compartment

' Entangled in threads ;

wordZvec

Go through the text and:

- for each target word (in blue)
- consider some context words
(here window = 5)

Source Text

-

The

brown

fox

brown

fox

The

quick-fox

The

jumps over the

jumps over the

jumps|over the

quick

brown . jumps|over|the

lazy dog.

lazy dog.

lazy dog.

lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

38

wordZver - (BOW

Continuous Bag-of-Words (CBOW):

- Task: predict the target word given the context

- Resulting embeddings: the weights of the hidden layer are used as the

representation of the target word

Context as
input/features

sea ‘ 100 ..0 . "
j Hidden layer
Salt ‘ 210..0
is || @01..0 L i 7
a |[0.1 ..0 L
great }: 00 .100 |
seasoning 200 ..1 o

Task:
predict the
target w

Output layer

seasoning ||10 0 0 .. 1

39

WordZvec - (BOW: architecture

INPUT PROJECTION

w(t-2)

w(t-1)

w(t+1)

w(t+2)

SUM

N\

OUTPUT

L |w)

[Mikolov et al. 2013]

X; | (] \
L @ !
. W4 Of
X, | 6 ® S1ze
o /v
& 5 0 4
Input Layer

Wo of .
size '
. O %

Hidden Layer

\el

Output Layer

WordZvec - CBOW: architec

w(t-2)

w(t-1)

w(t+1)

w(t+2)

INPUT

\
7

PROJECTION OUTPUT

M

— w(t)

[Mikolov et al. 2013]

Ure

V: size of the vocabulary
= input and output dimension

X, Y:
- “\\\ A -
X, & A '___;;1 ¥ A\ // ® v,
—] '
L \q // .
Wi of o b Wo of
% | @ size size @
"3 \
— .’////:' [— ’)hx - ¥ \\' -
x, | @ 191y
Input Layer Hidden Layer Output Layer
N: size of the desired output

41

WordZvec - CBOW: architec

w(t-2)

w(t-1)

w(t+1)

w(t+2)

INPUT

\
7

PROJECTION OUTPUT

M

— w(t)

[Mikolov et al. 2013]

Ure

V: size of the vocabulary
= input and output dimension

X, Y:
- “\\\ A -
X, & A '___;;1 ¥ A\ // ® v,
—] '
L \q // .
Wi of o b Wo of
% | @ size size D v,
‘ VxN NxV f
"3 \
— .’////:' — ’)hx - ¥ \\' -
x, | @ 191y
Input Layer Hidden Layer Output Layer
N: size of the desired output

4¢

WordZvec - (BOW: architecture

V: size of the vocabulary
= input and output dimension

INPUT PROJECTION OUTPUT

b Y:
- - “\\ A -
o 2)
w(t-2) % | @ "f;:' \ // 9 v
>-' .\4 // '
| Wi of O Sl B Wo of
w(t-1) = : size ; size ®
SUM ol 1§ VxN ; NXxV < il
1 : > Sk
: i - ,//’//' e | \\. e
x, | @ 191y
w(t+1)
Input Layer Hidden Layer Output Layer
witt2) N: size of the desired output 8
[Mikolov et al. 2013]

wordZver - (BOW

Simplified NN — 1 “hidden
layer”: linear

- embedding layer
- lambda layer
- output layer

W(t-n)

l— W(t-1)

W(t+1) —l

W(t+n)

Embedding Layer

(vocab_size x embed_dim)

1

I—’ W(t-n)

embedding

W(t-1)
embedding

W(t+1)
embedding

W(t+n) ‘J

embedding

—

Lambda Layer
(Average Embeddings)

—]

W(avg) embedding

v

Dense Layer
(Softmax)

W(t)

W)

I-Compute Loss and BackPropJ

WordZvec - Skip-Gram

Task: predict the context words given
the target word

Input: one-hot vector of size N
representing the target word
Output: vector (also with N
components) containing, for every
word in our vocabulary, the
probability that a randomly
selected nearby word is that
vocabulary word

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

'vV{t*’)

PN

w(t+2)

Skip-gram

[Mikolov et al. 2013]

45

WordZvec - Skip-Gram

Output Layer
Softmax Classifier

INPUT PROJECTION OUTPUT
Hidden Layer Probabllity that the word at a
~ randomiy chosen, nearby
position is “abandon”

Linear Neurons
Input Vector &

o 2)

w(t-2)

w(t-1) -y

0. Wi of Z ' Wo of
0 size |° size
A" the pasition 0 VxN - NxV . “able”
corresponding to the —* n
word “aety” 0
0]
w(t+1) e

w(t+2) 10,000

OO0

Skip-gram 10,000

nNeurcns

WordZvec - Skip-Gram

INPUT PROJECTION OUTPUT

Input Vector

w(t-2)
|0
0
, 0!
w(t-1) o
‘ 0
w(t) — A ‘1" in the position 0
corresponding to the u
\ word “ants” ‘ o
0
w(t+1)
\ o
w(t+2) 10,000
positions

Skip-gram

Implementation tricks:
- negative sampling
- downsampling

Output Layer
Softmax Classifier

Hidden Layer ;
Linear Neurons | Z

)>

(@)

Wi of Z Wo of =
size g size
VxN Nxv |5 X

300 newrons | E

10,000

Neurons

Probability that the word at a
randomiy chosen, nearby

position is “abandon”

“able”

“zone”

Visualizing embeddings

https://projector.tensorflow.org/

?

, Burger
BLT
. . Sandwich
, Dumplings
Calzone
: ., Ramen
: Pizza
. Spaghetti
& —

:

https://projector.tensorflow.org/

Visualizing embeddings

Word2Vec 10K - (€]
Labelby ooty
. word ~ No color map -
.
https://projector.tensorflow.org
Vi) Teasesetons

Load Publish Download

Sphereize data @
Checkpoint: Demo datasets

Metadata: oss_data/word2vec_10000_200d_
labels.tsv

T . Burger

BLT
5 . Sandwich

UMAP TSNE PCs CUSTOM
, Dumplings
Dimension 20 M 3
‘7: Z’]%ZQH e Perplexity @ —@- - 25
° ?
. Ramen ko @ o 10
Supervise @ - 0
, Pizza romn

= spagh etti Iteration: 262

—

49
_

https://projector.tensorflow.org/

Visualisation

Need for dimensionality reduction
Algorithme t-SNE (t-distributed stochastic neighbor embedding):

- from high-dimensional space to 2 or 3 dimensions

- general idea: non-linear methods that keeps distance, 2 points that were close/far in the original space
must be close/far in the new projected space

- Using t-sne: https://distill.pub/2016/misread-tsne/

PCA (principal component analysis):

- from high-dimensional space to 2 or 3 dimensions

- general idea: from correlated data to uncorrelated data, in general keep the dimensions that explain
90-95% of the data (reduce dimensionality and redundancy)

30

https://distill.pub/2016/misread-tsne/

Word similarity

@ Search by
car A car * word ~

word car

@resr count 1809 neighbors @ -@——— inl

{{lgasoline distance COSINE EUCLIDEAN

engine
paviered ‘diesel
‘Emmme Nearest points in the original space:

rice emeel

£ cars 0.443

driver 0.408

0.491
rocket

0.575

{prototype 0.586

{venicie t""‘m .‘mto«cycle A 0.593
ivenicies e'm"

truck Qoo rercedes 0593

€ @rlane @enuttie P

, factory @car
(pilot eirplane g"ﬂ ¢ Fauto wﬂ ({racing

erash ‘mce
{crashed prix

0614
0.624
0.632
0.641
0.647
0.648
0.665

0.674

¢ 0.675
0677

0.677

Qpssencer BOOKMARKS (0) @ o
e
T e

€
¢
@oadcmer

Visualizing embeddings .
ﬁm riner
. actor

lactress
seereh & @onductot comedian
actor v actor * word ~
boxer;
neighbors @ -@————— 10C c footballer
distance COSINE EUCLIDEAN
cricketer
Nearest points in the original space: eﬂ'ewmw @otoawlﬁu
actress 0182 @““eﬂim’
. singer 0.308 .
O playwright
- e | b 29 comedian 0.323
i 5 b T author
. 2w e ”T;) musician 0326 o A
¥ - finalist R et 'journalis
$ B 5 4 writer 0375 .
v songwriter 0.380 ‘mwellst o
footballer 0.382 laureate
® politician 0.390
2 D ST critic
7 ‘
o> novelist 0417 % iician
» playwright 0.422
s athlete 0.442 B
composer 0.445 eychologist Ehyeicist
" starring 0.448
S T mathematician
‘, N author 0.449
o —_——
% journalist 0.457
'v wrestler 0.462 ehilosophel
3 planist 0466
statesman
diplomat

&eoloqian 5 Z
@mﬂ

WordZvec

king T- -

Male-Female

23

wordZvec

Allow inference: King Man Woman Gueen

WOMAN

man /
o MAN
.. ~.,*' oman S KINGS

kng Ta, QUEEN QUEEN

®
queen
/ KING KING

(Mikolov et al., NAACL HLT, 2013)
Male-Female

24

wordZvec

Allow inference:

king . .~

Male-Female

walked
@]
x4
@)
walking

swimming

Verb tense

fpatn \
R
Rome

Germany ———-_________________
Berlin
e
Ankara

Russia

Moscow
Canada Ottawa
Japan Tokyo
Vietnam Hanoi
China Beijing
Country-Capital

23

Popular pre-trained (static) word embeddings

- Word2Vec (Google, [Mikolov et al. 2013])

- GloVe (Stanford, [Pennington et al. 2014]): Glove is an approach to marry both the global

statistics of matrix factorization techniques like LSA with the local context-based learning in word2vec. Rather
than using a window to define local context, GloVe constructs an explicit word-context or word co-occurrence
matrix using statistics across the whole text corpus. The result is a learning model that may result in generally
better word embeddings. (https://machinelearningmastery.com/what-are-word-embeddings/)

- FastText (Facebook, [Bojanovski et al. 20167): approach based on the skipgram model,
where each word is represented as a bag of character n-grams (use subwords information)

Talk later: context-sensitive embeddings

- ELMo (AllenNLP, [Peters et al. 2018])
- BERT & co (Google, [Devlin et al. 2018])

16

https://code.google.com/archive/p/word2vec/
https://arxiv.org/pdf/1301.3781.pdf
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/pubs/glove.pdf
https://machinelearningmastery.com/what-are-word-embeddings/
https://research.fb.com/fasttext/
https://arxiv.org/abs/1607.04606
https://allennlp.org/elmo
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1810.04805v2

Input vector

= How do we feed the network?

0}

input layer

A
® 2 e®

©oe®

hidden layers

output layer 57

Input vector

output layer 58

|npU[VECI[OI’ Window Context “I love playing basketball”

Flc,) Zl(cy) I?(C/) 85 (cig) Bk(cio)
Voo {—

- Embedding lookup from t:;‘;':p Table
embedding matrix
- Layer 1 = embedding | j
Concatenate
Layer 1 7
layer:
a = concat(LT)
= e-g- mean or sum l \1, Non—/ inear transformatit;n
embeddings s Ll
h=gW;xa+b,)

- Layer 2 = hidden ' '

Output Layer \11 Score for each tag

f(tlcri—2:i42)) = W2 X h + b,

19

Input vector

- Embedding lookup from

—

embedding matrix
- lLayer 1 =embedding
layer:
- e.g. mean or sum
embeddings
- Layer 2 = hidden

Window Context “I love playing basketball”
H(c) Z(c) IE(C/) 85 (c;) Bk(cio)
e e

Lookup Table

Layer

Concatenate

Layer 1

a = concat(LT)

\1, Non—/I inear transformation

Layer 2
h=gW;xa+b,)

Output Layer
f(tlcri—2:i42)) = W2 X h + b,

\1: Score for each tag

60

|npU[VECI[OI’ Window Context “I love playing basketball”

H(c) Z(c) IE(C/) 85 (c;) Bk(cio)
I

- Embedding lookup from t°°k“'° Table
ayer

embedding matrix

- lLayer 1 =embedding |

Concatenate

\1, Non—/I inear transformation

Iayer') Layer 1
a = concat(LT)
- e.g. mean or sum
embeddings Layer

h=gW;xa+b,)

- Layer 2 = hidden '

Output Layer
f(tlcri—2:i42)) = W2 X h + b,

\l: Score for each tag

61

Using dense vectors in PyTorch

- the mapping from words to indices is a dictionary, generally named word _to_ix
- embeddings are stored as a |V| x d matrix, where d is the dimensionality of the

embeddings, such that the word assigned index i has its embedding stored in the i’th
row of the matrix

Tuto on embeddings :
https://pytorch.org/tutorials/beginner/nlp/word embeddings tutorial.html

Tuto on classif using embeddings:

https://pytorch.org/tutorials/beginner/text sentiment ngrams tutorial.html

b2

https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html

Embeddings in PyTorch

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

CLASS torch.nn.Embedding(num_embeddings, embedding dim, padding_idx=None,
max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None,
device=None, dtype=None)

https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html

CLASS torch.nn.EmbeddingBag(num_embeddings, embedding_dim, max_norm=None,
norm_type=2.0, scale_grad_by freq=False, mode="mean’, sparse=False, _weight=None,
include_last_offset=False, padding_idx=None, device=None, dtype=None)

—Computes sums or means of ‘bags’ of embeddings, without instantiating the intermediate embeddings.

63

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html

Embeddings in PyTorch

Single words as input
class Model (...):

def init (self, vocab size,
embedding dim, ..):

self.embeddings =
nn.Embedding (vocab size, embedding dim)

def forward (self, inputs):
embeds = self.embeddings (inputs)

e.g. Text classification
class Model (...):

def init (self, vocab size,
embed dim, ...):

self.embedding =
nn.EmbeddingBag (vocab size, embedding dim)

def forward (self, inputs):
embeds = self.embeddings (inputs)

64

Embeddings in PyTorch

look-up

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

CLASS torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None,
max_norm=None, norm_type=2.0, scale_grad_by freq=False, sparse=False, _weight=None,

device=None, dtype=None)

embedding
layer

https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html

CLASS torch.nn.EmbeddingBag(num_embeddings, embedding_dim, max_norm=None,
norm_type=2.0, scale_grad_by freq=False, mode="mean’, sparse=False, _weight=None,

include_last offset=False, padding_idx=None, device=None, dtype=None)

63

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html

Summary: Data representation

— Before NN: expertise needed to find good data representations
— Now: feed your NN with word embeddings! but....

- Setting:
- which ones? GloVe, FastText, Word2Vec, ELMO, BeRT, RobeRTa, GPT-2, GPT-3, XLNet...
- which size, window size, number of iterations?

- Other issues:
- how to combine them into a sentence / document?
- what about other information: POS / syntax / pragmatics?
- what about different languages and domains?
- problem with evaluation: e.g. natural language inference tasks seem inadequate
- choice of the data / problem with models: bias and representativeness

— expertise still needed
i

Practical Session

- Generating word embeddings: Gensim (Word2vec)

- Computing word similarity based on their embeddings
- Making analogical reasoning

- Visualizing Word embeddings

(using word embeddings in our NN will be for the next practical session)

67

Sources

- https://towardsdatascience.com/nlp-101-word2vec-skip-gram-and-cbow-93512ee24314

- https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-engineerin
g-text-data-cbow.html

- https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a

- https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/

- https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/

- https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa

- https://courses.engr.illinois.edu/cs546/sp2020/Slides/Lecture04.pdf

- https://towardsdatascience.com/how-to-solve-analogies-with-word2vec-6ebaf2354009

- https://gunjanagicha.medium.com/word-embeddings-ee718cd2b8b5

68

https://towardsdatascience.com/nlp-101-word2vec-skip-gram-and-cbow-93512ee24314
https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-engineering-text-data-cbow.html
https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-engineering-text-data-cbow.html
https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1
https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/
https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/
https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
https://courses.engr.illinois.edu/cs546/sp2020/Slides/Lecture04.pdf
https://towardsdatascience.com/how-to-solve-analogies-with-word2vec-6ebaf2354009
https://gunjanagicha.medium.com/word-embeddings-ee718cd2b8b5

