
Neural Methods
for NLP

Master LiTL --- 2024-2025
chloe.braud@irit.fr

https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Course 6: Encoder-Decoder, Transformer

1

mailto:chloe.braud@irit.fr
https://gitlab.irit.fr/melodi/andiamo/teaching_cbraud/master_litl

Schedule
2024-2025

1 26.11 13h-16h 3 (C1) ML Reminder + Intro DL TP1-POO

2 03.12 13h-16h 3 (C2) Intro DL (2h) + Embeddings (1h) TP2-FFNN

3 10.12 13h-16h 3 (C3) Embeddings(1h30) + start projects TP3-Embed

- 17.12 - - BREAK

(holidays)

4 07.01 13h-16h 3 (C4) Training a NN TP5-HFData

TP6-TrainFFNN

5 14.01 13h-16h 3 (C5) CNN, RNN

→(14/01) Part 1 due

(TP7-LSTM) TP6 ensemble

Finir TP5 + TP8-HFTrain

6 15.01 13h-16h 3 Projects

7 28.01 13h-16h 3 (C6) Encoder-decoder, transformer finir TP9 + TP10-Biais

- 04.02 - - BREAK →(09/01) Part 1 due

8 11.02 13h-16h 3 (C7) Current challenges → project defences

Content

 RNNs:

- allow to condition on the entire history

- can act as language models → learning the likelihood of occurrence of a word based on

the previous sequence of words (or based on characters, sentences, paragraphs)

→ make them suitable for use as generators: generating natural language sequences

Combining encoding + generation = encoder-decoder / sequence to sequence

- = conditioned generators: the generated output is conditioned on a complex input

- based on RNNs and/or Attention mechanisms

TP: library Transformers (HuggingFace)

RNN generators

RNN transducer: Producing an output y
i
 for each input

→ use this architecture to do sequence generation

- Idea:

- tying the output at time i with its input at time i+1, i.e. using the predicted

token as next input

- at each step, select the output with the highest probability (or use

beam-search for finding a global high-probability output)

RNN Generator

- predict a distribution over
the next output

- choose a token ti
- its embedding vector is fed

as input of the next step
- stop when generating a

‘end-of-sequence’ symbol
</s>

RNN Generator
[Sutskever et al. 2011]: generation of sentences using a character based RNN

- ability to condition on long histories
- the produced text resembles fluent English
- and show sensitivity to properties such as nested parenthesis

For more analysis on RNN-based character-level language models [Karpathy et al. 2015]

Encoder-Decoder

Real power of RNN transducer: Conditioned generation framework

- Until now: = generating the next token t
j+1

- based on the previously generated tokens t
1:j

- Conditioned generation = generating the next token t
j+1

- based on the previously generated tokens t
1:j

- + an additional conditioning context c (represented as a vector)

Conditioned generation

at each stage:

- the context vector c is
concatenated to the
input (predicted) tj

- and the concatenation
is fed into the RNN to
produce the next
prediction

Conditioned generation

at each stage:

- the context vector c is
concatenated to the
input (predicted) tj

- and the concatenation
is fed into the RNN to
produce the next
prediction

Conditioned generation

at each stage:

- the context vector c is
concatenated to the
input (predicted) tj

- and the concatenation
is fed into the RNN to
produce the next
prediction

Conditioned generation
What can be encoded in the context vector c? anything that we find useful!

- use the topic associated with documents to generate texts conditioned
on the topic

- rating / sentiment associated to a review: generate reviews with a
specific polarity

- inferred properties, automatically derived from texts: if a sentence is
written in first person, the level of vocabulary …

= some fixed-length vectors

→ another popular approach: c is itself a sequence of words

Conditioned generation
What can be encoded in the context vector c? anything that we find useful!

- use the topic associated with documents to generate texts conditioned
on the topic

- rating / sentiment associated to a review: generate reviews with a
specific polarity

- inferred properties, automatically derived from texts: if a sentence is
written in first person, the level of vocabulary …

= some fixed-length vectors

→ another popular approach: c is itself a sequence of words

Typical example: Machine translation

e.g. : Machine translation
- encoding the input in source

language = produce a
representation

- decoder: use the
representation to condition the
output in target language

decoder = generator of target
language

Basic architecture of all the
models presented in this course

Seq2seq
Sequence to sequence (seq2seq) [Cho et al, 2014; Sutskever et al
2014] → c is itself a sequence of words

- source sequence x1:n (e.g. a sentence in French)
- target output sequence t1:m (e.g. its translation in English)

Note: The length of the input can be different of the length of the
output

General idea
Pipeline:

- feed source and previously

generated target words into a

network;

- get vector representation of

context (both source and previous

target);

- from this vector representation,

predict a probability distribution

for the next token.

Output layer

classification part:

- vector
representation of
dimension d

- we need a vector of
size |V|

→ linear layer to
perform the
transformation (then
softmax)

Encoder-decoder

Simplest architecture: 2 RNNs

- encoding the source sentence
x1:n using an RNN

- using another RNN (decoder)
to generate the output t1:m

Encoder-decoder

Simplest architecture: 2 RNNs

- encoding the source sentence
x1:n using an RNN → last state

- using another RNN (decoder) to
generate the output t1:m

Encoder-decoder

Simplest architecture: 2 RNNs

- encoding the source sentence
x1:n using an RNN → last state

- using another RNN (decoder)
to generate the output t1:m
→ predicted output +
encoding of the input

Encoder-Decoder
- originally built to solve Seq2Seq problems
- useful to map sequences of size n to sequences of length m
- encoder = summarizing the source sentence as a vector c
- encoder and decoder are trained jointly:

→ supervision only for decoder, but propagation all the way back to the
encoder

→ use of cross-entropy loss, as usual

Some modifications:

- e.g. encoder and decoder can have several layers
- decoding: greedy (most probable token) or beam-search (keep several

hypothesis)

Encoder-Decoder
Applications examples:

- Machine translation: in [Sutskever et al. 2014], they feed the source sentence in
reverse (then xn is the first word) + approach with 8 layers of high-dimensional
LSTMs → computationally expensive

- Email auto-response: map an email to a short answer [Kannan et al 2016] with
LSTMs as encoder and decoder

- Morphological inflection: input is a base word + inflection request, the output is
an inflected form. [Faruqui et al 2016]: character level seq2seq.

- Other uses: almost any task can be formulated this way (but there could be
better, easier to learn architectures). It has also been used for e.g. sentence
compression by deletion [Filippova and Altun, 2013], POS tagging and NER
[Gillick et al 2106], syntactic parsing using constituency bracketing decisions
[Vinyals et al 2014]

https://arxiv.org/pdf/1409.3215.pdf

Learned representation
In [Sutskever et al. 2014] (MT) they looked at the last encoder state and
visualize several examples

https://arxiv.org/pdf/1409.3215.pdf

Encoder-Decoder: Other conditioning contexts
- The encoder can be also a single word, a CBOW encoding, or generated by

another network
- The context can encode extra-linguistic information: user information

(age, gender …) e.g. dialogue generation [Li et al 2016]
- Image captioning: encoding input image (using a CNN) and the vector is

used as conditioning context for an RNN generator trained to predict
image description

Unsupervised sentence similarity
Use encoder-decoder framework to produce vector representations of sentences

→ we want similar sentences to have similar vectors (rather ill-defined…)

Unsupervised approaches (trained using un-annotated data) using encoder-decoder:

- an encoder RNN is used to produce context vectors c
- then used by an RNN decoder to perform a task: the information important

from the sentence for the task are captured in c
- finally: the encoder is used to generate sentence representations c

→ the similarity relies on the task

Unsupervised sentence similarity
Auto-encoding:

- the decoder attempts to reconstruct the input sentence
- may not be ideal, not considering similar sentences with similar meaning but different words

Machine translation:

- trained to translate sentences from English to another language
- encode what is needed to translate properly: sentences translated similarly will have similar

vectors; requires a large parallel corpus

Skip-thoughts [Kiros et al 2015]:

- one decoder is trained to reconstruct the previous sentence, and a second decoder the
following sentence

- extend the distributional hypothesis from words to sentences; impressive results

Conditioned generation with attention

Encoder-decoder = the input sentence is encoded into a single vector

- the encoder vector c must contain all the information required
- but it is hard for the encoder to compress the sentence

- the generator must be able to extract the information from this fixed-length
vector

- but for the decoder, different information may be relevant at different
steps

This compression in one representation is suboptimal → attention mechanism

[Bahdanau et al 2014; Luong et al 2015]

https://arxiv.org/pdf/1409.0473.pdf

Attention

Idea:

- at different steps, let a model ‘focus’ on different parts of the input

More formally:

- the input sentence corresponds to a set of vectors, all source tokens / RNN states
(not only the final state)

- at each step, the decoder decides on which parts of the encoding input it should
focus / which source parts are more important

Attention
we try to align the current state of the decoder with relevant inputs from the encoder

Attention
Weight normalization

Attention
context vector = use the attention weights to make a weighted sum of the
encoder inputs

Attention
The context vector is combined to the current state of the decoder to make a
prediction

Seq2seq with attention

Idea: for Machine translation, we have a soft

alignment between a current decoder state (the

recently produced foreign words) and each source

sentence component

Encoder-decoder with attention
Steps:

- encode an input sequence x1:n using a RNN → produce n state vectors c1:n
- the decoder compute the relevance of the c1:n/ which of the vectors c1:n

it should attend to → context vector cj ← (c1:n, t1:j)
- the context vector is used to generate the next token

note: f is a function that maps the RNN state to
a distribution over words, e.g. softmax

Encoder-decoder with
attention

Encoder-decoder with
attention

Bi-RNN Encoder

output: ci

Encoder-decoder with
attention

Bi-RNN Encoder

output: ci

RNN Decoder

output: sj

Encoder-decoder with
attention

Bi-RNN Encoder

output: ci

RNN Decoder

output: sj

Attention sj
ci

Encoder-decoder with
attention

Bi-RNN Encoder

output: ci

RNN Decoder

output: sj

Attention sj
ci

Encoder-decoder with
attention

Bi-RNN Encoder

output: ci

RNN Decoder

output: sj

Attention sj
ci

Attention is a weighted average
- Attention is a function that takes some sequence X as input and output some

sequence Y
- where each vector in Y is simply a weighted average of the vectors in X
- The (attention) weights show how much the model attends to each input in X when

computing the output

- X = word embeddings
- Y = composite of the input word embeddings

https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1

https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1

Encoder-Decoder with
attention

At each decoder step, attention

- receives attention input: a decoder state ht and all encoder states s1, s2, ..., sk;
- computes attention scores: For each encoder state sk, attention computes its

"relevance" for this decoder state ht. Formally, it applies an attention function
which receives one decoder state and one encoder state and returns a scalar value
score(ht, sk) ;

● computes attention weights: a probability distribution - softmax applied to
attention scores;

● computes attention output: the weighted sum of encoder states with attention
weights.

Encoder-Decoder with attention

Encoder-Decoder with attention

Encoder-decoder with attention
- the attend(.) function should be trainable, parameterized [Bahdanau et al 2014]
- soft attention: at each stage, gives the decoder a weighted average of the vectors c1:n

→ the attention weights ⍺[i]
j are chosen by the attention mechanism:

1. produce unnormalized weights based on the decoder state at time j, sj and the state
of the encoder h / ci (using dot product or more complex function)

2. normalize the weights into a probability distribution (sum to 1) using softmax
3. the final context vector is

Encoder-decoder
with attention

Encoder-decoder with attention
- why using attention vectors instead of the xi directly?

→ take into account the context (window) + trainable (may learn properties
e.g. the position of xi)

- computationally more complex (but really powerful)
- helps interpretability: at each stage of the decoding process, we can look

at the produced attention weights and see which parts of the input were
used

Application: Machine translation
State-of-the-art architecture for MT: [Bahdanau et al 2015] bi-GRU, beam-search ;
some improvements:

- Sub-word units [Sennrich et al 2016]: allow to deal with highly inflected
languages (and restrict size of the vocabulary). Also character level [Chung et al
2016]

- Linguistic annotations: [Sennrich and Haddow 2016] the sentence is run
through a pipeline incl. POS tagging, syntactic parsing, lemmatization. Each
word is then supplemented with a vector encoding this info (concatenated) →
linguistic info is useful even with powerful NN architectures!

- Incorporating monolingual data for translation models [Sennrich at al 2016]

Application: Machine translation
State-of-the-art architecture for MT: [Bahdanau et al 2015] bi-GRU, beam-search ; some
improvements:

- Sub-word units [Sennrich et al 2016]: allow to deal with highly inflected languages
(and restrict size of the vocabulary). Also character level [Chung et al 2016]

- Linguistic annotations: [Sennrich and Haddow 2016] the sentence is run through
a pipeline incl. POS tagging, syntactic parsing, lemmatization. Each word is then
supplemented with a vector encoding this info (concatenated) → linguistic info is
useful even with powerful NN architectures!

- Incorporating monolingual data: previously, systems were based on a translation
model (parallel data) + a separate language model (monolingual data), but seq2seq
models does not allow such a separation. [Sennrich at al 2016]: train a translation
model from target to source, use it to translate a large monolingual corpus of target
sentences, add the resulting pairs (source, target) to training set (target sentences
are all natural)

Machine translation

Visualization of the alignment

from [Bahdanau et al 2015]

https://arxiv.org/pdf/1409.0473.pdf

Speech recognition

Encoder-decoder with
attention and RNNs

Bi-RNN Encoder

output: ci

RNN Decoder

output: sj

Attention sj
ci

Encoder-decoder with
attention and RNNs

Bi-RNN Encoder

output: ci

RNN Decoder

output: sj

Attention sj
ci

now what if
we try to
remove the
RNNs?

Attention is all you need

Transformer models:

- also takes sequence as input
- but based on attention mechanism without the RNN architecture
- = it is not required to read in any order the sequence

→ make it easier to parallelize computation: thus to train on larger corpora, leading to
BERT, GPT language models

[Vaswani et al 2017] https://arxiv.org/abs/1706.03762 : new state-of-the-art on
Machine translation (with “only” 3.5 days on eight GPUs :D), high performance for
constituency parsing

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://arxiv.org/abs/1706.03762
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

General idea

- When encoding a sentence, RNNs
won't understand what bank
means until they read the whole
sentence,

- Transformer's encoder tokens
interact with each other all at once.

General idea

- When encoding a sentence, RNNs
won't understand what bank
means until they read the whole
sentence,

- Transformer's encoder tokens
interact with each other all at once.

- Transformer’s encoder: at each step, tokens look at each other = self-attention,
extract information and try to understand each other better in the context of the
whole sentence

General idea

- When encoding a sentence, RNNs
won't understand what bank
means until they read the whole
sentence,

- Transformer's encoder tokens
interact with each other all at once.

- Transformer’s encoder: at each step, tokens look at each other = self-attention,
extract information and try to understand each other better in the context of the
whole sentence

- Transformer’s decoder: tokens predicted also interact with each other + look at the
encoder states

Self-Attention

Self-Attention = Attention over the sequence itself

Transformer model: relies entirely on self-attention to compute representations of
its input and output (without using sequence aligned RNNs or convolution)

→ the model must understand how the words relate to each other in the context of the
sentence

- used for reading comprehension, abstractive summarization, textual
entailment and learning task-independent sentence representations [Cheng et
al 2016, Parikh et al 2016, Lin et al 2017, Paulus et al 2017]

Self-attention

Attention is a “query” on the inputs, that we
map to a “key” to operate on a specific input
with a specific “value”

Self-attention

Note: masked attention for the decoder = it
can’t look ahead

Computing attention

- compute a compatibility function: assigns a score to each pair of words indicating
how strongly they should attend to one another, using dot product between one
query and one key wij = qikj

- then normalize the scores: to be positive and sum to one (softmax)

Final
attention
weights

Computing attention
query: the word that
is paying attention /
querying the other
words

key: the word to
which attention is
being paid

compatibility
score +
normalized

https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-
workings-of-attention-60a16d86b5c1

https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1

Computing attention

- query: interaction between
xi and other xj to compute
an attention score xi, xj (<
current state of the
decoder)

- key: used to compute the
weights when another xj is
the query (sim. to sk)

- value: used for the final
computation of yj, for the
weighted sum (sk to
compute c)

Self-Attention

Visualization:

- the model puts a large attention
weight between “the” and “animal”
and “it”, allowing to ‘understand’
that “it” refers to “animal”

→ similar to the memory of RNNs,
allow to keep an history

Multi-head attention

Multiple attention mechanisms = called heads

- operate in parallel to one another / independently focus on different things

→ expand ability to focus on many positions

→ enables the model to capture a broader range of relationships between words

- the attention heads do not share parameters, each head learns a unique
attention pattern

→ If we do the same self-attention calculation eight different times with different
weight matrices, we end up with eight different attention matrices, and all these
matrices are combined

Multi-head attention

idea: understanding the role of a word
in a sentence requires understanding
how it is related to different parts of
the sentence

- e.g. in some languages, subjects
define verb inflection (e.g.,
gender agreement), verbs define
the case of their objects…

→ each word is part of many relations

→ several attention results
concatenated

Multi-head attention

- orange head: focuses on
“animal”

- green head: focuses on “tired”

[Voita et al 2019]: some heads play
interpretable roles

- positional: attend to neighbors
- syntactic: learn major syntactic

relations
- rare tokens: attend to the least

frequent tokens

https://aclanthology.org/P19-1580.pdf

Multi-heads
Positional heads Syntactic heads (subject → verb)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

The beast

Transformer: Attention is
all you need,Vaswani et
al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beast

Transformer: Attention is
all you need,Vaswani et
al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beast

Transformer: Attention is
all you need,Vaswani et
al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beast

Transformer: Attention is
all you need,Vaswani et
al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beast

Transformer: Attention is
all you need,Vaswani et
al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beast

Transformer: Attention is
all you need,Vaswani et
al. 2017

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

The beast

In the paper:

- a stack of 6 encoders (could be
any number, do not share
weights) and same number of
decoders

- each encoders passes its
output to the next encoder

The beast
- each encoder = self-attention layer + FFNN (2 linear + ReLU)
- each decoder: add attention over the source

Transformers

Many elements in the model:

- self-attention
- multi-head
- non linearities (MLP)
- layer normalizations (improve convergence stability)
- residual connections (ease the learning)
- positional embeddings

Transformers

Many elements in the model:

- self-attention
- multi-head
- non linearities (MLP)
- layer normalizations (improve convergence stability)
- residual connections (ease the learning)
- positional embeddings

Sequence ordering?
Add a representation of the position:

- fixed representation
- or learned representation

Philipp Dufter, Martin Schmitt, Hinrich Schütze :
Position Information in Transformers : An Overview.

Sequence ordering?
Add a representation of the position:

- fixed representation
- or learned representation

Philipp Dufter, Martin Schmitt, Hinrich Schütze :
Position Information in Transformers : An Overview.

Sequence ordering?
Add a representation of the position:

- ordinal = absolute position
- fixed representation to encode relative

position
- learned representation

Philipp Dufter, Martin Schmitt, Hinrich Schütze :
Position Information in Transformers : An Overview.

→ not having info hurts for some tasks, but not all of
them: but present in all models

Sinha et al. Masked Language Modeling and the
Distributional Hypothesis : Order Word Matters
Pre-training for Little, EMNLP 2021

Source

- Very clear explanation (and nice pictures / videos):
https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

- https://ledatascientist.com/a-la-decouverte-du-transformer/
- https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/

notebooks/hello_t2t.ipynb
- https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-dee

p-learning/
- https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-atte

ntion-60a16d86b5c1
- https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
-
- https://www.analyticsvidhya.com/blog/2020/08/build-a-natural-language-generation-nlg-system-

using-pytorch/
- https://www.kaggle.com/ab971631/beginners-guide-to-text-generation-pytorch/notebook

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
https://ledatascientist.com/a-la-decouverte-du-transformer/
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/
https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://www.analyticsvidhya.com/blog/2020/08/build-a-natural-language-generation-nlg-system-using-pytorch/
https://www.analyticsvidhya.com/blog/2020/08/build-a-natural-language-generation-nlg-system-using-pytorch/
https://www.kaggle.com/ab971631/beginners-guide-to-text-generation-pytorch/notebook

More general view on attention
General idea:

- attention is a query on the input
- that we align with a key
- to operate over an input value

More general view on attention
General idea:

- attention is a query on the input ← come from the decoding state sj
- that we align with a key ←corresponding to the input

representations ci
- to operate over an input value ←also ci used to weight the context vector

cj

until now (with RNNs):

Self-Attention

Self-Attention (or intra-attention): attention mechanism relating different positions of a
single sequence in order to compute a representation of the sequence.

Idea: decomposing the input into varied functions of xi wrt the attention computation:

- query: interaction with other xj to compute attention score xi,xj → some qi = Wqxi
- key: computation of the weights for the output of another xj viewed as the query →

some ki = Wkxi
- value: final weighting to compute the output yj → some vi = Wvxi

wij = qikj : attention score xi, xj

output: yj = ∑wij vj

Self-Attention

Self-Attention (or intra-attention): attention mechanism relating different positions of a
single sequence in order to compute a representation of the sequence.

Idea: decomposing the input into varied functions of xi wrt the attention computation:

- query: interaction with other xj to compute attention score xi,xj → some qi = Wqxi
- key: computation of the weights for the output of another xj viewed as the query →

some ki = Wkxi
- value: final weighting to compute the output yj → some vi = Wvxi

wij = qikj : attention score xi, xj

output: yj = ∑wij vj

Self-Attention

Self-Attention (or intra-attention): attention mechanism relating different positions of a
single sequence in order to compute a representation of the sequence.

Idea: decomposing the input into varied functions of xi wrt the attention computation:

- query: interaction with other xj to compute attention score xi,xj → some qi = Wqxi
- key: computation of the weights for the output of another xj viewed as the query →

some ki = Wkxi
- value: final weighting to compute the output yj → some vi = Wvxi

wij = qikj : attention score xi, xj + normalization ⇒ attention weights

output: yj = ∑wij vj

Self-Attention

Self-Attention (or intra-attention): attention mechanism relating different positions of a
single sequence in order to compute a representation of the sequence.

Idea: decomposing the input into varied functions of xi wrt the attention computation:

- query: interaction with other xj to compute attention score xi,xj → some qi = Wqxi
- key: computation of the weights for the output of another xj viewed as the query →

some ki = Wkxi
- value: final weighting to compute the output yj → some vi = Wvxi

wij = qi.kj : score d’attention xi/xj + normalization ⇒ attention weights

output: yi = ∑jwij vj

