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Schedule 
2023-2024

1 28.11 13h30-15h30 2 (C1) ML Reminder + (TP ML) + TP POO

2 05.12 13h30-15h30 2 (C2) Intro DL + TP2 (part1)

3 12.12 13h30-16h 2.5 (C3) Embeddings + TP2 (part2) + TP3

4 19.12 13h30-16h 2.5 TP4 + Start projects 

(holidays)

5 09.01 13h-16h 3 (C4) Training a NN + TP5 + TP6

6 16.01 13h-16h 3 (C5) CNN, RNN + TP7 + TP8

→(15/01) Assignments Part 1 due

7 23.01 13h-16h 3 Projects

8 01.02 13h-16h 3 (C6) Encoder-decoder, transformer + TP9

9 13.02 13h-16h 3 (C7) Current challenges + project defenses

→ (12/02) Assignments Part 2 due 



Content
Cours 3 - embeddings

1. Why dense representations?
2. Word embeddings with DL
3. Pre-trained word embeddings
4. Feeding the network
5. Word embeddings in practice
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The input layer
input output
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movie:      [1, 0, 0, 0]
excellent:  [0, 0, 1, 0]
→ combined: [1, 0, 1, 0]
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The input layer
input output
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This movie 
is 
excellent

This movie 
is 
excellent

Filtre

1

0

1

0

movie:      [1, 0, 0, 0]
excellent:  [0, 0, 1, 0]
→ combined: [1, 0, 1, 0]

→ usual way: dense vectors

What did we do during the practical 
session? How was built the input?

input layer hidden layers output layer



Standard vs neural approach

Standard approach:

- linear model trained over high-dimensional but very sparse feature 

vectors

- requires to manually specify the important features

Neural approach: 

- non-linear neural networks over dense input vectors

- automatically induce important features
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Feature representation

12

One-hot vs Dense

- One-hot: each feature is its own dimension
- Dimensionality is same as number of features

- Each feature is completely independent from one another

- Dense: each feature is a d-dimensional vector
- Dimensionality is d

- Similar features have similar vectors
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→ i.e. “smaller”, real-valued
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Feature representation

Why dense?

- Discrete approach often works surprisingly well in NLP
- n-gram language models

- POS-tagging, parsing

- sentiment analysis

- Still, a very poor representation of word meaning
- no notion of similarity

- limited inference

15



Word representation
- Discrete approach: no notion of similarity
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Similarity measure: cosinus
a = apple [1,0,0]
p = pear   [0,1,0]

Cos(a,p) = a.p/(||a|| ||p||)

a.p = 1x0 + 0x1 + 0x0 = 0

and cos(0) → angle 90°



Word representation
- Discrete approach: no notion of similarity
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Expected!



Word distribution

- Rather old idea: distributional hypothesis → 1950’s!

Example (from Tim van der Cruys):

- delicious sooluceps
- sweet sooluceps
- stale sooluceps
- freshly baked sooluceps 

→ Guess what is a sooluceps ?
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Word distribution

- Rather old idea: distributional hypothesis → 1950’s!

Example (from Tim van der Cruys):
- delicious sooluceps
- sweet sooluceps
- stale sooluceps
- freshly baked sooluceps 

→ Guess what is a sooluceps ?

Looking at the context of use of a word, you can guess its 
meaning

19

Food!



Representing the meaning of words using context

20

Before neural networks:

- build a matrix over all the words appearing in a 
corpus

- count the number of time words appear 
together

- reduce the dimensions (e.g. PCA)



Representing the meaning of words using context
Before neural networks:

- build a matrix over all the words appearing in a 
corpus

- count the number of time words appear 
together

- reduce the dimensions (e.g. PCA)

Now: Train a neural network to build a 
representation

- massive amount of data
- task = predicting a linguistic unit (word, 

sentence…)
21



Feature representation
Why dense?

- Better representation of word meaning:
- similar words have similar vectors
- allows inference (talk about that later)

- What happens if we use a sparse vector as 
input of a NN?

- the first layer = learns a dense 
embedding vector over each input

22



Feature combinations
Traditional NLP: 

- specify interactions of features
- e.g. ‘word is jump, tag is V and previous word is they’
- crucial because it introduces more dimensions → linearly separable
- but the space of combinations is very large, time consuming

Non-linear network: 

- only specify core features
- non-linearity takes care of finding indicative feature combinations
- (Note: it was also the case with non linear kernel methods, but with these methods, 

training becomes very slow when the size of the data increases, ie. scales linearly 
with the size of the training set vs NN scales linearly with the size of the network)
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Word embeddings with Deep Learning 

How can we define vectors representing word meaning?

→ we want to be able to represent similarity between words

We could use semantic attributes as dimensions of the vector, e.g. animated, animal, like 

coffee… → very complicated to find these attributes
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Central idea of DL: the neural network learns representations of the features, rather than 
requiring the programmer to design them 

- let the word embeddings be parameters in our model,
- and then be updated during training
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Word embeddings with Deep Learning  with Deep Learning

Word embeddings are a representation of the *semantics* of a word, efficiently 
encoding semantic information that might be relevant to the task at hand.
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- dimensions = “latent semantic attributes”: but not directly interpretable
- “relevant to the task at hand”: 

- for example “bad” and “good” need to have opposite vectors for sentiment 
classification but not for POS tagging

- the domain is crucial: typical example of “avocat” → mostly used with one 
meaning for cooking and another one when referring to a lawyer 

- leads to an important issue: words often have several meanings...
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Word embeddings with Deep Learning  with Deep Learning

Word embeddings are a representation of the *semantics* of a word, efficiently 
encoding semantic information that might be relevant to the task at hand.

- dimensions = “latent semantic attributes”: but not directly interpretable
- “relevant to the task at hand”: 

- for example “bad” and “good” need to have opposite vectors for sentiment 
classification but not for POS tagging

- the domain is crucial: typical example of “avocat” → mostly used with one 
meaning for cooking and another one when referring to a lawyer 

- leads to an important issue: words often have several meanings...
- you can embed anything: POS, morphological information, parse tree etc

→ Idea: initialize randomly real-valued vectors for each word, and let the 
model update the parameters to learn the representation

30



Word embeddings with Deep Learning
- Word embeddings: semantic representation of the words, used as basic 

features
- Similar words have similar embeddings
- Each word i is represented with a (unique) vector vi ∈ Rd

- d is typically between 50 and 1000
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Word embeddings with Deep Learning
- Word embeddings: semantic representation of the words, used as basic 

features
- Similar words have similar embeddings
- Each word i is represented with a (unique) vector vi ∈ Rd

- d is typically between 50 and 1000
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one-hot: it’s an 
“embedding” of 
the words but 
high-dimensional 
and not dense, 
not real-valued



Pre-trained word embeddings

- Considering the embeddings as trainable parameters is very cool: 

they can be updated while performing the task, thus adapted to the 

task

- But building good word representations require a massive amount of 

data: we need to see each word many times with varied contexts  

→ probably not enough with your training set

Solution: pre-train word embeddings on massive amount of data and 

then use them as is / as initialization
33



Popular pre-trained word embeddings
Word2Vec (Google, [Mikolov et al. 2013])

If two different words have very similar “contexts” (that is, what words are likely to 
appear around them), then our model needs to output very similar results for these 
two words. And one way for the network to output similar context predictions for these two 
words is if the word vectors are similar. So, if two words have similar contexts, then 
our network is motivated to learn similar word vectors for these two words! Ta da!

34

https://code.google.com/archive/p/word2vec/
https://arxiv.org/pdf/1301.3781.pdf


Pre-trained word embeddings

35

General idea:
- Use words as input, 

with one-hot encoding
- Learn a task on words
- But we don’t really care 

about the task
- Hidden layer = the new 

representation of the 
word = embeddings



Pre-trained word embeddings
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General idea:
- Use words as input, 

with one-hot encoding
- Learn a task on words
- But we don’t really care 

about the task
- Hidden layer = the new 

representation of the 
word = embeddings W=[ 0.4 9.2 … -4.3

    1.3 5.4 …  6.7
    …
   -4.5 3.2 … -5.3] 



Word2vec 
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The learning task = a classifier predicting which words appear in the context of a target 
word (or vice versa). This classifier induces a dense vector representation of words

- input: text corpus 
- output: a vector representation for each word
- 2 flavors: 

- CBOW: uses each of these contexts to predict the current word w 
- SkipGram: use the current word w in order to predict its neighbors (i.e., its 

context)
→ To limit the number of words in each context, use a parameter called window size



Word2vec

Go through the text and:

- for each target word (in blue)
- consider some context words 

(here window = 5)

38



Word2vec - CBOW
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Context as 
input/features

Task: 
predict the 
target w

Continuous Bag-of-Words (CBOW):

- Task: predict the target word given the context
- Resulting embeddings: the weights of the hidden layer are used as the 

representation of the target word



Word2vec - CBOW: architecture
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Wi of 
size

Wo of 
size 

[Mikolov et al. 2013]



Word2vec - CBOW: architecture
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V: size of the vocabulary
= input and output dimension

N: size of the desired output

Wi of 
size

Wo of 
size 

[Mikolov et al. 2013]



Word2vec - CBOW: architecture
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V: size of the vocabulary
= input and output dimension

N: size of the desired output

Wi of 
size 
VxN

Wo of 
size 
NxV

[Mikolov et al. 2013]



Word2vec - CBOW: architecture
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V: size of the vocabulary
= input and output dimension

N: size of the desired output

Wi of 
size 
VxN

Wo of 
size 
NxV

[Mikolov et al. 2013]



Word2vec - CBOW
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Simplified NN → 1 “hidden 
layer”: linear

- embedding layer 
- lambda layer
- output layer



Word2vec - Skip-Gram

Task: predict the context words given 
the target word

- Input: one-hot vector of size N 
representing the target word

- Output: vector (also with N 
components) containing, for every 
word in our vocabulary, the 
probability that a randomly 
selected nearby word is that 
vocabulary word

45

[Mikolov et al. 2013]



Word2vec - Skip-Gram
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Wi of 
size 
VxN

Wo of 
size 
NxV



Word2vec - Skip-Gram
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Wi of 
size 
VxN

Wo of 
size 
NxV

Implementation tricks:
- negative sampling
- downsampling



Visualizing embeddings
https://projector.tensorflow.org/ 
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Visualisation
Need for dimensionality reduction 

Algorithme t-SNE (t-distributed stochastic neighbor embedding): 

- from high-dimensional space to 2 or 3 dimensions
- general idea: non-linear methods that keeps distance, 2 points that were close/far in the original space 

must be close/far in the new projected space
- Using t-sne: https://distill.pub/2016/misread-tsne/ 

PCA (principal component analysis):

- from high-dimensional space to 2 or 3 dimensions
- general idea: from correlated data to uncorrelated data, in general keep the dimensions that explain 

90-95% of the data (reduce dimensionality and redundancy)
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https://distill.pub/2016/misread-tsne/


Word similarity 
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Visualizing embeddings
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Word2vec
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Word2vec

54

Allow inference:



Word2vec
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Allow inference:



Popular pre-trained (static) word embeddings
- Word2Vec (Google, [Mikolov et al. 2013])
- GloVe (Stanford, [Pennington et al. 2014]): GloVe is an approach to marry both the global 

statistics of matrix factorization techniques like LSA with the local context-based learning in word2vec. Rather 
than using a window to define local context, GloVe constructs an explicit word-context or word co-occurrence 
matrix using statistics across the whole text corpus. The result is a learning model that may result in generally 
better word embeddings. (https://machinelearningmastery.com/what-are-word-embeddings/)

- FastText (Facebook, [Bojanovski et al. 2016]): approach based on the skipgram model, 
where each word is represented as a bag of character n-grams (use subwords information)

Talk later: context-sensitive embeddings

- ELMo (AllenNLP, [Peters et al. 2018])
- BERT & co (Google, [Devlin et al. 2018])
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https://code.google.com/archive/p/word2vec/
https://arxiv.org/pdf/1301.3781.pdf
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/pubs/glove.pdf
https://machinelearningmastery.com/what-are-word-embeddings/
https://research.fb.com/fasttext/
https://arxiv.org/abs/1607.04606
https://allennlp.org/elmo
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1810.04805v2


Input vector

How do we feed the network?
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This movie 
is 
excellent

input layer hidden layers output layer

output



Input vector

How do we feed the network?

58input layer hidden layers output layer

input output

This movie 
is 
excellent e.g. concatenate



Input vector

- Embedding lookup from 

embedding matrix

- Layer 1 = embedding 

layer:

- e.g. mean or sum 

embeddings

- Layer 2 = hidden
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Input vector
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- Embedding lookup from 

embedding matrix

- Layer 1 = embedding 
layer:

- e.g. mean or sum 

embeddings

- Layer 2 = hidden



Using dense vectors in PyTorch 

- the mapping from words to indices is a dictionary, generally named word_to_ix

- embeddings are stored as a |V| x d matrix, where d is the dimensionality of the 

embeddings, such that the word assigned index i has its embedding stored in the i’th 

row of the matrix

Tuto on embeddings : 

https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html 

Tuto on classif using embeddings:

https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html 
62

https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html


Embeddings in PyTorch
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https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

CLASS torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, 
max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, 
device=None, dtype=None)

https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html 

CLASS torch.nn.EmbeddingBag(num_embeddings, embedding_dim, max_norm=None, 
norm_type=2.0, scale_grad_by_freq=False, mode='mean', sparse=False, _weight=None, 
include_last_offset=False, padding_idx=None, device=None, dtype=None)

→Computes sums or means of ‘bags’ of embeddings, without instantiating the intermediate embeddings.

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html


Embeddings in PyTorch

Single words as input

class Model(...):

    def __init__(self, vocab_size, 
embedding_dim,  …):

        self.embeddings = 
nn.Embedding(vocab_size, embedding_dim)

. . .

def forward(self, inputs):
        embeds = self.embeddings(inputs)

. . .

64

e.g. Text classification

class Model(...):

    def __init__(self, vocab_size, 
embed_dim,...):

        self.embedding = 
nn.EmbeddingBag(vocab_size, embedding_dim)

. . .

def forward(self, inputs):
        embeds = self.embeddings(inputs)

. . .



Embeddings in PyTorch
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https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

CLASS torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, 
max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, 
device=None, dtype=None)

https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html 

CLASS torch.nn.EmbeddingBag(num_embeddings, embedding_dim, max_norm=None, 
norm_type=2.0, scale_grad_by_freq=False, mode='mean', sparse=False, _weight=None, 
include_last_offset=False, padding_idx=None, device=None, dtype=None)

look-up

embedding 
layer

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html


Summary: Data representation

→ Before NN: expertise needed to find good data representations

→ Now: feed your NN with word embeddings! but…. 

- Setting:
- which ones? GloVe, FastText, Word2Vec, ELMO, BeRT, RobeRTa, GPT-2, GPT-3, XLNet... 
- which size, window size, number of iterations?

- Other issues:
- how to combine them into a sentence / document?
- what about other information: POS / syntax / pragmatics? 
- what about different languages and domains?
- problem with evaluation: e.g. natural language inference tasks seem inadequate 
- choice of the data / problem with models: bias and representativeness 

→ expertise still needed
66



Practical Session
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- Generating word embeddings: Gensim (Word2vec)

- Computing word similarity based on their embeddings

- Making analogical reasoning 

- Visualizing Word embeddings 

(using word embeddings in our NN will be for the next practical session)



Sources

- https://towardsdatascience.com/nlp-101-word2vec-skip-gram-and-cbow-93512ee24314 
- https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-engineerin

g-text-data-cbow.html
- https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1
- https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/
- https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/
- https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
- https://courses.engr.illinois.edu/cs546/sp2020/Slides/Lecture04.pdf
- https://towardsdatascience.com/how-to-solve-analogies-with-word2vec-6ebaf2354009
- https://gunjanagicha.medium.com/word-embeddings-ee718cd2b8b5 
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https://towardsdatascience.com/nlp-101-word2vec-skip-gram-and-cbow-93512ee24314
https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-engineering-text-data-cbow.html
https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-engineering-text-data-cbow.html
https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1
https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/
https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/
https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
https://courses.engr.illinois.edu/cs546/sp2020/Slides/Lecture04.pdf
https://towardsdatascience.com/how-to-solve-analogies-with-word2vec-6ebaf2354009
https://gunjanagicha.medium.com/word-embeddings-ee718cd2b8b5

