
Neural Methods
for NLP

Master LiTL --- 2023-2024
chloe.braud@irit.fr

https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Course 3: Embeddings

1

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Schedule
2023-2024

1 28.11 13h30-15h30 2 (C1) ML Reminder + (TP ML) + TP POO

2 05.12 13h30-15h30 2 (C2) Intro DL + TP2 (part1)

3 12.12 13h30-16h 2.5 (C3) Embeddings + TP2 (part2) + TP3

4 19.12 13h30-16h 2.5 TP4 + Start projects

(holidays)

5 09.01 13h-16h 3 (C4) Training a NN + TP5 + TP6

6 16.01 13h-16h 3 (C5) CNN, RNN + TP7 + TP8

→(15/01) Assignments Part 1 due

7 23.01 13h-16h 3 Projects

8 01.02 13h-16h 3 (C6) Encoder-decoder, transformer + TP9

9 13.02 13h-16h 3 (C7) Current challenges + project defenses

→ (12/02) Assignments Part 2 due

Content
Cours 3 - embeddings

1. Why dense representations?
2. Word embeddings with DL
3. Pre-trained word embeddings
4. Feeding the network
5. Word embeddings in practice

3

The input layer
input output

4input layer hidden layers output layer

The input layer

5

input output

What did we do during the practical
session? How was built the input?

input layer hidden layers output layer

The input layer

6

input output

1

0

1

0

What did we do during the practical
session? How was built the input?

input layer hidden layers output layer

The input layer
input output

7

This movie
is
excellent

This movie
is
excellent

Filtre

1

0

1

0

What did we do during the practical
session? How was built the input?

input layer hidden layers output layer

The input layer
input output

8

This movie
is
excellent

This movie
is
excellent

Filtre

1

0

1

0

movie: [1, 0, 0, 0]
excellent: [0, 0, 1, 0]
→ combined: [1, 0, 1, 0]

What did we do during the practical
session? How was built the input?

input layer hidden layers output layer

The input layer
input output

9

This movie
is
excellent

This movie
is
excellent

Filtre

1

0

1

0

movie: [1, 0, 0, 0]
excellent: [0, 0, 1, 0]
→ combined: [1, 0, 1, 0]

→ usual way: dense vectors

What did we do during the practical
session? How was built the input?

input layer hidden layers output layer

Standard vs neural approach

Standard approach:

- linear model trained over high-dimensional but very sparse feature

vectors

- requires to manually specify the important features

Neural approach:

- non-linear neural networks over dense input vectors

- automatically induce important features

10

Standard vs neural approach

Standard approach:

- linear model trained over high-dimensional but very sparse feature

vectors

- requires to manually specify the important features

Neural approach:

- non-linear neural networks over dense input vectors

- automatically induce important features

11

Feature representation

12

One-hot vs Dense

- One-hot: each feature is its own dimension
- Dimensionality is same as number of features

- Each feature is completely independent from one another

- Dense: each feature is a d-dimensional vector
- Dimensionality is d

- Similar features have similar vectors

Feature representation

13

One-hot vs Dense

- One-hot: each feature is its own dimension
- Dimensionality is same as number of features

- Each feature is completely independent from one another

- Dense: each feature is a d-dimensional vector
- Dimensionality is d

- Similar features have similar vectors

e.g. [1.9 2.5 38.4 0.01 12.42]
→ i.e. “smaller”, real-valued

Feature representation

14

One-hot vs Dense

- One-hot: each feature is its own dimension
- Dimensionality is same as number of features

- Each feature is completely independent from one another

- Dense: each feature is a d-dimensional vector
- Dimensionality is d

- Similar features have similar vectors

e.g. [1.9 2.5 38.4 0.01 12.42]
→ i.e. “smaller”, real-valued

Feature representation

Why dense?

- Discrete approach often works surprisingly well in NLP
- n-gram language models

- POS-tagging, parsing

- sentiment analysis

- Still, a very poor representation of word meaning
- no notion of similarity

- limited inference

15

Word representation
- Discrete approach: no notion of similarity

16

Similarity measure: cosinus
a = apple [1,0,0]
p = pear [0,1,0]

Cos(a,p) = a.p/(||a|| ||p||)

a.p = 1x0 + 0x1 + 0x0 = 0

and cos(0) → angle 90°

Word representation
- Discrete approach: no notion of similarity

17

Expected!

Word distribution

- Rather old idea: distributional hypothesis → 1950’s!

Example (from Tim van der Cruys):

- delicious sooluceps
- sweet sooluceps
- stale sooluceps
- freshly baked sooluceps

→ Guess what is a sooluceps ?

18

Word distribution

- Rather old idea: distributional hypothesis → 1950’s!

Example (from Tim van der Cruys):
- delicious sooluceps
- sweet sooluceps
- stale sooluceps
- freshly baked sooluceps

→ Guess what is a sooluceps ?

Looking at the context of use of a word, you can guess its
meaning

19

Food!

Representing the meaning of words using context

20

Before neural networks:

- build a matrix over all the words appearing in a
corpus

- count the number of time words appear
together

- reduce the dimensions (e.g. PCA)

Representing the meaning of words using context
Before neural networks:

- build a matrix over all the words appearing in a
corpus

- count the number of time words appear
together

- reduce the dimensions (e.g. PCA)

Now: Train a neural network to build a
representation

- massive amount of data
- task = predicting a linguistic unit (word,

sentence…)
21

Feature representation
Why dense?

- Better representation of word meaning:
- similar words have similar vectors
- allows inference (talk about that later)

- What happens if we use a sparse vector as
input of a NN?

- the first layer = learns a dense
embedding vector over each input

22

Feature combinations
Traditional NLP:

- specify interactions of features
- e.g. ‘word is jump, tag is V and previous word is they’
- crucial because it introduces more dimensions → linearly separable
- but the space of combinations is very large, time consuming

Non-linear network:

- only specify core features
- non-linearity takes care of finding indicative feature combinations
- (Note: it was also the case with non linear kernel methods, but with these methods,

training becomes very slow when the size of the data increases, ie. scales linearly
with the size of the training set vs NN scales linearly with the size of the network)

23

Word embeddings with Deep Learning

How can we define vectors representing word meaning?

→ we want to be able to represent similarity between words

We could use semantic attributes as dimensions of the vector, e.g. animated, animal, like

coffee… → very complicated to find these attributes

24

Word embeddings with Deep Learning

How can we define vectors representing word meaning?

→ we want to be able to represent similarity between words

We could use semantic attributes as dimensions of the vector, e.g. animated, animal, like

coffee… → very complicated to find these attributes

Central idea of DL: the neural network learns representations of the features, rather than
requiring the programmer to design them

- let the word embeddings be parameters in our model,
- and then be updated during training

25

Word embeddings with Deep Learning

How can we define vectors representing word meaning?

→ we want to be able to represent similarity between words

We could use semantic attributes as dimensions of the vector, e.g. animated, animal, like

coffee… → very complicated to find these attributes

Central idea of DL: the neural network learns representations of the features, rather than
requiring the programmer to design them

- let the word embeddings be parameters in our model,
- and then be updated during training

26

Word embeddings with Deep Learning with Deep Learning

Word embeddings are a representation of the *semantics* of a word, efficiently
encoding semantic information that might be relevant to the task at hand.

27

Word embeddings with Deep Learning with Deep Learning

Word embeddings are a representation of the *semantics* of a word, efficiently
encoding semantic information that might be relevant to the task at hand.

- dimensions = “latent semantic attributes”: but not directly interpretable

28

Word embeddings with Deep Learning with Deep Learning

Word embeddings are a representation of the *semantics* of a word, efficiently
encoding semantic information that might be relevant to the task at hand.

- dimensions = “latent semantic attributes”: but not directly interpretable
- “relevant to the task at hand”:

- for example “bad” and “good” need to have opposite vectors for sentiment
classification but not for POS tagging

- the domain is crucial: typical example of “avocat” → mostly used with one
meaning for cooking and another one when referring to a lawyer

- leads to an important issue: words often have several meanings...

29

Word embeddings with Deep Learning with Deep Learning

Word embeddings are a representation of the *semantics* of a word, efficiently
encoding semantic information that might be relevant to the task at hand.

- dimensions = “latent semantic attributes”: but not directly interpretable
- “relevant to the task at hand”:

- for example “bad” and “good” need to have opposite vectors for sentiment
classification but not for POS tagging

- the domain is crucial: typical example of “avocat” → mostly used with one
meaning for cooking and another one when referring to a lawyer

- leads to an important issue: words often have several meanings...
- you can embed anything: POS, morphological information, parse tree etc

→ Idea: initialize randomly real-valued vectors for each word, and let the
model update the parameters to learn the representation

30

Word embeddings with Deep Learning
- Word embeddings: semantic representation of the words, used as basic

features
- Similar words have similar embeddings
- Each word i is represented with a (unique) vector vi ∈ Rd

- d is typically between 50 and 1000

31

Word embeddings with Deep Learning
- Word embeddings: semantic representation of the words, used as basic

features
- Similar words have similar embeddings
- Each word i is represented with a (unique) vector vi ∈ Rd

- d is typically between 50 and 1000

32

one-hot: it’s an
“embedding” of
the words but
high-dimensional
and not dense,
not real-valued

Pre-trained word embeddings

- Considering the embeddings as trainable parameters is very cool:

they can be updated while performing the task, thus adapted to the

task

- But building good word representations require a massive amount of

data: we need to see each word many times with varied contexts

→ probably not enough with your training set

Solution: pre-train word embeddings on massive amount of data and

then use them as is / as initialization
33

Popular pre-trained word embeddings
Word2Vec (Google, [Mikolov et al. 2013])

If two different words have very similar “contexts” (that is, what words are likely to
appear around them), then our model needs to output very similar results for these
two words. And one way for the network to output similar context predictions for these two
words is if the word vectors are similar. So, if two words have similar contexts, then
our network is motivated to learn similar word vectors for these two words! Ta da!

34

https://code.google.com/archive/p/word2vec/
https://arxiv.org/pdf/1301.3781.pdf

Pre-trained word embeddings

35

General idea:
- Use words as input,

with one-hot encoding
- Learn a task on words
- But we don’t really care

about the task
- Hidden layer = the new

representation of the
word = embeddings

Pre-trained word embeddings

36

General idea:
- Use words as input,

with one-hot encoding
- Learn a task on words
- But we don’t really care

about the task
- Hidden layer = the new

representation of the
word = embeddings W=[0.4 9.2 … -4.3

 1.3 5.4 … 6.7
 …
 -4.5 3.2 … -5.3]

Word2vec

37

The learning task = a classifier predicting which words appear in the context of a target
word (or vice versa). This classifier induces a dense vector representation of words

- input: text corpus
- output: a vector representation for each word
- 2 flavors:

- CBOW: uses each of these contexts to predict the current word w
- SkipGram: use the current word w in order to predict its neighbors (i.e., its

context)
→ To limit the number of words in each context, use a parameter called window size

Word2vec

Go through the text and:

- for each target word (in blue)
- consider some context words

(here window = 5)

38

Word2vec - CBOW

39

Context as
input/features

Task:
predict the
target w

Continuous Bag-of-Words (CBOW):

- Task: predict the target word given the context
- Resulting embeddings: the weights of the hidden layer are used as the

representation of the target word

Word2vec - CBOW: architecture

40

Wi of
size

Wo of
size

[Mikolov et al. 2013]

Word2vec - CBOW: architecture

41

V: size of the vocabulary
= input and output dimension

N: size of the desired output

Wi of
size

Wo of
size

[Mikolov et al. 2013]

Word2vec - CBOW: architecture

42

V: size of the vocabulary
= input and output dimension

N: size of the desired output

Wi of
size
VxN

Wo of
size
NxV

[Mikolov et al. 2013]

Word2vec - CBOW: architecture

43

V: size of the vocabulary
= input and output dimension

N: size of the desired output

Wi of
size
VxN

Wo of
size
NxV

[Mikolov et al. 2013]

Word2vec - CBOW

44

Simplified NN → 1 “hidden
layer”: linear

- embedding layer
- lambda layer
- output layer

Word2vec - Skip-Gram

Task: predict the context words given
the target word

- Input: one-hot vector of size N
representing the target word

- Output: vector (also with N
components) containing, for every
word in our vocabulary, the
probability that a randomly
selected nearby word is that
vocabulary word

45

[Mikolov et al. 2013]

Word2vec - Skip-Gram

46

Wi of
size
VxN

Wo of
size
NxV

Word2vec - Skip-Gram

47

Wi of
size
VxN

Wo of
size
NxV

Implementation tricks:
- negative sampling
- downsampling

Visualizing embeddings
https://projector.tensorflow.org/

48

https://projector.tensorflow.org/

Visualizing embeddings
https://projector.tensorflow.org/

49

https://projector.tensorflow.org/

Visualisation
Need for dimensionality reduction

Algorithme t-SNE (t-distributed stochastic neighbor embedding):

- from high-dimensional space to 2 or 3 dimensions
- general idea: non-linear methods that keeps distance, 2 points that were close/far in the original space

must be close/far in the new projected space
- Using t-sne: https://distill.pub/2016/misread-tsne/

PCA (principal component analysis):

- from high-dimensional space to 2 or 3 dimensions
- general idea: from correlated data to uncorrelated data, in general keep the dimensions that explain

90-95% of the data (reduce dimensionality and redundancy)

50

https://distill.pub/2016/misread-tsne/

Word similarity

51

Visualizing embeddings

52

Word2vec

53

Word2vec

54

Allow inference:

Word2vec

55

Allow inference:

Popular pre-trained (static) word embeddings
- Word2Vec (Google, [Mikolov et al. 2013])
- GloVe (Stanford, [Pennington et al. 2014]): GloVe is an approach to marry both the global

statistics of matrix factorization techniques like LSA with the local context-based learning in word2vec. Rather
than using a window to define local context, GloVe constructs an explicit word-context or word co-occurrence
matrix using statistics across the whole text corpus. The result is a learning model that may result in generally
better word embeddings. (https://machinelearningmastery.com/what-are-word-embeddings/)

- FastText (Facebook, [Bojanovski et al. 2016]): approach based on the skipgram model,
where each word is represented as a bag of character n-grams (use subwords information)

Talk later: context-sensitive embeddings

- ELMo (AllenNLP, [Peters et al. 2018])
- BERT & co (Google, [Devlin et al. 2018])

56

https://code.google.com/archive/p/word2vec/
https://arxiv.org/pdf/1301.3781.pdf
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/pubs/glove.pdf
https://machinelearningmastery.com/what-are-word-embeddings/
https://research.fb.com/fasttext/
https://arxiv.org/abs/1607.04606
https://allennlp.org/elmo
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1810.04805v2

Input vector

How do we feed the network?

57

This movie
is
excellent

input layer hidden layers output layer

output

Input vector

How do we feed the network?

58input layer hidden layers output layer

input output

This movie
is
excellent e.g. concatenate

Input vector

- Embedding lookup from

embedding matrix

- Layer 1 = embedding

layer:

- e.g. mean or sum

embeddings

- Layer 2 = hidden

59

Input vector

- Embedding lookup from

embedding matrix

- Layer 1 = embedding
layer:

- e.g. mean or sum

embeddings

- Layer 2 = hidden

60

Input vector

61

- Embedding lookup from

embedding matrix

- Layer 1 = embedding
layer:

- e.g. mean or sum

embeddings

- Layer 2 = hidden

Using dense vectors in PyTorch

- the mapping from words to indices is a dictionary, generally named word_to_ix

- embeddings are stored as a |V| x d matrix, where d is the dimensionality of the

embeddings, such that the word assigned index i has its embedding stored in the i’th

row of the matrix

Tuto on embeddings :

https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html

Tuto on classif using embeddings:

https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html
62

https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html

Embeddings in PyTorch

63

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

CLASS torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None,
max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None,
device=None, dtype=None)

https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html

CLASS torch.nn.EmbeddingBag(num_embeddings, embedding_dim, max_norm=None,
norm_type=2.0, scale_grad_by_freq=False, mode='mean', sparse=False, _weight=None,
include_last_offset=False, padding_idx=None, device=None, dtype=None)

→Computes sums or means of ‘bags’ of embeddings, without instantiating the intermediate embeddings.

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html

Embeddings in PyTorch

Single words as input

class Model(...):

 def __init__(self, vocab_size,
embedding_dim, …):

 self.embeddings =
nn.Embedding(vocab_size, embedding_dim)

. . .

def forward(self, inputs):
 embeds = self.embeddings(inputs)

. . .

64

e.g. Text classification

class Model(...):

 def __init__(self, vocab_size,
embed_dim,...):

 self.embedding =
nn.EmbeddingBag(vocab_size, embedding_dim)

. . .

def forward(self, inputs):
 embeds = self.embeddings(inputs)

. . .

Embeddings in PyTorch

65

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

CLASS torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None,
max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None,
device=None, dtype=None)

https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html

CLASS torch.nn.EmbeddingBag(num_embeddings, embedding_dim, max_norm=None,
norm_type=2.0, scale_grad_by_freq=False, mode='mean', sparse=False, _weight=None,
include_last_offset=False, padding_idx=None, device=None, dtype=None)

look-up

embedding
layer

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html

Summary: Data representation

→ Before NN: expertise needed to find good data representations

→ Now: feed your NN with word embeddings! but….

- Setting:
- which ones? GloVe, FastText, Word2Vec, ELMO, BeRT, RobeRTa, GPT-2, GPT-3, XLNet...
- which size, window size, number of iterations?

- Other issues:
- how to combine them into a sentence / document?
- what about other information: POS / syntax / pragmatics?
- what about different languages and domains?
- problem with evaluation: e.g. natural language inference tasks seem inadequate
- choice of the data / problem with models: bias and representativeness

→ expertise still needed
66

Practical Session

67

- Generating word embeddings: Gensim (Word2vec)

- Computing word similarity based on their embeddings

- Making analogical reasoning

- Visualizing Word embeddings

(using word embeddings in our NN will be for the next practical session)

Sources

- https://towardsdatascience.com/nlp-101-word2vec-skip-gram-and-cbow-93512ee24314
- https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-engineerin

g-text-data-cbow.html
- https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1
- https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/
- https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/
- https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
- https://courses.engr.illinois.edu/cs546/sp2020/Slides/Lecture04.pdf
- https://towardsdatascience.com/how-to-solve-analogies-with-word2vec-6ebaf2354009
- https://gunjanagicha.medium.com/word-embeddings-ee718cd2b8b5

68

https://towardsdatascience.com/nlp-101-word2vec-skip-gram-and-cbow-93512ee24314
https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-engineering-text-data-cbow.html
https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-engineering-text-data-cbow.html
https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1
https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/
https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/
https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
https://courses.engr.illinois.edu/cs546/sp2020/Slides/Lecture04.pdf
https://towardsdatascience.com/how-to-solve-analogies-with-word2vec-6ebaf2354009
https://gunjanagicha.medium.com/word-embeddings-ee718cd2b8b5

