diff --git a/Projets Methodes neuronales - M2 LiTL 2022-2023.pdf b/Projets Methodes neuronales - M2 LiTL 2022-2023.pdf
deleted file mode 100644
index 2181e56104169caf0a0cdce265d0b913214b398c..0000000000000000000000000000000000000000
Binary files a/Projets Methodes neuronales - M2 LiTL 2022-2023.pdf and /dev/null differ
diff --git a/README.md b/README.md
index d059ae176ec8125d9e05c99ea728622709d45f52..63d10c6ddbe47295900df39e618fffd0cdb3d375 100644
--- a/README.md
+++ b/README.md
@@ -2,18 +2,9 @@
 
 Contact: chloe.braud@irit.fr
 
-Lien pour l'évaluation du cours : https://forms.gle/2T25fgaG5698sXyP8
 
 Current schedule:
-* 24.11 9h30-12h30 : ML reminder
+* 28.11 13h30-15h30 : ML reminder
   * Basics of OOP: https://colab.research.google.com/drive/1oPha9EekRpq5Uvm227xBlumZOZ3f8UNF?usp=sharing
   * To load the notebook: TP1 Sentiment analysis with ScikitLearn [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1IOXm9X6BEJgkTjEd_kh_OYPnK1OvwD7l?usp=sharing)
   * **You'll need to save a copy to your google drive or a notebook on your PC**
-* TP2 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qZ7tQcqNXe4bKXetpDfAPxyhNXp4r8xV?usp=sharing)
-
-
-Assignments:
-* Code + report
-* due on 15.02.2022 
-
-
diff --git a/notebooks/MasterLiTL_2223_basics_of_poo.ipynb b/notebooks/TP0_m2LiTL_BasicsOfPoo_2324.ipynb
similarity index 61%
rename from notebooks/MasterLiTL_2223_basics_of_poo.ipynb
rename to notebooks/TP0_m2LiTL_BasicsOfPoo_2324.ipynb
index bdc6319255517baff5b2795f40212193957ab33f..61a88065964b5ebba1222b980b80f36067ddf222 100644
--- a/notebooks/MasterLiTL_2223_basics_of_poo.ipynb
+++ b/notebooks/TP0_m2LiTL_BasicsOfPoo_2324.ipynb
@@ -33,7 +33,7 @@
         "\n",
         "  def be_painted( self, new_color ):\n",
         "    self.color = new_color\n",
-        "  \n",
+        "\n",
         "  def love( self, other_car ):\n",
         "    return self.name+' is in love with '+other_car.name\n"
       ]
@@ -45,10 +45,28 @@
         "flash.present()"
       ],
       "metadata": {
-        "id": "H4jlq4Jk8txx"
+        "id": "H4jlq4Jk8txx",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "510c8f08-7820-426f-aa25-9dd6224051c3"
       },
       "execution_count": null,
-      "outputs": []
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "'Hey! I am Flash McQueen, I am red and I appeared in 2006'"
+            ],
+            "application/vnd.google.colaboratory.intrinsic+json": {
+              "type": "string"
+            }
+          },
+          "metadata": {},
+          "execution_count": 2
+        }
+      ]
     },
     {
       "cell_type": "code",
@@ -57,17 +75,35 @@
         "flash.present()"
       ],
       "metadata": {
-        "id": "8yZiyne39Yt7"
+        "id": "8yZiyne39Yt7",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "0e4c457e-259b-4d97-a171-a55c67195cfc"
       },
       "execution_count": null,
-      "outputs": []
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "'Hey! I am Flash McQueen, I am purple and I appeared in 2006'"
+            ],
+            "application/vnd.google.colaboratory.intrinsic+json": {
+              "type": "string"
+            }
+          },
+          "metadata": {},
+          "execution_count": 3
+        }
+      ]
     },
     {
       "cell_type": "markdown",
       "source": [
-        "## Exercise: \n",
+        "## Exercise:\n",
         "- define a new object of type Car with the following attributes: its name is Sally Carrera, its color is blue and it has the same year as the object my_car.\n",
-        "- call the method love of the Car class with Flash and Sally. "
+        "- call the method love of the Car class with Flash and Sally."
       ],
       "metadata": {
         "id": "0U0iRh0EmcI2"
@@ -77,17 +113,36 @@
       "cell_type": "code",
       "source": [],
       "metadata": {
-        "id": "Kn3BotmnjegN"
+        "id": "Kn3BotmnjegN",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 35
+        },
+        "outputId": "a4d5ea5d-b476-4df8-b7a0-f99f3c9b9446"
       },
       "execution_count": null,
-      "outputs": []
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "'Hey! I am Sally Carrera, I am blue and I appeared in 2006'"
+            ],
+            "application/vnd.google.colaboratory.intrinsic+json": {
+              "type": "string"
+            }
+          },
+          "metadata": {},
+          "execution_count": 5
+        }
+      ]
     },
     {
       "cell_type": "markdown",
       "source": [
         "## Inheritance\n",
         "\n",
-        "https://www.geeksforgeeks.org/python-oops-concepts/#:~:text=In%20Python%2C%20object%2Doriented%20Programming,%2C%20etc.%20in%20the%20programming. "
+        "https://www.geeksforgeeks.org/python-oops-concepts/#:~:text=In%20Python%2C%20object%2Doriented%20Programming,%2C%20etc.%20in%20the%20programming."
       ],
       "metadata": {
         "id": "fu1RyW-ZnUun"
@@ -107,7 +162,7 @@
         "\tdef display(self):\n",
         "\t\tprint(self.name)\n",
         "\t\tprint(self.idnumber)\n",
-        "\t\t\n",
+        "\n",
         "\tdef details(self):\n",
         "\t\tprint(\"My name is {}\".format(self.name))\n",
         "\t\tprint(\"IdNumber: {}\".format(self.idnumber))"
@@ -127,7 +182,7 @@
         "        super().__init__(name, idnumber )\n",
         "        self.salary = salary\n",
         "        self.post = post\n",
-        "         \n",
+        "\n",
         "    def details(self):\n",
         "        print(\"My name is {}\".format(self.name))\n",
         "        print(\"IdNumber: {}\".format(self.idnumber))\n",
@@ -142,8 +197,8 @@
     {
       "cell_type": "markdown",
       "source": [
-        "## Exercise: \n",
-        "- Create an object of the class Employee \n",
+        "## Exercise:\n",
+        "- Create an object of the class Employee\n",
         "- Print his name and id number."
       ],
       "metadata": {
@@ -154,13 +209,35 @@
       "cell_type": "code",
       "source": [
         "# creation of an object variable or an instance\n",
-        "\n",
+        "emy = Employee('emily', 42, 90000, 'happy manager')\n",
         "\n",
         "# calling a function\n",
-        "\n"
+        "emy.display()\n"
       ],
       "metadata": {
-        "id": "OCUkIAdVo3LT"
+        "id": "OCUkIAdVo3LT",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "3cb55ef2-0bac-4de0-86f7-e242ffd46494"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "emily\n",
+            "42\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [],
+      "metadata": {
+        "id": "Nn5g4FSru4SA"
       },
       "execution_count": null,
       "outputs": []
diff --git a/notebooks/TP1_masterLiTL_2223.ipynb b/notebooks/TP1_m2LiTL_ML_reminder_2324.ipynb
similarity index 57%
rename from notebooks/TP1_masterLiTL_2223.ipynb
rename to notebooks/TP1_m2LiTL_ML_reminder_2324.ipynb
index 75cf4d060585ee7d49fbb7d82967b4182bbd7227..ec40ee5fd3627a4c8a30fde5b9de8a031389dbea 100644
--- a/notebooks/TP1_masterLiTL_2223.ipynb
+++ b/notebooks/TP1_m2LiTL_ML_reminder_2324.ipynb
@@ -3,8 +3,7 @@
   "nbformat_minor": 0,
   "metadata": {
     "colab": {
-      "provenance": [],
-      "toc_visible": true
+      "provenance": []
     },
     "kernelspec": {
       "name": "python3",
@@ -22,11 +21,11 @@
       },
       "source": [
         "# TP1: Machine learning (reminder)\n",
-        "Master LiTL - 2021-2022\n",
+        "Master LiTL - 2023-2024\n",
         "\n",
         "## Requirements\n",
-        "In this practical session, we will explore machine learning models for NLP applications ; specifically, we will train a classifier for sentiment analysis on a French dataset of movie reviews. \n",
-        "For these exercises, we will make use of Python (v3.*), and a number of modules for data processing and machine learning: *numpy*, *scipy*, *scikit-learn*, *pandas* and *spacy* . \n",
+        "In this practical session, we will explore machine learning models for NLP applications ; specifically, we will train a classifier for sentiment analysis on a French dataset of movie reviews.\n",
+        "For these exercises, we will make use of Python (v3.*), and a number of modules for data processing and machine learning: *numpy*, *scipy*, *scikit-learn*, *pandas* and *spacy* .\n",
         "If  you  want  to  use  your  own  computer  you  will  need  to  make  sure  these  are  installed  (e.g.  using  the command *pip*). If you’re using *Miniconda*, you can use the command\n",
         "```\n",
         "conda install <modulename>\n",
@@ -35,10 +34,10 @@
         "\n",
         "First,  download  the  data  for  the  practical  session  from  the  course  github page  to  an  appropriate working directory, and unzip it. Under linux, you can issue the following commands :\n",
         "```\n",
-        "$ unzip allocine.zip \n",
+        "$ unzip allocine.zip\n",
         "```\n",
         "\n",
-        "If you want to use Google colab, you need to upload the data using the menu on the left. \n"
+        "If you want to use Google colab, you need to upload the data using the menu on the left.\n"
       ]
     },
     {
@@ -50,16 +49,16 @@
         "## Task and dataset\n",
         "\n",
         "We’ll go through the following stages of an NLP machine learning pipeline, using sentiment classification as an application:\n",
-        "* data preprocessing (tokenization) \n",
+        "* data preprocessing (tokenization)\n",
         "* feature extraction\n",
         "* model training\n",
         "* evaluation\n",
         "\n",
-        "As a dataset, we’ll be using a set of reviews for television series in French, extracted from the website allocine.fr. \n",
+        "As a dataset, we’ll be using a set of reviews for television series in French, extracted from the website allocine.fr.\n",
         "The dataset consists of the text of the review, as well as a sentiment label (positive or negative).\n",
         "\n",
-        "The training set is divided into a training part (for training, 5576 reviews, ± 90%) and test part (for evaluation, 544 reviews, ± 10%). \n",
-        "The dataset is balanced, which means positive and negative instances are evenly distributed. \n",
+        "The training set is divided into a training part (for training, 5576 reviews, ± 90%) and test part (for evaluation, 544 reviews, ± 10%).\n",
+        "The dataset is balanced, which means positive and negative instances are evenly distributed.\n",
         "Additionally, training and test set contain reviews about different TV series (in order to avoid possible bias when evaluating)."
       ]
     },
@@ -71,15 +70,37 @@
         "# spacy’s preprocessing pipeline and model for French\n",
         "import spacy.cli\n",
         "spacy.cli.download(\"fr_core_news_sm\")\n",
-        "nlp = spacy.load('fr_core_news_sm', disable=['tagger', 'parser', 'ner'])\n",
-        "\n",
+        "nlp = spacy.load('fr_core_news_sm', disable=['tagger', 'parser', 'ner'])\n"
+      ],
+      "metadata": {
+        "id": "YoPn-Cbx44bO",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "343c2862-bcc0-4461-d89c-824181467c48"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n",
+            "You can now load the package via spacy.load('fr_core_news_sm')\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
         "# Path to data\n",
         "train_path = \"allocine_train.tsv\"\n",
         "dev_path = \"allocine_dev.tsv\"\n",
-        "test_path = \"allocine_test.tsv\"\n"
+        "test_path = \"allocine_test.tsv\""
       ],
       "metadata": {
-        "id": "YoPn-Cbx44bO"
+        "id": "rB8DM2ODsVqn"
       },
       "execution_count": null,
       "outputs": []
@@ -99,12 +120,16 @@
     {
       "cell_type": "code",
       "metadata": {
-        "id": "vjWd_ZWYj9i0"
+        "id": "vjWd_ZWYj9i0",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "b1683be9-d077-4252-8de7-d5336144b6c7"
       },
       "source": [
         "def read_data( data_path ):\n",
         "  dataset = pd.read_csv(data_path, header=0, delimiter='\\t', quoting=3)\n",
-        "  print( '\\nFile:', data_path, '\\nData format:', dataset.columns.values, \n",
+        "  print( '\\nFile:', data_path, '\\nData format:', dataset.columns.values,\n",
         "        '\\nFirst instance: ', dataset['sentiment'][0], dataset['review'][0] )\n",
         "  return dataset, dataset['sentiment']\n",
         "\n",
@@ -116,7 +141,7 @@
         "      clean_review = review_to_tokens(dataset['review'][i])\n",
         "      dataset_tok.append(clean_review)\n",
         "  for i, r in enumerate(dataset_tok[:2]):\n",
-        "      print('\\n', i, r) \n",
+        "      print('\\n', i, r)\n",
         "  return dataset_tok\n",
         "\n",
         "def review_to_tokens(raw_review):\n",
@@ -131,12 +156,83 @@
         "  dataset_tokenized = preprocess_data( dataset )\n",
         "  return dataset_tokenized, dataset, labels\n",
         "\n",
+        "# list of tokenized instances, panda dataframe, list of labels\n",
         "train, train_df, y_train = read_and_preprocess( train_path )\n",
         "dev, dev_df, y_dev   = read_and_preprocess( dev_path )\n",
-        "test, test_df, y_test  = read_and_preprocess( test_path ) "
+        "test, test_df, y_test  = read_and_preprocess( test_path )"
       ],
       "execution_count": null,
-      "outputs": []
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\n",
+            "File: allocine_train.tsv \n",
+            "Data format: ['movie_id' 'user_id' 'sentiment' 'review'] \n",
+            "First instance:  0 Stephen King doit bien ricaner en constatant cette navrante histoire de disparus, les scénaristes semblent s'être inspirés de ses oeuvres mais ont bien moins son talent que celui du business. Quel perte de temps que de regarder ces personnages perdus au centre d'une histoire sans fin et sans intérêt, où 2 ou 3 épisodes suffisent pour décrocher, à l'inverse d'une série comme Desperate housewives dont les dialogues, les scénarii et les personnages contribuent sans cesse à relancer l'intérêt et le plaisir au fil des épisodes. Pourtant mes goûts initiaux m'auraient porté davantage du côté de la série fantastique. Il ne faut préjuger de rien! A bon entendeur...\n",
+            "#Reviews = 5027\n",
+            "\n",
+            " 0 stephen king doit bien ricaner en constatant cette navrante histoire de disparus , les scénaristes semblent s' être inspirés de ses oeuvres mais ont bien moins son talent que celui du business . quel perte de temps que de regarder ces personnages perdus au centre d' une histoire sans fin et sans intérêt , où 2 ou 3 épisodes suffisent pour décrocher , à l' inverse d' une série comme desperate housewives dont les dialogues , les scénarii et les personnages contribuent sans cesse à relancer l' intérêt et le plaisir au fil des épisodes . pourtant mes goûts initiaux m' auraient porté davantage du côté de la série fantastique . il ne faut préjuger de rien ! a bon entendeur ...\n",
+            "\n",
+            " 1 excellentissime ! une série à l' apparence toute calme et lisse , qui se révèle être un véritable noeud de problèmes , de secrets , de mensonges ... les actrices sont vraiment toutes très bonnes dans leurs rôles , avec une petite préférence pour bree , qui pète complètement un câble à la fin de la saison 2 !\n",
+            "\n",
+            "File: allocine_dev.tsv \n",
+            "Data format: ['movie_id' 'user_id' 'sentiment' 'review'] \n",
+            "First instance:  1 Avant cette série, je ne connaissais que Urgence et Grey's Anatomy comme série médicale. Si la première ne m'intéressait pas, j'étais accro à la seconde. Mais quel choc en découvrant House ! La série traite un cas médical très intéressant par épisode, mais elle est surtout fantastique pour son personnage de House : on croit avoir serner le personnage, mais non, il réussit toujours à nous surprendre et il lance répliques cultes sur répliques cultes. Je suis accroc à cette série, l'une des meilleurs du moment. Vivement la saison 4 !\n",
+            "#Reviews = 549\n",
+            "\n",
+            " 0 avant cette série , je ne connaissais que urgence et grey' s anatomy comme série médicale . si la première ne m' intéressait pas , j' étais accro à la seconde . mais quel choc en découvrant house ! la série traite un cas médical très intéressant par épisode , mais elle est surtout fantastique pour son personnage de house : on croit avoir serner le personnage , mais non , il réussit toujours à nous surprendre et il lance répliques cultes sur répliques cultes . je suis accroc à cette série , l' une des meilleurs du moment . vivement la saison 4 !\n",
+            "\n",
+            " 1 encore une série qui semble vouloir promouvoir le vide cérébral de ses spectateurs . sorte de santa barbara version ado , la série est creuse , dénuée d' un quelconque intérêt . elle semble condamnée à enchaîner les clichés et stéréotypes , les acteurs avec des tronches de premiers de la classe . le scénario est inexistant , la réalisation conformiste , rien qui puisse repousser le spectateur en manque de lessive pour laver son cerveau . la série vantant le mode de vie américain et assénant de la morale caricaturale aux spectateurs pour parfaire leur éducation de petits pauvres : le gentil pauvre très intelligent et vachement rebelle , les fils de riches prétentieux , les filles de riches du genre peste insupportable et égocentriques . et tout le monde il est beau et il est gentil , est tout est bien dans ce monde , le système marche et il n' y a pas besoin que l' état fédéral s' en mêle et tente de réparer les injustices , car au fond , seuls les plus forts ( et surtout les plus riches ) s' en sortent et c' est mieux pour tout le monde .\n",
+            "\n",
+            "File: allocine_test.tsv \n",
+            "Data format: ['movie_id' 'user_id' 'sentiment' 'review'] \n",
+            "First instance:  0 Une grosse daube. La premiere saison etait pas mal, bon y'avait pas mal d'incohérences, mais bon les téléspectateurs sont pas trop regardant donc ça passe ... mais alors la 2e saison !! L'intérêt de l'intrigue de départ s'est envolée forcément, mais on se dit qu'ils vont peut etre trouver une idée qui donne un quelconque intéret à l'histoire. Meme si on emploie des procédés extremes, comme tuer des personnages centraux de la saison 1 pour ne pas s'en encombrer par la suite ... Comme rien ne choque personne on est plus à ça pres ! Tout le long de la saison 2 on se demande où ça va aller, on se dit \"mais qu'est ce que c'est que ce truc ??\", des épisodes font carrément marrer, tellement les scénaristes ont cherché des situations tarabiscotées pour aller là où ils avaient envie d'aller ... Le pompon pour le dernier épisode parce que c'est ENORME !!! A la fin de l'épisode, une phrase m'est sortie spontanément, c'est \" Quel gros caca vraiment\". Donc voilà la saison 3 ce sera sans moi, je me demande comment j'ai tenu toute la saison 2 dis donc ... Quand je vois que des séries avec un vrai scénario comme Day break s'arretent faute d'audimat, et que des bouses pareilles survivent parce que plein de gens regardent, je trouve ça triste ... Enfin bon je m'en fais pas trop, Prison Break finira surement comme Alias, une fin en grand n'importe quoi à la moitié de la derniere saison, pour stopper le ridicule...\n",
+            "#Reviews = 544\n",
+            "\n",
+            " 0 une grosse daube . la premiere saison etait pas mal , bon y' avait pas mal d' incohérences , mais bon les téléspectateurs sont pas trop regardant donc ça passe ... mais alors la 2e saison ! ! l' intérêt de l' intrigue de départ s' est envolée forcément , mais on se dit qu' ils vont peut etre trouver une idée qui donne un quelconque intéret à l' histoire . meme si on emploie des procédés extremes , comme tuer des personnages centraux de la saison 1 pour ne pas s' en encombrer par la suite ... comme rien ne choque personne on est plus à ça pres ! tout le long de la saison 2 on se demande où ça va aller , on se dit \" mais qu' est ce que c' est que ce truc ? ? \" , des épisodes font carrément marrer , tellement les scénaristes ont cherché des situations tarabiscotées pour aller là où ils avaient envie d' aller ... le pompon pour le dernier épisode parce que c' est enorme ! ! ! a la fin de l' épisode , une phrase m' est sortie spontanément , c' est \" quel gros caca vraiment \" . donc voilà la saison 3 ce sera sans moi , je me demande comment j' ai tenu toute la saison 2 dis donc ... quand je vois que des séries avec un vrai scénario comme day break s' arretent faute d' audimat , et que des bouses pareilles survivent parce que plein de gens regardent , je trouve ça triste ... enfin bon je m' en fais pas trop , prison break finira surement comme alias , une fin en grand n' importe quoi à la moitié de la derniere saison , pour stopper le ridicule ...\n",
+            "\n",
+            " 1 je me force à regarder cette série soi disant extraordinaire tous les samedis espérant qu' elle va décoller , mais je la trouve complétement tarte , gnangnan et souffrant de saucissonnage . pas de suspens , rythme abscon . seul le générique a un intéret .\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "print(train[0])\n",
+        "print(y_train)"
+      ],
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "LH2yvH7nu_PJ",
+        "outputId": "6f345c39-58bd-433f-80a2-d61004474034"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "stephen king doit bien ricaner en constatant cette navrante histoire de disparus , les scénaristes semblent s' être inspirés de ses oeuvres mais ont bien moins son talent que celui du business . quel perte de temps que de regarder ces personnages perdus au centre d' une histoire sans fin et sans intérêt , où 2 ou 3 épisodes suffisent pour décrocher , à l' inverse d' une série comme desperate housewives dont les dialogues , les scénarii et les personnages contribuent sans cesse à relancer l' intérêt et le plaisir au fil des épisodes . pourtant mes goûts initiaux m' auraient porté davantage du côté de la série fantastique . il ne faut préjuger de rien ! a bon entendeur ...\n",
+            "0       0\n",
+            "1       1\n",
+            "2       0\n",
+            "3       0\n",
+            "4       0\n",
+            "       ..\n",
+            "5022    0\n",
+            "5023    1\n",
+            "5024    0\n",
+            "5025    1\n",
+            "5026    1\n",
+            "Name: sentiment, Length: 5027, dtype: int64\n"
+          ]
+        }
+      ]
     },
     {
       "cell_type": "markdown",
@@ -144,13 +240,13 @@
         "id": "90iwyLkc9hw8"
       },
       "source": [
-        "## Exercise 2: Feature extraction \n",
+        "## Exercise 2: Feature extraction\n",
         "\n",
         "Now it’s time to decide which features to use in our classifier. We’ll start with simple bag of words features.\n",
         "\n",
         "▶▶ **TODO: write the code to vectorize the data using CountVectorizer:**\n",
-        "* Take a look at the doc: https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html \n",
-        "* Create an instance on the class CountVectorizer\n",
+        "* Take a look at the doc: https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html\n",
+        "* Create an instance of the class CountVectorizer\n",
         "* Look at the definition of the class to see how to limit the number of features to 500 (parameter in the constructor)\n",
         "* Use the method fit_transform from this instance, with the tokenized train set as argument\n",
         "* Print the shape of the obtained matrix\n",
@@ -161,7 +257,7 @@
     {
       "cell_type": "code",
       "source": [
-        "# useful imports \n",
+        "# useful imports\n",
         "from sklearn.feature_extraction.text import CountVectorizer"
       ],
       "metadata": {
@@ -215,7 +311,7 @@
         "We’ll start with the simplest classifier, yet often performing well: Naive Bayes.\n",
         "\n",
         "▶▶ **TODO: Train the classifier et report its performance on the dev set.**\n",
-        "* Take a look at the doc: https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html \n",
+        "* Take a look at the doc: https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html\n",
         "* Create an instance of the class MultinomialNB\n",
         "* Use the method fit() on this instance of the naive bayes classifier, with the vectorized train set as an argument\n",
         "* Look at the definition of the class and find a method that can be used for evaluating the model on the dev set. What does the score represent ?\n"
@@ -268,7 +364,7 @@
       "source": [
         "### Exercise 3-b (code given)\n",
         "\n",
-        "* Look at the instances that were classified badly. Do you see why the review was misclassified ? "
+        "* Look at the instances that were classified badly. Do you see why the review was misclassified ?"
       ]
     },
     {
@@ -287,7 +383,7 @@
         "    if pred[i] != y_dev[i]:\n",
         "        print( \"\\nGOLD=\", y_dev[i], \"PRED=\",pred[i] , i, dev_df['review'][i])\n",
         "        count_err += 1\n",
-        "        \n",
+        "\n",
         "print( \"CHECK: \", \"#Total=\", len(pred), \"#Errors=\", count_err, \"Acc=\", (len(pred)-count_err)/len(pred))"
       ],
       "execution_count": null,
@@ -310,7 +406,7 @@
         "\n",
         "We could also have tried to e.g.:\n",
         "  * Exclude a list of stopwords (high-frequency words that are considered too general to be meaningful, such as une or le)\n",
-        "  * Experiment with n-grams with n>2 \n",
+        "  * Experiment with n-grams with n>2\n",
         "  * Combine features (e.g. BOW + bi-grams)\n",
         "  * Can you think of other features to include?"
       ]
@@ -347,7 +443,7 @@
         "## Exercise 5\n",
         "\n",
         "Experiment with different classifiers, compare:\n",
-        "* Naive Bayes \n",
+        "* Naive Bayes\n",
         "* MaxEnt\n",
         "\n",
         "▶▶ **Compare the results obtained with NB to the ones obtained with MaxEnt.**\n",
@@ -407,7 +503,7 @@
       "source": [
         "## Exercise 6: evaluation on the test set\n",
         "\n",
-        "You’ve determined the best feature set and classification algorithm (missing: the best set of hyper-parameters). \n",
+        "You’ve determined the best feature set and classification algorithm (missing: the best set of hyper-parameters).\n",
         "\n",
         "▶▶ **compute the performance on the test set**."
       ]
@@ -431,7 +527,7 @@
       "source": [
         "## Exercise 7: Intrinsic model evaluation (code given)\n",
         "\n",
-        "Some models allow us to look at the most informative features. \n",
+        "Some models allow us to look at the most informative features.\n",
         "\n",
         "▶▶ **Examine both the top and the bottom of the list. Which features are most informative ?**"
       ]
diff --git a/notebooks/TP1_masterLiTL_2223_CORRECT.ipynb b/notebooks/TP1_masterLiTL_2223_CORRECT.ipynb
deleted file mode 100644
index 220a2b046221ce78b06929d7f5fa484d178540ca..0000000000000000000000000000000000000000
--- a/notebooks/TP1_masterLiTL_2223_CORRECT.ipynb
+++ /dev/null
@@ -1,1233 +0,0 @@
-{
-  "nbformat": 4,
-  "nbformat_minor": 0,
-  "metadata": {
-    "colab": {
-      "provenance": []
-    },
-    "kernelspec": {
-      "name": "python3",
-      "display_name": "Python 3"
-    },
-    "language_info": {
-      "name": "python"
-    }
-  },
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "lmulT50Qopks"
-      },
-      "source": [
-        "# TP1: Machine learning (reminder)\n",
-        "Master LiTL - 2021-2022\n",
-        "\n",
-        "## Requirements\n",
-        "In this practical session, we will explore machine learning models for NLP applications ; specifically, we will train a classifier for sentiment analysis on a French dataset of movie reviews. \n",
-        "For these exercises, we will make use of Python (v3.*), and a number of modules for data processing and machine learning: *numpy*, *scipy*, *scikit-learn*, *pandas* and *spacy* . \n",
-        "If  you  want  to  use  your  own  computer  you  will  need  to  make  sure  these  are  installed  (e.g.  using  the command *pip*). If you’re using *Miniconda*, you can use the command\n",
-        "```\n",
-        "conda install <modulename>\n",
-        "```\n",
-        "\n",
-        "\n",
-        "First,  download  the  data  for  the  practical  session  from  the  course  github page  to  an  appropriate working directory, and unzip it. Under linux, you can issue the following commands :\n",
-        "```\n",
-        "$ unzip allocine.zip \n",
-        "```\n",
-        "\n",
-        "If you want to use Google colab, you need to upload the data using the menu on the left. \n"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "D4dW8cDBpG2v"
-      },
-      "source": [
-        "## Task and dataset\n",
-        "\n",
-        "We’ll go through the following stages of an NLP machine learning pipeline, using sentiment classification as an application:\n",
-        "* data preprocessing (tokenization) \n",
-        "* feature extraction\n",
-        "* model training\n",
-        "* evaluation\n",
-        "\n",
-        "As a dataset, we’ll be using a set of reviews for television series in French, extracted from the website allocine.fr. \n",
-        "The dataset consists of the text of the review, as well as a sentiment label (positive or negative).\n",
-        "\n",
-        "The training set is divided into a training part (for training, 5576 reviews, ± 90%) and test part (for evaluation, 544 reviews, ± 10%). \n",
-        "The dataset is balanced, which means positive and negative instances are evenly distributed. \n",
-        "Additionally, training and test set contain reviews about different TV series (in order to avoid possible bias when evaluating)."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Useful imports\n",
-        "import pandas as pd\n",
-        "# spacy’s preprocessing pipeline and model for French\n",
-        "import spacy.cli\n",
-        "spacy.cli.download(\"fr_core_news_sm\")\n",
-        "nlp = spacy.load('fr_core_news_sm', disable=['tagger', 'parser', 'ner'])\n"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "YoPn-Cbx44bO",
-        "outputId": "2806ef69-9a66-41c6-b4c8-127ecad913ef"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n",
-            "You can now load the package via spacy.load('fr_core_news_sm')\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Path to data\n",
-        "train_path = \"allocine_train.tsv\"\n",
-        "dev_path = \"allocine_dev.tsv\"\n",
-        "test_path = \"allocine_test.tsv\""
-      ],
-      "metadata": {
-        "id": "Kf-2YqsqsbHz"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "PKlLeW1Rp3Hl"
-      },
-      "source": [
-        "## Exercise 1: Preprocessing (code given)\n",
-        "\n",
-        "First, we’ll load the training set and axplore the dataset.\n",
-        "\n"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "vjWd_ZWYj9i0",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "61d81cba-2c9b-4b48-c584-99aa0df16608"
-      },
-      "source": [
-        "def read_data( data_path ):\n",
-        "  dataset = pd.read_csv(data_path, header=0, delimiter='\\t', quoting=3)\n",
-        "  print( '\\nFile:', data_path, '\\nData format:', dataset.columns.values, \n",
-        "        '\\nFirst instance: ', dataset['sentiment'][0], dataset['review'][0] )\n",
-        "  return dataset, dataset['sentiment']\n",
-        "\n",
-        "def preprocess_data( dataset ):\n",
-        "  num_reviews = dataset['review'].size\n",
-        "  print(\"#Reviews =\", num_reviews)\n",
-        "  dataset_tok = []\n",
-        "  for i in range(num_reviews):\n",
-        "      clean_review = review_to_tokens(dataset['review'][i])\n",
-        "      dataset_tok.append(clean_review)\n",
-        "  for i, r in enumerate(dataset_tok[:2]):\n",
-        "      print('\\n', i, r) \n",
-        "  return dataset_tok\n",
-        "\n",
-        "def review_to_tokens(raw_review):\n",
-        "    doc = nlp(raw_review)\n",
-        "    tokenList = [token.text for token in doc]\n",
-        "    tokenized_string = ' '.join(tokenList)\n",
-        "    tokenized_string_lowercase = tokenized_string.lower()\n",
-        "    return tokenized_string_lowercase\n",
-        "\n",
-        "def read_and_preprocess( data_path ):\n",
-        "  dataset, labels = read_data( data_path )\n",
-        "  dataset_tokenized = preprocess_data( dataset )\n",
-        "  return dataset_tokenized, dataset, labels\n",
-        "\n",
-        "train, train_df, y_train = read_and_preprocess( train_path )\n",
-        "dev, dev_df, y_dev   = read_and_preprocess( dev_path )\n",
-        "test, test_df, y_test  = read_and_preprocess( test_path ) "
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            "File: allocine_train.tsv \n",
-            "Data format: ['movie_id' 'user_id' 'sentiment' 'review'] \n",
-            "First instance:  0 Stephen King doit bien ricaner en constatant cette navrante histoire de disparus, les scénaristes semblent s'être inspirés de ses oeuvres mais ont bien moins son talent que celui du business. Quel perte de temps que de regarder ces personnages perdus au centre d'une histoire sans fin et sans intérêt, où 2 ou 3 épisodes suffisent pour décrocher, à l'inverse d'une série comme Desperate housewives dont les dialogues, les scénarii et les personnages contribuent sans cesse à relancer l'intérêt et le plaisir au fil des épisodes. Pourtant mes goûts initiaux m'auraient porté davantage du côté de la série fantastique. Il ne faut préjuger de rien! A bon entendeur...\n",
-            "#Reviews = 5027\n",
-            "\n",
-            " 0 stephen king doit bien ricaner en constatant cette navrante histoire de disparus , les scénaristes semblent s' être inspirés de ses oeuvres mais ont bien moins son talent que celui du business . quel perte de temps que de regarder ces personnages perdus au centre d' une histoire sans fin et sans intérêt , où 2 ou 3 épisodes suffisent pour décrocher , à l' inverse d' une série comme desperate housewives dont les dialogues , les scénarii et les personnages contribuent sans cesse à relancer l' intérêt et le plaisir au fil des épisodes . pourtant mes goûts initiaux m' auraient porté davantage du côté de la série fantastique . il ne faut préjuger de rien ! a bon entendeur ...\n",
-            "\n",
-            " 1 excellentissime ! une série à l' apparence toute calme et lisse , qui se révèle être un véritable noeud de problèmes , de secrets , de mensonges ... les actrices sont vraiment toutes très bonnes dans leurs rôles , avec une petite préférence pour bree , qui pète complètement un câble à la fin de la saison 2 !\n",
-            "\n",
-            "File: allocine_dev.tsv \n",
-            "Data format: ['movie_id' 'user_id' 'sentiment' 'review'] \n",
-            "First instance:  1 Avant cette série, je ne connaissais que Urgence et Grey's Anatomy comme série médicale. Si la première ne m'intéressait pas, j'étais accro à la seconde. Mais quel choc en découvrant House ! La série traite un cas médical très intéressant par épisode, mais elle est surtout fantastique pour son personnage de House : on croit avoir serner le personnage, mais non, il réussit toujours à nous surprendre et il lance répliques cultes sur répliques cultes. Je suis accroc à cette série, l'une des meilleurs du moment. Vivement la saison 4 !\n",
-            "#Reviews = 549\n",
-            "\n",
-            " 0 avant cette série , je ne connaissais que urgence et grey' s anatomy comme série médicale . si la première ne m' intéressait pas , j' étais accro à la seconde . mais quel choc en découvrant house ! la série traite un cas médical très intéressant par épisode , mais elle est surtout fantastique pour son personnage de house : on croit avoir serner le personnage , mais non , il réussit toujours à nous surprendre et il lance répliques cultes sur répliques cultes . je suis accroc à cette série , l' une des meilleurs du moment . vivement la saison 4 !\n",
-            "\n",
-            " 1 encore une série qui semble vouloir promouvoir le vide cérébral de ses spectateurs . sorte de santa barbara version ado , la série est creuse , dénuée d' un quelconque intérêt . elle semble condamnée à enchaîner les clichés et stéréotypes , les acteurs avec des tronches de premiers de la classe . le scénario est inexistant , la réalisation conformiste , rien qui puisse repousser le spectateur en manque de lessive pour laver son cerveau . la série vantant le mode de vie américain et assénant de la morale caricaturale aux spectateurs pour parfaire leur éducation de petits pauvres : le gentil pauvre très intelligent et vachement rebelle , les fils de riches prétentieux , les filles de riches du genre peste insupportable et égocentriques . et tout le monde il est beau et il est gentil , est tout est bien dans ce monde , le système marche et il n' y a pas besoin que l' état fédéral s' en mêle et tente de réparer les injustices , car au fond , seuls les plus forts ( et surtout les plus riches ) s' en sortent et c' est mieux pour tout le monde .\n",
-            "\n",
-            "File: allocine_test.tsv \n",
-            "Data format: ['movie_id' 'user_id' 'sentiment' 'review'] \n",
-            "First instance:  0 Une grosse daube. La premiere saison etait pas mal, bon y'avait pas mal d'incohérences, mais bon les téléspectateurs sont pas trop regardant donc ça passe ... mais alors la 2e saison !! L'intérêt de l'intrigue de départ s'est envolée forcément, mais on se dit qu'ils vont peut etre trouver une idée qui donne un quelconque intéret à l'histoire. Meme si on emploie des procédés extremes, comme tuer des personnages centraux de la saison 1 pour ne pas s'en encombrer par la suite ... Comme rien ne choque personne on est plus à ça pres ! Tout le long de la saison 2 on se demande où ça va aller, on se dit \"mais qu'est ce que c'est que ce truc ??\", des épisodes font carrément marrer, tellement les scénaristes ont cherché des situations tarabiscotées pour aller là où ils avaient envie d'aller ... Le pompon pour le dernier épisode parce que c'est ENORME !!! A la fin de l'épisode, une phrase m'est sortie spontanément, c'est \" Quel gros caca vraiment\". Donc voilà la saison 3 ce sera sans moi, je me demande comment j'ai tenu toute la saison 2 dis donc ... Quand je vois que des séries avec un vrai scénario comme Day break s'arretent faute d'audimat, et que des bouses pareilles survivent parce que plein de gens regardent, je trouve ça triste ... Enfin bon je m'en fais pas trop, Prison Break finira surement comme Alias, une fin en grand n'importe quoi à la moitié de la derniere saison, pour stopper le ridicule...\n",
-            "#Reviews = 544\n",
-            "\n",
-            " 0 une grosse daube . la premiere saison etait pas mal , bon y' avait pas mal d' incohérences , mais bon les téléspectateurs sont pas trop regardant donc ça passe ... mais alors la 2e saison ! ! l' intérêt de l' intrigue de départ s' est envolée forcément , mais on se dit qu' ils vont peut etre trouver une idée qui donne un quelconque intéret à l' histoire . meme si on emploie des procédés extremes , comme tuer des personnages centraux de la saison 1 pour ne pas s' en encombrer par la suite ... comme rien ne choque personne on est plus à ça pres ! tout le long de la saison 2 on se demande où ça va aller , on se dit \" mais qu' est ce que c' est que ce truc ? ? \" , des épisodes font carrément marrer , tellement les scénaristes ont cherché des situations tarabiscotées pour aller là où ils avaient envie d' aller ... le pompon pour le dernier épisode parce que c' est enorme ! ! ! a la fin de l' épisode , une phrase m' est sortie spontanément , c' est \" quel gros caca vraiment \" . donc voilà la saison 3 ce sera sans moi , je me demande comment j' ai tenu toute la saison 2 dis donc ... quand je vois que des séries avec un vrai scénario comme day break s' arretent faute d' audimat , et que des bouses pareilles survivent parce que plein de gens regardent , je trouve ça triste ... enfin bon je m' en fais pas trop , prison break finira surement comme alias , une fin en grand n' importe quoi à la moitié de la derniere saison , pour stopper le ridicule ...\n",
-            "\n",
-            " 1 je me force à regarder cette série soi disant extraordinaire tous les samedis espérant qu' elle va décoller , mais je la trouve complétement tarte , gnangnan et souffrant de saucissonnage . pas de suspens , rythme abscon . seul le générique a un intéret .\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "90iwyLkc9hw8"
-      },
-      "source": [
-        "## Exercise 2: Feature extraction \n",
-        "\n",
-        "Now it’s time to decide which features to use in our classifier. We’ll start with simple bag of words features.\n",
-        "\n",
-        "▶▶ **TODO: write the code to vectorize the data using CountVectorizer:**\n",
-        "* Take a look at the doc: https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html \n",
-        "* Create an instance of the class CountVectorizer\n",
-        "* Look at the definition of the class to see how to limit the number of features to 500 (parameter in the constructor)\n",
-        "* Use the method fit_transform from this instance, with the tokenized train set as argument\n",
-        "* Print the shape of the obtained matrix\n",
-        "* Print the vocabulary, ie use the method get_feature_names() of the class CountVectorizer\n",
-        "* You can do that again for the dev set, once it's done for the train meaning using the same countVectorizer instance, but this time to vectorize the devset. Don't forget that for the dev we don't use 'fit_transform' but only 'transform'. Do you remeber why?"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# useful imports \n",
-        "from sklearn.feature_extraction.text import CountVectorizer"
-      ],
-      "metadata": {
-        "id": "iyUCtQ7661PU"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "ZGnHRsH_9jtk",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "e4d1cde0-f69c-46ad-ef88-31fd468f8448"
-      },
-      "source": [
-        "# -- Vectorize train\n",
-        "\n",
-        "# Create an instance on the class CountVectorizer\n",
-        "vectorizer_bow = CountVectorizer( analyzer = 'word', max_features = 500 )\n",
-        "\n",
-        "# Use the method fit_transform from this instance, with 'train' as argument\n",
-        "train_bow = vectorizer_bow.fit_transform( train )\n",
-        "\n",
-        "# Print the shape of the obtained matrix\n",
-        "print(train_bow.shape)\n",
-        "\n",
-        "# Print the vocabulary, ie use the method get_feature_names() of the class CountVectorizer\n",
-        "vocab = vectorizer_bow.get_feature_names()\n",
-        "print(\"Vocabulary:\", vocab[:20])\n",
-        "\n",
-        "# --------------------------------------------------------\n",
-        "# -- Vectorize dev\n",
-        "\n",
-        "# Use the method transform from this instance, with 'dev' as argument\n",
-        "dev_bow = vectorizer_bow.transform( dev )\n",
-        "\n",
-        "# Print the shape of the obtained matrix\n",
-        "print(dev_bow.shape)\n",
-        "\n",
-        "# Vocabulary should remain the same!\n",
-        "vocab = vectorizer_bow.get_feature_names()\n",
-        "print(\"Vocabulary:\", vocab[:20])"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "(5027, 500)\n",
-            "Vocabulary: ['10', '24', 'absolument', 'accroché', 'acteur', 'acteurs', 'action', 'actrice', 'actrices', 'adore', 'ados', 'ah', 'ai', 'ailleurs', 'aime', 'ainsi', 'ait', 'alias', 'alors', 'ambiance']\n",
-            "(549, 500)\n",
-            "Vocabulary: ['10', '24', 'absolument', 'accroché', 'acteur', 'acteurs', 'action', 'actrice', 'actrices', 'adore', 'ados', 'ah', 'ai', 'ailleurs', 'aime', 'ainsi', 'ait', 'alias', 'alors', 'ambiance']\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n",
-            "  warnings.warn(msg, category=FutureWarning)\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "u3VCUNqZ9ohj"
-      },
-      "source": [
-        "## Exercise 3: Classification\n",
-        "\n",
-        "We’ll start with the simplest classifier, yet often performing well: Naive Bayes.\n",
-        "\n",
-        "▶▶ **TODO: Train the classifier et report its performance on the dev set.**\n",
-        "* Take a look at the doc: https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html \n",
-        "* Create an instance of the class MultinomialNB\n",
-        "* Use the method fit() on this instance of the naive bayes classifier, with the vectorized train set as an argument\n",
-        "* Look at the definition of the class and find a method that can be used for evaluating the model on the dev set. What does the score represent ?\n"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Useful imports\n",
-        "from sklearn.naive_bayes import MultinomialNB\n"
-      ],
-      "metadata": {
-        "id": "uNzDYo6e9fo_"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "CssLBO2SBPMN",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "e2564ecf-5a41-46bb-cc7f-b6a364b5f85d"
-      },
-      "source": [
-        "## Classification with NAIVE BAYES\n",
-        "\n",
-        "# Create an instance of the class MultinomialNB\n",
-        "classifier = MultinomialNB()\n",
-        "\n",
-        "# Use the method fit on this instance of the naive bayes classifier, with the vectorized train set as an argument\n",
-        "classifier.fit(train_bow, y_train)"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "MultinomialNB()"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 25
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "IKuY2GrsKv3R",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "c03d72d8-addb-4e08-ba91-970aa1b8f271"
-      },
-      "source": [
-        "# Compute the performance on the dev set\n",
-        "score = classifier.score( dev_bow, y_dev )\n",
-        "print('BOW + NB:', score)"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "BOW + NB: 0.8178506375227687\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "0KdSuShTBQ00"
-      },
-      "source": [
-        "### Exercise 3-b (code given)\n",
-        "\n",
-        "* Look at the instances that were classified badly. Do you see why the review was misclassified ? "
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "0fek-bze96bp",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "f1bde017-9952-44f2-c733-f064ebd0330d"
-      },
-      "source": [
-        "##-- Look at misclassified instances\n",
-        "pred = classifier.predict( dev_bow )\n",
-        "#print(pred) # = matrix, illisible\n",
-        "print()\n",
-        "\n",
-        "print('Misclassified examples: ')\n",
-        "count_err = 0\n",
-        "for i in range(len(pred)):\n",
-        "    if pred[i] != y_dev[i]:\n",
-        "        print( \"\\nGOLD=\", y_dev[i], \"PRED=\",pred[i] , i, dev_df['review'][i])\n",
-        "        count_err += 1\n",
-        "        \n",
-        "print( \"CHECK: \", \"#Total=\", len(pred), \"#Errors=\", count_err, \"Acc=\", (len(pred)-count_err)/len(pred))"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "[1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1\n",
-            " 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0\n",
-            " 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0\n",
-            " 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1\n",
-            " 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1\n",
-            " 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0\n",
-            " 0 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0\n",
-            " 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 1 1 1 1\n",
-            " 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 0\n",
-            " 1 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1\n",
-            " 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1\n",
-            " 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 0\n",
-            " 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 1\n",
-            " 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1\n",
-            " 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1]\n",
-            "\n",
-            "Misclassified examples: \n",
-            "\n",
-            "GOLD= 0 PRED= 1 3 Newport beach est une série à découvrir d'urgence, cette série raconte les déboires de 4 amis et de leur entourage. Dommage que les diffusions soient rares et que la france n'en soit qu'à la première saison. Les personnages sont attachants, chacun avec sa personnalité bien à lui. La saison 2 est vraiment géniale est j'ai hâte de pouvoir voir la 3ème car la fin de la saison 2 nous laisse sans voix. Si vous aimez Les frères Scott vous aimerez Newport Beach.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 6 Vu la qualité des séries françaises, il semblait apparement impossible de faire quelque chose de différent et de beau en France....et puis, Greco est arrivé ! Il y a peut-être des défauts, oui, mais quand on pense à Navarro, Joséphine ange gardien, ou louis la brocante, Greco en devient un chef d'oeuvre , non ??!!! On sent que les scénarios sont écrits, on ne prend pas les spectateurs pour des \"cons\", la mise en scène est travaillée , là aussi ça nous change ! Même si les américains font encore mieux, n'oublions pas qu'ils ont les moyens, et des chaînes ( HBO ) qui ont elles des couilles ( Sex & the city , Profit, Six feet under , et dernièrement Dexter , Heroes ) Alors, Greco ressemble à Haunted ....et alors, pour une fois on a une série qui tient la route...J'espère seulement qu'elle fera des petits !!!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 7 Profit, ou le destin d'un homme Jim Profit prêt à tout pour arriver jusqu'au sommet de la société Gracen & Gracen , symbole du Capitalisme triomphant du milieu des années 90'. Une Satyre à la fois du monde Capitaliste (comme Wall street pouvait l'être en son temps pour la finance) et de l'avidité des Hommes,Jim Profit est \"monstrueusement humain\" et l'on se se délecte de ses manoeuvres pour courcicuité l'un de ses associés, Profit en est le narrateur de cette histoire, il nous met dans la confidence, nous sommes complice de ses actes. La Psychologie du personnage est poussé loin et on est toujours \"admiratif\" des \"efforts\" que cette homme qui plus jeune dormait dans une boite en carton, maltraité par un père alcoolique a pu faire pour en arriver là . Une a voire absolument !\n",
-            "\n",
-            "GOLD= 1 PRED= 0 9 j'adore cette serie . je ne peux plus m'en passer mais malheuresement je n'ai pas tf6 alors je suis obligé d'aller la regarder chez un ami . j'espere que france 2 va recommencer la diffusion\n",
-            "\n",
-            "GOLD= 1 PRED= 0 14 Damages est, à mon avis, LA série évènement de 2008 (en attendant The Tudors peut-être!). Des personnages plus pourris les uns que les autres, une intrigue qui promet d'être complexe et Glenn Close au top. Le premier épisode a suffit à me rendre accro et les suivants ne m'ont pas déçu. En bref une série qui fait mal!!!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 19 Ayant lu et relu les livres de Cecily von Ziegesar, quelle surprise de voir qu'ils ont été adaptés à la télé. Certes l'histoire et le caractère des personnages ne sont pas les mêmes, mais cela n'est pas vraiment gênant. On y découvre des jeunes acteurs encore inconnus en France, qui jouent très bien leurs rôle et surtout que le fait d'être riche et beau n'exclu pas le fait d'avoir des problèmes et d'être heureux.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 24 Voici une série que je viens à peine de découvrir que j'ai commencé à apprécier. Le tout premier épisode m'a marqué, et j'ai flashé dessus. J'ai l'impression de regarder les experts alors que ce début de série est pratiquement similaire. David Boréanaz et Emily Deschanel forment un couple d'enfer avec leurs rôles respectifs.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 28 J'abandonne cette serie a l'episode 6. Je l'ai trouvé tres decevante. Je m'attendais a un newport beach dans new york, et je me retrouve avec une histoire plate entre une poignée d'adolescents sans convictions. Loin, tres loin de mes esperances.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 35 Pour moi cette série est la série policière du moment. Pour moi cette série détrône avec habileté Les Experts et compagnie. Dans le rôle du héros, le très talentueux David Boreanaz, nous offre après le rôle d'Angel, celui de L'Agent Booth. Un rôle qu'il maîtrise encore à la perfection. Pour moi personne ne pourrais prendre la relève d'un acteur comme lui. Pour le rôle du Docteur Temperance, je n'ai pas d'autre mot que la plus Frenchie des Amerloques. Cette femme donne une image de son personnage qui colle à la perfection du terme : Fouine. Les scénario parfois interessant avec l'enquête qui ne laisse aucune preuve d'avance. Dans cette série personne ne peut deviner qui est le tueur avant la fin de l'épisode. Mais il y a parfois l'épisode de trop. Celui-ci n'arrive qu'une fois par saison, mais c'est l'épisode ou rien ne se passe et ou seul le jeu des acteurs rend l'épisode intérressant. En tout cas cette série marqueras à jamais l'acteur David Boreanaz et son talent. Il montre qu'il ne sait pas faire que le rôle du célèbre vampire : Angel.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 48 les experts pour moi c'est comme de la drogue, je peux pas m'endormir le soire sans voire une autopsy :)\n",
-            "\n",
-            "GOLD= 1 PRED= 0 49 Alors que dire de cette série qui n'ait pas encore été dit !!!!! Je crois moi aussi que c'est l'une des meilleures séries du moment !!!! Tout est excellent, acteurs, scénarii et humour sont omniprésents, il n'y a rien de moins bien et cette série ne se regarde pas, elle se savoure ! Hugh Laurie est quand même le facteur principal de ce show, il donne une dimension exceptionnelle à son personnage fétiche :D Une amie m'en avait parlé et m'avait dit dès que TF1 se décide à la diffuser, ne loupe pas ça !!! Alors, j'ai regardé en me disant que je verrais bien et dès le premier épisode,je suis tombé sous le charme de ce médecin totalement irracible,irrévérencieux et qu'on a envie de baffer tellement il est énervant mais il est aussi terriblement craquant :D Voilà, j'ai hâte de le découvrir en DVD afin de savourer la VO et de voir les épisodes que TF1 n' pas jugé bon de diffuser !!!!!\n",
-            "\n",
-            "GOLD= 0 PRED= 1 51 Absolument décevant... Les Effets Spéciaux avec les morts sont vraiment horribles, Le personnage, le concept, etc... Rappellent étrangement la série \"Haunted\"... Bref, à quand une série Française Réussie?\n",
-            "\n",
-            "GOLD= 1 PRED= 0 52  Vous me direz encore une série médicale, pas la peine de regarder ce ne sera qu'une pâle copie de urgence ou grey's anatomy. Mais vous auriez tord de passer à côté! En effet sur bien des plans Dr House dépasse largemment Grey's Anatomy. Le côté dramatique de cette série dépasse en qualité les petites tribulations amoureuses des internes du Seattle Grace. Impossible de détester Dr House malgré son caractère antipathique et sa philosophie clairement pessimiste \"Tout le monde ment\". Alors n'hésitez pas à regarder vous resterez scotché devant votre écran comme moi!!\n",
-            "\n",
-            "GOLD= 0 PRED= 1 53 Trucages \"cheap\", jeu d'acteur très mauvais surtout pour le Docteur Who. Scénario probablement écrits entre deux rails et un pétard. Je mets une etoile parce que je suis mort de rire à chaque fois que je tombe sur un épisode. Bref une très mauvaise série mais une excellente série nanarde.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 54 Un seul mot : GENIAL\n",
-            "\n",
-            "GOLD= 1 PRED= 0 57 Bienvenido à Miami, qui abrite en plus de chirurgiens plastique un expert en forensics nommé Dexter, accessoirement serial killer la nuit... Délicieusement morbide, cette série met en scène un personnage qui ne déparerait pas de l'univers en papier glacé de Brett Easton Ellis, royalement interprété par notre David Fisher (Six feet under, rest in peace) adoré. Cette 1ère saison repose sur des mindgames avec ''the ice truck killer'' sur fond de musique cubaine, de dialogues hispanophones et d'études de caractères réussies pour nous concocter un divertissement intelligent pour adultes qui savent rire de tout. Encore une fois le constat de la nullité comparative de la production télévisuelle française interloque...\n",
-            "\n",
-            "GOLD= 1 PRED= 0 61 Cette série m'enthousiasme. Pour une fois, le personnage principal est cynique, irrascible, asocial, etc. bref, tous les défauts possibles pour pratiquer la médecine. Et cette série n'a pas de morale, ce qui change chez les ricains. C'est extrèmement drôle et très bien fait (montage, jeu d'acteur, mise en scène, etc.) Bref, la série que je préfère regarder.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 63 ouais j'ai trouver cette serie dans ma liste de Recommandations c'est bizarre ma copine c'est fait preter une saison et je ne suis vraiment pas le public viser ce systeme de Recommandations et bizarre parfoisenfin bon pour resumer c'est des histoires de riches beaux jeunes gens a ny et ils leurs arrivent des trucs voila passionnant hein\n",
-            "\n",
-            "GOLD= 1 PRED= 0 64 Cette série est actuellement et de loin la meilleure série policière. Les épisodes sont divers et variés, quasiment aucuns ne se ressemblent. Cependant j'ai deux critiques(négatives) à faire, la première c'est qu'il manquerait peut être des nouveaux personnages, mais ce n'est qu'un avis... La deuxième c'est que le jeu des acteurs secondaires est plus que médiocre, du genre \"-(Grissom)Votre fille a été enlevée puis sauvagement battues à mort. -(le père)Tiens donc? C'est plus qu'embêtant ça... Bon c'est pas tout mais j'ai une femme qui m'attend\" Et c'est comme ça même si ce ne sont pas les parents les assassins ! A part ça cette série déchire tout !!! Immanquable!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 65 elfine3 - le 13/05/2007\n",
-            "\n",
-            "GOLD= 0 PRED= 1 86 J'avais adoré la première saison. Par contre, la 2è...pas géniale. J'espère quand même que la 3è (que je n'ai pas encore vue) relèvera le niveau.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 90 Le principal atout de Commissaire Moulin sont les enquêtes souvent plus noires et plus musclées(bien que pas toujours originales). Néanmoins, ca vire souvent au culte de la personnalité: en l'occurence Yves Rénier qui se la pète beaucoup trop avec sa moto, son flingue et son langage violent. Ca vire aussi à la mièvrerie habituelle avec le personnage complétement inutile de Natacha Amal. Enfin comme toutes les séries de faible niveau, cette série s'essoufle vite par manque de création entre les épisodes.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 91 Enquêtes super cheap, humour pour neuneus, des acteurs aux regards de bovins... Si elle a l'air d'une anthropologue et lui d'un agent du FBI, moi suis crédible en physicien ventriloque...\n",
-            "\n",
-            "GOLD= 1 PRED= 0 95 Bon, je comprends qu'on puisse ne pas aimer cette série pour beaucoup de choses: trop gore, trop de sexe, trop bizarre, trop dur à suivre mais que l'on dise pas très original... Là faut qu'on m'explique! Parce que même en suivant tous les vendredi on s'y perd! Alors merci aux scénaristes de me tenir en haleine à chaque épisode même si on sent parfois qu'ils veulent en faire trop dans le trash.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 96 Franchement je suis très déçue de cette série!Je m'ennuie totalement devant! On est très loin de ce que Josh Schwartz nous avait proposé avec New port Beach!\n",
-            "\n",
-            "GOLD= 0 PRED= 1 100 Nip tuck je trouve pas sa intérréssant, loin de la, c'est pas trés original et puis je ne trouve pas l'intérét de cette série tout simplement. Bon j'en ais vus qu'un, donc j'éssayré d'en regardé un autre pour voir, et on verra bien si mon opinion changeras.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 104 aie aie , enfermé dans mon mobil home j'ai subis une térrible torture ... coeur océan !!!!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 118 Vraiment une série originale qui défie toutes les lois de la morale!! on se prend à aimer un \"gentil\" sérial killer qui passe le plus clair de son temps à faire son introspection.... quand il ne découpe pas les méchants (encore qu'il le fait également pendant!!). L'accroche est rapide et redoutable. Certains pourraient penser que c'est \"ammoral\", etc... mais il faut prendre cette série au 2ème DEGRE!!!! En conclusion : des acteurs qui jouent bien, un thème peu ordinaire et de l'humour noir à revendre. Bref à ne rater sous aucun prétexte.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 119 Des series ds le secteur hospitalier qui se ressemblent toutes et qui ennuient..\n",
-            "\n",
-            "GOLD= 0 PRED= 1 122 Désolé je n'arrive pas a accrocher a cette serie (personnages peu credibles), enquetes ininteressantes, coup de masses technologiques...\n",
-            "\n",
-            "GOLD= 1 PRED= 0 123 Une série à découvrir rapidement si vous ne la connaissez pas encore...\n",
-            "\n",
-            "GOLD= 0 PRED= 1 127 Série qui se veut peut-être provocante mais qui n'est que vulgaire, scabreuse, tordue et sale !!!Tout est prétexte à coucheries et goujateries. Les personnages sont aussi immondes les uns que les autres. Lamentable !Zéro pointé !!!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 138 Le plus grand \"méchant\" de l'histoire de la télévision : aucune moralité, sans scrupules. Je t'aime Jim Profit !\n",
-            "\n",
-            "GOLD= 1 PRED= 0 139 Cette série est vraiment une bonne surprise! Au début je pensais qu'il s'agissait d'une de ces séries qui poussent aujourd'hui comme des champignons sur nos écrans et qui n'apportent rien de nouveau au petit monde de la TV. Quoiqu'il en soit, il n'en est rien et cette série est un véritable vent de fraîcheur. Elle est marrante, variée, touchante et elle permet de voir les avocats d'habitude si pédants sous un nouvel angle. Ah! si seulement tous les avocats pouvaient être comme ceux de ce cabinet! Cette série m'a agréablement surpris et aujourd'hui j'en redemande même si ça ne vaut pas un bon Nip/tuck mais on ne peut pas comparer l'incomparable!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 153 Qui peut mettre 0 étoile à une série comme ça? Pas moi, je l'ai découverte depuis 2 mois maintenant et j'adore de plus en plus, même si je ne fais que regarder les deux premières saisons, ça ne me lasse pas... J'ai même pleuré au départ d'Anna alors que ça fait 4 fois que je vois l'épisode, et ça pas beaucoup de séries sont capables de le faire, garder leurs émotions même après que l'on ait vu maintes et maintes fois l'épisode.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 156 Sans vouloir faire de promotion, M6 a fait un choix intéressant on nous proposant cette série; comme d'autres (Supernatural et Tru Calling entre autre dommage pour la 1ére qu'elle est fait le choix peu judicieux de ne pas diffuser la 2nde saison) enfin je m'égare ! Cette série part d'un postulat de départ original et à fort potentiel. Le pilote plutôt décevant pour ma part est comblé par la suite et surtout par le dernier épisode. Toutefois cette série souffre de divers handicaps: - On ne va pas au bout de l'intrigue, ni n'exploite assez son coté proche de Sliders mine de rien, et qui aurait put apporter une souplesse et des intrigues intéressantes -A part Juliette Margulies les autres acteurs du casting sont peu crédibles -Enfin même si les scènes et la conclusion reste convenu, cette série aurait mérité que l'on approfondisse plus son sujet ainsi que la personnalités des différents rôles. Ainsi cette série reste un divertissement original qui sort du lot mais qui demeure bien en deçà de ses possibilités réelles et aurait méritée d'être plus creusée.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 160 Super, cela nous change un peu, des héros avec la science infuse, un couple vedette qui nous la joue je t'aime moi non plus et tout un tas de raccourcis plus ou moins subtils pour nous faire tenir debout un semblant de scénario ( comme le fameux hologramme ). Enfin j'adore l'heroine qui n'est autre qu'un croisement entre Bruce Lee ( paix a son âme), Einstein (paix a l'âme d'Henri Poincaré) et mon Schnauzer Nain qui a un caractère épouvantable.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 161 DEXTER impossible a éxpliquer en quelques lignes.....un personnage vascinant!!! Vous êtes Dexter,seul vous connaissaiez vraiment qui il est.... Des dialogues magnifiquements écrits parafaitements joués. Pas besoin de vous en dire plus,vous avez qu'a regarder !!!!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 165 The OC, alias Newport Beach, se pose comme le Beverly Hills des années 2000. C'est le carton du PAF américain depuis deux ans et la saison 3 s'apprête déjà à débarquer sur la Fox. Mais The OC se démarque sur de nombreux points des séries pour ados habituelles trop aseptisées, et ce de manière très intelligente. Tout d'abord il faut noter la réalisation très classieuse de cette série, qui n'hésite pas à enchaîner scènes intimes, dialogues caustiques et percutants, et plans panomaras superbes et mis en musique de la côte californienne. Le casting constitue la seconde réussite majeure de cette série, avec de jeunes espoirs pétris de talent, excellant chacun dans leurs registres respectifs: Adam Brody en nerd sarcastique, Benjamin McKenzie en ex-tolard solitaire et introverti, la sublime Mischa Barton en jeune fille fragile et sensible, Rachel Bilson en bimbo pétillante et susceptible, et Chris Carmack dans le rôle du branleur plutôt beau gosse. D'autres acteurs confirmés soutiennent également ce casting, tels Tate Donovan, Peter Gallagher et surtout la délicieuse Kelly Rowan que j'aurais mieux vue dans le rôle de la mère de Marissa en lieu et place de cette peste de Melinda Clarke qui semble tout droit sortie d'un épisode des Feux de l'Amour. The OC n'évite malheureusement pas bon nombre de clichés inhérents au genre mais parvient toujours à reprendre son souffle et à ne pas sombrer dans le mélo grâce à la fluidite de la réalisation et la percussion des dialogues. Captivant.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 168 C'est pour moi l'une des meilleurs surprise de 2007. Un thème plutôt originale et surtout d'excellents acteurs aidé par une réalisation à la hauteur... Avec son scénario prenant, on ne s'ennuie pas une seule seconde et on devient accroc immédiatement... Pas étonnant que cette série fasse autant de bruit sur la toile! Du grand Showtime!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 174 Cette série est vraiment trop forte. On est vraiment fasciné par le personnage principal. Après toutes ces séries policières , on a enfin l'occasion de voir ce qui peut se passer de l'autre côté de la barrière. Les monologues fréquents de Dexter nous permettent de cerner totalement ce qui peut se passer dans la tête d'un tueur en série avant, pendant et après sa traque. On en arrive même à avoir de la compassion...\n",
-            "\n",
-            "GOLD= 0 PRED= 1 185 Je viens de lire dans une critique \"une série qui fait réfléchir sur la société\".... Oui, c'est sûr avec un gros plan sur des fesses toutes les 5 minutes, je réfléchis beaucoup, presque autant que devant Alerte à Malibu. Ce n'est qu'une vulgaire alternance de plans érotiques (sous prétexte de la chirurgie) et de plans trash et sanguinolants. Enfin, si la vie de chirurgien c'est se taper une bombasse à chaque consultation je signe tout de suite...\n",
-            "\n",
-            "GOLD= 0 PRED= 1 197 Mais si quelques objets font parfois sourire le reste est sans interêt... Un bien piètre successeur de Kaamelott( heureusement de retour à la rentrée!)\n",
-            "\n",
-            "GOLD= 0 PRED= 1 202 Des series ds le secteur hospitalier qui se ressemblent toutes et qui ennuient..\n",
-            "\n",
-            "GOLD= 0 PRED= 1 206 Une série bien lamentable à oublier très vite !!\n",
-            "\n",
-            "GOLD= 0 PRED= 1 219 vu le 1 er épisode,encore une super serie qui nous démontre que dans une certaine contrée , on aime pas le sexe, on s'en méfie, mais par contre, on est séduit par les serials killers, on voue un culte aux armes a feux, pour moi... ça va un peu! trés malsain\n",
-            "\n",
-            "GOLD= 0 PRED= 1 220 Je trouve que cette série est du plagiat pur et simple de la série Un dos tres... Et puis elle n'est vraiment pas terrible, je n'ai vraiment pas accroché... Je ne la conseille à personne !\n",
-            "\n",
-            "GOLD= 0 PRED= 1 227 Les experts est une série mettant en scéne des acteurs et actrices canons,tres intelligents, sur un scénario basique et plat qui se répete au fil des épisodes.En somme le schéma classique des séries policières americaine du moment, ennuyeux a mourir et connaissant un succé disproportionné.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 236 Encore une série linéaire : une personne ayant une maladie inconnue est internée. Dr. House cherche la solution, en choisit une (souvent au hasard ou selon l'intuition), il se plante, rectifie le tiret trouve la bonne solution grace à un infime détail que Dr.house avait occulté jusque là. Le malade est sauvé. Fin de l'épisode. Alors oui son personnage est détestable et certaines répliques sont géniales. Mais c'est trop répétitif : regardez un épisodes, vous les aurez tous vus !\n",
-            "\n",
-            "GOLD= 1 PRED= 0 243 Voici une série que je viens à peine de découvrir que j'ai commencé à apprécier. Le tout premier épisode m'a marqué, et j'ai flashé dessus. J'ai l'impression de regarder les experts alors que ce début de série est pratiquement similaire. David Boréanaz et Emily Deschanel forment un couple d'enfer avec leurs rôles respectifs.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 245 C'est rare de voir une série aussi pourrie. Cette série française est une daube. Les acteurs sont minables, le scénario pas du tout intéressant. Cette série fait honte à la filmographie française!\n",
-            "\n",
-            "GOLD= 0 PRED= 1 251 Un 'Un, dos, tres' italien, sauf que cette fois-ci, les acteurs sont fades, les musiques nulles, l'ambiance terne et désagréable!\n",
-            "\n",
-            "GOLD= 0 PRED= 1 259 Cette série ou les héros ont tous l'air de sortir d'\" HEC \" est lisse, totalement insipide sinon simplement débile !\n",
-            "\n",
-            "GOLD= 0 PRED= 1 276 Série policière américaine aux acteurs navrants et à la propagande idéologique au ras des paquerettes. Je supportai difficilement les 2 épisodes à la suite...\n",
-            "\n",
-            "GOLD= 1 PRED= 0 280 Les experts, c'est excellent, mais j'ai trouvé extrêmement nul l'adaptation française de cette série. Manhattan et miami ne valent pas las vegas. Grisom est le mieux de tous je trouve. Vive les experts.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 299 Bon je ne suis peut être pas très objectif car même si cette série était débile je donnerais une bonne note rien que pour la présence de Courteney Cox que j'adore depuis déjà plusieurs années. Cela dit le pilot était vraiment très intéressant et la trame dramatique est bien prenante. Même si je me demande comment les scénaristes vont réussir à nous tenir pendant 13 épisodes, j'ai hâte de voir comment la série va évoluer. En plus Courteney en garce, c'est un régal.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 301 Tombée par hasard sur cette série la semaine dernière (le 22.09.07)j'aurais aimé en savoir plus et regarder d'autres épisodes; Mais j'entend à la pubTV que samedi 29, c'est les derniers épisodes ...domages! :( Pourquoi cela n'a-t-il pas duré plus lontemps? Manque d'audimate? Pourtant, l'histoire des objets \"magique\" est vraiment prenante!! Je ne suis pas une enfant mais je me suis tout de même demandé \"et si c'était possible?!!\"\n",
-            "\n",
-            "GOLD= 0 PRED= 1 304 C'est une série qui est vraiment surréaliste et ennuyante à mourir. C'est plat, les personnages sont plats.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 306 Pour moi les experts et peu importe lesqu'elle est une série qui est toujours pareille, regarder des résolutions d'enquête plus invraisemblable les unes que les autres n'est pour moi pas très intéressent.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 310 Un jeu des acteurs qui s'affine de plus en plus au cours des épisodes, un synopsis intéressant, voilà un bon résumé de cette série à suivre.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 312 THRILLER DRAMATIQUE DECAPANT !!\n",
-            "\n",
-            "GOLD= 0 PRED= 1 324 Trop de ressemblance avec 'Un, dos, tres'. L'histoire n'est pas très bien recherchée. Je pensais que ça serait mieux que cela.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 327 Et voici une série ayant pour base le voyage dans le temps. On revisite ainsi la petite comme la Grande Histoire des États-Unis à travers le personnage du Dr. Beckett et son inséparable compagnon Al. La série s'avère donc ludique et recèle d'un peu d'humour. Néanmoins, Code Quantum a pris un sacré coup de vieux, et touts les situations cocasses ne sont pas toujours très drôles, les acteurs font vraiment pitié par moment. La faute également à l'acteur principal Scott Bakula qui manque réellement de charisme et s'avère incapable de s'imposer, même s'il a le mérite de porter une série \"casse-gueule\" sur ses frêles épaules. Dans le même genre, mais infiniment plus réussit, regarder la cultissime trilogie Retour vers le Futur.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 331 Rares sont les séries de ce genre qui me plaisent, c'est mon père qui adore cette série.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 336 Y a pas mieux. J'ai été obligé de me relever pour continuer à regarder des épisodes.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 343 Cette série est tout simplement déjantée. Aux premiers abords, la série paraît vraiment superficielle, c'est sûr : deux riches chirurgiens plastiques à Miami, avec des allures de mannequins pour eaux de toilette, des seins à la Pamela Anderson toutes les 20 minutes et des filles qu'on pourrait voir en couverture de Vogue... cela nous laisse de glace. Mais en creusant un peu plus, on y découvre une véritable psychologie travaillée, entre autres : un Dr Troy (Julian McMahon) qui excelle dans le rôle du quarantenaire courreur de jupons tout en se trouvant pathétique face à cette triste situation de solitude extrême. D'autre part, le Dr MacNamara, marié, deux enfants, à énormément de mal à passer le cap de la quarantaine, ce qui se finit par un divorce difficile. Mais le coup de théâtre revient à M.Murphy, il a fait d'un sujet banal qui aurait pu finir en soap américain de base avec des histoires à trois sous avec des beautées plastiques à tout bout de champ, une série totalement délurée, basée sur le paradoxe Troy/MacNamara, mélangée avec des scènes d'érotisme, du suspense, et qui s'enfonce de plus en plus dans le glauque et le sordide avec le personnage du \"découpeur\", le tout agrémenté de scènes opératoires qui n'envient rien à urgences, bien au contraire, elles sont tout simplement impressionnantes. Le tout relevé par un humour, quelques fois noir, notamment dû au charme du Dr Troy. Sans oublier que cette série reflette une Amérique déchirée, creusant un peu plus le fossé Nord/Sud.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 346 j adore totalement je sais pas trop pourquoi mais j'ai vus le premier épisode comme sa sur france2 et j ai étais marquer j'ai recentis le jeu de lacteur je sais pas mais c'est comme sa on aime ou on aime pas\n",
-            "\n",
-            "GOLD= 1 PRED= 0 347 Je n'arrive pas à concevoir qu'on puisse juger cette série comme \" une simple série de chirurgien esthétique\". Je plains les gens qui pensent cela Nip/Tuck ce n'est pas seulement sexe drogue et chirurgie, c'est aussi une série riche en émotion. Voilà ce que je dirais c'est que certes cette série peut sembler obscène et bête au premier abords, mais il faut passer outre cette aspect. Car derriere on trouve tout les éléments clés d'une série a succés : une musique incroyable ( avec des artistes comme rufus wainwright, the engine Room...) qui colle parfaitement à l'esprit de la série, ainsi qu'une intense émotion vis à vis des personnages confrontés à des situations les unes plus touchantes que les autres. Comment ne pas s'émouvoir devant une série qui en nous montrant une opération de chirurgie esthétique, nous fait ressentir une forte intensité poétique. Ne passez pas à coté, cette série dérangeante est en meme temps la plus touchante de cette année.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 360 une série très bien faite. et pour une fois je suis d'accord avec les critiques TV (c'est tellement rare que ça mérite d'être souligné). une série qui sans a su être assez originale. 6 épisodes donc il y a moins de chances d'être lassé. cependant, j'ai eu un peu de mal à suivre: qui était méchant, qui ne l'était pas? bref toute cette histoire autour d'une clef que tout le monde veut, soit pour son intérêt, soit pour la détruire. et puis la fin était un peu bizarre. mais bon, cette série se laisser suivre. personnellement j'attendait la suite avec impatience.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 363 Certainement l'une des seules bonnes séries passant en ce moment puisqu'elle n'a aucun des défauts de tous ces résidus de fosse sceptique dont on nous bombarde à longueur de journée et de soirée : on peut suivre chaque épisode séparément et l'importance accordée aux coucheries des membres de l'équipe est quasi-nulle (triple ouf, ce n'est pas un condensé des Feux de l'amour et de Hercule Poirot). Il s'agit d'une vraie série policière mais tout à fait originale nous faisant découvrir la police scientifique (avec une rigueur dont on peut parfois douter mais trop de rigueur éventerait sans doute l'intérêt des enquêtes). Tout ceci ne justifierait pas une telle note si \"Les experts\" ne possédait pas d'autres qualités rares. Les acteurs sont particulièrement bons et quel plaisir de retrouver William Petersen. L'équipe est plus attachante que celle des experts Miami. C'est aussi une des rares séries à ne pas être montée comme un kaléidoscope tourné à la vitesse d'un TGV, bref à bénéficier d'une réalisation correcte. L'intérêt des intrigues est toujours très grand. Enfin les musiques sont généralement bien choisies. Cette série se déguste comme un verre de vin au milieu de verres de vinaigre... mais sans modération!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 365 Du sang neuf dans le monde des séries de premier ordre. Plus humain qu'il ne le dit le gentil Dexter doit faire preuve d'un grand sang-froid lorsqu'il s'adonne à ses pulsions de mort mais le fait marquant de ce personnage hors norme est sa simulation constante des émotions humaines. On entre pas dans la tête d'un serial killer mais dans celle d'un homme seul qui tant bien que mal essaye de s'intégrer à un monde qui lui est étranger. Petite remarque qui peut vous sauver la vie : bien qu'il soit en fait un gentil toutou, il est tout de même préférable de garder ses distances !\n",
-            "\n",
-            "GOLD= 0 PRED= 1 371 Une entrée en fanfare avec une superbe saison 1...mais alors quelle décrépitude depuis...c'est très très dommage!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 378 Cette série m'a surpris! Je m'attendais à quelque chose de la même trempe qu'Amour Gloire et Beauté ou Les Feux de l'Amour, mais ce n'est pas du tout ça! D'accord la situation des personnages est \"un peu\" la même, c'est à dire qu'à la base, ils vivent aisément pour la plupart! Mais la psychologie de certains personnages et le charisme d'autres rend très bien! De plus l'histoire en général est captivante!\n",
-            "\n",
-            "GOLD= 0 PRED= 1 380 Cette série est le véhicule des idées puritaines et conservatrices de l'amérique qui offre le temps de chaque épisode, un regard moralisateur sur tous les possibles écarts de ces jeunes bourgeois de haute catégorie. On dirait JAG, les uniformes et l'action en moins.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 388 C'est une des meilleurs série pour jeune que je connaisse, pas niaise pour un sou, ne tombant pas dans la caricature, j'aimerais beaucoup qu'il la diffuse sur un chaîne^publique.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 391 Très mauvaise imitation de 'Un, dos, tres' avec des acteurs bien moins bons. L'intrigue est pâlote et ça m'étonnerait que j'en regarde plus de 5 épisodes!\n",
-            "\n",
-            "GOLD= 0 PRED= 1 396 Pour ceux qui veulent savoir, nip tuck c'est des chirurgiens, éffectuant des chirurgie, voila, vous avez vus ses trés trés original, non ?\n",
-            "\n",
-            "GOLD= 0 PRED= 1 399 Grosse déception que cette série qui promettait beaucoup. En vrai, des gags pas toujours drôle, des acteurs insupportables (surtout leur voix, c'est fait exprès ou quoi ???) et des objets... heu comment dire... qui se voudraient décalés : certains sont marrants, d'autres complètement cons et d'autres mal exploités. Pas géniale, pauvre au niveau de l'humour et desservie par le jeu d'acteur.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 401 passionnant!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 403 Une programmation initiale qui aurait pu tuer cette série dans l'oeuf dans notre pays. Mais rien ne peut tuer la qualité dit-on... CSI en est l'exemple. Fan depuis la première heure, je suis étonnée de la constance de cette série qui au bout de 7 ans maintenant, a su garder sa ligne directrice et n'est pas tombée dans le \"sopori-soap\" (i.e. les personnages finissent toujours par coucher les uns avec les autres...). Le succès fût tel, qu'elle a fait des petits (versions Miami et Manhattan) mais qui n'ont pour le moment pas réussi à atteindre sa qualité.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 404 rien d'original, deux chirurgiens éfféctuant des chirurgies esthétique. Voila vous savez tout, c'est bien vous avez vus, voila nip tuck. ha j'ai oublié, les acteurs ne sont pas trés credibles .\n",
-            "\n",
-            "GOLD= 0 PRED= 1 411 Les intrigues sont nulles, l'atrice principe aussi et les scénarios à peine croyables (je pense à la scene de la discotheque dans le 4eme épisode). Son role n'est absolument pas plausible sorte de mélange entre un scientifique et une tortue ninja on n'y croit pas une seconde! Son équipe n'est pas non plus crédible, moyenne d'age 19 ans et demi et ils utilisent des mots que la plupart des personnes n'utilisent jamais de leur vie. Boreanaz portant quand à lui très bien la deuxième partie de son nom... Cette série nous fais perdre notre temps.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 415 C'est qui notre sociopathe préféré ... DEXTER ... Cette serie est tout bonnement incroyable ... Il tue des gens et on approuve ... on a peur qu'il se fasse coincé ... detestons les gens qui le deteste ... prions pour qu'il tue le vilain flic qui risque de l'arrété ... on est du coté obscur et on le sens meme pas ... pour nous c' limit un super héro ... Dexter a reveillé le sociopathe qui someil en chacun de nous ... parie difficil mais parie tenue ... Seul défaut de cette serie ... elle n'est pas quotidienne :(\n",
-            "\n",
-            "GOLD= 1 PRED= 0 417 3 etoiles, car la série n'est pas parfaite. Je crois que c'est du au jeu d'acteur qui est parfois faible. Critique qui ne touche pas Michael C. Hall qui joue à la perfection. On voit que la série est réalisée avec soin (les décors, les dialogues...), car le grand risque était de tomber dans des lieux communs, et de traiter le thème avec banalité malgré l'originalité du scenario. D'autre part, je tiens à parler du générique et du thème de musique récurrent qui sont vraiment bien, dans le sens où le générique est juste, et le thème adéquat. Bref, c'est un grand moment de série télé, mais la prochaine saison va peut-être décevoir. Aux réalisateurs de ne pas donner dans les sentiers battus ! Comme d'habitude, je m'insurge contre les chaines françaises qui ne donnent pas dans la vo sous-titrée. Car la voix, fait partie du jeu d'acteur, et en plus il y'a certaines répliques jeux de mots, etc qui peuvent nous échapper. (Imaginons un film français doublé en anglais !) Heureusement pour Dexter que cette série est diffusée sur canal, car sur tf1 cela eut été insupportable (diffusions à minuit, hachée de pubs...)\n",
-            "\n",
-            "GOLD= 1 PRED= 0 423 Mysterieux,intrigant voire effrayant tels sont les mots qui qualifient ce Dexter. J'ai rarement eu l'occase de regarder une serie aussi passionnante depuis \"six feet under\" dans laquelle jouait deja Michael C Hall qui a le don pour bien choisir ses personnages.Il y a encore qques années il aurait été impensable de voir une série qui fait valser toute forme de morale.Bref c'est puissant et à ne manquer sous aucun pretexte !!!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 425 serie ENORME rien à dire, quand on connait pas on peut ce dire bof des chirurgiens on va voir que des opérations mais rien d'autre en ben non ceux qui disent ça je leurs conseille de regarder au moins un episode pour ce rendre compte que ce n'est pas du tout ce qu'ils croient certes il y a des opération, c'est bien normal mais il y a un paquets d'histoires et de rebondissements c'est ce qui fait de nip tuck une serie culte!!\n",
-            "\n",
-            "GOLD= 0 PRED= 1 435 Sujet niais pour serie niaise.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 438 Une série bien lourde. Un policier qui devrait penser à la retraite, il n'est plus vraiment dans le coup.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 439 Mouais... J'ai vu toute la première saison et je suis vraiment déçu. A part le pseudo politiquement incorrect, il n'y a rien. Cette série est bien faible face à 6 feet under à laquelle on la compare souvent. Psychologie des personnages très simpliste, scénario abracadabrant... 3 intrigues différentes à chaque épisode... C'est peut-être hype, mais ça ne soutient pas du tout la comparaison avec des séries aussi fines que 6 feet under ou the Sopranos.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 445 Une idée de départ intéressante, mais qui tourne rapidement en rond. Par contre Michael Hall est vraiment très impressionnant, tout comme Jennifer Carpenter qui confirme après \"L'exorcisme d'Emily Rose\".\n",
-            "\n",
-            "GOLD= 1 PRED= 0 454 quatres étoiles pour ma série policière préférée. superbes enquêtes à pratiquement tt les épisodes. Dans un épisode on demande à grissom quel est la dernière chose qu'il voudrait faire avant de mourir. \" lire une dernière fois moby dick \" la classe.\n",
-            "\n",
-            "GOLD= 1 PRED= 0 456 J'ai beaucoup aimé les 3 premiers épisodes de cette série, et je trouve bien qu'il n'y en ai que 6 ... au moins c'est clair, net et précis ! On est sûr de ne pas partir sur des bases à la 4400 !\n",
-            "\n",
-            "GOLD= 1 PRED= 0 472 Les premiers et seuls et uniques experts qui tiennent la route. A privilégier face aux Experts Manathan et que sais-je encore...\n",
-            "\n",
-            "GOLD= 0 PRED= 1 481 Bon alors la c'est une énorme déception. La façon dont sont représenté les personnage en leur donnant des caractères un peu fou s'est bien épuisé depuis Ally McBeal. Sans parlé des nombreuses affaires que ses avocats mannequins, défendent, qui sont toutes plus débiles et improbables les unes que les autres. Je le répète on est bien loin du cabinet fou d'Ally McBeal et la ou Ally innovait, Boston Legale, en fait trop et s'enfonce. Je met quand même une étoile car je suis sur qu'en VO le jeu des comédiens est excellent.\n",
-            "\n",
-            "GOLD= 0 PRED= 1 491 Les acteurs sont convaincants comme des mouches, l'histoire... Elle me rappelle une série espagnole nommée \"Un, dos, tres\"... Trop nulle, zappez de suite cette série!\n",
-            "\n",
-            "GOLD= 1 PRED= 0 494 A mourir de rire!! Une vraie bonne série comique que seuls les américains savent faire, du pur bonheur et des acteurs excellents... L'histoire d'une famille éclatée, ça colle bien à la réalité d'aujourd'hui, contrairement à ces séries puritaines complètement déphasées du style 'sept à la maison'...\n",
-            "\n",
-            "GOLD= 0 PRED= 1 502 Je suis une fan de la série Les Experts et de ses spin-off. Je trouve le principe de montrer le côté scientifique des enquêtes policières très intéressant. Les personnages sont très attachants, même si la série est axée principalement sur les enquêtes et non sur la vie des personnages. On en sait suffisamment pour les comprendre. Cependant je trouve dommage que les épisodes ne soient pas diffusés dans l'ordre... Ca enlève un peu de cachet...\n",
-            "\n",
-            "GOLD= 1 PRED= 0 505 extra! extra!! extra!!!\n",
-            "\n",
-            "GOLD= 0 PRED= 1 533 je trouve cette série géniale on se met facilement dans la peau des personnages on recent bien les émotions bref j'ador cette série. vivement la saison 2. ju\n",
-            "\n",
-            "GOLD= 1 PRED= 0 539 Je ne sais pas pourquoi, mais je suis tombée carrément sous le charme de cette série! Je suis extrêmement triste de ne pas l'avoir découverte plus tôt! Le seul point négatif que je trouve à cette série, c'est que je trouve globalement l'histoire très stéréotypée et peu originale! Mais les scénarii sont assez bien et les personnages ont leur caractère!\n",
-            "CHECK:  #Total= 549 #Errors= 100 Acc= 0.8178506375227687\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "LBe-8okB-9oc"
-      },
-      "source": [
-        "## Exercise 4: Experiment with different feature sets.\n",
-        "\n",
-        "Here, we'll just try bi-grams.\n",
-        "\n",
-        "▶▶ **TODO: write the code to vectorize the data into bigrams. Keep 'max_features = 500'. Then retrain and evaluate the classifier.**\n",
-        "* Look again at the class CountVectorizer and find the parameter that has to be changed in the constructor to get bigrams, and to limit the number of features.\n",
-        "* Use this new instance of CountVectorizer to vectorize the train and dev sets.\n",
-        "* Train and evaluate a naive bayes model with these data representation.\n",
-        "\n",
-        "We could also have tried to e.g.:\n",
-        "  * Exclude a list of stopwords (high-frequency words that are considered too general to be meaningful, such as une or le)\n",
-        "  * Experiment with n-grams with n>2 \n",
-        "  * Combine features (e.g. BOW + bi-grams)\n",
-        "  * Can you think of other features to include?"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "SkyrhwGx-jYz",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "594b7ec1-4033-416c-ee53-d8824453a281"
-      },
-      "source": [
-        "# --------------------------------------------------------\n",
-        "# TODO: Write the code to vectorize to extract bigrams\n",
-        "# --------------------------------------------------------\n",
-        "vectorizer_big = CountVectorizer( analyzer = 'word', max_features = 500, ngram_range=(2,2) )\n",
-        "\n",
-        "# --------------------------------------------------------\n",
-        "# TODO: Vectorize the train and dev sets\n",
-        "# --------------------------------------------------------\n",
-        "print(\"Vectorize TRAIN:\")\n",
-        "train_big = vectorizer_big.fit_transform( train )\n",
-        "print(train_big.shape)\n",
-        "\n",
-        "print(\"\\nVectorize DEV:\")\n",
-        "dev_big = vectorizer_big.transform( dev )\n",
-        "print(dev_big.shape)\n",
-        "\n",
-        "vocab = vectorizer_big.get_feature_names()\n",
-        "print(\"\\nVocabulary:\", vocab[:20])\n",
-        "\n",
-        "# --------------------------------------------------------\n",
-        "# TODO: Train a Naive Bayes classifier and evaluate on dev\n",
-        "# --------------------------------------------------------\n",
-        "print(\"\\nTraining classifier\")\n",
-        "classifier_big = MultinomialNB()\n",
-        "classifier_big.fit(train_big, y_train)\n",
-        "\n",
-        "# Compute the performance on the dev set\n",
-        "score = classifier_big.score( dev_big, y_dev )\n",
-        "print('BIG + NB:', score)\n"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Vectorize TRAIN:\n",
-            "(5027, 500)\n",
-            "\n",
-            "Vectorize DEV:\n",
-            "(549, 500)\n",
-            "\n",
-            "Vocabulary: ['acteurs et', 'acteurs jouent', 'acteurs ne', 'acteurs qui', 'acteurs sont', 'adore cette', 'ai jamais', 'ai pas', 'ai regardé', 'ai vu', 'ai été', 'aime pas', 'alors que', 'arrive pas', 'au bout', 'au début', 'au fil', 'au final', 'au moins', 'aujourd hui']\n",
-            "\n",
-            "Training classifier\n",
-            "BIG + NB: 0.7085610200364298\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n",
-            "  warnings.warn(msg, category=FutureWarning)\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "-rFwwod5_gXI"
-      },
-      "source": [
-        "## Exercise 5\n",
-        "\n",
-        "Experiment with different classifiers, compare:\n",
-        "* Naive Bayes \n",
-        "* MaxEnt\n",
-        "\n",
-        "▶▶ **Compare the results obtained with NB to the ones obtained with MaxEnt.**\n",
-        "% doc: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Useful imports\n",
-        "from sklearn.linear_model import LogisticRegression"
-      ],
-      "metadata": {
-        "id": "7geCF-2NI1t7"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "kHrZ3vI-_9zE",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "89a9d3d2-6fba-4441-82ec-657ebdff0b3f"
-      },
-      "source": [
-        "# --------------------------------------------------------\n",
-        "# TODO: Train a MaxEnt classifier and evaluate on dev, using the best features\n",
-        "# --------------------------------------------------------\n",
-        "\n",
-        "# Train a model with MaxEnt\n",
-        "\n",
-        "#-- BOW\n",
-        "classifier_lr = LogisticRegression()\n",
-        "# Compute the performance on the dev set\n",
-        "classifier_lr.fit( train_bow, y_train )\n",
-        "\n",
-        "# Compute the performance on the dev set\n",
-        "score = classifier_lr.score( dev_bow, y_dev)\n",
-        "print('BOW + LR:', score)\n",
-        "\n",
-        "#-- Bigrams\n",
-        "classifier_lr = LogisticRegression()\n",
-        "# Compute the performance on the dev set\n",
-        "classifier_lr.fit( train_big, y_train )\n",
-        "\n",
-        "# Compute the performance on the dev set\n",
-        "score = classifier_lr.score( dev_big, y_dev)\n",
-        "print('BIG + LR:', score)\n"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "BOW + LR: 0.8123861566484517\n",
-            "BIG + LR: 0.7158469945355191\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarning: lbfgs failed to converge (status=1):\n",
-            "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n",
-            "\n",
-            "Increase the number of iterations (max_iter) or scale the data as shown in:\n",
-            "    https://scikit-learn.org/stable/modules/preprocessing.html\n",
-            "Please also refer to the documentation for alternative solver options:\n",
-            "    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n",
-            "  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "▶▶ **Try again with bigrams but without the limitation on the number of features. What do you conclude?**"
-      ],
-      "metadata": {
-        "id": "rz3K8eWYKSKK"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "\n",
-        "# --------------------------------------------------------\n",
-        "# TODO: Write the code to vectorize to extract bigrams\n",
-        "# --------------------------------------------------------\n",
-        "vectorizer_big = CountVectorizer( analyzer = 'word', ngram_range=(2,2) )\n",
-        "\n",
-        "# --------------------------------------------------------\n",
-        "# TODO: Vectorize the train and dev sets\n",
-        "# --------------------------------------------------------\n",
-        "print(\"Vectorize TRAIN:\")\n",
-        "train_big = vectorizer_big.fit_transform( train )\n",
-        "print(train_big.shape)\n",
-        "\n",
-        "print(\"\\nVectorize DEV:\")\n",
-        "dev_big = vectorizer_big.transform( dev )\n",
-        "print(dev_big.shape)\n",
-        "\n",
-        "vocab = vectorizer_big.get_feature_names()\n",
-        "print(\"\\nVocabulary:\", vocab[:20])\n",
-        "\n",
-        "# --------------------------------------------------------\n",
-        "# TODO: Train a Naive Bayes classifier and evaluate on dev\n",
-        "# --------------------------------------------------------\n",
-        "print(\"\\nTraining classifier\")\n",
-        "classifier_big = MultinomialNB()\n",
-        "classifier_big.fit(train_big, y_train)\n",
-        "\n",
-        "# Compute the performance on the dev set\n",
-        "score = classifier_big.score( dev_big, y_dev )\n",
-        "print('BIG + NB:', score)\n"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "_cKIu31sKDR9",
-        "outputId": "f08a261c-6439-45df-fd42-39d35f5b3d95"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Vectorize TRAIN:\n",
-            "(5027, 138633)\n",
-            "\n",
-            "Vectorize DEV:\n",
-            "(549, 138633)\n",
-            "\n",
-            "Vocabulary: ['00 je', '000 lieux', '000 si', '000 âmes', '00000000000000000000001 de', '007 seul', '01 02', '01 2006', '01 car', '01 derniers', '02 le', '02 pour', '02x02 ai', '05 pour', '06 remarquable', '07 on', '08 12', '09 car', '10 00', '10 000']\n",
-            "\n",
-            "Training classifier\n",
-            "BIG + NB: 0.8816029143897997\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n",
-            "  warnings.warn(msg, category=FutureWarning)\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "def vectorize( train, dev, ngram=1, analyzer='word', max_features=500 ): \n",
-        "  # max_features=None for no limitation\n",
-        "  if ngram==1: #'bow':\n",
-        "    vectorizer = CountVectorizer( analyzer=analyzer, max_features=max_features )\n",
-        "  elif ngram==2: #big\n",
-        "    vectorizer = CountVectorizer( analyzer=analyzer, max_features=max_features, ngram_range=(2,2) )\n",
-        "  train_v = vectorizer.fit_transform( train )\n",
-        "  dev_v = vectorizer.transform( dev )\n",
-        "  return train_v, dev_v, vectorizer \n",
-        "\n",
-        "def classify_evaluate( train_v, y_train, dev_v, y_dev, clf_type='nb' ):\n",
-        "  if clf_type == 'nb':\n",
-        "    clf = MultinomialNB()\n",
-        "  elif clf_type == 'maxent':\n",
-        "    clf = LogisticRegression()\n",
-        "  clf.fit(train_v, y_train)\n",
-        "  # Compute the performance on the dev set\n",
-        "  score = clf.score( dev_v, y_dev )  \n",
-        "  return clf, score\n",
-        "\n",
-        "\n",
-        "# -- BOW\n",
-        "train_v, dev_v, vectorizer_bow = vectorize( train, dev, max_features=None )\n",
-        "print(train_v.shape, dev_v.shape)\n",
-        "# -- -- NB\n",
-        "clf_nb_bow, score = classify_evaluate( train_v, y_train, dev_v, y_dev )\n",
-        "print('BOW + NB:', score)\n",
-        "# -- -- LR\n",
-        "clf_lr, score = classify_evaluate( train_v, y_train, dev_v, y_dev, clf_type='maxent' )\n",
-        "print('BOW + LR:', score)\n",
-        "\n",
-        "\n",
-        "# -- BIG\n",
-        "train_v, dev_v, vectorizer_big = vectorize( train, dev, max_features=None, ngram=2 )\n",
-        "print(train_v.shape, dev_v.shape)\n",
-        "# -- -- NB\n",
-        "clf_nb, score = classify_evaluate( train_v, y_train, dev_v, y_dev )\n",
-        "print('BIG + NB:', score)\n",
-        "# -- -- LR\n",
-        "clf_lr, score = classify_evaluate( train_v, y_train, dev_v, y_dev, clf_type='maxent' )\n",
-        "print('BIG + LR:', score)"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "5tYvyvIfQHjH",
-        "outputId": "2e774b90-d75b-4c25-dc59-7b237a608675"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "(5027, 21548) (549, 21548)\n",
-            "BOW + NB: 0.8888888888888888\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarning: lbfgs failed to converge (status=1):\n",
-            "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n",
-            "\n",
-            "Increase the number of iterations (max_iter) or scale the data as shown in:\n",
-            "    https://scikit-learn.org/stable/modules/preprocessing.html\n",
-            "Please also refer to the documentation for alternative solver options:\n",
-            "    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n",
-            "  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "BOW + LR: 0.8506375227686703\n",
-            "(5027, 138633) (549, 138633)\n",
-            "BIG + NB: 0.8816029143897997\n",
-            "BIG + LR: 0.8142076502732241\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "BEMs98mR_-AG"
-      },
-      "source": [
-        "## Exercise 6: evaluation on the test set\n",
-        "\n",
-        "You’ve determined the best feature set and classification algorithm (missing: the best set of hyper-parameters). \n",
-        "\n",
-        "▶▶ **compute the performance on the test set**."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "YJYV84q6_-o0",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "b8119677-8e2e-4b56-e3c8-773da692c82c"
-      },
-      "source": [
-        "# --------------------------------------------------------\n",
-        "# TODO: Compute the final results on the TEST set\n",
-        "# --------------------------------------------------------\n",
-        "print(\"\\nVectorize TEST:\")\n",
-        "test_big = vectorizer_bow.transform( test )\n",
-        "print( test_big.shape )\n",
-        "# Compute the performance on the test set\n",
-        "score = clf_nb_bow.score( test_big, y_test )\n",
-        "print('BOW + NB:', score)"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            "Vectorize TEST:\n",
-            "(544, 21548)\n",
-            "BOW + NB: 0.9136029411764706\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "y71z29pK-jwS"
-      },
-      "source": [
-        "## Exercise 7: Intrinsic model evaluation (code given)\n",
-        "\n",
-        "Some models allow us to look at the most informative features. \n",
-        "\n",
-        "▶▶ **Examine both the top and the bottom of the list. Which features are most informative ?**"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "U4mRULuT-TQi",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "aec4e903-d9fb-424c-d019-483ac4108ee0"
-      },
-      "source": [
-        "classifier_lr_bow = LogisticRegression()\n",
-        "classifier_lr_bow.fit( train_bow, y_train )\n",
-        "\n",
-        "vocab = vectorizer_bow.get_feature_names()\n",
-        "\n",
-        "allCoefficients = [(classifier_lr_bow.coef_[0,i], vocab[i]) for i in range(len(vocab))]\n",
-        "allCoefficients.sort()\n",
-        "allCoefficients.reverse()"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarning: lbfgs failed to converge (status=1):\n",
-            "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n",
-            "\n",
-            "Increase the number of iterations (max_iter) or scale the data as shown in:\n",
-            "    https://scikit-learn.org/stable/modules/preprocessing.html\n",
-            "Please also refer to the documentation for alternative solver options:\n",
-            "    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n",
-            "  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,\n",
-            "/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n",
-            "  warnings.warn(msg, category=FutureWarning)\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "in907YQ4-oXv",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "14a0b329-421f-470f-bba0-e026638af160"
-      },
-      "source": [
-        "print(\"Top features for positive class:\")\n",
-        "print( '\\n'.join( [ f+':\\t'+str((round(w,3))) for (w,f) in allCoefficients[:50]] ) )"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Top features for positive class:\n",
-            "excellent:\t2.491\n",
-            "adore:\t2.428\n",
-            "génial:\t2.107\n",
-            "bravo:\t2.021\n",
-            "meilleure:\t1.878\n",
-            "géniale:\t1.835\n",
-            "superbe:\t1.798\n",
-            "excellente:\t1.68\n",
-            "plaisir:\t1.448\n",
-            "magnifique:\t1.403\n",
-            "espère:\t1.387\n",
-            "tres:\t1.371\n",
-            "attachants:\t1.361\n",
-            "meilleur:\t1.359\n",
-            "fantastique:\t1.329\n",
-            "super:\t1.327\n",
-            "merci:\t1.318\n",
-            "étoiles:\t1.305\n",
-            "fan:\t1.25\n",
-            "meilleures:\t1.177\n",
-            "vivement:\t1.172\n",
-            "drôle:\t1.157\n",
-            "bonne:\t1.155\n",
-            "coeur:\t1.125\n",
-            "jack:\t1.086\n",
-            "vrai:\t1.082\n",
-            "suspense:\t1.082\n",
-            "petit:\t1.039\n",
-            "culte:\t0.999\n",
-            "doute:\t0.947\n",
-            "moment:\t0.944\n",
-            "mes:\t0.893\n",
-            "bons:\t0.888\n",
-            "charme:\t0.882\n",
-            "mélange:\t0.857\n",
-            "fil:\t0.853\n",
-            "ait:\t0.853\n",
-            "revoir:\t0.846\n",
-            "ambiance:\t0.822\n",
-            "suite:\t0.792\n",
-            "certaines:\t0.774\n",
-            "rôle:\t0.76\n",
-            "grande:\t0.756\n",
-            "rebondissements:\t0.754\n",
-            "ceux:\t0.724\n",
-            "surtout:\t0.713\n",
-            "enfin:\t0.711\n",
-            "voix:\t0.706\n",
-            "simple:\t0.702\n",
-            "voir:\t0.698\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "AdrYsRJ7-rMf",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "9cdfbdd6-9581-4b37-e86c-43bb6b42c9b4"
-      },
-      "source": [
-        "print(\"Top features for negative class:\")\n",
-        "print( '\\n'.join( [ f+':'+str((round(w,3))) for (w,f) in allCoefficients[-50:]] ) )"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Top features for negative class:\n",
-            "minutes:-0.615\n",
-            "etre:-0.628\n",
-            "départ:-0.634\n",
-            "complètement:-0.65\n",
-            "pu:-0.663\n",
-            "demande:-0.664\n",
-            "sens:-0.664\n",
-            "arrive:-0.703\n",
-            "nom:-0.71\n",
-            "vont:-0.722\n",
-            "scénarios:-0.798\n",
-            "femme:-0.806\n",
-            "force:-0.819\n",
-            "maison:-0.825\n",
-            "quelle:-0.836\n",
-            "ah:-0.861\n",
-            "veut:-0.868\n",
-            "bout:-0.877\n",
-            "rien:-0.899\n",
-            "père:-0.902\n",
-            "sentiments:-0.926\n",
-            "dialogues:-0.942\n",
-            "mal:-0.967\n",
-            "ennuie:-0.98\n",
-            "manque:-0.997\n",
-            "truc:-1.046\n",
-            "chez:-1.056\n",
-            "aucun:-1.15\n",
-            "malheureusement:-1.158\n",
-            "comprends:-1.177\n",
-            "morale:-1.182\n",
-            "gros:-1.195\n",
-            "mauvais:-1.203\n",
-            "jouer:-1.212\n",
-            "feux:-1.232\n",
-            "personne:-1.25\n",
-            "image:-1.28\n",
-            "aucune:-1.36\n",
-            "pathétique:-1.368\n",
-            "déçu:-1.382\n",
-            "idée:-1.429\n",
-            "nulle:-1.633\n",
-            "nullité:-1.664\n",
-            "intérêt:-1.716\n",
-            "nul:-1.781\n",
-            "copie:-2.009\n",
-            "pire:-2.066\n",
-            "ridicule:-2.162\n",
-            "mauvaise:-2.206\n",
-            "étoile:-2.537\n"
-          ]
-        }
-      ]
-    }
-  ]
-}
\ No newline at end of file
diff --git a/notebooks/TP2_masterLiTL_2223.ipynb b/notebooks/TP2_masterLiTL_2223.ipynb
deleted file mode 100644
index d6894faa2ab094e3dec3ca9c6e1cc1339bc44239..0000000000000000000000000000000000000000
--- a/notebooks/TP2_masterLiTL_2223.ipynb
+++ /dev/null
@@ -1,1562 +0,0 @@
-{
-  "nbformat": 4,
-  "nbformat_minor": 0,
-  "metadata": {
-    "colab": {
-      "provenance": [],
-      "toc_visible": true
-    },
-    "kernelspec": {
-      "name": "python3",
-      "display_name": "Python 3"
-    },
-    "language_info": {
-      "name": "python"
-    },
-    "accelerator": "GPU",
-    "gpuClass": "standard"
-  },
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "XCHhtzOXQ2po"
-      },
-      "source": [
-        "# TP 2: Linear Algebra and Feedforward neural network\n",
-        "Master LiTL - 2022-2023\n",
-        "\n",
-        "## Requirements\n",
-        "In this section, we will go through some code to learn how to manipulate matrices and tensors, and we will take a look at some PyTorch code that allows to define, train and evaluate a simple neural network. \n",
-        "The modules used are the the same as in the previous session, *Numpy* and *Scikit*, with the addition of *PyTorch*. They are all already available within colab. \n",
-        "\n",
-        "## Part 1: Linear Algebra\n",
-        "\n",
-        "In this section, we will go through some python code to deal with matrices and also tensors, the data structures used in PyTorch.\n",
-        "\n",
-        "Sources:    \n",
-        "* Linear Algebra explained in the context of deep learning: https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fca1494\n",
-        "* PyTorch tutorial: https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor-tutorial-py\n",
-        "* PyTorch doc on tensors: https://pytorch.org/docs/stable/torch.html\n"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Useful imports\n",
-        "import numpy as np\n",
-        "import torch"
-      ],
-      "metadata": {
-        "id": "2t2sdvtdsrjO"
-      },
-      "execution_count": 10,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "G3Hk9fJuBVxk"
-      },
-      "source": [
-        "## 1.1 Numpy arrays\n",
-        "\n",
-        "NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type\n"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1.1 Numpy arrays\n",
-        "\n",
-        "▶▶ **Look at the code below and check that you understand each line:**\n",
-        "* We define a numpy array (i.e. a vector) **x** from a list\n",
-        "* We define a numpy array of shape 3x2 (i.e. a matrix) initialized with random numbers, called **W**\n",
-        "* We define a scalar, **b**\n",
-        "* Finally, with all these elements, we can compute **h = W.x + b**"
-      ],
-      "metadata": {
-        "id": "5hfuybaGeOX_"
-      }
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "W2IvCK4gPUAv",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "93e683f7-5f46-46f2-c3e1-9f9cab85f19f"
-      },
-      "source": [
-        "x = np.array([1,2])\n",
-        "print(\"Our input vector with 2 elements:\\n\", x)\n",
-        "print( \"x shape:\", x.shape)                  \n",
-        "\n",
-        "print( \"x data type\", x.dtype)\n",
-        "# Give a list of elements\n",
-        "# a = np.array(1,2,3,4)    # WRONG\n",
-        "# a = np.array([1,2,3,4])  # RIGHT\n",
-        "\n",
-        "# Generate a random matrix (with a generator and a seed, for reproducible results)\n",
-        "rng = np.random.default_rng(seed=42)\n",
-        "W = rng.random((3, 2))\n",
-        "print(\"\\n Our weight matrix, of shape 3x2:\\n\", W)\n",
-        "print( \"W shape:\", W.shape)\n",
-        "print( \"W data type\", W.dtype)\n",
-        "\n",
-        "# Bias, a scalar\n",
-        "b = 1\n",
-        "\n",
-        "# Now, try to multiply\n",
-        "h = W.dot(x) + b\n",
-        "print(\"\\n Our h layer:\\n\", h)\n",
-        "print( \"h shape:\", h.shape)\n",
-        "print( \"h data type\", h.dtype)"
-      ],
-      "execution_count": 11,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Our input vector with 2 elements:\n",
-            " [1 2]\n",
-            "x shape: (2,)\n",
-            "x data type int64\n",
-            "\n",
-            " Our weight matrix, of shape 3x2:\n",
-            " [[0.77395605 0.43887844]\n",
-            " [0.85859792 0.69736803]\n",
-            " [0.09417735 0.97562235]]\n",
-            "W shape: (3, 2)\n",
-            "W data type float64\n",
-            "\n",
-            " Our h layer:\n",
-            " [2.65171293 3.25333398 3.04542205]\n",
-            "h shape: (3,)\n",
-            "h data type float64\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1.2 Operations on arrays\n",
-        "\n",
-        "▶▶ **Look at the code below and check that you understand each line:**\n",
-        "* How to reshape a matrix i.e. change its dimensions\n",
-        "* How to compute the transpose of a vector / matrix"
-      ],
-      "metadata": {
-        "id": "L18_HL5qfvFO"
-      }
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "hKzJk0aaPUv4",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "18ed343f-e231-4418-876b-0807617a599a"
-      },
-      "source": [
-        "# Useful transformations\n",
-        "h = h.reshape((3,1))\n",
-        "print(\"\\n h reshape:\\n\", h)\n",
-        "print( \"h shape:\", h.shape)\n",
-        "\n",
-        "h1 = np.transpose(h)\n",
-        "print(\"\\n h transpose:\\n\", h1)\n",
-        "print( \"h shape:\", h1.shape)\n",
-        "\n",
-        "h2 = h.T\n",
-        "print(\"\\n h transpose:\\n\", h2)\n",
-        "print( \"h shape:\", h2.shape)\n",
-        "\n",
-        "Wt = W.T\n",
-        "print(\"\\nW:\\n\", W)\n",
-        "print(\"\\nW.T:\\n\", Wt)"
-      ],
-      "execution_count": 12,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            " h reshape:\n",
-            " [[2.65171293]\n",
-            " [3.25333398]\n",
-            " [3.04542205]]\n",
-            "h shape: (3, 1)\n",
-            "\n",
-            " h transpose:\n",
-            " [[2.65171293 3.25333398 3.04542205]]\n",
-            "h shape: (1, 3)\n",
-            "\n",
-            " h transpose:\n",
-            " [[2.65171293 3.25333398 3.04542205]]\n",
-            "h shape: (1, 3)\n",
-            "\n",
-            "W:\n",
-            " [[0.77395605 0.43887844]\n",
-            " [0.85859792 0.69736803]\n",
-            " [0.09417735 0.97562235]]\n",
-            "\n",
-            "W.T:\n",
-            " [[0.77395605 0.85859792 0.09417735]\n",
-            " [0.43887844 0.69736803 0.97562235]]\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "▶▶ **A last note: creating an identity matrix**"
-      ],
-      "metadata": {
-        "id": "O_p_oGvRhnkF"
-      }
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "KpIkzqN6PaJR",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "f8a8a89a-41ed-478e-8926-74395695ca65"
-      },
-      "source": [
-        "## numpy code to create identity matrix\n",
-        "a = np.eye(4)\n",
-        "print(a)"
-      ],
-      "execution_count": 13,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "[[1. 0. 0. 0.]\n",
-            " [0. 1. 0. 0.]\n",
-            " [0. 0. 1. 0.]\n",
-            " [0. 0. 0. 1.]]\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "Il-lX6VCA7gk"
-      },
-      "source": [
-        "## 1.2 Tensors\n",
-        "\n",
-        "For neural networks implementation in PyTorch, we use tensors: \n",
-        "* a specialized data structure that are very similar to arrays and matrices\n",
-        "* used to encode the inputs and outputs of a model, as well as the model’s parameters\n",
-        "* similar to NumPy’s ndarrays, except that tensors can run on GPUs or other specialized hardware to accelerate computing"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "hPqpGGZPCRT-"
-      },
-      "source": [
-        "### 1.2.1 Tensor initialization\n",
-        "\n",
-        "▶▶ **Look at the code below and check that you understand each line:**\n",
-        "* We define a PyTorch tensor (i.e. a matrix) **x_data** from a list of list\n",
-        "* We define a PyTorch tensor (i.e. a matrix) **x_np** from a numpy array\n",
-        "* How to initialize an random tensor, an one tensor and a zero tensor\n",
-        "* Finally, we define a PyTorch tensor (i.e. a matrix) from another tensor:\n",
-        "  * **x_ones**: from the identity tensor\n",
-        "  * **x_rand**: from a tensor initialized with random values"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "HaEdsMG6BAh0",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "8be5a975-8f88-4555-a247-a96c23aa7f94"
-      },
-      "source": [
-        "# Tensor initialization\n",
-        "\n",
-        "## from data. The data type is automatically inferred.\n",
-        "data = [[1, 2], [3, 4]]\n",
-        "x_data = torch.tensor(data)\n",
-        "print( \"x_data\", x_data)\n",
-        "print( \"data type x_data=\", x_data.dtype)"
-      ],
-      "execution_count": 14,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "x_data tensor([[1, 2],\n",
-            "        [3, 4]])\n",
-            "data type x_data= torch.int64\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "## from a numpy array\n",
-        "np_array = np.array(data)\n",
-        "x_np = torch.from_numpy(np_array)\n",
-        "print(\"\\nx_np\", x_np)\n",
-        "print( \"data type, np_array=\", np_array.dtype, \"x_data=\", x_np.dtype)"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "zk8cQYUZwGJn",
-        "outputId": "da19b701-11d9-47bc-c02a-ddfcff3a9d33"
-      },
-      "execution_count": 15,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            "x_np tensor([[1, 2],\n",
-            "        [3, 4]])\n",
-            "data type, np_array= int64 x_data= torch.int64\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "## with random values / ones / zeros\n",
-        "shape = (2, 3,) # shape is a tuple of tensor dimensions\n",
-        "rand_tensor = torch.rand(shape)\n",
-        "ones_tensor = torch.ones(shape)\n",
-        "zeros_tensor = torch.zeros(shape)\n",
-        "\n",
-        "print(f\"Random Tensor: \\n {rand_tensor} \\n\")\n",
-        "print(f\"Ones Tensor: \\n {ones_tensor} \\n\")\n",
-        "print(f\"Zeros Tensor: \\n {zeros_tensor}\")"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "tgacq0XuwIM7",
-        "outputId": "c5c9f8eb-d6ad-4b6d-8efc-e2a78335ff79"
-      },
-      "execution_count": 16,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Random Tensor: \n",
-            " tensor([[0.0832, 0.3685, 0.7852],\n",
-            "        [0.3742, 0.1828, 0.8512]]) \n",
-            "\n",
-            "Ones Tensor: \n",
-            " tensor([[1., 1., 1.],\n",
-            "        [1., 1., 1.]]) \n",
-            "\n",
-            "Zeros Tensor: \n",
-            " tensor([[0., 0., 0.],\n",
-            "        [0., 0., 0.]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "## from another tensor\n",
-        "x_ones = torch.ones_like(x_data) # retains the properties of x_data\n",
-        "print(f\"\\nFrom Ones Tensor: \\n {x_ones} \\n\")\n",
-        "\n",
-        "x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data\n",
-        "print(f\"From Random Tensor: \\n {x_rand} \\n\")"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "f1Ffpc6dwJ4l",
-        "outputId": "bac75dda-5f58-437e-d561-ad13dd5a594a"
-      },
-      "execution_count": 17,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            "From Ones Tensor: \n",
-            " tensor([[1, 1],\n",
-            "        [1, 1]]) \n",
-            "\n",
-            "From Random Tensor: \n",
-            " tensor([[0.6470, 0.4097],\n",
-            "        [0.1857, 0.6956]]) \n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "oFDVEZcBCWF_"
-      },
-      "source": [
-        "### 1.2.2 Tensor attributes\n",
-        "\n",
-        "▶▶ **A tensor has different attributes, print the values for:**\n",
-        "* shape of the tensor\n",
-        "* type of the data stored \n",
-        "* device on which data are stored\n",
-        "\n",
-        "Look at the doc here: https://www.tensorflow.org/api_docs/python/tf/Tensor#shape"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "kS4TtR9DCJcq",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "58a8b84c-c034-4f41-d267-cb55e89cc1c8"
-      },
-      "source": [
-        "# Tensor attributes\n",
-        "tensor = torch.rand(3, 4)\n",
-        "\n",
-        "print(f\"Shape of tensor: {tensor.shape}\")\n",
-        "print(f\"Datatype of tensor: {tensor.dtype}\")\n",
-        "print(f\"Device tensor is stored on: {tensor.device}\")"
-      ],
-      "execution_count": 18,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Shape of tensor: torch.Size([3, 4])\n",
-            "Datatype of tensor: torch.float32\n",
-            "Device tensor is stored on: cpu\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "tu8RM6O7CaKO"
-      },
-      "source": [
-        "### 1.2.3 Move to GPU\n",
-        "\n",
-        "The code below is used to:\n",
-        "* check on which device the code is running, 'cuda' stands for GPU. If not GPU is found that we use CPU.\n",
-        "\n",
-        "\n",
-        "▶▶ **Check and move to GPU:**\n",
-        "* Run the code, it should say 'no cpu'\n",
-        "* Move to GPU: in Colab, allocate a GPU by going to Edit > Notebook Settings (Modifier > Paramètres du notebook)\n",
-        "  * you'll see an indicator of connexion in the uppper right part of the screen\n",
-        "* Run the code from 1.2 again and the cell below (you can use the function Run / Run before or Exécution / Exécuter avant), you'll need to do all the imports again. You see the difference?"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "nT7n30VpCOzF",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "60fe8c2f-cf57-4944-f92d-631d448a4642"
-      },
-      "source": [
-        "# We move our tensor to the GPU if available\n",
-        "if torch.cuda.is_available():\n",
-        "  tensor = tensor.to('cuda')\n",
-        "  print(f\"Device tensor is stored on: {tensor.device}\")\n",
-        "else:\n",
-        "  print(\"no gpu\")\n",
-        "\n",
-        "print(tensor)"
-      ],
-      "execution_count": 19,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Device tensor is stored on: cuda:0\n",
-            "tensor([[0.7117, 0.8822, 0.6255, 0.6968],\n",
-            "        [0.7856, 0.1178, 0.7001, 0.6381],\n",
-            "        [0.2431, 0.9820, 0.0646, 0.1509]], device='cuda:0')\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "VdqHVRkHCcgq"
-      },
-      "source": [
-        "Below, run after moving to GPU."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "nyZPKBvOGsyf",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "7b338a6f-cf14-4759-aae4-604760c04238"
-      },
-      "source": [
-        "# We move our tensor to the GPU if available\n",
-        "if torch.cuda.is_available():\n",
-        "  tensor = tensor.to('cuda')\n",
-        "  print(f\"Device tensor is stored on: {tensor.device}\")\n",
-        "else:\n",
-        "  print(\"no gpu\")\n",
-        "\n",
-        "print(tensor)"
-      ],
-      "execution_count": 20,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Device tensor is stored on: cuda:0\n",
-            "tensor([[0.7117, 0.8822, 0.6255, 0.6968],\n",
-            "        [0.7856, 0.1178, 0.7001, 0.6381],\n",
-            "        [0.2431, 0.9820, 0.0646, 0.1509]], device='cuda:0')\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "8um7SDWGCp8o"
-      },
-      "source": [
-        "### 1.2.4 Tensor operations\n",
-        "\n",
-        "Doc: https://pytorch.org/docs/stable/torch.html\n",
-        "\n",
-        "▶▶ **Slicing operations:**\n",
-        "* Below we use slicing operations to modify tensors"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Tensor operations: similar to numpy arrays\n",
-        "tensor = torch.ones(4, 4)\n",
-        "print(tensor)"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "BgF-ypEurJCk",
-        "outputId": "ceeb7f21-39e5-4aa0-c816-f021df5a4fd6"
-      },
-      "execution_count": 21,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "tensor([[1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "7yLviqmYC3sZ",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "abbfdd22-226d-4dad-cd45-42c629996576"
-      },
-      "source": [
-        "# ---------------------------------------------------------\n",
-        "# TODO: What do you expect?\n",
-        "# ---------------------------------------------------------\n",
-        "## Slicing\n",
-        "print(\"\\nSlicing\")\n",
-        "tensor[:,1] = 0 \n",
-        "print(tensor)\n",
-        "\n",
-        "# ---------------------------------------------------------\n",
-        "# TODO: Change the first column with the value in l\n",
-        "# ---------------------------------------------------------\n",
-        "l =[1.,2.,3.,4.] \n",
-        "l = torch.tensor( l )\n",
-        "tensor[:, 0] = l\n",
-        "print(tensor)"
-      ],
-      "execution_count": 22,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            "Slicing\n",
-            "tensor([[1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.]])\n",
-            "tensor([[1., 0., 1., 1.],\n",
-            "        [2., 0., 1., 1.],\n",
-            "        [3., 0., 1., 1.],\n",
-            "        [4., 0., 1., 1.]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "▶▶ **Other operations:**\n",
-        "* Check the code below that performs:\n",
-        "  * tensor concatenation\n",
-        "  * tensor multiplication"
-      ],
-      "metadata": {
-        "id": "uCZ2AWPmrW6q"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "## Concatenation\n",
-        "print(\"\\nConcatenate tensor 3 times\")\n",
-        "print('Original tensor:\\n', tensor, '\\n')\n",
-        "\n",
-        "t1 = torch.cat([tensor, tensor, tensor], dim=1)\n",
-        "print(t1)"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "t_AkQSnarNX8",
-        "outputId": "4ced19e6-7f5f-4f81-c1c9-87eafb05063b"
-      },
-      "execution_count": 31,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            "Concatenate tensor 3 times\n",
-            "Original tensor:\n",
-            " tensor([[1., 0., 1., 1.],\n",
-            "        [2., 0., 1., 1.],\n",
-            "        [3., 0., 1., 1.],\n",
-            "        [4., 0., 1., 1.]]) \n",
-            "\n",
-            "tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],\n",
-            "        [2., 0., 1., 1., 2., 0., 1., 1., 2., 0., 1., 1.],\n",
-            "        [3., 0., 1., 1., 3., 0., 1., 1., 3., 0., 1., 1.],\n",
-            "        [4., 0., 1., 1., 4., 0., 1., 1., 4., 0., 1., 1.]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "## Multiplication: element_wise\n",
-        "print(\"\\nMultiply tensor by itself, elementwise\")\n",
-        "print('Original tensor:\\n', tensor, '\\n')\n",
-        "\n",
-        "# This computes the element-wise product\n",
-        "t2 = tensor.mul(tensor)\n",
-        "print(f\"tensor.mul(tensor) \\n {t2} \\n\")\n",
-        "\n",
-        "# Alternative syntax:\n",
-        "t3 = tensor * tensor\n",
-        "print(f\"tensor * tensor \\n {t3}\")"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "QT_J5emmwd9H",
-        "outputId": "a4fb788a-b9d4-4162-fe5d-e2d79cef1763"
-      },
-      "execution_count": 30,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            "Multiply tensor by itself\n",
-            "Original tensor:\n",
-            " tensor([[1., 0., 1., 1.],\n",
-            "        [2., 0., 1., 1.],\n",
-            "        [3., 0., 1., 1.],\n",
-            "        [4., 0., 1., 1.]]) \n",
-            "\n",
-            "tensor.mul(tensor) \n",
-            " tensor([[ 1.,  0.,  1.,  1.],\n",
-            "        [ 4.,  0.,  1.,  1.],\n",
-            "        [ 9.,  0.,  1.,  1.],\n",
-            "        [16.,  0.,  1.,  1.]]) \n",
-            "\n",
-            "tensor * tensor \n",
-            " tensor([[ 1.,  0.,  1.,  1.],\n",
-            "        [ 4.,  0.,  1.,  1.],\n",
-            "        [ 9.,  0.,  1.,  1.],\n",
-            "        [16.,  0.,  1.,  1.]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "## Matrix multiplication\n",
-        "print(\"\\nMultiply tensor by itself\")\n",
-        "print('Original tensor:\\n', tensor, '\\n')\n",
-        "\n",
-        "t4 = tensor.matmul(tensor.T)\n",
-        "print(f\"tensor.matmul(tensor.T) \\n {t4} \\n\")\n",
-        "# Alternative syntax:\n",
-        "t5 = tensor @ tensor.T\n",
-        "print(f\"tensor @ tensor.T \\n {t5}\")"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "PQrelqWYwfsX",
-        "outputId": "84fb8345-1daf-40a3-8e21-e6342db5742b"
-      },
-      "execution_count": 32,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            "Multiply tensor by itself\n",
-            "Original tensor:\n",
-            " tensor([[1., 0., 1., 1.],\n",
-            "        [2., 0., 1., 1.],\n",
-            "        [3., 0., 1., 1.],\n",
-            "        [4., 0., 1., 1.]]) \n",
-            "\n",
-            "tensor.matmul(tensor.T) \n",
-            " tensor([[ 3.,  4.,  5.,  6.],\n",
-            "        [ 4.,  6.,  8., 10.],\n",
-            "        [ 5.,  8., 11., 14.],\n",
-            "        [ 6., 10., 14., 18.]]) \n",
-            "\n",
-            "tensor @ tensor.T \n",
-            " tensor([[ 3.,  4.,  5.,  6.],\n",
-            "        [ 4.,  6.,  8., 10.],\n",
-            "        [ 5.,  8., 11., 14.],\n",
-            "        [ 6., 10., 14., 18.]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "5ulTT2k_Hs97"
-      },
-      "source": [
-        "### 1.2.5 Tensor operations on GPU\n",
-        "\n",
-        "The tensor is stored on CPU by default.\n",
-        "\n",
-        "▶▶ **Initialize the tensor using *device='cuda'*: where are stored t1, ..., t5?**"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "atwxGd1_IdxI",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "0fda45ea-e1fe-4bb3-c500-c4fda76379ce"
-      },
-      "source": [
-        "# Tensor operations: similar to numpy arrays\n",
-        "\n",
-        "tensor = torch.ones(4, 4, device='cuda')\n",
-        "print(tensor)\n",
-        "\n",
-        "# ---------------------------------------------------------\n",
-        "# TODO: What do you expect?\n",
-        "# ---------------------------------------------------------\n",
-        "## Slicing\n",
-        "print(\"\\nSlicing\")\n",
-        "tensor[:,1] = 0 \n",
-        "print(tensor)\n",
-        "\n",
-        "# ---------------------------------------------------------\n",
-        "# TODO: Change the first column with the value in l\n",
-        "# ---------------------------------------------------------\n",
-        "l =[1.,2.,3.,4.] \n",
-        "l = torch.tensor( l )\n",
-        "tensor[:, 0] = l\n",
-        "print(tensor)\n",
-        "\n",
-        "\n",
-        "## Concatenation\n",
-        "print(\"\\nConcatenate\")\n",
-        "t1 = torch.cat([tensor, tensor, tensor], dim=1)\n",
-        "print(t1)\n",
-        "\n",
-        "## Multiplication: element_wise\n",
-        "print(\"\\nMultiply\")\n",
-        "# This computes the element-wise product\n",
-        "t2 = tensor.mul(tensor)\n",
-        "print(f\"tensor.mul(tensor) \\n {t2} \\n\")\n",
-        "# Alternative syntax:\n",
-        "t3 = tensor * tensor\n",
-        "print(f\"tensor * tensor \\n {t3}\")\n",
-        "\n",
-        "## Matrix multiplication\n",
-        "t4 = tensor.matmul(tensor.T)\n",
-        "print(f\"tensor.matmul(tensor.T) \\n {t4} \\n\")\n",
-        "# Alternative syntax:\n",
-        "t5 = tensor @ tensor.T\n",
-        "print(f\"tensor @ tensor.T \\n {t5}\")"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "tensor([[1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.]], device='cuda:0')\n",
-            "\n",
-            "Slicing\n",
-            "tensor([[1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.]], device='cuda:0')\n",
-            "tensor([[1., 0., 1., 1.],\n",
-            "        [2., 0., 1., 1.],\n",
-            "        [3., 0., 1., 1.],\n",
-            "        [4., 0., 1., 1.]], device='cuda:0')\n",
-            "\n",
-            "Concatenate\n",
-            "tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],\n",
-            "        [2., 0., 1., 1., 2., 0., 1., 1., 2., 0., 1., 1.],\n",
-            "        [3., 0., 1., 1., 3., 0., 1., 1., 3., 0., 1., 1.],\n",
-            "        [4., 0., 1., 1., 4., 0., 1., 1., 4., 0., 1., 1.]], device='cuda:0')\n",
-            "\n",
-            "Multiply\n",
-            "tensor.mul(tensor) \n",
-            " tensor([[ 1.,  0.,  1.,  1.],\n",
-            "        [ 4.,  0.,  1.,  1.],\n",
-            "        [ 9.,  0.,  1.,  1.],\n",
-            "        [16.,  0.,  1.,  1.]], device='cuda:0') \n",
-            "\n",
-            "tensor * tensor \n",
-            " tensor([[ 1.,  0.,  1.,  1.],\n",
-            "        [ 4.,  0.,  1.,  1.],\n",
-            "        [ 9.,  0.,  1.,  1.],\n",
-            "        [16.,  0.,  1.,  1.]], device='cuda:0')\n",
-            "tensor.matmul(tensor.T) \n",
-            " tensor([[ 3.,  4.,  5.,  6.],\n",
-            "        [ 4.,  6.,  8., 10.],\n",
-            "        [ 5.,  8., 11., 14.],\n",
-            "        [ 6., 10., 14., 18.]], device='cuda:0') \n",
-            "\n",
-            "tensor @ tensor.T \n",
-            " tensor([[ 3.,  4.,  5.,  6.],\n",
-            "        [ 4.,  6.,  8., 10.],\n",
-            "        [ 5.,  8., 11., 14.],\n",
-            "        [ 6., 10., 14., 18.]], device='cuda:0')\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "UxW1jtX-GOfd"
-      },
-      "source": [
-        "### 1.2.5 Final exercise: compute *h*\n",
-        "\n",
-        "▶▶ **Compute the tensor h, using the same data for x and W as at the beginning of this TP.**\n",
-        "\n",
-        "* Define x as a tensor, print x, its shape and dtype\n",
-        "* Define W as a tensor, print W, its shape and dtype\n",
-        "* bias is style a scalar, of type float\n",
-        "* Finally compute h, print h and its dtype\n",
-        "\n",
-        "```\n",
-        "x = np.array([1,2])\n",
-        "rng = np.random.default_rng(seed=42)\n",
-        "W = rng.random((3, 2))\n",
-        "```\n",
-        "\n",
-        "Important note: when multiplying matrices, we need to have the same data type, e.g. not **x** with *int* and **W** with *float*.\n",
-        "So you have to say that the vector **x** has the data type *float*. Two ways:\n",
-        "* from the initialization: **x = torch.tensor([1,2], dtype=float)**\n",
-        "* from any tensor: **x = x.to( torch.float64)** (here using only **float** would give *float32*, not what we want) "
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "lwIanFgWD_YJ"
-      },
-      "source": [
-        "# --------------------------------------------------------\n",
-        "# TODO: Write the code to compute h = W.x+b\n",
-        "# --------------------------------------------------------\n",
-        "\n",
-        "# Define x\n",
-        "# ...\n",
-        "\n",
-        "\n",
-        "# Define W: generate a random matrix (with e generator, for reproducible results)\n",
-        "# ...\n",
-        "\n",
-        "# Bias, a scalar\n",
-        "# ...\n",
-        "\n",
-        "# Now, try to multiply\n",
-        "# ..."
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "na_tJOnfGDIz"
-      },
-      "source": [
-        "### Last minor note"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "lql9bH39G4Mw"
-      },
-      "source": [
-        "## Operations that have a _ suffix are in-place. For example: x.copy_(y), x.t_(), will change x.\n",
-        "print(tensor, \"\\n\")\n",
-        "tensor.add_(5)\n",
-        "print(tensor)"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "DGmy-dtuOtiw"
-      },
-      "source": [
-        "# Part 2: Feedforward Neural Network\n",
-        "\n",
-        "In this practical session, we will explore a simple neural network architecture for NLP applications ; specifically, we will train a feedforward neural network for sentiment analysis, using the same dataset of reviews as in the previous session.  We will also keep the bag of words representation. \n",
-        "\n",
-        "\n",
-        "Sources:\n",
-        "* This TP is inspired by a TP by Tim van de Cruys\n",
-        "* https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/\n",
-        "* https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html\n",
-        "* https://medium.com/swlh/sentiment-classification-using-feed-forward-neural-network-in-pytorch-655811a0913f \n",
-        "* https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Useful imports\n",
-        "import pandas as pd\n",
-        "import numpy as np\n",
-        "import re\n",
-        "import sklearn\n",
-        "\n",
-        "from sklearn.feature_extraction.text import CountVectorizer\n",
-        "\n",
-        "import torch\n",
-        "from torch.utils.data import TensorDataset, DataLoader\n",
-        "import torch.nn as nn"
-      ],
-      "metadata": {
-        "id": "TKukE_hAAn_2"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Path to data\n",
-        "train_path = \"allocine_train.tsv\"\n",
-        "dev_path = \"allocine_dev.tsv\""
-      ],
-      "metadata": {
-        "id": "iUxRwO37Ap8h"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "wdSyhJqpVczO"
-      },
-      "source": [
-        "## 2.1 Read and load the data\n",
-        "\n",
-        "Here we will keep the bag of word representation, as in the previous session. \n",
-        "\n",
-        "You can find different ways of dealing with the input data in PyTorch. The simplest solution is to use the DataLoader from PyTorch:    \n",
-        "* the doc here https://pytorch.org/docs/stable/data.html and here https://pytorch.org/tutorials/beginner/basics/data_tutorial.html\n",
-        "* an example of use, with numpy array: https://www.kaggle.com/arunmohan003/sentiment-analysis-using-lstm-pytorch\n",
-        "\n",
-        "\n",
-        "\n",
-        "\n",
-        "\n",
-        "\n",
-        "You can also find many datasets for text ready to load in pytorch on: https://pytorch.org/text/stable/datasets.html"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "CxRbwziSV_BY"
-      },
-      "source": [
-        "#### 2.1.1 Build BoW vectors (code given)\n",
-        "\n",
-        "The code below allows to use scikit methods you already know to generate the bag of word representation."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "SoVJ18s_oxkn"
-      },
-      "source": [
-        "# This will be the size of the vectors reprensenting the input\n",
-        "MAX_FEATURES = 5000 \n",
-        "\n",
-        "def vectorize_data( data_path, vectorizer=None ):\n",
-        "  data_df = pd.read_csv( data_path, header=0,\n",
-        "                    delimiter=\"\\t\", quoting=3)\n",
-        "  # If an existing vectorizer is not given, initialize the \"CountVectorizer\" \n",
-        "  # object, which is scikit-learn's bag of words tool.  \n",
-        "  if not vectorizer:\n",
-        "    vectorizer = CountVectorizer(\n",
-        "        analyzer = \"word\",\n",
-        "        max_features = MAX_FEATURES\n",
-        "    ) \n",
-        "    vectorizer.fit(data_df[\"review\"])\n",
-        "  # Then transform the data\n",
-        "  x_data = vectorizer.transform(data_df[\"review\"])\n",
-        "  # Vectorize also the labels\n",
-        "  y_data = np.asarray(data_df[\"sentiment\"])\n",
-        "  return x_data, y_data, vectorizer \n",
-        "\n",
-        "x_train, y_train, vectorizer = vectorize_data( train_path )\n",
-        "x_dev, y_dev, _ = vectorize_data( dev_path, vectorizer )\n",
-        "\n",
-        "# Count_Vectorizer returns sparse arrays (for computational reasons)\n",
-        "# but PyTorch will expect dense input:\n",
-        "x_train = x_train.toarray()\n",
-        "x_dev = x_dev.toarray()\n",
-        "\n",
-        "print(\"Train:\", x_train.shape)\n",
-        "print(\"Dev:\", x_dev.shape)"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "Mt00MaMmW1_P"
-      },
-      "source": [
-        "#### 2.1.2 Transform to tensors\n",
-        "\n",
-        "▶▶ **Create a dataset object within the PyTorch library:**\n",
-        "\n",
-        "Now we need to transform our data to tensors, in order to provide them as input to PyTorch. Follow the following steps:\n",
-        "\n",
-        "* 1- **torch.from_numpy( A_NUMPY_ARRAY )**: transform your array into a tensor\n",
-        "  * Note: you need to transform tensor type to float, with **MY_TENSOR.to(torch.float)** (or cryptic error saying it was expecting long...).\n",
-        "  * Print the shape of the tensor for your training data.\n",
-        "* 2- **torch.utils.data.TensorDataset(INPUT_TENSOR, TARGET_TENSOR)**: Dataset wrapping tensors. In particular: giv\n",
-        "  * Take tensors as inputs, \n",
-        "  \n",
-        "* 3- **torch.utils.data.DataLoader**: many arguments in the constructor:\n",
-        "  * In particular, *dataset* of the type TensorDataset can be used\n",
-        "  * We'd rather shuffling our data in general, can be done here by changing the value of one argument\n",
-        "  * Note also the possibility to change the batch_size, we'll talk about it later\n",
-        "\n",
-        "```\n",
-        "DataLoader(\n",
-        "    dataset,\n",
-        "    batch_size=1,\n",
-        "    shuffle=False,\n",
-        "    num_workers=0,\n",
-        "    collate_fn=None,\n",
-        "    pin_memory=False,\n",
-        " )\n",
-        " ```\n"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "JMLPp3vnoxnG"
-      },
-      "source": [
-        "# create Tensor dataset, i.e. torch.from_numpy( A_NUMPY_ARRAY ). \n",
-        "# for x\n",
-        "# ...\n",
-        "\n",
-        "# for y\n",
-        "# ...\n",
-        "\n",
-        "# Print x shape\n",
-        "# ...\n",
-        "\n",
-        "# TensorDataset(INPUT_TENSOR, TARGET_TENSOR)\n",
-        "# ...\n",
-        "\n",
-        "# DataLoader( dataset, ...): \n",
-        "## - make sure to SHUFFLE your data\n",
-        "## - use batch_size = 1 (i.e. no batch)\n",
-        "# ..."
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "zOeZCY09o6CV"
-      },
-      "source": [
-        "## 2.2 Neural Network\n",
-        "\n",
-        "Now we can build our learning model.\n",
-        "\n",
-        "For this TP, we're going to walk through the code of a **simple feedforward neural network, with one hidden layer**.\n",
-        "\n",
-        "This network takes as input bag of words vectors, exactly as our 'classic' models: each review is represented by a vector of the size the number of tokens in the vocabulary with '1' when a word is present and '0' for the other words. "
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2.1 Questions\n",
-        "\n",
-        "▶▶ **What is the input dimension?** \n",
-        "\n",
-        "▶▶ **What is the output dimension?** "
-      ],
-      "metadata": {
-        "id": "5KOM7ofrKUte"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2.2 Write the skeleton of the class\n",
-        "\n",
-        "▶▶ We're going to **define our own neural network type**, by defining a new class: \n",
-        "* The class is called **FeedforwardNeuralNetModel**\n",
-        "* it inherits from the class **nn.Module**\n",
-        "* the constructor takes the following arguments:\n",
-        "  * size of the input (i.e. **input_dim**)\n",
-        "  * size of the hidden layer (i.e. **hidden_dim**)\n",
-        "  * size of the output layer (i.e. **output_dim**)\n",
-        "* in the constructor, we will call the constructor of the parent class\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "bE4RgHUkGnGl"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Start to define the class corresponding to our type of neural network \n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "uKcge-oBG1HV"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2.3 Write the constructor\n",
-        "\n",
-        "▶▶ To continue the definition of our class, we need to explain how are built each layer of our network.\n",
-        "\n",
-        "More precisely, we're going to define:\n",
-        "* a function corresponding to the action of our hidden layer: \n",
-        "  * what kind of function is it ?\n",
-        "  * you need to indicate the size of the input and output for this function, what are they?\n",
-        "* a non linear function, that will be used on the ouput of our hidden layer\n",
-        "* a final output function: \n",
-        "  * what kind of function is it ?\n",
-        "  * you need to indicate the size of the input and output for this function, what are they? \n",
-        "\n",
-        "All the functions that can be used in Pytorch are defined here: https://pytorch.org/docs/stable/nn.functional.html\n",
-        "\n",
-        "Do you see things that you know?\n",
-        "\n",
-        "Hint: here you define fields of your class, these fields corresponding to specific kind of functions. \n",
-        "E.g. you're going to initialize a field such as **self.fc1=SPECIFIC_TYPE_OF_FCT(expected arguments)**."
-      ],
-      "metadata": {
-        "id": "0BHUuGKCHoU9"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Continue the definition of the class by defining three functions in your constructor\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "LN3aSTSaJNkp"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2.4 Write the **forward** method\n",
-        "\n",
-        "The main function we have to write when defining a neural network is called the **forward** function.\n",
-        "This function computes the outputs of the network (the logit), it is thus used to train the network.\n",
-        "It details how we apply the functions defined in the constructor. \n",
-        "\n",
-        "Let's define this function, with the following signature, where x is the input to the network:\n",
-        "```\n",
-        "def forward(self, x):\n",
-        "```\n",
-        "\n",
-        "▶▶ Follow the steps:\n",
-        "* 1- Apply the first linear functiond defined in the constructor to **x**, i.e. go through the hidden layer.\n",
-        "* 2- Apply the non linear function to the output of step 1, i.e. use the activation function.\n",
-        "* 3- Apply the second linear functiond defined in the constructor to the output of step 2, i.e. go through the output layer.\n",
-        "* 4- Return the output of step 3.\n",
-        "\n",
-        "You're done!"
-      ],
-      "metadata": {
-        "id": "e2IMSprgKJ7K"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "  # Copy paste the rest of the definition of the class below\n",
-        "  # ...\n",
-        "  \n",
-        "  # Define the forward function, used to make all the calculations\n",
-        "  # through the network\n",
-        "  def forward(self, x):\n",
-        "    ''' y = g(x.W1+b).W2 '''\n",
-        "    # ..."
-      ],
-      "metadata": {
-        "id": "8z-QpBt2NOlu"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 2.3 Training the network\n",
-        "\n",
-        "Now we can use our beautiful class to define and then train our own neural network."
-      ],
-      "metadata": {
-        "id": "sBrDXfQbO5yq"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "oWLDfLGxpBvn"
-      },
-      "source": [
-        "### 2.3.1 Hyper-parameters\n",
-        "\n",
-        "We need to set up the values for the hyper-parameters, and define the form of the loss and the optimization methods.\n",
-        "\n",
-        "▶▶ **Check that you understand what are each of the variables below** \n",
-        "* one that you prabably don't know is the learning rate, we'll explain it in the next course. Broadly speaking, it corresponds to the amount of update used during training."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "fcGyjXbUoxx9"
-      },
-      "source": [
-        "# Many choices here!\n",
-        "VOCAB_SIZE = MAX_FEATURES\n",
-        "input_dim = VOCAB_SIZE \n",
-        "hidden_dim = 4\n",
-        "output_dim = 2\n",
-        "num_epochs = 5\n",
-        "learning_rate = 0.1"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.3.2 Loss function\n",
-        "\n",
-        "Another thing that has to be decided is the kind of loss function we want to use.\n",
-        "Here we use a common one, called CrossEntropy. \n",
-        "We will come back in more details on this loss.\n",
-        "One important note is that this function in PyTorch includes the SoftMax function that should be applied after the output layer to get labels."
-      ],
-      "metadata": {
-        "id": "yyJINiVHPoWq"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "criterion = nn.CrossEntropyLoss()"
-      ],
-      "metadata": {
-        "id": "TVVy7hhrPl-K"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.3.3 Initialization of the model\n",
-        "\n",
-        "Now you can instantiate your class: define a model that is of the type FeedforwardNeuralNetModel using the values defined before as hyper-parameters."
-      ],
-      "metadata": {
-        "id": "kyY91BtPQIeo"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialization of the model\n",
-        "# ..."
-      ],
-      "metadata": {
-        "id": "hk_nev2-Q0m-"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.3.4 Optimizer\n",
-        "\n",
-        "At last, we need to indicate the method we want to use to optimize our network.\n",
-        "Here, we use a common one called Stochastic Gradient Descent.\n",
-        "We will also go back on that later on.\n",
-        "\n",
-        "Note that its arguments are:\n",
-        "* the parameters of our models (the Ws)\n",
-        "* the learning rate\n",
-        "Based on these information, it can make the necessary updates. \n"
-      ],
-      "metadata": {
-        "id": "wBjNtZ-bQfSQ"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)"
-      ],
-      "metadata": {
-        "id": "A8AY0bU8Qhyf"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "OPt_VbCMqoD2"
-      },
-      "source": [
-        "### 2.3.5 Training the network (code given)\n",
-        "\n",
-        "A simple code to train the neural network is given below.\n",
-        "\n",
-        "▶▶ **Run the code and look at the loss after each training step.** "
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "OnNx8hZJox3v"
-      },
-      "source": [
-        "# Start training\n",
-        "for epoch in range(num_epochs):\n",
-        "    train_loss, total_acc, total_count = 0, 0, 0\n",
-        "\n",
-        "    # for each instance + its associated label\n",
-        "    for input, label in train_loader:\n",
-        "\n",
-        "        # Clearing the accumulated gradients\n",
-        "        # torch *accumulates* gradients. Before passing in a\n",
-        "        # new instance, you need to zero out the gradients from the old\n",
-        "        # instance\n",
-        "        # Clear gradients w.r.t. parameters\n",
-        "        optimizer.zero_grad()\n",
-        "\n",
-        "        # ==> Forward pass to get output/logits \n",
-        "        # = apply all our functions: y = g(x.W1+b).W2\n",
-        "        outputs = model( input )\n",
-        "\n",
-        "        # ==> Calculate Loss: softmax --> cross entropy loss\n",
-        "        loss = criterion(outputs, label)\n",
-        "\n",
-        "        # Getting gradients w.r.t. parameters\n",
-        "        # Here is the way to find how to modify the parameters in\n",
-        "        # order to lower the loss\n",
-        "        loss.backward()\n",
-        "\n",
-        "        # ==> Updating parameters: you don t need to provide the loss here,\n",
-        "        # when computing the loss, the information is saved in the parameters\n",
-        "        # (more precisely, doing backward computes the gradients for all tensors,\n",
-        "        # and these gradients are saved by each tensor)\n",
-        "        optimizer.step()\n",
-        "\n",
-        "        # -- a useful print\n",
-        "        # Accumulating the loss over time\n",
-        "        train_loss += loss.item()\n",
-        "        total_acc += (outputs.argmax(1) == label).sum().item()\n",
-        "        total_count += label.size(0)\n",
-        "\n",
-        "    # Compute accuracy on train set at each epoch\n",
-        "    print('Epoch: {}. Loss: {}. ACC {} '.format(epoch, \n",
-        "                                                train_loss/x_train.shape[0], \n",
-        "                                                total_acc/x_train.shape[0]))\n",
-        "        \n",
-        "    total_acc, total_count = 0, 0\n",
-        "    train_loss = 0"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "tzMl5wdnqtCW"
-      },
-      "source": [
-        "### 2.3.6 Evaluate the model (code given)"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Useful imports\n",
-        "from sklearn.metrics import classification_report"
-      ],
-      "metadata": {
-        "id": "N8wxX85sSyPM"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "ldDubAPDox5K"
-      },
-      "source": [
-        "# create Tensor dataset\n",
-        "valid_data = TensorDataset( torch.from_numpy(x_dev).to(torch.float), \n",
-        "                           torch.from_numpy(y_dev))\n",
-        "valid_loader = DataLoader( valid_data )\n",
-        "\n",
-        "\n",
-        "# Disabling gradient calculation is useful for inference, \n",
-        "# when you are sure that you will not call Tensor.backward(). \n",
-        "predictions, gold = [], []\n",
-        "with torch.no_grad():\n",
-        "    for input, label in valid_loader:\n",
-        "        probs = model(input)\n",
-        "        predictions.append( torch.argmax(probs, dim=1).cpu().numpy()[0] )\n",
-        "        gold.append(int(label))\n",
-        "\n",
-        "print(classification_report(gold, predictions))"
-      ],
-      "execution_count": null,
-      "outputs": []
-    }
-  ]
-}
\ No newline at end of file
diff --git a/notebooks/TP2_masterLiTL_2223_CORRECT.ipynb b/notebooks/TP2_masterLiTL_2223_CORRECT.ipynb
deleted file mode 100644
index e5a7b54428546e2caffb91173a3b2bfa9c8ba2ee..0000000000000000000000000000000000000000
--- a/notebooks/TP2_masterLiTL_2223_CORRECT.ipynb
+++ /dev/null
@@ -1,1721 +0,0 @@
-{
-  "nbformat": 4,
-  "nbformat_minor": 0,
-  "metadata": {
-    "colab": {
-      "provenance": [],
-      "toc_visible": true
-    },
-    "kernelspec": {
-      "name": "python3",
-      "display_name": "Python 3"
-    },
-    "language_info": {
-      "name": "python"
-    },
-    "accelerator": "GPU",
-    "gpuClass": "standard"
-  },
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "XCHhtzOXQ2po"
-      },
-      "source": [
-        "# TP 2: Linear Algebra and Feedforward neural network\n",
-        "Master LiTL - 2022-2023\n",
-        "\n",
-        "## Requirements\n",
-        "In this section, we will go through some code to learn how to manipulate matrices and tensors, and we will take a look at some PyTorch code that allows to define, train and evaluate a simple neural network. \n",
-        "The modules used are the the same as in the previous session, *Numpy* and *Scikit*, with the addition of *PyTorch*. They are all already available within colab. \n",
-        "\n",
-        "## Part 1: Linear Algebra\n",
-        "\n",
-        "In this section, we will go through some python code to deal with matrices and also tensors, the data structures used in PyTorch.\n",
-        "\n",
-        "Sources:    \n",
-        "* Linear Algebra explained in the context of deep learning: https://towardsdatascience.com/linear-algebra-explained-in-the-context-of-deep-learning-8fcb8fca1494\n",
-        "* PyTorch tutorial: https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor-tutorial-py\n",
-        "* PyTorch doc on tensors: https://pytorch.org/docs/stable/torch.html\n"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Useful imports\n",
-        "import numpy as np\n",
-        "import torch"
-      ],
-      "metadata": {
-        "id": "2t2sdvtdsrjO"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "G3Hk9fJuBVxk"
-      },
-      "source": [
-        "## 1.1 Numpy arrays\n",
-        "\n",
-        "NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type\n"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1.1 Numpy arrays\n",
-        "\n",
-        "▶▶ **Look at the code below and check that you understand each line:**\n",
-        "* We define a numpy array (i.e. a vector) **x** from a list\n",
-        "* We define a numpy array of shape 3x2 (i.e. a matrix) initialized with random numbers, called **W**\n",
-        "* We define a scalar, **b**\n",
-        "* Finally, with all these elements, we can compute **h = W.x + b**"
-      ],
-      "metadata": {
-        "id": "5hfuybaGeOX_"
-      }
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "W2IvCK4gPUAv",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "27aaddfd-d3ed-471a-ad74-4211df3019fa"
-      },
-      "source": [
-        "x = np.array([1,2])\n",
-        "print(\"Our input vector with 2 elements:\\n\", x)\n",
-        "print( \"x shape:\", x.shape)                  \n",
-        "\n",
-        "print( \"x data type\", x.dtype)\n",
-        "# Give a list of elements\n",
-        "# a = np.array(1,2,3,4)    # WRONG\n",
-        "# a = np.array([1,2,3,4])  # RIGHT\n",
-        "\n",
-        "# Generate a random matrix (with a generator and a seed, for reproducible results)\n",
-        "rng = np.random.default_rng(seed=42)\n",
-        "W = rng.random((3, 2))\n",
-        "print(\"\\n Our weight matrix, of shape 3x2:\\n\", W)\n",
-        "print( \"W shape:\", W.shape)\n",
-        "print( \"W data type\", W.dtype)\n",
-        "\n",
-        "# Bias, a scalar\n",
-        "b = 1\n",
-        "\n",
-        "# Now, try to multiply\n",
-        "h = W.dot(x) + b\n",
-        "print(\"\\n Our h layer:\\n\", h)\n",
-        "print( \"h shape:\", h.shape)\n",
-        "print( \"h data type\", h.dtype)"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Our input vector with 2 elements:\n",
-            " [1 2]\n",
-            "x shape: (2,)\n",
-            "x data type int64\n",
-            "\n",
-            " Our weight matrix, of shape 3x2:\n",
-            " [[0.77395605 0.43887844]\n",
-            " [0.85859792 0.69736803]\n",
-            " [0.09417735 0.97562235]]\n",
-            "W shape: (3, 2)\n",
-            "W data type float64\n",
-            "\n",
-            " Our h layer:\n",
-            " [2.65171293 3.25333398 3.04542205]\n",
-            "h shape: (3,)\n",
-            "h data type float64\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1.2 Operations on arrays\n",
-        "\n",
-        "▶▶ **Look at the code below and check that you understand each line:**\n",
-        "* How to reshape a matrix i.e. change its dimensions\n",
-        "* How to compute the transpose of a vector / matrix"
-      ],
-      "metadata": {
-        "id": "L18_HL5qfvFO"
-      }
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "hKzJk0aaPUv4",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "1c39300a-d2e0-4eaf-a3bc-4d299806c3ad"
-      },
-      "source": [
-        "# Useful transformations\n",
-        "h = h.reshape((3,1))\n",
-        "print(\"\\n h reshape:\\n\", h)\n",
-        "print( \"h shape:\", h.shape)\n",
-        "\n",
-        "h1 = np.transpose(h)\n",
-        "print(\"\\n h transpose:\\n\", h1)\n",
-        "print( \"h shape:\", h1.shape)\n",
-        "\n",
-        "h2 = h.T\n",
-        "print(\"\\n h transpose:\\n\", h2)\n",
-        "print( \"h shape:\", h2.shape)\n",
-        "\n",
-        "Wt = W.T\n",
-        "print(\"\\nW:\\n\", W)\n",
-        "print(\"\\nW.T:\\n\", Wt)"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            " h reshape:\n",
-            " [[2.65171293]\n",
-            " [3.25333398]\n",
-            " [3.04542205]]\n",
-            "h shape: (3, 1)\n",
-            "\n",
-            " h transpose:\n",
-            " [[2.65171293 3.25333398 3.04542205]]\n",
-            "h shape: (1, 3)\n",
-            "\n",
-            " h transpose:\n",
-            " [[2.65171293 3.25333398 3.04542205]]\n",
-            "h shape: (1, 3)\n",
-            "\n",
-            "W:\n",
-            " [[0.77395605 0.43887844]\n",
-            " [0.85859792 0.69736803]\n",
-            " [0.09417735 0.97562235]]\n",
-            "\n",
-            "W.T:\n",
-            " [[0.77395605 0.85859792 0.09417735]\n",
-            " [0.43887844 0.69736803 0.97562235]]\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "▶▶ **A last note: creating an identity matrix**"
-      ],
-      "metadata": {
-        "id": "O_p_oGvRhnkF"
-      }
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "KpIkzqN6PaJR",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "de4222fd-1c9d-4563-f9b9-1783e5321f45"
-      },
-      "source": [
-        "## numpy code to create identity matrix\n",
-        "a = np.eye(4)\n",
-        "print(a)"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "[[1. 0. 0. 0.]\n",
-            " [0. 1. 0. 0.]\n",
-            " [0. 0. 1. 0.]\n",
-            " [0. 0. 0. 1.]]\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "Il-lX6VCA7gk"
-      },
-      "source": [
-        "## 1.2 Tensors\n",
-        "\n",
-        "For neural networks implementation in PyTorch, we use tensors: \n",
-        "* a specialized data structure that are very similar to arrays and matrices\n",
-        "* used to encode the inputs and outputs of a model, as well as the model’s parameters\n",
-        "* similar to NumPy’s ndarrays, except that tensors can run on GPUs or other specialized hardware to accelerate computing"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "hPqpGGZPCRT-"
-      },
-      "source": [
-        "### 1.2.1 Tensor initialization\n",
-        "\n",
-        "▶▶ **Look at the code below and check that you understand each line:**\n",
-        "* We define a PyTorch tensor (i.e. a matrix) **x_data** from a list of list\n",
-        "* We define a PyTorch tensor (i.e. a matrix) **x_np** from a numpy array\n",
-        "* How to initialize an random tensor, an one tensor and a zero tensor\n",
-        "* Finally, we define a PyTorch tensor (i.e. a matrix) from another tensor:\n",
-        "  * **x_ones**: from the identity tensor\n",
-        "  * **x_rand**: from a tensor initialized with random values"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "HaEdsMG6BAh0",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "09e6047b-40d1-4900-9ec8-bef108f66969"
-      },
-      "source": [
-        "# Tensor initialization\n",
-        "\n",
-        "## from data. The data type is automatically inferred.\n",
-        "data = [[1, 2], [3, 4]]\n",
-        "x_data = torch.tensor(data)\n",
-        "print( \"x_data\", x_data)\n",
-        "print( \"data type x_data=\", x_data.dtype)\n",
-        "\n",
-        "## from a numpy array\n",
-        "np_array = np.array(data)\n",
-        "x_np = torch.from_numpy(np_array)\n",
-        "print(\"\\nx_np\", x_np)\n",
-        "print( \"data type, np_array=\", np_array.dtype, \"x_data=\", x_np.dtype)\n",
-        "\n",
-        "## with random values / ones / zeros\n",
-        "shape = (2, 3,) # shape is a tuple of tensor dimensions\n",
-        "rand_tensor = torch.rand(shape)\n",
-        "ones_tensor = torch.ones(shape)\n",
-        "zeros_tensor = torch.zeros(shape)\n",
-        "\n",
-        "print(f\"Random Tensor: \\n {rand_tensor} \\n\")\n",
-        "print(f\"Ones Tensor: \\n {ones_tensor} \\n\")\n",
-        "print(f\"Zeros Tensor: \\n {zeros_tensor}\")\n",
-        "\n",
-        "## from another tensor\n",
-        "x_ones = torch.ones_like(x_data) # retains the properties of x_data\n",
-        "print(f\"\\nFrom Ones Tensor: \\n {x_ones} \\n\")\n",
-        "\n",
-        "x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data\n",
-        "print(f\"From Random Tensor: \\n {x_rand} \\n\")"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "x_data tensor([[1, 2],\n",
-            "        [3, 4]])\n",
-            "data type x_data= torch.int64\n",
-            "\n",
-            "x_np tensor([[1, 2],\n",
-            "        [3, 4]])\n",
-            "data type, np_array= int64 x_data= torch.int64\n",
-            "Random Tensor: \n",
-            " tensor([[0.7422, 0.2063, 0.4437],\n",
-            "        [0.4821, 0.8494, 0.7161]]) \n",
-            "\n",
-            "Ones Tensor: \n",
-            " tensor([[1., 1., 1.],\n",
-            "        [1., 1., 1.]]) \n",
-            "\n",
-            "Zeros Tensor: \n",
-            " tensor([[0., 0., 0.],\n",
-            "        [0., 0., 0.]])\n",
-            "\n",
-            "From Ones Tensor: \n",
-            " tensor([[1, 1],\n",
-            "        [1, 1]]) \n",
-            "\n",
-            "From Random Tensor: \n",
-            " tensor([[0.9174, 0.8538],\n",
-            "        [0.2395, 0.4414]]) \n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "oFDVEZcBCWF_"
-      },
-      "source": [
-        "### 1.2.2 Tensor attributes\n",
-        "\n",
-        "▶▶ **A tensor has different attributes, print the values for:**\n",
-        "* shape of the tensor\n",
-        "* type of the data stored \n",
-        "* device on which data are stored\n",
-        "\n",
-        "Look at the doc here: https://www.tensorflow.org/api_docs/python/tf/Tensor#shape"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "kS4TtR9DCJcq",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "acf50a6a-8327-44f3-a20c-6c014304dfb9"
-      },
-      "source": [
-        "# Tensor attributes\n",
-        "tensor = torch.rand(3, 4)\n",
-        "\n",
-        "print(f\"Shape of tensor: {tensor.shape}\")\n",
-        "print(f\"Datatype of tensor: {tensor.dtype}\")\n",
-        "print(f\"Device tensor is stored on: {tensor.device}\")"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Shape of tensor: torch.Size([3, 4])\n",
-            "Datatype of tensor: torch.float32\n",
-            "Device tensor is stored on: cpu\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "tu8RM6O7CaKO"
-      },
-      "source": [
-        "### 1.2.3 Move to GPU\n",
-        "\n",
-        "The code below is used to:\n",
-        "* check on which device the code is running, 'cuda' stands for GPU. If not GPU is found that we use CPU.\n",
-        "\n",
-        "\n",
-        "▶▶ **Check and move to GPU:**\n",
-        "* Run the code, it should say 'no cpu'\n",
-        "* Move to GPU: in Colab, allocate a GPU by going to Edit > Notebook Settings (Modifier > Paramètres du notebook)\n",
-        "  * you'll see an indicator of connexion in the uppper right part of the screen\n",
-        "* Run the code from 1.2 again and the cell below (you can use the function Run / Run before or Exécution / Exécuter avant), you'll need to do all the imports again. You see the difference?"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "nT7n30VpCOzF",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "bd6cfc6f-cdc3-47af-c937-60d1b7559269"
-      },
-      "source": [
-        "# We move our tensor to the GPU if available\n",
-        "if torch.cuda.is_available():\n",
-        "  tensor = tensor.to('cuda')\n",
-        "  print(f\"Device tensor is stored on: {tensor.device}\")\n",
-        "else:\n",
-        "  print(\"no gpu\")\n",
-        "\n",
-        "print(tensor)"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "no gpu\n",
-            "tensor([[0.8571, 0.8930, 0.3581, 0.1879],\n",
-            "        [0.6470, 0.9328, 0.8852, 0.7041],\n",
-            "        [0.2505, 0.0432, 0.3965, 0.7014]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "VdqHVRkHCcgq"
-      },
-      "source": [
-        "Below, run after moving to GPU."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "nyZPKBvOGsyf",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "82cf8bb9-8cbb-4839-af07-2cf70b5bb1a4"
-      },
-      "source": [
-        "# We move our tensor to the GPU if available\n",
-        "if torch.cuda.is_available():\n",
-        "  tensor = tensor.to('cuda')\n",
-        "  print(f\"Device tensor is stored on: {tensor.device}\")\n",
-        "else:\n",
-        "  print(\"no gpu\")\n",
-        "\n",
-        "print(tensor)"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Device tensor is stored on: cuda:0\n",
-            "tensor([[0.5677, 0.5670, 0.4132, 0.0301],\n",
-            "        [0.8031, 0.6536, 0.4139, 0.6157],\n",
-            "        [0.4833, 0.1557, 0.5355, 0.4551]], device='cuda:0')\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "8um7SDWGCp8o"
-      },
-      "source": [
-        "### 1.2.4 Tensor operations\n",
-        "\n",
-        "Doc: https://pytorch.org/docs/stable/torch.html\n",
-        "\n",
-        "▶▶ **Slicing operations:**\n",
-        "* Below we use slicing operations to modify tensors"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Tensor operations: similar to numpy arrays\n",
-        "tensor = torch.ones(4, 4)\n",
-        "print(tensor)"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "BgF-ypEurJCk",
-        "outputId": "18e6eda8-d5d3-49b9-eabb-9fc05ce0fce5"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "tensor([[1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "7yLviqmYC3sZ",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "553c83d0-a6a0-40be-eac3-516e30acce66"
-      },
-      "source": [
-        "# ---------------------------------------------------------\n",
-        "# TODO: What do you expect?\n",
-        "# ---------------------------------------------------------\n",
-        "## Slicing\n",
-        "print(\"\\nSlicing\")\n",
-        "tensor[:,1] = 0 \n",
-        "print(tensor)\n",
-        "\n",
-        "# ---------------------------------------------------------\n",
-        "# TODO: Change the first column with the value in l\n",
-        "# ---------------------------------------------------------\n",
-        "l =[1.,2.,3.,4.] \n",
-        "l = torch.tensor( l )\n",
-        "tensor[:, 0] = l\n",
-        "print(tensor)"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            "Slicing\n",
-            "tensor([[1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.]])\n",
-            "tensor([[1., 0., 1., 1.],\n",
-            "        [2., 0., 1., 1.],\n",
-            "        [3., 0., 1., 1.],\n",
-            "        [4., 0., 1., 1.]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "▶▶ *Other operations:**\n",
-        "* Check the code below that performs:\n",
-        "  * tensor concatenation\n",
-        "  * tensor multiplication"
-      ],
-      "metadata": {
-        "id": "uCZ2AWPmrW6q"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "## Concatenation\n",
-        "print(\"\\nConcatenate\")\n",
-        "t1 = torch.cat([tensor, tensor, tensor], dim=1)\n",
-        "print(t1)\n",
-        "\n",
-        "## Multiplication: element_wise\n",
-        "print(\"\\nMultiply\")\n",
-        "# This computes the element-wise product\n",
-        "t2 = tensor.mul(tensor)\n",
-        "print(f\"tensor.mul(tensor) \\n {t2} \\n\")\n",
-        "# Alternative syntax:\n",
-        "t3 = tensor * tensor\n",
-        "print(f\"tensor * tensor \\n {t3}\")\n",
-        "\n",
-        "## Matrix multiplication\n",
-        "t4 = tensor.matmul(tensor.T)\n",
-        "print(f\"tensor.matmul(tensor.T) \\n {t4} \\n\")\n",
-        "# Alternative syntax:\n",
-        "t5 = tensor @ tensor.T\n",
-        "print(f\"tensor @ tensor.T \\n {t5}\")"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "t_AkQSnarNX8",
-        "outputId": "28ceafc8-b42e-4291-efd1-e17d0c7cf02f"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "\n",
-            "Concatenate\n",
-            "tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],\n",
-            "        [2., 0., 1., 1., 2., 0., 1., 1., 2., 0., 1., 1.],\n",
-            "        [3., 0., 1., 1., 3., 0., 1., 1., 3., 0., 1., 1.],\n",
-            "        [4., 0., 1., 1., 4., 0., 1., 1., 4., 0., 1., 1.]])\n",
-            "\n",
-            "Multiply\n",
-            "tensor.mul(tensor) \n",
-            " tensor([[ 1.,  0.,  1.,  1.],\n",
-            "        [ 4.,  0.,  1.,  1.],\n",
-            "        [ 9.,  0.,  1.,  1.],\n",
-            "        [16.,  0.,  1.,  1.]]) \n",
-            "\n",
-            "tensor * tensor \n",
-            " tensor([[ 1.,  0.,  1.,  1.],\n",
-            "        [ 4.,  0.,  1.,  1.],\n",
-            "        [ 9.,  0.,  1.,  1.],\n",
-            "        [16.,  0.,  1.,  1.]])\n",
-            "tensor.matmul(tensor.T) \n",
-            " tensor([[ 3.,  4.,  5.,  6.],\n",
-            "        [ 4.,  6.,  8., 10.],\n",
-            "        [ 5.,  8., 11., 14.],\n",
-            "        [ 6., 10., 14., 18.]]) \n",
-            "\n",
-            "tensor @ tensor.T \n",
-            " tensor([[ 3.,  4.,  5.,  6.],\n",
-            "        [ 4.,  6.,  8., 10.],\n",
-            "        [ 5.,  8., 11., 14.],\n",
-            "        [ 6., 10., 14., 18.]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "5ulTT2k_Hs97"
-      },
-      "source": [
-        "### 1.2.5 Tensor operations on GPU\n",
-        "\n",
-        "The tensor is stored on CPU by default.\n",
-        "\n",
-        "▶▶ **Initialize the tensor using *device='cuda'*: where are stored t1, ..., t5?**"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "atwxGd1_IdxI",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "0fda45ea-e1fe-4bb3-c500-c4fda76379ce"
-      },
-      "source": [
-        "# Tensor operations: similar to numpy arrays\n",
-        "\n",
-        "tensor = torch.ones(4, 4, device='cuda')\n",
-        "print(tensor)\n",
-        "\n",
-        "# ---------------------------------------------------------\n",
-        "# TODO: What do you expect?\n",
-        "# ---------------------------------------------------------\n",
-        "## Slicing\n",
-        "print(\"\\nSlicing\")\n",
-        "tensor[:,1] = 0 \n",
-        "print(tensor)\n",
-        "\n",
-        "# ---------------------------------------------------------\n",
-        "# TODO: Change the first column with the value in l\n",
-        "# ---------------------------------------------------------\n",
-        "l =[1.,2.,3.,4.] \n",
-        "l = torch.tensor( l )\n",
-        "tensor[:, 0] = l\n",
-        "print(tensor)\n",
-        "\n",
-        "\n",
-        "## Concatenation\n",
-        "print(\"\\nConcatenate\")\n",
-        "t1 = torch.cat([tensor, tensor, tensor], dim=1)\n",
-        "print(t1)\n",
-        "\n",
-        "## Multiplication: element_wise\n",
-        "print(\"\\nMultiply\")\n",
-        "# This computes the element-wise product\n",
-        "t2 = tensor.mul(tensor)\n",
-        "print(f\"tensor.mul(tensor) \\n {t2} \\n\")\n",
-        "# Alternative syntax:\n",
-        "t3 = tensor * tensor\n",
-        "print(f\"tensor * tensor \\n {t3}\")\n",
-        "\n",
-        "## Matrix multiplication\n",
-        "t4 = tensor.matmul(tensor.T)\n",
-        "print(f\"tensor.matmul(tensor.T) \\n {t4} \\n\")\n",
-        "# Alternative syntax:\n",
-        "t5 = tensor @ tensor.T\n",
-        "print(f\"tensor @ tensor.T \\n {t5}\")"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "tensor([[1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.],\n",
-            "        [1., 1., 1., 1.]], device='cuda:0')\n",
-            "\n",
-            "Slicing\n",
-            "tensor([[1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.],\n",
-            "        [1., 0., 1., 1.]], device='cuda:0')\n",
-            "tensor([[1., 0., 1., 1.],\n",
-            "        [2., 0., 1., 1.],\n",
-            "        [3., 0., 1., 1.],\n",
-            "        [4., 0., 1., 1.]], device='cuda:0')\n",
-            "\n",
-            "Concatenate\n",
-            "tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],\n",
-            "        [2., 0., 1., 1., 2., 0., 1., 1., 2., 0., 1., 1.],\n",
-            "        [3., 0., 1., 1., 3., 0., 1., 1., 3., 0., 1., 1.],\n",
-            "        [4., 0., 1., 1., 4., 0., 1., 1., 4., 0., 1., 1.]], device='cuda:0')\n",
-            "\n",
-            "Multiply\n",
-            "tensor.mul(tensor) \n",
-            " tensor([[ 1.,  0.,  1.,  1.],\n",
-            "        [ 4.,  0.,  1.,  1.],\n",
-            "        [ 9.,  0.,  1.,  1.],\n",
-            "        [16.,  0.,  1.,  1.]], device='cuda:0') \n",
-            "\n",
-            "tensor * tensor \n",
-            " tensor([[ 1.,  0.,  1.,  1.],\n",
-            "        [ 4.,  0.,  1.,  1.],\n",
-            "        [ 9.,  0.,  1.,  1.],\n",
-            "        [16.,  0.,  1.,  1.]], device='cuda:0')\n",
-            "tensor.matmul(tensor.T) \n",
-            " tensor([[ 3.,  4.,  5.,  6.],\n",
-            "        [ 4.,  6.,  8., 10.],\n",
-            "        [ 5.,  8., 11., 14.],\n",
-            "        [ 6., 10., 14., 18.]], device='cuda:0') \n",
-            "\n",
-            "tensor @ tensor.T \n",
-            " tensor([[ 3.,  4.,  5.,  6.],\n",
-            "        [ 4.,  6.,  8., 10.],\n",
-            "        [ 5.,  8., 11., 14.],\n",
-            "        [ 6., 10., 14., 18.]], device='cuda:0')\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "UxW1jtX-GOfd"
-      },
-      "source": [
-        "### 1.2.5 Final exercise: compute *h*\n",
-        "\n",
-        "▶▶ **Compute the tensor h, using the same data for x and W as at the beginning of this TP.**\n",
-        "\n",
-        "```\n",
-        "x = np.array([1,2])\n",
-        "rng = np.random.default_rng(seed=42)\n",
-        "W = rng.random((3, 2))\n",
-        "```\n",
-        "\n",
-        "Important note: when multiplying matrices, we need to have the same data type, e.g. not **x** with *int* and **W** with *float*.\n",
-        "So you have to say that the vector **x** has the data type *float*. Two ways:\n",
-        "* from the initialization: **x = torch.tensor([1,2], dtype=float)**\n",
-        "* from any tensor: **x = x.to( torch.float64)** (here using only **float** would give *float32*, not what we want) "
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "lwIanFgWD_YJ"
-      },
-      "source": [
-        "# --------------------------------------------------------\n",
-        "# TODO: Write the code to compute h = W.x+b\n",
-        "# --------------------------------------------------------\n",
-        "\n",
-        "# h = x.W + b\n",
-        "x = torch.tensor([1,2])\n",
-        "x = x.to( torch.float64) # be careful: using just 'float' here gives float32\n",
-        "## OR\n",
-        "#x = torch.tensor([1,2], dtype=float)\n",
-        "print(\"Our input vector with 2 elements:\\n\", x)\n",
-        "print( \"x shape:\", x.shape)\n",
-        "print( \"x type:\", x.dtype )\n",
-        "\n",
-        "# Generate a random matrix (with e generator, for reproducible results)\n",
-        "rng = np.random.default_rng(seed=42)\n",
-        "W = rng.random((3, 2))\n",
-        "W_t = torch.from_numpy(W)\n",
-        "print(\"\\n Our weight matrix, of shape 3x2:\\n\", W)\n",
-        "print( \"W shape:\", W_t.shape)\n",
-        "print( \"W type:\", W.dtype)\n",
-        "\n",
-        "# Bias, a scalar\n",
-        "b = 1.0\n",
-        "\n",
-        "# Now, try to multiply\n",
-        "h_t = W_t.matmul(x) + b\n",
-        "print(\"\\n Our h layer:\\n\", h_t)\n",
-        "print( \"h shape:\", h_t.shape)"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "na_tJOnfGDIz"
-      },
-      "source": [
-        "### Last minor note"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "lql9bH39G4Mw"
-      },
-      "source": [
-        "## Operations that have a _ suffix are in-place. For example: x.copy_(y), x.t_(), will change x.\n",
-        "print(tensor, \"\\n\")\n",
-        "tensor.add_(5)\n",
-        "print(tensor)"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "DGmy-dtuOtiw"
-      },
-      "source": [
-        "# Part 2: Feedforward Neural Network\n",
-        "\n",
-        "In this practical session, we will explore a simple neural network architecture for NLP applications ; specifically, we will train a feedforward neural network for sentiment analysis, using the same dataset of reviews as in the previous session.  We will also keep the bag of words representation. \n",
-        "\n",
-        "\n",
-        "Sources:\n",
-        "* This TP is inspired by a TP by Tim van de Cruys\n",
-        "* https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/\n",
-        "* https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html\n",
-        "* https://medium.com/swlh/sentiment-classification-using-feed-forward-neural-network-in-pytorch-655811a0913f \n",
-        "* https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Useful imports\n",
-        "import pandas as pd\n",
-        "import numpy as np\n",
-        "import re\n",
-        "import sklearn\n",
-        "\n",
-        "from sklearn.feature_extraction.text import CountVectorizer"
-      ],
-      "metadata": {
-        "id": "TKukE_hAAn_2"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Path to data\n",
-        "train_path = \"allocine_train.tsv\"\n",
-        "dev_path = \"allocine_dev.tsv\""
-      ],
-      "metadata": {
-        "id": "iUxRwO37Ap8h"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "wdSyhJqpVczO"
-      },
-      "source": [
-        "## 2.1 Read and load the data\n",
-        "\n",
-        "Here we will keep the bag of word representation, as in the previous session. \n",
-        "\n",
-        "You can find different ways of dealing with the input data in PyTorch. The simplest solution is to use the DataLoader from PyTorch:    \n",
-        "* the doc here https://pytorch.org/docs/stable/data.html and here https://pytorch.org/tutorials/beginner/basics/data_tutorial.html\n",
-        "* an example of use, with numpy array: https://www.kaggle.com/arunmohan003/sentiment-analysis-using-lstm-pytorch\n",
-        "\n",
-        "\n",
-        "\n",
-        "\n",
-        "\n",
-        "\n",
-        "You can also find many datasets for text ready to load in pytorch on: https://pytorch.org/text/stable/datasets.html"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "CxRbwziSV_BY"
-      },
-      "source": [
-        "#### 2.1.1 Build BoW vectors (code given)\n",
-        "\n",
-        "The code below allows to use scikit methods you already know to generate the bag of word representation."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "SoVJ18s_oxkn"
-      },
-      "source": [
-        "# This will be the size of the vectors reprensenting the input\n",
-        "MAX_FEATURES = 5000 \n",
-        "\n",
-        "def vectorize_data( data_path, vectorizer=None ):\n",
-        "  data_df = pd.read_csv( data_path, header=0,\n",
-        "                    delimiter=\"\\t\", quoting=3)\n",
-        "  # If an existing vectorizer is not given, initialize the \"CountVectorizer\" \n",
-        "  # object, which is scikit-learn's bag of words tool.  \n",
-        "  if not vectorizer:\n",
-        "    vectorizer = CountVectorizer(\n",
-        "        analyzer = \"word\",\n",
-        "        max_features = MAX_FEATURES\n",
-        "    ) \n",
-        "    vectorizer.fit(data_df[\"review\"])\n",
-        "  # Then transform the data\n",
-        "  x_data = vectorizer.transform(data_df[\"review\"])\n",
-        "  # Vectorize also the labels\n",
-        "  y_data = np.asarray(data_df[\"sentiment\"])\n",
-        "  return x_data, y_data, vectorizer \n",
-        "\n",
-        "x_train, y_train, vectorizer = vectorize_data( train_path )\n",
-        "x_dev, y_dev, _ = vectorize_data( dev_path, vectorizer )\n",
-        "\n",
-        "# Count_Vectorizer returns sparse arrays (for computational reasons)\n",
-        "# but PyTorch will expect dense input:\n",
-        "x_train = x_train.toarray()\n",
-        "x_dev = x_dev.toarray()\n",
-        "\n",
-        "print(\"Train:\", x_train.shape)\n",
-        "print(\"Dev:\", x_dev.shape)"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "Mt00MaMmW1_P"
-      },
-      "source": [
-        "#### 2.1.2 Transform to tensors\n",
-        "\n",
-        "▶▶ **Create a dataset object within the PyTorch library:**\n",
-        "\n",
-        "Now we need to transform our data to tensors, in order to provide them as input to PyTorch. Follow the following steps:\n",
-        "\n",
-        "* 1- **torch.from_numpy( A_NUMPY_ARRAY )**: transform your array into a tensor\n",
-        "  * Note: you need to transform tensor type to float, with **MY_TENSOR.to(torch.float)** (or cryptic error saying it was expecting long...).\n",
-        "  * Print the shape of the tensor for your training data.\n",
-        "* 2- **torch.utils.data.TensorDataset(INPUT_TENSOR, TARGET_TENSOR)**: Dataset wrapping tensors. In particular: giv\n",
-        "  * Take tensors as inputs, \n",
-        "  \n",
-        "* 3- **torch.utils.data.DataLoader**: many arguments in the constructor:\n",
-        "  * In particular, *dataset* of the type TensorDataset can be used\n",
-        "  * We'd rather shuffling our data in general, can be done here by changing the value of one argument\n",
-        "  * Note also the possibility to change the batch_size, we'll talk about it later\n",
-        "\n",
-        "```\n",
-        "DataLoader(\n",
-        "    dataset,\n",
-        "    batch_size=1,\n",
-        "    shuffle=False,\n",
-        "    num_workers=0,\n",
-        "    collate_fn=None,\n",
-        "    pin_memory=False,\n",
-        " )\n",
-        " ```\n"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Useful imports\n",
-        "import torch\n",
-        "from torch.utils.data import TensorDataset, DataLoader"
-      ],
-      "metadata": {
-        "id": "x4gzAYdyFUoR"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "JMLPp3vnoxnG"
-      },
-      "source": [
-        "# create Tensor dataset\n",
-        "tensor_x_train = torch.from_numpy(x_train).to(torch.float)\n",
-        "print( tensor_x_train.shape )\n",
-        "train_data = TensorDataset( torch.from_numpy(x_train).to(torch.float), \n",
-        "                           torch.from_numpy(y_train))\n",
-        "\n",
-        "# dataloaders\n",
-        "batch_size = 1 #no batch, or batch = 1\n",
-        "\n",
-        "# make sure to SHUFFLE your data\n",
-        "train_loader = DataLoader( train_data, shuffle=True, batch_size=batch_size )"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "zOeZCY09o6CV"
-      },
-      "source": [
-        "## 2.2 Neural Network\n",
-        "\n",
-        "Now we can build our learning model.\n",
-        "\n",
-        "For this TP, we're going to walk through the code of a **simple feedforward neural network, with one hidden layer**.\n",
-        "\n",
-        "This network takes as input bag of words vectors, exactly as our 'classic' models: each review is represented by a vector of the size the number of tokens in the vocabulary with '1' when a word is present and '0' for the other words. "
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2.1 Questions\n",
-        "\n",
-        "▶▶ **What is the input dimension?** \n",
-        "\n",
-        "▶▶ **What is the output dimension?** "
-      ],
-      "metadata": {
-        "id": "5KOM7ofrKUte"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "BSK0j8YASriA"
-      },
-      "source": [
-        "▶▶ **What is the input dimension?** --> MAX FEATURES = 5000\n",
-        "\n",
-        "▶▶ **What is the output dimension?** --> number of classes = 2"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Useful imports\n",
-        "import torch\n",
-        "import torch.nn as nn"
-      ],
-      "metadata": {
-        "id": "DiNm2XwlG2_0"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2.2 Write the skeleton of the class\n",
-        "\n",
-        "▶▶ We're going to **define our own neural network type**, by defining a new class: \n",
-        "* The class is called **FeedforwardNeuralNetModel**\n",
-        "* it inherits from the class **nn.Module**\n",
-        "* the constructor takes the following arguments:\n",
-        "  * size of the input (i.e. **input_dim**)\n",
-        "  * size of the hidden layer (i.e. **hidden_dim**)\n",
-        "  * size of the output layer (i.e. **output_dim**)\n",
-        "* in the constructor, we will call the constructor of the parent class\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "bE4RgHUkGnGl"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Start to define the class corresponding to our type of neural network \n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "uKcge-oBG1HV"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class FeedforwardNeuralNetModel(nn.Module):\n",
-        "    def __init__(self, input_dim, hidden_dim, output_dim):\n",
-        "        super(FeedforwardNeuralNetModel, self).__init__()\n",
-        "        "
-      ],
-      "metadata": {
-        "id": "IyQinowpJ2ic"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2.3 Constructor\n",
-        "\n",
-        "▶▶ To continue the definition of our class, we need to explain how are built each layer of our network.\n",
-        "\n",
-        "More precisely, we're going to define:\n",
-        "* a function corresponding to the action of our hidden layer: \n",
-        "  * what kind of function is it ?\n",
-        "  * you need to indicate the size of the input and output for this function, what are they?\n",
-        "* a non linear function, that will be used on the ouput of our hidden layer\n",
-        "* a final output function: \n",
-        "  * what kind of function is it ?\n",
-        "  * you need to indicate the size of the input and output for this function, what are they? \n",
-        "\n",
-        "All the functions that can be used in Pytorch are defined here: https://pytorch.org/docs/stable/nn.functional.html\n",
-        "\n",
-        "Do you see things that you know?\n",
-        "\n",
-        "Hint: here you define fields of your class, these fields corresponding to specific kind of functions. \n",
-        "E.g. you're going to initialize a field such as **self.fc1=SPECIFIC_TYPE_OF_FCT(expected arguments)**."
-      ],
-      "metadata": {
-        "id": "0BHUuGKCHoU9"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Continue the definition of the class by defining three functions in your constructor\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "LN3aSTSaJNkp"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class FeedforwardNeuralNetModel(nn.Module):\n",
-        "    def __init__(self, input_dim, hidden_dim, output_dim):\n",
-        "        super(FeedforwardNeuralNetModel, self).__init__()\n",
-        "        \n",
-        "        # Linear function ==> W1\n",
-        "        self.fc1 = nn.Linear(input_dim, hidden_dim)\n",
-        "\n",
-        "        # Non-linearity ==> g\n",
-        "        self.sigmoid = nn.Sigmoid()\n",
-        "\n",
-        "        # Linear function (readout) ==> W2\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)  "
-      ],
-      "metadata": {
-        "id": "pIkm7Wc-J6ce"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "And that's it ;)"
-      ],
-      "metadata": {
-        "id": "uuN7LtHSKGDL"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2.4 The **forward** method\n",
-        "\n",
-        "The main function we have to write when defining a neural network is called the **forward** function.\n",
-        "This function computes the outputs of the network (the logit), it is thus used to train the network.\n",
-        "It details how we apply the functions defined in the constructor. \n",
-        "\n",
-        "Let's define this function, with the following signature, where x is the input to the network:\n",
-        "```\n",
-        "def forward(self, x):\n",
-        "```\n",
-        "\n",
-        "▶▶ Follow the steps:\n",
-        "* 1- Apply the first linear functiond defined in the constructor to **x**, i.e. go through the hidden layer.\n",
-        "* 2- Apply the non linear function to the output of step 1, i.e. use the activation function.\n",
-        "* 3- Apply the second linear functiond defined in the constructor to the output of step 2, i.e. go through the output layer.\n",
-        "* 4- Return the output of step 3.\n",
-        "\n",
-        "You're done!"
-      ],
-      "metadata": {
-        "id": "e2IMSprgKJ7K"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Define the forward function, used to make all the calculations\n",
-        "# through the network\n",
-        "def forward(self, x):\n",
-        "  ''' y = g(x.W1+b).W2 '''\n",
-        "  # ..."
-      ],
-      "metadata": {
-        "id": "8z-QpBt2NOlu"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "Kvmc-_zqoxvF"
-      },
-      "source": [
-        "class FeedforwardNeuralNetModel(nn.Module):\n",
-        "    def __init__(self, input_dim, hidden_dim, output_dim):\n",
-        "        super(FeedforwardNeuralNetModel, self).__init__()\n",
-        "        # Linear function ==> W1\n",
-        "        self.fc1 = nn.Linear(input_dim, hidden_dim)\n",
-        "\n",
-        "        # Non-linearity ==> g\n",
-        "        self.sigmoid = nn.Sigmoid()\n",
-        "\n",
-        "        # Linear function (readout) ==> W2\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)  \n",
-        "\n",
-        "    def forward(self, x):\n",
-        "        '''\n",
-        "        y = g(x.W1+b).W2\n",
-        "        '''\n",
-        "        # Linear function  # LINEAR ==> x.W1+b\n",
-        "        out = self.fc1(x)\n",
-        "\n",
-        "        # Non-linearity  # NON-LINEAR ==> h1 = g(x.W1+b)\n",
-        "        out = self.sigmoid(out) \n",
-        "\n",
-        "        # Linear function (readout)  # LINEAR ==> y = h1.W2\n",
-        "        out = self.fc2(out)\n",
-        "        return out"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 2.3 Training the network\n",
-        "\n",
-        "Now we can use our beautiful class to define and then train our own neural network."
-      ],
-      "metadata": {
-        "id": "sBrDXfQbO5yq"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "oWLDfLGxpBvn"
-      },
-      "source": [
-        "### 2.3.1 Hyper-parameters\n",
-        "\n",
-        "We need to set up the values for the hyper-parameters, and define the form of the loss and the optimization methods.\n",
-        "\n",
-        "▶▶ **Check that you understand what are each of the variables below** \n",
-        "* one that you prabably don't know is the learning rate, we'll explain it in the next course. Broadly speaking, it corresponds to the amount of update used during training."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "fcGyjXbUoxx9"
-      },
-      "source": [
-        "# Many choices here!\n",
-        "VOCAB_SIZE = MAX_FEATURES\n",
-        "input_dim = VOCAB_SIZE \n",
-        "hidden_dim = 4\n",
-        "output_dim = 2\n",
-        "num_epochs = 5\n",
-        "learning_rate = 0.1"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.3.2 Loss function\n",
-        "\n",
-        "Another thing that has to be decided is the kind of loss function we want to use.\n",
-        "Here we use a common one, called CrossEntropy. \n",
-        "We will come back in more details on this loss.\n",
-        "One important note is that this function in PyTorch includes the SoftMax function that should be applied after the output layer to get labels."
-      ],
-      "metadata": {
-        "id": "yyJINiVHPoWq"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "criterion = nn.CrossEntropyLoss()"
-      ],
-      "metadata": {
-        "id": "TVVy7hhrPl-K"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.3.3 Initialization of the model\n",
-        "\n",
-        "Now you can instantiate your class: define a model that is of the type FeedforwardNeuralNetModel using the values defined before as hyper-parameters."
-      ],
-      "metadata": {
-        "id": "kyY91BtPQIeo"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialization of the model\n",
-        "# ..."
-      ],
-      "metadata": {
-        "id": "hk_nev2-Q0m-"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "15WR_Jdtoxze"
-      },
-      "source": [
-        "# Initialization of the model\n",
-        "model = FeedforwardNeuralNetModel(input_dim, hidden_dim, output_dim)"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.3.4 Optimizer\n",
-        "\n",
-        "At last, we need to indicate the method we want to use to optimize our network.\n",
-        "Here, we use a common one called Stochastic Gradient Descent.\n",
-        "We will also go back on that later on.\n",
-        "\n",
-        "Note that its arguments are:\n",
-        "* the parameters of our models (the Ws)\n",
-        "* the learning rate\n",
-        "Based on these information, it can make the necessary updates. \n"
-      ],
-      "metadata": {
-        "id": "wBjNtZ-bQfSQ"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)"
-      ],
-      "metadata": {
-        "id": "A8AY0bU8Qhyf"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "OPt_VbCMqoD2"
-      },
-      "source": [
-        "### Training the network\n",
-        "\n",
-        "A simple code to train the neural network is given below.\n",
-        "\n",
-        "▶▶ **Run the code and look at the loss after each training step.** "
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "OnNx8hZJox3v"
-      },
-      "source": [
-        "# Start training\n",
-        "for epoch in range(num_epochs):\n",
-        "    train_loss, total_acc, total_count = 0, 0, 0\n",
-        "\n",
-        "    # for each instance + its associated label\n",
-        "    for input, label in train_loader:\n",
-        "\n",
-        "        # Clearing the accumulated gradients\n",
-        "        # torch *accumulates* gradients. Before passing in a\n",
-        "        # new instance, you need to zero out the gradients from the old\n",
-        "        # instance\n",
-        "        # Clear gradients w.r.t. parameters\n",
-        "        optimizer.zero_grad()\n",
-        "\n",
-        "        # ==> Forward pass to get output/logits \n",
-        "        # = apply all our functions: y = g(x.W1+b).W2\n",
-        "        outputs = model( input )\n",
-        "\n",
-        "        # ==> Calculate Loss: softmax --> cross entropy loss\n",
-        "        loss = criterion(outputs, label)\n",
-        "\n",
-        "        # Getting gradients w.r.t. parameters\n",
-        "        # Here is the way to find how to modify the parameters in\n",
-        "        # order to lower the loss\n",
-        "        loss.backward()\n",
-        "\n",
-        "        # ==> Updating parameters: you don t need to provide the loss here,\n",
-        "        # when computing the loss, the information is saved in the parameters\n",
-        "        # (more precisely, doing backward computes the gradients for all tensors,\n",
-        "        # and these gradients are saved by each tensor)\n",
-        "        optimizer.step()\n",
-        "\n",
-        "        # -- a useful print\n",
-        "        # Accumulating the loss over time\n",
-        "        train_loss += loss.item()\n",
-        "        total_acc += (outputs.argmax(1) == label).sum().item()\n",
-        "        total_count += label.size(0)\n",
-        "\n",
-        "    # Compute accuracy on train set at each epoch\n",
-        "    print('Epoch: {}. Loss: {}. ACC {} '.format(epoch, \n",
-        "                                                train_loss/x_train.shape[0], \n",
-        "                                                total_acc/x_train.shape[0]))\n",
-        "        \n",
-        "    total_acc, total_count = 0, 0\n",
-        "    train_loss = 0"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "tzMl5wdnqtCW"
-      },
-      "source": [
-        "### Evaluate the model "
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Useful imports\n",
-        "from sklearn.metrics import classification_report"
-      ],
-      "metadata": {
-        "id": "N8wxX85sSyPM"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "ldDubAPDox5K"
-      },
-      "source": [
-        "# create Tensor dataset\n",
-        "valid_data = TensorDataset( torch.from_numpy(x_dev).to(torch.float), \n",
-        "                           torch.from_numpy(y_dev))\n",
-        "valid_loader = DataLoader( valid_data )\n",
-        "\n",
-        "\n",
-        "# Disabling gradient calculation is useful for inference, \n",
-        "# when you are sure that you will not call Tensor.backward(). \n",
-        "predictions, gold = [], []\n",
-        "with torch.no_grad():\n",
-        "    for input, label in valid_loader:\n",
-        "        probs = model(input)\n",
-        "        predictions.append( torch.argmax(probs, dim=1).cpu().numpy()[0] )\n",
-        "        gold.append(int(label))\n",
-        "\n",
-        "print(classification_report(gold, predictions))"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "Hq-jspmLL387"
-      },
-      "source": [
-        "## 3. Move to GPU\n",
-        "\n",
-        "Below we indicate the modifications needed to make all the computations on GPU instead of CPU."
-      ]
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "pydK_h3QLZfO"
-      },
-      "source": [
-        "## 1- Define the device to be used\n",
-        "\n",
-        "# CUDA for PyTorch\n",
-        "use_cuda = torch.cuda.is_available()\n",
-        "device = torch.device(\"cuda\" if use_cuda else \"cpu\")\n",
-        "print(device)"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "PuV1OjAdMHOX"
-      },
-      "source": [
-        "## 2- No change here\n",
-        "\n",
-        "import torch\n",
-        "import torch.nn as nn\n",
-        "\n",
-        "class FeedforwardNeuralNetModel(nn.Module):\n",
-        "    def __init__(self, input_dim, hidden_dim, output_dim):\n",
-        "        super(FeedforwardNeuralNetModel, self).__init__()\n",
-        "        # Linear function ==> W1\n",
-        "        self.fc1 = nn.Linear(input_dim, hidden_dim)\n",
-        "\n",
-        "        # Non-linearity ==> g\n",
-        "        self.sigmoid = nn.Sigmoid()\n",
-        "\n",
-        "        # Linear function (readout) ==> W2\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)  \n",
-        "\n",
-        "    def forward(self, x):\n",
-        "        '''\n",
-        "        y = g(x.W1+b).W2\n",
-        "        '''\n",
-        "        # Linear function  # LINEAR ==> x.W1+b\n",
-        "        out = self.fc1(x)\n",
-        "\n",
-        "        # Non-linearity  # NON-LINEAR ==> h1 = g(x.W1+b)\n",
-        "        out = self.sigmoid(out) \n",
-        "\n",
-        "        # Linear function (readout)  # LINEAR ==> y = h1.W2\n",
-        "        out = self.fc2(out)\n",
-        "        return out"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "K7mmAyoPMziY"
-      },
-      "source": [
-        "## 3- Move your model to the GPU\n",
-        "\n",
-        "# Initialization of the model\n",
-        "model = FeedforwardNeuralNetModel(input_dim, hidden_dim, output_dim)\n",
-        "\n",
-        "optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)\n",
-        "\n",
-        "## ------------ CHANGE HERE -----------------\n",
-        "model = model.to(device)"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "ANibLgnhL9jU"
-      },
-      "source": [
-        "## 4- Move your data to GPU\n",
-        "\n",
-        "# Start training\n",
-        "for epoch in range(num_epochs):\n",
-        "    train_loss, total_acc, total_count = 0, 0, 0\n",
-        "    for input, label in train_loader:\n",
-        "        ## ------------ CHANGE HERE -----------------\n",
-        "        input = input.to(device)\n",
-        "        label = label.to(device)\n",
-        "\n",
-        "        # Clear gradients w.r.t. parameters\n",
-        "        optimizer.zero_grad()\n",
-        "\n",
-        "        # Forward pass to get output/logits\n",
-        "        outputs = model( input )\n",
-        "\n",
-        "        # Calculate Loss: softmax --> cross entropy loss\n",
-        "        loss = criterion(outputs, label)\n",
-        "\n",
-        "        # Getting gradients w.r.t. parameters\n",
-        "        loss.backward()\n",
-        "\n",
-        "        # Updating parameters\n",
-        "        optimizer.step()\n",
-        "\n",
-        "        # Accumulating the loss over time\n",
-        "        train_loss += loss.item()\n",
-        "        total_acc += (outputs.argmax(1) == label).sum().item()\n",
-        "        total_count += label.size(0)\n",
-        "\n",
-        "    # Compute accuracy on train set at each epoch\n",
-        "    print('Epoch: {}. Loss: {}. ACC {} '.format(epoch, \n",
-        "                                                train_loss/x_train.shape[0], \n",
-        "                                                total_acc/x_train.shape[0]))\n",
-        "        \n",
-        "    total_acc, total_count = 0, 0\n",
-        "    train_loss = 0"
-      ],
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "dSXQF-ViNUH4"
-      },
-      "source": [
-        "# -- 5- Again, move your data to GPU\n",
-        "\n",
-        "predictions = []\n",
-        "gold = []\n",
-        "\n",
-        "with torch.no_grad():\n",
-        "    for input, label in valid_loader:\n",
-        "        ## ------------ CHANGE HERE -----------------\n",
-        "        input = input.to(device)\n",
-        "        probs = model(input)\n",
-        "        #Here, we need CPU: else, it will generate the following error\n",
-        "        # can't convert cuda:0 device type tensor to numpy. \n",
-        "        # Use Tensor.cpu() to copy the tensor to host memory first.\n",
-        "        # (if we need a numpy array)\n",
-        "        predictions.append( torch.argmax(probs, dim=1).cpu().numpy()[0] )\n",
-        "        #print( probs )\n",
-        "        #print( torch.argmax(probs, dim=1) ) # Return the index of the max value\n",
-        "        #print( torch.argmax(probs, dim=1).cpu().numpy()[0] )\n",
-        "        gold.append(int(label))\n",
-        "\n",
-        "print(classification_report(gold, predictions))"
-      ],
-      "execution_count": null,
-      "outputs": []
-    }
-  ]
-}
\ No newline at end of file
diff --git a/notebooks/TP3_masterLiTL_2223.ipynb b/notebooks/TP3_masterLiTL_2223.ipynb
deleted file mode 100644
index 771f368f51f968f3331a931f98abfa06e2558e71..0000000000000000000000000000000000000000
--- a/notebooks/TP3_masterLiTL_2223.ipynb
+++ /dev/null
@@ -1,606 +0,0 @@
-{
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "id": "fleet-worry",
-      "metadata": {
-        "id": "fleet-worry"
-      },
-      "source": [
-        "# TP3: Word embeddings\n",
-        "Master LiTL\n",
-        "\n",
-        "\n",
-        "In this practical session, we will explore the generation of word embeddings.\n",
-        "\n",
-        "We will make use of *gensim* for generating word embeddings. \n",
-        "If you want to use your own computer you will need to make sure it is installed (e.g. using the command ```pip```). \n",
-        "If you’re using Anaconda/Miniconda, you can use the command ```conda install <modulename>```.\n",
-        "\n",
-        "Sources:\n",
-        "- Practical from T. van de Cruys\n",
-        "- https://machinelearningmastery.com/develop-word-embeddings-python-gensim/\n",
-        "- https://radimrehurek.com/gensim/models/word2vec.html\n",
-        "- https://www.shanelynn.ie/word-embeddings-in-python-with-spacy-and-gensim/: see an example based on the 20NewsGroup corpus\n",
-        "- http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/ \n",
-        "- (not used but seems interesting: https://www.machinelearningplus.com/nlp/gensim-tutorial/#14howtotrainword2vecmodelusinggensim)\n"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "id": "abandoned-basketball",
-      "metadata": {
-        "id": "abandoned-basketball"
-      },
-      "source": [
-        "## 1. Look at the data\n",
-        "\n",
-        "Upload the data: *corpus_food.txt.gz*. \n",
-        "The data come from blogs on cooking.\n",
-        "\n",
-        "You cab take a look at your data using a terminal and the following commands:\n",
-        "\n",
-        "* Number of lines:\n",
-        "```\n",
-        "$ wc -l corpus_food.txt\n",
-        "$ 1161270 corpus_food.txt\n",
-        "```\n",
-        "\n",
-        "* first ten lines:\n",
-        "```\n",
-        "$ head -n 10 corpus_food.txt\n",
-        "$ -mention meilleur espoir féminin : on aurait pu ajouter ioudgine .\n",
-        "malheureusement , comme presque tout ce qui est bon , c' est bourré de beurre et de sucre .\n",
-        "j' avais déjà façonné une recette allégée pour weight watchers mais elle contenait encore du beurre et un peu de sucre .\n",
-        "aujourd' hui je vous propose cette recette que j' ai improvisée hier soir , sans beurre et sans sucre .\n",
-        "n' empêche que pour acheter sa propre baguette magique ou pour déguster des bières au beurre , on pourrait partir au bout du monde !\n",
-        "menthe , sucre de canne , rhum , citron vert , sont vos meilleurs amis en soirée ?\n",
-        "parfois , on rêve d' un bon verre de vin .\n",
-        "la marque de biscuits oreo a pensé aux gourmandes et aux gourmands , et s' apprête à lancer des gâteaux dotés de nouvelles saveurs : caramel beurre salé et noix de coco .\n",
-        "rangez les parapluies , et sortez le sel et le citron !\n",
-        "le vin on adore le savourer avec modération .\n",
-        "```\n",
-        "\n",
-        "Première phrase bizarre mais sinon le début : http://www.leblogdelaura.com/2017/03/pancakes-sans-sucre-et-sans-graisses.html"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 2. Build word embeddings\n",
-        "\n",
-        "We  will  use *gensim* in  order  to  induce  word  embeddings  from  text.\n",
-        "*gensim* is  a  vector  space modeling and topic modeling toolkit for python, and contains an efficient implementation of the *word2vec* algorithms.\n",
-        "\n",
-        "*word2vec* consists of two different algorithms: *skipgram* (sg) and *continuous-bag-of-words* (cbow). \n",
-        "The underlying prediction task of the former is to estimate the context words from the target word ; the prediction task of the latter is to estimate the target word from the sum of the context words. \n",
-        "\n",
-        "### 2.1 Train a model\n",
-        "▶▶**Run the following code: it will build word embeddings based on the food corpus using the Word2Vec algorithm.**\n",
-        "The model will be saved on your disk."
-      ],
-      "metadata": {
-        "id": "FJbl3GWfFYms"
-      },
-      "id": "FJbl3GWfFYms"
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "impressed-consumer",
-      "metadata": {
-        "id": "impressed-consumer"
-      },
-      "outputs": [],
-      "source": [
-        "# potential Error: need to update smart_open with conda install smart_open==2.0.0 or pip install smart_open==2.0.0\n",
-        "\n",
-        "\n",
-        "# construct word2vec model using gensim\n",
-        "\n",
-        "from gensim.models import Word2Vec \n",
-        "\n",
-        "import gzip\n",
-        "import logging\n",
-        "\n",
-        "import time\n",
-        "\n",
-        "# set up logging for gensim\n",
-        "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',\n",
-        "                    level=logging.INFO)\n",
-        "\n",
-        "# we define a PlainTextCorpus class; this will provide us with an\n",
-        "# iterator over the corpus (so that we don't have to load the corpus\n",
-        "# into memory)\n",
-        "class PlainTextCorpus(object):\n",
-        "    def __init__(self, fileName):\n",
-        "        self.fileName = fileName\n",
-        "\n",
-        "    def __iter__(self):\n",
-        "        for line in gzip.open(self.fileName, 'rt', encoding='utf-8'):\n",
-        "            yield  line.split()\n",
-        "\n",
-        "# -- Instantiate the corpus class using corpus location\n",
-        "sentences = PlainTextCorpus('corpus_food.txt.gz')\n",
-        "\n",
-        "# -- Trianing\n",
-        "# we only take into account words with a frequency of at least 50, and\n",
-        "# we iterate over the corpus only once\n",
-        "model = Word2Vec(sentences, min_count=50, iter=1, sorted_vocab=1)\n",
-        "\n",
-        "# -- Finally, save the constructed model to disk\n",
-        "# When getting started, you can save the learned model in ASCII format and review the contents.\n",
-        "model.wv.save_word2vec_format('model_word2vec_food.txt', binary=False)\n",
-        "# by default, it is saved as binary\n",
-        "model.save('model_word2vec_food.bin')\n",
-        "# a model saved can be load again using:\n",
-        "#model = Word2Vec.load('model_word2vec_food.bin')"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "id": "bottom-tobacco",
-      "metadata": {
-        "id": "bottom-tobacco"
-      },
-      "source": [
-        "### 2.2 A few remarks:\n",
-        "\n",
-        "From: http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/\n",
-        "\n",
-        "#### Downsampling\n",
-        "\n",
-        "Subsampling frequent words to decrease the number of training examples.\n",
-        "\n",
-        "There are two “problems” with common words like “the”:\n",
-        "* When looking at word pairs, (“fox”, “the”) doesn’t tell us much about the meaning of “fox”. “the” appears in the context of pretty much every word.\n",
-        "* We will have many more samples of (“the”, …) than we need to learn a good vector for “the”.\n",
-        "\n",
-        "Word2Vec implements a “subsampling” scheme to address this. \n",
-        "For each word we encounter in our training text, there is a chance that we will effectively delete it from the text. \n",
-        "The probability that we cut the word is related to the word’s frequency.\n",
-        "\n",
-        "If we have a window size of 10, and we remove a specific instance of “the” from our text:\n",
-        "\n",
-        "* As we train on the remaining words, “the” will not appear in any of their context windows.\n",
-        "* We’ll have 10 fewer training samples where “the” is the input word.\n",
-        "\n",
-        "There is also a parameter in the code named ‘sample’ which controls how much subsampling occurs, and the default value is 0.001. Smaller values of ‘sample’ mean words are less likely to be kept.\n",
-        "\n",
-        "\n",
-        "#### Negative sampling (for SkipGram)\n",
-        "\n",
-        "Training a neural network means taking a training example and adjusting all of the neuron weights slightly so that it predicts that training sample more accurately. \n",
-        "In other words, each training sample will tweak all of the weights in the neural network --> prohibitive\n",
-        "\n",
-        "Negative sampling addresses this by having each training sample only modify a small percentage of the weights, rather than all of them.\n",
-        "\n",
-        "When training the network on the word pair (“fox”, “quick”), i.e. 'fox' is the target, 'quick' a context word: “quick” -> 1; all of the other thousands of output neurons -> 0.\n",
-        "\n",
-        "With negative sampling, we are instead going to randomly select just a small number of “negative” words (let’s say 5) to update the weights for: “quick” -> 1; 5 other random words -> 0.\n",
-        "\n",
-        "Recall that the output layer of our model has a weight matrix that’s dx|V|, e.g. 300 x 23,000. So we will just be updating the weights for our positive word (“quick”), plus the weights for 5 other words that we want to output 0. That’s a total of 6 output neurons, and 1,800 weight values total. That’s only 0.06% of the 3M weights in the output layer! (In the hidden layer, only the weights for the input word are updated -- this is true whether you’re using Negative Sampling or not)."
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.3 Print information about the model learned\n",
-        "Note that the corpus is food-related, so food-related terms will work best. \n",
-        "\n",
-        "You can print the vocabulary using:\n",
-        "```\n",
-        "vocabulary = list(model.wv.vocab)\n",
-        "```\n",
-        "\n",
-        "It is possible to look at the individual word embeddings using the following :\n",
-        "```\n",
-        "model.wv[’citron’]\n",
-        "```\n",
-        "```\n",
-        "print(model['citron'])\n",
-        "```\n",
-        "\n",
-        "Note: Your results may vary given the stochastic nature of the algorithm or evaluation procedure, or differences in numerical precision. Consider running the example a few times and compare the average outcome.\n",
-        "\n",
-        "▶▶ **Print the vocabulary and then the vectors for a few terms, e.g. 'citron' and 'fruit'. Do they seem close?**"
-      ],
-      "metadata": {
-        "id": "ZAgXv40pHQXs"
-      },
-      "id": "ZAgXv40pHQXs"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "vocabulary = list(model.wv.vocab)\n",
-        "model.wv[\"citron\"]\n",
-        "print(model['citron'])"
-      ],
-      "metadata": {
-        "id": "exp1yDyJx3y5"
-      },
-      "id": "exp1yDyJx3y5",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 3. Compute word similarity \n",
-        "\n",
-        "You can now compute similarity measure between word using\n",
-        "```\n",
-        "model.similarity('manger', goûter')\n",
-        "```\n",
-        "\n",
-        "You can also print the most similar words (which is measured by cosine similarity between the word vectors) by issuing the following command :\n",
-        "```\n",
-        "model.wv.most_similar(’citron’)\n",
-        "```\n",
-        "▶▶**Print the similarity between some terms, e.g. ('manger', 'boire'), ('manger', 'dormir') ... Do the results seem coherent?**\n",
-        "\n",
-        "▶▶**Print the words that are most similar to: 'citron', 'manger' and other words, e.g. not related to food. Do the results seem coherent?**"
-      ],
-      "metadata": {
-        "id": "eSm6IZ3IFTP9"
-      },
-      "id": "eSm6IZ3IFTP9"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "model.similarity(\"manger\", \"goûter\")\n",
-        "model.wv.most_similar(\"citron\")"
-      ],
-      "metadata": {
-        "id": "sSusMXEgX5Pd"
-      },
-      "id": "sSusMXEgX5Pd",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "id": "bigger-drink",
-      "metadata": {
-        "id": "bigger-drink"
-      },
-      "source": [
-        "##  4. Exercise: change the parameters values\n",
-        "\n",
-        "As a default, the *word2vec* module creates **word embeddings of size 100**, using a **cbow model** with a **window of 5 words**.\n",
-        "\n",
-        "▶▶**Train a model with different parameters:**\n",
-        "- using a different window size, \n",
-        "- using a different embedding size \n",
-        "- using *skipgram*, \n",
-        "\n",
-        "Inspect the results (similar words) qualitatively. Do the similarity computations change ? Are they better or worse ?\n",
-        "\n",
-        "See doc: https://radimrehurek.com/gensim_3.8.3/models/word2vec.html"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "vocabulary = list(model.wv.vocab)\n",
-        "model = Word2Vec(sentences, size=100, window=5, min_count=1, workers=4)\n",
-        "model.wv[\"citron\"]\n",
-        "print(model['citron'])"
-      ],
-      "metadata": {
-        "id": "L0L-muU3yEDr"
-      },
-      "id": "L0L-muU3yEDr",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "id": "least-justice",
-      "metadata": {
-        "id": "least-justice"
-      },
-      "source": [
-        "## 5. Analogical reasoning\n",
-        "\n",
-        "As  we  saw  in  class,  word  embeddings  allow  us  to  do  analogical  reasoning  using  vector  addiction and subtraction. *gensim* offers the possibility to do so. \n",
-        "\n",
-        "▶▶ **Try to perform analogical reasoning in the food  realm,  e.g.  fourchette - légume  +  soupe  = ?**\n",
-        "\n",
-        "Hint  :  the  function  *most_similar()*  takes  arguments positive and negative. \n",
-        "\n",
-        "▶▶ **Try the same using the function most_similar_cosmul()** (which performs a similar computation but uses multiplication and division instead), and see what works best\n",
-        "\n",
-        "See: https://tedboy.github.io/nlps/generated/generated/gensim.models.Word2Vec.most_similar.html\n",
-        "\n",
-        "https://tedboy.github.io/nlps/generated/generated/gensim.models.Word2Vec.most_similar_cosmul.html"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "removable-validity",
-      "metadata": {
-        "id": "removable-validity"
-      },
-      "outputs": [],
-      "source": [
-        "#model.most_similar(positive=[\"fourchette\",\"soupe\"], negative=[\"légume\"])\n",
-        "model.most_similar_cosmul(positive=[\"fourchette\",\"soupe\"], negative=[\"légume\"])"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 6. Visualize word embeddings\n",
-        "\n",
-        "After you learn word embedding for your text data, it can be nice to explore it with visualization.\n",
-        "\n",
-        "You can use classical projection methods to reduce the high-dimensional word vectors to two-dimensional plots and plot them on a graph.\n",
-        "\n",
-        "The visualizations can provide a qualitative diagnostic for your learned model.\n",
-        "\n",
-        "We can retrieve all of the vectors from a trained model as follows:\n",
-        "```\n",
-        "X = model[model.wv.vocab]\n",
-        "```\n",
-        "\n",
-        "We can then train a projection method on the vectors, such as those methods offered in scikit-learn, then use matplotlib to plot the projection as a scatter plot.\n",
-        "\n",
-        "Let’s look at an example with Principal Component Analysis or PCA."
-      ],
-      "metadata": {
-        "id": "NrSg7OJhKP5_"
-      },
-      "id": "NrSg7OJhKP5_"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "X = model[list(model.wv.vocab)[:1000]]\n",
-        "print(X.shape)"
-      ],
-      "metadata": {
-        "id": "OGnQezWkGwnt"
-      },
-      "id": "OGnQezWkGwnt",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 6.1 Using PCA\n",
-        "\n",
-        "We can create a 2-dimensional PCA model of the word vectors using the scikit-learn PCA class as follows."
-      ],
-      "metadata": {
-        "id": "V3GEpKVfKxMe"
-      },
-      "id": "V3GEpKVfKxMe"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from sklearn.decomposition import PCA\n",
-        "\n",
-        "pca = PCA(n_components=2)\n",
-        "result = pca.fit_transform(X)"
-      ],
-      "metadata": {
-        "id": "TDPHq7XVGwqb"
-      },
-      "id": "TDPHq7XVGwqb",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from matplotlib import pyplot\n",
-        "\n",
-        "pyplot.scatter(result[:, 0], result[:, 1])"
-      ],
-      "metadata": {
-        "id": "TPxqh9N0Gwta"
-      },
-      "id": "TPxqh9N0Gwta",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "We can go one step further and annotate the points on the graph with the words themselves. A crude version without any nice offsets looks as follows."
-      ],
-      "metadata": {
-        "id": "MUW6T3b4LPE7"
-      },
-      "id": "MUW6T3b4LPE7"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "pyplot.scatter(result[:, 0], result[:, 1])\n",
-        "words = list(model.wv.vocab)[:1000]\n",
-        "for i, word in enumerate(words):\n",
-        "\tpyplot.annotate(word, xy=(result[i, 0], result[i, 1]))\n",
-        "#pyplot.show()\n",
-        "pyplot.savefig('plot_w2v.png')"
-      ],
-      "metadata": {
-        "id": "87nkrdIsGwuv"
-      },
-      "id": "87nkrdIsGwuv",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "pyplot.scatter(result[:, 0], result[:, 1])\n",
-        "words = list(model.wv.vocab)[:100]\n",
-        "for i, word in enumerate(words):\n",
-        "\tpyplot.annotate(word, xy=(result[i, 0], result[i, 1]))\n",
-        "#pyplot.show()\n",
-        "pyplot.savefig('plot_w2v.png')"
-      ],
-      "metadata": {
-        "id": "E79KLz3ARN14"
-      },
-      "id": "E79KLz3ARN14",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 6.2 Using TensorFlow projector\n",
-        "\n",
-        "As we saw during the course, TensorFlow provides a tool to vizualize word embeddings. We need to provide:    \n",
-        "* A TSV file with the vectors\n",
-        "* Another TSV file with the words\n",
-        "\n",
-        "The following code allows to write this file from the model. \n",
-        "\n",
-        "It comes from the source code of the script: https://radimrehurek.com/gensim/scripts/word2vec2tensor.html \n",
-        "\n",
-        "▶▶ **Run the followng code and then load the files within the TensorFlow projector. Look e.g. for 'citron', 'manger', 'pain'..., check their neighbors (with PCA and/or T-SNE).**\n",
-        "\n",
-        "https://projector.tensorflow.org/"
-      ],
-      "metadata": {
-        "id": "fCr9WTKLVRLM"
-      },
-      "id": "fCr9WTKLVRLM"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "#model = gensim.models.Word2Vec.load_word2vec_format(model_path, binary=True)\n",
-        "tensorsfp = \"model_word2vec_food_tensor.tsv\"\n",
-        "metadatafp = \"metadata_word2vec_food_tensor.tsv\"\n",
-        "with open( tensorsfp, 'w+') as tensors:\n",
-        "    with open( metadatafp, 'w+') as metadata:\n",
-        "         for word  in model.wv.index2word:\n",
-        "           metadata.write(word + '\\n')\n",
-        "           vector_row = '\\t'.join(map(str, model[word]))\n",
-        "           tensors.write(vector_row + '\\n')"
-      ],
-      "metadata": {
-        "id": "I40CgQgJTSKd"
-      },
-      "id": "I40CgQgJTSKd",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 7. Embeddings with multiword ngrams\n",
-        "\n",
-        "There is a *gensim.models.phrases* module which lets you automatically detect phrases longer than one word, using collocation statistics. Using phrases, you can learn a word2vec model where “words” are actually multiword expressions, such as new_york_times or financial_crisis:\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "wY8HkerUhbc7"
-      },
-      "id": "wY8HkerUhbc7"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from gensim.models import Phrases\n",
-        "\n",
-        "# Train a bigram detector.\n",
-        "bigram_transformer = Phrases(sentences)\n",
-        "\n",
-        "# Apply the trained MWE detector to a corpus, using the result to train a Word2vec model.\n",
-        "model = Word2Vec(bigram_transformer[sentences], min_count=10, iter=1)"
-      ],
-      "metadata": {
-        "id": "RaYOSCa-TSUy"
-      },
-      "id": "RaYOSCa-TSUy",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "print(list(model.wv.vocab))"
-      ],
-      "metadata": {
-        "id": "DOjkiWcUhwmH"
-      },
-      "id": "DOjkiWcUhwmH",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "If you’re finished training a model (i.e. no more updates, only querying), you can switch to the KeyedVectors instance:\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "gbdjeIUlhUvD"
-      },
-      "id": "gbdjeIUlhUvD"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "word_vectors = model.wv\n",
-        "del model"
-      ],
-      "metadata": {
-        "id": "foTRPTM9TSWc"
-      },
-      "id": "foTRPTM9TSWc",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 8. Other algorithms\n",
-        "\n",
-        "Probably not enough time, but note that you can also build embeddings using FastText algorithm with Gensim. Doc2vec is also available.\n",
-        "\n",
-        "https://radimrehurek.com/gensim/apiref.html\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "mQDB2hnXxP4Z"
-      },
-      "id": "mQDB2hnXxP4Z"
-    }
-  ],
-  "metadata": {
-    "kernelspec": {
-      "display_name": "Python 3",
-      "language": "python",
-      "name": "python3"
-    },
-    "language_info": {
-      "codemirror_mode": {
-        "name": "ipython",
-        "version": 3
-      },
-      "file_extension": ".py",
-      "mimetype": "text/x-python",
-      "name": "python",
-      "nbconvert_exporter": "python",
-      "pygments_lexer": "ipython3",
-      "version": "3.7.9"
-    },
-    "colab": {
-      "provenance": []
-    }
-  },
-  "nbformat": 4,
-  "nbformat_minor": 5
-}
\ No newline at end of file
diff --git a/notebooks/TP3_masterLiTL_CORRECT_2223.ipynb b/notebooks/TP3_masterLiTL_CORRECT_2223.ipynb
deleted file mode 100644
index 216b5666bb28891654040819b2b788a38525f4fc..0000000000000000000000000000000000000000
--- a/notebooks/TP3_masterLiTL_CORRECT_2223.ipynb
+++ /dev/null
@@ -1,3369 +0,0 @@
-{
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "id": "fleet-worry",
-      "metadata": {
-        "id": "fleet-worry"
-      },
-      "source": [
-        "# TP3: Word embeddings\n",
-        "Master LiTL\n",
-        "\n",
-        "\n",
-        "In this practical session, we will explore the generation of word embeddings.\n",
-        "\n",
-        "We will make use of *gensim* for generating word embeddings. \n",
-        "If you want to use your own computer you will need to make sure it is installed (e.g. using the command ```pip```). \n",
-        "If you’re using Anaconda/Miniconda, you can use the command ```conda install <modulename>```.\n",
-        "\n",
-        "Sources:\n",
-        "- Practical from T. van de Cruys\n",
-        "- https://machinelearningmastery.com/develop-word-embeddings-python-gensim/\n",
-        "- https://radimrehurek.com/gensim/models/word2vec.html\n",
-        "- https://www.shanelynn.ie/word-embeddings-in-python-with-spacy-and-gensim/: see an example based on the 20NewsGroup corpus\n",
-        "- http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/ \n",
-        "- (not used but seems interesting: https://www.machinelearningplus.com/nlp/gensim-tutorial/#14howtotrainword2vecmodelusinggensim)\n"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "id": "abandoned-basketball",
-      "metadata": {
-        "id": "abandoned-basketball"
-      },
-      "source": [
-        "## 1. Look at the data\n",
-        "\n",
-        "Upload the data: *corpus_food.txt.gz*. \n",
-        "The data come from blogs on cooking.\n",
-        "\n",
-        "You cab take a look at your data using a terminal and the following commands:\n",
-        "\n",
-        "* Number of lines:\n",
-        "```\n",
-        "$ wc -l corpus_food.txt\n",
-        "$ 1161270 corpus_food.txt\n",
-        "```\n",
-        "\n",
-        "* first ten lines:\n",
-        "```\n",
-        "$ head -n 10 corpus_food.txt\n",
-        "$ -mention meilleur espoir féminin : on aurait pu ajouter ioudgine .\n",
-        "malheureusement , comme presque tout ce qui est bon , c' est bourré de beurre et de sucre .\n",
-        "j' avais déjà façonné une recette allégée pour weight watchers mais elle contenait encore du beurre et un peu de sucre .\n",
-        "aujourd' hui je vous propose cette recette que j' ai improvisée hier soir , sans beurre et sans sucre .\n",
-        "n' empêche que pour acheter sa propre baguette magique ou pour déguster des bières au beurre , on pourrait partir au bout du monde !\n",
-        "menthe , sucre de canne , rhum , citron vert , sont vos meilleurs amis en soirée ?\n",
-        "parfois , on rêve d' un bon verre de vin .\n",
-        "la marque de biscuits oreo a pensé aux gourmandes et aux gourmands , et s' apprête à lancer des gâteaux dotés de nouvelles saveurs : caramel beurre salé et noix de coco .\n",
-        "rangez les parapluies , et sortez le sel et le citron !\n",
-        "le vin on adore le savourer avec modération .\n",
-        "```\n",
-        "\n",
-        "Première phrase bizarre mais sinon le début : http://www.leblogdelaura.com/2017/03/pancakes-sans-sucre-et-sans-graisses.html"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 2. Build word embeddings\n",
-        "\n",
-        "We  will  use *gensim* in  order  to  induce  word  embeddings  from  text.\n",
-        "*gensim* is  a  vector  space modeling and topic modeling toolkit for python, and contains an efficient implementation of the *word2vec* algorithms.\n",
-        "\n",
-        "*word2vec* consists of two different algorithms: *skipgram* (sg) and *continuous-bag-of-words* (cbow). \n",
-        "The underlying prediction task of the former is to estimate the context words from the target word ; the prediction task of the latter is to estimate the target word from the sum of the context words. \n",
-        "\n",
-        "### 2.1 Train a model\n",
-        "▶▶**Run the following code: it will build word embeddings based on the food corpus using the Word2Vec algorithm.**\n",
-        "The model will be saved on your disk."
-      ],
-      "metadata": {
-        "id": "FJbl3GWfFYms"
-      },
-      "id": "FJbl3GWfFYms"
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "impressed-consumer",
-      "metadata": {
-        "id": "impressed-consumer",
-        "outputId": "a4c35014-0a5b-4bc9-8a99-1828e0897dc4",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        }
-      },
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "2021-12-09 14:14:45,066 : INFO : collecting all words and their counts\n",
-            "2021-12-09 14:14:45,068 : INFO : PROGRESS: at sentence #0, processed 0 words, keeping 0 word types\n",
-            "2021-12-09 14:14:45,166 : INFO : PROGRESS: at sentence #10000, processed 225563 words, keeping 17928 word types\n",
-            "2021-12-09 14:14:45,311 : INFO : PROGRESS: at sentence #20000, processed 577005 words, keeping 40446 word types\n",
-            "2021-12-09 14:14:45,463 : INFO : PROGRESS: at sentence #30000, processed 938610 words, keeping 57857 word types\n",
-            "2021-12-09 14:14:45,585 : INFO : PROGRESS: at sentence #40000, processed 1243762 words, keeping 68383 word types\n",
-            "2021-12-09 14:14:45,691 : INFO : PROGRESS: at sentence #50000, processed 1509850 words, keeping 70533 word types\n",
-            "2021-12-09 14:14:45,845 : INFO : PROGRESS: at sentence #60000, processed 1850069 words, keeping 82875 word types\n",
-            "2021-12-09 14:14:45,957 : INFO : PROGRESS: at sentence #70000, processed 2100079 words, keeping 87384 word types\n",
-            "2021-12-09 14:14:46,107 : INFO : PROGRESS: at sentence #80000, processed 2443972 words, keeping 99116 word types\n",
-            "2021-12-09 14:14:46,208 : INFO : PROGRESS: at sentence #90000, processed 2696025 words, keeping 102244 word types\n",
-            "2021-12-09 14:14:46,323 : INFO : PROGRESS: at sentence #100000, processed 2981985 words, keeping 105882 word types\n",
-            "2021-12-09 14:14:46,465 : INFO : PROGRESS: at sentence #110000, processed 3315886 words, keeping 115725 word types\n",
-            "2021-12-09 14:14:46,570 : INFO : PROGRESS: at sentence #120000, processed 3582186 words, keeping 119014 word types\n",
-            "2021-12-09 14:14:46,686 : INFO : PROGRESS: at sentence #130000, processed 3859527 words, keeping 122724 word types\n",
-            "2021-12-09 14:14:46,851 : INFO : PROGRESS: at sentence #140000, processed 4215699 words, keeping 133218 word types\n",
-            "2021-12-09 14:14:46,956 : INFO : PROGRESS: at sentence #150000, processed 4465459 words, keeping 136616 word types\n",
-            "2021-12-09 14:14:47,079 : INFO : PROGRESS: at sentence #160000, processed 4756081 words, keeping 141707 word types\n",
-            "2021-12-09 14:14:47,227 : INFO : PROGRESS: at sentence #170000, processed 5099599 words, keeping 150950 word types\n",
-            "2021-12-09 14:14:47,334 : INFO : PROGRESS: at sentence #180000, processed 5354527 words, keeping 153394 word types\n",
-            "2021-12-09 14:14:47,428 : INFO : PROGRESS: at sentence #190000, processed 5622983 words, keeping 154248 word types\n",
-            "2021-12-09 14:14:47,517 : INFO : PROGRESS: at sentence #200000, processed 5884849 words, keeping 155053 word types\n",
-            "2021-12-09 14:14:47,607 : INFO : PROGRESS: at sentence #210000, processed 6145297 words, keeping 155920 word types\n",
-            "2021-12-09 14:14:47,714 : INFO : PROGRESS: at sentence #220000, processed 6414040 words, keeping 157778 word types\n",
-            "2021-12-09 14:14:47,839 : INFO : PROGRESS: at sentence #230000, processed 6711537 words, keeping 162048 word types\n",
-            "2021-12-09 14:14:47,955 : INFO : PROGRESS: at sentence #240000, processed 6961377 words, keeping 166493 word types\n",
-            "2021-12-09 14:14:48,094 : INFO : PROGRESS: at sentence #250000, processed 7269924 words, keeping 171601 word types\n",
-            "2021-12-09 14:14:48,240 : INFO : PROGRESS: at sentence #260000, processed 7572737 words, keeping 177533 word types\n",
-            "2021-12-09 14:14:48,372 : INFO : PROGRESS: at sentence #270000, processed 7865663 words, keeping 183079 word types\n",
-            "2021-12-09 14:14:48,503 : INFO : PROGRESS: at sentence #280000, processed 8163702 words, keeping 188114 word types\n",
-            "2021-12-09 14:14:48,635 : INFO : PROGRESS: at sentence #290000, processed 8467384 words, keeping 192261 word types\n",
-            "2021-12-09 14:14:48,790 : INFO : PROGRESS: at sentence #300000, processed 8786003 words, keeping 196278 word types\n",
-            "2021-12-09 14:14:48,929 : INFO : PROGRESS: at sentence #310000, processed 9100416 words, keeping 199886 word types\n",
-            "2021-12-09 14:14:49,060 : INFO : PROGRESS: at sentence #320000, processed 9386761 words, keeping 202767 word types\n",
-            "2021-12-09 14:14:49,199 : INFO : PROGRESS: at sentence #330000, processed 9682471 words, keeping 205607 word types\n",
-            "2021-12-09 14:14:49,328 : INFO : PROGRESS: at sentence #340000, processed 9963364 words, keeping 208585 word types\n",
-            "2021-12-09 14:14:49,467 : INFO : PROGRESS: at sentence #350000, processed 10274773 words, keeping 212136 word types\n",
-            "2021-12-09 14:14:49,606 : INFO : PROGRESS: at sentence #360000, processed 10578702 words, keeping 215158 word types\n",
-            "2021-12-09 14:14:49,738 : INFO : PROGRESS: at sentence #370000, processed 10863737 words, keeping 217890 word types\n",
-            "2021-12-09 14:14:49,855 : INFO : PROGRESS: at sentence #380000, processed 11101088 words, keeping 221226 word types\n",
-            "2021-12-09 14:14:49,940 : INFO : PROGRESS: at sentence #390000, processed 11293353 words, keeping 222777 word types\n",
-            "2021-12-09 14:14:50,068 : INFO : PROGRESS: at sentence #400000, processed 11578113 words, keeping 226480 word types\n",
-            "2021-12-09 14:14:50,174 : INFO : PROGRESS: at sentence #410000, processed 11817502 words, keeping 229059 word types\n",
-            "2021-12-09 14:14:50,287 : INFO : PROGRESS: at sentence #420000, processed 12073310 words, keeping 232543 word types\n",
-            "2021-12-09 14:14:50,366 : INFO : PROGRESS: at sentence #430000, processed 12239667 words, keeping 234294 word types\n",
-            "2021-12-09 14:14:50,464 : INFO : PROGRESS: at sentence #440000, processed 12465649 words, keeping 236471 word types\n",
-            "2021-12-09 14:14:50,540 : INFO : PROGRESS: at sentence #450000, processed 12640016 words, keeping 237753 word types\n",
-            "2021-12-09 14:14:50,657 : INFO : PROGRESS: at sentence #460000, processed 12914272 words, keeping 239984 word types\n",
-            "2021-12-09 14:14:50,779 : INFO : PROGRESS: at sentence #470000, processed 13170164 words, keeping 242719 word types\n",
-            "2021-12-09 14:14:50,872 : INFO : PROGRESS: at sentence #480000, processed 13395346 words, keeping 243844 word types\n",
-            "2021-12-09 14:14:50,970 : INFO : PROGRESS: at sentence #490000, processed 13623967 words, keeping 245472 word types\n",
-            "2021-12-09 14:14:51,073 : INFO : PROGRESS: at sentence #500000, processed 13856058 words, keeping 246782 word types\n",
-            "2021-12-09 14:14:51,196 : INFO : PROGRESS: at sentence #510000, processed 14165789 words, keeping 249255 word types\n",
-            "2021-12-09 14:14:51,296 : INFO : PROGRESS: at sentence #520000, processed 14390623 words, keeping 250744 word types\n",
-            "2021-12-09 14:14:51,407 : INFO : PROGRESS: at sentence #530000, processed 14649350 words, keeping 253433 word types\n",
-            "2021-12-09 14:14:51,516 : INFO : PROGRESS: at sentence #540000, processed 14901362 words, keeping 256289 word types\n",
-            "2021-12-09 14:14:51,644 : INFO : PROGRESS: at sentence #550000, processed 15183462 words, keeping 259543 word types\n",
-            "2021-12-09 14:14:51,774 : INFO : PROGRESS: at sentence #560000, processed 15484113 words, keeping 262631 word types\n",
-            "2021-12-09 14:14:51,901 : INFO : PROGRESS: at sentence #570000, processed 15766487 words, keeping 265682 word types\n",
-            "2021-12-09 14:14:52,020 : INFO : PROGRESS: at sentence #580000, processed 16039019 words, keeping 268568 word types\n",
-            "2021-12-09 14:14:52,142 : INFO : PROGRESS: at sentence #590000, processed 16308605 words, keeping 270912 word types\n",
-            "2021-12-09 14:14:52,253 : INFO : PROGRESS: at sentence #600000, processed 16550906 words, keeping 272955 word types\n",
-            "2021-12-09 14:14:52,350 : INFO : PROGRESS: at sentence #610000, processed 16764303 words, keeping 275088 word types\n",
-            "2021-12-09 14:14:52,468 : INFO : PROGRESS: at sentence #620000, processed 17064329 words, keeping 277137 word types\n",
-            "2021-12-09 14:14:52,586 : INFO : PROGRESS: at sentence #630000, processed 17321800 words, keeping 279585 word types\n",
-            "2021-12-09 14:14:52,702 : INFO : PROGRESS: at sentence #640000, processed 17574611 words, keeping 281959 word types\n",
-            "2021-12-09 14:14:52,802 : INFO : PROGRESS: at sentence #650000, processed 17767660 words, keeping 283659 word types\n",
-            "2021-12-09 14:14:52,896 : INFO : PROGRESS: at sentence #660000, processed 17975982 words, keeping 285244 word types\n",
-            "2021-12-09 14:14:53,001 : INFO : PROGRESS: at sentence #670000, processed 18204699 words, keeping 287430 word types\n",
-            "2021-12-09 14:14:53,126 : INFO : PROGRESS: at sentence #680000, processed 18469750 words, keeping 289796 word types\n",
-            "2021-12-09 14:14:53,239 : INFO : PROGRESS: at sentence #690000, processed 18727388 words, keeping 291813 word types\n",
-            "2021-12-09 14:14:53,356 : INFO : PROGRESS: at sentence #700000, processed 18990506 words, keeping 294341 word types\n",
-            "2021-12-09 14:14:53,468 : INFO : PROGRESS: at sentence #710000, processed 19245564 words, keeping 296330 word types\n",
-            "2021-12-09 14:14:53,592 : INFO : PROGRESS: at sentence #720000, processed 19498061 words, keeping 298479 word types\n",
-            "2021-12-09 14:14:53,711 : INFO : PROGRESS: at sentence #730000, processed 19768141 words, keeping 300820 word types\n",
-            "2021-12-09 14:14:53,825 : INFO : PROGRESS: at sentence #740000, processed 20007749 words, keeping 302109 word types\n",
-            "2021-12-09 14:14:53,949 : INFO : PROGRESS: at sentence #750000, processed 20279512 words, keeping 304828 word types\n",
-            "2021-12-09 14:14:54,070 : INFO : PROGRESS: at sentence #760000, processed 20550456 words, keeping 307007 word types\n",
-            "2021-12-09 14:14:54,185 : INFO : PROGRESS: at sentence #770000, processed 20802902 words, keeping 308697 word types\n",
-            "2021-12-09 14:14:54,307 : INFO : PROGRESS: at sentence #780000, processed 21081124 words, keeping 311136 word types\n",
-            "2021-12-09 14:14:54,422 : INFO : PROGRESS: at sentence #790000, processed 21348998 words, keeping 312932 word types\n",
-            "2021-12-09 14:14:54,544 : INFO : PROGRESS: at sentence #800000, processed 21623252 words, keeping 314817 word types\n",
-            "2021-12-09 14:14:54,667 : INFO : PROGRESS: at sentence #810000, processed 21897534 words, keeping 316999 word types\n",
-            "2021-12-09 14:14:54,780 : INFO : PROGRESS: at sentence #820000, processed 22140050 words, keeping 318484 word types\n",
-            "2021-12-09 14:14:54,882 : INFO : PROGRESS: at sentence #830000, processed 22352306 words, keeping 319975 word types\n",
-            "2021-12-09 14:14:54,994 : INFO : PROGRESS: at sentence #840000, processed 22600070 words, keeping 321714 word types\n",
-            "2021-12-09 14:14:55,118 : INFO : PROGRESS: at sentence #850000, processed 22877333 words, keeping 323950 word types\n",
-            "2021-12-09 14:14:55,227 : INFO : PROGRESS: at sentence #860000, processed 23123404 words, keeping 325301 word types\n",
-            "2021-12-09 14:14:55,309 : INFO : PROGRESS: at sentence #870000, processed 23309866 words, keeping 326318 word types\n",
-            "2021-12-09 14:14:55,413 : INFO : PROGRESS: at sentence #880000, processed 23527942 words, keeping 328076 word types\n",
-            "2021-12-09 14:14:55,513 : INFO : PROGRESS: at sentence #890000, processed 23757208 words, keeping 329680 word types\n",
-            "2021-12-09 14:14:55,624 : INFO : PROGRESS: at sentence #900000, processed 24002251 words, keeping 331477 word types\n",
-            "2021-12-09 14:14:55,742 : INFO : PROGRESS: at sentence #910000, processed 24288687 words, keeping 332364 word types\n",
-            "2021-12-09 14:14:55,865 : INFO : PROGRESS: at sentence #920000, processed 24543879 words, keeping 333964 word types\n",
-            "2021-12-09 14:14:55,980 : INFO : PROGRESS: at sentence #930000, processed 24809243 words, keeping 335779 word types\n",
-            "2021-12-09 14:14:56,097 : INFO : PROGRESS: at sentence #940000, processed 25062466 words, keeping 337657 word types\n",
-            "2021-12-09 14:14:56,211 : INFO : PROGRESS: at sentence #950000, processed 25311455 words, keeping 339686 word types\n",
-            "2021-12-09 14:14:56,307 : INFO : PROGRESS: at sentence #960000, processed 25518623 words, keeping 340904 word types\n",
-            "2021-12-09 14:14:56,399 : INFO : PROGRESS: at sentence #970000, processed 25722593 words, keeping 342185 word types\n",
-            "2021-12-09 14:14:56,518 : INFO : PROGRESS: at sentence #980000, processed 25990527 words, keeping 343595 word types\n",
-            "2021-12-09 14:14:56,632 : INFO : PROGRESS: at sentence #990000, processed 26253387 words, keeping 345288 word types\n",
-            "2021-12-09 14:14:56,757 : INFO : PROGRESS: at sentence #1000000, processed 26526173 words, keeping 347218 word types\n",
-            "2021-12-09 14:14:56,884 : INFO : PROGRESS: at sentence #1010000, processed 26794546 words, keeping 349267 word types\n",
-            "2021-12-09 14:14:57,036 : INFO : PROGRESS: at sentence #1020000, processed 27084482 words, keeping 351294 word types\n",
-            "2021-12-09 14:14:57,152 : INFO : PROGRESS: at sentence #1030000, processed 27332440 words, keeping 352733 word types\n",
-            "2021-12-09 14:14:57,261 : INFO : PROGRESS: at sentence #1040000, processed 27572431 words, keeping 353933 word types\n",
-            "2021-12-09 14:14:57,377 : INFO : PROGRESS: at sentence #1050000, processed 27824398 words, keeping 355366 word types\n",
-            "2021-12-09 14:14:57,486 : INFO : PROGRESS: at sentence #1060000, processed 28062062 words, keeping 356931 word types\n",
-            "2021-12-09 14:14:57,601 : INFO : PROGRESS: at sentence #1070000, processed 28311350 words, keeping 358369 word types\n",
-            "2021-12-09 14:14:57,704 : INFO : PROGRESS: at sentence #1080000, processed 28536605 words, keeping 359522 word types\n",
-            "2021-12-09 14:14:57,817 : INFO : PROGRESS: at sentence #1090000, processed 28797405 words, keeping 360915 word types\n",
-            "2021-12-09 14:14:57,944 : INFO : PROGRESS: at sentence #1100000, processed 29056639 words, keeping 362781 word types\n",
-            "2021-12-09 14:14:58,053 : INFO : PROGRESS: at sentence #1110000, processed 29301469 words, keeping 364164 word types\n",
-            "2021-12-09 14:14:58,172 : INFO : PROGRESS: at sentence #1120000, processed 29567027 words, keeping 365897 word types\n",
-            "2021-12-09 14:14:58,305 : INFO : PROGRESS: at sentence #1130000, processed 29854534 words, keeping 367714 word types\n",
-            "2021-12-09 14:14:58,418 : INFO : PROGRESS: at sentence #1140000, processed 30119177 words, keeping 369036 word types\n",
-            "2021-12-09 14:14:58,528 : INFO : PROGRESS: at sentence #1150000, processed 30368650 words, keeping 370630 word types\n",
-            "2021-12-09 14:14:58,651 : INFO : PROGRESS: at sentence #1160000, processed 30632128 words, keeping 372431 word types\n",
-            "2021-12-09 14:14:58,671 : INFO : collected 372759 word types from a corpus of 30667537 raw words and 1161270 sentences\n",
-            "2021-12-09 14:14:58,672 : INFO : Loading a fresh vocabulary\n",
-            "2021-12-09 14:14:58,892 : INFO : effective_min_count=50 retains 20354 unique words (5% of original 372759, drops 352405)\n",
-            "2021-12-09 14:14:58,896 : INFO : effective_min_count=50 leaves 29335586 word corpus (95% of original 30667537, drops 1331951)\n",
-            "2021-12-09 14:14:58,972 : INFO : deleting the raw counts dictionary of 372759 items\n",
-            "2021-12-09 14:14:58,987 : INFO : sample=0.001 downsamples 50 most-common words\n",
-            "2021-12-09 14:14:58,988 : INFO : downsampling leaves estimated 20080642 word corpus (68.5% of prior 29335586)\n",
-            "2021-12-09 14:14:59,070 : INFO : estimated required memory for 20354 words and 100 dimensions: 26460200 bytes\n",
-            "2021-12-09 14:14:59,071 : INFO : resetting layer weights\n",
-            "2021-12-09 14:15:03,474 : INFO : training model with 3 workers on 20354 vocabulary and 100 features, using sg=0 hs=0 sample=0.001 negative=5 window=5\n",
-            "2021-12-09 14:15:04,513 : INFO : EPOCH 1 - PROGRESS: at 1.95% examples, 441261 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:05,520 : INFO : EPOCH 1 - PROGRESS: at 4.06% examples, 461995 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:06,523 : INFO : EPOCH 1 - PROGRESS: at 6.19% examples, 464932 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:07,544 : INFO : EPOCH 1 - PROGRESS: at 8.46% examples, 468716 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:08,562 : INFO : EPOCH 1 - PROGRESS: at 10.64% examples, 471588 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:09,580 : INFO : EPOCH 1 - PROGRESS: at 12.81% examples, 473745 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:10,601 : INFO : EPOCH 1 - PROGRESS: at 14.94% examples, 474131 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:11,611 : INFO : EPOCH 1 - PROGRESS: at 17.80% examples, 480648 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:12,613 : INFO : EPOCH 1 - PROGRESS: at 20.27% examples, 481850 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:13,617 : INFO : EPOCH 1 - PROGRESS: at 22.37% examples, 480045 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-12-09 14:15:14,630 : INFO : EPOCH 1 - PROGRESS: at 24.47% examples, 477838 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:15,639 : INFO : EPOCH 1 - PROGRESS: at 26.44% examples, 476964 words/s, in_qsize 5, out_qsize 1\n",
-            "2021-12-09 14:15:16,654 : INFO : EPOCH 1 - PROGRESS: at 28.00% examples, 465185 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:17,670 : INFO : EPOCH 1 - PROGRESS: at 30.12% examples, 465745 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-12-09 14:15:18,685 : INFO : EPOCH 1 - PROGRESS: at 32.31% examples, 465578 words/s, in_qsize 5, out_qsize 1\n",
-            "2021-12-09 14:15:19,690 : INFO : EPOCH 1 - PROGRESS: at 34.99% examples, 465719 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:20,697 : INFO : EPOCH 1 - PROGRESS: at 37.89% examples, 466710 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:21,700 : INFO : EPOCH 1 - PROGRESS: at 40.56% examples, 466900 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:22,716 : INFO : EPOCH 1 - PROGRESS: at 43.16% examples, 468757 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:23,727 : INFO : EPOCH 1 - PROGRESS: at 45.74% examples, 469181 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:24,750 : INFO : EPOCH 1 - PROGRESS: at 48.01% examples, 469157 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:25,752 : INFO : EPOCH 1 - PROGRESS: at 50.26% examples, 469713 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-12-09 14:15:26,757 : INFO : EPOCH 1 - PROGRESS: at 52.86% examples, 470157 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:27,763 : INFO : EPOCH 1 - PROGRESS: at 55.22% examples, 471019 words/s, in_qsize 5, out_qsize 1\n",
-            "2021-12-09 14:15:28,768 : INFO : EPOCH 1 - PROGRESS: at 57.42% examples, 465665 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:29,788 : INFO : EPOCH 1 - PROGRESS: at 59.85% examples, 466076 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:30,793 : INFO : EPOCH 1 - PROGRESS: at 62.27% examples, 466681 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-12-09 14:15:31,820 : INFO : EPOCH 1 - PROGRESS: at 64.72% examples, 467069 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:32,846 : INFO : EPOCH 1 - PROGRESS: at 67.01% examples, 466818 words/s, in_qsize 3, out_qsize 2\n",
-            "2021-12-09 14:15:33,859 : INFO : EPOCH 1 - PROGRESS: at 69.39% examples, 467654 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-12-09 14:15:34,880 : INFO : EPOCH 1 - PROGRESS: at 72.04% examples, 467815 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:35,885 : INFO : EPOCH 1 - PROGRESS: at 74.39% examples, 467699 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:36,891 : INFO : EPOCH 1 - PROGRESS: at 77.29% examples, 467718 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:37,894 : INFO : EPOCH 1 - PROGRESS: at 79.60% examples, 468380 words/s, in_qsize 5, out_qsize 1\n",
-            "2021-12-09 14:15:38,904 : INFO : EPOCH 1 - PROGRESS: at 82.15% examples, 468667 words/s, in_qsize 5, out_qsize 1\n",
-            "2021-12-09 14:15:39,906 : INFO : EPOCH 1 - PROGRESS: at 84.80% examples, 468958 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:40,914 : INFO : EPOCH 1 - PROGRESS: at 87.05% examples, 468955 words/s, in_qsize 5, out_qsize 1\n",
-            "2021-12-09 14:15:41,924 : INFO : EPOCH 1 - PROGRESS: at 89.51% examples, 469241 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:42,939 : INFO : EPOCH 1 - PROGRESS: at 92.11% examples, 469500 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:43,947 : INFO : EPOCH 1 - PROGRESS: at 93.83% examples, 465795 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-12-09 14:15:44,966 : INFO : EPOCH 1 - PROGRESS: at 96.29% examples, 465786 words/s, in_qsize 4, out_qsize 1\n",
-            "2021-12-09 14:15:45,996 : INFO : EPOCH 1 - PROGRESS: at 98.60% examples, 465826 words/s, in_qsize 5, out_qsize 1\n",
-            "2021-12-09 14:15:46,530 : INFO : worker thread finished; awaiting finish of 2 more threads\n",
-            "2021-12-09 14:15:46,532 : INFO : worker thread finished; awaiting finish of 1 more threads\n",
-            "2021-12-09 14:15:46,544 : INFO : worker thread finished; awaiting finish of 0 more threads\n",
-            "2021-12-09 14:15:46,545 : INFO : EPOCH - 1 : training on 30667537 raw words (20081786 effective words) took 43.1s, 466320 effective words/s\n",
-            "2021-12-09 14:15:46,546 : INFO : training on a 30667537 raw words (20081786 effective words) took 43.1s, 466260 effective words/s\n",
-            "2021-12-09 14:15:46,548 : INFO : storing 20354x100 projection weights into model.txt\n"
-          ]
-        }
-      ],
-      "source": [
-        "# potential Error: need to update smart_open with conda install smart_open==2.0.0 or pip install smart_open==2.0.0\n",
-        "\n",
-        "\n",
-        "# construct word2vec model using gensim\n",
-        "\n",
-        "from gensim.models import Word2Vec \n",
-        "\n",
-        "import gzip\n",
-        "import logging\n",
-        "\n",
-        "import time\n",
-        "\n",
-        "# set up logging for gensim\n",
-        "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',\n",
-        "                    level=logging.INFO)\n",
-        "\n",
-        "# we define a PlainTextCorpus class; this will provide us with an\n",
-        "# iterator over the corpus (so that we don't have to load the corpus\n",
-        "# into memory)\n",
-        "class PlainTextCorpus(object):\n",
-        "    def __init__(self, fileName):\n",
-        "        self.fileName = fileName\n",
-        "\n",
-        "    def __iter__(self):\n",
-        "        for line in gzip.open(self.fileName, 'rt', encoding='utf-8'):\n",
-        "            yield  line.split()\n",
-        "\n",
-        "# -- Instantiate the corpus class using corpus location\n",
-        "sentences = PlainTextCorpus('corpus_food.txt.gz')\n",
-        "\n",
-        "# -- Trianing\n",
-        "# we only take into account words with a frequency of at least 50, and\n",
-        "# we iterate over the corpus only once\n",
-        "model = Word2Vec(sentences, min_count=50, iter=1, sorted_vocab=1)\n",
-        "\n",
-        "# -- Finally, save the constructed model to disk\n",
-        "# When getting started, you can save the learned model in ASCII format and review the contents.\n",
-        "model.wv.save_word2vec_format('model_word2vec_food.txt', binary=False)\n",
-        "# by default, it is saved as binary\n",
-        "model.save('model_word2vec_food.bin')\n",
-        "# a model saved can be load again using:\n",
-        "#model = Word2Vec.load('model_word2vec_food.bin')"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "id": "bottom-tobacco",
-      "metadata": {
-        "id": "bottom-tobacco"
-      },
-      "source": [
-        "### 2.2 A few remarks:\n",
-        "\n",
-        "From: http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/\n",
-        "\n",
-        "#### Downsampling\n",
-        "\n",
-        "Subsampling frequent words to decrease the number of training examples.\n",
-        "\n",
-        "There are two “problems” with common words like “the”:\n",
-        "* When looking at word pairs, (“fox”, “the”) doesn’t tell us much about the meaning of “fox”. “the” appears in the context of pretty much every word.\n",
-        "* We will have many more samples of (“the”, …) than we need to learn a good vector for “the”.\n",
-        "\n",
-        "Word2Vec implements a “subsampling” scheme to address this. \n",
-        "For each word we encounter in our training text, there is a chance that we will effectively delete it from the text. \n",
-        "The probability that we cut the word is related to the word’s frequency.\n",
-        "\n",
-        "If we have a window size of 10, and we remove a specific instance of “the” from our text:\n",
-        "\n",
-        "* As we train on the remaining words, “the” will not appear in any of their context windows.\n",
-        "* We’ll have 10 fewer training samples where “the” is the input word.\n",
-        "\n",
-        "There is also a parameter in the code named ‘sample’ which controls how much subsampling occurs, and the default value is 0.001. Smaller values of ‘sample’ mean words are less likely to be kept.\n",
-        "\n",
-        "\n",
-        "#### Negative sampling (for SkipGram)\n",
-        "\n",
-        "Training a neural network means taking a training example and adjusting all of the neuron weights slightly so that it predicts that training sample more accurately. \n",
-        "In other words, each training sample will tweak all of the weights in the neural network --> prohibitive\n",
-        "\n",
-        "Negative sampling addresses this by having each training sample only modify a small percentage of the weights, rather than all of them.\n",
-        "\n",
-        "When training the network on the word pair (“fox”, “quick”), i.e. 'fox' is the target, 'quick' a context word: “quick” -> 1; all of the other thousands of output neurons -> 0.\n",
-        "\n",
-        "With negative sampling, we are instead going to randomly select just a small number of “negative” words (let’s say 5) to update the weights for: “quick” -> 1; 5 other random words -> 0.\n",
-        "\n",
-        "Recall that the output layer of our model has a weight matrix that’s dx|V|, e.g. 300 x 23,000. So we will just be updating the weights for our positive word (“quick”), plus the weights for 5 other words that we want to output 0. That’s a total of 6 output neurons, and 1,800 weight values total. That’s only 0.06% of the 3M weights in the output layer! (In the hidden layer, only the weights for the input word are updated -- this is true whether you’re using Negative Sampling or not)."
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.3 Print information about the model learned\n",
-        "Note that the corpus is food-related, so food-related terms will work best. \n",
-        "\n",
-        "You can print the vocabulary using:\n",
-        "```\n",
-        "vocabulary = list(model.wv.vocab)\n",
-        "```\n",
-        "\n",
-        "It is possible to look at the individual word embeddings using the following :\n",
-        "```\n",
-        "model.wv[’citron’]\n",
-        "```\n",
-        "```\n",
-        "print(model['citron'])\n",
-        "```\n",
-        "\n",
-        "Note: Your results may vary given the stochastic nature of the algorithm or evaluation procedure, or differences in numerical precision. Consider running the example a few times and compare the average outcome.\n",
-        "\n",
-        "▶▶ **Print the vocabulary and then the vectors for a few terms, e.g. 'citron' and 'fruit'. Do they seem close?**"
-      ],
-      "metadata": {
-        "id": "ZAgXv40pHQXs"
-      },
-      "id": "ZAgXv40pHQXs"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "vocabulary = list(model.wv.vocab)\n",
-        "print(len(vocabulary))\n",
-        "print(vocabulary[:100])"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "IKJG3nNpHQjY",
-        "outputId": "192ea654-46d8-498c-f899-bb7cfc956c9a"
-      },
-      "id": "IKJG3nNpHQjY",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "20354\n",
-            "['meilleur', 'espoir']\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "print(model['citron'])"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "BEbhGilgJJil",
-        "outputId": "7ec8822b-db11-48ab-d0ec-5ee3b7ea28f0"
-      },
-      "id": "BEbhGilgJJil",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "[-2.4342873e+00 -2.2583618e+00  5.4087490e-01  4.5865875e-01\n",
-            "  2.0353858e+00  3.0349622e+00  8.6795755e-02  1.1660453e+00\n",
-            "  4.2338908e-02  6.1837021e-02 -6.9698596e-01 -1.5644169e+00\n",
-            "  2.3448985e+00  2.4578752e-01  2.2536559e+00 -1.4545132e+00\n",
-            " -2.1163449e+00  1.3676724e-01  5.6070766e+00 -7.2028679e-01\n",
-            " -2.2818024e+00  1.5232147e+00 -1.6632670e+00 -8.4375089e-01\n",
-            " -7.6375240e-01  3.7184335e-02  6.3504195e-01 -9.3378592e-01\n",
-            " -3.6159369e-01 -2.5950966e+00  7.5604606e-01 -4.1657019e+00\n",
-            "  8.3642203e-01 -2.6111870e+00  2.8883324e+00 -7.9457730e-01\n",
-            "  1.1079241e+00 -4.8975736e-01 -1.8369099e+00  1.0123318e+00\n",
-            " -6.1362153e-01 -3.8429162e-01  1.1061736e+00  2.0814042e+00\n",
-            "  3.3490434e-01  3.2846341e+00  1.1960293e+00  7.2833133e-01\n",
-            " -2.1139970e+00 -2.2014716e+00 -7.6378244e-01 -1.1150142e-02\n",
-            "  2.4473546e-01  1.6132362e+00  1.1532999e-01  7.1080244e-01\n",
-            " -6.6748554e-01  2.9287371e-01 -1.2349827e+00 -2.0896842e+00\n",
-            " -2.6778195e+00 -1.1415045e-01  1.9551326e+00 -4.7981796e+00\n",
-            " -2.2598341e+00 -2.0565894e+00 -1.6711640e+00 -2.3994365e-01\n",
-            "  5.7114534e-02  2.6526504e+00 -2.0526543e+00 -1.5354447e+00\n",
-            " -2.1507428e+00  3.2582914e-03 -3.0078307e-01  3.4303293e+00\n",
-            "  1.1866127e+00 -2.0992200e+00 -5.4909176e-01  3.5262544e+00\n",
-            " -2.8223691e+00  2.4603779e+00  5.9129339e-01 -6.5067756e-01\n",
-            "  1.1457623e+00 -2.8848162e+00 -2.1732013e+00 -9.4776452e-01\n",
-            " -1.0216619e+00 -7.8442180e-01  6.2541580e-01  4.2303185e+00\n",
-            "  1.8411049e+00  2.7594676e+00  1.8949556e+00 -2.5594943e+00\n",
-            " -6.2027365e-01 -6.5765065e-01  1.0970368e+00 -3.7660208e-01]\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DeprecationWarning: Call to deprecated `__getitem__` (Method will be removed in 4.0.0, use self.wv.__getitem__() instead).\n",
-            "  \"\"\"Entry point for launching an IPython kernel.\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "print(model['fruit'])"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "U2u5ltKhJN0j",
-        "outputId": "6b04a6c5-b401-485f-fc83-85d2d4c1fba9"
-      },
-      "id": "U2u5ltKhJN0j",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "[-0.74459696  0.13035658 -0.3605786  -1.1882063   1.059343    2.6428444\n",
-            " -0.53297174  0.8701426  -0.9566574   0.76752627 -0.5543028   0.28745276\n",
-            "  1.6011137  -1.225252    1.1812327   1.1155477  -1.125558   -0.23697826\n",
-            "  1.1538577  -0.21832229 -2.73458     1.8360933   0.3892717  -0.585168\n",
-            " -0.3218817   0.5239333   1.2493424   0.33943385 -1.2885349  -0.46373132\n",
-            "  0.58093065 -3.1892383   1.1436908  -0.86298513  1.2795348   0.24400097\n",
-            " -1.5644596  -0.5343925  -1.696769   -0.0639642  -0.8514801   1.0493044\n",
-            "  1.3333956  -0.5543324  -0.9571551   1.8321517   0.00911367 -1.4754412\n",
-            " -0.37915576 -0.73698497  1.0425583   0.29036915 -0.31669354  0.71114826\n",
-            " -0.54252416 -1.2879705  -0.36104652 -0.5248696   1.1501926  -1.4628233\n",
-            " -2.1212769   0.34277728  1.0497593  -0.40808457 -0.71966743  0.7510037\n",
-            " -0.7497293  -0.25233892 -0.6937278   0.7347446   1.3501178  -0.1932587\n",
-            " -0.29745835  0.5946108  -0.5778504   1.3128676   1.0506709  -0.36050472\n",
-            "  1.5390912   1.1278675  -1.8342087   0.86001444  1.7568946  -1.3557549\n",
-            "  0.22343375 -1.392149   -3.1514108  -2.2377484  -0.35975495 -0.2955654\n",
-            "  0.17453238  0.7826175   2.424656    0.92999303  2.9251754   0.5357655\n",
-            " -1.6956844   1.4455836   2.3368404   0.41256398]\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DeprecationWarning: Call to deprecated `__getitem__` (Method will be removed in 4.0.0, use self.wv.__getitem__() instead).\n",
-            "  \"\"\"Entry point for launching an IPython kernel.\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 3. Compute word similarity \n",
-        "\n",
-        "You can now compute similarity measure between word using\n",
-        "```\n",
-        "model.similarity('manger', goûter')\n",
-        "```\n",
-        "\n",
-        "You can also print the most similar words (which is measured by cosine similarity between the word vectors) by issuing the following command :\n",
-        "```\n",
-        "model.wv.most_similar(’citron’)\n",
-        "```\n",
-        "▶▶**Print the similarity between some terms, e.g. ('manger', 'boire'), ('manger', 'dormir') ... Do the results seem coherent?**\n",
-        "\n",
-        "▶▶**Print the words that are most similar to: 'citron', 'manger' and other words, e.g. not related to food. Do the results seem coherent?**"
-      ],
-      "metadata": {
-        "id": "eSm6IZ3IFTP9"
-      },
-      "id": "eSm6IZ3IFTP9"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "model.wv.similarity('manger', 'boire')"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "sSusMXEgX5Pd",
-        "outputId": "f9edabc0-27c7-4ddc-f533-64e6cdfa635b"
-      },
-      "id": "sSusMXEgX5Pd",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "0.6977059"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 47
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "model.wv.similarity('manger', 'dormir')"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "mjlGERlmX8dU",
-        "outputId": "61ee646d-ff31-4ecc-f1ce-9b74a85256ad"
-      },
-      "id": "mjlGERlmX8dU",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "0.52210134"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 48
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "model.wv.similarity('manger', 'déjeuner')"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "ABQ_B0MJYC-M",
-        "outputId": "c782d92b-f784-427f-f3a7-ab23e30d575f"
-      },
-      "id": "ABQ_B0MJYC-M",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "0.35738736"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 52
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "hidden-climb",
-      "metadata": {
-        "id": "hidden-climb",
-        "outputId": "9a4e58ff-f333-497e-e587-c372107a3555"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "2021-03-03 11:32:30,613 : INFO : precomputing L2-norms of word weight vectors\n"
-          ]
-        },
-        {
-          "data": {
-            "text/plain": [
-              "[('pamplemousse', 0.7065126299858093),\n",
-              " ('fruit', 0.6741359233856201),\n",
-              " ('gingembre', 0.6735856533050537),\n",
-              " ('melon', 0.6463325023651123),\n",
-              " ('demi-citron', 0.6422487497329712),\n",
-              " ('carotte', 0.6299734115600586),\n",
-              " ('pomme', 0.6273627877235413),\n",
-              " ('yuzu', 0.6270141005516052),\n",
-              " ('concombre', 0.6231362819671631),\n",
-              " ('grenade', 0.6211512684822083)]"
-            ]
-          },
-          "execution_count": 3,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "model.wv.most_similar('citron')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "alone-bailey",
-      "metadata": {
-        "id": "alone-bailey",
-        "outputId": "e3721779-8692-465f-8b95-8c1e3d03b9aa"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('boire', 0.731616199016571),\n",
-              " ('goûter', 0.692413330078125),\n",
-              " ('cuisiner', 0.6340141296386719),\n",
-              " ('dormir', 0.5574221611022949),\n",
-              " ('chercher', 0.5450621843338013),\n",
-              " ('acheter', 0.5403214693069458),\n",
-              " ('croissants', 0.5385775566101074),\n",
-              " ('croquer', 0.5382435321807861),\n",
-              " ('déguster', 0.5377914905548096),\n",
-              " ('gâteaux', 0.5368378162384033)]"
-            ]
-          },
-          "execution_count": 4,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "model.wv.most_similar('manger')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "spatial-performance",
-      "metadata": {
-        "id": "spatial-performance",
-        "outputId": "6fdca590-d1f9-4d1a-fd20-749795fc835d"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('classement', 0.775521993637085),\n",
-              " ('réseau', 0.7704102993011475),\n",
-              " ('programme', 0.7406581044197083),\n",
-              " ('clan', 0.7397977113723755),\n",
-              " ('positionnement', 0.7392568588256836),\n",
-              " ('trafic', 0.7350319623947144),\n",
-              " ('transfert', 0.7295447587966919),\n",
-              " ('statut', 0.7241459488868713),\n",
-              " ('congrès', 0.7148818969726562),\n",
-              " ('concept', 0.7146803140640259)]"
-            ]
-          },
-          "execution_count": 5,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "model.wv.most_similar('cahier')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "internal-adaptation",
-      "metadata": {
-        "id": "internal-adaptation",
-        "outputId": "0df783b8-d8b8-4670-ddf9-49dfc317d279"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('coffre', 0.8725370764732361),\n",
-              " ('portable', 0.8179736137390137),\n",
-              " ('bureau', 0.7548692226409912),\n",
-              " ('téléphone', 0.7502259016036987),\n",
-              " ('privé', 0.7477074861526489),\n",
-              " ('lecteur', 0.7241848707199097),\n",
-              " ('dvd', 0.7201313972473145),\n",
-              " ('personnel', 0.7027815580368042),\n",
-              " ('minibar', 0.6981000304222107),\n",
-              " ('cd', 0.6968647241592407)]"
-            ]
-          },
-          "execution_count": 6,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "model.wv.most_similar('ordinateur')"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "id": "bigger-drink",
-      "metadata": {
-        "id": "bigger-drink"
-      },
-      "source": [
-        "##  4. Exercise: change the parameters values\n",
-        "\n",
-        "As a default, the *word2vec* module creates **word embeddings of size 100**, using a **cbow model** with a **window of 5 words**.\n",
-        "\n",
-        "▶▶**Train a model with different parameters:**\n",
-        "- using a different window size, \n",
-        "- using a different embedding size \n",
-        "- using *skipgram*, \n",
-        "\n",
-        "Inspect the results (similar words) qualitatively. Do the similarity computations change ? Are they better or worse ?\n",
-        "\n",
-        "See doc: https://radimrehurek.com/gensim_3.8.3/models/word2vec.html"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from gensim.models import Word2Vec \n",
-        "import gzip\n",
-        "\n",
-        "# we define a PlainTextCorpus class; this will provide us with an\n",
-        "# iterator over the corpus (so that we don't have to load the corpus\n",
-        "# into memory)\n",
-        "class PlainTextCorpus(object):\n",
-        "    def __init__(self, fileName):\n",
-        "        self.fileName = fileName\n",
-        "\n",
-        "    def __iter__(self):\n",
-        "        for line in gzip.open(self.fileName, 'rt', encoding='utf-8'):\n",
-        "            yield  line.split()\n",
-        "\n",
-        "# -- Instantiate the corpus class using corpus location\n",
-        "sentences = PlainTextCorpus('corpus_food.txt.gz')"
-      ],
-      "metadata": {
-        "id": "t29EU--0Txre"
-      },
-      "id": "t29EU--0Txre",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "greatest-alloy",
-      "metadata": {
-        "id": "greatest-alloy"
-      },
-      "outputs": [],
-      "source": [
-        "# Using a different window size = 10\n",
-        "\n",
-        "# we only take into account words with a frequency of at least 50, and\n",
-        "# we iterate over the corpus only once\n",
-        "model = Word2Vec(sentences, min_count=50, iter=1, window=10)\n",
-        "\n",
-        "# finally, save the constructed model to disk\n",
-        "model.save('model_word2vec_food_w10')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "model = Word2Vec.load('model_word2vec_food_w10')"
-      ],
-      "metadata": {
-        "id": "HoYOeP1PTFe4"
-      },
-      "id": "HoYOeP1PTFe4",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "processed-tomato",
-      "metadata": {
-        "id": "processed-tomato",
-        "outputId": "f0871ef0-827a-4667-c305-3453d52294d2",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        }
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[('gingembre', 0.6874254941940308),\n",
-              " ('pamplemousse', 0.6774709224700928),\n",
-              " ('concombre', 0.6645870804786682),\n",
-              " ('fruit', 0.6631028056144714),\n",
-              " ('grenade', 0.6443832516670227),\n",
-              " ('clémentine', 0.6265990138053894),\n",
-              " ('citrons', 0.6238483190536499),\n",
-              " ('carotte', 0.6153783798217773),\n",
-              " ('ananas', 0.6124027371406555),\n",
-              " ('jasmin', 0.6044350266456604)]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 11
-        }
-      ],
-      "source": [
-        "# similar\n",
-        "model.wv.most_similar('citron')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "express-basketball",
-      "metadata": {
-        "id": "express-basketball",
-        "outputId": "ff524080-7c78-40c4-d89f-3114c37fd70c"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('goûter', 0.6882888078689575),\n",
-              " ('boire', 0.680406928062439),\n",
-              " ('dévorer', 0.6803934574127197),\n",
-              " ('croquer', 0.6148077249526978),\n",
-              " ('croissants', 0.6103814840316772),\n",
-              " ('gouter', 0.5949455499649048),\n",
-              " ('chaud', 0.5732216835021973),\n",
-              " ('grignoter', 0.569595217704773),\n",
-              " ('gâteaux', 0.5682815313339233),\n",
-              " ('dormir', 0.5632771253585815)]"
-            ]
-          },
-          "execution_count": 9,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# Better: less unrelated words such as \"chercher\" or \"dormir\"\n",
-        "model.wv.most_similar('manger')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "connected-dominant",
-      "metadata": {
-        "id": "connected-dominant",
-        "outputId": "e7d464c4-4220-4dc9-bf4b-6893a6eb9f73"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('coffre', 0.8809276223182678),\n",
-              " ('portable', 0.8284206986427307),\n",
-              " ('téléphone', 0.7838366031646729),\n",
-              " ('privé', 0.7546889185905457),\n",
-              " ('bureau', 0.7508140206336975),\n",
-              " ('smartphone', 0.7471920251846313),\n",
-              " ('iphone', 0.7424253821372986),\n",
-              " ('lecteur', 0.7420848608016968),\n",
-              " ('pc', 0.7366814017295837),\n",
-              " ('personnel', 0.7113509178161621)]"
-            ]
-          },
-          "execution_count": 10,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# still bad (but \"pc\" appears now)\n",
-        "model.wv.most_similar('ordinateur')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "dietary-latvia",
-      "metadata": {
-        "id": "dietary-latvia",
-        "outputId": "9e5080b1-6ff4-4fa2-d251-4b67ef485cee"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "2021-03-03 11:40:56,039 : INFO : collecting all words and their counts\n",
-            "2021-03-03 11:40:56,041 : INFO : PROGRESS: at sentence #0, processed 0 words, keeping 0 word types\n",
-            "2021-03-03 11:40:56,137 : INFO : PROGRESS: at sentence #10000, processed 225563 words, keeping 17928 word types\n",
-            "2021-03-03 11:40:56,241 : INFO : PROGRESS: at sentence #20000, processed 577005 words, keeping 40446 word types\n",
-            "2021-03-03 11:40:56,355 : INFO : PROGRESS: at sentence #30000, processed 938610 words, keeping 57857 word types\n",
-            "2021-03-03 11:40:56,444 : INFO : PROGRESS: at sentence #40000, processed 1243762 words, keeping 68383 word types\n",
-            "2021-03-03 11:40:56,514 : INFO : PROGRESS: at sentence #50000, processed 1509850 words, keeping 70533 word types\n",
-            "2021-03-03 11:40:56,638 : INFO : PROGRESS: at sentence #60000, processed 1850069 words, keeping 82875 word types\n",
-            "2021-03-03 11:40:56,725 : INFO : PROGRESS: at sentence #70000, processed 2100079 words, keeping 87384 word types\n",
-            "2021-03-03 11:40:56,833 : INFO : PROGRESS: at sentence #80000, processed 2443972 words, keeping 99116 word types\n",
-            "2021-03-03 11:40:56,911 : INFO : PROGRESS: at sentence #90000, processed 2696025 words, keeping 102244 word types\n",
-            "2021-03-03 11:40:57,003 : INFO : PROGRESS: at sentence #100000, processed 2981985 words, keeping 105882 word types\n",
-            "2021-03-03 11:40:57,118 : INFO : PROGRESS: at sentence #110000, processed 3315886 words, keeping 115725 word types\n",
-            "2021-03-03 11:40:57,202 : INFO : PROGRESS: at sentence #120000, processed 3582186 words, keeping 119014 word types\n",
-            "2021-03-03 11:40:57,288 : INFO : PROGRESS: at sentence #130000, processed 3859527 words, keeping 122724 word types\n",
-            "2021-03-03 11:40:57,418 : INFO : PROGRESS: at sentence #140000, processed 4215699 words, keeping 133218 word types\n",
-            "2021-03-03 11:40:57,506 : INFO : PROGRESS: at sentence #150000, processed 4465459 words, keeping 136616 word types\n",
-            "2021-03-03 11:40:57,607 : INFO : PROGRESS: at sentence #160000, processed 4756081 words, keeping 141707 word types\n",
-            "2021-03-03 11:40:57,721 : INFO : PROGRESS: at sentence #170000, processed 5099599 words, keeping 150950 word types\n",
-            "2021-03-03 11:40:57,798 : INFO : PROGRESS: at sentence #180000, processed 5354527 words, keeping 153394 word types\n",
-            "2021-03-03 11:40:57,871 : INFO : PROGRESS: at sentence #190000, processed 5622983 words, keeping 154248 word types\n",
-            "2021-03-03 11:40:57,939 : INFO : PROGRESS: at sentence #200000, processed 5884849 words, keeping 155053 word types\n",
-            "2021-03-03 11:40:58,010 : INFO : PROGRESS: at sentence #210000, processed 6145297 words, keeping 155920 word types\n",
-            "2021-03-03 11:40:58,094 : INFO : PROGRESS: at sentence #220000, processed 6414040 words, keeping 157778 word types\n",
-            "2021-03-03 11:40:58,191 : INFO : PROGRESS: at sentence #230000, processed 6711537 words, keeping 162048 word types\n",
-            "2021-03-03 11:40:58,280 : INFO : PROGRESS: at sentence #240000, processed 6961377 words, keeping 166493 word types\n",
-            "2021-03-03 11:40:58,383 : INFO : PROGRESS: at sentence #250000, processed 7269924 words, keeping 171601 word types\n",
-            "2021-03-03 11:40:58,493 : INFO : PROGRESS: at sentence #260000, processed 7572737 words, keeping 177533 word types\n",
-            "2021-03-03 11:40:58,598 : INFO : PROGRESS: at sentence #270000, processed 7865663 words, keeping 183079 word types\n",
-            "2021-03-03 11:40:58,692 : INFO : PROGRESS: at sentence #280000, processed 8163702 words, keeping 188114 word types\n",
-            "2021-03-03 11:40:58,787 : INFO : PROGRESS: at sentence #290000, processed 8467384 words, keeping 192261 word types\n",
-            "2021-03-03 11:40:58,886 : INFO : PROGRESS: at sentence #300000, processed 8786003 words, keeping 196278 word types\n",
-            "2021-03-03 11:40:58,982 : INFO : PROGRESS: at sentence #310000, processed 9100416 words, keeping 199886 word types\n",
-            "2021-03-03 11:40:59,079 : INFO : PROGRESS: at sentence #320000, processed 9386761 words, keeping 202767 word types\n",
-            "2021-03-03 11:40:59,181 : INFO : PROGRESS: at sentence #330000, processed 9682471 words, keeping 205607 word types\n",
-            "2021-03-03 11:40:59,276 : INFO : PROGRESS: at sentence #340000, processed 9963364 words, keeping 208585 word types\n",
-            "2021-03-03 11:40:59,371 : INFO : PROGRESS: at sentence #350000, processed 10274773 words, keeping 212136 word types\n",
-            "2021-03-03 11:40:59,464 : INFO : PROGRESS: at sentence #360000, processed 10578702 words, keeping 215158 word types\n",
-            "2021-03-03 11:40:59,554 : INFO : PROGRESS: at sentence #370000, processed 10863737 words, keeping 217890 word types\n",
-            "2021-03-03 11:40:59,631 : INFO : PROGRESS: at sentence #380000, processed 11101088 words, keeping 221226 word types\n",
-            "2021-03-03 11:40:59,694 : INFO : PROGRESS: at sentence #390000, processed 11293353 words, keeping 222777 word types\n",
-            "2021-03-03 11:40:59,781 : INFO : PROGRESS: at sentence #400000, processed 11578113 words, keeping 226480 word types\n",
-            "2021-03-03 11:40:59,855 : INFO : PROGRESS: at sentence #410000, processed 11817502 words, keeping 229059 word types\n",
-            "2021-03-03 11:40:59,939 : INFO : PROGRESS: at sentence #420000, processed 12073310 words, keeping 232543 word types\n",
-            "2021-03-03 11:41:00,004 : INFO : PROGRESS: at sentence #430000, processed 12239667 words, keeping 234294 word types\n",
-            "2021-03-03 11:41:00,077 : INFO : PROGRESS: at sentence #440000, processed 12465649 words, keeping 236471 word types\n",
-            "2021-03-03 11:41:00,133 : INFO : PROGRESS: at sentence #450000, processed 12640016 words, keeping 237753 word types\n",
-            "2021-03-03 11:41:00,219 : INFO : PROGRESS: at sentence #460000, processed 12914272 words, keeping 239984 word types\n",
-            "2021-03-03 11:41:00,313 : INFO : PROGRESS: at sentence #470000, processed 13170164 words, keeping 242719 word types\n",
-            "2021-03-03 11:41:00,385 : INFO : PROGRESS: at sentence #480000, processed 13395346 words, keeping 243844 word types\n",
-            "2021-03-03 11:41:00,468 : INFO : PROGRESS: at sentence #490000, processed 13623967 words, keeping 245472 word types\n",
-            "2021-03-03 11:41:00,550 : INFO : PROGRESS: at sentence #500000, processed 13856058 words, keeping 246782 word types\n",
-            "2021-03-03 11:41:00,655 : INFO : PROGRESS: at sentence #510000, processed 14165789 words, keeping 249255 word types\n",
-            "2021-03-03 11:41:00,754 : INFO : PROGRESS: at sentence #520000, processed 14390623 words, keeping 250744 word types\n",
-            "2021-03-03 11:41:00,842 : INFO : PROGRESS: at sentence #530000, processed 14649350 words, keeping 253433 word types\n",
-            "2021-03-03 11:41:00,928 : INFO : PROGRESS: at sentence #540000, processed 14901362 words, keeping 256289 word types\n",
-            "2021-03-03 11:41:01,022 : INFO : PROGRESS: at sentence #550000, processed 15183462 words, keeping 259543 word types\n",
-            "2021-03-03 11:41:01,120 : INFO : PROGRESS: at sentence #560000, processed 15484113 words, keeping 262631 word types\n",
-            "2021-03-03 11:41:01,217 : INFO : PROGRESS: at sentence #570000, processed 15766487 words, keeping 265682 word types\n",
-            "2021-03-03 11:41:01,311 : INFO : PROGRESS: at sentence #580000, processed 16039019 words, keeping 268568 word types\n",
-            "2021-03-03 11:41:01,399 : INFO : PROGRESS: at sentence #590000, processed 16308605 words, keeping 270912 word types\n",
-            "2021-03-03 11:41:01,478 : INFO : PROGRESS: at sentence #600000, processed 16550906 words, keeping 272955 word types\n",
-            "2021-03-03 11:41:01,549 : INFO : PROGRESS: at sentence #610000, processed 16764303 words, keeping 275088 word types\n",
-            "2021-03-03 11:41:01,638 : INFO : PROGRESS: at sentence #620000, processed 17064329 words, keeping 277137 word types\n",
-            "2021-03-03 11:41:01,724 : INFO : PROGRESS: at sentence #630000, processed 17321800 words, keeping 279585 word types\n",
-            "2021-03-03 11:41:01,802 : INFO : PROGRESS: at sentence #640000, processed 17574611 words, keeping 281959 word types\n",
-            "2021-03-03 11:41:01,866 : INFO : PROGRESS: at sentence #650000, processed 17767660 words, keeping 283659 word types\n",
-            "2021-03-03 11:41:01,934 : INFO : PROGRESS: at sentence #660000, processed 17975982 words, keeping 285244 word types\n",
-            "2021-03-03 11:41:02,013 : INFO : PROGRESS: at sentence #670000, processed 18204699 words, keeping 287430 word types\n",
-            "2021-03-03 11:41:02,108 : INFO : PROGRESS: at sentence #680000, processed 18469750 words, keeping 289796 word types\n",
-            "2021-03-03 11:41:02,192 : INFO : PROGRESS: at sentence #690000, processed 18727388 words, keeping 291813 word types\n",
-            "2021-03-03 11:41:02,275 : INFO : PROGRESS: at sentence #700000, processed 18990506 words, keeping 294341 word types\n",
-            "2021-03-03 11:41:02,361 : INFO : PROGRESS: at sentence #710000, processed 19245564 words, keeping 296330 word types\n",
-            "2021-03-03 11:41:02,440 : INFO : PROGRESS: at sentence #720000, processed 19498061 words, keeping 298479 word types\n",
-            "2021-03-03 11:41:02,524 : INFO : PROGRESS: at sentence #730000, processed 19768141 words, keeping 300820 word types\n",
-            "2021-03-03 11:41:02,597 : INFO : PROGRESS: at sentence #740000, processed 20007749 words, keeping 302109 word types\n",
-            "2021-03-03 11:41:02,686 : INFO : PROGRESS: at sentence #750000, processed 20279512 words, keeping 304828 word types\n",
-            "2021-03-03 11:41:02,771 : INFO : PROGRESS: at sentence #760000, processed 20550456 words, keeping 307007 word types\n",
-            "2021-03-03 11:41:02,852 : INFO : PROGRESS: at sentence #770000, processed 20802902 words, keeping 308697 word types\n",
-            "2021-03-03 11:41:02,941 : INFO : PROGRESS: at sentence #780000, processed 21081124 words, keeping 311136 word types\n",
-            "2021-03-03 11:41:03,025 : INFO : PROGRESS: at sentence #790000, processed 21348998 words, keeping 312932 word types\n",
-            "2021-03-03 11:41:03,113 : INFO : PROGRESS: at sentence #800000, processed 21623252 words, keeping 314817 word types\n",
-            "2021-03-03 11:41:03,201 : INFO : PROGRESS: at sentence #810000, processed 21897534 words, keeping 316999 word types\n",
-            "2021-03-03 11:41:03,277 : INFO : PROGRESS: at sentence #820000, processed 22140050 words, keeping 318484 word types\n",
-            "2021-03-03 11:41:03,346 : INFO : PROGRESS: at sentence #830000, processed 22352306 words, keeping 319975 word types\n",
-            "2021-03-03 11:41:03,427 : INFO : PROGRESS: at sentence #840000, processed 22600070 words, keeping 321714 word types\n",
-            "2021-03-03 11:41:03,527 : INFO : PROGRESS: at sentence #850000, processed 22877333 words, keeping 323950 word types\n",
-            "2021-03-03 11:41:03,613 : INFO : PROGRESS: at sentence #860000, processed 23123404 words, keeping 325301 word types\n",
-            "2021-03-03 11:41:03,677 : INFO : PROGRESS: at sentence #870000, processed 23309866 words, keeping 326318 word types\n",
-            "2021-03-03 11:41:03,756 : INFO : PROGRESS: at sentence #880000, processed 23527942 words, keeping 328076 word types\n",
-            "2021-03-03 11:41:03,833 : INFO : PROGRESS: at sentence #890000, processed 23757208 words, keeping 329680 word types\n",
-            "2021-03-03 11:41:03,919 : INFO : PROGRESS: at sentence #900000, processed 24002251 words, keeping 331477 word types\n",
-            "2021-03-03 11:41:04,006 : INFO : PROGRESS: at sentence #910000, processed 24288687 words, keeping 332364 word types\n",
-            "2021-03-03 11:41:04,094 : INFO : PROGRESS: at sentence #920000, processed 24543879 words, keeping 333964 word types\n",
-            "2021-03-03 11:41:04,188 : INFO : PROGRESS: at sentence #930000, processed 24809243 words, keeping 335779 word types\n",
-            "2021-03-03 11:41:04,283 : INFO : PROGRESS: at sentence #940000, processed 25062466 words, keeping 337657 word types\n",
-            "2021-03-03 11:41:04,369 : INFO : PROGRESS: at sentence #950000, processed 25311455 words, keeping 339686 word types\n",
-            "2021-03-03 11:41:04,438 : INFO : PROGRESS: at sentence #960000, processed 25518623 words, keeping 340904 word types\n",
-            "2021-03-03 11:41:04,506 : INFO : PROGRESS: at sentence #970000, processed 25722593 words, keeping 342185 word types\n",
-            "2021-03-03 11:41:04,596 : INFO : PROGRESS: at sentence #980000, processed 25990527 words, keeping 343595 word types\n",
-            "2021-03-03 11:41:04,685 : INFO : PROGRESS: at sentence #990000, processed 26253387 words, keeping 345288 word types\n",
-            "2021-03-03 11:41:04,775 : INFO : PROGRESS: at sentence #1000000, processed 26526173 words, keeping 347218 word types\n",
-            "2021-03-03 11:41:04,868 : INFO : PROGRESS: at sentence #1010000, processed 26794546 words, keeping 349267 word types\n",
-            "2021-03-03 11:41:04,983 : INFO : PROGRESS: at sentence #1020000, processed 27084482 words, keeping 351294 word types\n",
-            "2021-03-03 11:41:05,075 : INFO : PROGRESS: at sentence #1030000, processed 27332440 words, keeping 352733 word types\n",
-            "2021-03-03 11:41:05,156 : INFO : PROGRESS: at sentence #1040000, processed 27572431 words, keeping 353933 word types\n",
-            "2021-03-03 11:41:05,245 : INFO : PROGRESS: at sentence #1050000, processed 27824398 words, keeping 355366 word types\n",
-            "2021-03-03 11:41:05,325 : INFO : PROGRESS: at sentence #1060000, processed 28062062 words, keeping 356931 word types\n",
-            "2021-03-03 11:41:05,407 : INFO : PROGRESS: at sentence #1070000, processed 28311350 words, keeping 358369 word types\n",
-            "2021-03-03 11:41:05,483 : INFO : PROGRESS: at sentence #1080000, processed 28536605 words, keeping 359522 word types\n",
-            "2021-03-03 11:41:05,567 : INFO : PROGRESS: at sentence #1090000, processed 28797405 words, keeping 360915 word types\n",
-            "2021-03-03 11:41:05,665 : INFO : PROGRESS: at sentence #1100000, processed 29056639 words, keeping 362781 word types\n",
-            "2021-03-03 11:41:05,749 : INFO : PROGRESS: at sentence #1110000, processed 29301469 words, keeping 364164 word types\n",
-            "2021-03-03 11:41:05,848 : INFO : PROGRESS: at sentence #1120000, processed 29567027 words, keeping 365897 word types\n",
-            "2021-03-03 11:41:05,945 : INFO : PROGRESS: at sentence #1130000, processed 29854534 words, keeping 367714 word types\n",
-            "2021-03-03 11:41:06,034 : INFO : PROGRESS: at sentence #1140000, processed 30119177 words, keeping 369036 word types\n",
-            "2021-03-03 11:41:06,119 : INFO : PROGRESS: at sentence #1150000, processed 30368650 words, keeping 370630 word types\n",
-            "2021-03-03 11:41:06,209 : INFO : PROGRESS: at sentence #1160000, processed 30632128 words, keeping 372431 word types\n",
-            "2021-03-03 11:41:06,221 : INFO : collected 372759 word types from a corpus of 30667537 raw words and 1161270 sentences\n",
-            "2021-03-03 11:41:06,222 : INFO : Loading a fresh vocabulary\n",
-            "2021-03-03 11:41:06,381 : INFO : effective_min_count=50 retains 20354 unique words (5% of original 372759, drops 352405)\n",
-            "2021-03-03 11:41:06,381 : INFO : effective_min_count=50 leaves 29335586 word corpus (95% of original 30667537, drops 1331951)\n",
-            "2021-03-03 11:41:06,438 : INFO : deleting the raw counts dictionary of 372759 items\n",
-            "2021-03-03 11:41:06,450 : INFO : sample=0.001 downsamples 50 most-common words\n",
-            "2021-03-03 11:41:06,451 : INFO : downsampling leaves estimated 20080642 word corpus (68.5% of prior 29335586)\n",
-            "2021-03-03 11:41:06,501 : INFO : estimated required memory for 20354 words and 100 dimensions: 26460200 bytes\n",
-            "2021-03-03 11:41:06,502 : INFO : resetting layer weights\n",
-            "2021-03-03 11:41:10,071 : INFO : training model with 3 workers on 20354 vocabulary and 100 features, using sg=0 hs=0 sample=0.001 negative=5 window=1\n",
-            "2021-03-03 11:41:11,073 : INFO : EPOCH 1 - PROGRESS: at 5.14% examples, 1208829 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:12,076 : INFO : EPOCH 1 - PROGRESS: at 10.82% examples, 1214694 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:13,078 : INFO : EPOCH 1 - PROGRESS: at 16.48% examples, 1220698 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:14,085 : INFO : EPOCH 1 - PROGRESS: at 22.39% examples, 1213807 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:15,091 : INFO : EPOCH 1 - PROGRESS: at 27.32% examples, 1194892 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:16,097 : INFO : EPOCH 1 - PROGRESS: at 32.49% examples, 1178828 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:17,099 : INFO : EPOCH 1 - PROGRESS: at 39.18% examples, 1175135 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:18,103 : INFO : EPOCH 1 - PROGRESS: at 45.84% examples, 1185060 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:19,106 : INFO : EPOCH 1 - PROGRESS: at 51.76% examples, 1190983 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:20,111 : INFO : EPOCH 1 - PROGRESS: at 58.12% examples, 1186959 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:21,114 : INFO : EPOCH 1 - PROGRESS: at 63.95% examples, 1183696 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:22,118 : INFO : EPOCH 1 - PROGRESS: at 69.41% examples, 1179739 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:23,125 : INFO : EPOCH 1 - PROGRESS: at 75.87% examples, 1177588 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:24,130 : INFO : EPOCH 1 - PROGRESS: at 81.87% examples, 1178018 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:25,134 : INFO : EPOCH 1 - PROGRESS: at 87.89% examples, 1177399 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:26,137 : INFO : EPOCH 1 - PROGRESS: at 94.09% examples, 1176395 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:27,139 : INFO : EPOCH 1 - PROGRESS: at 99.93% examples, 1175659 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:41:27,143 : INFO : worker thread finished; awaiting finish of 2 more threads\n",
-            "2021-03-03 11:41:27,145 : INFO : worker thread finished; awaiting finish of 1 more threads\n",
-            "2021-03-03 11:41:27,149 : INFO : worker thread finished; awaiting finish of 0 more threads\n",
-            "2021-03-03 11:41:27,150 : INFO : EPOCH - 1 : training on 30667537 raw words (20079438 effective words) took 17.1s, 1175748 effective words/s\n",
-            "2021-03-03 11:41:27,151 : INFO : training on a 30667537 raw words (20079438 effective words) took 17.1s, 1175637 effective words/s\n",
-            "2021-03-03 11:41:27,165 : INFO : saving Word2Vec object under model_word2vec_food_w1, separately None\n",
-            "2021-03-03 11:41:27,166 : INFO : not storing attribute vectors_norm\n",
-            "2021-03-03 11:41:27,167 : INFO : not storing attribute cum_table\n",
-            "2021-03-03 11:41:27,332 : INFO : saved model_word2vec_food_w1\n"
-          ]
-        }
-      ],
-      "source": [
-        "# Using a different window size = 1\n",
-        "\n",
-        "# we only take into account words with a frequency of at least 50, and\n",
-        "# we iterate over the corpus only once\n",
-        "model = Word2Vec(sentences, min_count=50, iter=1, window=1)\n",
-        "\n",
-        "# finally, save the constructed model to disk\n",
-        "model.save('model_word2vec_food_w1')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "patent-feature",
-      "metadata": {
-        "id": "patent-feature",
-        "outputId": "5f849456-6b0c-4b1b-d573-79aca1af582e"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "2021-03-03 11:41:51,366 : INFO : precomputing L2-norms of word weight vectors\n"
-          ]
-        },
-        {
-          "data": {
-            "text/plain": [
-              "[('fruit', 0.7431221008300781),\n",
-              " ('pamplemousse', 0.7353922128677368),\n",
-              " ('gingembre', 0.7142025232315063),\n",
-              " ('concombre', 0.7020883560180664),\n",
-              " ('raisin', 0.6910627484321594),\n",
-              " ('orange', 0.6856720447540283),\n",
-              " ('demi-citron', 0.6755554676055908),\n",
-              " ('melon', 0.6712915301322937),\n",
-              " ('zeste', 0.6706873178482056),\n",
-              " ('miel', 0.6622248291969299)]"
-            ]
-          },
-          "execution_count": 12,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# still (mostly) fruits\n",
-        "model.wv.most_similar('citron')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "strong-gibraltar",
-      "metadata": {
-        "id": "strong-gibraltar",
-        "outputId": "a10098ee-f7f5-4d82-9a94-ba9245b483a4"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('boire', 0.7591265439987183),\n",
-              " ('consommer', 0.7094314098358154),\n",
-              " ('déguster', 0.6820156574249268),\n",
-              " ('savourer', 0.6724561452865601),\n",
-              " ('goûter', 0.6669466495513916),\n",
-              " ('vendre', 0.6622387170791626),\n",
-              " ('cuisiner', 0.6586791276931763),\n",
-              " ('chercher', 0.6505807638168335),\n",
-              " ('prendre', 0.640231192111969),\n",
-              " ('siroter', 0.6365314722061157)]"
-            ]
-          },
-          "execution_count": 13,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# only verbs: very syntactic context, not only semantically related ('vendre, chercher, prendre')\n",
-        "model.wv.most_similar('manger')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "bridal-negotiation",
-      "metadata": {
-        "id": "bridal-negotiation",
-        "outputId": "4694774b-1372-4e4a-aa2d-9fcdf1be874e"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('coffre', 0.7876895666122437),\n",
-              " ('portable', 0.7698947787284851),\n",
-              " ('portatif', 0.7351283431053162),\n",
-              " ('balcon', 0.674622118473053),\n",
-              " ('équipement', 0.6738570928573608),\n",
-              " ('téléphone', 0.6674509048461914),\n",
-              " ('pc', 0.6654350161552429),\n",
-              " ('bureau', 0.6590605974197388),\n",
-              " ('privé', 0.6533622741699219),\n",
-              " ('personnel', 0.650344729423523)]"
-            ]
-          },
-          "execution_count": 14,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# not clear, \"balcon\" ??\n",
-        "model.wv.most_similar('ordinateur')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "micro-neighbor",
-      "metadata": {
-        "id": "micro-neighbor",
-        "outputId": "a83be7ec-84bd-4609-fa24-d49dd2e43bd6"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "2021-03-03 11:42:27,925 : WARNING : consider setting layer size to a multiple of 4 for greater performance\n",
-            "2021-03-03 11:42:27,927 : INFO : collecting all words and their counts\n",
-            "2021-03-03 11:42:27,928 : INFO : PROGRESS: at sentence #0, processed 0 words, keeping 0 word types\n",
-            "2021-03-03 11:42:28,010 : INFO : PROGRESS: at sentence #10000, processed 225563 words, keeping 17928 word types\n",
-            "2021-03-03 11:42:28,118 : INFO : PROGRESS: at sentence #20000, processed 577005 words, keeping 40446 word types\n",
-            "2021-03-03 11:42:28,232 : INFO : PROGRESS: at sentence #30000, processed 938610 words, keeping 57857 word types\n",
-            "2021-03-03 11:42:28,327 : INFO : PROGRESS: at sentence #40000, processed 1243762 words, keeping 68383 word types\n",
-            "2021-03-03 11:42:28,396 : INFO : PROGRESS: at sentence #50000, processed 1509850 words, keeping 70533 word types\n",
-            "2021-03-03 11:42:28,499 : INFO : PROGRESS: at sentence #60000, processed 1850069 words, keeping 82875 word types\n",
-            "2021-03-03 11:42:28,578 : INFO : PROGRESS: at sentence #70000, processed 2100079 words, keeping 87384 word types\n",
-            "2021-03-03 11:42:28,698 : INFO : PROGRESS: at sentence #80000, processed 2443972 words, keeping 99116 word types\n",
-            "2021-03-03 11:42:28,783 : INFO : PROGRESS: at sentence #90000, processed 2696025 words, keeping 102244 word types\n",
-            "2021-03-03 11:42:28,874 : INFO : PROGRESS: at sentence #100000, processed 2981985 words, keeping 105882 word types\n",
-            "2021-03-03 11:42:28,980 : INFO : PROGRESS: at sentence #110000, processed 3315886 words, keeping 115725 word types\n",
-            "2021-03-03 11:42:29,058 : INFO : PROGRESS: at sentence #120000, processed 3582186 words, keeping 119014 word types\n",
-            "2021-03-03 11:42:29,137 : INFO : PROGRESS: at sentence #130000, processed 3859527 words, keeping 122724 word types\n",
-            "2021-03-03 11:42:29,250 : INFO : PROGRESS: at sentence #140000, processed 4215699 words, keeping 133218 word types\n",
-            "2021-03-03 11:42:29,329 : INFO : PROGRESS: at sentence #150000, processed 4465459 words, keeping 136616 word types\n",
-            "2021-03-03 11:42:29,414 : INFO : PROGRESS: at sentence #160000, processed 4756081 words, keeping 141707 word types\n",
-            "2021-03-03 11:42:29,523 : INFO : PROGRESS: at sentence #170000, processed 5099599 words, keeping 150950 word types\n",
-            "2021-03-03 11:42:29,601 : INFO : PROGRESS: at sentence #180000, processed 5354527 words, keeping 153394 word types\n",
-            "2021-03-03 11:42:29,674 : INFO : PROGRESS: at sentence #190000, processed 5622983 words, keeping 154248 word types\n",
-            "2021-03-03 11:42:29,747 : INFO : PROGRESS: at sentence #200000, processed 5884849 words, keeping 155053 word types\n",
-            "2021-03-03 11:42:29,812 : INFO : PROGRESS: at sentence #210000, processed 6145297 words, keeping 155920 word types\n",
-            "2021-03-03 11:42:29,884 : INFO : PROGRESS: at sentence #220000, processed 6414040 words, keeping 157778 word types\n",
-            "2021-03-03 11:42:29,987 : INFO : PROGRESS: at sentence #230000, processed 6711537 words, keeping 162048 word types\n",
-            "2021-03-03 11:42:30,077 : INFO : PROGRESS: at sentence #240000, processed 6961377 words, keeping 166493 word types\n",
-            "2021-03-03 11:42:30,179 : INFO : PROGRESS: at sentence #250000, processed 7269924 words, keeping 171601 word types\n",
-            "2021-03-03 11:42:30,293 : INFO : PROGRESS: at sentence #260000, processed 7572737 words, keeping 177533 word types\n",
-            "2021-03-03 11:42:30,394 : INFO : PROGRESS: at sentence #270000, processed 7865663 words, keeping 183079 word types\n",
-            "2021-03-03 11:42:30,501 : INFO : PROGRESS: at sentence #280000, processed 8163702 words, keeping 188114 word types\n",
-            "2021-03-03 11:42:30,618 : INFO : PROGRESS: at sentence #290000, processed 8467384 words, keeping 192261 word types\n",
-            "2021-03-03 11:42:30,728 : INFO : PROGRESS: at sentence #300000, processed 8786003 words, keeping 196278 word types\n",
-            "2021-03-03 11:42:30,836 : INFO : PROGRESS: at sentence #310000, processed 9100416 words, keeping 199886 word types\n",
-            "2021-03-03 11:42:30,934 : INFO : PROGRESS: at sentence #320000, processed 9386761 words, keeping 202767 word types\n",
-            "2021-03-03 11:42:31,048 : INFO : PROGRESS: at sentence #330000, processed 9682471 words, keeping 205607 word types\n",
-            "2021-03-03 11:42:31,142 : INFO : PROGRESS: at sentence #340000, processed 9963364 words, keeping 208585 word types\n",
-            "2021-03-03 11:42:31,256 : INFO : PROGRESS: at sentence #350000, processed 10274773 words, keeping 212136 word types\n",
-            "2021-03-03 11:42:31,366 : INFO : PROGRESS: at sentence #360000, processed 10578702 words, keeping 215158 word types\n",
-            "2021-03-03 11:42:31,466 : INFO : PROGRESS: at sentence #370000, processed 10863737 words, keeping 217890 word types\n",
-            "2021-03-03 11:42:31,548 : INFO : PROGRESS: at sentence #380000, processed 11101088 words, keeping 221226 word types\n",
-            "2021-03-03 11:42:31,615 : INFO : PROGRESS: at sentence #390000, processed 11293353 words, keeping 222777 word types\n",
-            "2021-03-03 11:42:31,709 : INFO : PROGRESS: at sentence #400000, processed 11578113 words, keeping 226480 word types\n",
-            "2021-03-03 11:42:31,791 : INFO : PROGRESS: at sentence #410000, processed 11817502 words, keeping 229059 word types\n",
-            "2021-03-03 11:42:31,873 : INFO : PROGRESS: at sentence #420000, processed 12073310 words, keeping 232543 word types\n",
-            "2021-03-03 11:42:31,933 : INFO : PROGRESS: at sentence #430000, processed 12239667 words, keeping 234294 word types\n",
-            "2021-03-03 11:42:32,011 : INFO : PROGRESS: at sentence #440000, processed 12465649 words, keeping 236471 word types\n",
-            "2021-03-03 11:42:32,075 : INFO : PROGRESS: at sentence #450000, processed 12640016 words, keeping 237753 word types\n",
-            "2021-03-03 11:42:32,171 : INFO : PROGRESS: at sentence #460000, processed 12914272 words, keeping 239984 word types\n",
-            "2021-03-03 11:42:32,262 : INFO : PROGRESS: at sentence #470000, processed 13170164 words, keeping 242719 word types\n",
-            "2021-03-03 11:42:32,331 : INFO : PROGRESS: at sentence #480000, processed 13395346 words, keeping 243844 word types\n",
-            "2021-03-03 11:42:32,403 : INFO : PROGRESS: at sentence #490000, processed 13623967 words, keeping 245472 word types\n",
-            "2021-03-03 11:42:32,481 : INFO : PROGRESS: at sentence #500000, processed 13856058 words, keeping 246782 word types\n",
-            "2021-03-03 11:42:32,576 : INFO : PROGRESS: at sentence #510000, processed 14165789 words, keeping 249255 word types\n",
-            "2021-03-03 11:42:32,646 : INFO : PROGRESS: at sentence #520000, processed 14390623 words, keeping 250744 word types\n",
-            "2021-03-03 11:42:32,728 : INFO : PROGRESS: at sentence #530000, processed 14649350 words, keeping 253433 word types\n",
-            "2021-03-03 11:42:32,810 : INFO : PROGRESS: at sentence #540000, processed 14901362 words, keeping 256289 word types\n",
-            "2021-03-03 11:42:32,900 : INFO : PROGRESS: at sentence #550000, processed 15183462 words, keeping 259543 word types\n",
-            "2021-03-03 11:42:32,992 : INFO : PROGRESS: at sentence #560000, processed 15484113 words, keeping 262631 word types\n",
-            "2021-03-03 11:42:33,085 : INFO : PROGRESS: at sentence #570000, processed 15766487 words, keeping 265682 word types\n",
-            "2021-03-03 11:42:33,175 : INFO : PROGRESS: at sentence #580000, processed 16039019 words, keeping 268568 word types\n",
-            "2021-03-03 11:42:33,265 : INFO : PROGRESS: at sentence #590000, processed 16308605 words, keeping 270912 word types\n",
-            "2021-03-03 11:42:33,354 : INFO : PROGRESS: at sentence #600000, processed 16550906 words, keeping 272955 word types\n",
-            "2021-03-03 11:42:33,435 : INFO : PROGRESS: at sentence #610000, processed 16764303 words, keeping 275088 word types\n",
-            "2021-03-03 11:42:33,534 : INFO : PROGRESS: at sentence #620000, processed 17064329 words, keeping 277137 word types\n",
-            "2021-03-03 11:42:33,619 : INFO : PROGRESS: at sentence #630000, processed 17321800 words, keeping 279585 word types\n",
-            "2021-03-03 11:42:33,700 : INFO : PROGRESS: at sentence #640000, processed 17574611 words, keeping 281959 word types\n",
-            "2021-03-03 11:42:33,762 : INFO : PROGRESS: at sentence #650000, processed 17767660 words, keeping 283659 word types\n",
-            "2021-03-03 11:42:33,830 : INFO : PROGRESS: at sentence #660000, processed 17975982 words, keeping 285244 word types\n",
-            "2021-03-03 11:42:33,907 : INFO : PROGRESS: at sentence #670000, processed 18204699 words, keeping 287430 word types\n",
-            "2021-03-03 11:42:33,998 : INFO : PROGRESS: at sentence #680000, processed 18469750 words, keeping 289796 word types\n",
-            "2021-03-03 11:42:34,087 : INFO : PROGRESS: at sentence #690000, processed 18727388 words, keeping 291813 word types\n",
-            "2021-03-03 11:42:34,178 : INFO : PROGRESS: at sentence #700000, processed 18990506 words, keeping 294341 word types\n",
-            "2021-03-03 11:42:34,264 : INFO : PROGRESS: at sentence #710000, processed 19245564 words, keeping 296330 word types\n",
-            "2021-03-03 11:42:34,354 : INFO : PROGRESS: at sentence #720000, processed 19498061 words, keeping 298479 word types\n",
-            "2021-03-03 11:42:34,444 : INFO : PROGRESS: at sentence #730000, processed 19768141 words, keeping 300820 word types\n",
-            "2021-03-03 11:42:34,520 : INFO : PROGRESS: at sentence #740000, processed 20007749 words, keeping 302109 word types\n",
-            "2021-03-03 11:42:34,610 : INFO : PROGRESS: at sentence #750000, processed 20279512 words, keeping 304828 word types\n",
-            "2021-03-03 11:42:34,698 : INFO : PROGRESS: at sentence #760000, processed 20550456 words, keeping 307007 word types\n",
-            "2021-03-03 11:42:34,787 : INFO : PROGRESS: at sentence #770000, processed 20802902 words, keeping 308697 word types\n",
-            "2021-03-03 11:42:34,882 : INFO : PROGRESS: at sentence #780000, processed 21081124 words, keeping 311136 word types\n",
-            "2021-03-03 11:42:34,968 : INFO : PROGRESS: at sentence #790000, processed 21348998 words, keeping 312932 word types\n",
-            "2021-03-03 11:42:35,057 : INFO : PROGRESS: at sentence #800000, processed 21623252 words, keeping 314817 word types\n",
-            "2021-03-03 11:42:35,151 : INFO : PROGRESS: at sentence #810000, processed 21897534 words, keeping 316999 word types\n",
-            "2021-03-03 11:42:35,229 : INFO : PROGRESS: at sentence #820000, processed 22140050 words, keeping 318484 word types\n",
-            "2021-03-03 11:42:35,297 : INFO : PROGRESS: at sentence #830000, processed 22352306 words, keeping 319975 word types\n",
-            "2021-03-03 11:42:35,381 : INFO : PROGRESS: at sentence #840000, processed 22600070 words, keeping 321714 word types\n",
-            "2021-03-03 11:42:35,474 : INFO : PROGRESS: at sentence #850000, processed 22877333 words, keeping 323950 word types\n",
-            "2021-03-03 11:42:35,560 : INFO : PROGRESS: at sentence #860000, processed 23123404 words, keeping 325301 word types\n",
-            "2021-03-03 11:42:35,624 : INFO : PROGRESS: at sentence #870000, processed 23309866 words, keeping 326318 word types\n",
-            "2021-03-03 11:42:35,708 : INFO : PROGRESS: at sentence #880000, processed 23527942 words, keeping 328076 word types\n",
-            "2021-03-03 11:42:35,791 : INFO : PROGRESS: at sentence #890000, processed 23757208 words, keeping 329680 word types\n",
-            "2021-03-03 11:42:35,879 : INFO : PROGRESS: at sentence #900000, processed 24002251 words, keeping 331477 word types\n",
-            "2021-03-03 11:42:35,963 : INFO : PROGRESS: at sentence #910000, processed 24288687 words, keeping 332364 word types\n",
-            "2021-03-03 11:42:36,049 : INFO : PROGRESS: at sentence #920000, processed 24543879 words, keeping 333964 word types\n",
-            "2021-03-03 11:42:36,138 : INFO : PROGRESS: at sentence #930000, processed 24809243 words, keeping 335779 word types\n",
-            "2021-03-03 11:42:36,222 : INFO : PROGRESS: at sentence #940000, processed 25062466 words, keeping 337657 word types\n",
-            "2021-03-03 11:42:36,298 : INFO : PROGRESS: at sentence #950000, processed 25311455 words, keeping 339686 word types\n",
-            "2021-03-03 11:42:36,363 : INFO : PROGRESS: at sentence #960000, processed 25518623 words, keeping 340904 word types\n",
-            "2021-03-03 11:42:36,428 : INFO : PROGRESS: at sentence #970000, processed 25722593 words, keeping 342185 word types\n",
-            "2021-03-03 11:42:36,510 : INFO : PROGRESS: at sentence #980000, processed 25990527 words, keeping 343595 word types\n",
-            "2021-03-03 11:42:36,604 : INFO : PROGRESS: at sentence #990000, processed 26253387 words, keeping 345288 word types\n",
-            "2021-03-03 11:42:36,693 : INFO : PROGRESS: at sentence #1000000, processed 26526173 words, keeping 347218 word types\n",
-            "2021-03-03 11:42:36,782 : INFO : PROGRESS: at sentence #1010000, processed 26794546 words, keeping 349267 word types\n",
-            "2021-03-03 11:42:36,895 : INFO : PROGRESS: at sentence #1020000, processed 27084482 words, keeping 351294 word types\n",
-            "2021-03-03 11:42:36,984 : INFO : PROGRESS: at sentence #1030000, processed 27332440 words, keeping 352733 word types\n",
-            "2021-03-03 11:42:37,067 : INFO : PROGRESS: at sentence #1040000, processed 27572431 words, keeping 353933 word types\n",
-            "2021-03-03 11:42:37,153 : INFO : PROGRESS: at sentence #1050000, processed 27824398 words, keeping 355366 word types\n",
-            "2021-03-03 11:42:37,235 : INFO : PROGRESS: at sentence #1060000, processed 28062062 words, keeping 356931 word types\n",
-            "2021-03-03 11:42:37,319 : INFO : PROGRESS: at sentence #1070000, processed 28311350 words, keeping 358369 word types\n",
-            "2021-03-03 11:42:37,398 : INFO : PROGRESS: at sentence #1080000, processed 28536605 words, keeping 359522 word types\n",
-            "2021-03-03 11:42:37,482 : INFO : PROGRESS: at sentence #1090000, processed 28797405 words, keeping 360915 word types\n",
-            "2021-03-03 11:42:37,564 : INFO : PROGRESS: at sentence #1100000, processed 29056639 words, keeping 362781 word types\n",
-            "2021-03-03 11:42:37,647 : INFO : PROGRESS: at sentence #1110000, processed 29301469 words, keeping 364164 word types\n",
-            "2021-03-03 11:42:37,728 : INFO : PROGRESS: at sentence #1120000, processed 29567027 words, keeping 365897 word types\n",
-            "2021-03-03 11:42:37,822 : INFO : PROGRESS: at sentence #1130000, processed 29854534 words, keeping 367714 word types\n",
-            "2021-03-03 11:42:37,907 : INFO : PROGRESS: at sentence #1140000, processed 30119177 words, keeping 369036 word types\n",
-            "2021-03-03 11:42:37,998 : INFO : PROGRESS: at sentence #1150000, processed 30368650 words, keeping 370630 word types\n",
-            "2021-03-03 11:42:38,087 : INFO : PROGRESS: at sentence #1160000, processed 30632128 words, keeping 372431 word types\n",
-            "2021-03-03 11:42:38,101 : INFO : collected 372759 word types from a corpus of 30667537 raw words and 1161270 sentences\n",
-            "2021-03-03 11:42:38,101 : INFO : Loading a fresh vocabulary\n",
-            "2021-03-03 11:42:38,260 : INFO : effective_min_count=50 retains 20354 unique words (5% of original 372759, drops 352405)\n",
-            "2021-03-03 11:42:38,261 : INFO : effective_min_count=50 leaves 29335586 word corpus (95% of original 30667537, drops 1331951)\n",
-            "2021-03-03 11:42:38,317 : INFO : deleting the raw counts dictionary of 372759 items\n",
-            "2021-03-03 11:42:38,330 : INFO : sample=0.001 downsamples 50 most-common words\n",
-            "2021-03-03 11:42:38,331 : INFO : downsampling leaves estimated 20080642 word corpus (68.5% of prior 29335586)\n",
-            "2021-03-03 11:42:38,377 : INFO : estimated required memory for 20354 words and 10 dimensions: 11805320 bytes\n",
-            "2021-03-03 11:42:38,378 : INFO : resetting layer weights\n",
-            "2021-03-03 11:42:42,266 : INFO : training model with 3 workers on 20354 vocabulary and 10 features, using sg=0 hs=0 sample=0.001 negative=5 window=5\n",
-            "2021-03-03 11:42:43,271 : INFO : EPOCH 1 - PROGRESS: at 5.75% examples, 1320333 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:44,277 : INFO : EPOCH 1 - PROGRESS: at 11.63% examples, 1309505 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:45,279 : INFO : EPOCH 1 - PROGRESS: at 18.10% examples, 1315718 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:46,283 : INFO : EPOCH 1 - PROGRESS: at 23.70% examples, 1285187 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:47,285 : INFO : EPOCH 1 - PROGRESS: at 29.00% examples, 1266461 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:48,287 : INFO : EPOCH 1 - PROGRESS: at 35.02% examples, 1255502 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:49,287 : INFO : EPOCH 1 - PROGRESS: at 42.35% examples, 1257338 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:50,289 : INFO : EPOCH 1 - PROGRESS: at 48.58% examples, 1262344 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:51,294 : INFO : EPOCH 1 - PROGRESS: at 55.07% examples, 1264391 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:52,295 : INFO : EPOCH 1 - PROGRESS: at 61.83% examples, 1261885 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:53,299 : INFO : EPOCH 1 - PROGRESS: at 67.91% examples, 1259757 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:54,308 : INFO : EPOCH 1 - PROGRESS: at 74.08% examples, 1253901 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:55,311 : INFO : EPOCH 1 - PROGRESS: at 80.54% examples, 1250744 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:56,314 : INFO : EPOCH 1 - PROGRESS: at 87.14% examples, 1251617 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:57,317 : INFO : EPOCH 1 - PROGRESS: at 93.33% examples, 1245853 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:58,322 : INFO : EPOCH 1 - PROGRESS: at 99.56% examples, 1245431 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-03-03 11:42:58,391 : INFO : worker thread finished; awaiting finish of 2 more threads\n",
-            "2021-03-03 11:42:58,392 : INFO : worker thread finished; awaiting finish of 1 more threads\n",
-            "2021-03-03 11:42:58,396 : INFO : worker thread finished; awaiting finish of 0 more threads\n",
-            "2021-03-03 11:42:58,396 : INFO : EPOCH - 1 : training on 30667537 raw words (20081711 effective words) took 16.1s, 1245080 effective words/s\n",
-            "2021-03-03 11:42:58,397 : INFO : training on a 30667537 raw words (20081711 effective words) took 16.1s, 1244944 effective words/s\n",
-            "2021-03-03 11:42:58,412 : INFO : saving Word2Vec object under model_word2vec_food_emb10, separately None\n",
-            "2021-03-03 11:42:58,414 : INFO : not storing attribute vectors_norm\n",
-            "2021-03-03 11:42:58,415 : INFO : not storing attribute cum_table\n",
-            "2021-03-03 11:42:58,474 : INFO : saved model_word2vec_food_emb10\n"
-          ]
-        }
-      ],
-      "source": [
-        "# Using a different embedding size = 10 --> smaller \n",
-        "\n",
-        "# we only take into account words with a frequency of at least 50, and\n",
-        "# we iterate over the corpus only once\n",
-        "model = Word2Vec(sentences, min_count=50, iter=1, size=10)\n",
-        "\n",
-        "# finally, save the constructed model to disk\n",
-        "model.save('model_word2vec_food_emb10')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "optional-facility",
-      "metadata": {
-        "id": "optional-facility",
-        "outputId": "21e9982f-6ae3-4fad-ae74-83bb3bcc3725"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "2021-03-03 11:43:03,629 : INFO : precomputing L2-norms of word weight vectors\n"
-          ]
-        },
-        {
-          "data": {
-            "text/plain": [
-              "[('orange', 0.9701557755470276),\n",
-              " ('thé', 0.91448575258255),\n",
-              " ('miel', 0.9095524549484253),\n",
-              " ('fruit', 0.8966363668441772),\n",
-              " ('légume', 0.8937717080116272),\n",
-              " ('jus', 0.8903478980064392),\n",
-              " ('sirop', 0.886920690536499),\n",
-              " ('zeste', 0.8861187696456909),\n",
-              " ('sorbet', 0.8796806931495667),\n",
-              " ('gingembre', 0.873577356338501)]"
-            ]
-          },
-          "execution_count": 16,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# not only fruits, seems more noisy\n",
-        "model.wv.most_similar('citron')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "thorough-testing",
-      "metadata": {
-        "id": "thorough-testing",
-        "outputId": "f4407cc9-7246-4ecf-c054-444aee34bab2"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('goûter', 0.9205977320671082),\n",
-              " ('partout', 0.9034810066223145),\n",
-              " ('nutella', 0.8814817070960999),\n",
-              " ('bien', 0.8386424779891968),\n",
-              " ('encore', 0.8352771401405334),\n",
-              " ('ventre', 0.8340756297111511),\n",
-              " ('souvent', 0.8268718719482422),\n",
-              " ('plaisir', 0.8246616125106812),\n",
-              " ('délicieux', 0.8187695741653442),\n",
-              " ('soleil', 0.8116978406906128)]"
-            ]
-          },
-          "execution_count": 17,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# also less related terms e.g. 'partout', 'souvent', 'soleil'\n",
-        "model.wv.most_similar('manger')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "black-gross",
-      "metadata": {
-        "id": "black-gross",
-        "outputId": "c6bbdae0-8778-46d9-f23c-d0fe15126b4a"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('portable', 0.9528238773345947),\n",
-              " ('vieillissement', 0.9329143762588501),\n",
-              " ('espace', 0.9177868366241455),\n",
-              " ('téléphone', 0.9072365164756775),\n",
-              " ('lecteur', 0.8983688950538635),\n",
-              " ('bureau', 0.8955821990966797),\n",
-              " ('asseoir', 0.8780864477157593),\n",
-              " ('degré', 0.871376097202301),\n",
-              " ('coffre', 0.8704091310501099),\n",
-              " ('canapé', 0.8421878814697266)]"
-            ]
-          },
-          "execution_count": 18,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# messy... 'vieillissement' ??\n",
-        "model.wv.most_similar('ordinateur')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "nervous-travel",
-      "metadata": {
-        "id": "nervous-travel",
-        "outputId": "c5509b1e-9c37-48d2-c68a-6c1795858905"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "2021-03-03 11:44:06,332 : INFO : collecting all words and their counts\n",
-            "2021-03-03 11:44:06,333 : INFO : PROGRESS: at sentence #0, processed 0 words, keeping 0 word types\n",
-            "2021-03-03 11:44:06,414 : INFO : PROGRESS: at sentence #10000, processed 225563 words, keeping 17928 word types\n",
-            "2021-03-03 11:44:06,520 : INFO : PROGRESS: at sentence #20000, processed 577005 words, keeping 40446 word types\n",
-            "2021-03-03 11:44:06,631 : INFO : PROGRESS: at sentence #30000, processed 938610 words, keeping 57857 word types\n",
-            "2021-03-03 11:44:06,731 : INFO : PROGRESS: at sentence #40000, processed 1243762 words, keeping 68383 word types\n",
-            "2021-03-03 11:44:06,809 : INFO : PROGRESS: at sentence #50000, processed 1509850 words, keeping 70533 word types\n",
-            "2021-03-03 11:44:06,927 : INFO : PROGRESS: at sentence #60000, processed 1850069 words, keeping 82875 word types\n",
-            "2021-03-03 11:44:07,012 : INFO : PROGRESS: at sentence #70000, processed 2100079 words, keeping 87384 word types\n",
-            "2021-03-03 11:44:07,116 : INFO : PROGRESS: at sentence #80000, processed 2443972 words, keeping 99116 word types\n",
-            "2021-03-03 11:44:07,188 : INFO : PROGRESS: at sentence #90000, processed 2696025 words, keeping 102244 word types\n",
-            "2021-03-03 11:44:07,275 : INFO : PROGRESS: at sentence #100000, processed 2981985 words, keeping 105882 word types\n",
-            "2021-03-03 11:44:07,389 : INFO : PROGRESS: at sentence #110000, processed 3315886 words, keeping 115725 word types\n",
-            "2021-03-03 11:44:07,477 : INFO : PROGRESS: at sentence #120000, processed 3582186 words, keeping 119014 word types\n",
-            "2021-03-03 11:44:07,566 : INFO : PROGRESS: at sentence #130000, processed 3859527 words, keeping 122724 word types\n",
-            "2021-03-03 11:44:07,688 : INFO : PROGRESS: at sentence #140000, processed 4215699 words, keeping 133218 word types\n",
-            "2021-03-03 11:44:07,770 : INFO : PROGRESS: at sentence #150000, processed 4465459 words, keeping 136616 word types\n",
-            "2021-03-03 11:44:07,859 : INFO : PROGRESS: at sentence #160000, processed 4756081 words, keeping 141707 word types\n",
-            "2021-03-03 11:44:07,976 : INFO : PROGRESS: at sentence #170000, processed 5099599 words, keeping 150950 word types\n",
-            "2021-03-03 11:44:08,052 : INFO : PROGRESS: at sentence #180000, processed 5354527 words, keeping 153394 word types\n",
-            "2021-03-03 11:44:08,122 : INFO : PROGRESS: at sentence #190000, processed 5622983 words, keeping 154248 word types\n",
-            "2021-03-03 11:44:08,190 : INFO : PROGRESS: at sentence #200000, processed 5884849 words, keeping 155053 word types\n",
-            "2021-03-03 11:44:08,258 : INFO : PROGRESS: at sentence #210000, processed 6145297 words, keeping 155920 word types\n",
-            "2021-03-03 11:44:08,334 : INFO : PROGRESS: at sentence #220000, processed 6414040 words, keeping 157778 word types\n",
-            "2021-03-03 11:44:08,428 : INFO : PROGRESS: at sentence #230000, processed 6711537 words, keeping 162048 word types\n",
-            "2021-03-03 11:44:08,511 : INFO : PROGRESS: at sentence #240000, processed 6961377 words, keeping 166493 word types\n",
-            "2021-03-03 11:44:08,615 : INFO : PROGRESS: at sentence #250000, processed 7269924 words, keeping 171601 word types\n",
-            "2021-03-03 11:44:08,736 : INFO : PROGRESS: at sentence #260000, processed 7572737 words, keeping 177533 word types\n",
-            "2021-03-03 11:44:08,841 : INFO : PROGRESS: at sentence #270000, processed 7865663 words, keeping 183079 word types\n",
-            "2021-03-03 11:44:08,946 : INFO : PROGRESS: at sentence #280000, processed 8163702 words, keeping 188114 word types\n",
-            "2021-03-03 11:44:09,049 : INFO : PROGRESS: at sentence #290000, processed 8467384 words, keeping 192261 word types\n",
-            "2021-03-03 11:44:09,158 : INFO : PROGRESS: at sentence #300000, processed 8786003 words, keeping 196278 word types\n",
-            "2021-03-03 11:44:09,260 : INFO : PROGRESS: at sentence #310000, processed 9100416 words, keeping 199886 word types\n",
-            "2021-03-03 11:44:09,354 : INFO : PROGRESS: at sentence #320000, processed 9386761 words, keeping 202767 word types\n",
-            "2021-03-03 11:44:09,452 : INFO : PROGRESS: at sentence #330000, processed 9682471 words, keeping 205607 word types\n",
-            "2021-03-03 11:44:09,545 : INFO : PROGRESS: at sentence #340000, processed 9963364 words, keeping 208585 word types\n",
-            "2021-03-03 11:44:09,653 : INFO : PROGRESS: at sentence #350000, processed 10274773 words, keeping 212136 word types\n",
-            "2021-03-03 11:44:09,752 : INFO : PROGRESS: at sentence #360000, processed 10578702 words, keeping 215158 word types\n",
-            "2021-03-03 11:44:09,856 : INFO : PROGRESS: at sentence #370000, processed 10863737 words, keeping 217890 word types\n",
-            "2021-03-03 11:44:09,940 : INFO : PROGRESS: at sentence #380000, processed 11101088 words, keeping 221226 word types\n",
-            "2021-03-03 11:44:10,010 : INFO : PROGRESS: at sentence #390000, processed 11293353 words, keeping 222777 word types\n",
-            "2021-03-03 11:44:10,107 : INFO : PROGRESS: at sentence #400000, processed 11578113 words, keeping 226480 word types\n",
-            "2021-03-03 11:44:10,188 : INFO : PROGRESS: at sentence #410000, processed 11817502 words, keeping 229059 word types\n",
-            "2021-03-03 11:44:10,281 : INFO : PROGRESS: at sentence #420000, processed 12073310 words, keeping 232543 word types\n",
-            "2021-03-03 11:44:10,340 : INFO : PROGRESS: at sentence #430000, processed 12239667 words, keeping 234294 word types\n",
-            "2021-03-03 11:44:10,419 : INFO : PROGRESS: at sentence #440000, processed 12465649 words, keeping 236471 word types\n",
-            "2021-03-03 11:44:10,478 : INFO : PROGRESS: at sentence #450000, processed 12640016 words, keeping 237753 word types\n",
-            "2021-03-03 11:44:10,569 : INFO : PROGRESS: at sentence #460000, processed 12914272 words, keeping 239984 word types\n",
-            "2021-03-03 11:44:10,658 : INFO : PROGRESS: at sentence #470000, processed 13170164 words, keeping 242719 word types\n",
-            "2021-03-03 11:44:10,728 : INFO : PROGRESS: at sentence #480000, processed 13395346 words, keeping 243844 word types\n",
-            "2021-03-03 11:44:10,802 : INFO : PROGRESS: at sentence #490000, processed 13623967 words, keeping 245472 word types\n",
-            "2021-03-03 11:44:10,876 : INFO : PROGRESS: at sentence #500000, processed 13856058 words, keeping 246782 word types\n",
-            "2021-03-03 11:44:10,967 : INFO : PROGRESS: at sentence #510000, processed 14165789 words, keeping 249255 word types\n",
-            "2021-03-03 11:44:11,039 : INFO : PROGRESS: at sentence #520000, processed 14390623 words, keeping 250744 word types\n",
-            "2021-03-03 11:44:11,125 : INFO : PROGRESS: at sentence #530000, processed 14649350 words, keeping 253433 word types\n",
-            "2021-03-03 11:44:11,208 : INFO : PROGRESS: at sentence #540000, processed 14901362 words, keeping 256289 word types\n",
-            "2021-03-03 11:44:11,296 : INFO : PROGRESS: at sentence #550000, processed 15183462 words, keeping 259543 word types\n",
-            "2021-03-03 11:44:11,391 : INFO : PROGRESS: at sentence #560000, processed 15484113 words, keeping 262631 word types\n",
-            "2021-03-03 11:44:11,492 : INFO : PROGRESS: at sentence #570000, processed 15766487 words, keeping 265682 word types\n",
-            "2021-03-03 11:44:11,592 : INFO : PROGRESS: at sentence #580000, processed 16039019 words, keeping 268568 word types\n",
-            "2021-03-03 11:44:11,689 : INFO : PROGRESS: at sentence #590000, processed 16308605 words, keeping 270912 word types\n",
-            "2021-03-03 11:44:11,772 : INFO : PROGRESS: at sentence #600000, processed 16550906 words, keeping 272955 word types\n",
-            "2021-03-03 11:44:11,847 : INFO : PROGRESS: at sentence #610000, processed 16764303 words, keeping 275088 word types\n",
-            "2021-03-03 11:44:11,939 : INFO : PROGRESS: at sentence #620000, processed 17064329 words, keeping 277137 word types\n",
-            "2021-03-03 11:44:12,034 : INFO : PROGRESS: at sentence #630000, processed 17321800 words, keeping 279585 word types\n",
-            "2021-03-03 11:44:12,126 : INFO : PROGRESS: at sentence #640000, processed 17574611 words, keeping 281959 word types\n",
-            "2021-03-03 11:44:12,198 : INFO : PROGRESS: at sentence #650000, processed 17767660 words, keeping 283659 word types\n",
-            "2021-03-03 11:44:12,273 : INFO : PROGRESS: at sentence #660000, processed 17975982 words, keeping 285244 word types\n",
-            "2021-03-03 11:44:12,357 : INFO : PROGRESS: at sentence #670000, processed 18204699 words, keeping 287430 word types\n",
-            "2021-03-03 11:44:12,452 : INFO : PROGRESS: at sentence #680000, processed 18469750 words, keeping 289796 word types\n",
-            "2021-03-03 11:44:12,550 : INFO : PROGRESS: at sentence #690000, processed 18727388 words, keeping 291813 word types\n",
-            "2021-03-03 11:44:12,644 : INFO : PROGRESS: at sentence #700000, processed 18990506 words, keeping 294341 word types\n",
-            "2021-03-03 11:44:12,733 : INFO : PROGRESS: at sentence #710000, processed 19245564 words, keeping 296330 word types\n",
-            "2021-03-03 11:44:12,839 : INFO : PROGRESS: at sentence #720000, processed 19498061 words, keeping 298479 word types\n",
-            "2021-03-03 11:44:12,939 : INFO : PROGRESS: at sentence #730000, processed 19768141 words, keeping 300820 word types\n",
-            "2021-03-03 11:44:13,021 : INFO : PROGRESS: at sentence #740000, processed 20007749 words, keeping 302109 word types\n",
-            "2021-03-03 11:44:13,120 : INFO : PROGRESS: at sentence #750000, processed 20279512 words, keeping 304828 word types\n",
-            "2021-03-03 11:44:13,200 : INFO : PROGRESS: at sentence #760000, processed 20550456 words, keeping 307007 word types\n",
-            "2021-03-03 11:44:13,276 : INFO : PROGRESS: at sentence #770000, processed 20802902 words, keeping 308697 word types\n",
-            "2021-03-03 11:44:13,370 : INFO : PROGRESS: at sentence #780000, processed 21081124 words, keeping 311136 word types\n",
-            "2021-03-03 11:44:13,461 : INFO : PROGRESS: at sentence #790000, processed 21348998 words, keeping 312932 word types\n",
-            "2021-03-03 11:44:13,556 : INFO : PROGRESS: at sentence #800000, processed 21623252 words, keeping 314817 word types\n",
-            "2021-03-03 11:44:13,653 : INFO : PROGRESS: at sentence #810000, processed 21897534 words, keeping 316999 word types\n",
-            "2021-03-03 11:44:13,741 : INFO : PROGRESS: at sentence #820000, processed 22140050 words, keeping 318484 word types\n",
-            "2021-03-03 11:44:13,817 : INFO : PROGRESS: at sentence #830000, processed 22352306 words, keeping 319975 word types\n",
-            "2021-03-03 11:44:13,900 : INFO : PROGRESS: at sentence #840000, processed 22600070 words, keeping 321714 word types\n",
-            "2021-03-03 11:44:13,987 : INFO : PROGRESS: at sentence #850000, processed 22877333 words, keeping 323950 word types\n",
-            "2021-03-03 11:44:14,072 : INFO : PROGRESS: at sentence #860000, processed 23123404 words, keeping 325301 word types\n",
-            "2021-03-03 11:44:14,136 : INFO : PROGRESS: at sentence #870000, processed 23309866 words, keeping 326318 word types\n",
-            "2021-03-03 11:44:14,216 : INFO : PROGRESS: at sentence #880000, processed 23527942 words, keeping 328076 word types\n",
-            "2021-03-03 11:44:14,297 : INFO : PROGRESS: at sentence #890000, processed 23757208 words, keeping 329680 word types\n",
-            "2021-03-03 11:44:14,389 : INFO : PROGRESS: at sentence #900000, processed 24002251 words, keeping 331477 word types\n",
-            "2021-03-03 11:44:14,486 : INFO : PROGRESS: at sentence #910000, processed 24288687 words, keeping 332364 word types\n",
-            "2021-03-03 11:44:14,586 : INFO : PROGRESS: at sentence #920000, processed 24543879 words, keeping 333964 word types\n",
-            "2021-03-03 11:44:14,681 : INFO : PROGRESS: at sentence #930000, processed 24809243 words, keeping 335779 word types\n",
-            "2021-03-03 11:44:14,771 : INFO : PROGRESS: at sentence #940000, processed 25062466 words, keeping 337657 word types\n",
-            "2021-03-03 11:44:14,857 : INFO : PROGRESS: at sentence #950000, processed 25311455 words, keeping 339686 word types\n",
-            "2021-03-03 11:44:14,928 : INFO : PROGRESS: at sentence #960000, processed 25518623 words, keeping 340904 word types\n",
-            "2021-03-03 11:44:15,006 : INFO : PROGRESS: at sentence #970000, processed 25722593 words, keeping 342185 word types\n",
-            "2021-03-03 11:44:15,104 : INFO : PROGRESS: at sentence #980000, processed 25990527 words, keeping 343595 word types\n",
-            "2021-03-03 11:44:15,192 : INFO : PROGRESS: at sentence #990000, processed 26253387 words, keeping 345288 word types\n",
-            "2021-03-03 11:44:15,294 : INFO : PROGRESS: at sentence #1000000, processed 26526173 words, keeping 347218 word types\n",
-            "2021-03-03 11:44:15,395 : INFO : PROGRESS: at sentence #1010000, processed 26794546 words, keeping 349267 word types\n",
-            "2021-03-03 11:44:15,514 : INFO : PROGRESS: at sentence #1020000, processed 27084482 words, keeping 351294 word types\n",
-            "2021-03-03 11:44:15,600 : INFO : PROGRESS: at sentence #1030000, processed 27332440 words, keeping 352733 word types\n",
-            "2021-03-03 11:44:15,682 : INFO : PROGRESS: at sentence #1040000, processed 27572431 words, keeping 353933 word types\n",
-            "2021-03-03 11:44:15,763 : INFO : PROGRESS: at sentence #1050000, processed 27824398 words, keeping 355366 word types\n",
-            "2021-03-03 11:44:15,844 : INFO : PROGRESS: at sentence #1060000, processed 28062062 words, keeping 356931 word types\n",
-            "2021-03-03 11:44:15,933 : INFO : PROGRESS: at sentence #1070000, processed 28311350 words, keeping 358369 word types\n",
-            "2021-03-03 11:44:16,013 : INFO : PROGRESS: at sentence #1080000, processed 28536605 words, keeping 359522 word types\n",
-            "2021-03-03 11:44:16,099 : INFO : PROGRESS: at sentence #1090000, processed 28797405 words, keeping 360915 word types\n",
-            "2021-03-03 11:44:16,192 : INFO : PROGRESS: at sentence #1100000, processed 29056639 words, keeping 362781 word types\n",
-            "2021-03-03 11:44:16,285 : INFO : PROGRESS: at sentence #1110000, processed 29301469 words, keeping 364164 word types\n",
-            "2021-03-03 11:44:16,384 : INFO : PROGRESS: at sentence #1120000, processed 29567027 words, keeping 365897 word types\n",
-            "2021-03-03 11:44:16,476 : INFO : PROGRESS: at sentence #1130000, processed 29854534 words, keeping 367714 word types\n",
-            "2021-03-03 11:44:16,566 : INFO : PROGRESS: at sentence #1140000, processed 30119177 words, keeping 369036 word types\n",
-            "2021-03-03 11:44:16,662 : INFO : PROGRESS: at sentence #1150000, processed 30368650 words, keeping 370630 word types\n",
-            "2021-03-03 11:44:16,760 : INFO : PROGRESS: at sentence #1160000, processed 30632128 words, keeping 372431 word types\n",
-            "2021-03-03 11:44:16,774 : INFO : collected 372759 word types from a corpus of 30667537 raw words and 1161270 sentences\n",
-            "2021-03-03 11:44:16,775 : INFO : Loading a fresh vocabulary\n",
-            "2021-03-03 11:44:16,935 : INFO : effective_min_count=50 retains 20354 unique words (5% of original 372759, drops 352405)\n",
-            "2021-03-03 11:44:16,936 : INFO : effective_min_count=50 leaves 29335586 word corpus (95% of original 30667537, drops 1331951)\n",
-            "2021-03-03 11:44:16,998 : INFO : deleting the raw counts dictionary of 372759 items\n",
-            "2021-03-03 11:44:17,012 : INFO : sample=0.001 downsamples 50 most-common words\n",
-            "2021-03-03 11:44:17,013 : INFO : downsampling leaves estimated 20080642 word corpus (68.5% of prior 29335586)\n",
-            "2021-03-03 11:44:17,065 : INFO : estimated required memory for 20354 words and 300 dimensions: 59026600 bytes\n",
-            "2021-03-03 11:44:17,066 : INFO : resetting layer weights\n",
-            "2021-03-03 11:44:21,308 : INFO : training model with 3 workers on 20354 vocabulary and 300 features, using sg=0 hs=0 sample=0.001 negative=5 window=5\n",
-            "2021-03-03 11:44:22,311 : INFO : EPOCH 1 - PROGRESS: at 4.32% examples, 991189 words/s, in_qsize 3, out_qsize 0\n",
-            "2021-03-03 11:44:23,314 : INFO : EPOCH 1 - PROGRESS: at 8.17% examples, 922543 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:24,316 : INFO : EPOCH 1 - PROGRESS: at 11.88% examples, 898826 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:25,320 : INFO : EPOCH 1 - PROGRESS: at 16.15% examples, 900216 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:26,323 : INFO : EPOCH 1 - PROGRESS: at 20.92% examples, 902379 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:27,325 : INFO : EPOCH 1 - PROGRESS: at 25.10% examples, 910298 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:28,326 : INFO : EPOCH 1 - PROGRESS: at 29.39% examples, 916479 words/s, in_qsize 4, out_qsize 0\n",
-            "2021-03-03 11:44:29,329 : INFO : EPOCH 1 - PROGRESS: at 34.19% examples, 923422 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:30,336 : INFO : EPOCH 1 - PROGRESS: at 40.03% examples, 932304 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:31,337 : INFO : EPOCH 1 - PROGRESS: at 45.51% examples, 942702 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:32,340 : INFO : EPOCH 1 - PROGRESS: at 50.50% examples, 953146 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-03-03 11:44:33,344 : INFO : EPOCH 1 - PROGRESS: at 56.34% examples, 964455 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:34,347 : INFO : EPOCH 1 - PROGRESS: at 61.83% examples, 970611 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-03-03 11:44:35,353 : INFO : EPOCH 1 - PROGRESS: at 66.85% examples, 973849 words/s, in_qsize 4, out_qsize 0\n",
-            "2021-03-03 11:44:36,354 : INFO : EPOCH 1 - PROGRESS: at 70.71% examples, 961138 words/s, in_qsize 4, out_qsize 0\n",
-            "2021-03-03 11:44:37,360 : INFO : EPOCH 1 - PROGRESS: at 76.07% examples, 960227 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:38,364 : INFO : EPOCH 1 - PROGRESS: at 80.31% examples, 953802 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:39,366 : INFO : EPOCH 1 - PROGRESS: at 85.57% examples, 954541 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:40,367 : INFO : EPOCH 1 - PROGRESS: at 90.09% examples, 952049 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:41,372 : INFO : EPOCH 1 - PROGRESS: at 94.83% examples, 949236 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 11:44:42,374 : INFO : EPOCH 1 - PROGRESS: at 99.34% examples, 946932 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-03-03 11:44:42,520 : INFO : worker thread finished; awaiting finish of 2 more threads\n",
-            "2021-03-03 11:44:42,523 : INFO : worker thread finished; awaiting finish of 1 more threads\n",
-            "2021-03-03 11:44:42,527 : INFO : worker thread finished; awaiting finish of 0 more threads\n",
-            "2021-03-03 11:44:42,528 : INFO : EPOCH - 1 : training on 30667537 raw words (20080242 effective words) took 21.2s, 946346 effective words/s\n",
-            "2021-03-03 11:44:42,529 : INFO : training on a 30667537 raw words (20080242 effective words) took 21.2s, 946247 effective words/s\n",
-            "2021-03-03 11:44:42,539 : INFO : saving Word2Vec object under model_word2vec_food_emb300, separately None\n",
-            "2021-03-03 11:44:42,540 : INFO : not storing attribute vectors_norm\n",
-            "2021-03-03 11:44:42,542 : INFO : not storing attribute cum_table\n",
-            "2021-03-03 11:44:43,084 : INFO : saved model_word2vec_food_emb300\n"
-          ]
-        }
-      ],
-      "source": [
-        "# Using a different embedding size = 300 --> larger\n",
-        "\n",
-        "# we only take into account words with a frequency of at least 50, and\n",
-        "# we iterate over the corpus only once\n",
-        "model = Word2Vec(sentences, min_count=50, iter=1, size=300)\n",
-        "\n",
-        "# finally, save the constructed model to disk\n",
-        "model.save('model_word2vec_food_emb300')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "unauthorized-share",
-      "metadata": {
-        "id": "unauthorized-share",
-        "outputId": "4def4c4a-de0a-49ac-8e16-97ef7f0a15cd"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "2021-03-03 11:53:36,991 : INFO : precomputing L2-norms of word weight vectors\n"
-          ]
-        },
-        {
-          "data": {
-            "text/plain": [
-              "[('gingembre', 0.6645665168762207),\n",
-              " ('fruit', 0.6551624536514282),\n",
-              " ('pamplemousse', 0.6428045034408569),\n",
-              " ('concombre', 0.624386727809906),\n",
-              " ('yuzu', 0.6241005659103394),\n",
-              " ('orange', 0.6133434772491455),\n",
-              " ('yaourt', 0.6126192212104797),\n",
-              " ('citrouille', 0.6111414432525635),\n",
-              " ('carotte', 0.6074504256248474),\n",
-              " ('ananas', 0.6067054271697998)]"
-            ]
-          },
-          "execution_count": 20,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# I get 'yuzu' and 'orange'\n",
-        "model.wv.most_similar('citron')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "accessory-slope",
-      "metadata": {
-        "id": "accessory-slope",
-        "outputId": "5efec53a-c8a0-4514-dce3-1d3ad18cb2c0"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('boire', 0.7331357598304749),\n",
-              " ('cuisiner', 0.6367307901382446),\n",
-              " ('goûter', 0.6261330842971802),\n",
-              " ('consommer', 0.5735998153686523),\n",
-              " ('gouter', 0.5645979642868042),\n",
-              " ('croquer', 0.5588220357894897),\n",
-              " ('dévorer', 0.5367330312728882),\n",
-              " ('grignoter', 0.5296956300735474),\n",
-              " ('acheter', 0.5204369425773621),\n",
-              " ('déguster', 0.5201650857925415)]"
-            ]
-          },
-          "execution_count": 21,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# only verbs, but very closely related to 'mange' (except 'acheter')\n",
-        "model.wv.most_similar('manger')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "technical-strategy",
-      "metadata": {
-        "id": "technical-strategy",
-        "outputId": "889d0768-c5ed-4260-9015-e87dea320717"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('coffre', 0.864888072013855),\n",
-              " ('portable', 0.8150173425674438),\n",
-              " ('privé', 0.7657593488693237),\n",
-              " ('bureau', 0.7581967115402222),\n",
-              " ('téléphone', 0.7433552742004395),\n",
-              " ('lecteur', 0.7256532311439514),\n",
-              " ('vestiaire', 0.7228049039840698),\n",
-              " ('minibar', 0.72231525182724),\n",
-              " ('dvd', 0.717086672782898),\n",
-              " ('balcon', 0.7162394523620605)]"
-            ]
-          },
-          "execution_count": 22,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# still weird\n",
-        "model.wv.most_similar('ordinateur')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "frank-ukraine",
-      "metadata": {
-        "id": "frank-ukraine",
-        "outputId": "47b6bcc9-d87b-4ab5-cdc8-7e5e9ca68327"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "2021-03-03 12:00:12,045 : INFO : collecting all words and their counts\n",
-            "2021-03-03 12:00:12,047 : INFO : PROGRESS: at sentence #0, processed 0 words, keeping 0 word types\n",
-            "2021-03-03 12:00:12,141 : INFO : PROGRESS: at sentence #10000, processed 225563 words, keeping 17928 word types\n",
-            "2021-03-03 12:00:12,249 : INFO : PROGRESS: at sentence #20000, processed 577005 words, keeping 40446 word types\n",
-            "2021-03-03 12:00:12,361 : INFO : PROGRESS: at sentence #30000, processed 938610 words, keeping 57857 word types\n",
-            "2021-03-03 12:00:12,453 : INFO : PROGRESS: at sentence #40000, processed 1243762 words, keeping 68383 word types\n",
-            "2021-03-03 12:00:12,534 : INFO : PROGRESS: at sentence #50000, processed 1509850 words, keeping 70533 word types\n",
-            "2021-03-03 12:00:12,653 : INFO : PROGRESS: at sentence #60000, processed 1850069 words, keeping 82875 word types\n",
-            "2021-03-03 12:00:12,735 : INFO : PROGRESS: at sentence #70000, processed 2100079 words, keeping 87384 word types\n",
-            "2021-03-03 12:00:12,838 : INFO : PROGRESS: at sentence #80000, processed 2443972 words, keeping 99116 word types\n",
-            "2021-03-03 12:00:12,911 : INFO : PROGRESS: at sentence #90000, processed 2696025 words, keeping 102244 word types\n",
-            "2021-03-03 12:00:12,989 : INFO : PROGRESS: at sentence #100000, processed 2981985 words, keeping 105882 word types\n",
-            "2021-03-03 12:00:13,099 : INFO : PROGRESS: at sentence #110000, processed 3315886 words, keeping 115725 word types\n",
-            "2021-03-03 12:00:13,177 : INFO : PROGRESS: at sentence #120000, processed 3582186 words, keeping 119014 word types\n",
-            "2021-03-03 12:00:13,257 : INFO : PROGRESS: at sentence #130000, processed 3859527 words, keeping 122724 word types\n",
-            "2021-03-03 12:00:13,369 : INFO : PROGRESS: at sentence #140000, processed 4215699 words, keeping 133218 word types\n",
-            "2021-03-03 12:00:13,450 : INFO : PROGRESS: at sentence #150000, processed 4465459 words, keeping 136616 word types\n",
-            "2021-03-03 12:00:13,537 : INFO : PROGRESS: at sentence #160000, processed 4756081 words, keeping 141707 word types\n",
-            "2021-03-03 12:00:13,644 : INFO : PROGRESS: at sentence #170000, processed 5099599 words, keeping 150950 word types\n",
-            "2021-03-03 12:00:13,717 : INFO : PROGRESS: at sentence #180000, processed 5354527 words, keeping 153394 word types\n",
-            "2021-03-03 12:00:13,783 : INFO : PROGRESS: at sentence #190000, processed 5622983 words, keeping 154248 word types\n",
-            "2021-03-03 12:00:13,848 : INFO : PROGRESS: at sentence #200000, processed 5884849 words, keeping 155053 word types\n",
-            "2021-03-03 12:00:13,913 : INFO : PROGRESS: at sentence #210000, processed 6145297 words, keeping 155920 word types\n",
-            "2021-03-03 12:00:13,984 : INFO : PROGRESS: at sentence #220000, processed 6414040 words, keeping 157778 word types\n",
-            "2021-03-03 12:00:14,070 : INFO : PROGRESS: at sentence #230000, processed 6711537 words, keeping 162048 word types\n",
-            "2021-03-03 12:00:14,154 : INFO : PROGRESS: at sentence #240000, processed 6961377 words, keeping 166493 word types\n",
-            "2021-03-03 12:00:14,262 : INFO : PROGRESS: at sentence #250000, processed 7269924 words, keeping 171601 word types\n",
-            "2021-03-03 12:00:14,364 : INFO : PROGRESS: at sentence #260000, processed 7572737 words, keeping 177533 word types\n",
-            "2021-03-03 12:00:14,453 : INFO : PROGRESS: at sentence #270000, processed 7865663 words, keeping 183079 word types\n",
-            "2021-03-03 12:00:14,546 : INFO : PROGRESS: at sentence #280000, processed 8163702 words, keeping 188114 word types\n",
-            "2021-03-03 12:00:14,638 : INFO : PROGRESS: at sentence #290000, processed 8467384 words, keeping 192261 word types\n",
-            "2021-03-03 12:00:14,740 : INFO : PROGRESS: at sentence #300000, processed 8786003 words, keeping 196278 word types\n",
-            "2021-03-03 12:00:14,841 : INFO : PROGRESS: at sentence #310000, processed 9100416 words, keeping 199886 word types\n",
-            "2021-03-03 12:00:14,943 : INFO : PROGRESS: at sentence #320000, processed 9386761 words, keeping 202767 word types\n",
-            "2021-03-03 12:00:15,046 : INFO : PROGRESS: at sentence #330000, processed 9682471 words, keeping 205607 word types\n",
-            "2021-03-03 12:00:15,143 : INFO : PROGRESS: at sentence #340000, processed 9963364 words, keeping 208585 word types\n",
-            "2021-03-03 12:00:15,242 : INFO : PROGRESS: at sentence #350000, processed 10274773 words, keeping 212136 word types\n",
-            "2021-03-03 12:00:15,354 : INFO : PROGRESS: at sentence #360000, processed 10578702 words, keeping 215158 word types\n",
-            "2021-03-03 12:00:15,460 : INFO : PROGRESS: at sentence #370000, processed 10863737 words, keeping 217890 word types\n",
-            "2021-03-03 12:00:15,544 : INFO : PROGRESS: at sentence #380000, processed 11101088 words, keeping 221226 word types\n",
-            "2021-03-03 12:00:15,612 : INFO : PROGRESS: at sentence #390000, processed 11293353 words, keeping 222777 word types\n",
-            "2021-03-03 12:00:15,708 : INFO : PROGRESS: at sentence #400000, processed 11578113 words, keeping 226480 word types\n",
-            "2021-03-03 12:00:15,791 : INFO : PROGRESS: at sentence #410000, processed 11817502 words, keeping 229059 word types\n",
-            "2021-03-03 12:00:15,879 : INFO : PROGRESS: at sentence #420000, processed 12073310 words, keeping 232543 word types\n",
-            "2021-03-03 12:00:15,939 : INFO : PROGRESS: at sentence #430000, processed 12239667 words, keeping 234294 word types\n",
-            "2021-03-03 12:00:16,017 : INFO : PROGRESS: at sentence #440000, processed 12465649 words, keeping 236471 word types\n",
-            "2021-03-03 12:00:16,078 : INFO : PROGRESS: at sentence #450000, processed 12640016 words, keeping 237753 word types\n",
-            "2021-03-03 12:00:16,171 : INFO : PROGRESS: at sentence #460000, processed 12914272 words, keeping 239984 word types\n",
-            "2021-03-03 12:00:16,258 : INFO : PROGRESS: at sentence #470000, processed 13170164 words, keeping 242719 word types\n",
-            "2021-03-03 12:00:16,330 : INFO : PROGRESS: at sentence #480000, processed 13395346 words, keeping 243844 word types\n",
-            "2021-03-03 12:00:16,406 : INFO : PROGRESS: at sentence #490000, processed 13623967 words, keeping 245472 word types\n",
-            "2021-03-03 12:00:16,484 : INFO : PROGRESS: at sentence #500000, processed 13856058 words, keeping 246782 word types\n",
-            "2021-03-03 12:00:16,582 : INFO : PROGRESS: at sentence #510000, processed 14165789 words, keeping 249255 word types\n",
-            "2021-03-03 12:00:16,660 : INFO : PROGRESS: at sentence #520000, processed 14390623 words, keeping 250744 word types\n",
-            "2021-03-03 12:00:16,747 : INFO : PROGRESS: at sentence #530000, processed 14649350 words, keeping 253433 word types\n",
-            "2021-03-03 12:00:16,833 : INFO : PROGRESS: at sentence #540000, processed 14901362 words, keeping 256289 word types\n",
-            "2021-03-03 12:00:16,922 : INFO : PROGRESS: at sentence #550000, processed 15183462 words, keeping 259543 word types\n",
-            "2021-03-03 12:00:17,013 : INFO : PROGRESS: at sentence #560000, processed 15484113 words, keeping 262631 word types\n",
-            "2021-03-03 12:00:17,101 : INFO : PROGRESS: at sentence #570000, processed 15766487 words, keeping 265682 word types\n",
-            "2021-03-03 12:00:17,186 : INFO : PROGRESS: at sentence #580000, processed 16039019 words, keeping 268568 word types\n",
-            "2021-03-03 12:00:17,272 : INFO : PROGRESS: at sentence #590000, processed 16308605 words, keeping 270912 word types\n",
-            "2021-03-03 12:00:17,352 : INFO : PROGRESS: at sentence #600000, processed 16550906 words, keeping 272955 word types\n",
-            "2021-03-03 12:00:17,425 : INFO : PROGRESS: at sentence #610000, processed 16764303 words, keeping 275088 word types\n",
-            "2021-03-03 12:00:17,517 : INFO : PROGRESS: at sentence #620000, processed 17064329 words, keeping 277137 word types\n",
-            "2021-03-03 12:00:17,600 : INFO : PROGRESS: at sentence #630000, processed 17321800 words, keeping 279585 word types\n",
-            "2021-03-03 12:00:17,691 : INFO : PROGRESS: at sentence #640000, processed 17574611 words, keeping 281959 word types\n",
-            "2021-03-03 12:00:17,767 : INFO : PROGRESS: at sentence #650000, processed 17767660 words, keeping 283659 word types\n",
-            "2021-03-03 12:00:17,843 : INFO : PROGRESS: at sentence #660000, processed 17975982 words, keeping 285244 word types\n",
-            "2021-03-03 12:00:17,922 : INFO : PROGRESS: at sentence #670000, processed 18204699 words, keeping 287430 word types\n",
-            "2021-03-03 12:00:18,032 : INFO : PROGRESS: at sentence #680000, processed 18469750 words, keeping 289796 word types\n",
-            "2021-03-03 12:00:18,123 : INFO : PROGRESS: at sentence #690000, processed 18727388 words, keeping 291813 word types\n",
-            "2021-03-03 12:00:18,211 : INFO : PROGRESS: at sentence #700000, processed 18990506 words, keeping 294341 word types\n",
-            "2021-03-03 12:00:18,297 : INFO : PROGRESS: at sentence #710000, processed 19245564 words, keeping 296330 word types\n",
-            "2021-03-03 12:00:18,390 : INFO : PROGRESS: at sentence #720000, processed 19498061 words, keeping 298479 word types\n",
-            "2021-03-03 12:00:18,484 : INFO : PROGRESS: at sentence #730000, processed 19768141 words, keeping 300820 word types\n",
-            "2021-03-03 12:00:18,567 : INFO : PROGRESS: at sentence #740000, processed 20007749 words, keeping 302109 word types\n",
-            "2021-03-03 12:00:18,662 : INFO : PROGRESS: at sentence #750000, processed 20279512 words, keeping 304828 word types\n",
-            "2021-03-03 12:00:18,755 : INFO : PROGRESS: at sentence #760000, processed 20550456 words, keeping 307007 word types\n",
-            "2021-03-03 12:00:18,840 : INFO : PROGRESS: at sentence #770000, processed 20802902 words, keeping 308697 word types\n",
-            "2021-03-03 12:00:18,935 : INFO : PROGRESS: at sentence #780000, processed 21081124 words, keeping 311136 word types\n",
-            "2021-03-03 12:00:19,019 : INFO : PROGRESS: at sentence #790000, processed 21348998 words, keeping 312932 word types\n",
-            "2021-03-03 12:00:19,113 : INFO : PROGRESS: at sentence #800000, processed 21623252 words, keeping 314817 word types\n",
-            "2021-03-03 12:00:19,205 : INFO : PROGRESS: at sentence #810000, processed 21897534 words, keeping 316999 word types\n",
-            "2021-03-03 12:00:19,283 : INFO : PROGRESS: at sentence #820000, processed 22140050 words, keeping 318484 word types\n",
-            "2021-03-03 12:00:19,354 : INFO : PROGRESS: at sentence #830000, processed 22352306 words, keeping 319975 word types\n",
-            "2021-03-03 12:00:19,440 : INFO : PROGRESS: at sentence #840000, processed 22600070 words, keeping 321714 word types\n",
-            "2021-03-03 12:00:19,534 : INFO : PROGRESS: at sentence #850000, processed 22877333 words, keeping 323950 word types\n",
-            "2021-03-03 12:00:19,611 : INFO : PROGRESS: at sentence #860000, processed 23123404 words, keeping 325301 word types\n",
-            "2021-03-03 12:00:19,674 : INFO : PROGRESS: at sentence #870000, processed 23309866 words, keeping 326318 word types\n",
-            "2021-03-03 12:00:19,745 : INFO : PROGRESS: at sentence #880000, processed 23527942 words, keeping 328076 word types\n",
-            "2021-03-03 12:00:19,820 : INFO : PROGRESS: at sentence #890000, processed 23757208 words, keeping 329680 word types\n",
-            "2021-03-03 12:00:19,901 : INFO : PROGRESS: at sentence #900000, processed 24002251 words, keeping 331477 word types\n",
-            "2021-03-03 12:00:19,987 : INFO : PROGRESS: at sentence #910000, processed 24288687 words, keeping 332364 word types\n",
-            "2021-03-03 12:00:20,071 : INFO : PROGRESS: at sentence #920000, processed 24543879 words, keeping 333964 word types\n",
-            "2021-03-03 12:00:20,155 : INFO : PROGRESS: at sentence #930000, processed 24809243 words, keeping 335779 word types\n",
-            "2021-03-03 12:00:20,243 : INFO : PROGRESS: at sentence #940000, processed 25062466 words, keeping 337657 word types\n",
-            "2021-03-03 12:00:20,327 : INFO : PROGRESS: at sentence #950000, processed 25311455 words, keeping 339686 word types\n",
-            "2021-03-03 12:00:20,393 : INFO : PROGRESS: at sentence #960000, processed 25518623 words, keeping 340904 word types\n",
-            "2021-03-03 12:00:20,459 : INFO : PROGRESS: at sentence #970000, processed 25722593 words, keeping 342185 word types\n",
-            "2021-03-03 12:00:20,540 : INFO : PROGRESS: at sentence #980000, processed 25990527 words, keeping 343595 word types\n",
-            "2021-03-03 12:00:20,623 : INFO : PROGRESS: at sentence #990000, processed 26253387 words, keeping 345288 word types\n",
-            "2021-03-03 12:00:20,711 : INFO : PROGRESS: at sentence #1000000, processed 26526173 words, keeping 347218 word types\n",
-            "2021-03-03 12:00:20,797 : INFO : PROGRESS: at sentence #1010000, processed 26794546 words, keeping 349267 word types\n",
-            "2021-03-03 12:00:20,902 : INFO : PROGRESS: at sentence #1020000, processed 27084482 words, keeping 351294 word types\n",
-            "2021-03-03 12:00:20,994 : INFO : PROGRESS: at sentence #1030000, processed 27332440 words, keeping 352733 word types\n",
-            "2021-03-03 12:00:21,080 : INFO : PROGRESS: at sentence #1040000, processed 27572431 words, keeping 353933 word types\n",
-            "2021-03-03 12:00:21,168 : INFO : PROGRESS: at sentence #1050000, processed 27824398 words, keeping 355366 word types\n",
-            "2021-03-03 12:00:21,251 : INFO : PROGRESS: at sentence #1060000, processed 28062062 words, keeping 356931 word types\n",
-            "2021-03-03 12:00:21,341 : INFO : PROGRESS: at sentence #1070000, processed 28311350 words, keeping 358369 word types\n",
-            "2021-03-03 12:00:21,419 : INFO : PROGRESS: at sentence #1080000, processed 28536605 words, keeping 359522 word types\n",
-            "2021-03-03 12:00:21,511 : INFO : PROGRESS: at sentence #1090000, processed 28797405 words, keeping 360915 word types\n",
-            "2021-03-03 12:00:21,600 : INFO : PROGRESS: at sentence #1100000, processed 29056639 words, keeping 362781 word types\n",
-            "2021-03-03 12:00:21,690 : INFO : PROGRESS: at sentence #1110000, processed 29301469 words, keeping 364164 word types\n",
-            "2021-03-03 12:00:21,779 : INFO : PROGRESS: at sentence #1120000, processed 29567027 words, keeping 365897 word types\n",
-            "2021-03-03 12:00:21,882 : INFO : PROGRESS: at sentence #1130000, processed 29854534 words, keeping 367714 word types\n",
-            "2021-03-03 12:00:21,972 : INFO : PROGRESS: at sentence #1140000, processed 30119177 words, keeping 369036 word types\n",
-            "2021-03-03 12:00:22,059 : INFO : PROGRESS: at sentence #1150000, processed 30368650 words, keeping 370630 word types\n",
-            "2021-03-03 12:00:22,150 : INFO : PROGRESS: at sentence #1160000, processed 30632128 words, keeping 372431 word types\n",
-            "2021-03-03 12:00:22,163 : INFO : collected 372759 word types from a corpus of 30667537 raw words and 1161270 sentences\n",
-            "2021-03-03 12:00:22,164 : INFO : Loading a fresh vocabulary\n",
-            "2021-03-03 12:00:22,373 : INFO : effective_min_count=50 retains 20354 unique words (5% of original 372759, drops 352405)\n",
-            "2021-03-03 12:00:22,374 : INFO : effective_min_count=50 leaves 29335586 word corpus (95% of original 30667537, drops 1331951)\n",
-            "2021-03-03 12:00:22,431 : INFO : deleting the raw counts dictionary of 372759 items\n",
-            "2021-03-03 12:00:22,445 : INFO : sample=0.001 downsamples 50 most-common words\n",
-            "2021-03-03 12:00:22,446 : INFO : downsampling leaves estimated 20080642 word corpus (68.5% of prior 29335586)\n",
-            "2021-03-03 12:00:22,498 : INFO : estimated required memory for 20354 words and 100 dimensions: 26460200 bytes\n",
-            "2021-03-03 12:00:22,498 : INFO : resetting layer weights\n",
-            "2021-03-03 12:00:26,075 : INFO : training model with 3 workers on 20354 vocabulary and 100 features, using sg=1 hs=0 sample=0.001 negative=5 window=5\n",
-            "2021-03-03 12:00:27,100 : INFO : EPOCH 1 - PROGRESS: at 2.06% examples, 477905 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:28,128 : INFO : EPOCH 1 - PROGRESS: at 4.41% examples, 492812 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:29,129 : INFO : EPOCH 1 - PROGRESS: at 6.52% examples, 491760 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:30,144 : INFO : EPOCH 1 - PROGRESS: at 8.83% examples, 493082 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:31,150 : INFO : EPOCH 1 - PROGRESS: at 11.18% examples, 495007 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:32,158 : INFO : EPOCH 1 - PROGRESS: at 13.41% examples, 494756 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:33,159 : INFO : EPOCH 1 - PROGRESS: at 15.55% examples, 493669 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:34,161 : INFO : EPOCH 1 - PROGRESS: at 18.65% examples, 502877 words/s, in_qsize 4, out_qsize 0\n",
-            "2021-03-03 12:00:35,164 : INFO : EPOCH 1 - PROGRESS: at 21.07% examples, 501443 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:36,176 : INFO : EPOCH 1 - PROGRESS: at 23.13% examples, 498284 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:37,187 : INFO : EPOCH 1 - PROGRESS: at 25.33% examples, 497528 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:38,197 : INFO : EPOCH 1 - PROGRESS: at 27.43% examples, 496613 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:39,215 : INFO : EPOCH 1 - PROGRESS: at 29.74% examples, 495817 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:40,233 : INFO : EPOCH 1 - PROGRESS: at 31.88% examples, 494253 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:41,236 : INFO : EPOCH 1 - PROGRESS: at 34.71% examples, 494917 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:42,243 : INFO : EPOCH 1 - PROGRESS: at 37.69% examples, 495401 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:43,264 : INFO : EPOCH 1 - PROGRESS: at 40.64% examples, 495738 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:44,269 : INFO : EPOCH 1 - PROGRESS: at 43.28% examples, 497079 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:45,278 : INFO : EPOCH 1 - PROGRESS: at 45.97% examples, 497153 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-03-03 12:00:46,295 : INFO : EPOCH 1 - PROGRESS: at 48.22% examples, 496526 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:47,309 : INFO : EPOCH 1 - PROGRESS: at 50.59% examples, 496041 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:48,330 : INFO : EPOCH 1 - PROGRESS: at 53.18% examples, 494433 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:49,336 : INFO : EPOCH 1 - PROGRESS: at 55.59% examples, 494249 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:50,337 : INFO : EPOCH 1 - PROGRESS: at 58.42% examples, 493760 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:51,365 : INFO : EPOCH 1 - PROGRESS: at 60.86% examples, 492779 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:52,368 : INFO : EPOCH 1 - PROGRESS: at 63.18% examples, 491616 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:53,387 : INFO : EPOCH 1 - PROGRESS: at 65.49% examples, 490601 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:54,405 : INFO : EPOCH 1 - PROGRESS: at 67.83% examples, 490059 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:55,427 : INFO : EPOCH 1 - PROGRESS: at 69.73% examples, 486535 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-03-03 12:00:56,428 : INFO : EPOCH 1 - PROGRESS: at 71.86% examples, 482883 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:57,435 : INFO : EPOCH 1 - PROGRESS: at 74.22% examples, 482249 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:58,436 : INFO : EPOCH 1 - PROGRESS: at 77.12% examples, 481858 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:00:59,455 : INFO : EPOCH 1 - PROGRESS: at 79.33% examples, 481273 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:01:00,456 : INFO : EPOCH 1 - PROGRESS: at 81.68% examples, 480941 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:01:01,467 : INFO : EPOCH 1 - PROGRESS: at 84.47% examples, 480778 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:01:02,478 : INFO : EPOCH 1 - PROGRESS: at 86.74% examples, 480444 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:01:03,490 : INFO : EPOCH 1 - PROGRESS: at 88.76% examples, 478495 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:01:04,498 : INFO : EPOCH 1 - PROGRESS: at 91.03% examples, 476985 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-03-03 12:01:05,503 : INFO : EPOCH 1 - PROGRESS: at 93.62% examples, 476878 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:01:06,512 : INFO : EPOCH 1 - PROGRESS: at 95.99% examples, 476340 words/s, in_qsize 5, out_qsize 0\n",
-            "2021-03-03 12:01:07,519 : INFO : EPOCH 1 - PROGRESS: at 98.19% examples, 475954 words/s, in_qsize 6, out_qsize 0\n",
-            "2021-03-03 12:01:08,373 : INFO : worker thread finished; awaiting finish of 2 more threads\n",
-            "2021-03-03 12:01:08,375 : INFO : worker thread finished; awaiting finish of 1 more threads\n",
-            "2021-03-03 12:01:08,380 : INFO : worker thread finished; awaiting finish of 0 more threads\n",
-            "2021-03-03 12:01:08,380 : INFO : EPOCH - 1 : training on 30667537 raw words (20081699 effective words) took 42.3s, 474683 effective words/s\n",
-            "2021-03-03 12:01:08,381 : INFO : training on a 30667537 raw words (20081699 effective words) took 42.3s, 474662 effective words/s\n",
-            "2021-03-03 12:01:08,382 : INFO : saving Word2Vec object under model_word2vec_food_sg, separately None\n",
-            "2021-03-03 12:01:08,383 : INFO : not storing attribute vectors_norm\n",
-            "2021-03-03 12:01:08,385 : INFO : not storing attribute cum_table\n",
-            "2021-03-03 12:01:08,578 : INFO : saved model_word2vec_food_sg\n"
-          ]
-        }
-      ],
-      "source": [
-        "# Using a different algo = skipgram (embeddings size 100, window 5)\n",
-        "\n",
-        "# we only take into account words with a frequency of at least 50, and\n",
-        "# we iterate over the corpus only once\n",
-        "model_sg = Word2Vec(sentences, min_count=50, iter=1, sg=1)\n",
-        "\n",
-        "# finally, save the constructed model to disk\n",
-        "model_sg.save('model_word2vec_food_sg')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "removable-cruise",
-      "metadata": {
-        "id": "removable-cruise",
-        "outputId": "4d00b899-f0c8-42a0-a143-4118274f0654"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "2021-02-18 14:55:05,396 : INFO : precomputing L2-norms of word weight vectors\n"
-          ]
-        },
-        {
-          "data": {
-            "text/plain": [
-              "[('pamplemousse', 0.8050065040588379),\n",
-              " ('vert', 0.7956489324569702),\n",
-              " ('orange', 0.7819991707801819),\n",
-              " ('gingembre', 0.7581967711448669),\n",
-              " ('mandarine', 0.7572346925735474),\n",
-              " ('grenade', 0.7480833530426025),\n",
-              " ('citrons', 0.7442630529403687),\n",
-              " ('citronnelle', 0.7411090731620789),\n",
-              " ('demi-citron', 0.7357821464538574),\n",
-              " ('lime', 0.7347135543823242)]"
-            ]
-          },
-          "execution_count": 24,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# not bad: many citrus fruit\n",
-        "model_sg.wv.most_similar('citron')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "possible-disabled",
-      "metadata": {
-        "id": "possible-disabled",
-        "outputId": "a874b25a-4d72-4fe2-99e8-ba2fccc939cb"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('grignoter', 0.7559388279914856),\n",
-              " ('boire', 0.746746301651001),\n",
-              " ('sainement', 0.7262314558029175),\n",
-              " ('consommer', 0.7249883413314819),\n",
-              " ('dévorer', 0.7203150391578674),\n",
-              " ('mangeant', 0.7097814083099365),\n",
-              " ('gouter', 0.7074597477912903),\n",
-              " ('réveiller', 0.6940661668777466),\n",
-              " ('dormir', 0.6916651725769043),\n",
-              " ('avaler', 0.6902662515640259)]"
-            ]
-          },
-          "execution_count": 25,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# also quiet good\n",
-        "model_sg.wv.most_similar('manger')"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "dynamic-warehouse",
-      "metadata": {
-        "id": "dynamic-warehouse",
-        "outputId": "422d111b-fb1f-4069-ea58-f4b26a0a64ed"
-      },
-      "outputs": [
-        {
-          "data": {
-            "text/plain": [
-              "[('smartphone', 0.8647952079772949),\n",
-              " ('pc', 0.8504795432090759),\n",
-              " ('portable', 0.8502362966537476),\n",
-              " ('iphone', 0.8419480323791504),\n",
-              " ('gps', 0.8065921068191528),\n",
-              " ('télécommande', 0.7792292237281799),\n",
-              " ('ipad', 0.7789305448532104),\n",
-              " ('bluetooth', 0.7725344896316528),\n",
-              " ('clavier', 0.7681982517242432),\n",
-              " ('brancher', 0.7544670701026917)]"
-            ]
-          },
-          "execution_count": 26,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "# seems a bit better\n",
-        "model_sg.wv.most_similar('ordinateur')"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "id": "satellite-colombia",
-      "metadata": {
-        "id": "satellite-colombia"
-      },
-      "source": [
-        "#### According to Mikolov\n",
-        "\n",
-        "**Skip-gram**: works well with small amount of the training data, represents well even rare words or phrases.\n",
-        "\n",
-        "**CBOW**: several times faster to train than the skip-gram, slightly better accuracy for the frequent words"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "id": "least-justice",
-      "metadata": {
-        "id": "least-justice"
-      },
-      "source": [
-        "## 5. Analogical reasoning\n",
-        "\n",
-        "As  we  saw  in  class,  word  embeddings  allow  us  to  do  analogical  reasoning  using  vector  addiction and subtraction. *gensim* offers the possibility to do so. \n",
-        "\n",
-        "▶▶ **Try to perform analogical reasoning in the food  realm,  e.g.  fourchette - légume  +  soupe  = ?**\n",
-        "\n",
-        "Hint  :  the  function  *most_similar()*  takes  arguments positive and negative. \n",
-        "\n",
-        "▶▶ **Try the same using the function most_similar_cosmul()** (which performs a similar computation but uses multiplication and division instead), and see what works best\n",
-        "\n",
-        "See: https://tedboy.github.io/nlps/generated/generated/gensim.models.Word2Vec.most_similar.html\n",
-        "\n",
-        "https://tedboy.github.io/nlps/generated/generated/gensim.models.Word2Vec.most_similar_cosmul.html"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "removable-validity",
-      "metadata": {
-        "id": "removable-validity",
-        "outputId": "3b8d71a6-f22f-4929-bfa2-95a17756d2b2"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "/Users/chloebraud/opt/anaconda3/envs/tensorflow/lib/python3.7/site-packages/ipykernel_launcher.py:1: DeprecationWarning: Call to deprecated `most_similar` (Method will be removed in 4.0.0, use self.wv.most_similar() instead).\n",
-            "  \"\"\"Entry point for launching an IPython kernel.\n",
-            "2021-03-03 15:26:07,862 : INFO : precomputing L2-norms of word weight vectors\n"
-          ]
-        },
-        {
-          "data": {
-            "text/plain": [
-              "[('spatule', 0.6896947622299194),\n",
-              " ('cuillère', 0.681769847869873),\n",
-              " ('maryse', 0.6677109599113464),\n",
-              " ('jatte', 0.6584087610244751),\n",
-              " ('cuillères', 0.6478800177574158),\n",
-              " ('cuiller', 0.6407501101493835),\n",
-              " ('restante', 0.6309028267860413),\n",
-              " ('bombée', 0.6255005598068237),\n",
-              " ('cuil', 0.6122061014175415),\n",
-              " ('pétrissez', 0.6106809377670288)]"
-            ]
-          },
-          "execution_count": 23,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "model_sg.most_similar(positive=[\"fourchette\", \"soupe\"], negative=[\"légume\"])"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "extensive-forum",
-      "metadata": {
-        "id": "extensive-forum",
-        "outputId": "66c9c52c-0fad-43d5-9a1f-552029254754"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "/Users/chloebraud/opt/anaconda3/envs/tensorflow/lib/python3.7/site-packages/ipykernel_launcher.py:1: DeprecationWarning: Call to deprecated `most_similar_cosmul` (Method will be removed in 4.0.0, use self.wv.most_similar_cosmul() instead).\n",
-            "  \"\"\"Entry point for launching an IPython kernel.\n"
-          ]
-        },
-        {
-          "data": {
-            "text/plain": [
-              "[('cuillère', 1.041599988937378),\n",
-              " ('cuillères', 1.0399153232574463),\n",
-              " ('jatte', 1.0320607423782349),\n",
-              " ('spatule', 1.0236912965774536),\n",
-              " ('maryse', 1.0171784162521362),\n",
-              " ('formez', 1.014487862586975),\n",
-              " ('cuiller', 1.0026599168777466),\n",
-              " ('restante', 0.9950921535491943),\n",
-              " ('bombée', 0.9932900071144104),\n",
-              " ('douille', 0.9921641945838928)]"
-            ]
-          },
-          "execution_count": 29,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "model_sg.most_similar_cosmul(positive=[\"fourchette\", \"soupe\"], negative=[\"légume\"])"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "bronze-cartoon",
-      "metadata": {
-        "id": "bronze-cartoon",
-        "outputId": "2ac78003-f081-437e-9601-171b5a52f8fe"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "/Users/chloebraud/opt/anaconda3/envs/tensorflow/lib/python3.7/site-packages/ipykernel_launcher.py:1: DeprecationWarning: Call to deprecated `most_similar_cosmul` (Method will be removed in 4.0.0, use self.wv.most_similar_cosmul() instead).\n",
-            "  \"\"\"Entry point for launching an IPython kernel.\n"
-          ]
-        },
-        {
-          "data": {
-            "text/plain": [
-              "[('boire', 0.92845219373703),\n",
-              " ('siroter', 0.851719856262207),\n",
-              " ('déguster', 0.8491026163101196),\n",
-              " ('biere', 0.8484492897987366),\n",
-              " ('pause', 0.8464654088020325),\n",
-              " ('école', 0.8462477922439575),\n",
-              " ('café', 0.8447337746620178),\n",
-              " ('buvait', 0.8436944484710693),\n",
-              " ('boissons', 0.8398476839065552),\n",
-              " ('dormir', 0.8392710089683533)]"
-            ]
-          },
-          "execution_count": 24,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "model_sg.most_similar_cosmul(positive=[\"manger\", \"boisson\"], negative=[\"légume\"])"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "id": "polished-parliament",
-      "metadata": {
-        "id": "polished-parliament",
-        "outputId": "efd8d39b-ec47-406a-dbc0-4c789c58e706"
-      },
-      "outputs": [
-        {
-          "name": "stderr",
-          "output_type": "stream",
-          "text": [
-            "/Users/chloebraud/opt/anaconda3/envs/tensorflow/lib/python3.7/site-packages/ipykernel_launcher.py:1: DeprecationWarning: Call to deprecated `most_similar_cosmul` (Method will be removed in 4.0.0, use self.wv.most_similar_cosmul() instead).\n",
-            "  \"\"\"Entry point for launching an IPython kernel.\n"
-          ]
-        },
-        {
-          "data": {
-            "text/plain": [
-              "[('fruit', 0.8942091464996338),\n",
-              " ('soda', 0.8907060623168945),\n",
-              " ('agrume', 0.8873987793922424),\n",
-              " ('smoothie', 0.8808985352516174),\n",
-              " ('sirop', 0.8779852390289307),\n",
-              " ('cocktail', 0.8670641183853149),\n",
-              " ('limonade', 0.8662374019622803),\n",
-              " ('laitage', 0.8637306094169617),\n",
-              " ('agrumes', 0.8603810667991638),\n",
-              " ('imbuvable', 0.8595513701438904)]"
-            ]
-          },
-          "execution_count": 34,
-          "metadata": {},
-          "output_type": "execute_result"
-        }
-      ],
-      "source": [
-        "model_sg.most_similar_cosmul(positive=[\"légume\", \"orange\"], negative=[\"carotte\"])"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "D2MrhPfHGwla"
-      },
-      "id": "D2MrhPfHGwla",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 6. Visualize word embeddings\n",
-        "\n",
-        "After you learn word embedding for your text data, it can be nice to explore it with visualization.\n",
-        "\n",
-        "You can use classical projection methods to reduce the high-dimensional word vectors to two-dimensional plots and plot them on a graph.\n",
-        "\n",
-        "The visualizations can provide a qualitative diagnostic for your learned model.\n",
-        "\n",
-        "We can retrieve all of the vectors from a trained model as follows:\n",
-        "```\n",
-        "X = model[model.wv.vocab]\n",
-        "```\n",
-        "\n",
-        "We can then train a projection method on the vectors, such as those methods offered in scikit-learn, then use matplotlib to plot the projection as a scatter plot.\n",
-        "\n",
-        "Let’s look at an example with Principal Component Analysis or PCA."
-      ],
-      "metadata": {
-        "id": "NrSg7OJhKP5_"
-      },
-      "id": "NrSg7OJhKP5_"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "X = model[list(model.wv.vocab)[:1000]]\n",
-        "print(X.shape)"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "OGnQezWkGwnt",
-        "outputId": "9b903878-dedc-4602-da63-fe79df2d1260"
-      },
-      "id": "OGnQezWkGwnt",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "(1000, 100)\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DeprecationWarning: Call to deprecated `__getitem__` (Method will be removed in 4.0.0, use self.wv.__getitem__() instead).\n",
-            "  \"\"\"Entry point for launching an IPython kernel.\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 6.1 Using PCA\n",
-        "\n",
-        "We can create a 2-dimensional PCA model of the word vectors using the scikit-learn PCA class as follows."
-      ],
-      "metadata": {
-        "id": "V3GEpKVfKxMe"
-      },
-      "id": "V3GEpKVfKxMe"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from sklearn.decomposition import PCA\n",
-        "\n",
-        "pca = PCA(n_components=2)\n",
-        "result = pca.fit_transform(X)"
-      ],
-      "metadata": {
-        "id": "TDPHq7XVGwqb"
-      },
-      "id": "TDPHq7XVGwqb",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from matplotlib import pyplot\n",
-        "\n",
-        "pyplot.scatter(result[:, 0], result[:, 1])"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 282
-        },
-        "id": "TPxqh9N0Gwta",
-        "outputId": "a98a3444-d010-4681-8c0d-27c4218dbf49"
-      },
-      "id": "TPxqh9N0Gwta",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "<matplotlib.collections.PathCollection at 0x7f6e95b50190>"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 24
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2df7SdVXnnv8899yScG53cpEQlFy6hDiusMjGJyYIozoygEgSBW0ADxam2XaW246wJtemK1QUBmSFtSsEZZ7TUukZbhkYIXqHQBizMssWCJNxEjCYqSIADajS5kXBvyLk3z/xxznvynvfsvd+939/vOc9nrayce8573ne/79n72Xs/P4mZIQiCIPQ+A3k3QBAEQcgGEfiCIAh9ggh8QRCEPkEEviAIQp8gAl8QBKFPGMy7ASZOPvlkXrJkSd7NEARBKA07d+78OTMvUn1WaIG/ZMkS7NixI+9mCIIglAYi2q/7TFQ6giAIfYIIfEEQhD5BBL4gCEKfIAJfEAShTxCBLwiC0CcU2ktHyJfxiTq2bN+HlyensXi4hg1rl2Js5UjezRIEISJOK3wi+hIR/YyIvut7byERPUJEP2z9v0Dz3Y+0jvkhEX0kbsOFdBmfqOOT9z2D+uQ0GEB9chqfvO8ZjE/U826aIAgRcVXp/B8AFwXe2wjgn5j5TAD/1Pq7AyJaCOBGAOcCOAfAjbqJQSgGW7bvw3RjtuO96cYstmzfl1OLBEGIi5PAZ+ZvAjgYePtyAF9uvf4ygDHFV9cCeISZDzLzIQCPoHviEArEy5PTTu8LglB8kjDavpmZX2m9/gmANyuOGQHwou/vl1rvdUFE1xHRDiLaceDAgQSaJ0Rh8XDN6X1BEIpPol463CyfFauEFjPfycyrmXn1okXKdBBCBmxYuxS1aqXjvVq1gg1rl+bUIkEQ4pKEwP8pEZ0CAK3/f6Y4pg7gNN/fp7beEwrK2MoR3HrFMowM10AARoZruPWKZeKlIwglJgm3zPsBfATA5tb/X1ccsx3Af/cZai8E8MkEri2kyNjKERHwgtBDuLpl3g3gXwEsJaKXiOh30BT07yOiHwJ4b+tvENFqIvoiADDzQQCfAfBU69/NrfcEQRCEjKCm2r2YrF69miU9siAIgj1EtJOZV6s+k9QKgiAIfYIIfEEQhD5BcukIpUby/QiCPSLwhdLi5fvxUkB4+X4AiNAXBAWi0hFKi+T7EQQ3ROALpUXy/QiCGyLwhdIi+X4EwQ0R+EJpkXw/guCGGG2F0uIZZsVLRxDsEIEvlBrJ9yMI9ojAF4yIn7sg9A4i8HuUJAS1+LkLQm8hRtseJKkC5OLnLgi9hQj8HiQpQS1+7oLQW4jA70GSEtTi5y4IvYUI/B4kKUEtfu6C0FuIwO9BkhLUUtdWEHoL8dLpQZIMSBI/d0HoHUTg9ygiqAVBCCICPyMkgEkQhLyJrcMnoqVEtMv375dEtD5wzLuJ6LDvmBviXrdMJOUXLwiCEIfYK3xm3gdgBQAQUQVAHcDXFIf+MzN/IO71siSpVbnJL15W+YIgZEXSKp33AHiWmfcnfN7MSTKtgAQwCYJQBJJ2y7wawN2az95BRLuJ6B+I6GzdCYjoOiLaQUQ7Dhw4kHDz7EkyrYAEMAmCUAQSE/hENAfAZQDuUXz8NIDTmXk5gP8JYFx3Hma+k5lXM/PqRYsWJdU8Z5JclUsAkyAIRSDJFf77ATzNzD8NfsDMv2TmI63XDwGoEtHJCV47cZJclUsAkyAIRSBJHf410KhziOgtAH7KzExE56A50fwiwWsnzoa1Szt0+EC8Vbn4xQuCkDeJCHwimgfgfQB+z/fexwCAmb8A4CoAv09EMwCmAVzNzJzEtVUk4V0j5fMEQeg1KEW5G5vVq1fzjh07nL4T9K4BmivzMqlQJEhLEISoENFOZl6t+qznIm3L7vMuVabyRSZboZfpOYFfdp/3qBOWCKr49OtkK32nf+g5gb94uIa6QrgX0eddNdCiTFj9KqiSpuy7wyhI3+kvei4ffll83nX5debXqsrjTROW1J5NhrLvDqNQlL4zPlHHeZsfxRkbH8R5mx+VPFMp0XMr/LJ41+gG2knVAdSqFSd3UJOgku26PWXaHSZFESY52WVkR88JfKAcPu+6ATU51cDt61Y4CWmdoBoeqspAciDp2IsyUIRJrh9VaTrSXqD1pMAvA6aBppqwTB1BJ6iYkflAKvOOoiy7wyQpwiRXhF1GEchipyMCPyfCBppfcA4PVXHk6Awax5sxE8GOoBNU12/dpbx2WgOpF7bmZdgdJkkRJrki7DKKQBY7HRH4OWEaaEHBeWiq0fX9YEdQCaot2/elNpBUK/k4HbbMO4Oyk/ckV4RdRhHIYqcjAj9HdANNJThVhHWEtAaSbiWva3NYO8u8M5CJKj5F2GUUgSx2OiLwC4jtjB7WEdIaSLqVfIUIs4pUHWHtLKvRrswTVdHIe5dRBLLY6YjALyC6md6PbUdIYyDpJqRZZmeXUtP5im60K+tEJRSTLHY6IvALiGqmr1YI8+YM4vB0I/ctr25CGvHp8l06bFmNdmWdqITikvZORwR+gfDrg+fXqjipOoDJqfwFfBDT1jNKhy2r0a6sE5XQv4jALwhBffDkdAO1agW3r1tRGEHvodt6AsB5mx913o6W1WhX1olK6F96Lh9+WTlv86NaNcnjGy/IoUVu9EIdgiiIl45QNPoqH35ZKbs+uF8NmOJdIpQJEfgFIU19cBar0LJPWILggm5MFX3HJwI/Y3QdwkYfHKUzZeUrLgZMoV/Qjakd+w9i2856oeMyei4ffpHR5cAfn6hjbOUIbr1iGUaGayA0dfd+/bfpuyayyndeljoEghAX3Zi6+8kXC1FbwERiK3wieh7AqwBmAcwEjQZERAA+C+BiAFMAPsrMTyd1/TIQpuc26YOj6sizUrWU1dNGUFN01USemAIPXY7Pg6RVOucz8881n70fwJmtf+cC+Hzr/77BVfj6B53OlyqsM0VVtUQZ8GLA7A0kZYQZ3ZiKmlokS7JU6VwO4Cvc5AkAw0R0SobXTwWX0my6H171flCF43pOjyiqlqjqo36il0vyFaXsYVHRjalrzj2t8GrNJFf4DOBhImIAf8nMdwY+HwHwou/vl1rvvZJgGzLFdSXkEqhjkzHTpjPZqlr8K/oBxUqlH1wsben1FXDeHldFVyeZxtTq0xcWuu1JCvx3MXOdiN4E4BEi2svM33Q9CRFdB+A6ABgdHU2wecnjqld30XObBhcBzpGspuOCAqwMusg86bWYg6CAHR6qKmswZKGayHIyjTOx6MZU0dWaiQl8Zq63/v8ZEX0NwDkA/AK/DuA039+ntt4LnudOAHcCzUjbpNqXBlFWQrYdwqQnPG4RHe3SmW3z7xdJF5knea+Ak0QlYKsDhGqF0Jg90c+yUk1kNZn2+i5NRyI6fCKaR0Rv9F4DuBDAdwOH3Q/gN6nJGgCHmbm06hzATSfvyoa1S1GtUNf7s8yhenVXHbyNoCqaLjJP0vzds0YlYBvHGfPmDGpdhNMkq8m0X+0USRlt3wzgX4hoN4BvA3iQmf+RiD5GRB9rHfMQgOcA/AjAXwH4g4SunRup+56HLOR1HdS1M+sEVYUo8wFfBnop5kAnSA9PN/D4xgvw482X4PGNF2T222c1mfbSLs2FRFQ6zPwcgOWK97/ge80A/nMS1ysKafqeb9m+r1203ISqg7p2Zp0x2STki25YS5NeijkoWoR0VhlIi3bfWSGpFUIIE2w2BtHg93fsP4i7n3wRs8yoEOGac0/DLWPLOr7nWuYwzMvGf2wQVwHWr/pPP0U3ztlStBTPWU2mRbvvrJD0yAbipvwdn6hjw727O4xfAwSoFu4fXjPaIfR16ZL9eG0BYCwi7truMMqeyjkLyrQDKlNbk6RX79uUHlkEvoG4gm3lzQ8r3dtUVIjw7K0Xt/9WTTbVAcIbThrsqoKla6fn0ROlM5sGwxkbH1SaFwjAjzdfYn2NsmPKmNiPtQGEYiD58CMS1bAzPlHHpvv3YHLaTtgD3b7vSfjsH2cOFcAqoQXAqLLpV/2nH5Naq9f89IXeQQS+AVvBFqxF+8ujDaXaxkSFTrhgBoVwWJlDXTsHiHDGxgeN0bUqoTV3cMAosPpV/+nHJNTL6AHSq+oNoLfvzRUR+BrGJ+qYOjaj/Oy112faKY1VtWijcM25p7Wv62oQVQlg4MSuQXcOndDS2QI8gdVLXipRMQn1LHZASQqxXjbCZ3VvZZlUROArUOlg/UxON4zbdxeCXjpR1AFBAWybC8d1xekXWL3ipRIVk1CPswOyERxJCzHXPlcW4QZko14r04QpAl+BjRAP277bQECHoRYwrxxNA80vgJdsfFB5jqCA0gmtBUNVHG0cT01g9QImoR5lB6Sy+7juzKIKMRcVVJmEG5BNgFWZbDYi8BXYdgbT9t0G1RZfd775tar1QNPl5fbbCQDg/LMW4a4nXujwuKlVK7jx0rMBuKtsiiQM0p54woS6yw7ItKN02ZlFFWIuKqgyCTcgmwCrMtlspMShAtvO4A3yYJi9iupAp7CtVSs4/6xFXTnVdec7fLRhnS5Bl+3S//74RB3bdtY7hD0BuHJVdFVNmvlJXPLPZ5XPf2zlSCLpB8J2lEHBkXT6gbBUEf5nr1vcFFG4AdmkwShTbiVZ4SvQGUH9qLbvusEw0poY/KvB889a1FXweP3WXZg3pwJVEh1duIRK1bNAk952xNcBVUKGATy294DVSl21gk5LGLjuHMq2Cg17PsNDVZy3+VFt3wHiCTHTbiXMnuWRl3CziYQH0nUwKJPXmgReaQh2pPPPWoTH9h5wMqYB+oAbm0haG1T69uoAAYSu9Lb+dpiCp3TbYC/gTBcUpsv9EzcC1zUArmyBYaa+UK0QwOh4trVqBVeuGgntj2m3zd+ePILKihTgViTblQReRSCKF0pSBU5sqVUrYIYyve1wrYp5cwe17TD57oet1HUpdVUQEHul46ojLVtgmG5HuWCoCuZuV9/pxiwe23sgkzQWSRbiSZoi7eTK4rUmAj9A1Jk6qWApWzw10fVbdyk/n5xuYN7cQW07TL77BHVmZk9gukxWjPgGW1cBntQWO6tVm2mhcIbG4yornXnYbi9PymQsLQoi8H1E9TJJMljKBv9gM9kOwnTvw0NVHJ2Z7bIPMNAl9P0C02WyGklgVe0qwOPobb3nU5+c7ngGaXsc6VaIee9W8tBP2060eT+bMiJeOj6ieplE+d7YyhHcesUyDNeqTm0MDrbzz1qE7rpY6nYEvVcOTTW0xmDGCWFdIWqfR+dJ5JXFM7U1Kt6zClZgAqD13HH1oBmfqGPFTQ9j/dZdbSESfDQ2fcHFm8iGvIutjK0cwZWrRtouvRWiWJ5cYbh4WOX9bMqIGG19RDX2xTUShmXV1GW9tPWgAJpCcurYjHX2Tk9lpDOKAd0raNV7fsEQtnJzUaEkabBzeY6m31R3nqHqAOYMVnB4uhFJNZSnQTBrw6irgb5IxtKiIEZbS6JuEcO+Z0qju2X7Phyaamj15qbB5ZLWwcVe4K2STDsX06rZu1dvNaxy76tPTuP6rbuwfusujGjcVNNyvQz+Hq+9PmP9HE19Qfd7TDWOY6pxHEDnfXnfCRNWeRgE/aqtIGkaRl318mUxlhYFEfg+TPpK00oi7Hsq/f6O/Qc7BJxK2A/Xqth02dnaDp2UcUrn0aMzCOuu65oy2K8fD0b8AmbBEid1dbCNtoSpC2x/j+nGLDbdvwevzxy3nuCyxGbHU5+c7ogNSGpl3S96+bx2JiLwfeiMfYA5P7zJSHje5keVK9G/feKF0Pa8dmwGm+7fg+u37lJ2imFNgJUutYKKWrWinVRcB1+UlMEeuta6ul4OELUzmdq20YS38xqxGJQuxmxVVtWiBIfZPCPCickyycmqTEFMUckzBYkI/ACqLaJOaPsHp25rGcf1sjHLbcEQ7BTjE3UcOdqdvrlaIWy5arnRe2fBULWrapYK18EXJWVwGKrJZXyijtdeV6eunmXuek7+idilDQuGqrjxUv0OK0gczyuPtF0KbVaWYW1QqR+jTFamtvSyXj7P+IHYAp+ITgPwFQBvRrMf3MnMnw0c824AXwfw49Zb9zHzzXGvnRVx/H2J9GkRXJluzOITX90NoNlpVMFO8+YMtjvN9Vt3aVfOi4drXXr2IK6DzzVlcBCTK6iHjbrB700TXEnpbCULhqoYmqMPVLPBO/6mB/YYjeNeqUrVMbaqC1cDt4urqWliHDF85jJZha1ysxTwWatX8owfSGKFPwPgE8z8NBG9EcBOInqEmb8XOO6fmfkDCVwvc+LoFZN2gvJWsDqBd7i1IxhbOYL1Gh38oalGW9iEbSfDBl/Qrz+YYkGXc0gl3G3SBdiqZLzJTGU3UF3bZSVvwnteJqMnCLjkbad05cOpVgivvT5jrFIGuKkEgsfarMxN3lmemjKunj2tVa6r8M5DvZKnnSK2Hz4zv8LMT7devwrg+wB6Z/+F4vn7mgSev9PYBj1FzWip8usHNY3Afn/5oGplZLiGa9eMdvnV3zK2LNR33nYV5O1gVHg6+WAbk8SLA1D9Bo1ZxmN7D3TEFiwYqgKtNAph/ucucR82E2TwOeniHvxOCnHHQxqr3ChZUtPM8KojT3mSqA6fiJYAWAngScXH7yCi3QBeBvBHzLxHc47rAFwHAKOjo0k2LzJx9Iq6zJVpEOw0G9YuxYZ7d3ckUdMRZaApc+rMMog6fdU/Pf5MhxdOfXIa23bWIwlaGz28361UdayX3ycLtYFJsPl3T+dtfrSrn+hWvC7C0uZ3Va0sTTs71/GgWnWnscqNsmtIa+LJO4OnjsQEPhG9AcA2AOuZ+ZeBj58GcDozHyGiiwGMAzhTdR5mvhPAnUAz8Cqp9pmw2QZG1SveeOnZ1kI3Lm8fnY8t2/dh/dZdTp46QLSBphsUh6YaWLLxwbZ/vavLZZAwtZGfoKFVZcdgIDNvGFvB5iJ4XIRl2AQZdWVpOx50KpMrV40kmuIZiCa8k554bFVEecUPJJJagYiqaAr7u5j5vuDnzPxLZj7Sev0QgCoRnZzEteOSRLEMUzj92MoRbLlqeefWPSW+9ezBdud1EfaAOaOl7v7CBoXOv97DZhVlUhsB6EorcbQV4AQ0n32cayeB7fbdpYiGi0pAdaz3zNJSZ/nRrbqDKq0k2hKlEEnS6pU8VEQuJOGlQwD+GsD3mfkvNMe8BcBPmZmJ6Bw0J5pfxL12ErhsA1U7AcDso+/97z9XUMWhwhuULmI76h5iwVDVOoWB//42rF2qNQzbtEk3EP3PWVWQvTHLmDd3EPPmDnatzrygJu/7up1OVoE8ttt3FxdYF5WAzbFpeqnYqrRcUbU5ig9/0uqVomfwjJ1Lh4jeBeCfATwDwFte/QmAUQBg5i8Q0ccB/D6aHj3TAP6Qmb8Vdu4scunY5sHR5RSZOzigDKIJSx9r9OKAnT99Evi9Y+o+AempY+5+8kWlwPTuT/f8wiCgI3WzznUwDeLmgklLQOYRfZl2rhzX3Dg2mNoM5OvDn8b9upJqLh1m/hd076yDx3wOwOfiXisNdNGqwwHVi24noPOA8M/ouoHsdURV8rTGLGPL9n04/6xFVlG5UVDlsPGEe31y2nhd7/5sBHNQgBOAa9eMdgh7k+tgEugS0LmSphufacWb1mSQdhBQGpGzUXM8ZUHRI4X7PtJWmx448L7rlsybMGwExKTGi8fzZgljwVBV6dft4Q/08a/gdQnSbPBUIqZAHMDOvz5qG1w4zhy7vOH4RB2f+Orurh1P2lGSaU4yaasg0vBIKbLapOiRwn0v8A8r1DGq93U7gQVDVRx5fabLC+fI0Zn2qixsBWXypNAJwuoAYcsHl3d0pNWnL2yrRTzBXqGmR4undvKv4KOmAfCvWFQrGpf8M4BlxDLMK3+v3J4uBXRcnb0ndHXG8DSFTZqr8CyCgJLeuRQ9wVpeHjg29H0BFBvLvilvzY2Xno15c7rnzcZxNiYN83fYDWuXdhUPCUVxuBfs8/zmS3Dbh5ajVq20BZRKTk03ZtuFLWypEHXod1VBOl5QlRftGubxFDZQa9VKl4rNz8hwrR2sdeOlZ6cS1BK2C0lT2KS5os0zCCiqh1xabU66eE0R6XuBb9N5wvLW6HYJ3qpFBQHtDjW2ckQ5aZjwdPw6bNUkXg1bW2770PKu1cvYypGOYJq7nnjBaRBvWLtU2wZvgtGpvbzv+9uStLsfYBauaQvIKO6GtgSf14KhKuYODuD6rbtSF3pRXRjT+I2TcM8uA30v8G06j26we4LeNCB1wswL/gmeywWTELJd/Y0M15yMpDv2H+x6zz9YAPfSgGMrR3DtmtGu51SrVtoTjO4ZD9f0LqVJort+cMcThbCVZdqrcG9nePu6FTjaOG6V3iEJ4uxcvDbblrAMo+j+80nR9wIfCO88YSss04A0Bf/UJ6fbg3y+Y21bU7vGJ+oYsFDVVAcIG9Yudaqre9cTL3QJgCj5WoLcMrYMt69b4Zy/ZdNlZ3e8l9ZKTXd91Y5HhU6o27Q3rV1LkCyF3qfHnzFmcs2aIhuCk6TvjbY22FTC8vThfg8Yb0CaPFm8QV6tEAYI0GQM6MLLBxMkzLgYPMmO/Qfxqia3vK69Xopm4ET2yzBsBrFL/pb5tSqImqkTtmzf137eaRk443hfuFYC89JgBwvfpL2TyUrofXr8Ga3Lb14ujEU3BCeFCPwALkUZgM4o21nmrnTAgF1hjMYst9Mu2CRb8/ux+3FxcWzMcmjEr4pZZmy4ZzdAsMoRlNQg9oSeSYAmLbRM/cFbtQf7RPB4nVDfdP8eZdAe0O1N5d1/muiE3vBQNdFyhnc/+aL2sytXuU1sScUnFN1/PiliR9qmSRaRtn5cow5dour8HVP3xL3o3rDo1QVDVUzccKHys6iRr0njuVH63UNVu58o6J47oC/v6BLpaIr69Ud0BvtKtUIAo6seQBIxBllEaqr6v+6e4qiUlmx8UPuZ6++UZJRwXnVmkybVSNtewlUd4LKa9G/JwwpIhGU4vORtp2g/i1pKMEkIwDvfuhBPv3BYGcG74Z6mSmjH/oPt1A0VIlxz7mm4ZWyZ8pw2E6b/On5cVmq2BUO8135Uux2/qi8OWeiSVTvZ116f6dqF+CuvBY+3EZKm5+Fyn0mr74rsP58UIvBbjE/UnUu3RdX76VQ8U8eawVphScm27XypHbk6PFQFc9PLZ7EhHXGWMIDHn+325vFoHGdsuGcXfIktMcvc1usGhb5NWcMgLqkUwpK1BXEVvp6qL85KP6w4e5Coq9Wg0DtDsxqfZcaGe3d3rP7rk9O4fusurN+6y7iTu+bc07Q6fBedeb8YWpNEvHRwQqDo0AX92LrLBT00AODWK5Z1ecccmmpg/dZduGfHC0bf+OnG8Y50wX43uq1PvYhBza965pvmOQdapYVf2PtR6XejpF7wUimEuewFvWRsVuKLh2tOgsnzqvF72bimyfZKW9p4G6k8fzbcuxsrbnrYOajIdJ+NWe6KT/EXubl+6y58erx7XN0ytgznvXVh1/uuOvM04xN0lD04SwQ+wgWKTgbYuMvpBp/JYPf4swcjr9Cbg1D92UuHjsZWLQD2pROjoGpflBWbZ2gMG5iuk0mtWsH5Zy3CawrPpmqFUB2gruO9la7f9VcVERyGrYukrhJZFP961aLGFobajRcA7vrdd+AOgxuuDbpc/+eftShSe8PoheAsUekgXKCYgqLC9H6mwZc1041ZEMUrrO4Z1UyG0ziodiA61ZmnNlAZGo8cneko1L7hnt246YE9mJxqdKg4bO7BnxsomF3Uw6u0BdjrtOcODihzEJmwmfxsjlG5fprarkoaZ4OpulhcnfnYyhHs2H+wQ4XJALbtrGP16QszjVMoi+5fBD7CDZ1xtohF0ycyNwVi1JKLS37lRLBZmF59ACcKJNhyzbmndb1ncpmzNTQ2jnPHBPDJ+57Bjv0HtUJWZwM4b/OjynseaqXZ8FZ7DOAnh49ifSBOANDbJGx+EZu+aGu47zCkK/TxQXdQVblIG0xjIK5nzGN7D8Qqn+nSjl6wGYhbJpo/tslIeoevUIfNufwdR5e9MU+Ga1W8enQmsnpnuFZtR7gmVaDFy5HvZfwMDjwXwWBy+/Oj8xYJFmfxYyqYc/u6FdpJ0O8uaLs70rmEhvXFKEZuHX43SdvnGkQ3eeraGaxLbMK2gJEJW/fOIhQ3scHklik6fDRXMCYjmk3GR0Ct4ztydMY9E6YFcc54eLqB4zEm+snpRnv19/jGC3DHuhUYiHmLDODHB45odaQuuVNsDdO6CY/RGeTkN9TpUlYsHq4Z7QF+/buNsF8wVO1wFhiuVa113KqEaEHbgi3+1WtU280ss1LnrXteh6Ya1rrxJAy3tikl8swsmhQi8FuYfNttjTNKff1xxrw5g+3BFzbuhmtVfLiVXtgbrKofSeeJYwMjXH0QJh68AeFNcrYpIUw8/uzBSLlcgp4TcQ3TfsFm48VTHSBMHZsJFeQvT05jfKJuNVkfmmp07Axfn3FTjvknyIkbLsSWDy5v9ykXTy2/4LQ14Jqu4/89TaoQWwN1EkLYVlWTVU6jNBEdfovH9h4wfm6jFzRl1dx1YzMydnyijg337u7QoXv1a1XnHp+o4w+/uqtLQus8cYDmJPF6YxZTpoNCsBGZXr77tKtV1SentaH9qjQLLgTtGUFhcdMDe5T351e3+O0DJrxdQJTpKK5x0G8gdYmoDaaeBsxqPL96Q+fD742TMFuDbdZMr01R7QAu8TRlD86SFX6LJLwfbLaXYytHsOWq5R2rBJ2wB5od2XX1fOOlZ+N7n3k/7li3AnPjbAVCWNwqcpIFOle4uBOOX9gvGOpUm4xP1LWC3FVoe8IzzvMKCiUXn3D/sVu278OVq0a6+qB/F6BbvXo7hzvWrQhdWUfJMqs6Lm16QVVjSyIrfCK6CMBnAVQAfJGZNwc+nwvgKwBWAfgFgHXM/HwS104KG88GVQf0GxPn16pdK8agX3Dw+KljM10ZH/3Huq5Y582ptM+xY/9BZ1WAC3mlcPCvdpOccI4Gdj1udCoAAB0eSURBVERx0wL7s596E2+c1BcEtHc6w0NVHDk6Y/Sq8VDtgrbtrGsFug02K+uwhGTesaqYFFuBm0S93yR2CWUhtpcOEVUA/ADA+wC8BOApANcw8/d8x/wBgLcx88eI6GoAv87M68LOnWXytDDPBpXVXvUdlSuiKeGW7hpRPS08j6Iwz6Ne4I51KxLzEvIYrlXb6rc4iegWDFVxtHG8S9hduWpEW2w+CVQeI3l6lwS9q84/a5GyoL0/YZ1Lor2yeM5kSdrJ084B8CNmfq51sb8DcDmA7/mOuRzAptbrewF8joiIC+QTGpzlgzlqVB1PpU5QradNCbdUx+nyutuw6f49+JP7vhNLf18Wrt+6C+9860IcfO1Y6LOqVSs4qToQqmufnG5gxU0PY9NlZ0dejdeqFTB3/9bTjVk8tvcArlw1klq+I9WOJ0//cZPtQLUad12t94JvfJYkIfBHAPgToLwE4FzdMcw8Q0SHAfwKgJ8HT0ZE1wG4DgBGR0cTaJ49rgYZl05le6x3XNQOm0cEb14wgG89exDXrhltZ93UMXdwAL92yhvxLYu0FZPTDWy4d3ckV0ZvVXq9Znf18uS0MlgoKVRqx6IU9wiLVI0SyVqUeysLhTPaMvOdzLyamVcvWpROTgwXTIYxl05lm3DLnyJZCIeBUGEPNIW4S46ixiw77ZI+vGYUz2++pF3wxFS+z3Uyt022ptN7uxol00oQprtvzwvLNVst0F8G1yRIQuDXAfjj4U9tvac8hogGAcxH03hbaMKSJak6W3WAugKtvA4Y5pXg76hxklb1G0kkhIvDcK2KW8aWdRVzD+L9vq6ZNm2SrZl8wl38x9NMEGa676ipTbx780+InoG87Jkt0yAJlc5TAM4kojPQFOxXA/iNwDH3A/gIgH8FcBWAR4ukv9cRtsU0lT40WfyDdVmDCb2AEzrLXje89gKT0w2ct/lRTB2b0doSCJ3l+7r84Aeoq2Rk0KPlnh0vKOsMeMXoTepIW3VlmgnCNqxdig337O5KqWzCdrXu97CanG50leBMslRkmStjJZJLh4guBnAHmm6ZX2Lm/0ZENwPYwcz3E9FJAP4GwEoABwFc7Rl5TWRd4jBIEnk64rLy5ocLl4tHiIbfc0QlNABoPVqGh6rGfhDFK0XVBl2CNK/PxxV2Lv3ZthymS+bWuN47SZdVTIPUSxwy80MAHgq8d4Pv9VEAH0ziWlniahBKY+Yv/j6oN1jg88oaHqri8FTDOdNnGH5dtG7FrfNoCROSrnYBncfM/FpVafhfPFxLxOd90kHY2wrmNJwndJQ9RXLhjLZFwsUgZKv7dNUrmnLxC8kwMlzDxA0Xtl0xJ6ca8bLTabDV3Y9P1PGJr+52cst1NfLrBBcRtH3eNslY3HYmVfkq7rEqyu4GKgLfgIuxy2YwRDGIibdO+tQnp7Hy5oexfuuu9m8TNRnccK2q9KhxjRx1MUR7OnwXdAJqcqqh7fNJCDulo0OFMFyrJlr5SkUS3jt5lFVMEkmeFoJq6+1X3XgBWjr/d/9gcNkO+iMPbSoh9TsD1MoCyq3XbP/MCOEqExtq1Qo2XXZ2aP5+02euAXfVAWDLB/W5mFSMT9S1xdoXD9e06qYkfN7TSGNgk9StQpSInj0sXUTREYHviKtu1T8YbFdIwWuIsDdTqw5g5ji3PTJcVudJTaYVIly5qhk85C8bGBQwnx5/piPKNqgHN62WKwOE2cDNDVbcXHdNOwivXq8uM2lSwi5qxknTROmdU+docZzZ+ZphE3MZvXRE4DvisgJTZQ+0WSFlkXK4l5h2TCNBLSlvkzpBVxWr43wA1vzqAmx96sUON8AN9+4GgPaKX1e43r/L03njDBDwxrmDXd/3qw1thJCub3kTlj/Pj38y8n/XJddNUtgajJOKvA27XlkEfBDR4Ttiq69U6SJtjcBlMQCVlfknVduVs0zFQGrVCm770PJQ+y2jWbwlWCe4Mcu46YE9beFhSnvh/ea6ueXfnKT2ngFOCCMb25Cubx1nxmN7DyhVjjc9sKcjoGyWuaumcJrojNhpVqVKwkBdRHpO4KcdXTdsEeLuuZSpUs+GGYE9/aqQHn7PJ9Pq3ftt4hjkDk01rDxuvGvovLImpxvaiadCpBROn/jq7q7+bzI66iaDQ1ON3IRfmBE7rapUZffG0dFTKp0k/ITDzn/k6IzxmLDVhGk7GMVDQ3Bnfq05aY9P1LUqm5GW8RJQ665dsFEJeX1Gp5IwFVzXnX+WuaP/j0/U8drr3f3X73bpkh00C+EXpt5MqypVryZl66kVftrbsC3b9ynDwqn1L26NS9HdZ8PkdANLNj6I67fu0hovg5P2SdUTQyXJDRgBuHbNaMfkolJJmAqum4qLeyoZnVpp3pwTUaK6aw/X1LvaLISfaVKJ4o5qi2sMTlly9vSUwE97G2Y6z+3rVgBo5miP+qOXfbtYNlQiNOi+5wlKvyF1kLoT5EVhwVAVt69bgVvGlrXf06kkdELdM5ya/NAPTTW0tXmnjp14b2zlCK5cNdK2a3iG3E2XdSduy8oV0TSpvOGkwdRsCLaqoTSTzaVBTwn8tIMidOeZX6sqf/RPjz/jNPOnvWIyrQSFJrMB971N93cLysZxxrw5g+3n6Sr6R4Zr+PCaUQzNGbReIJhWnJ5wMrXDVJvX2wGPT9SxbWe9vZuYZca2nc12JaEXj4JpUrFN0xAVr36vZ+CPGnBZJHpK4KedG1t3fiJ1daO7nnjBaeYPW6lVBwjz5kRLmUzIrwZt2Vh588MYn6hjfKKu9Yzx3r9j3Qpcu2a0Y1V83lsXas/t6eu37awr+4ZqxXj91l3Ysf9gqNAdjLjr8HaWYYGBYcIvDcZWjuSqUgqjbMbdnhL4SVnoXc+vW2kEVQbTjVmsN6zogudfMFTtCDnf8sHl2HPzRZHSvPSiGbhWTaf7Hppq4JP3PYObHthjPM7ztd/67Rc7VsVPv3BYOzEvHq4ZBavqMwZw1xMvAEA7n/7Lk9PYsn1fux9t2b6vyy3Uj9ePdG0Ciiu88lQphVG2VAs95aUD2Fvoo2a2VJ3f1bvB5D1k0/6otVbDGEnpvEkzXKu2Uxgs2fhgKteYbsxaGdBVQna6MYvhWhW1aufOzxNSuvKHpmfPAG56YE9HYXR/PzIJZS/lw479B7tq6foFZxKeKTZpn13999OIbk0qs23ZUi0kkg8/LdLKh590TmvV+WwIy49uct/ccO9u7YpuZLiG116fcapvWyHCbR9ajj/86q7IicOyxPu9dNGreUNoGvJVv6lL/nYbPFuC7pwfXjPaNgyH5fiJMy5U369WmkmO/N5teeePT2P8FynVgikffl8KfN2Ai1McIZhQzSafur+oRLADejledOHrK256WCnovHvQ5RTpJbxn41pFKQsqRDjOrBQA4xP1xNv84TWjXat3D5d+HUd4ZVmIJA5pjP8ikXoBlLKRhq7Sr4o5b/OjVtkXva2yTm8LqPOZvNwy6Kl4eXLamA2xl3h5crr9zD/x1d3K+7XJhWMLkX1BGu+aWvVdwsHU23bWjX3CljhBS1kWIolDUW0VWdAXAj+4ajFV9UkCm45TrZwIGgk73gue8etvdQwPVfsmWtf7vcZWjmj14rPMXRkxqxUCAThmMHIGIUSvPub9fn5dtMnA6uHtEmwu609qFiQrA6KLbSlPo2avRtHa0FNeOipUbm6vHZtpFo32kaShxarj+MalzfGqfCZBatUKmLtdRONSxMw+wd9Ll+NIlf54dpadhD0U53Dl0FQDnx5vrvRthKKXuO3Hmy+xjp/wkpoFz5OVAdG2EEkaEbIu0a5pu28XmZ4X+Cp1SWOW8YaTBlNz37Tp+I3j3A7OsB0oOvz3kEZJxNvXrYjVviRYMFTV/l6mHEfK3OgW10qDu554oZ2/R4fq/mz7hz8q138eAJmE/gfdinX3mXSErGu0a9ru20Wm5422OuOlZzBNC78aSfeE/W0wVbiqVSuYmZ2FKu17rTqAhfPmttVVrt45NjzfMiyv16hNkka1Kve7YgZJ2uulVq2kltMozPX1eU2fDDoFHDk6Y+X5EsUhICmyGnu9boR1JTWjLRFtAXApgGMAngXwW8w8qTjueQCvApgFMKNrTBrkpa8LGnHD2uA/PmhzOP+sRfjbVuBNkOnG8fa565PTqAwQqgOUmAeIF+U4tnLEOd4gSFh1qQVDVUzccCHGJ+q46YE9HYbvyemGNnYhSWObKmpaeRz091KrDmiLsrw8Oa0V+hUinLHxQaV3TNCYautNY+sQkIbQz2rs9bMR1pW4Kp1HAPw7Zn4bgB8A+KTh2POZeUWWwh5IT1+Xps4wGMb+4HdesW7X7HHGnMGBju1qVBVFdYCw6bKzjfdBgf91jAzX8E5DyoFqhXDjpc1rja0cwdCc7rWILkeJToAsGKoqC2YH7Tf+z0wbXu9bI8M1XLtmVPksPrxmFLde8TZjVKtORTPbMtB6EbwrbnpY27+87JaqqFs/Ng4BaeV9yUpXXrZo1zyJJfCZ+WFm9pSnTwA4NX6TkiUNfV2WOsPxibpzge3Xjs12TBg3Xnq2Mbuj94kqlUNwlRm8j9vXrcDzmy8xDi4C8PjGC/D8L/TCZ15AwLus2nSC5cZLz+5KVTFvziAax7krxfGCoSq2XLVcm7elQtS+18c3XoBbxpYpn8UtY83f9do1o11C38tntGX7Ply5asSo627MMianG9r+ZdsHbYReWivhrHTl/WyEdSUxHT4RPQBgKzP/reKzHwM4hOZu8i+Z+U7Dea4DcB0AjI6Ortq/f38i7UuSLHWGugCrMIK6YN15vAjbuIPQFOhlGwzm10O7PuMwFUdYNHStWsGVq0Y66tJ6VAeoa/KzIcwu492rbZCcd+9eyT9d4Rb/87GJAu8FXXfRol3zJJYOn4i+AeAtio8+xcxfbx3zKQAzAO7SnOZdzFwnojcBeISI9jLzN1UHtiaDO4Gm0TasfXmQtM5Q11lN2RpNqFapOu+d44F0wFEHjk5fa1PNycOfmdE1R4mn4/baf/3WXdiyfV+7/WHFZaYbs7j7yReVQjSqV4nXJtXk5b9XW//1+uQ0lmx80Gg/CJ7H7/uvm3h6YSVc5sLiWRIq8Jn5vabPieijAD4A4D2s2S4wc731/8+I6GsAzgGgFPhlIEljlKksYxTdalDv7qELNjupOoDzNj+KlyenMb9WxWvHZtorXBejnkpAq6o5ha02vUkzSsIs07O0mYx1wWqHpho4b/OjkVeNYQsE1xKKplUQofkcdAZfWQn3N3G9dC4C8McA/iMzT2mOmQdggJlfbb2+EMDNca6bN0llyNNtzb0C1K7RsgRg3TmnKQewzvXb7+WjmhD8K1ETNgI6uNpUofNcssGUdjhuhtE4Hi26aw8QdQhnk9ulLV5BE10bi7oSlokoG+KmVvgcgLloqmkA4Alm/hgRLQbwRWa+GMCbAXyt9fkggP/LzP8Y87qZouqMt16xzKqDmtQ1phQIUVIjMIDH9h5QfhanOpCtqspGmPhVL8GMn/50EyZ0z9S0kr593YpYhcgB+8kviM6tNlhkXKdac+0JZXNHNO3MROgnSyyBz8z/VvP+ywAubr1+DsDyONfJE11nvPWKZaGGrjB1TRrBPbrBHmeFm5p7W1CSWUg20zM1qdqCq+j5tSqImhOhS6K5KMJUNwkD+knEJo5DR9ncEcMqbQnJ0RfJ0+IQpzOavpvWKkyXU0anYw8Tc0FVVVJb7y3b93WpLLx0E6bzmZ5pmKpNtwM5w6GIil+Y2j6LsN867HPTb9cLRlgJnMqOns+lE5c4ndH03bRWYUeOzliVT9QFDwGAF5ekylnjEn8QxB+spluxRhWOXqrkKH7fut8iaPbwC1OXZxH2W4d9bop/uH3ditLnhJHAqeyQFX4IcTxyTN/VrUavXDWCbTvrkdU9jeOM9QGXRA/VCnf16Qu7qkYd5xPCzX98nN2ObVUwG+Fo+j2iGCVNv8Vjew8oV/Auz8LkhWO7Itfdl+39FtkoWrYygWVGBH4IcTqj6bsmr5bVpy/s8NiYnGo4G+5sDV+ej3rQQ0clvOLsdmxsFjbPNQ3hEMUF1OVZBL2TvLz1aSYvMyVbK5pRNMrzV1HkSa0o9Hy2zCiokpfpVnqu54rakaN6mNhEUdpmNYwTYRwWTeoi/IowsE3PYsPapbm2z7a/9EKErUfSdWrLjJQ4dEDlBbJtZz1yx0nC71m1Ajr/rEV48DuvhObZsVl926qt4qyuTV5CKvWRiSL4kuuexflnLcrdxdDWA6yXjKLi6WOHGG0DmDpOngQzaN4ytgwTN1yIO1pGOx1BrxJVhk/b5FNxkmGZingU4fm6onsWj+09kHv/sRXkvWQUFU8fO2SFH6BsHccfyGRafdsEt9ioIaKurr3v6IqoFPX5mlA9C11t3SzvzybmoteMov1cp9YFWeEHKKuLWNjqO2znEtxBpLENHls5ot2NFP352lKE/qPaTVUr1JH6ugy6balTmzyywg9QZhcx0+o77s4lKUNpmZ+vDUW4v6S8XvLENd1CL9xzFojAD9CrHSfOljfJXCe9+nw9inJ/RTBsxyGKEbbs95wF4pbZJ8RxW+u3ItFFcPvsd7IqgN6LiFumEGvlWTZDdhwkc2MxECNsOvSlwO/XFZzrltd7Tro9YC8OPvHnLgZFsIX0In0n8Iu+givKZBQWrUlo5nnvNfppN1NkimIL6TX6TuDntYKzEeRFmIz8hbdNMIBtO+tYffpCY9uKMoHZIqqE4iBG2OTpO4GfxwrOVpDnrU5wzdkTbJsqB5E/82fRdlMqRJUg9DJ9F3iVR2CMbbqGvNUJUapweW1T5Ye/64kXck8z4Eqc9BGCUHT6boWfxwrOVpDnrU6IMrF4bVNNFjpjb9H14aJKEHqVvlvhu6zgXEK7TdjuKvIKD/fu0xSRMVyrolrprAHlb5uLEBd9uCDkQ6wVPhFtAvC7ALwqzX/CzA8pjrsIwGcBVAB8kZk3x7luXGxWcEkaUDesXYoN9+zuqOFaHSBlNkogW8+EML29PzjLZIDV7U56oeaqIPQKsSJtWwL/CDP/ueGYCoAfAHgfgJcAPAXgGmb+Xtj584y0TTK6dHyijg337kZj1ifwK4QtVy3PXXWgu09AX5REJfgBOJcJFAQhefKOtD0HwI+Y+blWY/4OwOUAQgV+niRpQN2yfV+HsAeAxiwXIphHdz8EKCc23c7n1iuW4dYrlpXKBVMQ+o0kBP7Hieg3AewA8AlmPhT4fATAi76/XwJwru5kRHQdgOsAYHR0NIHmRSNJA2re3jcmXO/T5HGUVlplQRCSIdRoS0TfIKLvKv5dDuDzAN4KYAWAVwDcFrdBzHwnM69m5tWLFuUXyZmkATWuK2hSxmMVrvepU/8UYfISBMFM6Aqfmd9rcyIi+isAf6/4qA7gNN/fp7beKzRJGlDjuIKmHX3rcp/jE/UuI6yHeN4IQvGJ66VzCjO/0vrz1wF8V3HYUwDOJKIz0BT0VwP4jTjXzYqk/LHjTB5ZRN/a3qcukRoB4nkjCCUgrg7/z4hoBZqLvucB/B4AENFiNN0vL2bmGSL6OIDtaLplfomZ98S8bumIOnkUSf+vuyajuKkSBEE4QSyBz8z/SfP+ywAu9v39EIAu/3whnLyjb23aoqtTKwhCsei7SNuyUaTizEVqiyAI7vRdLp2yUaS84EVqiyAI7khNW0EQhB7CFGkrKh1BEIQ+QQS+IAhCnyACXxAEoU8QgS8IgtAniMAXBEHoE0TgC4Ig9Aki8AVBEPoEEfiCIAh9ggh8QRCEPkFSKxQMU6FwQRCEOIjALxBpFzsRBKG/EZVOgTAVOxEEQYiLCPwCUaRiJ4Ig9B4i8AtE3GLngiAIJkTgFwgpMCIIQpqI0bZASIERQRDSRAR+wYha7FwQBCEMUekIgiD0CbFW+ES0FYCnYB4GMMnMKxTHPQ/gVQCzAGZ05bcEQRCE9Igl8Jl5nfeaiG4DcNhw+PnM/PM41xMEQRCik4gOn4gIwIcAXJDE+QRBEITkSUqH/+8B/JSZf6j5nAE8TEQ7ieg604mI6Doi2kFEOw4cOJBQ8wRBEARiZvMBRN8A8BbFR59i5q+3jvk8gB8x822ac4wwc52I3gTgEQD/hZm/Gdo4ogMA9ocdlzInAyibKqpsbZb2pk/Z2iztjc7pzLxI9UGowA+DiAYB1AGsYuaXLI7fBOAIM/95rAtnBBHtKJuRuWxtlvamT9naLO1NhyRUOu8FsFcn7IloHhG90XsN4EIA303guoIgCIIDSQj8qwHc7X+DiBYT0UOtP98M4F+IaDeAbwN4kJn/MYHrCoIgCA7E9tJh5o8q3nsZwMWt188BWB73OjlyZ94NiEDZ2iztTZ+ytVnamwKxdfiCIAhCOZDUCoIgCH2CCHxBEIQ+QQR+ACLaRER1ItrV+nex5riLiGgfEf2IiDZm3U5fO7YQ0V4i+g4RfY2IhjXHPU9Ez7TuaUfW7Wy1wfjMiGguEW1tff4kES3JvpXttpxGRI8R0feIaA8R/VfFMe8mosO+vnJDHm31tcf4G1OT/9F6vt8horfn0U5fe5b6nt0uIvolEa0PHJPrMyaiLxHRz4jou773FhLRI0T0w9b/CzTf/UjrmB8S0Ueya7UBZpZ/vn8ANgH4o5BjKgCeBfCrAOYA2A3g13Jq74UABluv/xTAn2qOex7AyTk+19BnBuAPAHyh9fpqAFtzbO8pAN7eev1GAD9QtPfdAP4+rza6/sZoOlL8AwACsAbAk3m3OdA/foJm0FBhnjGA/wDg7QC+63vvzwBsbL3eqBpzABYCeK71/4LW6wV5P2dZ4UfjHDQji59j5mMA/g7A5Xk0hJkfZuaZ1p9PADg1j3ZYYPPMLgfw5dbrewG8p5WnKXOY+RVmfrr1+lUA3wdQ9kIFlwP4Cjd5AsAwEZ2Sd6NavAfAs8ycd2R9B9zMCHAw8La/n34ZwJjiq2sBPMLMB5n5EJoZBi5KraGWiMBX8/HWlvdLmu3aCIAXfX+/hGIIg99GcwWnwjqfUUrYPLP2Ma1J7DCAX8mkdQZaqqWVAJ5UfPwOItpNRP9ARGdn2rBuwn7jovZbQBHP46NIzxgA3szMr7Re/wTNWKMghXzWfVnxypQfCMDnAXwGzcHzGQC3oSlIc8Myn9GnAMwAuEtzmnexL58REe1li3xG/Q4RvQHANgDrmfmXgY+fRlMFcaRl6xkHcGbWbfRRyt+YiOYAuAzAJxUfF+0Zd8DMTESl8W3vS4HPzO+1OY6I/grA3ys+qgM4zff3qa33UiGsvUT0UQAfAPAebikQFeeot/7/GRF9DU0VS5bCwOaZece81MrRNB/AL7JpXjdEVEVT2N/FzPcFP/dPAMz8EBH9byI6mXOq+2DxG2fabx14P4CnmfmnwQ+K9oxb/JSITmHmV1oqsZ8pjqmjaX/wOBXA/8ugbUZEpRMgoNP8dajz/jwF4EwiOqO1OrkawP1ZtC8IEV0E4I8BXMbMU5pjipDPyOaZ3Q/A82a4CsCjugksbVq2g78G8H1m/gvNMW/xbAxEdA6a4ymXCcryN74fwG+2vHXWADjsU03kyTXQqHOK9Ix9+PvpRwB8XXHMdgAXEtGCllr4wtZ7+ZK31bho/wD8DYBnAHwHzR/2lNb7iwE85DvuYjQ9N55FU7WSV3t/hKaucFfrn+fl0m4vmp4xu1v/9uTVXtUzA3AzmpMVAJwE4J7WPX0bwK/m+FzfhaZa7zu+Z3sxgI8B+FjrmI+3nuduNA3m78yxvcrfONBeAvC/Ws//GQCr82qvr93z0BTg833vFeYZozkRvQKggaYe/nfQtCv9E4AfAvgGgIWtY1cD+KLvu7/d6ss/AvBbeT9rZpbUCoIgCP2CqHQEQRD6BBH4giAIfYIIfEEQhD5BBL4gCEKfIAJfEAShTxCBLwiC0CeIwBcEQegT/j/24gGR2iQwOgAAAABJRU5ErkJggg==\n",
-            "text/plain": [
-              "<Figure size 432x288 with 1 Axes>"
-            ]
-          },
-          "metadata": {
-            "needs_background": "light"
-          }
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "We can go one step further and annotate the points on the graph with the words themselves. A crude version without any nice offsets looks as follows."
-      ],
-      "metadata": {
-        "id": "MUW6T3b4LPE7"
-      },
-      "id": "MUW6T3b4LPE7"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "pyplot.scatter(result[:, 0], result[:, 1])\n",
-        "words = list(model.wv.vocab)[:1000]\n",
-        "for i, word in enumerate(words):\n",
-        "\tpyplot.annotate(word, xy=(result[i, 0], result[i, 1]))\n",
-        "#pyplot.show()\n",
-        "pyplot.savefig('plot_w2v.png')"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 265
-        },
-        "id": "87nkrdIsGwuv",
-        "outputId": "edd81284-76df-4824-8c4a-036f02a504a9"
-      },
-      "id": "87nkrdIsGwuv",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "display_data",
-          "data": {
-            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAD4CAYAAAD7CAEUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3iNZ//AP885J1NIRGIkSOyQLcPeJZSiZpUSI1rK26FetNrQqlpvBy2qRkoptWJV7b0lso0IIQORRCJ7nHP//jhymkRitImE3/O5rlw5z7qf+z7j+d73d0pCCGRkZGRkZJ4VRUV3QEZGRkbm5UIWHDIyMjIyz4UsOGRkZGRkngtZcMjIyMjIPBey4JCRkZGReS5UFd2BJ2FhYSFsbW0ruhsyMjIyLw0BAQGJQgjL8rxHpRYctra2XLx4saK7ISMjI/PSIEnSrfK+h6yqkpGRkZF5LmTBIfPMtG3btqK7ICMjUwmQBYfMM3P69OmK7oKMjEwlQBYcMs+MiYkJAAsXLsTDwwMnJyd8fX0ruFcyMjIvGllwyDwX+/fvJzIykvPnzxMUFERAQADHjx+v6G7JyMi8QCq1V5VMxeJ/KY6F+64Sn5KFlZkRao1g//797N+/H1dXVwDS09OJjIykY8eOFdxbGRmZF8VzCQ5JklYDfYAEIYTDo33mwCbAFogGhgghHpRw7Shg5qPNOUKIX/95t2XKG/9LcczYFkpWnhqAuJQscvI1RN5LY8aMGbz77rsV3EMZGZmK4nlVVX5Az2L7pgOHhBBNgEOPtovwSLj4Aq0AT8BXkqTqz91bmRfGwn1XdUKjMNf1GrF69WrS09MBiIuLIyEh4UV3T0ZGpgJ5rhWHEOK4JEm2xXb3Azo/ev0rcBSYVuwcL+CAECIZQJKkA2gF0O/P1VuZF0Z8StbjOyWJzJr2jHc2oE2bNoDWYP7bb79Rs2bNF9xDGRmZiqIsbBy1hBB3Hr2+C9Qq4RxrIKbQduyjfY8hSdJ4YDxA/fr1y6B7Mv8EKzMj4goJD3XWQxSGJliZGfHBBx/wwQcfVGDvZGRkKpIy9aoS2nKC/6qkoBBihRDCXQjhbmlZrulWZJ7AVK9mGOkpAchPS+Luuk+o0WYgU72aVXDPZGRkKpqyWHHckySpjhDijiRJdYCSFN5x/K3OAqiLVqUlU0np76pdEC7cd5V4auD533VM9Wqm2y8jI/P/l7IQHDuBUcC8R/93lHDOPmBuIYN4D2BGGdxbphzp72otCwoZGZnHeC5VlSRJvwNngGaSJMVKkjQWrcDoLklSJPDao20kSXKXJGklwCOj+FfAhUd/XxYYymVkKjNHjx4tkmrF39+fiIiICuyRjEzF87xeVcNKOdSthHMvAuMKba8GVj9X72Rk/iFCCIQQKBT/zox39OhRTExMdAke/f396dOnDy1atCiLbsrIvJTIKUdkXhmio6Np1qwZI0eOxMHBga+++qrEnFpr167FyckJZ2dn3nnnHQDu37/PwIED8fDwwMPDg1OnThEdHc3y5cv57rvvcHFx4dixY+zcuZOpU6fi4uJCVFQUUVFR9OzZEzc3Nzp06MCVK1cqavgyMi+OgplZZfxzc3MTMjLPys2bN4UkSeLMmTNi3759wsfHR2g0GqFWq0Xv3r3FsWPHRFhYmGjSpIm4f/++EEKIpKQkIYQQw4YNEydOnBBCCHHr1i1hZ2cnhBDC19dXLFy4UHePUaNGic2bN+u2u3btKq5duyaEEOLs2bOiS5cuL2SsMjKlAVwU5fxslnNVybzUFM6nZS5SsaxTl9atW/PJJ5+UmFMrODiYwYMHY2FhAYC5uTkABw8eLGK7ePjwoS46vjTS09M5ffo0gwcP1u3Lyckp6yHKyFQ6ZMEh89JSPJ/WvYfZpOQp8L8UhxCixJxaS5YsKbEtjUbD2bNnMTQ0fOb7azQazMzMCAoK+ueDkJF5CZFtHDIvLSXl0xJCsHDfVby8vErMqdW1a1c2b95MUlISAMnJWue+Hj16FBEqBcKgatWqpKWl6fYX3q5WrRoNGjRg8+bNunsHBweX02hlZCoPsuCQeWkpMZ/Wo/09evTg7bffpk2bNjg6OjJo0CDS0tKwt7fns88+o1OnTjg7O/Pxxx8DsHjxYi5evIiTkxMtWrRg+fLlALzxxhts374dFxcXTpw4wVtvvcXChQtxdXUlKiqK9evXs2rVKpydnbG3t2fHjpLCmGRkXi0krS2lcuLu7i4uXrxY0d2QKUTbtm3ZsGED3t7eHD16tEL70m7e4SL5tAqwNjPi1PSuFdAjGZmKR5KkACGEe3neQ15xyDwXlanueOF8WgUY6SnlfFoyMuWMLDhkngsTExOUSqXOG6ki6e9qzTcDHLE2M0JCu9L4ZoCjnCZFRqackVVV/w9Yu3YtixYtQpIkPDw8aNWqFStWrCA3N5fGjRuzbt06jI2Nn6ktExOTp7qpysjIVBwvQlUlu+O+4oSHhzN37lxOnTpFjRo1SE5ORgiBj48PADNnzmTVqlVMnjy5xOtLqjsuIyPz/xtZVfWK4n8pjnbzDtPxwyVkWLlz4nY2oA14CwsLo0OHDjg6OrJ+/XrCw8NLbWPGtlDiUrIQ/F133P9S3AsciYyMTGVDFhyvIMUf+A+z85mxLVT3wPf29ubHH38kNDQUX19fsrOzS2yntLrjC/ddLc/uy8jIVHJkwfEKUviBb1jficyrp0h/mMLCfVdJTk4mLS2NOnXqkJeXx/r160ttp7S646XFT8jIyPz/QLZxvIIUfrDrW9pg2now9zZM4052OtNvDOSrr76iVatWWFpa0qpVqyKR0YV5Ut1xGRmZ/7/IgqMSs3PnTiIiIpg+ffpzXVf8gW/i2A0Tx25kHV7Kzz//jCRJTJgw4antTPVqpssFlZ+WxL3fZ8h1x2VkZGR33FeR4sn/ABI2TKeWkYbrESEolconXP14W4W9quS64zIylRs5cvwVJCMjg969e+Ps7IyDgwObNm3C1taWxMREAC5evEjnzp0B8PPzY9KkSQBs3rwZBwcHnJ2d6dix4xPvUVJg3IYdf3HzavhzCY2Ctk5N78rNeb05Nb2rLDRkZGRkVdWL5q+//sLKyoo9e/YAkJqayrRp05563Zdffsm+ffuwtrYmJSXlqef3d7WWH/IyMjLlgrzieEaio6Oxs7PD29ubpk2bMnz4cA4ePEi7du1o0qQJ58+fJyMjgzFjxuDp6Ymrq2uRTKkFcRUf7Eti3ZZdDPCeyIkTJzA1NX2m+7dr1w5vb29++eUX1OrHXWRlZGRkXhT/esUhSVIzYFOhXQ2BL4QQ3xc6pzOwA7j5aNc2IcSX//beL5rr16+zefNmVq9ejYeHBxs2bODkyZPs3LmTuXPn0qJFC7p27crq1atJSUnB09OT1157jQPXUnQ2B5W5NZYjv+fsrUDe+3AqQ/u9jkqlQqPRAJQaU7F8+XLOnTvHnj17cHNzIyAggBo1arzI4cvIyMgAZSA4hBBXARcASZKUQBywvYRTTwgh+vzb+71IipclrWlVD0dHRwDs7e3p1q0bkiTh6OhIdHQ0sbGx7Ny5k0WLFgFaIXD79m0W7rujM1TnpyWhNKqK0q4TGlNTAgMvYGtrS0BAAL169WLr1q0l9iUqKopWrVrRqlUr9u7dS0xMjCw4ZGRkKoSytnF0A6KEELfKuN0XTkllSZOyBf6X4ujvao1CocDAwAAAhUJBfn4+SqWSrVu30qxZUXfV+F9v6F7n3Y8m4egakCQkhYp1uzaQlZXF2LFj+fzzz3WG8eJMnTqVyMhIhBB069YNZ2fn8hm4jIyMzFMoa8HxFvB7KcfaSJIUDMQDnwghSkyQJEnSeGA8QP369cu4eyXj5+dHdHQ0s2bN0u17UlnS0ozOXl5eLFmyhCVLliBJEpcuXcLV1bVIXIVRQzeMGroBWm8nd3et19y1a9cea8/b2xtvb28Atm3b9m+HKSMjI1MmlJlxXJIkfaAvsLmEw4GAjRDCGVgC+JfWjhBihRDCXQjhbmlpWVbde26eVJa0ND7//HPy8vJwcnLC3t6ezz//HCi7gkOvv/76M3lUyVQcarWaBQsWkJubW9FdkZEpN8osAFCSpH7A+0KIHs9wbjTgLoRIfNJ5ZREAGB0dTc+ePWndujWnT5/Gw8OD0aNH4+vrS0JCAuvXr+fmzZvExMTwySef6K4r67Kk/zaQTgiBEAKFQnaEq8z89NNPXL58mXr16uncrIOCgoiPj+f111+v4N7J/H/gZQsAHEYpaipJkmpLkiQ9eu356L5JZXjvJ3L9+nWmTJnClStXuHLlis4batGiRcydO5ehQ4cWERpQ9mVJ/0kgXXR0NM2aNWPkyJE4ODigVCp1gYK//fYbnp6euLi48O677+pcdE1MTPjss89wdnamdevW3Lt377n6uXPnTubNm/f8A5QBoEaNGvz444/Y2trq9gUFBfHnn39WXKf+Jd7e3mzZsqVC2/fz8yM+Pr7c+iDzfJSJ4JAkqQrQHdhWaN97kiS992hzEBD2yMaxGHhLlGOuk4KYiQbT9zBw2WmdN5RCoSjRG6okKktZ0sjISCZOnEh4eDg2NjYAXL58mU2bNnHq1CmCgoJQKpW6LLcZGRm0bt2a4OBgOnbsyC+//PJc9+vbt+9z58Z6lfnqq69o1qwZ7du3Z9iwYSxatIigoCBat26Nk5MTb775Jg8ePACgc+fONG7cGIBu3bpha2tLbm4uX3zxBZs2bcLFxYVNmzY96XYyJbB8+XLmz59PfHy8LEAqCWUiOIQQGUKIGkKI1EL7lgshlj96/aMQwl4I4SyEaC2EOF0W9y2J4rUoCntDASV6Q5VGRaXbKBB87ecfRt+sFncN6hU5fujQIQICAvDw8MDFxYVDhw5x44bWc0tfXx8HBwfs7Ow4d+4cCxcuLDFYMTk5mf79++Pk5ETr1q0JCQkBiqY5+f/OhQsX2Lp1K8HBwezdu5cCtenIkSOZP38+ISEhODo6Mnv27FLb0NfX58svv2To0KEEBQUxdOjQF9X9f8zatWtxcnLC2dmZd955B4Djx4/Ttm1bGjZsqFsdCCGYOnUqDg4OODo6FhGK8+fPx9HREWdnZ91EpDSBW5gvv/wSDw8PHBwcGD9+PEIILCwsiImJYfjw4UyaNEn3XS+OHBj74njlUo78E2+oykCBLcaqqRMnT51Gr3ZjjBq6k5uWzJBunsz54WdycnLo1asXd+7cQaFQsGnTpsdcf/X09JAkievXr+Pj44OtrS1hYWGPBSvWq1ePlJQUPv74Y+rXr8/IkSMJCgqqoNFXHgrbogj7E0/PLhgaGmJoaMgbb7xBRkYGKSkpdOrUCYBRo0YxePDgCu512REeHs6cOXM4ffo0FhYWJCcn8/HHH3Pnzh1OnjzJlStX6Nu3L4MGDWLbtm0EBQURHBxMYmIiHh4edOzYkaCgIHbs2MG5c+cwNjYmOTkZ0ArcJUuW0KlTJ7744gtmz57N999/X+T+kyZNwtbWlkWLFrF582YiIyPp1KkTtWrVYsyYMXz11VeMHTsWIyMjzpw5Q/PmzRk6dCgHDhzgv//9L0II5s6dixCC3r17M3/+fECrwv3ggw/YvXs3RkZG7Nixg1q1ar3w9/d5iI6Opk+fPoSFhVV0Vx7jlbO0/hNvqMrC9evXSW7YgzrjlpGfFEtW5FmUprUw6zKG+fO+QU9Pj127drF//36EEEyZMgWA5ORkVuw5R7t5h8nMVevUczY2NkiSVKJ67uTJk7pYkK5du5KUlMTDhw8rcvgVTvHVampWHoeuJDxzqdxnyQBQGSms2n1jxnKcOvTEwsIC0JYaBujfvz8KhYIWLVro7GYnT55k2LBhKJVKatWqRadOnbhw4QIHDx5k9OjRGBsb69pITU19TOAeP378sb6sXbuW8ePHk5+fj7GxMR06dNAd69atG+7u7qxfv56goCCMjLR1YWrUqEFgYCAdO3Zk2rRpHD58mKCgIC5cuIC/v9aB89+qcF8VJElSPWn7WXnlBEfxIkMq01pYjV2q2+/n58egQYMAdLPxiqIkW0yqYR0kSYGeRX0MrFsgSRJ6lrakJd5Bo9EwduxYhgwZglKp5ODBgzg5OeHRrjNzt5zm3DfDAMG9h9ncibnF+Zta/4MC9dzatWt5/fXXuXLlCrdu3cLY2Fj343uRVFa34uKrVYO6zUm7do75u0NJT09n9+7dVKlSherVq3PixAkA1q1bp3sYFmQAAIoYe6tWrVpqsayKpriwTMnK4+jVx4VlgXoXtCv48iA7O5svvvgCHx8fIiIi8PHxeSYvwgL134ULF+jcuTOWlpaoVCqGDx+uE076+vr06aNNXOHm5laqbbOykZ+fz/Dhw2nevDmDBg0iMzOTgIAAOnXqhJubG15eXty5cwfQ2tgK1KmSJFk88l5FkiRvSZJ2SpJ0GDhUwnYVSZJWS5J0XpKkS488ZJ/IKyc4ytobqrwozRZjaqSnPUFSoKxaA6uxS5EkCZUkeO211/Dy8iIsLIzjx49Tu3ZtQkJCqD3qe6jVFADr91br7nFK3YSEhARyc3OJiYlhzpw5bNiwgcaNGzNo0CCMjY0ZOnQoR48excLCgmrVqv2jscydO/e5zv/zzz8xMzP7R/cqT4qvSg3qNMWosScXvxtLr169cHR0xNTUlF9//ZWpU6fi5OREUFAQX3zxBQCffPIJy5Ytw9XVVef9BtClSxciIiIqpXG8uLA0rO9EasQJ5m47D6BTM5VEhw4d2LRpE2q1mvv373P8+HE8PT3p3r07a9asITMzU9eGqalpqQIX4PzNJDp9s5/0nHy2BSfw+6lrRYSvgYFBqcK3SpUqTx1ngQoXQKlUPtG2WZm4evUqEydO5PLly1SrVo2ffvqJyZMns2XLFgICAhgzZgyfffbZszTVEhgkhOhUwvZnwGEhhCfQBVj4yOGpVF45G0eBHaOyFx8qzRYjSTwm+AxUSixMDEhNTcXaWjuOAr2zs7MzNyQrzHs8XtEvPiWLqV//wog3urLJfw8KhYIvFv4IwLx58xgzZgxOTk4YGxvz66+//uOxfP3115iZmTFx4sTHjvXv35+YmBiys7P54IMPGD9+PLa2tly8eFGnDilMSkoKGzZsKLGt8qZ45USAap4DsO8zjn3/aU3Hjh1xc3PDxcWFs2fPPna9nZ2dzskAYM6cOYBWVbNr1y527txZ6YzjxYWlvqUNpm2GErT8Q5x3zsLV1bXUa998803OnDmDs7MzkiSxYMECateuTc+ePQkKCsLd3R19fX1ef/115s6dy6+//sp7771HZmYmDRs2ZM2aNQDcTs7kwLnb6DWuS5XmnYg/tZUxQ4Jo6+ZCVlYWRkbaDAvvvfced+/eLSKUC+Pp6cl//vMfEhMTqV69Or///juTJ08uuzerAqhXrx7t2rUDYMSIEcydO5ewsDC6d+8OaB0C6tSp8yxNHRBCJJey3QPoK0lSQUyCIVAfuFxaY6+c4ICXoxZFaTaXlMw8vhvqwvg/tcIj/+xvtGluTaihiv/+97/06dOHiRMn8vDhQ5RKJVlZWVQx1+fO2o9Rpydzd/1/qebxJpKeAWbGegzq4IChrStVbNzICNzNvj27MDXSY/LkyUyaNEkXCFmgkx88eLBu5piXl8esWbPo168ffn5+7Ny5k8zMTKKionjzzTdZsGAB06dPJysriylTpnDq1CmdW3ABq1evxtzcnKysLDw8PBg4cOAT35eUlBSWLl36mODIz89HpSrfr2vhUrkFpO7/CWVeAi391IwaNYqWLVv+o7ZnzZpFbm4udnZ2ukJc/v7+NG3alBYtWpRJ//8JJQlLE8duNOvQp9RA1/T0dAAkSWLhwoUsXLjwsXOmT5/+mFt3aQI3p+176D3qQ42ekzCwbs7D81s5e+Ei9cyNsLW1xcnJibVr17J161Y++OADnXG8MHXq1GHevHl06dJFZxzv1++pWpdKRfHEqtl5miLHq1atir29/WNjh6I2NrQP/8JkPGFbAgY+Slj7TLySguNloPgPtrAtpr+rNf0D9gFw6dIlPvzwQ+as28cn+66SJlXB1MqO7IQD2NnZYWBgQMbdMEwatORhVhq1hs4hYbPvo0hz0OTlknUrFEkZgSY7DVR6mLYbRnj4occ8rfz9/fn6669LTA0PWnfKS5cuYWBgQLNmzZg8eTLz5s3TZQMODw+nib0LSWpDTPt/jpWZEQnrPib7YRLm5ubExMQQGRn5xPdl+vTpREVF4eLigp6eHoaGhlSvXp0rV64QEhLChAkTuHjxIiqVim+//ZYuXbrg5+fH9u3bSU1NJS4ujhEjRuDr6/vcn0lJq9Xv1/32rychmZmZ9O7dm549e7Jr1y7dfn9/f/r06VOhgqMkYfmiVbvFJ1Emjt0wceyGBPjN613k2MCBA4tMPorbKoYNG8awYcMeu0eBsAMYNGiQzs5ZmSgpser9u3HM89vJdO++bNiwgdatW/PLL79w5swZ2rRpQ15eHteuXcPe3r6IjQ1t7Nyzsg+YLEnSZCGEkCTJVQhx6UkXvHI2jpeFp9liCgznAzbFcy7iJh+tPszNa+EoDE3IVhiiqmbJNxsOEhQURFx0FD2c6qFJTybhD180aUnoK7VeQSCo5tGX2sPmojA2Q2loQszJbaSlpZUYCLl//37mzZuHi4sLnTt31qWGB61Xi6mpKYaGhrRo0YJbt7RJkPX19WnUqBGz1uwhp+XbZOdrEEBUyDlu3rpNn5GTCA4OxtXV9aneRvPmzaNRo0YEBQWxcOFCAgMD+eGHH7h27Ro//fQTkiQRGhrK77//zqhRo3TtnT9/nq1btxISEsLmzZv5p6lq/m3sTkkBg+vXr+fLL7/UeQRlZmZy+vRpdu7cydSpU3FxcSEqKoqoqCh69uyJm5sbHTp04MqVKwDs2rWLVq1a4erqymuvvabzapo1a5ZOaAM4ODg8t9G3MgS6Fndoedr+V5WS1Ncq87r874fFNG/enAcPHujsG9OmTcPZ2RkXFxdOn9aGxRXY2IAWwON64NL5CtADQiRJCn+0/UTkFUcF8SRbTPGZh2HTdqRePok64wHGdh2QDIzJCN3P11vP0t91IDt37iQq8AR1resQGBjAoEGDOHfuHFZmRtxWGZARcQyjBm4ojatRc8iX1Klugn3srhIDIYUQJaaGP3fuXBHPmvvpeby39jwZu1PJzlfzMDufhfuuklsoCEuTkwlKPQ5eS+LKlSslqikKKFii37oVTXJiBv6X4jBDq7du0KABoHX/LNBZ29nZYWNjo8sq3L17d119kgEDBnDy5Eld5uEXReGAwby8PFq2bImbmxsDBgzAx8cHgJkzZ7Jq1SomT55M37596dOnj272261bN5YvX06TJk04d+4cEydO5PDhw7Rv356zZ88iSRIrV65kwYIF/O9//yuzfle0arcyrHoqA8VXXirTWlj7LEcCLhdaebm4uJToylxgY5MkKUIIMROYCSCE8AP8Cs4rYTsLePd5+ioLjgqktB9s8ZmHsV0Hkv9agjrrIXo1G2JobYfK3JrgX6bitHM2GRkZ1KlTB4VCQWRkpO4hM9WrGYPn6WPctC33t88l/2ECSTvm8dnSlZyLLblPpaWGL4z/pTiu3E3DpF4OhuaApOReahaKlCxQKBFCq2c1auAGGjU3965ket41WrduXeI9iwvKfLWGGdtCGV4/7Zk8ZgCdx0xp2+XF0wIGAcLCwpg5cyYpKSmkp6fj5eX1WDvp6emcPn26SDBhTk4OALGxsQwdOpQ7d+6Qm5urE6SvCi+LQ0t5U5K9qWB/ZUNWVVVCSvJ00eRmoaxaA4WedtavMqmBx0crCQkJISIigqpVq2JkZMT8+fNp3bo1e/fupb+rNdWN9Wna6U1qDf0SIwtrft91kAl925V679JSwxdm4b6raAr58ldx6EZuchxJuxahqlaTvMQYRH4eIj8HlCoa9BqHv78/R48epXPnzkRHRxfxqCosKCV9IzS5WWTlqdl4IabIfTt06KAzvl+7do3bt2/rVkYHDhwgOTmZrKws/P39dZ4o5cmzBgx6e3vz448/Ehoaiq+vb4nqOo1Gg5mZGUFBQbq/y5e1Ti0FjgyhoaH8/PPPuuuLGUNfqqDD4lRUep/KxMsSSgDyiqNSYmVmxK1b0dz7wxfDui3IibuCsmoNLAfMJOWYH/p1mlGr7UDdF8rAwIC9e/eW2FZCfKGH77Ixupd+fn6614UDIY2MjPj5558fa6dwUan4lCxqDvrb+Fyj+3tostLISbhB1qXdVLFrT/zqiahMa2NUuxG9HJ7sLlhYUCqNqmFg3YL4VRORVAbYujXVHZs4cSITJkzA0dERlUqFn5+fTn3m6enJwIEDiY2NZcSIES9ETVVSwGDyvp+YvzuU15qYsnv3bsaPH09aWhp16tQhLy+P9evX61yqCwcGVqtWjQYNGrB582YGDx6MEIKQkBCcnZ2LuGEXdpu2tbVl9+7dAAQGBnLz5s1yH7NM+fEyrbzKrB5HeVAW9TheRvwvxTFl9UFu/DSGOqO+R79WQ5J2zMO8eVsUTTtW+BfqSbVKpno1+1t1E7ob9dUjVDNUMW7cOPr370+vXr1o3749p0+fxtramh07dvDaD2f+Ve0TPz8/Ll68yI8//lgm43tWGkzfQ/FfT8rJ9WREHKO1fUNq1qxJz549yc/PZ8GCBVhaWtKqVSvS0tLw8/Pj1KlT+Pj4YGBgwJYtW1AoFEyYMIE7d+6Ql5fHW2+9xRdffMGOHTv46KOPqF69Ol27duXChQscPXqUrKws+vXrR1xcHK1ateLMmTPs3bu3SEp3mcpLfn4+K1asYNy4cejr65dZuy+iHocsOCoRhfXlRtlJRK2bgZXPCqzMjGh05yBNLY2ZOXMmAG3btuX06dMVkgjN/1Ic4/4zFaW1PUa2LoB2SV3YGycgIABvb2/Onj2LEIJWrVrx22+/4eHhwcWLF3FxcWHIkCH07dsXE/suJRpHn9W7p6IER0kCVJObRb2a5hx4FDC4YsWKfxz7IfNyYGJiUsTdtyQK/15Pnz7N22+/DWgdKlauXMmyZcvKrEjbixAcsqqqkvDWux9zOOohuVkZGNRzIK96Hd7Cn6IAACAASURBVFDq8d1QF/q7WrNoUWCRL2eBC15F0N/VGhYvfGxJDdqHaXxKFoT/iUebbjrj9oABAzhx4gQNGjTAxUUrbApyBs0c8e+W6IXVaC+S8gwYlHm1KPi9RkdHs2HDBoYMGYJKpcLDwwMPD48K7t3zIwuOSsKpqCTy1CrMOowAID/1XpF08IWNoPBss5zS+O2331i8eDG5ubm0atWKpUuXYmpq+ljaaUNDQ5ycnLh58yYKhYKMjAzs7Oy4ceMG/j98xkePXEkDAgIYOW4gUfFJSIZVqdH7IzKz8jh8+QH+l+KKCIDCLr0Fke9Q8S6h/4TyChiUeTlJT0+nX79+PHjwgLy8PLp168bhw4eRJImIiAiGDx/O3r17SUpKwsrKCh8fHwICArh//z7GxsasWLGC5s2b4+3tjZGREZcuXSIhIYHVq1ezdu1azpw5Q6tWrXT2yf379+Pr60tOTg6NGjVizZo1mJiYvJCxyl5VFcjXX39N06ZNad++PQ/iowFI3PMdGVdOApCXHEeY/1JatmxJSEgIUVFRtGnThpYtW5Kdnf2PBEdp1QNLSjttamqKi4sLx44dA2D37t14eXmhp6enay8vL4/JkydTpdd/qT3qe0ycupNyfC0Gde15ePUM83YFk5GRwfbt24ukyH5V+P/iDdS2bduK7kKlx9DQkO3btxMYGMiyZctYunQphw4dIjg4WDdhatiwIV5eXiQkJHDmzBmWLFlCQEAACxYsKJJm58GDB5w5c4bvvvuOvn378tFHHxEeHk5oaChBQUEkJiYyZ84cDh48SGBgIO7u7nz77bcvbKzyiqOCCAgIYOPGjQQFBZGfn0+tBs3Rq9VYd1xlWgulSQ2qVzcncO8WEhMTGTBgAAcPHqRKlSro6+vz7bffMnLkyKfeq7DtRIrYR8rZC7rlcVZWFjVr1nws7fSBAwcAbcrqTZs20aVLFzZu3PhYDqmrV68SFhZGdtSj/GgaDUoTcwxqN8bEoRuBSybQ6o+qjBs3jo8//liu0vaSUpGq0cpI4d9UVp4a/0tx9HaoyVs+/+HY8ePkpD9ErdawOyiW0d0tddd16tSJsLAw0tPTOXfunC4wFChSauCNN97QZXWoVasWjo6OANjb2xMdHU1sbCwRERE6t/Pc3FzatGnzgkYvC44XTsEX7vKBjVSp6cL+qw/o72pN9169OXtXQ16hcyUJPp00FoCzZ88SFBpGzSbO5Kk15OXlczwwgqfJjeLBdalZuUhNOzHrx2+LzI4XLVpUYtrpvn378umnn5KcnExAQABduxb1chJCYG9vj6Lf1yVkln2T5j3e1nlGffjhh0WOf/LJJ8i8HJiYmLB7924WLVqkcwGeNGkS7u7ueHt7M336dHbu3IlKpaJHjx5FUqGUBwW5y4YMGVKu9ymJ4r8pIWDGtlBWrbnIybCbWIz4jrSgvaScWMecnSFUt6ipu7ag/o1Go6FatWocPXq0xHsUzupQWL1bkOVBqVTSvXt3fv/993Ia5ZORVVUvkMIBYwBp2fnM2BaK/6U4Gtc04XXHOhjrK3U5g6ob6zOgVSOio6MZNdaHLI0euTk56JnVAZU+wQ/06Nzjda5fv66rzwywePFiWrRogZOTE+O8RxStt2DjzMPLJ/h6qzb9R3Jysi7nVAEJCQns2LED0D4wPDw8cHZ2JisrCycnJ1asWMHVq1dZu3YtzZo14/79+1hd30HqoZ8R6nzu/v4pd/w+4M6qiTinX9C1a2trS2JiIhkZGfTu3RtnZ2ccHBwqXY0KmecjKSmJ7du3Ex4eTkhIiM7zrzzx9fXF39+f69ev6/b5+fkRHx9f7vcuKadUVp6aMxExYFgNSalC0jNE5GSSmZ7Kwn1/J501NDQkLS1NF7fzxx9/AFpBcunSE/MKFqF169acOnVKN/6MjAxd+p0XQZkJDkmSoiVJCpUkKUiSpMd8aCUtiyVJui5JUogkSa+Uu0l0dDR2dnZ4e3vTtGlThg8fzsGDB2nXrh1NmjTh/PnzzN1+gVubZhO/ehLpIfvJuHycjMxMJn00lZUrV3Ji5wayrp2mj/k9Tk3virH+31GkyQl30eTnUnPQF0gGxqDOR2nTkhpvzqRx48ZkZWXpZoLz5s3j0qVLhISEYNzlvSL91Leoj1mHd7TpSpyc6N69u66CWGkMHTqU2NhYtmzZwsWLF1m8eDH169fn/Pnz6Ovrs2XLFg5tW4fh3RDur/0A48aeuH+4grU7D3Hcfx1JSUlF2vvrr7+wsrIiODiYsLAwevbsWUafQsVQ8Nn/k0ptiYmJlTLuonB1ynbzDqPWlO62X5D4cuzYsWzbtk1XMras8PPzY9KkSbrtO3fu8P777/PTTz8RFRVV5Lx/KjgWL9YmEhw+fPhTz41PySI/LYn724sWMDNq0Ymcu5HEr3qfnJhwlFXMSdwxnwvfjtWlj7GxsUGpVOLs7KzLQl0wgSqcOflpWFpa4ufnx7Bhw3BycqJNmza6pJgvgjKL43hUptBdCFFilRVJkl4HJgOvA62AH4QQrZ7U5ssUxxEdHU3jxo25dOkS9vb2uln6qlWr2LlzJ2vWrOFwjBqFUTXM2r9N1q1gEnctQqFvhMjPpboBTJkyhaCgIPbs2UNycjLWNg2xHbuY+MQH3F0/nRq9PyTlqB/qrIdostIwcX2dnNshNK2hT3JyMpMnT2b69On07NkTExMT+vfvz49R1bm8fz1ZkWewGvN3nMOTguuio6Np3+U1ckxtSY25SlWrBnTxdOHS0T3Ex8eTm5tLr169yM7OZs6cOQwePJj09HRsbW3Jz8+nU6dOukpv0dHR7Nu3j9atW+sKOCUnJ9OjRw+GDh1Knz59XnqjeXR0NA0aNODkyZO0a9eOMWPG0Lx5c7Zv386OHTuwtLRk06ZN7Nu3j9WrV9O5c2cWLVqEu7s7iYmJuLu7V6pSpsVVMQC3vx3EnOUbOLnlF/78808Axo0bR/v27fH29iYjI4Njx46xZcsWoqOjOXz48L/uR3R0ND179qR69epcvXqVrl27snbtWhYtWsSuXbvIysqibdu2/Pzzz2zduhVvb2+sra11tToiIiL4+OOPSU9Px8LCAj8/v1KLHtnZ2XHw4EHq1q371H61/foA8Wm5j+1XShLqEp6nzxrIWla8iDiOF6mq6gesFVrOAmaSJD1T6arKTMHMrP38w+iZ1SYq3xyFQoG9vf1jacs1d65QxUH7BTKycUZSKKkz6nvqeL7Ohx9+yPTp09m4cSN169bl10NB1Bj7Cwl5jyJKJe01dUZ9R41e/8HQxomM0IM4jpxNaGgoPj4+ulxFe/bs4f333ycwMJBYvw8xNq+FYT17XZ+flv9mf/hd4qKjUDp4YeWznMyMDHZs2UhKeibBwcF06NCB3NxcLC0t+eOPP8jMzMTZ2ZmAgAC6devGli1bOHPmTKmp1Js2bUpgYCCOjo7MnDmTL7/8sow/lfKneL14i9pWRSq17du3T1epzcXFhTlz5hAbW0pmyUrG1G+WEPXzBOJXTyJx9//IvH4OkZ/DnBkfceTIEW7fvk1KSgpbt25lxYoVtG7dmhEjRtCiRQsuX77M8ePHadmypc6gfvToUTp16kS/fv1o2LAh06dPZ/369Xh6euLo6KhbNdy/f5+BAwfqYhsuXryoExhvv/021apVY+nSpUyaNIkLFy4QFhamW2kPGjRIl7Y+KCgIlUr1zCVW33vvPW7cuEGvXr2YP38+bdq0wdXVlbZt23L1qlbN5OfnR9++fenatSup2z5HmZFI/Cqto0h66EGS/OfCvq+JXzGeB0f+Lt+suR1E4oaptGzZUjfBehUoS+O4APZLkiSAn4UQK4odtwYKZ62LfbTvyXqSSkzxmZlaUjJjWyhQ1KhVYNCqWc0ASaWgsHbUUE9By0Y1HotvWHYkkizJVLdP/fA+sUtHY2jjROa1M6iq10bkZRL6w2gMvhuFvr4+/fr101XbUyqVLFu2jA0bNqAJ3EL63btk3w6lmlVDboUcY9giA1QqFWvXruWHH37gw+/WM3nqpzy4G0Ne4m2QlOQl3sawbgsMrJuTExNOSraCN954g6ioKObPn8+ePXvYunUrarWaGzduEBMTg7W1NWq1GmNj41JTqcfHx2Nubs6IESMwMzNj5cqV5fDplB8lFdxJycwvErPyrJXaKltiwvDwcKIPrqP2iIUojU1RZ6WBJCGpDKk1+ieaBS3B2dkZDw8PateuTXx8PIcPH+att97SeeWtWrWKtm3bMmzYMJ1KLjg4mMuXL2Nubk7Dhg0ZN24c58+f54cffmDJkiV8//33fPDBB3z00UckVmnAnE3HGTZuMvqmNUnTtwBSGTFiBIsXL6ZBgwYsWLCAzMxMkpOTsbe312UiLqDA2+9ZSqwuX76cv/76iyNHjqCvr8+UKVNQqVQcPHiQTz/9lK1btwLafGAhISGYm5uzYs9ZPtysQAKqG+uRlh5L4LkQ9l1O5J1ebVG7vUGdGqZkXNnF+TPHqVKlCvPnz+fbb7/V1ah/mSlLwdFeCBEnSVJN4IAkSVeEEI8njX8KkiSNB8YD1K9fvwy7V/aUZiRbuO8qTUo4v0+PriTmR3DLzIaokHMYmpixYFhrgnaEPnbuvYfZqEz/Fhwqs9rkp9wlOyYMI1tnNEmxCKBOrVoYGRnx8OFDLl26xObNm/H19eXWrVt4e3szbNgwQkNDMdZTEh0dTbdu3QivVZOwsDA2btzI5s2bSUzPYca2UNKy88hNuIllv2nc3TiT1NMbMWrkAZICITQItQY7OzsSExOJiopCT0+PvDytH1hgYCAWFha0a9cOtVqNmZkZLVu2LDGVemhoKFOnTkWhUKCnp1dQfOaloaTPPf9hAl+s2Eb/ZZOfuVKbp6cnW7ZsqaBR/E1Rd+2/qOHQEaWx9runNKpKdkwYQpNPgt9k9E31aNWqFX/99RezZs1CkiQaNmzI+fPnSU1NZdKkSSxatAilUlnEWOvh4aF7cDdq1IgePXoA4OjoyJEjRwA4ePAgZwKCuZOajUYINHlZCKUemwNicTX6u1ztxIkTuXjxIvXq1WPWrFklCt8Cb7+SBHdJ476bms2fIXfo0sSMUaNGERkZiSRJuu83aGu+mJubA9DDvjYNLaoQNq83fn73OWXWA1NTU4a0NmVN65Z89nZjUlJS8F52vcJcZsuTMhMcQoi4R/8TJEnaDngChQVHHFCv0HbdR/uKt7MCWAFaG0dZ9a8sSElJYcOGDbpYhtLqhsenZD0mONRqNfXq1eP2qVOkndyHrbExK/7aipOTNUE7Hm+jVjVDipiUJQWq6nWo/+5KNEKQuH4Kjg6dOX90Hzdu3GDAgAHExsYyYMAAcnNzUWsEGiQO63mScHU7+iolLi4uNG/enCNHjuDg4ECVKlWoWbMmMclZVC94EEoK8h8moklPwrBBS3LvXCPz8nEklT7k5XDq1CkMDQ0JDg6mW7duRERE6CrSgbYaoJOTU4luhgV6fC8vrxJrUrwslPS5q8zrcuP4Npo3X0qLFi2YPHkyXl5e/Oc//yE1NZX8/Hw+/PBD7O3t+eSTTxgyZAgrVqygd+/eJdzhxfG4u3YeqDVUVUrkqQX5aUkk/PEFpk7d8Fu1ErPUSGbNmqW7vnC9lO+++45atWoRHByMRqPB0PDvstfFXUpLKiKm0WioPeJ/iIxHdVlS7xG3fCyZibFcEjls2LBBlyDTwsKC9PR0tmzZoiuEVTjbcIG3X0mCu6Rx52sEX+2JwC9yK/1f68L27duJjo6mc+fOJY61OMU1Bvn5+QghKtRltjwpExuHJElVJEmqWvAa6AEUz7q3Exj5yLuqNZAqhHip1FQpKSksXbpUt124wEpBzfCC/X5+frovtK2tLXv37uXXX3/F39+fkJAQzp49i5OTE6AtAVo4piEsLIzP3+qEnrJYcSKlHmohEECuWnD5bjr+l+J0P7709HTq1KnDyn0B1Bv/M0qTGujXaoSxQzdyNBKRUTc4duwYNWrUwMfHh/T0dFJSUsjJL1Q0qnEr9MytUJnXJT85jqQDyxHqXCw7v8Osn36jXr16mJub06xZM4YPH46xsTFCCN59912aN2/OtGnTUKvVRTyH9u/fr4t4L6zntbW1xdfXl5YtW+Lo6PhCvUL+DSUV1pEUCpzf+ZzLly+zdetWjI2NdZXagoODCQ8P1wV7FVRqu3TpEnPmzHnMMB4UFKQzQD+Jo0eP6tRDxT2PnpXiqyfD+k6kXT6JQX4m1mZGKFT6GFvW5/Mp/6G/q3WRtO7FSU1N1RUUW7du3XMHe/bo0YOrh//Qbefev43KvC7Zt0JIuHSQBw8eMGHCBHx8fHBwcMDLy6tInidvb2/ee+89XFxcUKvVpZZYLWncANl5aoKj4nUp7AuXHvgnVLTLbHlSVsbxWsBJSZKCgfPAHiHEX5IkvSdJUoE/6J/ADeA68AswseSmKi/Tp08nKioKFxcXpk6dSuO7h7m39iPiV08i5YS2wFBxw3N0dDQODg5Fri1IkW1nZ0f9+vWpWrUq5ubmGBoaYmVlxe3bt5k98W2iFg3m9v8GkrD1K8x7/P12CY0aZZXqZMZeZu6284A2RbOlpSWenp58uyeI6FWTUWc8IPZnHzJvXERSGSCqWJCamkqDBg0IDAwkJSWFa9euIdLu69p+eGE7+WlJ1Hr7G9SZKSj0DFAKDdnnN9PduT7Ozs5MmjSJnJwcOnTowP3798nPz8fJyYnLly9jY2NDv379dO09LTWChYUF165dY8KECeUeNFZWlFRwR5IkmieffGaXzgJef/11UlJSikxKnlVwlAUlFQ0zbTOUa6unkP77R3RN/Yv1yxbx0+fv4+bmVqQAV3EmTpzIr7/+irOzM1euXHnm6o0FLF68GEXSTeJXTyJ+5QQyIo4gKRRUdelJTdfXdAJ5zpw5REVFcerUKdasWaNbAQ0cOJCrV68SFBSEkZFRqYK7pHHrxt+yPzNmzMDV1VW3EvqnVLTLbLkihKi0f25ubqIycfPmTWFvby+EEGLfvn3Cx8dHbAuIEW2+PiCMGnkI+/Hfie2BsSVe07JlS9G0aVPRrFkz8c477whDQ0PRpk0b4ezsLABRp04dMWHCBNG7d29haWkpFHoGQmVeT5j3nCyU1SyFyqy2kPSNhEF9J6EwNBFGTdsJpZmVQFIKPT09oVKpxJ9//ikkSRIoVQIQqPRFzcGzBUo9gaQQkp6RcHJyEiqVSkiSJAwMDIS1tbUwNqkq6o1cJAwbuguFsZnQs7ARqmqWom6DxrpxzJ49W5iZmYmqVauKJk2aiKU7Tgr9qhZCYVRN6JvW1I370KFDol+/fqJTp07iwoULYteuXaJGjRrC2dlZODs7i+bNm4sxY8YIIYSwsbERsbGxokqVKuLs2bOiW7duL+iT/PdsD4wVbb85JGyn7RZtvzkktgfGimbNmomYmJgi5+Xl5YmbN28KOzs7MW7cONGiRQvRvXt3kZmZqXuPhBAiICBA6OnpiZycHFGvXj1hYWEhnJ2dxcaNG0V6eroYPXq08PDwEC4uLsLf318IIcSRI0dE7969hRBCrFmzRrz//vtCCCF27twpPD09hYuLi+jWrZu4e/duqeNo+80hYTNt92N/bb85VB5v21PZHhgr7GbuFTbTdgvr91YJPYv6wm7m3sd+V/+WfzPuzz//XBw4cEAIIYp8hjY2NuL+/ftl2s9/AnBRlPOzWU458hQKG9DMRSoPs7WzkP3797N//37On9fO+K1I5yPPqo8ludsffpcbCQ/B1IrsmzcQGjWtvT8lV7mHM+fOA1p1lEKhYNmyZdSuXZvU1FQ0eXloHsSR/NcSbUMqfSRJgWX/GSiNqvLg6BoU+kZoDPTJvHuT346FM+fMPRRVLan15mfc2zaHuhPXAFBz8CzSAnahl5/FqlUrcXd3Z/ny5axYsYL8/HxycnLoUTuTX+9dR9IzpPnQaUwd3BHfMX15//336d69O2fPnqV+/frcvn0bO49OTJk8gXyNGssBn3Fv/TTGTvyA/ySEYmlmglqtJjw8nH79+jF69Gi6d++Ol5cX27dvJzU1lePHjzN79mzgb91wgV544cKF/PHHH+Tk5PDmm2/qzqtsFM/mW9il8/bt2/Tt25cbN25Qv3593NzcuHr1Kr///ju//PILVlZWzJkzB9DmJAoNDeWrr74iLy8PT09P7O3tadSoka6+yKeffqoLFktJScHT05PXXnut1L61b99eV3d+5cqVLFiwgP/973+64/Hx8Rw6dIh33nmnxNTwFVmutEjGYWrhMWVNuRQt+zfjfhndx8uc8pZM/+avolccBbMfSc9QNwPSt7QR2wNjxccffyyWL1+uO3fs2LEiPDz8settJq7Wzv4lhVCa1dbO/A2qCCRJICm0qwEQeobG2vMK/rRuzQIQShNzoTA2FcpqNYW+VTOBQiUklYEwqu8gVHr6orpFLaFnVlvYTNstFMZmQlXdSqBQCr2aDUW9D/8QNd/6Wpg0ayPs3VqLCxcuiBs3bohGjRqJ5ORkIYQQo0aNEp6enkKlUgl9fX3RvHlz0b59e9GrVy9Rp04d4e7uLqpXry7c3d2FmZmZsGjZQxjUcxCSkanQq9lQAEJRxUw4jP9O2NjYiLp16wpzc3Oxfv16YW9vL+rVqyfmzZsnateuLW7duiWCg4OFvb29qF27trh//76oUqWKuHDhgnB0dBQ+Pj5Co9EItVotevfuLY4dO/ZCP/N/Q8GM09fXVzS0cxStvvxT2E7bLWx6jRfGJlV159nZ2YkxY8aITp066d6DghWHEEVXD0II4ebmJuzt7XWrtnr16omIiAjdiuPBgwdixIgR4v333xdHjhwRHTp0EN27dxcODg6iadOmwsvLS9fWgwcPxNChQ0VcXJxuX0mrp9Io+GxeRqZNmyZ+/PFH3fbQ8R+Jet1HC0MbJ1HFqrGo37iZbjVX2ipRCO3vZfPmzUKI0lcc69atEx4eHsLZ2VmMHz9e5Ofnv7Bx8gJWHHKuqidQ3IAm6Ruhzslk4b6reHl5sXr1ap2hd/bs2Tr979q1a3FycmJYrw4kHFiBwrAaCA3q1ARAQtI3AhQgNKDRtp+XnVnk3iqVHqoa9UCpQp2RgiYzFXVGCs1GfYPSqCpCaFDfuw5Cg8VrPqhq1CNh2xw0mamI/BzQqKne8R0UegY8PLAUS/GQGxHBjBs3joYNGxIXF0ePHj0YM2YMv/32mzZAUaOhTZs2dO3alZMnT7J3/0HuJqdyPV2PlNRUbt26hVqtJinkGDnxVxFZqehb2QEg8vMJW/ERt27dQvvdhcaNGxMbG4ufnx/Lly8nOzubPn36EB0dzYABA3RpGAp48OAB+/fvx9XVlZYtW3LlyhUiIyPL46MtE4qn5cjM1X6WV+485GFNZ+5maBBoPZWy87XnF6BWq1Gp/l7wF38vCiOEYOvWrQQFBREUFMTt27dp3ry57nhKSgqHDx/m3LlzBAQEEB4ezqRJkwgNDeXnn38u4q5qZmbGxo0bsbKy0u0rnhr+xpFNODg44ODgwPfff090dDTNmjVj5MiRODg4EBMTw4QJE3B3d0ehUODr+3f9+dIcHu7fv0/37t2xt7dn3Lhx2NjYkJioTTLx22+/4enpiYuLC++++265ZVAeOnSoLjcUQMiJvzi1ajb3Qk6QHhdJwJmTTJkyRff9jYyM5P333yc8PBwzMzNdPMfTKK10wT+hsmaTlgXHEyhuQMu7H43QqLnwv9F89dVXhISEUKNGDczMzGjUqBFdunRh06ZNTP98FrkdPyAvKwPTdm+jycsCSYFhQzcQGjRpiSAefSFEgcexVmVlZGSEgYEBda2tyE+KAXW+VsBIEmjy0Oz8HE1mCtWrmWBkaEDt2rWJOfcnQp1PdvQlJANjFAZVQGXAg2O/YrRrGmZ6avIyU3Fzc+P7779HkiTs7e0JCQlhw++bqNbUk+wmryGQSEzPYcOmzeiZW6NvUR8kJSlXzqCqZsmDlFTS0tKQFAqUprUAyIo8A0iInHQcJ/7IjBkzSExMpEWLFnh6epKfn0/Xrl3x9fWlb9++hISE0LdvX0CbqG737t3k5OTg7u7OkCFDmDFjhu4Bef36dcaOHfsiPurnpnDCSgHEpWTxIDOXP0PucCoqiXxFoRrSCiUgdMnuCoyutra25OZqU1fs3bsX0AqBU6dO6dxKQeu+vGTJEt0DrXgyvOnTp3P37l1u3rzJxo0byc3N5YcffsDOzq7I+1da7qzCBAQEsGbNGs6dO8fZs2f55ZdfePDgAZGRkUycOJHw8HBsbGz4+uuvuXjxIkZGRhw7doyQkBBdGxYWFgQGBhZxeJg9ezZdu3YlPDycQYMGcfv2beDpD9myfHC6urqSkJBAfHw8wcHBVK9endq1a/Ppp5/i5OTEa6+9RlxcnM69vKRqlU8jIyODQYMG8ddff1GtWjVsbW355ZdfdKWdL168qHPxTU9PZ/To0Tg6OuLk5KQTTCYmJkyZMgVnZ2fOnDnzwgTr8yALjidQktulQa1GNH9rBikpKYwaNYrvv/8eo6pmUMWcyKQcJi3eQqa1BxkKI4RGTaL/XFDngdCQHR0ECJCUoNTONiVDEyRjU1Rm2gexsbEx+Wo10YUy1qr09LQCRggiIyO1ximVitTUVGJjY8m+GUh2bDgiLweRk0Feyl1Q55KXeJuo+xncS0wm6UEKDx8+ZNKkSQghSExMxLBKVTSGpqQn3iEj7BBCo+GuSRNSM7LR5GYj1Pkoq2gDwcy6+qBfox5NmzbFvW1H9Iyqgkof0zZDtDJPUtCldj76+vrY2dmRnJz82Ht34MABkpOTycrKwt/fXxcYVUDxVVxcXBwJCQlFznkWT5e0tDSWLVume9AWZtasWWXivVWSO6cQ8OOR66Rl5xXZn3fvJiI/l7gHGcTExBATo02g8Mknn5CWlkaXLl3IyMhAqxjykwAAIABJREFUo9GQkpLCiRMniIiIoEWLFlhZWREVFcX69esxMzOjRYsWvPXWW3h4eDB69GhCQkL4+uuvEUJgYWFBnz59UKvVHDt2jNTUVG7fvs25c+cIDQ19YgqOgtVTj2k/k1LThQPXUjAxMdGV/LWxsSkSzPnHH3/QsmVLsrKyCA8PJyIigoULF3Lnzh2WLl2Kr68vbm5uHDx4kJ9++omTJ0/y1v+x997xUZTr+/97ZnuS3U0nDQgllAQSIqEXaYIFEREMgkiRoiAiiAI2PFYsKCAoAiLigUM9oiIWqkgPJfTeEtJ72Wyf5/fHJGsCePR8Tvl8ft+X1+vFi83u7OzszOzzPPd9X/d1DR3Kq6++yqlTpzCbzQwbNozt27dz5MgRIiMjadCgAdu3b+fpp59mxowZ3HHHHaxfv/436dx/FLUjw8qoFF6Zt4y1a9eSmprKqlWrKCgo4MiRI6Snp1OvXj1fhHa73ozfw44dO7BarUyfPh273c7x48eJjo7m+eefv2Xb119/HavVysmTJzlx4oTPssBms9GhQweOHz9OSEjIvy16+Xfiz+L4b2DTsSyqXLe/UQovptOlU2+0Wg9n8x04o+/Ac24/sg6cHgVJ8+t87CnNBSQ1YgBkoxmNOQR3kTp4GGLi8VYUohSpKzCt0R//6GTcVRXYLx1UG/I8XpAkwkJDadiwIenp6RgMBgwGA/7+/jRpdQdH0g6ieFyEPfQy7qIblKd9hSRrCez+GMU7l2MvzWHQk7N4efzDaDQqldRmdyCbLUSN+Qhn/jVyP5+MxytQ3E60ehORYz7CXZxNzrInKNw8F+Fxk1Vh4M0332TWq69zOQ8knUGNpoxGpKKrEBhY51w5HA7atm1Lbm4u4eHhPPTQQ5w5cwaPx8PEiRNJSkrybdusWTOKi4sJDQ1Fq9XSrFkz1q9fz/PPP4/RaOTYsWN06dKFSZMmMWnSJJ/lZlJSErGxsUyfPh2Xy8WkSZOYOXOmz1/k1VdfJSAggOnTp7Nz506aN//tAujhw4dZuXIlCxYs+If3x2/ROXPL7JiNOiprAkrFiz3jBMbGKeR/PomnL7SlY8eOjBo1ihYtWhAVFcXOnTsJDQ0lJyeHpKQkbDYbrVq1omPHjnz++eccO3aMmJgY6tWrx913302fPn24b+BDuIPjKDy9lza9HkAIQX5+Phs2bKBLly6kp6ej1+uxWq2EhIQwe/bs35TgqN0MJ/hV7r82alNrr169yvvvv09aWhr169fnvvvu4/Dhw5SXlxMZGcnPP//MmDFjiI6OJjQ0tE56aN26dfz444++ArMQgpEjR1JRUeHz9oiNjSUkJISjR4/eYmD2z8p23CILFNuJ1X9bSKDs4MiBvaxbt47w8HB0Oh07d+68xWLgj2LTsSxyyxy8sLOEolMXOHHqDJ06dWLAgAF4vV4yMzNvoTJv27aNNWvW+P4OCgoC1EnqoYceAvBNrDcbr/1v48+J4za4nTooALIGIRTsboUdZ/NJDhVcy/PD41V1hyRJRl+vCWV7VuHXQlV81QSEYKjfiqoLewkd8BxF383DXXAdSWdAKF4clw6hMxiJiozgxo0b5GVlQE4WupAGgKSmqapRXFyMx+PB4/H4BPOcTifFu7f5BsnC7z5EOGyg1SFpdBR+/xHCoaY95rwyAyXn7K9fxxKOu+A6xduXIhQvyDIVRzeD140QCpIkU7pLZWaZ7+hP5dHNeDweFi1axJjhQ3nttdcwpK8n0GKmtLSUXr16cddddzFv3jxCQkJo2bIlDz74IOvXr2fJkiXMmjWL7777jk6dOnHq1CmsVivNmzf3pVMmT55MVFQUX3/9NQcOHOCpp57CWi27cuPGDfbt24dGo6F3794sXryYuLg4Dh48yNChQ5k0aRKgdq6vXLmyzmXbvXs3J0+eZNOmTdSvr0ZNly9frjP5LF26lBYtWnD16lV27NhBUlISVquV3bt3c/r0aUaPHo3L5UJRFDZu3EhUoInze7dQceQbhNeDIbI50ROWEhMcwNFlGzAl3k328qfwa94FxVaCUpJNXMMYvvrqqzrHVjv9sXr1alUD6fFHKLv7TdI9xYSE/8CFCxcoLCwkMTGRgIAALhW7yb5+BW1ZFbLeiBzZAjLO0KZrH+5sm8COHTuw2WykpaUxZMgQSktLOX78+G9KcNSOngwxCRRtmYet42DmfJtO5Vdf8eWXX7Jkya/Sc5sOXSLHJkies4cql4dN335Hx3ZtOXfuHNnZ2fTq1QuHw0FycjIBAQHk5eXRoUMH5s+fT1BQEGfPnvWl4nr37s0DDzzgU0iuucdTU1MB1cDsX3G6uzky1Ic1xOOowmYJJDIykuHDh3P//ffTunVrUlJSaNGixR/edw12nc/ns3OFeBSBNjCCeqMXUrlvNQ8PfYRAi5mSkhJycnJuK/h5OxiNRt/irmZiffvtt//p4/pP4s+J4za4XRoCQGsJx12YibXzIxR9P59fvC782z2E/bJKydUEBCOcNqydUslf9zJKVTmSVo+1yyPYLx6gZMdnIASyn4X6k1fhKc4i+MBCZFnmhRdeIDU1Fdk/CI1/EBpzqBqVKF41FVTNZigtK0fS+yFcVWj1evxNJkwmE0VFRSiKQqC/gSJHJXg9CI8LTXAU4SPeI2fpBBwFGXVuwEZ9RnBxw/tUHP4GZNk3SeksobjLC7j+/oNoLaEgyTivHSPQasFWXkpJSYkvly6EQFEUOnbsyODBg3G73cg6A2Xl12g7YzUibw/BwcFUVlbidruZNWsWPXr0YNasWRw+fJjMzEy++OILIiMj2b9/Pzk5Oeh0OuLi4uo0bA0ZMgSNRkNlZSX79u2je/fuFBcXo9VqfT+y200GNpuNU6dOMXXqVJ566iliYmLQ6XR8//33TJw4kblz55Kbm0v79u3Jysri+eefp0mTJmzbto2srCzGjBnDd999h8lkYv78+dxzzz2sWLECzc/f47icTcTw9yj46k08thLsxzZz9fxWHPYqJj3QmyVLLmCMao7DEsKSNd/wWK/Wv3nPbTqWxavfnKYw9wYer1pUzyu3U1xaSmxcSwL9DRQWFuJ0Ovls/hxkcyjRE5ZRumcVitsJCE5llXFnW9VYyeVy0b9/f3JzcwE1YqgtweFwOLh8+TIJCQl1oqcay9/cldPIBd59capvJQww5fX5fLpwHq6yAjLmpSI8Lirtbn7e/QsNG9SnXr167Nq1C6/XS2pqKocPH8bf3x+DwcCmTZsoLi4mNTUVjUZDRkYG8fHxvPHGG0ycOJGtW7fy0Ucf4fV6fRGOEH9MtsNms/Hwww9z48YNvF4vL7/8MufPn+fwJ39FeJwYolsS3O8pJElCNpnx7zrK996cnByuXbuG1+tlxowZ9O/fH1mWmTBhAqDWfb799lsqKyvZv39/HXn2Xbt20WXODuxuOzFPLsdTUYTGZMbaewIR8R1oXpZGZWWlb2FXu8B+1113sWjRIubNmweo5JDa5xp+nVinTp1KeHg4xcXFVFRU0LBhw394Pv7T+LPGcRv8VhpCawnDv0VXir6bC14PLlsZVUe/Rh/RDAD/hJ5UHNtC+eGvCUjsh+wfhHA7yF/7EoE9RmFqmIS1cyqy3g9n1lkaNm7KkSNHfBLTBoMBnFVEjV6AqXkXULxIeqNKykVCURQkgz/Cra5aPC4XdoeTgoICNBoNiqKg11cXZYUCSHhLcsn5TF2Ny0ZzHXe25Mb1COk7Ef9WvQh78EWQNZhbdiUiNIi/7jpF5zd+IGb8Utq9tJE1W3Zx4/pVmjZtymeffUZ4eDher5c777wTm83GxYsXkbU6gtoPBI0OhMKxBRP4+6rloNFjMpkwm8388MMPHDhwgM6dOxMcHIzX68XhcPD552pk06dPH27nwVIjCti5c2dfPr9mJVcTuo8fP56PPvqII0eOcP+45+lw3yPc9fynOPwjuFBgx2KxUL9+fVwuF3v37mXYsGEUFhbi7+9PREQEJpOJ1q1bc/z4cZYuXcr7779Pr169+PDDDzEajYwdO5azZ8+q59hWhL7kOoWrnsWReQpv/mV6NQ7gtVfUukGYXMEjfTuTu/ZlIqxG7k38bQeBmgi31F63NlJ18QDCZSeg1wRferJJkyZ47JUoziqylj5B+SE1JQkSBce28dZbb5GRkYGfnx+7du0iLCyMnj170qhRI6qqqnj44YcxmUw0bdrUJ8Fxcy3P0v5Boh7/mHbPfs4zzzxDbGwsp06d4vTp0yyZ/x5hqW/S4Jm1RD+xHJAI7DmGxkNn43K5SEpKIjQ0lLFjx9K7d28qKyvZunUrR48eRVEUoqKi2LhxI3FxcVy5coWDBw/Sr18/LBYLr7/+OkeOHKlTW/ijsh23Mwd76qmnSJmymKjHP0Z4XL4FHkCY2XDLPpYsWcK1a9dIT0/nxIkTDB8+HLfb/bvy7LXHC3fBNXJWTiP788lc+ekLXnrpJWbPns2UKVNISUnxLXIAXnrpJUpKSmjVqhVJSUk+scfaqJlY+/bt+4eN1/4b+DPiuA2iAk11/LMbTPtVwTSo5xiCeo4BVIOW5/o1Z+yUGejrNUGxl2Np/yABrXoDYE7qS9662RgimlJ57Dt0IQ0wt+2PqdEdlG5fwqU9S7F+6MQv+X4aJnVCUQRajYxJp6Ew6wwgEC4H/kl9sR3/EQDFXl59JDJotLic6iSi0WgwGAyq254koW94B65rR5D0/mrGy2kDrd7nMlbl8rDz0ElKDmxEuOy4CzMwNWmHueoGXnsF3ur0m1C85Oz7iqlrXsBi0pGZmYnL5eLKlStMnjyZe+65h927dzNo0CA+//sPlJ3aSVCvcZTsXomoXglXeUDr9WKz2XA6ndhsNn788UfMZjOSJNG3b19Wr17NqFGjfPTbVatW+QaQ0tJS9hw6Stjw96mocOM+PwS7ovHpZNWsoPft28eQIUMos7vJKXPgdbswAy6PwpaTOT46rBCCgIAAmjdvzt69e+tc+2nTpvHSSy+RmZnJxx9/TOPGjTEYDD49sAEDBvjSKBPGjubtt9+mf//+TJ8+3ceWeeKJJ5g7dy579uzx7feZZ57hhRdeID4+nrfeeosXXnjB91rtCFfSm1Bc6r2nuOzIBn+u7fmahg0/pLKykoEDB7Jo0SLwOFVatselRqYSWJsms+ytmWzfvp1PP/2UgoICOnToQMOGDfnxxx/R6/VMnDjxlkLt7zXD1TTBntu+Dn2zLnWUcxEK/vF3UqXRMvmpp3j++ed9NNx33nkHgMTERMrKysjLyyMwMJAZM2awcuVKpkyZQv/+/UlOTiY5OfnmnyFQV7ajhrL8xhtv0KxZszrbtW7dmmeffZZ+/foxZcoU7r33XjZu3EjBqjfIzSvFYy9HF9oAmnZAliRGdLp1xb5t2zaeeOIJH006ODiYU6dO/a48e+3xwtS4LabGbQF1fEhJUf2UbjfZBQQE3Fb76+bif2pqqu+e+7+CPyeO2+B2P6SbUfPDGpgczZqW4RzIrILEe2/Zrkb87rl+zX0d6PWbJ9DzgdVsPJKFqcbToSwPt9sFGh1XPh6LqzS3eg8Cpaq81h5lQKlOX3mpfuCjddbAde1I9du9CJdTJXN5HMTExHDu3Dninl7Jvhf6EHLfNBzX0jE1aYf9chr+SXdzed2bjOyTBJIG2WRGYwhAeFxI9mLcLhevvPIKry7bxJufbWTh4+OQJPh++8/YS/Lwi+uIK/8KSmUxaPXgceJ02XGi5m7DwsIwm82sX78eSZKQJInIyEiCg4P56KOPaNOmDUOHDqVhw4aEhIQAcOZyBlevXiVjgSp7JmQNVy9fplGzeExatTchLi6OwMBA0tPT6TJnB6L6h+zMvUTZgXW43G7mfHOMzMxM2rZtS3R0tM/SVgjBiRMnSEpKIisri8DAQF577TXmzp3L22+/TWJiIo0aNUKSJKZPn87GjRuJiIhgw4YNTJ06FYfDQXl5OdevXycsLMzHjtq8eTPTpk3DbDbz+uuv06hRI4BbJo7sUjule1Yh6UxYOwzCEB1P9mcT0QbXR3jdeAuvYa/fEl2lwjMbTmMNj8IudEQ8+h5lBzYgPC6c19MJcJfx1Vdf8dprr/HDDz/wyCOPcP36dYKCgli9ejVDhw697QBUp1u71E5U9YJoYHL0LYXzmyGbLBR9P5/opG5Mfv0l3nrrLU6ePElYWBhNmjTxbXfhwgXmz59PUVGRrzDeu3dvhg4dytNPP11nnzfTXnv16kVaWhq3Q21lB3dsJ7RBRt555x0OHz7MvHnzSE5O5t2Vm5n83AtUOFxEB5qwRljpHqcWqn+v5iDE78uz/1/rvv9v4M9U1W0wMDmatwe1JjrQRP7f36Dwy6nYVk9Bc2E7EpD54WDeHtSagcnRbNiwAaOzmGtbFtOxZDtVh9XiZ+7qWWQtfRJ3YQY5KyZzZ6wfe2f2ouGB95jfx8LOcwVUlhVz4xM1erGd24OkM4LXjas4C9loRr08EvZLtcyQZPWSyX5WrF2Gqc2EkkxgnyfrfgmNDo05FElnojrXheKs4qeffsLhcHDonREga7Ff2I/XVkL5gfW48q+Sn30dj9sFkkzE8PeQZC3uokw85fn4N0xEkiSyCiuY9voHOGLaIev9EIqCNPBtdMExeEqyCeoxWj0GrwfJZMYUrq7uVq1ahcPhoKKigpiYGDp37oyfn59vVdawYUOSkpJYs2YN27dv94X1nkZdCGhzN1GjPyJq9EfUS30DjSWUeiPmcvDgQQoKCjh69ChlZWV069aN7FI7Qghc+VcwRDRFF9qQ8gPrOfzB4z5my7p168jIyCAuLo6EhATWrVuHx+Nh4cKFbNu2jVatWhEfH8/WrVtZu3YtzZs3R6/Xs3r1anJzczlx4gQvvvgiHTt2ZPv27QwZMoT77ruPBx54AFmWURSFWbNm0aZNG0aPHk1CQgIpKSnMnDkTu91OmzZtfGKIN6eKwgY8R9TjHxPcawy6wEhiHl+EX5/JhA99k6wLJ7ELHc8t+ZboQBOSJOOHk+DgIG5cveijagYFBZGens4DDzzAu+++66PS/pbw4M1NgLUnk5oB0dggkapze/BWR71eewWG6BYo5fk80CaKVatW+YrcvXv39vmseL1e37XZtGkTVVVV2Gw2vvrqq3/JNrh2L427oghtysNciUul66AxHD16FFDJEn3irFhzj/BMn2bsndmLdq2bc+SIurCq7Ydy11138emnn/pot8XFxXXk2QHcbjenT5++5dzVjBcSaqRRMz78P4v/dGv6v/Lvf1tyRAghioqKhBBCVFVViYSEBFFYWCj8/f19r69fv16MHDlSCCHE7NmzxchnXhKd394utCH1RcK4D8SafRdFWFiYGD9+vBDiV4mC2BmbRczkVUJjCRcNZ2wWgT1GC2SNQKsX2qBIYWrW2SdPoqvXRJUfqZYnoVrCRGut5/tbGxzteywHBP+6naxRpU1qyZmYzWah9bOq7wuKFJLeT923Vufbj8ZaT0RPXiWkgBCBVi9AEtqgSGE0GoUhJFogSUIy+Kn715uEPiZBIGur9xmtCi3KGqENixUt27QXgLBYLEKr1QpZrns8ISEh4v33369zftLS0oTZbBYFBQUiYsQHQvaziOhJX4qGMzaLmKf/JiztHhTaoCjRpUsX8cgjjwiz2Sw2bdok+vXrJ/wiGgvJ4C8C7ugvGs7YLAwNEkVgjzGi89vb68hFHDp0SHTo0EEkJiaKDh06iIqKCvG3v/1NBAQE+K55SkqK0Ov1wmg0CkBMnDhRjBw5UoSHh6tilLIs2rVrJ3bu3Cm6d+8uJEkSly5dEjqdTuj1ehEcHCwaN24s/Pz8RL169UTTpk0FICIiIkTv3r3Fs88+K3rd/7DQmEMEkiyCeo8Xwf2eEpqAENFg0AzR4MHnhT4yThWeDIwQ4cPeFbrQBiKm16Ni69at4r333hOzZ88WiYmJYu3atSIhIUHMnj1bPPPMM0KIuvIY/xMRvtibRABNcZ0EGlXyRmOtJ6J7DBOBIWGiQYMGolevXmLatGkiJSVFNG/eXDRs2NAnlbJu3TrRu3dvERmp3kNxcXHiww8/FO+++65ISUkRrVu3Fq+88sotn3/16lXRvHlzMXLkSBEXFyeGDRsmtm7dKjp37iyMIdEiYsRcUX/qBmGITRaSVi/Q6oUxJEqkpaWJRx99VPj5+YnOnTuL++67T0RHR4s2bdqINm3aiGbNmok2bdqI/v37Cz8/P9GvXz/RpEkT0bZtW9GyZUuRmJgohg0bJuLi4nzyOCEhISI+Pl7MnTtXDBo0SKSkpIiUlBSxZ8+ef+qc/qfBnyKH/33UDn2jAk3Uv7qZswe2A5CZmfmbEhibjmXx2Z6r2Lxa4u6sROcoQXNwBW8dXIHdbmfXrl2UlpaSlaXm2aMCTWRUldXZh6QzIrxuPCW5eCrUBjrhtOHOuwJIaK318FYWI1x2VcKkvAAkWWVq6YxIRjPCUaGmiarR474HObzzB7xeLykpKRQUFHDPPffQfcSzPHhHDKYm7fGL60Dx1k/xlOcTNvBFcpZPQjZZqDq7G1mjBT8rkqQhLKErOXvWY2nTGbn4BrLBn6oL+5EkGaWqFP8W3ai6chhvVSl4vSBrCGjRDU+uGjF5vV6EEBgMBsxmMwMGDGDNmjWUlpayePFinn32WQoLC3nnnXfo0KEDwcHBqinVqe+xdBhM/vpXQAgURyUBrfvQ/vkv2TOzF0888QSVlZU8++yzPPnkk5Q44fgZBVfORVz5V3HlXCAoqQ/WYytZsXYF69evp1WrVmg0GqxWax17202bNuHxeGjTpg3WqMYcP38VguojPA4kZzaNGjViy5Yt+Pn50bhxY3bu3ElaWhp33323zy3uoYcewmq1EhkZSU5ODgcPHvQZCG3YsIHk5GQKCgqw2WwsWrSI+Ph4mjSK5cLJEkq2L8UQEkXX7ncysFsELyxcrUZ+Gi1FP32MO0ftPte2G0qfPn1IT08H4IsvvmD06NFcunSJ9PR0H9ngX0Xt/L0z5wKeslwaPLOOSLOOor9OZcJ9yZxqqKN///4MHjyY4uJin6DiiBEjePjhh7n//vvp0KEDkZGRBAUFkZqaSqNGjcjMzKSsrIyJEydy11138cQTT7B79266d+9e5xguXbrE+vXrWb58Oe3atWP16tXs2bOHiMGvUHZgPbqQ+gS06kVA6usojkpyVk6jZcuWPP7445SUlLB582bKy8vx8/PzWcJ+8sknbNy4kRUrVnD69GnWrl2LwWCgefPm7NmzB41GQ+fOnTl69Chms5levXqRlJTEwoULGTZsGFOnTqVr165kZGTQr18/zp49e8u5+38Zf04ctXBz/8blEwc59suPfL72a1I7N6VHjx44HA4ftQ7UHGlGcZXPelXSabl66gh2h4MXPtlIauemdOjQgeLiYkpLS8nJyUFRFJ7r15zpK37VLtL4WQlI6IGl/SCyFo9VJwRJRtKbMCf2peL4D2jDGqHYK5AMMHJYKq+++irNktoT1P85dCEx3FgyHjR6NJZQZL0f7qJM9h86irOyElmWSUtLQxHwyZfrWbRKtR20nd5J1aWD1Tpa4Mq/BAjc+Vcp2bkcY4NEJK0Ox7V0DPmnMZlMkH8RY6N26MJisZ35GWQNklaPM+c8eF0YouMxRLeg6lIa4fUbcX73Svz9/Vm9ejU3btzgqaeewm6389e//pWAgAD0ej0BAQF07tyZuLg4JEkiPT2dwsJCnnvuOUTOGcrP7EO2hILHg9YShuPKYaq+ziFnZEv69Onj6zOYM2cOEyZMwFZRhj2mA9fWvoTwuPAcWsMli5qmmTZtmq9+0rhxY7xery8t1mvEM3yz6yCld7/J5R8Xgl8gkSPn4SnLJXvJBLbuT6dBgwYUFBRQUKD6mHTu3Jm9e/cye/Zsli1bRnp6OrGxsZSXl5OYmMiWLVt8HfBt27ZFCIHX61Wvh6Jw4cIFXC4XsgSKEDiLstjz49fI9hKcmafI+GAwKB6QJDSWcPwTepL/xdNsSLHTs2dPOnXqxOLFi32d8nPmzPHROmubEf0RyYybUTt/77xxFr+mHfEzmZg5oDW7y+6/ZfudO3fe4gfeo0cPsrKyOHfuHMXFxb5zPX36dH766SdWr15NVFQUiqJw8eJFis1N6ihSh0fVp3VrlcqckJBA79698Xq9xDRpzvEdy3BknEBrDqX80N8BkBWPT9KkBmVlZb9pCdu7d29fv1B8fDzXr1+nsLCQO++802cVO2TIEF+Be9u2bZw5c8b3/vLyciorKwkICPinzy+o16V///4+WZLfQ+0m1RUrVnD48GGfkvJ/C39OHLVwc/+G4qwCgz8LdmeQFOzxrUyDg4Np3Lgx3bp14+9//ztuXQBWvyQqT2xFeFxYOjyEJGsZN+xBXtY7uXjxIn369GHmzJlUVVXRrVs3wsPDyS8sxOt0kb38KbVDvPgGFek/AAJJo0F43QinjfKj34LXg+P8L4AqQbJq1SpWr16N26uQu+q5XzWvJA3e0jy8khrBuEpU3R1FUaoLgRK6QAOBXYdTsPE1FEclklDU90sS7oLqzlkJ8LpxZp1Ba41AMgVw7cIZJEmiQ3xTslv1p/TaKZAkdCExNBg9H0fuRQq2LaNe6uuU7lmFO+8yyeZKn0sdwHfffUeTJk24fv06/v7+VFRUEB0djb+/PxcuXODAgQP4+fmh0+mw2WycPn2a0sI8UBQkZyUYzAQ3SqBvSgtC60XRqu9QqmyVCCFwoyU0NJQxY8awbNkypg4ZyMIjZkpKPFSUFpE6+EG++OILCgoKcDqdyLLMzp07iY6Opvkdndj3y248drUxLevTcXgqi8HjIuO9gWotSShs/WY9LeKakJmZidvtRgjBqVOnaNOmDb179yY7O5suc3aQVe4GRyXFZelkZmYiSRIGg8GXPzcYDHTt2pVdu3ZRVVWFv7+/j+AQFRWFy+Ud26WbAAAgAElEQVRi37593P3gMLb/vBuvy4khMg7ZPwjX1SNEWFRb1tGjRxMcHMyLL75IRkYGq1at4v3332fZsmX/lt/EwORoDl8vZsmyFZQf3IgQCvV1FbR5/COe3rDBNwB36NABh8PBo48+ytChQzl//jw3btzw1Rpqekvatm3LrFmzOHv2LGlpaT5GnSRJBAQEEBB/J0N63kHEYx+i8bOSeekchbkqIy7966Xs3buXQ4cOsXnzZobd/xjHKksQXjcgEXzXkwQ1as3bg1rTsmV0HUvjl19+mZ49b28J+89KiyiKwoEDB+pY4/43kZKS4qsL/m/hz+J4Ldzcv2Fq1BahKKS9N5KZM2f6CowzZszg6tWrHDt2jMceewy33YbtzC78W/fB1KQdjszTSHoTFRlnycvLw2KxcOnSJebMmYPFYsHtdqPT6WjWtCkSgkaDpuMuvI6QZOo/sxZJa1DFDZXqrnGveiOb6sUSl9AGr8eDoij0Hz4efXgTdXuN2r8h6U1o/AMBiYDWfVS1E50BWWtQfcNlDe7iGxRsrPYUkGRknQFtaEOQZcrTNqEJiiawaVuiGjbBEFofEGj0/gT2GIMQgn4PjeCdh9vCpT0EdRmG7Kri8WYePpo8mOQJc3EXXCeh/1hkjUzLSAsA7dq140KFlsN5Cldu5IHBjM4UQHp6OqGhoRw+fBiDORBJZ8SODm1sWyRJwmQyMWXKFOrXr4/srEQpzkS5+Avf/HUJCz94l5JzB3EXZ4EkYW/Sk2sZmXWuocvlqqM8e/ToUVwuF/7+/gghyMjIIC8vj6uhndBYwjHFJiMb/LF0HFLdiBmCbApAH9YAZC1IMpcuXSI2NpbQ0FAMBgMajQYhBIs+WQyogof6qBZ4HJVUlBZTYG0OshaH04VHEej0BpxOJ+fOnSMoKAhFUXC73b7JpbCwELvdjtPp5MDWr3HmXsZTnIXtzM/YT20jSOfBalIn1tLSUoxGI4MGDWLEiBGYTKY/HFnUuFP+I2w6lsXqH/ZRsm8NIfc9g9Ycgr3NUAYNH4PL5eLZZ5+lcePGvPDCC3Ts2BGn00l6ejo//PADZWVlfPPNN3Ts2BG9Xo9WqyUwMJCZM2dy+vRpmjVrxqFDh5AkydeA9+qnaxECnFlnyJj3sI/WPW70SLUBtrSUAQMGcOzYMV6f+AhGgw5DUAT6iCaU/biAqBMreGlEP5KTk+vQocvKyv4pS9h27drx888/U1JSgsfjqdO417dvXz766CPf3zXpwn8FXq+XcePGkZCQQN++fbHb7XXslwsLC4mNjQXqWgbXRkFBQY1USUtJktIkSepyy0b/Jvw5cdTCzewWSauj3sN/od1zqlf4rl276NGjB/feey9NmzblxIkTLFq0iJCWHTE2TEI4KtGF1MdbUYDGP4g7pq+grKyML3adIbvERpfXvqO8sgpZVjugz50/jxBwYcnToCjIehPlaZsQXld1DwRqyqoa9rxrXDydjhBCvZk/X4Qj+5y64lI8yJYwdMGReCuLkPVG7FeOoAuKQng9KB4nwuNSUx7uWhLeigdvRTGewmvVXeoyGp2OSJNCicNLcP/pKm9fkijbtxaNOZS58xcwa1gfujYwcWPLIvZv/44ty9/nlZH3kLV8MqaSy2SX2lGE4GyOysAprHSycMcl7EJDQGJf3FXl5OZk0zKhNScuZ9G2/wj0976IEAJ9RBxVdidCCA4ePMiiRYvIzs5W6x1eL4MHD8bS7kHCH30P4XEia/UgBCWHNuH2Qvv27SkrK+Ott97C7Xaj1WpxuVz89a9/JTc3F3NgMAUeI6UEgCwj6Y14dP648q9iv56OUlVG6e4v8JblqTpiVWVqr4RGiyxr0Ov1XLhwgXHjxtGiRQtsNhtXrlxB0aor0IJv38Pa6WFVpRiJshM7ELIGhIJssuB2qeffHBpJYaFKCXahQapmzL355ptIkoROp8Nut2M0GjEY9ERG1GPkI0OYOG5Mnfu0vLycnj17MmvWLOAfC0EuWLDgD9nbbjqWRXjbfoz7y0IyN7yJqWl7DJHNkP2DuL7yedIP7KZTp05YrVa1KdHjYdmyZQQFBXHy5En69OnjS8mdPn2a9u3b43K5KCoqwmg0smvXLp9vfU3tS6PRcPm7pb5jEC4HprhOoDVQUXCDzMxMYmJiWL58Od9++y1arRanvQq9uwJjznFcxdmcOfQzsbGx7Ny5sw5D6vnnn/+nLGGjo6N54YUXaN++PV26dCE2NtaXzlqwYAGHDx8mMTGR+Ph4Fi9e/Lv7+z38TyXca2PKlClMnToV4CzwEPDvCTtvgz9TVbXwj/jYNzsBOsWvHaCtYgJJu3gAV1k+wYl3YTu9A1mjZVy3xr66iVcRKoVIKHiBCrsLTXADPPlX1MHa34q3sgj7xYOqDLfXAwhuJs9rNBqfl4PvByBrwONCKS/Eo6i9HULxqgKLQiCbAlBqCvFaPfrIZrgyTwGSSts1GFE8LhACvX8groLrXKvIw+FWKPjqLQK7DqPq4kEsHQbj16wjGp2RzIWpnD17ll27dvHSSy8RHBzMpes3sD728a/NbBo9++2RhJYewzr4TSpL7QiPG31EHJqAYCIefZeCTW/jrirn4NZv0IWmq5pZQM0Xl00B/LDlWwYOHMjMmTN5/fXXOXfuHOXehji3qnRPJFnVEZNkJD8rRUXZyLJMaGgosixTUlKCRqMhLCyMr7/5BqfDASVFSHo/kDQIl4OCr99F9rei8QvCW1GIt7IIY9P2GKPjKf3lSxSPG9wOtEYTw4Y9iizLfPbZZ0yaNIk33ngDIQRhQ14je8Vk7BcOoAuKJrDHaEp/XoHirEJjDkG4jYQ9+CKle1fjvJZOZpUWyWRBOCowxLTGfukAXlnDxo0b8ff3p7KyEovFgtlspri4GIvFQlhYmK8Hxt/fn8DAQLKzs9m1axerVq3i3LlzZGRk4PF46vh91ODjjz9m27ZtxMTEcO3aNTweD4888gjp6ekkJCSwcuVKHn/2FTZ9/Q3O4mwMRXmY29yDt6qUvHWzcZdkowuKwFOq8P0vaRy09iAivA82m0rFdblcaLVaFixYQLdu3VAUhcGDB3Ps2DFkWebEiRMIITAajXz88cdYLBY81RH09evXcZeWIekMKG4nkt6EzhKmpuicFfz9739Ho9EQEBBAXFwcoKaNg4KCCAgIwGazERAQwI0bN+jevTslJSVcvnyZxMREZs+eXacJr8aBcdSoUYwaNcr3/ObNm32Phw0bxvjx4/F4PDz44IMMHDgQUFNFhw8f/of+67+Hm8eT8Kj6/7SE+82oVXuJB74BLJIkBQgh/jk54T+APyOOWvgtPjZQx3shr9xBXrnD14ncINiPJ8eMIOXpxWiMAWg1Mn163klB+nbe+/E8JZePIZssaMzBSBodstGMue/TOPOuqLUFxYO3ulvYayv2paZuh8TERODXVaXkFwie6uY/SapuFhRY2g/C1LSd+pyj1n0jRPWkUQ2vG29VOcLlQLiduMryEUJgt9sRHifuguuYGqvKnGX71+IuzCQq0ITNZqNbt248/vjjpKWlkZKSQqMnl/kmjRrantc/lNOnz5BVWI7iqMR+/Xj16wqKs4rgXmMRHhfe8nx0oQ1B0uDKuaDKzksSisfDPffcQ1lZGUuWLCExMZELFy5QeWQT7pxL6qRrrYe53cDqc+klKDQco9FIr169aN68OVarFa/Xq9rkOhxog6NVvS+33XeurV0fwVteiKcsF0u7B0BrwFOSg+3sblAUNLKGFkkpxDZswPjx41m8eDF33nkn2dnZ9OnTh06dOhHbrCVaawSmpu3RBEbguHIYU5N2hNw9ufoaCPLWvYzz6jEQAmf+VbQBQSAU7FcOg0aHgsTRo0cpKChAq9UihPB13F+4cIE5c+Zw+fJlrl27ht1uJy4uDq/XS/v27Zk3bx75+flcvXqVESNGcO3aNbp168Ydd9zBHXfcwcCBA7ly5QrdunVDq9XSqVMnzp8/z/79++nevbuv/nRa0wTJLxBDVHM85QWUbF9G+cGNuAozEI4KXHlX1eMvziZ39UzSP3oSIQSpE6YTFhaGLMscOHAAr9eLoiicO3eOsWPHIoRg0qRJtG/fHrfbTf369bHZbJjNZrxeL5s2bULWyMgGPypP7UKSZBwZx5EliS6dO9GjRw9GjBhBWVkZJ06c8KV09Ho9R48exWq1kpSURHp6Ovfccw9jx47l4sWLdSTLfw+1vS+6dOlCmzZtCAsL4+DBg7z44ou3mFbVmFGlpaVx5513/qHPuNnLJa/cQZFD+MaTmjqLVqtFqU5X/xFxxJraC3BGCNFGCBH9n5g04M+J4xbcrhHq9t4LvxrzALRvFMLemb3YM6MXjUP9WbnofY4cOULaB49TsusLQu+bisZkQdLoUKpKKfp+fo13k4rq9JG3Qk1dIP0a0dROVx0/frzucVSV1j4oNRUFlO1ZrUYvikdNQcnV+/P+yiaRNFqiY9XuXkmS6NChg++1gIAAtDo9IMj5Yqrvea27krg8VVNn8uTJLFu2jOTkZNatW8f169fIWjqBws1zVX0sxUPBV2/idlZx4+PHyP/qTWSDHyU7P8OvaXtyVkwhd9UMZJ0BU7PO2E78hGwwITxu7JePgCQj3A7fJFleXk7fvn3xCwpHSLLaDKkzIdwO7JcOoVSVojirKC0pwRISxvnz5/ll7z6qvDKSzkiRZAVZh3A7COz2KLLJUu3GCMU/LPRRfStPbkfWGRC2EgI1TmRZYtCAe7m7Z9fb3jOgFlif69ec8N6jsV85Qvne1WgCVGZTQOve+MV1JLjPBKLHqOwXjTWcwJ5j0PgF4pfQi+C7nkTjF0jU+KV06dKFe++9F7fbTX5+Po8//jizZs0iNjaW5ORkGjduTEpKClevXmXu3LlotVoGDBiAxWLBYDAgSRJnz55lxowZPp2otWvXcuPGDQJD62HoOgYvMqVuLcHhEbjdbnJzc+nXrx+hoaFc+n45jhtncN44g6e8APRGLB2HgNsOshZ9eCzGpu1V1p9WpzpOmiz87YulFBUV4XA4WLduHTqdDo1Gw4EDB3waamfPnvVRhfcdOMDVzBxKKtVBcXDqMBSvl5ETnsaVeQLFacPPoKNxmD/ukhx27tzJmjVrqKioYOfOnSxYsACHw8H169eJj4/HarVy8OBBhBBs27aN+Ph4WrRowfDhw+ncuTODBw+mqqqK7du3k5ycTOvWrRkzZoyvBhYdHc2XX37J3r17WbZsGYWFhUybNo20tDTatGmDJEksWbLER2LweDx07NiRxx57jNTUVJxOJ++99x7t2rXzRTm3wz8aT1555RUf5T82Nva2jYq/hZtrL5IktfndN/0P8S9PHJIk1ZckaackSWckSTotSdKU22zTQ5KkMkmS0qv//TEx/f8juLlorrXWI+rxj33Pr1ixgsGDBwP4BOGCg4PZtGkT0Y8vJPKxuejDG6m0waBIZHMo9Z9ejS64fnXBVUL2s4CsRTJUd/bWklOv89hwE+VPklVRQXXDWi+Iuu+T1C702hBeN1nXVPG4mnpCDaUzIiKChg3qA+AuvIbt9E48RZlU/rSAfd+tBeCpp55i9OjRPgG8rMWP4ynOAllDveFzQNZi6TCYDi9tpEV8As7sc3grihBeD/bLaZgaJYOsRXhcGKKa+76HJeUBtaCvMxDVoBFxcXFoNBq+/PJL1ny1mQtnTiIUgX9CT/A4kbQGNH5WAruNwL91H4SikJeVRZWiRbFE4nG7kE0WbAVZoLjxVhZTdmA9wu1CF6wWTA3WUIJadMAYm0zCiFepHxONx15BfvYN+vbty8GDB+nWrRtBQUFMmzaNpKQkNmzYwJgxY5gyZQr79+8nxpvDohcnEpTQFcVpI/iuJzE2aE3+xtfwlBdQcWxL9f0TTutpK3HeOIN/fHfC+k/D3KYfxgatCCi/zrBhw9i2bRuvvvoqJ0+e5Ouvv6a0tJTs7GwURUGWZfbu28+Hq7fQ9Z0deDweWnQfwKRJk5g8eTJ+fn6kp6ezZMkSxo0bR8O4FrS58x6OHj9Fsc1Fkc2JNiAYXewdlDsUAuvV9xXJrVYrjuvp6COaYIiJx9QoGQmwtL1fTR0FBKIxhxLQqg+yyYxsCEDSGpAQeDxeH321VatWuN1umjdvTmlpKbIsExkZyfHjx2nbVtVy8ngUvE4bcnUNraTChiRJbFm1GLOfkeCgQL5fOodv16/m2LFjvPXWW+Tm5tKrVy/mzJmjLiL8/OjUqRNnzpzhs88+w+v1kpiYyJkzZ/j88885f/48EydO5OzZs1gsFj744ANGjRrF2rVrOXnypOoL8+IcuszZQW5xOTv2ptGsVRuGDRtGSUkJV65cYdy4cZw8eRKNRkNVVVUdkcErV64wceJE1q1bR1VVFRcvXuTQoUOkp6dz5MgRdu/ezc34LRHV7FI7r732mi8NN336dD755BOSk5N9kc0/Qk3tBYiXJOkM8MTvvul/iH9HxOEBnhVCxAMdgUmSJMXfZrtfqsOnNkKI1/4Nn/tfw+2cAP/R87VR24ROcVah8bNijEkg69NxuItvoA2KVFe6tlJ19ea0ASBp9Spb6iYo9oq6TwilThRxC2oiDaFwS8HkH+DKlSt1TW2qJ6HKshJf2FxSUoIpKAybzQaSRMtnvkA2WbBfOcqNBcPA46Tw2/c4MWcIGRdOI3k9CJcd4bKrkZXOD7wuvBVF2E5uw0+vQfK6Kdv3N5TKIkKCg8i+foWEhASEEDzwwAOcP3FUTW1VlVG2fx0oqmWuM/s8ZfvXUXF4k6rPBZw6chBPaR7awAj1O1Tn/APa3KO6JVJ9fWQNf/thL80DoVUwHPtgFLaSApo1a0ZiYiI5OTmMHj2a/v37k5GRQX5+PoqiMH78eObPn1/nvA1MjmZgcgz+ei3R1feHK/cyYQNnETFsjnpJdEbuS4xEK9edyGUJHG4vb16KBL9grpaqvhRut5tr1675+h/K7G68Rityo+oIUZL521Ud53LK60iKfPjhh1RI/phSPyD00Q+qaau17gutAU95PtdzizAYDJw/f57WrVujkSVkoQpcunLVhYVRp8GolQk3GzDp1OOQNHrqDZvjMymLaHsXERHquV6yZAnLli1DURS6dOnC0KFDfUq9brcbvSWUiGFvo7GEE3r/dBCCsEEv0eH1HxBC8NBDD/l6N8rLy4mNjeXJJ58kLy+PEydO8Pbbb3P06FGCg4NZvXq1eoxGI8FRDbEMn48+qT+XXVZCI6Lo0qULJSUlPProo2zfvp1GjRr5RBKbdr6PdZt/8jU5Glt0xfjwXMbPnkf79u0ZOXIk+/btY8uWLZw4cYIHH3zQd441Gg0xMTF07NgRh8NBSUkJP/30E8nJydxxxx2cO3eO/fv307JlyzqMqXr+Mq68K+SsfJbs5U9RvH0p9Ya/S1SgyWdkNXXqVB544AHWr1/PsWPHuHz5sk+Vt0ePHr5azKhRo3w9HKGhoaxduxbUVFW8EOL/7sQhhMgRQhytflyBWtH//61Iy549ezAYDHUu9NN3NkAquua70Pl/fwO9p4rn+jWnbdu2PuG42pS5GiZJ9ueTyV7+FO7iLB+915V3GV1YQwwx8T4mDbIWQ3Q82tAGoNESOnCmuhJDQvZT6bXqdtXba2/DIZekW5+rKTaL35g0bvce1HxpbfbJjh07ADU8t9nUyc3j9ZJDqG//Zz9W9bIUWzERj85F1hvRabX4mww4XG6EANk/qPpjJTSVeWqUIYG7KBNbaSFaoQ5uRqORfr17AmrRz8/Pr/p4BMg69X+vRz0vihe8bpUAIASSXyA6PzMCUKo774XiQaNXf/CVx7YgXFVo/CwYDHq0GplBbetz8OBBSkpKyMvLq2GnMHToUGRZZvjw4cTHx1NeXu4z2tmxYwc3btygR48evkEO4J133iE40MLemb0I8tNhjE1WlWSrIRDsPFfAuCH34r20DxQvZmHDnnEKT0gT3GX56Jt35YezRZiCIoiOjiYiIgKDwcCGDRuIGv0REaM+wlg/wXcNHW4vey8X1bmGZWVlpBeBwyOwndpRNwKthjY4BntZAZ988gn5+fkMGDCAmOhoHJkn8eRdAiQkYHyyGa/HjdvtZsDdvXFeVI+7dN8aJElGljWUHN5MZWUl/v7+XL58mcaNG9OkSRPatWvHuXPnaNCgAWlpaTRo0ICAzkMp3LIAb0URRd+8h2Twp3T/Og69PoigoKA6DW1JSUkkJyfTokULhg0bdovlcA12nc/nSoGNrFI71s6pVFaWU5ifR6Nm8T7J8sCbHCrXHs7EKwTeqjIUl4PKY99TdGYvX/xyEY9HbSSUZRmz2UxeXp7PGx4gJiYGufr3WMOCmjVrFunp6aSnp3Pp0iVSU1NvYUx1lC5SvOUDgnqMImrMQvRhsdj2/62OKKLVamXhwoWMGjWKNWvWUFJSUsef5n8b/1ZWlSRJsUAycPA2L3eSJOk4kA1MF0Kcvs02SJI0HhgP0KBBg3/n4f1h1NiPLl26lIcffhj35QOIXQuJ6z8BW3AzPGlraJ79IwOThzDPbOa5554DICMjg6ysLIYPH873339P06ZNaTluHvnXL1K0Zb5KHTVZqPfIW2gDgsldPRNjgyTcRWofgjP7nHoAXg8FG/5CjeWsUNQBs0ZSBABxmwK6EMgaDcrtzOxvM2jUvOe3IEkSQghkWWbs2LG+54OCglRPcSFwFGaoxylrkHVGFJsqd1K5aTaKy4EClFZW4a6Wf/eWF1R/rKAy81eZhoCAAJxOJ06nE41GgyzLvs7skpISQBXos1VVqarAQlEZWBqdOoHIWl99R9jLGDTuGdYtX4TGEoEkyyguB57SbND7YayfgONyGlQWYtR52XfkCK1ateIvf/kLR48e5d1332XixIm8/PLL5OTkIEmSL30QFxfna2qDX3shIiIi6hQyi4qKOHPmDCVVbmT9rZFjdqmdOW+PRcm7wPdbXuBKYRWBPUajCQii8uR2qs7+QkVlMQUI9u/ZTVlZGbt27SI1NZWTmcUIrwdrpyEY6//ah1Hjda7T6XC73UycOJFFXfpC2o+YGrdVRTRrQWMyEz1uMSXrXuSbtUuZN28eEyZMwOVy0b17d4xGI7GxsXz++ecsnj2ZjRs3snr1ag5+v55AlxenLGE7uQ2jNYxGDWJ4+flnWLVqFZcvX2by5Mns3LkTWZaxRjXmnVNGcuMnIGxryd2zFlH0V4RGh+xvJeKxuZTsXI6kM2CMbcXp0/uQZZldu3b5jvW3ei9qs4++yjQS/ohqVCbrTQT3GkvWhf2Yez/JoEGDGDt2LCkpKXz66adcunSJpk2bcv3gDxjrt8JxLR2NnwX/hF6U7llFUUURfhoFg8FAbGwsHTt2JCkpiSZNmvgED6dMmcKIESNISUmhR48eBAUFsXz5ciyterLwlxtkZGYSJFXdwphyOEowyy6aJLYnu9ROk873Ubr5HVWNuNZ3u+uuu1i/fj2TJk26pbb5v41/28QhSVIAsBF4RghRftPLR4GGQohKSZLuBTYBcbfbjxBiCbAEICUl5Y/nVv4F1KbG+ZdeQqPVsWjRIvbt24fL5aJZs2bkZl5lz/hupKSkkJYWTteuXRk4sJBDhw7RvXt35s2b56M3Tpw4kfvuu4+xY8cSkDmRMmFA9gtSWUpFGRRseovIR98HoPLkVsIefInCr9+uTlNJSH5WRFWZj4nltZUiZC2SRlvt6SSjC2nw/7H33eFRVVv772nTZzKTSQ9JSID0DgSkF5GqgAIqYEG6XsVGUa8FyxUv2MtVBARFBS8KCOJFBbyAqIiAKNJJRAiQAOlt2vv748ycTELw6idXv++n63n2k5yZfc7ZZ+8za+3V3gX3mR9Uxh8kFFoUGoCfwf6ESat5d0lCamoq9u7di0GDBsFoNOLo0aMIDQ1FUVERrFYrqqqqVJ+IIAA+D4xJ7VGzdyPg88IXmwtj2Y+oK/kBrvp6P6aWD5D8ocZBY7ZarVAUBWPHjtWgQwYPHtxkdwcImqbTxOQW0Kh8Hk2wKooOq5a8pOWtuM+dCrqMhPpClfF7vV6cO3cOf/vb3/Dxxx+rwhCA0WjEO++8A5/Ph1dffVVLHAsgo6akpCA7Oxvz58/XQjwDjsyCggKsWLECTqcT6enpcJgUNOYvN/rHYuxGCIKAuXPnYu7cuUic9YH2VJasvrBk9UXxwlsgmWxa0MKUKVOwYMECKKIAj2KGPla1CCuhsZBMIcgYMgF3390HpaWlyM7ORn5+PjreuVAzw2ioxQDMyWr5VaMi4Zl3P0DHvFi8+eabKCoqwsCBA9GuXTts27ZNg4g/cOAApkyZgtraWqSkpGDRokVwOBy48cYbNZyqWbNm4ejRo8jOzsZll12G7777Dks27sFfbrkZrm9U6HRbp6sASzj0vno0eH3w1lai4cQ+1B7cBnpciEtsi8LCQgBosbRvS/TUU09h0aJFOHi6Cpbs/rB1HIrqvZtQ+eV7gKRg37LHkbrpRWRkZGDZsmVYvXo1Ro4cibNnz8Jb64U+bzBKVz0On7sBlTtWQQmLR1SH/mgnlqBz587YunUrrr32Wpw4cQJdunTR8OYKCgrQrl27JoXHxk+fjXHD+8NHQtAZ4O55I8r8EVPD8mIhSRLKy8thVCR8NkuN9Dpy5AhGblDOey6fz4d9+/bBZDKhrKwMrVq1avH5fxe6GEiJABQA6wHc+TP7FwEI+0/9fgt03JU7jzP1rx9q6J+Ro58gAD719nqSZHZ2Nvv370+9Xs+vvvqKpIqqqtPpePbsWebn5zM5K5/GyNYMv/IBAuDKnce1c+Pi4igIAvX2KCoRidSHx1NQDGx121vUx2VSNNvZ6tY3GTtlIUWDhYoznqIphBAlmjP7UrKG0ZTRm/r4LOpbZVB2xmnouAhCmP2PTRB+UX9Jkpqh2AqNqLyKjoL/eoLO2OL5omOcCn4AACAASURBVNFGQ1LHFr47fxx6vZ6xsbFMSUmhIAgURZG5ubnU6XSN/WR9y2MVpQs+g9DkmcXG+/vPMZlM7NOnj9ZHllV039DQUFJ9UQmAhYWF/Ne//kVRFLlixQp26dKFRqORsiwzOjqaMTExbNeuHSVJYkhICGfMmKG9L7c+9BRNiflUwhKohMXT1ukqpv71Q+0dCVCXxzc0QaENtC6Pb/iP72zCzLUtXjO4b/yMNYyf8T4TZq5l65lrGT9jDS957OPzziksLKQkSdy1axdJcuTIkXzjjTeYlZXFTz/9lCR5//33c9q0aSQb0XfPnDnD5ORk+nw+kmRZWRlJMiynDyPHPMGEmWsZO3URpZAoFd237/W84fa/Um+PZNytb1IfGkOzNYQ5OTnMyclhdHQ0Dx48SJL84osv2Lt37xZ/vzt27GBmZiarq6vZ6aG1VJzxjBw9h0pYPKNveoFKWDwjO13BJUuWkOR5yNa9Lx/J1L9+SOeg22nNH/yTc/lzqPk6xk5ZSCUsXlvHYDTjzZs3k+QF0YznzZvHiRMncvPmzWzfvj1dLtfPGgP+L6DjCiri30IA+0g+dYE+UQBOk6QgCAVQfStnW+r7W1OL9cVFGSuKZNwB1Y5ZV1cHWZaxaPVGTPukEt+tfBFeQcbN9zyKffsPor6hAZAUCAfVUpy3P/cOXqnejb1792ohkvERNpw4cQIxMTE4Wu7DyUV/gbe6DJBklG1ahNpDX0A0WOC4dDLKtiyFr3gfQvuMR+m6Z+GtLIWrpFBFxQWahOf+bArW3QSh0UQVZOIJJp/PpyLZGk1oqKttvAAJj9uFkNAwVFWUwZDcBbX7NqvajB/2BF4XfHWVqD+qFt+RHLHwlvkBHQX/pUQd4GsMaww43AVBgI/E7t3BqrkAyRQCb1WpOu6A9gI0ahxa18bvqBhV7cbrQsLM9/HD3KFqf/+z19bWwmKxaKCVRqMRVVVVKCsr04oQWSwWXHnllYiOjobP58P999+Ps2fPwuFwYMCAAZg2bRpycnJw3XXXYdKkSfj+++8RHh6uwdPMmng13n55HhInP48Sl4yydx/EMMcJDMsb0GTYP7cY0KxZsxAXF4fHrxyGuesPYO/aBbDbbChIDsNjk+7HAw0NGD58OGbPno2ioiLMvKY/Ytpl4cuvdiCk7xSUf/wiOnfqhJLCfXh73Tq8885baDf2TRSfq4SS1Bltug05z7Ry5MgRlJeXa3kKN9xwA0aOHNlkXCEhITAYDBg/fjyGDBmiQWKcO/Q1pJOFjR29LkTd9Dwqt7+HzNgQ1Jep2uCNlR9pmkt1dTXCw8Ob3CMYNgYIqkr4yTKYInLx8cFyzLoiF+M/7oLyza/DW1OGM6ufgKf8FKRTMo4ebbnCYHyoCbddmYXp+zfiNBqrev5Pa2n8VMRUMC1ZskTT4JKSks5DMz5w4AAWLFiA7du3w2q1okePHnj00Ucxe/bs/9G4LjZdDFNVVwDXAfhWEIQAaMu9AOIBgOTLAEYAmCoIggdAHYBr/JLxd6cWF1oQtM8FQa31HdO6HRa+8hIIAZLZAZ8o4/116xHaZzyKP5oP0Kcl2p369A0cP3lAK+daVlaGiooK5OXlYfz48bj55ptx832P4sn7bgO8HtXkBAA+D2q++wTmjF4oL94H46Z5aCj6FvR6YUjMQ/2JA0BDYz6PaHbAV6Pa/0VbBASfB14/pLoS1Q7uU0EQ8P5qfAAASQ94/CVnLaHwVpb4+xgBj/rchABBFNDgDlQZhN+RLgD0ouLcGURGRqK0aHcjE/e6IFqd8FWdheyMh7eqFHTVwVdXoUbx+Lxq6KakwOeqRWRca/Tv3QNLly6FT5BQLlgAnQnmxPZw15TBdWwPoDOqmF2CACWyLUS9GQ0/NMMGChaEkuJPiGSjLwPAiVf9ASaiBMlkU4U21GCIgOAIlOwkiTZt2uDo0aNwOp1oaGis675u3TpcOmgois9VYvHylXhtyesAoFUT7Ny5M2bNmgWXy4Xp06djwoQJGNivL45tfQ4r5s3DNyl/wY4dO9C69SMaPtPMmTPxr3/9C3UNXohpl4LpA2Cr+RGebYvxyDo3/hEWhsWLFyM6OhpXX301br/9dvz7llswLC8W6a//BTMnztTA/0jiiiuuwObNmxEfH49Dhw5hyZIl6Ny5M4qKipC07F48/te70blzZ3z00Uf4+PPdkIY/jjC3B6XvPoJj+79BZQumlf9Esixj+/bt2LBhA1asWIEXXngBGzduhAgi+ronVZy0ILIazjfNBMjn82nVHFui5lUJq+o9mLViN+aMyEXftEh85eiFsjMlyBg69Twh0BzZGlAj4coHp2PHjlq8MOvnJQoGKNhUB5xfdjrYNAmoIbYBCobzD1CwLycYqv2pp1rck/9u9KsFB8mtaJ4gcH6fFwD8tri/P5PsJgVltY22f9kWBsURDbtJfbF79eqF6upq/OOD7bDkdYE1bxAqvliB+mPfor6kEKe2vA3J6oTnXDHcJYWAKKmMTRDRvUd3fPDBB+jYvS/2f7sLJV/uwLavdoGuenRPi8ELigSfT4AkCHBDgLe2Aq7TR1H3w7cAgMP796pMkz7UH/36vLEHhAYA+CpLIBptjcfVZyGa7PAFEgQ9QTs2T2MWqiY0AE1oBIg+H+ALOk8Qm+zwz5w5A5+/NrlkDYe3qhQ+fwKj52wA1loAg3wa9DSAPi8yuw2AWP4jli5dCgKoqK5DWJ+/oOafD6Jm/xYE0Hplkx2e8lPwVpaojnVJCdIqBNVnovl56B+fKkQ8ZcUQLU74qs+qtdr9wsUkATWiCIPBAJvNhnPnziEsLAwejwfl5eWw2+346KOPIAgCZs6cialTp2LNmjUYOXIkPvzmOI6X1cLScQTcn72F8GseQ8k7D2Dnnr3o3bs35syZg4yMDEiShDZt2mDZsmUaxHlLNH/+fBQVFWH37t2QZRnnzp2D1WpFz549sfpfaxAeHo7ly5dj7JQ7UH/JJBSX1+H0viIs+uhrtI+UNWyoQBgooArAQ4cOIT4+HgkJCZr2A6DJ8UcffYTNmzbA95nq7KWrHu7yEi0Z7diWd/H3v/8dkZGRcDgc2LJlC7p374433njjvCzp6upq1NbWYtCgQejatSuSkpIAAJf06I39uz+AqcNwAIDr9FGEtGqHztkJqKpqDC23Wq0oLCxEamoq2rdvj4qKCnTu3BkbN25Eeno6Fi9erIH+3TBqAhyjHkP51jfRcPIQGo59C/fZH/GI52YcWr4IsbGxqC8sxD333YAhebH48ccfcdddd6GoqAgulwsvvPACbr75ZqxcuRJWqxUXk/4oZWT/8JnjF9J7mn8u516Bql3rUPzabWg4eRAQJdU5ScJXWwVdTAocPa+HEhoLQTFClBRs2rQJHx0oQ7EUAdEapoaKGqyAzoQbJ0z034fw+s3pgmKEp6wYPrfKwH3uBkgWpxbCekHy76IYLBxEKeghRH99D39OhyBCkPx7BklBo9wPkv8tRWGJTfcZXq9Xvbckw1tVCtEWrvXRt8qEZAuHaLDAEARbbU3IArxutLapIH4+nw8QZdh73gBP+Wk1mS8kwh92LMA5aJp6DAGCrPgh4NWxibYItTytJKsQJYBqdvPnrujCkxDS9ZrG4QtARLhqYvP5fKitrdV201VVVfD5fBoib3q66ni+99570bt3b2zcuBFR8Um4Y8pNcFeW4ty/nocSkQRR0cNbdQbu0ETU1NSgpKQEbdu2RW1tLYYMGYKioiL8+9//htvthtfrxdtvv40uXbpoY/rkk08wefJkDVcqNDQUBw4cwHfffYd+/fohNzcXM/76IL749qAGUaFr1wX3PLkAjzy7AFdffTVInhcGOn78eADnl4oNPiYJS6cRWkne2MmvwpKulnItLq/DSy+9hEmTJuGqq67CkiVLMH36dGRnZ2P37t144IGmObxVVVUYMmQIsrOz0a1bN22H/O7rr6KdeBqlS25F8YKp8H3/ER6/Mgv3TBmLlStXIjc3F1u2bME111yDV155BQcOHMDQoUOxd+9eHD9+HG3btkVxcXGTQIkGT1Dpg5oyhHS5Bu6zP2LXsxNx4403Yt++fXjyyScxYsQIZGdno2PHjkhPT8f27dsxf/583HnnnVphqZaopqYGgwcPRk5ODjIzM7F8+XJ8/fXX6NmzJ9q3b4/+/fs3SQIMpj9MGdn/thPl17TfwjnevDRmoLWeubZJv9zZ67XvYia+QskWQVunq9j2pnlse+8HDBt2D+XQVn7HcAgls53Lth1ip4fWUDBYaM7uT0v2ZTRn9SUkha36jWNsbCwVRaEhrBUhygzpOlotz5nSTXVQW8NpbNORosVJCH4nsL88KwBGxyc2cQTf9+ySRmewJDc60AVJK/+qfR9wYptDz/us+X0u1ARBoCQr/7HfT54v+Z9L1hGK39EuKoTO7H8OhVD0moPc1uUaCgZrE0e7EtmGxnad1TmzOCkabf51sFI0O1THtzmEiqJw2LBhjIqKok6no6IoPH36NC0WC0NDQynLMg0GA1u3bs3Dhw8zKiqKSUlJbN++PYdeN5nG+CwmzFzLuDvfpS4mlaIxhLIjhoJioBzaimFhYTQajRwzZgzT09O5cuVK5uXl8a233qLZbGZiYiJnzJjBH3/8kQkJCSTJK6+8kh999BHdbrf2ru3Zs4edOnWi1+tV39HBNzPuzhXa+xd904vUx6TS4IxlcXEx169fz4KCAlZVVZEkjx8/ztOnT7OwsJAZGRnadZsfr1+/npZWqYy745+qI/fmxWz1l6VqkEjBECqKwszMTM6bN49Dhw5lVlYWO3XqxG+++Yak6tSdO3eudr2MjAwWFhaysLCQycnJvO6665iens6ioqIL/v5W7jzOLo9vYOuZa5k/402GRcXwxIkTvOqqq7hhwwYOHTq0Scnbr776irbEHCbMXMuQrtdqv5mEmWspm+3MyclhaGgoU1JSGBMTw6qqKrZv314rYZuTk8O4uDh+//33FxzTihUrOGHCBO24vLycl1xyCUtKSkiSy5Yt47hx40g2dWb/byH8X3CO/1+n5jbJ4M8DtGrXCVTXNzqQldBYRN/4LNxFO6Db/U+ctSXj3PY1CB9+H86tfx6mlK6o/3Evbry8F2gIgTGxPZTQWJjadsSpt++FIEoo3vJPKHQjKSkJxadLUO/zoOKLf6LiyxUQFHWHTq8bSmQbNBQfBBBwBgfGIeDksUanI0msmv937VjwqRDe3tpyCDoj6PNCNFu0PAvIesDToB4HO5sDFLiPIAFUsa5Ecyh8VWpuhSAIsNlsQSGygGSPgbe8WJ0jiwOR1z2F02/cCXd1GWJiYlBcrH4XERGB0tJSVdvyeiHICiBKkC1OuM8dV4tYuf1FpyKS4D13HProODRUnEHlFyvU0FtZB0ffSSjbtBDukkJEyPWwpqai+9CxWLzgZfjqKiFZnDAld0HFZ29B8NQjOjoan3/+OSorKyHLMhITE3HllVdi+vTpWLNmDfbv34/q6mpUV1fjtddew+nTp1FSUoLvvvsOV06ZpeUIlH+6CMbEfNS6t8HQOg91R7bDW3EKjqRE2O12rF69GmFhYZgyZQoGDhyIgoIC2O12eDwebNu2TUsau/HGG1FaWopRo0YhNzcXixYtQr9+/dC5c2fs3LkTl19+OX744QcU7duPkPJy2LuNRv2xPajcvhI+Vx0kcygee+wxdOjQAaNHj0ZqaiqKi4thMpnQu3dvfPfdd5AkCTU1Nbj11lvx9ddf48iRI1i9ejWGDh2Kyy67DKOuuQZvLpmuhY+GDbkbFrsTz7z8Mm4f3hWbNm3C7NmzkZeXh1WrVmHjxo24/vrr/2MNimDfyoUo2FdR8fk7KPO6UVFyGsNHj0PNmRPae9Yc7C8u1AivIqEc0HJTjIoEoyLgiy++wJw5c2CxWDR/Akm8++67SElp2VwUABQMONx/OHoWZ1aswVn3zbhj/LVwOByaBgiomvaFtJU/Cv3hBcfPsUnOXX8Abl+j7cpTdRaS0Yqo/Mvw6MReGHXnYwAA0WABfV5U7ngfgihBF9kGuTc9hp0v3AIIIkI6XanmX5QWQrKEYsCA/ji8cyvqqlVbr6gYIBosEHRGuF318NWWo3LbMgTqijel821se/c25lQKigFev7Oefod6wASmPkSQWetCyYGAKjQANTfDLzQA9cdYUdG0ZnpAaACAu7oMx//RmDdQXFyM2NhYnDhxQiujajKZUFtbC3o8ANyQ7FF+waECEUIQ4Ck7AUXwoqHsNAS9CfDnutDjQtmGV0GvB5IooqSkBKIo4r0FTwNVVZr5rvKLd5CS3QHJCdH44osvMGPGDLz33ns4evQo3G43Tpw4gddeew2HDh1CYmIi4uLi8PDDD+PMmTMwmUwadHa9x4dGD5KKN2VsW4DKL9+FMSYFYWYFFosFt9xyC2bNmgWfz4eEhARMmjQJkyZNwoIFCzBjxgyUlJTgjTfewOnTp7F582Zt3EVFRejRoweOHz8OksjNzcVnn30Gk8kE+Lyo+Oxt1B7dgdBeNwIAJFsYssc+gIbiNdi4cSPmz5+PefPm4ciRI0hMTERqaqpWrvi+++5Dnz59sGjRIpSXl6OgoACXXnopzGYzFs59EJePnqDlMdlNCkjgjuW7caqiHuv2nMTWrVu1zOg+ffrg7NmzqKxsnqrVlJr7VlqiuesPoPjjhRBNISjfslTzoe374STqTxzEyJEjVUTjhgYMGDAAVVVVOHbsGDp06IDpV2bh2lc+Q/3ZYjR8vwFJraLgtIcgJSUFJ06cQM+ePXHppZfi66+/xr59+5CZmQmz2Yzk5GS88sorePbZZ2EwGLBr1y507doV7Xpdhel3TIOr6qwaiWUJxeYj5Thw+3SMumIgMjIytMS/P+lPH8fPskk2j7xylxbh5Ot34vuXpmD27Nlod9n1sOT0R8k798Nz7gT0rTJhzR8Ms9WGzkJjZJO3rhKe8mKIZgeirnsSx2N6obi4WGNOts4jEDv5VXjKT6o2e0lRQQ/FxmXSQBD9ZLPZ0JxEUYTP64aoM6o/RuX3KXHZnE6dOtXkuLa2FgBQVqZqQWoAgAif1w8TT8JhNSM1ORmK0Qxr/mDA64Yg6xDS9VpIllDY0rvBYjHD4/HA7XajW7dusDsjAKhIw+F5l+LU8SJs2LABHo8H9913H77++mtERUWhrq4O586dQ0lJCfr27YuqqiqIoogRI0bg6quvhsvlQseOHTF+/HgI1aWo/vYTeKoao8jt3cZA54xHQXYabhxzDbZs2YJdu3ahd+/eePLJJ5GWloYjR45g27ZtmDVrFkRRhNFo1ErIpqam4sUXX0TH3oPgbdcbxWU10NnC8OSKzaiqqsLAgQNRXFwMa4jq4/JVl6Hi83fgKjmK0Lz+uGdYezQ0NGDp0qXYv38/YmJicPnll2P37t04efIk6uvrkZeXh2XLlmHOnDnIzc1Fr169UF9f36QmdwAR+umrc1Hv9qG8zg0C8PiIRz74HhV1jcEjRUVFOHXqFKZMmYIXXngBb775Jj755BN07doVBw8exO7duzXfUUFBAfLy8rB6tVrffvHixbjyyisxYMAAtGvXDt+tfBHmtO6o/OIddfPi13Jrz52C2+1GZWUl6urq4HK5cOzYMVRXV8PlcuHLL7/E1Z2TINWeRauYKFQVH8GJowdw4sQJTQPetGkTHn30UUydOhVxcXGw2+2ora3Frl270LNnT6xZswbvvvsu3n33XTz11FO4585bEdJ3EkI6j4Q+Ng2SJRSWrmPgy7wcX375JUpLSzXBEUgE/UPTf9sW9mvab+HjaInKysr44osvsrq6moMGDaIpKolKWDzDrpjBiKsfpRKRRCUsgRHtB7C+vp4rdx6nHBJBa/7lhKRQsjgZd93fed1t9/CRRx6hObMvw4bOYvz01VTCW1MX2Yai2UFdTBrNaT1pikykZAqhITGfsjOegEBB1hGiREv+EIomu99H8Qv8B7KesiOm5e+DkumEX5gY+Gta4F6aX+NCTVKfVfH7IQKJeYEmWpzUxabR1KYDewwcTkmSKMsyZ86cSYPJrCU7BhIpAdBqD2VGRgbHjBlDURSZnp7Oq6++mjabjSaTiffeey8BNRnx1KlTfOaZZ6goCklyw4YNNJmtlKxhNOcMoKAzUXbE0Jrek0NGj+fgwYNpMpkoCAJlWWZUVBQHDBhAURS1Z83r0puioqdkDVP9NgCtVit1egMFg6Xp8xmsFP3nNU3CBKEYKPj9TwkJCdrnJpOJERERTE5OpqIodDqdVBSFEyZMoMVi4f79+3nbbbdx9uzZJMnZs2czPz9f86OQ5yevSbYItrr1TUZdMpwPP/wwSfLtt98mAO7Zs4dLliyhw+HguHHjuGPHDoqiyH79+nHq1KmMjY0lSU6fPp2xsbGsrq7ma6+9xsTERJaXl3Pm8q8o2cIZO/U1yvYo7Z2FKNPWJo8AuGvXLk6fPp2yLLNDhw588MEHCYBDhw5laWkpRVGkIAhs27YtBUFgeno6U1NTKQgCIyIiOGjQIIqiSFEUaTAYaDQaKYoin376acqyzKlTp3LcuHF844031MRWR4z6vvjfHzk8gaLByqSkJLZt25ZJSUnMzs5meno658+fT/JPH8efFETl5eV46aWXEBkZiZiYGLz56Hzc8963OPranfCWn0Lk6DmwRcYjatcC3HzfHOwP6w5Sxf5RHNGQ6EX0sU+Qnd0P1dXVMOkkEIAgSoi+/mnU/7AbNQc+g6eiBGFXTEfpyr8BNZUwt+sEU3ovHP/HTTAld0HN3o1gQw0EUYRksMBbV9VYGTCIAtUAHQ4HyssrAFkHc1Y/1B1uhAyTwxPhrTilJhEGmakESQI9Xkj2KHjLW44UuVhEv7nNeyFYFD/ZzAZUVrrAIKDFAQMG4Mjx0zj03S6IehNcJ/bDYzBj87FvIRBQ/HPg01kgCnrowhPgOnNMDc812CCGJWLfvl3Yu3cvJElCZWUlzp49C0VRUFlZiSNHjqBXr1746quvkJmZCZJwu90wm1VtRq3BUIWab9YDgghLeCtUH9yGj498gZ49eyIhIQHHjh2Dy+XC6dOn8dlnnwEAxo0bhzffXoZvv/0WPncDdOGJsPeZgLKPX0ZdXQ0iu43Cye0fQDA74GuoATxuQG+Cz9MAwAudsxXqSxu1A4ME+AQRomhAXV2dhid2zz334IknnoCiKBq+0pkzZzS/zfPPP48nnngCBQUFOHPmDJYuXYrt27dr/hbgwslrSsdR+PrrZcjOzoYkSYiLi0NWVhbatm2LWbNm4aOPPgIAJCYm4vjx4zh58iTOnDmjJRGKoqhpOH379sXcTcewbOdpKM54eCpLYE7vpcLc+yFxXCdVGJfc3FzNl1JZWanVwfj3v/+tVReUZRn9+/fH66+/jh9//BEnT55EXFwcysrKUFZWBpKYNm0ann76aeTl5eHbb7/F4sWL4fF4sHbtWqSmpqp+NklG7KT5qP72E7hOHUJov6loOHUYdZ+9jiOH1FD4QKh2MP2c+uX/X9J/WzL9mvZ7aBwrdx6nM7sXBVlHY3gcjWYL4+PjGR2fSEHWUXZEs8vjG/jK2s8ZFhVDOSSCijOekBRGXPs3yrYw6vQGmkwmRkdH895772Xvy0cy5qp7GXfHP7Wolbjbl1M0WJkwcy3NmX1UrUIQGDtwqhYtJCh6CkYr5bDGnWUw1IiiqDvXnj17artOCCJFazh18TmMmvAP/7UECoqB5qx+jdFS/l39L4YuuYiaxy/tF9h96wyGn3mvlu8jSRL1en2T62dnZ6vz5z8OaDlCYH4kpck4YmJimNAujbqQcHVOBZHOiGgqOj0Vm5OCoo7RER7JrFteoq5VRuOYtKgwtBi9Jhht/nU5f/wXmrvExESmp6c3eUZJkmjwz5XFYmF0dDRDQ0O15xsxYkSTd/9CsCcZd73F0MzuWuRTXJsUktQ0joSEBI4dO5ZXXHGFBhnjdDr5wAMP8IYbbuDIkSM5bNgwSpJEnU5HyeqkEpZAXXQyJVs49Qm52rij22Zp/3fv3p1hYWEEQKPRyJycHALgoEGDaDSqEXiSrFAK0thkRdGi9QYMGKDNmU6noyRJNJlM/OqrrwiAPXr0YHp6Ol966SXqDSYq9mh1bFHtGD3uOba76x3aHKGcOHEiP/zwwyba2f9W8muhu/lf5s2/u3D4qfZbC44Ark/slIWUnXE0JnWg4oyjIyyCaWlpbNu2LfV6PX0+HwsLCwlBpBKRxMgxcynIetq6jaESFk9zTDvm5+druDQ33HADp//9ZXa45x3qottRCW9NJSyBzkF3MGHmWoYNnaUxCZ1OR+gtmtoO+E1LwQzDz8zOM2P8qvbbCpDm5qdf3AKMXAgye4kyBb2lybHGrCWFycnJBFSBazQaNQYjCIJm3ggWHk0Yd5B5r01aNkdOmKaaNfymMDksgW3v/UA91pkaMbxEmUpEIiWL038dRTVX6Uxq2LE/BFm2R6th19oa+82V/v+Dnz0+Pl5b/8Dm4eOPP2Z+fj4dDgcFQWBSUhLtdjtjYmIoiiI///xzGo1G5uaqTNpgMPCyyy7T3v2HHnqIMQlJNLZKpymtB+29bmLCzLU0xGcxetRsOgffyVa3vknJ4qQuPIGjb55Bs9nMyMhIhoeH85ZbbmFYWBh1Oh1tNpvG7JsLO4PBoM5RM/NcS/Mc3AKmpibXE4SmawSBojVU62O327V3Lfi3cv/99xMAY2Nj2aZNG4aEhKj4aJ17+IWQwPD2/bly53F+88037N69O4cMGaKF4P7e5PF4Lvjdn4LjdxAcgR1X7JSFKrhgWg/G3f4OozoPZXx8PK1WKwVB4LZt21hYWEhBZ6QhMZ/2XjdR0Jtp6zyCCTPXUhfZhvn5+eddvyWfSdQNz1Afl0klLF5jaorVSYgyLXmD/JpBU6auN5qbHJvN5vN+aILBnMnJ8AAAIABJREFUqu5cf4r5/g7axi9t/9EfEtxEqZGRCE1BDYUgxhEQWoEdecAOHmDCjXMYxNwC1xNFKjYnIYgUrGG097pJ/VyS2WracvV+gkjRaNXunTTrA9o6jyIAWjsOoy42jZD1VMJbU/L7ocJGPszQAbc23kdSKDv8eUFBuTaKotBiaRxXYO3nzJnTBBRSFEXqdDrq9SojJkmDwaD5g2RZ1vwDWVlZtNvt3L9/P5Oz2lPw++kypzxHU1wG9a3SKTti2OrWNyma7BRkHQW9mYIoskP3S5kwcDIDwhlQ/USiKAZpbQIVvyYQEhKiPqNiIHQG9Ty9hZYcVTsQLU6NyQdvLgLaisPh0AQIABqSOlKJbNO4Tv4xSJLEe++9l6IoMicnh99//z2TkpLYsWNHWq2qxqfT6ThnzhzGxsZq/UJDQ6koChcsWMDS0lJWVFSQJL/99lvm5OQ0+T0vWbKEmZmZzM7O5tixY/n++++zoKCAubm57Nu3L0+dOkWS/PTTT7UcktzcXFZWVrK4uJjdu3dnTk4OMzIyNMDD9evXs3PnzszLy+OIESO03JyEhATOmDGDeXl5fPvtt/nWW28xMzOTGRkZnDFjhjamYMEBYCyA7QB2A3gFgMQ/BcfFpZU7jzdBtFRNR6LGCLKysti7d28tSSwuLo6izkTRZKdkCSUEkca0Hqrpya9xNKdAYlFAs4m7fTl10ck0JORQDo1VGYNOT6vDSUExNv1BCGLT3XWT1sgUxV+UkPffdowLP0M4/ecxiC0h4Mp6NWBAECnoLVQi2qhMo5npRzJaz2NCwS0kJISiJFHUmymHJzai7QoCJauzcQccuG5zU5HOdP51gzUdbbwtmNcukJQJQGWsLXwe0CiCGWrgr9Fo5Msvv0yr1aoxX0HWExB43W33av1EUWR4eLimaf3973/nAw88wJqaGtbV1fGOO+7gzJkz2b59e+rjMhl+5f0qou2tb1LQGekccheNbTsRokxzandKIZEEBIrmUDX51RrGgPAKCI7m41WFauOa2LqOpmgJa9SyANpsNvbr148Gg4GRkZGNiMz+cQMCJVuEOo+iTEObAu2agWdsaeMRCFoQBEELjlAUhT179qTVamV4eDgzMjK4ceNGhoSE0Gg00mg0asmODz74IIcMGUKDwcDhw4ezS5cu7NatG/Py8tihQwdu3bqVr776Ku+8806S5JAhQ7h161aSZFVVFd1uN+fNm8dHH32UpKpBVFZWsrS0lN27d2d1dTVJcs6cOVowQ0JCAp944gmS5IkTJxgXF8eSkhK63W727t2bK1eu1Pr5BUUagDUAFKpC5CUA1/NPwXHx6Dxo9TF/J0SJ0RNfoSm9NyWLg1lZWXz22WcJgFu3bmWbNm0Y1yaFzu5jaO91E+29bmJI12uZ+tcP2aH7pdy4cWOT63d5fANjJ75CvT2Sw2+YyscWvMvkqa+ouzf/i68xLJ2BEESaUro2ZSwtMGFBZ1J/MC0xXL/GIZidLX7//2WTdC2YMFTB0VwzkyR/BE1gXpuYSQSNAZ4nBCBQHxqjzX/g3ND+t/gFvNrMuQNbXC+IkrpuiflBays13RgEjyVo3VvajRuNRi3CKrCzF/XquAyJeRRkHRWnqr0EBOPAEdczKipKu5YgCExLS2uymxcEoen8KEb1WJQoWlQtSLKF05xz2U+uSWhoqKb5BJi/YrL6hW7TdUpKzdKeM7BekiRx8uTJlCSJU6ZM4dy5c2kymRiWeynDhs6iHNmWgEDnkLs0c99TTz3F559/XovKu/fee2kymSjLMq+66iqGhobSYDDwiy++YGKiisBw8OBBPvfcc9TpdExJSeG1116raQKFhYVMSUnhyp3H2arv9ZSsYYzpPoordx5nREQEX331Ve7Zs4fdunWjXq9ncnIy+/fvT5J8/PHHWVBQwGeffZY//vgjSfLf//4327RpwwcffFCDsF+zZg2dTqemnaSlpfGmm24iqQqEQAb+qlWreN1112n8ZcGCBbzjjju0flAFx1+gFs3b7W8HADzEPwXHxaPmTkHHpZMpO2KoOONozryUemcrCoJAh8NBvV7PtLQ0RkZGMjU1lVdPuoMJAyfT0esmtup7PVfuPM4VK1YwOTmZOTk5XLbtUBOh1Oq2txl5xV00J2TRktOfgt5MiFIj8xckwm+nN6Z08f+gRAp6Ey0dhqo/Pn3QLlfSBWkmQtO/fmGki290OEIxtWxHli4Q7vsT9S5+83ZBjSu4NdNygpzazQWHIdjJLog8z8/TXFA3d2QLsgrtAoHQmy4M03LeThm0OUIpSEqT8M/wEQ/97LmQJIlOZ+OGoHXr1k3vF/CDWcObnBfY0cv2KLZul05FUbhq1SoCoNPpZExMDK1Wq8bo26Rn05LaVb2W0UbRaKMS2ZaSTb2uaLY3zlPz+WohhLxNmzaNcyEGaR/+7y+kGep0Ok1TcDqdlCSJiqKjZAppPNcepfmWbrjhBo4fP14zRZrNZlqtVhoMBvbt25fR0dGUJImrV6/WAgasVqvmEwoEFwT8YPn5+XSERVAfkUjRFELJ4qTVX1tFkmW2a9dOg5WJiYnhunXr2LNnT43H7Nmzh3PmzGF8fDz37dtHUtUc5s+fz5ycHC5ZsoTvv/8+r7nmmhZ5VDDsys8UHLcCeJz/Jd78uwuHn2q/leBojlfluHQyTandKVnDNI1Ap9Oxurr6vEIwOTk5nDt3Lq+4orFYzMsvv8zRo0ezsLCQhrBWNGf2peyIoaFdZ4aPeJD62DR/HkcqRYOVUkikKkA05q5nIBqq8TMDrV2uPe+H1uKxzuCP9GnBDCJIQVhPF5Op/0yz189i/r+iNROKwfMq6owqs/cfG43GZoJROL8wVZAwEIPXqDlTlGTqDM3OvYCZLhDRJVsclB2xqlNf0VMKifjJZxN0JkohkZpPZt26dRQEgQaDgfPmzWN4uMrME+5aSUv7K9RzTPbGZ1MM2vMIsl41xQE0hLVqjB4ThEZsMKjCRAowc1GioBioj8ukOac/AdDRZ6KaL+N/RyEpfmHaOG7ZbP/J5wo2JxmaRcwFNKwAEw/8L8sy9Xo9L73x7iBtXaRodqgall5PWZYZERHBjIwMtm7dWjvfaDTyzjvvbHJvURTpcDg4YsQI1Q/jX6fa2lp27tyZ+fn51IWEM2biKwzpei1lZxxFo42tbnuLECWuW7eOubm53LFjB0nyxhtv1ATH4cOHNZ5x1VVXceXKlSwqKtKc3M8//zynTZvGkpISxsXF8dChQyRVn+iBAwdINhUcxcXFjI+PZ2lpKT0eD/v27ctVq1Zp/aAKjnQAhwBEkASAUKhVWC8Kb/7DZ44DTXGpAMAQn42G4gNQnHGIu/0ddLhnORRFQatWrVBbW4v58+dj9+7dGDt2LBRFQVVVFS6//HL85S9/wZYtWzBjxgwoioJhw4ah/swJGFrnQTBYUH9kB0rffQTeuiqIigF014M+D3z11WAwHIikAwRAiWoLQWdS0WHd9aj64h0AgGC0ahg9ojkU9l7jVPTdALnqAXpV9FgAkGSItkjt60DdcskWfvEmUX05f5oEAZAvXIfhl5BkCgGg5ggIgVwEg60xRyWABKw0rq3PVYfgWu119fUQJJ2/r1phSiuW5Sd9iDpHrVu3hszGDGpTStfAQ/kfzQ8fH0wXgHJpaGgA9FZ46mrgKTsB+DyguwHeCj+ki9hyehVdtfBWnIbP54PP58OQIUNAEvX19fjyyy+12ux1mxegZo+aW8HaCggGC6DoEDHyIehjUwFRghKRBENiPgDAdunNkCyhEA0W9d0LyrNZ8PE3ePutt6DTG2CIy1TroRz/HnWFam6D4mwFwY9GDHe9WtDLRwh6ix+RWQR0JkiShPj4eABAVFQUnE4nLBYLOvbo1ySvp76+XsOnEkURkiRBURQYDAaIooiJEyfi5MmTEEUROp0Oh0trtIzzqOufhq+mDKQPHR9ah6FDh8LtdqOurg4Wi0W7/+DBg7Fo0SIoigJJkpCbmwtLiAORl9+F97fsQkVVNQRBwIABA/D8889j7NixOHr0KKC3QglVESX0rTIg2yJw+q1ZAIk777wTDz30EEaOHIm0tDQNDQIAnnnmGWRmZiI7OxuKomDgwIH49NNPkZOTg7y8PCxfvhzTpk1DeHg4Fi9ejGuvvRbZ2dm45JJLsH///vPeg+joaMyZMwe9e/dGTk4O2rdvj6FDhzZ9V8jvAfwVwEeCIOwB8DGAiwewdbEk0H+j/ZY+juax66b0XupuVNbRbAth69atmZGRoZaB1et5ww03UK/Xc9iwYczKymJCQgKzs7MpShJtSbk0tunIvLtfpy40hnG3v8P46atpzuhNW6cRNCV3YczkBZTt0UTAma2FGIoUrU4q/uxyfVwmBYOFgqJn7JSF/t2t0iT6xpzZ5yd3dKrp67fLEP+vtQuYzc4vc3vxW/P8CVVr+zX3/OXr0UQrBZpELQVCT7WxBjvjJcXvm1Ao2aNVzUBvoeQ3Y9n7TWnsK4hUwhtRlxVbGPPz89mxY0eaMvuoPhpB0nb5+vhs7V0MRPHpopP9qMSCmgVvtBGSrOZGmVUk4tDQUCqBKDBZT2O7S9RzY9P8ayrTZrMxKyuL2dnZjIqKosFg4NSpU0mSDodDXXezw4/+rGfCzLV+H4ca4RUVFcWIiAja7XYKgqCFWgc0tpiYGLZu3ZrWEAclk53Oy2dQF9nGrxULfOG9f3PUqFGaWUuxhmqovOacATQmX8KEmWtpjc/gpZdeyqysLKalpXHy5Mm/Cd+6EOE3yBz/U+OAitXjMDXdCetjUmArGI6Eu95Dzj3vodNlwyFJEgRBgF6vx5QpakW5kJAQ7NmzB/PmzUN5rQuCwYr6+jqYUrqhpNoNiApETy1KVz2O2sPbUfP9p3CdOQa6auGrr4YgKjCl9gBEGZItAqbU7rC1H4rwy++GqDfBU6ZmcwuKEXJIJCDKEHVGyPYoQJIhCAJcJYXauJ1DpkMwhQIQIOhMgCjB0fN6iFanv4e/il+AArvF/wvUvEysn7xer4ae+t8iNtOoVK3tP9zzJ0v88ie+u8AZDY1IxCEhIVpWPckmoIMkIXj9mpesV1ebBHxuFR3AXQ9R1kE0qkWMyj9+ufEmogT32cZMdXflGezcuRNfffUVavd+Crr8ZYT9742n7ATCh90DSDpYcwZAF5MC15lj/iJjhGi0IaTrtYCkgD4f6mqqUVVdA5fLBUfuZepNPC7U/6CWCpbDEwGI8HpVBOQRI0bg8OHD6NKlCwRBwOeffw6fz4eGhgZVi+l1DUSDGRHD7oGn4jR8NWUQDGYYQ6Nhs9ngcrmwdOlSAGqxqHHjxmH06NFYvnw5/vnPf+LkyZNwSQYIehPOfvgMDIn5MLbrBIB48f1tmDFjBlwuFyRJAhpqwFMHYO82BvC6YYjLhFGREB9uxeOPP449e/bg+++/x8svB83n/6f0p+Dw0+DsplqcISEHtQc+g7emHEf2fInVa9dh4oPPITExEcnJyaitrdV+uICKTHvixAlE3fAs3GeOqWYRAARRueVNRKW0h6ldZ4R0Hgl6XPA11MHnqoVkCoFkssLW6Sp4q8/BYDAhrOoQytb8HRBlhLUfAHNyF8DnxbFnRgE+D3zuengqSwCvB/S4IJoaYRDOrp0L1pWrd3bXAz4vyj6Zr1Xma9yw+ukCzPhPulh0geKY0s8w2TXro9M3glUGIxNLktREcOqDCmfB06CZcgxhcap5UpDgqy2Du7QIACBawyDI/nO8bg1ZWA5vDUNYK810ZDAY/eYs2V+eF/BWl0EwWCBIEiq3vwtP+SkoBhMEgxVKeAI8ladRtmkRZEsoosc9BwCgpEN9fT1Kv9kE0RIKCKK/eqWA2u8+geyIhqA3oeLcWa3G9q5duyAIAg4dOgSj0YiGhgbk5+ejT2oElJAIlK6eg5J3Hwbog2wKwVvrt0Gn06GiogKTJk1C27Zt0aFDB3g8Hhw4cACHDx/G3XffjSeffBKUjaDHBUEQoYtI8i+biB8+W4Pu3bsjLS0NBQUFmDH9bpxb+QhKF98KQRCQ0utKPH5lFsIsQfP9R6H/tkrza9pvmcfREtxC2BUz1KxfWwQFnYlZU5/nM888QwBMS0ujzWbjsGHDWFtbq+YDmOyqqivrKZlDGTN5gd9UoCZchYSEMKtjV796rms0I4hSE1NIcPRNIIkMELTwWgAUQ6JaNnv8nCgoqeXs3D/bL2+iJZTm7AFBnzXOf4tFsvzrroTFa0WmAPHC6xYcihuU2xFI9gsk82l9/MB/iqJQURQNZiMuLo56vd4fnqqe6+h/q/b+Nb4bsnYcPWwGTRarBg6YnZ1Ng8nsD/UVKIe2oqDoKZpCKFqdah6GJHP48OG844471Byldp0pGCwUjTbVse/PeUpKSmJIu46UQqJoaJ3nz/o30ZCYpyYBGm0UzQ4WFBSwTZs2XLhwIRMTExkSEsJLLrmEsixz4cKF3LRpE5Mz8+lI6cTYKQspSAq79BvC1157jUOHqlGIJpOJXbt25ahRoxgZqQYX2O12yrJMp9NJQVa0EGolLIGKM55hQ2cxZ9oCWq1WLTw2MzOT/fr1+8140v+U8Kep6rejlgDezGk91JKaE1+BPjYN+5c/gU2bNqFnz5546aWXsHDhQuzZswe9e/fG2LFj4Wibh+gbn4Up+RJAFCHqTQCA1v0nICFBrbFccfpHQBCQNvYhQJRhjkxA27RMCP5dniRJMBqNsNvtSE9Ph2J1AD4fJEsohKAdqGoy0I60/8RmsOuAAMg6NNn5ehvwJ10c8lWfQ82efwV9ElzW9Nz5J/h36u7qsqCa8b4La35BDnafu7FWfEDb9Xg8TTTfhIQEhIWFwe12a+Vqa2trcbasHC6PF263G56AtnBoM+B1Q5R1sNhUrVWAoAYMAMiWT0IEIQgCoqOjsXfvXtTX1sBuNgAgDJGJMCV3gRwSCTbUInrIbUjOyMH27duxf/9+sPosGop2gw21EI1W6KOT4asug6joMGjQIFzevw+8FafgqSxF6KBpoMeF+qLdYEMNdFFtYQwJw3fffYfTp09j06ZNEEURVVVV2Lp1K7755htMmDABvXr1wpDR41FRuAcAIOmNOLz3GzzxxBM4evQojEYjzGYzXC4Xvv/+e+j1egwePBibN29GTEwMbrvtNiz+aCd0jmjET1+NmPEvQoloDZ0sYlyXBGRkZGgleQO13f+ki2SqEgRhgCAIBwRBOCwIwqwWvtcLgrDc//2XgiC0vhj3vZjUPLIqmARZQeSo2eg4fQlWrVqFTz/9FL169cKIESPw5IrNkIb9DR9YBkJ2xOLka7fCXVoEX0MtPOeKAUFA7d6NMJvNUBQFqR16QFT0qNSHA/QivNs1OHa2VmP4nTp1AgCMHj0adzy5GBFj5qomC1FCsICgv0hTc/LVNS+wQz+zYkvd/6T/MV3ABHUBUuyRTT/wR7Zd+PL+aC29GYI5VP1MlCDo1Pe00TQlqOYjCBBkPWpdXpw921gzxGJRv3NJJnUD4RcKgADf2R8gSRLMehn1ter7FBcbjZsn3QRRFPHlJ2tQV1eHuro6yLIMWZY1M5FOp0PP3HYw6hXQVYfQ5I7g54tx/Mh+FBQU4PPPP4dB8oHuBkgWJwRZp5rGJAlLN36DXr164Yt/vQtZ0SHjtoWo2LIUEGTY+0xEaL8pEEE0lP6AzMxMdO3aFc8++ywAdWMliiLS09NBEqt2ncDb24+pO2GPB57aSpQU/4iY5GwUFBTA50dYfuutt3Dffffh2LFj2LFjB8aMGYOTJ0/iq6++wujuqYgOtaJ67RzUHtgGk0GHDN8PuKZn1p91OC5Av1pwCIIgAXgRwECoscPXCoKQ3qzbeABlJNsCeBrAE7/2vhebpvdPgVG5sKO4eVVAoLH05YnyOtQd24PywzsRPXYuYm56AbrIJDQUq6F09muewOzF62ALDceXRedACP6qfkBVrarp+PyO1N6jJkGWZew9dhpTrx6ChpOHoFosRLWin1/rkBwxQc7XRiam6P+A9tbfhX6ZIHaXn/6Fl1evz4aaRm3E5z0vXBigqomIIuhpwOniH5v4O1TBQXiqzoKu+iDNhqiurkaHDh3Q0NCAhIQELQTW5XLBZDLB7XaDJGRZVp3ILhdkWYZer4fb7cbOTz/EX67ognaRVkwYfAlS27SGIAjYuHEjevXqhfBQBywhduhMZkRd8zdkjX8C3UdMxN33PYibl32LwhOn4HG74Pj0cYh15YCnHpVfvoeKz99BbeFueH3EN3v2YMOGDdiyZYs6BT4frrjiCvTp0weAvzon1fffdeYHQJQh6IzYsukTlJWVwefzwWw2IysrC9dffz0kScKHH36IPXv2YPv27aioqED79u1hUgSM6ZuPIY6TqDv4OTJbR8DpdGLFihWYMmUKbDYbcnNzsW3btl+2jv+f0sXQOAoAHCZ5lKQLwDIAQ5v1GQpgif//FQD6CgHbzP8Sal4J0GFSYDcqTaoC5jrcSE1NxZgxY5CWlobx11+LmtoaHP/HTfBUlkI0mNFw5kcUL7kDDcUH/KYFAQ1QMPuNj1F6uhgeLyGZ7PBUnwNA1B0MKkcpSliy+mP07t0bmz/+EJ66KpzbtEh1WIoSdFHt1P8BeM8dbzRjSDICwsPd0ICWd8P/q6b7j0HCr4lYa1wv1lW0+DkAVRP1BZm6mkV/aVUX6VNb8Ok+YufOnXC5XDhy5Ahuu+02/PDDD1i8eLFWpRBQne3h4eGafbuiogKKokAURTz66KOw2+344IMP8NZbbyEnJwcAsHnzZjz22GPwuurhOXcC4VvnYmS6Gbv37sepHetRtvl1ECJEvRnTnlqKZ595WjXXeur9WjNBED6jA7Kiw9VXX609y7p16/CPf/wDAFC4bw8qPl8Oet04t2G+mhPjqoPX48HBgwfhdrtRVlaGIUOGIDc3F4Ig4PDhwzh37hzuv/9+nD59GjqdDi+++CKee+45REREwO1248svv8R1112H6OhoWK1q9Jksy8jIyAAALF26FAUFBcjNzcXkyZO1XJSpU6eiQ4cOyMjIwIMPPqhNdaA+CgDs2LEDvXr1AgBMmzYNDz/8MABg/fr16NGjRxPBH2yG/F9Fv9ZJAmAEgAVBx9cBeKFZn+8AtAo6PgIg7ALXmwRgB4Ad8fHxF8dbdJGosLCQADTAMkvWpbT3uomSLYKxNy+mIbE9pZAICgYLZXs0I0Y9rFYWC21FY7vOlGwRNOcMVPF1/FXPRIOFgs5EwWilaHFSDolU4R4EkVD0VMITac0fQtkepZ6jM6qAiu06a1nOgmJQ8078zldB1mmgiX+2/1L7vaFYBJGCyR8sEQikMNh4wfyQ4Cz2ICd7MI7Ue++9p2Vo2+127fOEhARef/31NBqNHDJkCJ9++mm2atWK48aNo8ViIalWFLTZbJRlmRaLhbIs8+TJk9y8eTMtFguzs7MpGczUxaYxpOu1av5D+ysomuxsPWgKMzIyqGbumxh3x4rG5xAkQhAZGxurObPNZjOXLFlCAGw7ciaVyLZNnPqiwUoIAhMSEti3b18NpiQlJYXJyckacrDdbmdqaiqjoqKo1+uZkZFBg8FAnU7H7Oxsrlq1iqNGjeItt9zCwYMH0+PxcMOGDczJyaHNZmPnzp25f/9+Tp06lRMmTODw4cPZp08ftm3blnfddRd79uzJb775hgsWLKAsy8zLy+OECRM4cuRI9uzZkyUlJRw6dCgNBgNTUlIYFxfHw4cP88EHH+TYsWPZpUuXC0KQ/BThj1gBkOR84P+xd97xVVTp/3/PzO335qb3TgKEkBBK6AREpQgICCKoKGDDxYJiAV1UXN2vBduirmVdO64oiAV0QREbLkqV3gQCRCAkIaTe3Pb8/pibSQFW3dVd15/P63VeuTNz5pxzZ3LPOU/7fHgWoLCwUP7Lw+HtDSXMXbaT7yrriZITxCQk0bevnjWc3nMoez9dCICi6X6QhsO7qfjwKcTnwZ7ZlfRb3wV0rQWgJOSEd+b0M/rwV5fz3fPXYE1sS5fL/siqWWfS9/6PjbqN4i07QOmbcwh461Htbj3cFhB/A94ju0KNeRHAX1Hysz2T34T/fBizZgn1KTRqD1IX8mc1ahke/dhqterZ6c1FmnwiNHOynzhxgujoaEpLS7nuuuv0iQEgti3WqHSUb7+i15Ax3HLdZSxevJhVq1axefNmIiIiOHTokJHfkpaWxtChQ3n11Vcxm81kZGTg8XjIzMwkNTWVb775hsxZSzn+5evGs1NtThwd+lPy9Qd0ve5JlP8bj6Koeja9AtaUfBoObgF0fvqIiAiqqqrw+/18+umnKIrC1FH9mfXBX9Ds4cScexPly58mUH2MuKRUwsPDSUpKIi4ujmAwyM6dO+nevTt5eXns3r2bs88+mzfeeIN3332XCRMmMGTIEPbt20dBQQHTp0+nR48eVFRU8NprrzFv3jw0TaOwsJApU6bwwAMPUFpaSs+ePTGZTHg8Hvx+Px06dKC2tpZ58+bhcrn44osvePDBB0lISGDp0qVccMEFJCbqof/Tp0/n5ptv5tZbb6WoqIjY2FiysrIA2LZtG1988QV2++l9r/9N+SkWjhIgtdlxSujcqeocUhTFBIQD5fzCpdGHUe/T/9GPVnmorPPz9oYSRndJ5oLCVOZ+ruiQC6EfkBb04T9xFPHW890L12HP6II1LJLSw2vxeRuoSeyKq89FBL0eyt65H391GUgQW1onXKkdDD/KLUPat+gbwBKTRuQZkyl790Fqt3wMJhuKBHB1GUb1mrf/8w/oN/npRFE5CaJE0VDMFuwmhbq6OrSwGD3fwGIjcKK06T7NhDOhDbWHdhg0wna7nfr6po2HxWrD2+ABkxWT2UygoRYJBnG73dTV1aEoCt99910ouk+h+mgxHN5LoKacJR99Ru+zhtG+fXu2b99OQUE6aD/kAAAgAElEQVQBe/fu5ejRo9TW1nLxxRezfPly6uvr6dWrF6WlpRw6dIghQ4bQu3dvSktLKS8vp3zBbXhqqrC3603Z0kep/3YN4vdhTc7hSJ0O22KKTMJzcCsoKuKtx5E7ACnfz4oP3iIuLo4ePXpQU1NDZmYmt912G73S3ZiDDeCKofyDxwnUVaJZ7KiqyuxnF3PXUws4Vv8RmmYiMTWDN954gxEjRmCz2Yykwvz8fAKBgEEpu3r1ahYvXozH4zmJ5vjEiRM8//zz+Hw+49nl5uYyfPhwFixYwNatW5k9e7bhUN+xYwcDBgxg1apVaJrGuHHj+PTTTwH46KOP2LZtG+Xl5aiqSm1tLTU1epDCyJEjf7GLBvw0Po41QFtFUTIVRbEAE4B3W9V5F5gU+nw+8LE0blV+wTJ32c4WEzeAv6qUO599C4ADa5Zz/rCzcUYn4j2yh+QIO12Du8hqk4ktOonkKY+T0rEnnd317Nqygb07t5IhR3Ed341n3zqoP4Ea9KFaXdjNGsPyE8l3exg6dCj3XDESZcld+MoPAlC29FHKlz1J1Zp39IFIEHz1iN/7PYvGb76N/wlprhEY53RneGqqvi8LVJcRrK8iUFvZ8j6/F4dfj9Ly+/0EAoEWiwZAdFSkzi/u9xBmM2Ex60EWN9xwA4899pjBXS6Khi2zK5FnXYUjpx+KyUrtvo3M/N0kdu7cSSAQwOFwsH79egYP1jO/p02bRv/+/TGbzRw6dIiysjLMZjPLli0jGAzSv39/evToQaBsP+bwOAK1xwlUlxPWdTi29E5Y4jL1QWpmfJWHkYAPRTPhP3GEuu2f4aso4Y477iAiIgKLxYLNZuO1115j/PjxLFq0CIDEsbOJPuc6bKl5xE+cS3ldgFv/tpq6hE5YEtvRcOIY5R5h+VbdTxIfH89XX30FwNdff61nhgN9+vRhxowZbNy4kQMHDjBkyBDefVefzgKBADNnzqRtt/7UiJWKjhfg8wfILOhNZGQkhYWFhIeHY7fbjQWoUTIyMli3Tsf3+vbbbxERgsEgCxYswG63U1xcTFZWlhG15XS2Dqv/hclPYe8ChgG70H0Xvw+d+wMwMvTZBrwJ7EFnpGrzQ9r9b3CON5fWqLnJV/9VTFEp4sw9Q3JycmTMmDFSW1srn332mQGrfNNNN0nPnj2lY8eOIiJy0003SXp6upFEFBMTI3/+859l0aJFYjab5cYbb5QPPvhAsrKyZO7cuXLmmWfKrl27RERk9erV4sosCPGSnyWOnCJJu/W9lgQ4/SeF+K0VMafkGefDel3QhETbDDL9Z0HG/a38k3Jqn8NJfOqNKK1mSxP2U2t03UZa3BCGWotrrXwuTqezRR8Wi6UFQ2DzawZvi6oJmlksqfliy+jc9H+jahJz7i2yYcMGMVssYo9NFXN0mqQOmiKKooiIjh2VkJAgTqdTnE6nREdHy4cffigfffSRnHfeeSIiMmDAAGl31eOSMv11MUUkSFjXERJ59lQxx6ZL6oyFknrjQlGdESH/nyJtRk2Xq2c/IFarVfLy8iQ/P1+mTp0qgwYNEovFIt26dZObbrpJLOFxEtZ1uMRN+KPYs7pL7Pl3iikqWSyJbcUUkxbiP3EKmlkyzr1WYmNjJTIyUmw2m0RGRkpBQYFkZWVJfn6+ZGVlyYMPPih333235ObmSvv27SU+Pl5cLpcUFBRIm5w8MbnjdFj5EBKz5oyUAcPGSHp6uuTm5kp0dLTB/5KUlCSxsbGydOlSiYuLE03TxOVySXh4uFx44YWSnZ0t77zzjoiIzJ8/X/Ly8uT3v/+9QRr1rwj/KwmAIvK+iLQTkSwR+WPo3J0i8m7os0dExolItoj0EJG9P0W/P7ecKrdDUVUKLrmD7du3s2jRIhwOB0VFRezatYtXP9/JP2KGcajLVewtq+XtDSWICLfddpuRROR0Ohk3bhwHDhxg+vTpdO3alfvuu4+4uDg8Hg9ffvkl48aNM6I1fNUVSDCAp/gbGg7v5PBfr0E3i+k7U8+uL0O+DsFXst0YZ/VXC0FC2lLAa5yX78sf+E1+WjlF8GAj6iuA3W4nJibG0ACeferP2G1WVM2Eo31vFKsDxWInesTNTe9RUYkffy+GdqJqEAygKAqxsTqab319PRaLxUgs7dGjB+ZQH4qioGoaiknP6dBha8IRAdVkIVB5BE/xJhSTSYciEcHpP8F+iUXsETj7TsSanEOtyY2IkN42hxMnTpCZmcmgQYPo2rUr1157LRs3bjzpu1d7/Gg2F4lTHsealo+n+BsUzcKRl2dw5JUZhPccR/LU51AtVr59+zFmXn4B2dnZbN68mU2bNnH33Xfz8ccfc/vtt7N27VoeeughEi5/Cgno0Dr+yqPUbPiA5CufIfHSR4nodzGuvLNIumwe5shEgllFPProo2RmZvLKK68wfPhwrr32Wmw2G506dSIzM5OXX36Z1157jczMTHbs2EF+fj45OTls3LiRktJyRIKotjAscRmgqGiuKHZV6bAvjSas5ORklixZwtatW/H5fIwbNw6Xy4XFYuHKK6+ksrKSefPm0bVrV2bPnk1ubi6fffYZmzdvxmT6xbmeTxJFfsEWo8LCQlm7du1/rf/WPg7/iaMcW/QHFixbxeguOrzy/v37Oeecc0jp0IWPFr+OLaMzroLBlL33MKrFhuL3oIZCAN9++22mT5+ONSIef1CIzetH/Y7PSIiNZteuXWRmZlJbW8uRI0ew2WxccMEFvL7sCx3K+uBWFKsD1eYM2bd1GPDf5Jcszd9R0+eMjAy+++47vF4vZrPZgEkHMJvNeL0+va5mNsKvMXJ/Gk2nKgbIoqI1O98kjf6O1seNZqlGUR3hKKpGoKaipa9FDcHNB/3YHE68voAeYq6ZiTn3Zjz7v6Fm4/t0vPIRvn3ldjweDwkJCdTX16MoCg6Hg/r6eiZOnMgdd9xBbm4utaoDPyYiz5iMPbMr1Zs+pOLDp0Jw5QoJF92P0xXGfWPyjd/Y98mpAkkkGEBRNXwVJRxdcAfODkXYs7qTld+dGW2P8+CDD1JXV0dFRQXXXXcds2bNYvLkyYwYMYLzzz+fRYsWnVTn6quvJiatHSnTXgDAW7qPsvfm4mjfl+pvlhNuDjJw4EDWrVuHy+UyFoCSkhJyc3O59NJLmTNnDvPmzeO88877Qd/tXxFFUdaJSOHP1gHws6oz/275b5uqRJpoXzNmLpE+962QxesPtbi+b98+0TRNCq57Rg+Lbd9PXCGSG80VI4n9xkl4eLi43W5Jy24vgEQPu1Eiz55qmJwy2uVKeHi4ZGdnS2pqqjzzzDNiMpnk/vvvl7jCcyR6xE26um11nswy14y4SHM1o4htTUj0W/mfK7oJ6dSmLlN8VjPCpJZ1GmlkW5vDzjrrLAHdjKXaXGJJ0v8ftbAYiRt/r15PM0lMQpIoqs5saItJFUBcLpek3/KO3mcoxNwUnRqiOO4nLpduRuvQoYOkpaWJ3W6XsLAwueSSS8Tj8ciFF14onTt3lrmvLpWUC+8RNLOY4zJ1DvMzL5eCOcsk7cY3pdfdH5z0GzuV/OEPf5B27dpJ3759pd+QURJ71uViTc2TsG4jxRKfJZEDL5PYsXeIJbGdjj8Vkya25ByZcPVNEhYWJpMmTRK/3y8FBQWSm5srCQkJ4nK5ZMiQITJ16lSJi4uT22+/XQoLCyUuLk569Ogh2dnZopiserE6RXNFCapJtIh4yRw1XQYNGiTR0dFis9kkJyfHIFe64IILxO12S0JCgmRnZ0vPnj2lc+fO0rt3b9mxY4eIiLzwwgty3nnnyZAhQyQ7O1tuueUW47s+99xz0rZtW+nevbtcccUVcs0114iISGlpqYwZM0YKCwsNrnMREaCSJsrYE8Ak+Ynn5v/64vDPyn964XjhhRekpKTke+s1X0w63PCSWKKSJH3mElHMNokYMFnnx1AUSbz8z5Ixc4lceOGFkp6eLn3uWyFoZom74B5Jn7lE7O1DlJxmm7jdbtE0TcaNGyc5OTk6Q5wzXDRXlMF9rXMPqKenKP2t/H9ZWvtCWi8YjcXg/VZVac1lb2/X55T35OTkGJ+bgyxGnnmFKCGQRkUzi8vlErvdLsFgUERErrjiCtE0TTp27Cjdu3eXmJgY6dSpk0RGRorZYhVF1SR27F2SNuQKiU9Ok44dO0rv3r2lqKhIVq5cKUVFRTJs2DBp166dTJ06VQKBgIiIvPbaa9KmTRux2WwyY8YMqaqqkuzsbDGZzGJxx4hqC5P4ix+Q6BE3iTm+jZiiUsXVaZDEDLlWuvcfFKKcNUtUVJQsW7ZMIiIiJDc3VwKBgIwaNUrcbrdcccUVEh4eLlOmTJGqqirJzc2VjIwMHRwxJk6c2T3EEp8l5ph0PUcrNU+sNruYzWYZN26c3HbbbXLFFVdIdna21NTUyLPPPivDhw+XF154Qa688krx+XwiIvLhhx/KmDFjjLknMzNTKisrpb6+XtLS0uTAgQNSUlIi6enpUl5eLl6vV/r162csHBdeeKF8/vnnIiJSXFwsOTk5IiJCyMcBdAM2AeHyE8/Nv4EcNpMXX3yR77777pTXGsPymsOMCFDl8SPNGdsUFfE1gGrCX3GIpAg7mqYhIk1AiiEzgb1NIYrZStqMhZw4cYI+ffowe/ZsxOJEsbvBGobmjMTdaxyYLCRd9gQRRRP1OPhTcD2otjBUW9hP+kx+k/+cNPogThcJZ07IPuV5zdQyQ/2KK67QW2nlX7nnnnsAkGAQff4PiQTxHt0HgDM8GmdyO+NSIwOd3W7nvufeMM5XrvqbnrEOFPToi8fjoaGhgcsuuwyv18v8+fMJBoMGf42IsH37dkaPHo23wcOjjzxM3d8fYufbj5MYG8WuXbtYt24dbdq0oaSkhFWrVlFcXExsbCybNm3irbfe4vnl65g09Tr2Hy5DCU/gyT8/xZAhQxg6dCh+vw+TXwdTrPzkRWo3f0T00OsJVB+jZtOHlC17gk1ffUYgEEDTNCorKxk3bhzR0dFERUUxcuRIIiIiqKurw2q1kpOTw0svv0xEdBw79h7g4JFjhIVH8tdnnsKzfwO+8gMoZhtms4lHnnyGlOQkHA4H27ZtY8mSJbz11lsUFxdTUFDA888/bzw3r9fLuHHjyMvL48Ybb2yBfXXWWWcRHh6OzWYjNzeX4uJivv76awYMGEBUVBRms5lx48YZ9T/66COuvfZaOnfuzMiRI6mqqjLCeRVFiQFeAS4SkebQAz+J/KoXjv3799OhQweuvPJKOnbsyODBg6mvr2fjxo306tWLTp06cd5553H8+HEWLlxogJ917tyZ+vp6MjIymDlzJl27duXNN99k+fLlXDJqEHv/ci3H3r6PoLee6o3L8B0/zHd/nYYE/AQ91dTv34CimbCHRdL26Eo+/vhjcnJySIqwo5isNBzeCUCgphzx+4j06yiqo0ePZvbs2Rw4UoZ4PfhPHMVfXUbV12+B38uhP0+i8rOXAeFUtKRBTzXB35zf/7Pi8+n+DDW8ERCx5cTvO7KnxbE1owsA/oDQc+BQVLOOU/ZxRSRACz8GwMyZM/VWra6T+ral5wNQe6Kc2iP79ZOa2aCxra+vZ+bk0UZ9c0waJk2fPrat+5KkpCRSU1NZvXo17733HnFxcbjdblauXMnnn3/O4MGD8fv9RvKb1+vF6XSyYsUKnE4n8fHxjBgxgtGjR/Pwww/TtWtXtmzZwsMPP8zx48d56a2/c+dz72JKaEuwvgo1NpvIs6Zy6Gg533yjk0B16tSJ3ItmY4pMoqFkO0dfm6X7OqxOYroOprBQN/vfe++9/O53v6O4uJh+/fpx9tlnA/rGUQ3REMe3LSB28DRSZywkdfrrJEyeR73JhZrZk9KjR+jbqydZESqzpk1haH4SNpuNrKwsFi1axKZNmygvL8fr9bJnzx5EBJ/Px+TJk5k/fz4DBw5ky5YtvPfee3g8TcmYzXlUNE37XriRYDDI6tWrjcCbkpKSEDYZoEM//UFEtvzTRv5V+alVmJ+y/Lumqkb/w4YNG0REZNy4cfLKK69Ifn6+fPLJJyIicscdd8j06dNFRA8XXLNmjXF/enq6PPDAAyIicuzYMSkqKpK0GxdK+swlEjFgsrg6DxVTZLKYolMl9cY3BRQJKxwlitUhYel50i6vi7hcLrHZbPLEE0/I4vWHJKrveJ1G02wTd+/xojkjJDu3QPLz8yUnJ0dXh/teJIo9XFRXtKTOWCSODgMEEFNUsphj03UOBVNTqCStwzZPZc5wRn9vnd/KL6Ro5mbHzXhZTK14VJTWsCehuq1DdX+GojTzoTXSsDYem81mURRFVFWVjh07ymeffSbHjh0TQOx2u3To0EEGDRokcXFxMmHCBHE4HOJyuWTChAlSVlYmZrNZnE6nEcIeER0n7sJREjtmtgG1o2hmUZ1RYovLELtdH4vT6ZTEtExRzFbdJ2i2i2JxSHT/i+XMcy8wwpFtNps4HA758ssvZdKkSXLrrbdKfHy85Ofni6IoMn78eMmd8oDOtdJxoFhT80RzRYnqCJfC2xZIfX29TJo0SWbNmiWjRo2Sffv2SceOHeW2226Ta665xjDXrV+/XkREVq5cKcOHDxcREU3TZOHChSIictddd0l6erqI6KaqRhOUiMjw4cNl5cqVcujQIUlPT5eKigrx+XzSv3//FqaqBx980LincZ4DjgCP/Kvz7g8pvzqN4+0NJfS9/2MyZy1l7FNfEpeUSufOnQHo1q0b3377LZWVlQwYMACASZMm8dlnn522vfHjxwOwevVqtm3bRunfbuW7F66jdssKvEf34uxQRPIVT6Fa7IT3vgBTeDy2iDiq9m9m5+b19O7dm6KiIq655hpGd0nmr48/TJ97l5E+YyF5I69i4edb2L11I5s2bWL79u28+uk2TM4IwnuOAX8DqtmqU786wlE0M0FPDQQD2EO7TYJBwgpHobmiURvht08hUtcsacxkOW293+QXIM3gTHTIdADR2fwAUNDccZij9cRA1RWtmzYBV+fhTeCKob+NHC92ux2TMwI1TA/Zbc4wqDQ3t5rtIU2jJc2wNbMrWkgbUswOw1waDAYNE6/L5SIzMxOLxYKqqqiqSkNDAxERESiKgt/vx2KxYLVaqampITEx0djln3HGGZjNZqxWK3V1dcTGxnK4rIJav0JQglR+8Rr1u79CfA24CkcR9FTjKd2P16uHKbdt25bp06YSHR2jU+M6whFvHXXr3iY7McLYwbvdbjRNY/DgwXg8HlauXInb7WbTpk1omsZHH31EXVxHLLEZ1O38kkBdFYo9jGB9FQd2baVHjx68++67vPnmm8yePdt4PnfccQdLlizB4XBgs9mYNGkSABMmTDDGaLFYuO222+jSpcsPAjBMTk7m9ttvp0ePHvTt25eMjAzCw8MBmDdvHmvXrtU1rdzc5pS18cBgRVE2hsrI7+3ox8rPuSr9u+XHahyL1x+SnNkftEjYs8SmG1Eac+fOlRtuuEFSU1ONe/bs2SNdunQRkVNrHMeOHRMRkXfffVf6DRkl2bctNdqPPOtKCe8zwTgO7z1eYvpPFHdktLRt21b69u0r+fn5MmjQINmwYYP07NlT8vPzZfTo0VJRUWH0ccYZZ0j37t0lMTVDHG26SsLkeXrEhqKGQA7PFcVkldQZCyV62A2i2N2ihTVpEM78wXpCUqudZ6PzHRAtMkksie30HWIzJkFAMNsFQlqLudmu9jcn/E9fTtISTlVOA1R4ut2/1SHmmDT9PkUVTOYfN6Z/No7W4z2NdtuctTIlJUUWLVpkJMGpqiopKSkSGRkpDodDrFarmEwm6dChg9xzzz1isVgkI0PXHPLy8iQxMVFA1wxMjnBRTBZx95kgEWdMaUpKtDjEFJ0q1sgE0ULJkyaTSc455xwZMWKEpKWlSX5+vgHa+Pnnn0tysg78KaIn14aFhcmGDRskKytLBg4cKCL6zt/pdEqPu96V8L4XSkTRJcbv2xSVIt1mvf5P56Dy8nIREamrq5OOHTtKWVlZi3nE6XT+qDlNRKS6ulpERHw+n4wYMULeeuutf1qf/5UEwF+KnAoiRESYu2yncRweHk5kZKSB7//KK68Y2kdYWBjV1af2EfTq1YuvV/+DunIdhivo9aCFxVK3ezXi8yBeD969X3HR2YXUVlWyYsUKFi9ezK5dOvjgxIkTAd1huWrVKi6++GLWrVvHkSNHWLt2LZGRkTh7TSAYCHB8xbOYIpNABEe73tRu+wRBQTXbCNRVIvVVODroY0ZRqNv5BYGqY6EdYFO+QP3edU0kQAjew7v1sbcme/LVY+QE+HzNLsgPeOq/yT+V1kEMp8i3AFolfTV77s345I32VFOTn0JR0EwW9PlCQASTM7qJQxywRCXSSPTUROREKE9DlybHfKsxN45XNbe8pmgQYgbMy8vDYrHQtWtXXC4Xhw8f5pJLLsFisVBXpzNVLlmyhOrqagKBAJ07dyY1NZWysjJefvll/H4/VVVVxMfH07ZtW/x+P2azmTZt2uCvr0Z1hKPanNTv+Rp7dnf9+wf9+MsP0nD8CIqi6EmNqspXX33Fp59+SpcuXdi0aRORkZFER0eTkZEB6BpRfn4+F110EW6324CBby3Tz2qLSVVbaGWqpnFVv/ST6ja3chRccCOZ7XLp1asXBw8eZPfu3ads/8fInDlz6Ny5M3l5eWRmZjJ69Ojvv+lnll/VwnEq+tdTnX/ppZe45ZZb6NSpExs3buTOO+8EYPLkyVx99dWGc7y5xMbGEnnOdMrenct3z1/LkVdvRlE1XHlncfjlGci7vye+cBivfLKVsDZd6N6niLFjx5KVlYXX6+Xo0aPk5+fzzTffMHHiRFasWMHAgQMJCwvj/PPP58iRI+xd+gyeg1vwHt6N+L2YIhOp2bScYEMt+D0UPzyG2m2fASo1Gz8wxmaKSQPNjCkmDVtml6ZB+zxI3QlQVALHD6NPSK35HFpnqQqEnKz/cQTYX6OcIojhVHJas0VzE6PRnjRlkYvgr63EH8I0A/CfOIL4m9BxvVU694v4G1qgCDR/v77mGwZjzIIzMqbluWBonBIAEQ4fPsyWLVvwer3s27fPAAb0+/2kpqYyZ84cA0gQ4Oyzz2b16tVMnDiRxMREHn/8cRITE+nVqxf79u0jOzsbn89HZGQkt9xyC6rZiiksBt+Rb/FVHqZ+z9cQ9KM6o1DMVrKysoiNjcVkMvHRRx/x9NNPk5CQQJ8+fTh69CiBQACbzWY83+TkZDZv3syCBQvIzs5GURSGDRvGwIEDAT05s23btlxUlMPZHeIIb8bJE++2MbhjQovX0ZrM7diOtVjG/B93v/g+Xbp0aeH8/lfloYceYuPGjezYsYN58+adFC3335Bffm77j5CkCHuLDFJTeDxJl//ZgA65+eabjWvNAcgaZezYsYwdO9Y43r9/f4vrWQW9KEk/eYeSNuACGvxBXdtZ8w4Sm03EGXPo3z2N5x+6m+/8VmobNvPO0r/zdUEBxcXFZGZmUlJSQnl5uRFdYY9Mob7CDygEao7jaNsDz4EtuHuOxVdWTOSAyZS9/xjWxHZI0E+woY6Gku36pKGacHU8k+q172Bv3w/P/g2Irx4ETFHJ+CuPQMCHFpWsk0A1SuNEoJpCnwV8v3GS/2KkeVa4yWJwlmtRKfjLDkLQR1JSkuFjMMdm4jvWCtHH/y++T1WjLhTe2VxTUjQzLpeL6hPHm6qqKmPGjGH+/Pn4/X4DMXbr1q0EAgFUVcVkMhkavaqqtG3blqeeegpN03jppZfYtWsXfr8fq9VqREBZTCr6UilE9L0Q1eKg7P1HUc0WgqpGbm4uL774IklJSUyfPp2RI0fidrt56KGH+PDDD+natSt79uwx+mwMV20uc+bM4bLLLqNTp044HA5eeknnnMtJdFPYNombbx4OQN6rTdNlo8mmuZUj2FCnk7mFiNu2n2KO+bXIr2rhOBUU+akoX1vL/v37GTp0KN26dWP9+vV07NiRl19+mX/84x/cfPPN+P1+unfvzg1TZ3Pnkl3snjeJxEmPojnC4di37Pn4r8SM/z8qv5hPw+HdNBzYjLf8II+vSKR6w/uotjCC3gbUbpey48On8TZ48Pl8ZGZmcuLECfr378/f/vY3kuOD1NaHTGWKird0P9aUDtTt+hJv6X6ieo7Fd/RbiGtDWOFIard8TNTZUznxjzfwHdtP5arXUFCo3x1iFQzF2SuKiuoIJ1hdRrC+umkyUjQURzhSX9m0gPysUCa/waT8aGlu2gotGgQD+MuKjffbXDtWHe4f1KzqjiNYVXqKKy1hUho5XyIjI6msrETTNILBAEG/F4vFwrhx41iwYAGBQMDg4jCZTAQCAR5//HFj0bjkkkvw+XyUl5eTkJBAdXU19fX15OTkcPDgQeLi4khOTsbr9RrmLQCzphJQFcwx6Rz/9CU0exiKyUJ40SUkZ2Sxc+n9tGnTBlVVOXz4MF999RU1NTVYrVbKysooLS3F5XKxevVqoqKiKC4uxm63c9VVV/HJJ58wa9YsUlNTefttHWF6zpw5LF++nGXLlrF06VIaGhqorq7m7rvvZsmSJQwZMoSePXuybt063n//fb6Z/394j+wGFJx5ZyLBIIeevoKDvnocZjPXX3+9oc01WjI6d+7Mzp07+fvf/26Yyf/X5FdlqmpN/9pI+doc86ZZnHML2blzJ9OmTWP79u243W4eeeQRJk+ezIIFC9i8eTN+v5+Sf7zLfWPyMamK0f61Z2bjDzSZI4K1x3H3HIOvdB+12z5BUTXMUUkoZiuly57G6w+gWR3Ep7Vh27ZtHD58mOXLl6OqKn95ch6KouqRL64o/GXF1Gz8O4HaSjSTiYPPXoXUVlC/dy3HP/4r4m+gev0SfGUHdFOCz4MEGkB0W3ej+MoPhBYGBUVVUJwhu7kEkNoKYwICTplY+Ix4qcYAACAASURBVNPJ/7+LhmI5DbdCMxv6SdJoRgyZJiJi4pquNZI6AZWVTeashuKTgQVPJS0WjRZjaPaOgk3mM4vFQseOHQ1crfr6ekSEs88+m4EDByIiZGVlMWHCBCwWC3/7298wmUzccsstBAIB/vSnP6EoChMnTiQhIYEbb7wRs9mMz+fD5XJhs9k499xzmTJlCtHR0SxZssTo+6kXX0fKD+DMPQNFs6A5Iil/by5Tz2hH9+7daWhoIDs7m5SUFEQEu91OdHQ0NTU1iAg7d+5k/vz5PPnkkxw/fpxjx47x8MMPA3rU5BtvNCU2vvHGG8TGxrJ7926+/vprNm7cyLp164zIy927dzNt2jS2bt1KWVkZJs9x3apx+ZOEFQwh/oK7MUfEUfC7eVRXV/OXv/yF9u3bExMTw8aNGwkEAtxzzz0UFhbSp0+fH/Sufonyq9I4QF88fgg42j9j9ps4cSL33HMPmZmZtGunZ9FOmjSJJ598khtuuIGEcBurbz+ThIQE1q5di7VZ5q49uycR/S4iot/FVH4xn0DNcRpKthM1eBqVn7yIv+IQgYCPfbt3oqkqZrPZ4FBYvHgxBQWd2L9/P5WVZdx9991s2bKFI0eOsGnTJk6IEB4eTp3mouH4d/jKD6IoKgT9KHY34q0HCaKFRWOKSqah+BtQFOLH/5HKL16lobYSCfgRTyWK2WbsJluIBMHiBG/tT/NCfhMA/d00iqI0LewB36lvgGb+hNACUXYqDeEHSvM+oSWYYbMFQj8PEMSc2A5TWAz1u74kMTERTdOIjo6mT58+bNiwAafTiYiwYMEC4uPj6datG+6sLvgt79D/hsexdxpKwcgrjN+aNWcAj7z5CQN7DOTee+/lscce49xzz8Vms/GnP/2J8ePHIyJs2dKUs3bppZdy6Zn5TDuwgaAjCtUehtWkoWl+2jrqOZqdzaxZswx+77i4OJKSkgCd06Kuro6amhr69u3LjBkzuPjiixkzZgxrjynG7//o9v08v3wd3eJNREZGsnnzZpYvX06XLrq/sKamht27d5OWlkZ6ejq9evUCoE2bNtg85ZxY8QyWzEJsmV0IeutpKNnB8fceoPNHjwC0YGPcvXs3t9xyCytXrmwZkPA/Jr+6heOHSKND68gXb1C34wsOeesJ1FTy9oYSOkf6uPzyy+ncuTPl5eU89NBD1NTUUFRUxOeff84NN9zAkSNHeOaZZ7jrrrvweDykRtkJmDUqAcVsa9GXv+Y4jna9cbbthe/ot9Tv+RrF5qKh+BsC6JFcZrMZzWTmjZUbqDr4LeKrx+EKY8OGDRQXF7N582Y0TUNRFCoqKoAKGp3cjVOBI6sHtTs+g0CAYG0FvobGiV84+vrtqM5QNrGnBlCQ4MnOWAM11Vt30rXf5BRyGta+00VOGSL/ouYVgk9vbfKTH9Je6zrNxx26piiq3mqo+WDtcRpC/rCNGzcSGxuLx+Nh06ZNZGRkkJeXx9y5c5k3bx5paWnYk9vzzPOvEBCFyn+8QY07jlsWfqO7zYKComrUNfhYsaOUt9YdNHIbGsXpdJ7SBwFA0M+lowcbuQpz5swxYNubkx41ZlPbbE2/wzlz5uByuXjuued4//336dq9F67RdxEM1xcYS9s+3PbwcxQlmxg/fjzFxcXcdtttTJ06tcUQ9u/f36KvyMhI9mzfwj1Pv8ZzL7xExY7PyR1zPTUREezbuZXWUlNTwwUXXMBf/vIXI4P+f1V+VaaqHypzl+2kYtca/Me/I+HSR4gbdxfireOmOQ8CuupfWFjI/v37KSsrA/Sw3fDwcLxeL/369aNHjx4ALFq0iBiXlfvG5BNm0yMwIh3mUz7YYEMditmGJTbDMD8kJSXRc9AogijUVh7DmtoRUVQaFCvv/H0FW/YUY7U58Pv95OfnM2nSpFDopoCqU4sCSMBn2MBNqqLDdEtQN0NJkGBNRbORCAROXjjEWPR+ZSYliyP0oVk0yknRZKeXU5mZlNaYYI19fN+i8SOk9SZEC4sOffoB70fVUEJjUs02I5G1uVgsFlwuF2PGjCEpKYnY2BicrjA0qwPF4iBzyOVcdNX1rFmzhgEDBlBaWkpRUREiwsqVK3nyySdZtWoVH374IevXr2ezuxdh/S5GtTqIH3+vnqBXcwJfUAjUV6NYHdTtXs3xNe8xYWBnfD4fb7zxBi+//DL19fVs3bqV+vp6vvnmG3r06MFdd93F3r178Xq9iAivvvoqnTt35oEHHuCJJ57g0Ucf5emnn2bv3r0cO3aMsWPHIiK0bduWVatWAdCvXz+efvpp5s6dS79+/UhISCAQ04aao8XGc3DkFHFiyycsfXcx48aNY8iQITz//PPGIlZSUkJp6cnaXllZGcFgkAduvopPFzxDlnqMr+acS07bLN588039TYkYkCiXXXYZU6ZMoaio6Pvf3y9dfu5EkX+n/BzouE6nUzJmLhF39/NEc8eJOS5TzNGpgqqJJbG9tGnTRtxut9TW1spHH31kMHhNmTJFioqK5JNPPjEY/xoZyAYMGCAiOoTA3Llzpc99K/SEwL4XiqvbSDHHZkjqjEWSMOlPOtxIYwKepsmyZcskutNA0cLjJe3Wd8WW0aUJWkIzS0T/S8Ua30bMVpvEJaVKRLvuAogWnSYx580WxWIXLSxGzHGZp0k40xO2wgpH6tDSbbo3XTOZf3SyWVP5V+87ubh7T/jBddUQUnDz0ph45up6rj4uk6VV4ppy2uQ1xRHx/f02suspass2mrPu/QCYj9Oh1p62aGahxT2nub8Zau3p6jfv22w2i6ZpMmzYMOnWrZtxvn17HWa9R48eoiiK5OTkSEZGhuTn50vv3r1l7dq10qFDBxk/frx07NhROnXqJIsWLZKNGzdKly5d9N9SXKbEnT9H0mcukehhN4o5Jk3MsRnizDtLEi59RB+LLUywOAV0CPg//vGPYrFYZMCAAXLRRRdJQUGBiIg8+eSTEh4eLjU1NTJv3jzJzs6W/Px86dChg3Tr1k3mzp1r/OYakWKPHTsmBQUFoiiKWK1Wadu2rdx1113SqVMnsVqtkpubK84O/SXtpsUt2D3NMeliS8s35onHHntM8vLyJC8vT3r16iV79uwxoEUapfF7N0KjvP/++yIisnfvXhkyZIh06tRJOnToIHfffbfs379fFEUx6hYUFLRINv4phf9AAuD/F0ROzf0ZBx49n/zb32HvUp08JqzzOfhPHKV04d10v+kFFkxsx+DBg9m2bRugA6L5/X7mzJnDGWecwUMPPWSECp5OMmctbbEnPPHlAmq2rEBzRKC5Y9HccdRtW0mnvI4c3L2VsorjqHY3mjMC8XqwJLWjbtunaG4d3iFYf4L4ovGUff0e/trjoQ2noLmiCdSUo4XHE6gpb6lFKKpeQiYpxebSzVQGOdApIpx+iJnlPyVmG5zCB6PY3UjrBMZGMUKKQxL6rqotzAB/tKZ1ouHQVlSLQ8+PQTDMOIqKOTYDX2nLcFbNHasnWBpjakai1CxE9l8WwwT1z+qY9L5+lBmx6R1brVYURcHj8RjJco1ml7q6OqKjo8nMzDTMPFFRUZSWliIiZGdnc80113DnnXcaEUvZ2dkUFhby3HPPGb2dilCpufhPHOXogtkkTp5HalwU6Zue4x//+AeLFi0iIiKCMWPGYDKZ8Hg8RkJkRUUFy5Yt46uvvmLt2rU88cQTQJP5qTHEvtG34fF42Ldvn25G2rMHr9fL/fffz0svvcSKFSvIy8s77TiTI+ysmnXmj3i+v0z5TxA5/epNVa1h0EWg1usnrE03ajZ9SLDRaRkMcGX3aOLj4yktLaW8vJyGhoYW0R0/VFpTzob3GU/yVc+SMPFBYkfegrvLUDSrkzufnM+ll15Km5HXkXrtKyRNeZzkqX8hsv+lqM5InB0HkPK7vxI16HeUb1qJYne3QDYNhCbQQG1l08SjqESedSWm6FSQoFFfGiO/jMXlFBuGH7tonCYCS7E6Tnn+R8lpNjStFw2bzUZCQgKK2QoSbGmCMllANYUWCN1M1VCyvSmKzGTBntWjWeNBfdEwWVp8t0DVMQA0VygZrnmWt7FonC4p6wf8xE6zaKhas36kFRR6Yx2bC2tqXvOb9D/OSBwd+mNLzkFRFOLj49mwYUNTNVWlqqqK2tpa/H4/9fX1HD16lLS0NHJzcykpKSEuLg6r1Yqmadxxxx1069YNn8/HpEmTKC4uZv369Vx//fWMGDECgNR9S6hbu9jo47u/TsN/4igANVtXUrroXvxVZRx+4XpKnr+WpUuX0rt3b7p27Yqqqvj9fkSERYsWGYivBw4coEOHDt/7CD0+P/ax93Ms9Qxi+5zP0x/oLHzh4eEsXLiQQYMGkZenP6dbhrTHbm4JRf9DwvZ/kyb51S8cp4Ih8QWEuNweJHU7myOv3MzxxfeSmRxPUYYLs9nMnXfeSY8ePRg0aBA5OTk/us9T/WO2FkFPHhoyZAjank+wij4B+avLCNRXoZgs1O34gkB9Fa78s4ib8H8kXfYE4m/AHN8Gxeo0YCUUTQNFRdU0kCDHV/xFj/OHpqgdX2in2ph1anVysvy4jFRzXJtT3iMN/6pzvVlbrZLW1JCfQbG0XJQCgYD+fkX0yTUUdmy0oSiYopKavnfAB6pG0FcPPg+eQ9tOHobf1wy+pVlfx0OJk6HFQm0NT94Y1toiszdonNeiUpgw9aYW16OHz9CvNy5UqmZ8NjeL1rNEJRughc39K0Gf1/CFKKqGSQvRvYpgES+ekh0oisrRqgbye59p+Gsaw9JjY2NJT09n+PDhTJs2jZgYfXF88cUXiYiIYPLkyQb437p16/jzn//Ma6+9xvDhww3InEbJSXQzLD/RCIdvfH6+soPUbf+M2NGzMEcmEt62G3+YPYvzzjuPMWPGtHiEQ4YM4fHHHzcc/o2LXWs4oObHb28oQUkuYMfHbyBAdYOfG//8Nm9vKGHWrFnEx8cbQKfww8L2f5PvkZ/bFvbvlJ/Cx5HRzI7ZvGTMXPJvt90o+/btk/bt28tFF10kOTk5MnbsWHl91W7JvXyuWOLaiDkmXZz5Zxt2Vc0VLaaoZMmYuUTWrFkjWVlZkpbdXkzOCFHtbrHEZ4mjQ3+xZ/cSxeoQxWwVU3i8ODr0b2ZTt4rqambv10whuk/dtm3AXods8orFYRwrZltL+3xjaayDIqCI6ogQxeYWVW1m11daAt/Zs3SfieqM1NsNndfC45vs61Zni36iR9wkis3VCkRR902EFY5q8iMoipgT2gqKItbYdFFUVaKiomTPnj0SERFh2OsboeVVW5hOnxvyN6iOcHEWDBXVERH6voqYolL0Y9DBHZuPofV4Tud7MNmafByG/6M1IODp7zfFZLTwY7Q4DvkjrFarWK1W6d5df74xCckt3oEpsgnGvLmPo9GXYbFYDPA/1eqUyEFXi2J1GPVUW5j+zFRNVFWVyy+/XIYMGSK5ubnidrvFbrdLRESE2Gw2iY6OFrfbLe3atZMrr7xSTCaTXH755SIi8vLLL0tCQoIUFhZKUlKSTJs2TUREPvnkE50eNjpVNFe0qM5IMUWl6M9FM8vYsWNl6NChkpKSIgUFBbJ9+3bp2LGj1NXVyVVXXSV5eXmSm5trwJGXl5dLYWGhFBQUyOuvvy47d+6U/Px8KSgokLyrHpWU6+aLI6dIfy6qSZx5Z+qMmyCxsbGSmJgoBQUF8s477/xkv/tfqvBLBzlUFGWuoig7FEXZpCjKYkVRIk5Tb7+iKJtDEL//vtPiR0hrs9H3nf9XpXUC4e6PX6dq2Z/Y/PkHdL/peQgGqN7wvl5Z1Ui4+EFjDCkpKRTv3sHvb55O5w7ZvLz473S+9C4s8Zk4opO55ZXPSb76r0Sfcz1qWCzxFz2AYrIQrCnTd5Ah84wltSOgYEnMJvb8OXpfIfNNEzw3SDDQ0jzSuNv11tG4S1TMVh280e9BVVXatGmj1zFZMcWkNrWl6NDbwYY6JOhHCfWjmG1gsqCYrNjS8pt8LoBn33qkoRZMreLY/V5q1r2Lpmk6k6Gi6qYjRcXv86I6o+l7zlh69OhhYAAFg0HCug7HHJMGJjOBuuOoLj36SNEs1G5ahiU2HUtie5z5ZxP01KBa9eduTcgmZvgN+ndWzRAMkDj5T+hZwGeBqmFJyQUUtIiQOcxsBb9H1/jMNqypefp3VlSQAIrJirvzEFKufw01lGhpTc3DWTAk9K40VF9tkxbiCCf58iewtSkERSV62A3EdBmEopkRETweDwMGDMBXX4OmaVitVlJTUoiyayiaCcVkQQ2Zp1JTUykqKsLhcDBmzBiOHDmCarFhDcHkSEPILKuZ0VxRgIItqxDNZOKVV17h66+/Zv/+/QQCAR1SpLqahoYGYmJiKCgowG63M23aNDRNMyKOnnvuOTIzM1mzZg0XXnihEU300EMPYXG4iRs3h7DCUTjzBhIz7AZs6Z3oc+/fWbhwIenp6dx3331s3LiRnJwctmzZgt1u55lnnmHz5s1s3brVMBVHRUXx9ddfs379esaPH0+7du3YtGkTGzdupCayLZojnNhRM0m+6lmih16H98ge1jxyOZMmTWLatGnMmDGDjRs3MnLkT48w/v+l/DurDjAYMIU+PwA8cJp6+4GYH9v+T6FxtIZaT5+5RHJmf2BArf877Tbyjne9db7EJCQZ11asWCFnnHGGFBUVGXVTL/4/sbfrrWsc7jjJnvG6LF5/SNasWdMiKmvOnDlGO43Hne9eJukzlzTtaFtEBynG7lZpFtmjNCMDius3oQXxjtKMEKjxvGJxiOIIF1RNwrqOEM0dK5aYdLHa7GKxWCQyMlIUVRVndg+xt+0t4f0miuoI13fpqklUV5QAYk3NC+3GQ/1bnZI6Y6HY49LFFh6ja0O2sJZakMVhaARut9vYJaOZxJbVXVRnpFjTu+j3qJq43W6xWCwSHh4umZmZYnZFSso1r+jjcEaJJSlHUDWJ6TlaFJNVUq59VawpHcWS0E7C8s+SlMl/ElAk4ozLQnDZyaI69fGrLh2u3hSVKiiK2Nv2Es0dpz8bEGumHoU09fF3RLXYRQ1PEDSzXsfikAEXXSvp2Tn68whpMKrdLeF9xos9q7tYI+Llub+vEcVsE3N8tqCo4u4xRsK6jRRMFokedoMkX/eq/v1Vk5hj0iQsPU9sdofY7XYpKCiQYDAoVqtVzBarqJYmbaNzr/5iMoX6VFVDU1SdUeLMOzuknVjFmtbJ+J+xJOeKK72jKIoisbFN0PyKooimaWIymcThaNJUoqKixGq1iqZp0qVLF+N8bGyspKWlid1ul9TUVLn88ssFkPDOQ8QUmyGm8HjR3HGiWh2SmtVe/vjHP0pkZKRkZGTIRRddJCIiDz74oBQWFkp+fr7ceeedIqJr8+3atZNLLrlEcnNzZf/+/Sf9FhujGFuXPvet+Ld+4/+rwi9d4xCR5SLS6G1dDaT8O+39HPJz2DNbO9yPVnmorPPz9oYSo05ERJPyNbpLMlf0a4PdrKEAZpOJ3w/LYXSX5JPQM7dv306nTp0oKChg8eLFrNtVwpbHplDyzJW681o1Y4psljxkMmNrq2eyiqFFKPTq0RRU4d/5iaFhqO44HSVV0VDtbhTNjGJ1oWgm1GAAW0wq1Rs/QDw1JITbcDkdpKSkYDabkWAQ36HN+A/vQHPHENtpAIkpqaSlJKEEfFhT8wzI9tjRs3RyIV8DBx+9AKpLCSoamivKyFhvRHBVjMgmobCwUEf/NFuJGTULz7dr9ES0wztA0RD0/IPGZDFN05CGWry7V4EECdYdx/vdDggG6Nc+gZ79z+TY/Jvxlu7FHpWASVXxh+znAL7KI6CasMemEBEVi4qAZibo0b+HOTqVQG0l4tETKq3lOkz2fRcXUdinPx3G3YxqstDztr9hN2tMHFjAyuXvE+5yYk1qT/wlj2BrU4gpIpH48+/CFwjy9OfFmDSF1N4jUK1OYs68HNXmxBKXRdWat1FQUF2RKGYrEf0mEjnuHryiUl/vYc2aNXz88cfYXW58Xi8ihAIgFHaUlBsosDExMSQlJenkX/Un8JZ+CyjgayBQU4E5Pgs0M77yA9QU68lqjYRKI0aMoEuXLrhcLvx+Pz6fj169emG1WqmqqsLpdBIIBKioqMBsNmM2mw3YExHhyJEj1NXVkZGRQZeUMAIVJYR1HYHZZMKqqcSGOznzzDMZOXIkc+fOZf78+SxfvtyA+fj2229PC/ORnp4O0AKu4zdn939efkrn+GXAB6e5JsByRVHWKYpy1T9rRFGUqxRFWasoytpjx479JAMb3SWZVbPOZN/9w1k168x/2wl2Koe7v6qUO599C4DXXnvNSCBsRObcu/oD7rzyfPbdP5y+XToQ79XRTBctWmS0UVpayvvvv8+oUaP45ptvGDp0KMs+WIL4GgjrOiJUK0jMubdgmJRMFjx7Q9a/YBMctp5hrsvxsqN6giAgjeGcEiBYX0Wwvho16CVYX0XAUwNVR8huk0nQW8+hfbsNbJ/Y2FhsNhteTz2+muNUvP8YZWuWkpWWTHp6OoH6ahoObsFXrjuQK1b8RY+ACvpBggQCAbwnSvVIsMbIrtB4xe+jMZN55cqViAjBmgrK3rpXr6eZdWgVCWANj6OmpoYTJ05gMpnYv38/fp8X+75P0awONGcksV2HoJnMNBwrZuw5Z+KpOExufgERvcbiHjrdeEa2lA7U7ficYHUZnmMHOXG8HHt2d+LH30Ps2DtBUXF1PgfVbMHtduN0Opk6dSqKojB48GDiXGbMa1/FjJ9jz19NXW01R48eZfv27dRWHEWtKKZy6Vzq93zN8U9f4tiShwnWVnDo0CF8Xh/VXy1E8dVR/tmrqBa77rAHSp69Cn/Fd0hDHWVLHua7568LmZuEbt26MWXqNGr8KqgqmG262Q/Bc3CrEVV15ZVXYrVa9fcuom8QHOGgavgrDuE7ukcPFBDBEhFPVFQUx48fJywsjN27d3PjjTfy0ksvkZeXx8UXX8zVV1+NxWIhOTnZyKgeMGCA3ocImqaRmJjIDTfcQFJSEjfeeCP79u1j7l0ziY4M5/nrR/DBovmcOXAA69atM2A7GmX58uUGzIfH42HHjh0Gl0VzmI9G+fLLL43Pvzm7/wvyfSoJ8BGw5RRlVLM6vwcWg54Xcoo2kkN/44BvgP4/RB36ORIAfwpp7XBPvvqvYopKEWfuGZKTkyNjxowxEgg7d+4seXl5MmXKFPF4PCIiJyUQduzWS7reOl83X4RFS2qbdjJo0CAZe9l1IbOU0tKZfUpmPkVUZ1My2+OPP35q52yzexWbyzBZaJrW5ATXTIKiiiO+jaRmtZPU1FSDyQ2QyMhImTBhgnTq1EkKCwvF5XKJyRkhri7DxBSRKKiamJNzJfWGN0SLSBBNM0lWVpaYnBFNTmOTRXcomyzi7DREQJH/196Zh9dw9Q/8c+6Sm32TTWJJYgkJiSViJ0ql1tLSUm1FF6WK0tLtV6Xby2upapXXWkVbrdZOqRJL7SKCIoJYIiKRfb/L+f1xk9skEksp0c7nee6TycyZO2fOzJ3vnO9q5RMoHXwbSxsbG9mmcw+pLg6UVNk6SV2tYKl19ZFh4V2li4uLDAgIkD/++KOU8s+qagkJCXLlwQuyzX9+k65dXpGOfiHSt36gDAkJkaHvrKjwemlca0ibeq2lbcMO0i6wo9TVCJJad1+zkVWjk1pPf6lxcJP29vayevXqMiUlRdrb20u1Wi3nzZsnXV1dpYuLi+zTp4+0s7OTQUFB8ty5c5Yx9fX1lXY+5sqLXs9Ok2pHD+n2+FsSIf5ULapU0qZuq1LG81rSa/BM6dT6aSm0NjeoHq39Q/9U86m1fzolqLWW+6Sk5nfJp8Yjz5kdFkrXqFdrZc1B/5G+9Rparr9Op5Pt2rWTOp1OOjk5SUdHRzlixAg5atQoqdFopJWVlfTw8LDcB8uWLZPOzs5SrVZLGxsb+corr8g6derIF154QQYFBUl/f3/p7u4uCwoKytTellLKwYMHW67h2LFj5dy5c8tcz+zsbNm6dWtpbW0tGzVqJFevXm3Zt6TNlStXZPv27WVISIilvrnBYJCDBw+WQUFBslGjRnLGjBlSSnO1z4iICNmsWTPZrl07efLkSSmlLBOUZ21tLaOiov62Z8f9gKqgqpJSdpFSNqrgswZACBEJ9AQGFXe6ou9ILP57rVjAhFXU7mFBc24XVxa9xpVFr5G6fjrG/GxzAF5mEvb29owdOxZbW1s0Go3lbezIkSOcOXOGBg0asHDhQgACAgJwqBvKueQsjs4dg9QXIJy8yHYNIBcdv5+8VGzcVqN1q118dIFtYIcKeiUx5f+Z52f37t2W5W7duv0Z31AqQE4a9Iji+uNGkwnPLi+htnMBkwRpIi/lApfOxnE5MdHiYw/mlw2VSoXRaOSPP/5g8ODByMJc8s/sw5CRBCYjUp9PRtTXGDOSMZmMJCYm4mhrjcrWEY1LdXPaFZUalcaq2NdfUpT4B9kX/6CoqIhjB3bi5GB2vRVaGxzdvKhXuwaN69SkXr16ZXIa6fV6GjVqRLMWrXg6vAkHp0WSHvU19l1HYv3UdJp06sWZnavLjJZQqXDr9SY+L8/FMawPeSd3UpRyAVNRHgiBU6v+qG0c0Cefw5CXQU5ODimp19m0aRPr1q3DaDQyfvx48vLy8PHx4fz583h5eeHu7k7Hjh1RqVSMGDGC8+fP49zrLdROnuh8GlBj+CLyzx4CKVE7euDu7o5aCPLj96Nx8QEhUOnsubp8PJkHfgaVwC44ArWDG46t+oMQFCTEWHKPqaztEFa2CJ2deSZXrJKcM2cOQ4YMoUmTJkgpGduzKWGB/oSEtQUkWg8/rBxceL6lN1cvnWfRokVotVrs7OxYtWoV+/fvZ8yYMeTk5HD27Fn8/f3x8fEhODiYFStWYG1tTc2aNRk4Cen4YQAAIABJREFUcCBDhgzBZDIxc+ZM5s6di6+vL/369eP48eP07t2bwMBAdDodN6OiNB9ZWVn873//o06dOmzfvp033niD8o+Yb7/9loiICGJiYjh69ChNmjQhJiaGxMREjh8/zrFjxxgyZAgAQ4cO5YsvvuDw4cNMmzaNV199FcASM/JPyFp7v7irJIdCiMeA8UBHKWWFzvtCCDtAJaXMLl7uCnx4N8d9kJw4cYLc/T9Q+7nJ6LX2GPOzSd0wE42tI8vW/UazakYiIiI4efIk06ZNY/bs2bRt25acnByuXr1KfHw8P/74I4sWLaJeUBPWHkvB/Zkp5BzdTNpv8zCkJaJ39eaU3oeMmJ9BaFDbOuE18FMufT4AkOSdiKqwb0JrhSw0C4bNmzdb1u/Zs6dsRHUJhsI/Q8qkJGnrQrOtoThDqsdTH5K6diqmvAzc3d2pW7cuUVFR6PV6fv31V3JzcykoKOCnn37CZDTgbK0hs8jaXEzo2nlkQRqOjg7o9Xo8PDxwdXUl9+QphNbZHHctwbZBB/Rpl0FthZWnHwGPj6SncyLr1q1DSklG6jWuXzjF6tWref/991m16gwNGzakZcuWABw+fJj69euzb98+Ok+LIvqLV3Hr9Qap66ejdfYiX28k6nQKDtaVZyK1rhFE7bfKBnoaMpNRHVxFjVfN6y/OfBqnFr3Zcew8HidPYmNjwwsvvED9+vUtqptPPvmEJUuW4OHhQVZWFjVr1iQyMhKrdCdUWh3pUV+TH78ffeY1sxqsYQfyjm3AycmJtLQ0hKEQYW2Pe3A4ib+cRGXjhDTqKUg4gq56PVTWDmZvK0MRxvQSe5rAlJtmDlpEUhItPmrUqDJBde+++y4FBQXmzLFSQvplEIKvPngdW1tbpk+fjrW1NVlZWbRp0wYXFxd+++03fv75Z3bu3MmZM2fIzMykXr16wJ+FmOrUqcOVK1eoXr06Vlbml5APPviAF198kffff5/w8PBKx700ee5BXPMIxdWvEfq8PB7p1ps1Pyxn6tSpxMfH06VLFxITE0lOTsbL688qfC1atOCFF15Ar9fTp08fmjRpgr+/P+fOnWPkyJH06NGDrl27kpOTw549e+jfv79l339i1tr7xd3aOL4EHIBfi11t5wIIIbyFEMW+p3gCu4UQR4EDwAYp5S93edz7Sumawr3emUubLj2Z+mw7fJxt0Ng4YLh6Gh+Pakwc0oPevXuTlZVlSeU8ZNhr+Pd6jYbjf+Lp+Qfw8K5J48aNWXs0iVStB7rawQgh0FarAVJiUzeM/Li9ZBxcU2zslhjzM0laNs7cGbWGPzOblg1Qc310uGW59Bu5+S3tz7YaF3NWUKHR/emKq7VBZets/m5h/u6sPSuwb/IYYE5L4ezsjEqlon379mg0GsuMKi0tDSsrKwYNeApTUQFbvp2Ls4Mt+bk5GI1GCgsLuXDhAiNHjsTTwx1DWiKmlPNgMpBzYrvZ5dZYhD79Ku2q5bJlyxYMBgP16tXD2toaJycnFi9eTOPGjcnPz6de2CNsO36JAUOG0bpTBFdT07CzsyM5H2zrtzbr+kuRla+nbZ1qFgNqSWXIO0Ft54y6RmN+WLGCFStWUL169TJvyYcPH2bp0qVs2bKFxYsXlylGVN/LHmkykXdmL+5PfYRQqRFqLXnnolHVakZ13/qo1WqmTHoXUZjLrtlvohIqhLEIu4C2OIb2Jv9cNNKoRxr1CJ0ddsGPWs7Fxj8Ulc4Om/ptzPeHSoObmxvvvPOOJdLbzc3N4lSwbt06ioqKyMzM5PHHH8fb25u8vDweffRR6tatS7du3UhKSqJdu3ZUr16dS5cuER8fz9y5c0lJSWHUqFE0aNCAN998k8jISBwcHHB3d2fmzJl0796d9u3bExcXx6FDh5g2bRpRUVEAhIeHl8nE8PXXX9OvXz+Ls4kM6o73i7MRGh2qxz/hqxWbLIWUYmJi8PT0vMGZpEOHDuzcuRMfHx8iIyP55ptvcHFx4ejRo4SHhzN37lxeeuklTCYTzs7OltlFTEwMJ0+etPxW/ilZa+8XdzXjkFLWrWT9FaB78fI5oOKK8A8BJTd1iTE8M19P1OkMngVLXhu3BWpOHj1cJpUzQIOI59CfdyLj9AGyl4+jqNtoMgqkJXeWUYKVpYiO+cFuXSMQlUaL2tETqc8n+9g2ZH4GsqSca4lhubiqn03dMHKPmmcX19dPtxy7dF1iKysrtA6u6HPSQZpwDHuCtM1fFns1FbfT52MyFILayuy9JQQFF2MpuHgMVCry8vJYt24dQgj27NnDqFGjmDFjBh06dCAgIIDFixczf/58AF588UUcHR1JS0sjLy+P5s2bc/r0abZt20ZqaipGoxHPGrW5eikB69ohqNRq8k7vQeZnMufjt9BqtWzZsoVt27aVedAYDAYKi4rYZ9eGnOT55lgWQxFFno1ZfSQRb2cb0sGcYqSUSsNeK2lQ3ZEBjze25CxzstEiBGTk6VEJgbFiLasF27otKUo6TUFeLjiqefLJJ+natSsnT56kdevWXL9+3aK+c3BwwNHxz0p8cVdzECpzHEvm7mXFtVqWoU9NQJ92iTidNSaTif379yOlpFWrVqhUAo9qzrzUpxXzfzsB0kjhldPm8zLqMWReA7UWt55vkBXzC6YLMRReOWXxTnvyySeZMGECubm5HDp0CD8/P3Q6HUuWLKF169bo9XrOnj3LwoULuXjxIr6+vuj1emrUqGFR85Q+BzAXPSrJsvv111+zbNkyvvzyS0stjL/KlA3HSFj6Nsb8LJxa9UeaTJyd8wpn9bm8+Ex/tFot27dv58KFCzfse+HCBWrUqMHLL79MYWEh0dHRdO/eHSsrK5588klOnjzJzJkzWbRoEX5+fvz444/0798fKSWxsbGEhIT8s7LW3if+lfU47oTyHlTWtYJJWfUJn/58gD5N+5KWlkbXrl354osvGDfOPCuIiYmhSZMmfPTtdqRLLZxa1aIoKQ5DehJSSsvD61YY87PxfOI9kr9/D2NWCmoHN9QO1Si6EodQa3Fo1gu1vUux4BCobBww5Weh0WioW7cuOTk5XLp0idTUVIQQ6KrXo/DqWdK3FSemEwK7Rl3QeQeQtnm2ebZhLEJl64Q0GtA4e4GhCE1BOpM+mMCGDRu4lHyd/GoBTJm3HH1+PnHnLrB//370ej1NmjQhPT2d5cuX8/TTT1veRE+dOsVTTz3Fpk2byMvLo3HjxlwstAZ1Iqa8DEzFgkptXw21SsX/Zk5h1qxZpKamolarGT9+PKdPn6ZZs2aYTJKz814FlUDj6ImVdwB5cXuYvO4or3epx+AZ+3DtNprsw+sw5mdha2tH3pldXKrZgYmVFPnye3tDmf9T1v6XwovHMOZncXn2YJzaDcKxVT9S10xGLQ34+ZmLB60+ksgP+Y3J6TEZ3fGNtPDWUqdOHcBcgAggNzeXy3u2mx/o0ohQqSlKOY/K3hVT9nVkUR4GIQgLCyMuLg4AHx8fmjRpQo0aNVi6dCnpydeQRgOm3HSE1hr3JydwfcMMMOq5smhE8Yy1FtUjZ2JrpWVgjSzWLZhKcHAwOTk5pKam8u677xIYGMioUaPIzMy03BOurq5cvXqVoqIiVCoV9vb2REdHEx0dbSmf3LJlS77++us7/encNgnFtSu8h3wBQOr66Ti27o+tXzNiDn5B48aNCQ0NrTD9T1RUFFOnTkWrNddB/+abb0hMTLTYXdLS0mjdujUAy5cvZ/jw4Xz88cfo9XoGDBiAs7MzK1euJC4ujkWLFgHmoMZbJTL9t/OPz1V1t5R/wFu518ap9dPEzH2dkJAQxo4dy6xZszh06BDBwcEEBgZais2c2baCKwtf5cqi10CtwbpWsOU7y0euaxzd0JaKz3Bq+QTGnOukrp+O2t4Fh+Y98Rm+GLdebwIStb0LeSejyNixxLyDEAhre9T21XBydeP69etcvnzZ8uYVHBxMxCPhYDLi2e8DanR+Hk/f+hScO4hdYEd0NYNw6TYajasPjs16oPNuSIvX5/HDr3upXbMGJ0+eJDWnkMT0fHIN4NzuGUBwLS2TgSPewtPTk8uXL2MymZBSkpCQQGFhIQ4ODuTm5nL48GGahXdD6+DKmXxbtPXDQZrQp17A69lpIATGnDSMxS66MTExzJo1i4YNG7JixQp8fX2ZNGkSQmNlTgY5dD7OHZ5DCIEpN53Dnw/l46F9efb5Ifg3DMG5zQBSlr2BZvOnVHOy49KlS5Ve4/LXwr33eGq8thTfcWuoMWIJDiFdUds44vvcFL77dT9bt25l54X8MrE8BW71WbtmDSv2xpOdnc26deuKL4ugemgEXs/PwP3JCRRcPIZDk27IvCxqjV2JXdAjONUKZM+ePfz44494e3uzZ88eIiIiADh37hxHj0Tj7lmdZiNm4f3Cl9QJDmPi9K/w9/fnhdHvEjLiK6Q+Hw9tEf95ojGv9e/CypUrWbduHVqtlo0bN/Lhhx8ydepUUlJS8PT0xMbGBpVKRbdu3ahevTohISEEBwfj4+ODEIJHH32UV155hRMnTrBv3z5CQkIICQkhLCzMkiPqypUrPPbYY9SrV4/x48dbxm/48OGEhoYSFBRUZjbi6+trqW9z6NAhwsPDuXbtGhkbZ1CYdIYri0eSHbMJlZUNGbuWkb9zEXv37uX555/n+PHjaLVaFi9eDJgj05s0acJnn31Gbm4uzs7O7Nq1Cz8/P0JCQoiOjiYmJoYPP/zQEvthb2+PnZ2dRWXXuXNnateuzfbt2y19FEIQEKDEf9wKZcZxCzxtIXbJRAzZqSBNOLUZgNa9NjYOzmg0GpKSktDr9axYsYJZs2Yxd+5c9uzZw4ABA2jcf8wN6Zu9X/wKb2cbxkUE8E7um5bZjMbJkzrD/seTzX346XAi+XojHn3fu6E/QqjQuNZA51WXwqvxWNcIJP98NA6hj5Nz7FdkQQ4Fvh0wJpvfXg0GAydOnOCpp56y1DavFrsMR0dHOjzVhwWLl5CyfBxF6UmY8rNx7zWO1E2zsHJ0I2X5G7y/3MDZs2dxdHTkcoYBk5TY1G1pjtdQqdC61WbrscukpKQQFBREamoqmzZtwtbWFl9fX2JiYrC3t8fKyYPf468jNdYY0hPR1WgAUiKL8rk4o5+lsp1aJXjrrbfQ6/UW9cGZM2fYtWsXf/zxB0JA/vlo0qMWm8fC2Qu1kyeBT40nY+2n1LAzceSHN/HW6/nx921YW1vTqlUrUlJSaNKkCV988cUNKolxEQFl1JFgDiB7srkP20+lWAT9uIgAy4yl/ExU51UXm4D2RPYKp3kDX1q0aAGAra0tT7dozqrEIi6u+y/G3HRS1kzB5ZGXAFCrBGGN6xMWFkZWVhZz587F2tqaV199leHDh9O4cWM0Gg0rvl1Kp06dmDx5MkuXzuDrYt3/1HdH4urqyopWdvznPx8xYa0JrVbL7Nmz2bx5M9evX2fo0KGcPn2axDwVbs9MY++34/Dz8sJw7TLVqlXj6NGjDBgwwFJfOzk5mbCwMDZv3kzTpk1JTExkwoQJjBs3jqysLGxszII2JiaGI0eOoNPpCAgIYOTIkdSsWZNPPvkEV1dXjEYjnTt3JjY2luDg4Ap/Xx4eHrw3eSaT/zsNtycnAFCYeAqngJbMfu/VMoGBUkp69+7Nzp07GTZsGMOGDUOv1/PII48wduzYW/6WR48ezZgxY2jXrh0XL16s1ImlvMpZ4UYUwXELOtomcsrRDY/+EwGz/jx15UTmLPmewY+YXRPfe+89Fi1axOTJkzl//jw6nY6MjAyizudW+EAq/wAq/2AKre1qWe9sqyUjT18moXaJK2l5rGsEkh612BwlLFVonDyZOG02X095m4ULF+Lp6YlWq+X48eNMnDiRgoICavlUx+apaRz+ajQunV7Eyqsu1boO5+ryt7Afs5gdE/vi6+uLk5MTxgKBTEsyRyMXmI3vhVdOcbUgCy8vL0vkcU5ODlqtFiEE27dvJzc3l/jUPAzWZpdMY2YKySsmgDShsnGi5qjlXPryedRW1tiIInQ6a4xGI6mpqXh5eXHu3J/1MbQqQfbeH9A4umPISKbg0gmsnD35ILI7Y9Z+ipubG9HR0Xz11VdMmzaNBQsWMGzYsDK1G8pzs2tRGRWpGp3aPI1zm6fZPbnHDdvaHEnkI91Ejs55nZovzkZa2eDjbIN/bRdeHvA4/fotLXstra0tb9elefvtt3n77bdvWF/a/gBm29wWXXscXgqFwutoEt+k2jNTzfeRex1OnT2Cs05Y9klJSeHKlSu0bduWoqIicnJyuHDhAqdPn8bGxgY/Pz+AMnaPzp074+TkBEBgYCAXLlygZs2a/PDDD8ybNw+DwUBSUhJ//PFHpYIDoF09dxp4OaBztuFKRj62VmoGtaxFn6Y+vPnmZxXW/+7QweySXrduXQYMGECvXr3K1N0puYal2bp1q6XODsDVq1c5c+bMDfXIa9SocgkwqhyK4KiA0jegi14HibHo9y7FVKMpnu5upKZf4rOxz/MZ5rTeJZ4YwcHBDBo0iD59+pg/t3gg9alE515+fXkDfWXY+DfHxr85gKU41YYUZ+Li4iy10w0GA7t27WLcuHE0bdqU9PR0MqcPAbWGoqvxpG9fWFy/AmIXjqfrnjlkZ5sjout2HkPMrO1cXT7enOZcqNDVDKJGs0dI3mz231+7di2nTp0iOzsbIQRjx45Fq9WSlRhviUXROJu9mpK+eYOi5LOkbV+MT+ve5MRspCg/n//7zyfExsbSt29fZs+eDYCnp6fZk0utQpWViNHWFVQqdPaOtGnRhL7NajAGLGm6mzdvzs8//3zb17yya1EZ3s42FRYD8na2qfAB1qWeEx9tnc4PX88tk0o8MvKb2z7m7VL+fskqMJR58bDy8Cf32FYyjQ7Y2dlZsgwEBweze/duEhIS6NmzJwsXLuTYsWOVHqd0bIZarcZgMHD+/HmmTZvGwYMHcXFxITIy0uIJpdFozCWN4QbvKC8na9YXO5tEXv2RMD9zokopZYX1v8FsoG/UqBH/+c9/ypxzdvR6Eo9uZsBMQb9+/SlJ/lO+Hnl4eDiZmZm8/fbb9OjRg40bN9K2bVs2b978l8op/JtQBEc5yv/o0rRueDw/k+7OSRz59Sceqf8IvzRuxN69e2/Yd8OGDezcuZN169bxySefcOzYsTt+IFVEGQGEJy3eWEynBu5siE0iPU9/033LvxkvWbKEYcOGkZSUhBCCuLg4ev7vCKd2rydt82w0zl5Uf/4zUtdNo/BCDCqVilq1ahEQEEC/p9ozYBZU6/UmdgFtSV7xPqasFKa+O5rXD/5gOYajoyPW1tYcO3aMiRMncvHiRVy7vIDer61FoAF4DvyUtM2zyT+5gyJ9LrVq1sCrYQBWVlbk5uYyadIkS30IOzs7li9fTtu2bdm7dy99OrVk+fLlN5xvycOs5EH2d1GZeqtTA/cy6xMz8nn7xyPYbJ/Gc8VvtKX5O4zOFaXEMWalUJh4Ep1PQ4qunMKmThh5cb/TsWNHWrRogbu7O1u3biU+Pt7ygI+LiyMgIID8/HxL6pzs7GyLqqoiSnJZOTk5kZyczKZNmyyxHL6+vhw+fJhu3bqVSbVzMyIiInj//fcZNGgQzz77LGfPnqWoqIh+/fqxZs0aMjMzSUtLY+rm0yT/vpKcY78CYB8cgWOLx9kdu5bs/Sv58ssv6dq1K/369SM0NJRGjRqxf/9+Bg0ahEqlIjo6mi5dujBt2jR69OhB3bp1+frrr5FS0r17d0t/jh07xrlz5yx2k38riuAoR/kfnSH7OtLGgYOaRrwzzp+vvvqKlJQU9u7da3FrjIuLo2HDhly6dIlOnTrRrl07vv/+e3JycsokO7wbKhJAH/dpbHm7Lf/2WxKrUGL4ffPNN1l9JJERv5wmOfx9qulTufzd/zF58mR61G9Jkk990lVqhErN1WVvopKSxs1a8PvvO4iMjKRnz57Us8mhYXAznFt24UpGPv6dn8Hh3G/0aerD68CaNWtwc3Pj0KFDZbxSRo0aRUjvl8wP1FIxFKaCHKo99hpCY4VNUgy1k812jHbt2hEZGUlkZCRNmzZl9OjRhIeHM2nSJGrXrk3z5s2ZNMksfHJzc0lMTPwz7XsFODg4kJVVSbnZv0hls8ny94+UkstrZ+DoVO229PD3gorUaBrXGmRHbyB14+dYudWiWs+xGK+eZseOHRbhvG3bNgYOHEhhYSEajYZTp05Rv359tm3bxsiRI/nuu++wsbFh69atlR47JCSEpk2b0qBBA2rWrEnbtm0t2/5KYGBpl2ej0YiTkxMLFiygXbt26HQ60tLSCA8P51yRA4b0JLyemwFIrn7zBta1GpGfr7d4AM2aNYsuXbpw8OBBqlWrhouLC8uXL2fJkiWW3HIRERF89913rF692qKCjomJAWD27Nns2LHjXy80gH9HzfE7oXy98Pxzh0mPWgxCEFKrGnPmzEGj0VjcGg0GA6+//jqRkZF06tSJzMxMpJQ8++yzFeqi/y4qUmfZaNWWZG8Vbbcy5FlmUt4NQ1m/cRNuz0y9QaVmERz16jFy5Ei++eYbHnvsMXx8fDhw4AARERFER0djMBgYOHAgq1atQqPRMHPmTF588UWklLRu3ZonXv+Ed9ad4fKcF7AL7EDeyd0Yc9NQO7hhzM3A292Ffv36sWPHDvLy8rh27RpXr15Fo9Hg6+uLg4MDarWaLl26sHv3bq5fv05ycjJBQUFkZGRQWFhIr1692L9/PxkZGZYZ1e7du4mIiMBkMlG9enWWLFly2z77BQUFdOjQgcLCQgwGA/369bMIrYoof/8UXD5B8vK30Lr7Euhttgd8+umnZd5i7zXla2qXzPJKBz2WvjceFiZOnMiqVebStAkJCWzevJkBAwZw6NAhWgz5gPS0NJzbPwtAxs6lqGyd8GvekcINn3L8+HEAi8p24sSJhIeHM23aNEJDQzl+/Dht2rSxvICUqKC3bNkCwO+//86IESPYvXu3pXpiVeV+1BxXZhzlKK+7LrEblC9kX5LyuTSl80Pdb25lT7mdmZSnVRFLH3e1zKROnDhBUFCQZZ+AgAASEhJISEjg9OnT+Pv78/HHH3P06FHUajW5ublUq1aNHj16cODAAT7++GOee+45XF1dOXPmDL8t/i8+dZ/hMqBx9MBn2ALSfptPwYWjhL27gnWvtqRRo0YkJydb9Ow6nY558+YxdOhQ3n//fQoKCmjTpg0rV67k4sWL9OjRgxUrVuDn58e8efO4du0aBw8epLCwkLZt23L+/Hn279/Pu+++y3vvvYfRaCwT1X0rdDod27Ztw97eHr1eT7t27ejWrdsN2VpLKH//lKQzKX///J1UpEYTCJxttGTm62/L+F8VKG0rsks7jfHgRg7v3YutrS3h4eFl7CSPNPBgzb70Mvtr1SqGd6rHjHUmy7rytpUSpJQEBQVVqIJOSkrixRdfZO3atVVeaNwvFMFRjsp01w9Dbv+b2VPKqy/0KQlci1pMkhBMuslMqkRwHExI47OZeyhq8wrdn4pErdHg5eXFsGHD+P333zlz5gwJCQksXbqUiIgIsrKySEpKIi4uDpVKhV6vx8/Pj3dHTKL/ZLCpa85zaeVeG5WhkLd7N8Xd3d3ikVaaLVu2cP78eX777TcAioqKOHfuHBqNhrCwMIvHz5YtW4iNjWXlypUAZGZmcubMmQrzGd0uQgjLw0Kv16PX68tE5ZenKtw/5V8iatf25cstv1d5QVGa8jPka9fTycsVbDmdTgObi+zbt69M+xEDe/Hb6u/xsn2WpIx8is7tZ8JncxncuQlvX7vG9evXsbe3Z/369Tz2mDmNTum65QEBARWqoOvXr0///v2ZMmUK9evXv7+DUIVRBEc5/opr5sNAZTOptO/Gc/DgQcv6imZSx+IvsuLXfRj1hSBN2DfpRtGeFUTtOUBoaCg+Pj64urri4+NDRkYGdnZ25OXlYTAYaN++PY8++igffvghiYmJTBzSA3uNxNvVkRQ9uNjpqFff0zK+JYn5SiOl5JNPPrH84EuIiorCzs6uTLsvvvjCEjxXmp07d7JhwwYiIyMZO3asJbL7djAajTRv3pz4+HhGjBhhSbBYEVXl/rkXThkPkvIzZBu/5mQf2cQzEW3o2qZpmRmfEIJmzZoxavjLLFo0HgdgzNujeX2g+T6YMGECYWFh+Pj4lPGWioyMZNiwYdjY2LB3715Wrlx5w4tTamoqhw4d4oMPPrAEM27cuNGcLPJfzL9ecCQkJNCtWzfatWvHnj178PHxYc2aNfgKV4YNG0Z2Xh5L9teh46JFuLi4WIL8NBoNgYGBfP/99w/6FG7AYDCg0ZS9tJW9CX+zekul32Nvb89TTz3FqfgE1B518Oz+OgBF186Tnvc/tE1f49h3H1GvXj0CAwMt+7m5ubFv3z4CAgI4cuQIgwYN4oUXXsBoNDJlyhR8fX3ZOLo9X375JSdVF3B3d7/p+URERDB37lw6d+6MVqvl9OnTFfraR0REMGfOHB555BG0Wi1xcXH4+PiQmpp6Qz6jmwmOitxpY2JiyMjIoG/fvhw/fpxGjRpVuv/D/tCuCpSfIQuNFs+nJiGA1cVxMkajkezsbEtsydixYyt0QBg1ahSjRo26Yf2TTz7Jk08+afm/SZMmFb44Vabe+jejpBzBnFJ5xIgRnDhxAmdnZ3766Seef/55pkyZQmxsLI0bN7YYRCdPnsyRI0eIjY21pBb5O0hISKBBgwYMGjSIhg0b0q9fP/Ly8vjwww9p0aIFjRo1YujQoZb6BOHh4bz++uuEhoby+eefEx4ezpgxYwgNDaVhw4b4GK7g9PvnJC94hYydSy1V0p5tf3MVyqJFi3Dp/TYFF2JJj1pMwaXj6NOvgBCcWfUZOp0OtVpNeno6V69eJTk5mZ9++gmDwcBHH33ElStXeOONN1i4cCG1xAVjAAAZFklEQVQxMTE0bdqUK1euMGrUKMvM4ptvvuGDDz6gWbNmXLlyxVL5rYSXXnqJwMBAmjVrRqNGjRg2bFiFrrbl273yyisYDAaioqIs3j4rVqxg9OjRN+xbQvmywIkZ5tQiq48k4uzsTKdOnfjll4cqufNDSfk0MBWtDwoK4qWXXlLSoD8A/pWCo3Sa9Cfn7MHDu6ZF7928eXPOnj1LRkYGHTt2BGDw4MGWN5GSIL9ly5bd8FZ/J/Tp04fmzZsTFBTEvHnzAMoY3jZu3Mjp06d59dVXqV+/PteuXeOrr77C3t6e+vXrc/z4cfLz88tkjy0qKuLQoUO88cYbgDkr7qFDhxg2bBiPP/44q5YvIiPxLPYXd7P25ZBbvhUbTZK2k7ehcfXBvnEXck/t5tqPH5Ae9TUgCHt3BV26dKGwsJDff/+dL774Am9vbwYNGsR7771Hy5YtcXV1Zfr06bz88svs37+f8PBwfH192bp1Kxs3bqRFixY4ODjwww8/IISgVq1aTJ8+HV9fX0JDQ1m5ciUqlYpPP/2U8+fPc/z4cUaNGsUTTzxBx44dmT9/PvXr1+fq1auWdseOHeP48eNs374dJycnBg8ezPHjxzly5Igln1FllFeRGPMyyc3ONK/Pz+fXX39VgsPuA7dTR/zUqVNMmTLlfndNgX+h4Cj/RpmcVcD14lTnYA4cK2+cLc2GDRsYMWIE0dHRtGjR4i8HmS1atIjDhw9z6NAhZs2axfXr1y39azt5G++vPoZKa832P66Ql5dHfHw88+bN4/333+fUqVM0btyYbdu2ceLEn7UnSqecAOjduzcAjRs3JigoiOrVq6PT6fD3979p0r+SfhQaTCRm5JNzIgpDVgo+ryygWq/xGPMyQJo4t2gsubm5BAcHo9VqmTVrFleuXOGdd94p453yww8/sHPnTvR6PXPmzEGr1TJ48GDi4uIsRnS9Xk9hYSH9+vVj27ZtN+1b3759qV69OrNnz+bll19m0qRJZYr73A3lVSTGnDSufvcuB2e8SIsWLXj00Ufp2bNnJXsr3CuUOuJVm3+djaOiqNqSVOclN6WTkxMuLi7s2rWL9u3bs3TpUjp27IjJZPrLQX7l9eY1z6/n5D6zl9ClS5c4c+YMRpO02CFKCkzP23kejwLJkCFD+PTTT7GysmL16tXUrFnTkm+qhNKGYvgzilqlUpVJD1GRAbp8P0sb0vPi9pAfv5/ckzsQgNrGEZugTqQe28qOC3F4eHjg7+/PsWPH8PX1ZdGiRUycOBGAQoORNZu3o6vXhry8PJxc3fj00095+eWXcXd35+DBg0gpsba2RqPRsHLlyjKV2Srjiy++oFGjRrRq1YqBAwfesv3tUt6JwMrDD+8hs+6rO62CGcVWVHX51wmOyupgVJaaIy8vD39/fyZNmkRgYCAZGRlkZGSg0Wh46623SEhIsLSrU6eO2Sbg4lImuOibbcd48Yku+AxbRNI3b5Dd9DGOxP7K4hVrmPPuS2g0GtLT0ynIzyN+zlCEWouVZx2kvoCc5PPkpOSwfv16dDodJpMJNzc3zp8/z2effYadnR0//PADKSkpAOzYsYPRo0cTHx/PoEGDuJMAytVHEnl10udcP7AaaTSYK86ZjOTH78fatwnG7OsIjQ7XiBHIghzyTu5ErbMhKyuLjIwMXNw8sQloR7dnhmLMusb0tQfJyivEVFSAMW4vqLUI/9bIWqE4ODhga2tryfPVvXt3nnnmGQwGgyUZYencRiaTiaKiIktfL1++jEqlIjk5GZPJZEmweLdUBXdaBYWqzr9OVXVDHYwKUnNMnDiRJk2asG/fPmJjY1m9ejVOTk7Ex8fzyy+/UFBQQPfu3fHz86vUiF6aL7fHWwrS2TVsT/65aNDZMW39ES5cuMCJEydYtmwZqNQ4tx2E54CPzW/3Vjbkx+0j46y53aRJk1CpVDRo0ICwsDDatm3L0KFD+eWXX8jNNScmLEkRHRoayvz582+aV6g8k5ZuIf14FF6DplqK6uT+EQUmozmdw7NTsa4ZRObeFaT9OgdpMmEymti1axfPjXqPjPTrJEf/ijTo0Vavz8pZk1DZOGHXsCNa99poHKqRcWQT/do0REpJamoqgYGBWFlZkZycTGRkJOvXr7eUvS3JbQSwdu1a9HpzXi6DwcALL7zAd999R8OGDZkxY8bt3wC3QFGRKCjcBlLKKvtp3ry5vNesir4sG/zfJln7rfWWT4P/2yRXRV++6X7nz5+XdevWtfw/efJkOXHiRFmzZk3Luvj4eNm0aVMppZQdO3aUBw8elFJKWXPkcql29JC131ovfV79Wmqcq0uh1UnUWqnVaqWbm5usW7euFGqtRKil0OgkIIWVjfR46iMpNFayZ8+ecvHixbJp06bS1tZWqtVqaWdnJ0NCQmSdOnWkTqeT2dnZctKkSdLNzU3WqlVLBgUFydWrV0sppVy8eLEcMWKEpa89evSQ27dvl1JKaWdnJ8eOHStV9q5SZeMgVbZOErVWAtLKu4FErZHOj7wktW61pdrBTapsnaT30PlS59NQolLLkJAQaecTILWedaTnwP/IWuPWSLe+70mESqLWSG21WlLt6C5V1g7Sqd0gqXH2kjqdTvbt21e+++678syZMzIiIkJ6e3tLV1dXOWnSJCmllFevXpUtW7aUwcHBcvz48dLOzk5KKeWkSZPkmDFjpJRSZmVlyYCAAPnHH3/czW2hoPCPATgk/+Zn879OVXUnAVql7RKuMpNC+aeXx62M6KXVLB52aq6UrHdwQ2VtjyEjCRtPX/ZtWcPMmTPZsmULdRoEoW85BNzrcGH6E2gc3dFZWeFXtz7VqpnTTF+4cIG4uDhCQkI4fvw4Xl5eREVFMW3aNOzt7SkoKGDs2LGoVCq+/PJLRo8eTZcuXW46Jrm5uaxPssOpVX8M6Unknz9MjdeWmavrFeRw+atIanfoT26rvmSc2EX+2YNoXapjzElDozJHUeuNJgzpSWTsWooxNwO3XuYyukKlBrWGal1ep+D8YXJif0UWZLPsmyV4eXnx3HPPMWPGDIQQhISE8O2331q8njw9PctECJd40EyYMMGyzsHBgVOnTt30/BQUFO4tdyU4hBATgZeBlOJV70opN1bQ7jHgc0ANLJBSTr6b494tt2N0K5/yIDmrgJSsAlYfSbylER3+VLOEhYURoj/F0VJZKmzqtkB//SJudlYEBwfz7LPPsnv3bnLTr/F6pzqsvmzDRaDFG4vpVu06q/6wsuxbvXp1IiMj8ff35+mnn6ZXr16EhoZasr+uW7fO/Eag0ZCdnY1Wq+XixYs3PU+EioIaoVjbJpJyaC2oNVzf9DnWNRvj5BuETqMi5oOurD6SyFsJ+0nErMLxa9+euOg9xMTE0GjoDE4seBOHsCfAaODayokAuHZ5hYILsaRu+AyPJ/8Pp/ot8UjYYun7d999V6by2t24OCsoKNwf7oWN4zMpZZPiT0VCQw3MBroBgcBAIURg+XZVjZt5X5VmyZIljBs3juDgYGJiYixvw2+++SZz5syhadOmZGWkldnHxj8UqS+k7aN/unU2aNAAKSX/mziajKUjUUkjv7/9CO3quWM0/tmP8PBwPv74Yzp06MDevXuZOnUqgwcP5sKFCwAkJydTWFiIyWSiW7duXL58mYYNG5aZAcGf0bBTN59GaKwQKjVWbrXMdbxVagouxpIZtRC2fY66eFbRp6kPn/RtTJifKwDH1XVJSk7Bv0EjutbWorKyRWNfjZzYLWhcffB8bAS2F3Yj0y4iC7LRXDrM0A5+eDmZC+mUVF6bNWuWxeFAQUGh6nM/fqlhQLyU8hyAEOJ74HHgj5vu9YAp72VVYkQvWV+6DGn5hGtgFgSxsbGAOc21z7Culm1qW3N67RPCF4Bvv/2Wjh07kpWVZfHEqlu3LidPnqRDhw7UqVMHMOfWiY2N5bnnnsPDwwMHBweeeeYZQkNDGTNmDM2bN0en0xEWFsayZctYuXIlgYGBlsBCOzs7TCYTiYmJHDhwoMLztKnTAutawWjsnIl5px3+/v4WYzWApk5rkkLsyc/IR1e9Hqg1XMksZNns/1KjZk3klRgKL5trg9cx1OGT2dOZNm0amZneNKpvx+8/L+LAgQP4+/vz+uuvs2DBAqXymoLCQ8a9mHG8JoSIFUIsEkK4VLDdBygdbXa5eF2FCCGGCiEOCSEOlbiYPghuJ+XB7VJZYZ1zO3+mYcOGpKenM3z48DLbJ0+eTM+ePWnTpo3FZfXw4cMsXLgQrVZLWloaRqMRb29vpk+fTlBQEIcPH2bZsmVERUURHBzMc889h5+fH0ePHiUqKgo/Pz8CAwMZNWoUzZo1q/B8TEX5XPtpEteWjKRdu3Y3eCyVnokJKxuEzhavwTNxe+w10q5e5sj30+nQpiWjXh1Gg5rmHFS5ublcvHiRatWqcenSJcLCwjhw4AAffPABDRo04K233qJFixaKrUJB4SHhljMOIcRWoKKw3PeAOcBHmGPVPgKmAy/cTYeklPOAeWAu5HQ333U33Et//orqUwuVipDn3i8TVBYVFWVZ7tevH/369QP+NNI/Ov5/OIb25pNpk+nT1IexY8dSWFjIyZMnCQgIsKRNcXR05NixYwwbNoyzZ88yf/58nnjiiQpLrY5zSuSd3FWW89TYu+L/4qxKXVBLn4faxhGVzp4L0/oihECNyZJnql+/fixYsIAhQ4aQlpbG6tWr2bFjB61ateLq1au4ubkhhKBRo0bodDqCgoLo1q3bHY+tgoLC/eeWgkNKeXOXnGKEEPOB9RVsSgRqlvq/RvG6Ks29TI9dYWEdIW5LCJU30mcXGHjn52OW7SaTCWdnZ0t5y9LMnTuX/fv3s2HDBpo3b87hw4ct3ll/5TxXH0lEgKXCXcHFWNQ6O6qP/o6a7i5of/nQYjvR6XQsXrzY4vHVqVMnduzYQYMGDViwYAEA3t7erF+/Hl9f31uOg4KCQtXhbr2qqkspk4r/7Qscr6DZQaCeEMIPs8AYADxzN8e9X9yrlAcVFtbZfHuFdUqrhnQ1g7i+cSa5rfozee0Rrq9bxyuvvIKfnx8//vgj/fv3R0pJbGwsISEhnD17lpYtW9KyZUs2bdrEpUuXbhAcd3KeUzefLlMW1VSYh8raDrXWmoH11bw58UZbj4KCwj+PuzWO/1cI0QTzS2gC8AqAEMIbs9ttdymlQQjxGrAZszvuIinlicq+8J/KXxVCpe0jOq+62DVoT9LikVyzdeaJDi0AWL58OcOHD+fjjz9Gr9czYMAAQkJCGDduHGfOnEFKSefOnQkJCbmrc7jBkF5cXOfy/GFsPdW80nKqCgoK/yyElA/MjHBLQkND5Z3kWvon0nbythvsI8ADSbpXlfqioKBQMUKIw1LK0L/zGP+6XFUPG7dTl+Df2BcFBYUHhxJxVcWpKjWsq1pfFBQUHhyKqkpBQUHhH4SiqlJQUFBQqHIogkNBQUFB4Y5QBIeCgoKCwh2hCA4FBQUFhTtCERwKCgoKCneEIjgeIiZOnMi0adMq3T5hwgS2bt16T48ZFRXFnj177ul3KigoPNwocRz/ID788MN7/p1RUVHY29vTpk2be/7dCgoKDyfKjKOK88knn1C/fn3atWvH6dPm6oMxMTG0atWK4OBg+vbtS3p6OmAu9LRy5Up++eUX+vfvb/mOqKgoevY0VxvcsmULrVu3plmzZvTv399SpMnX15cPPviAZs2a0bhxY06dOkVCQgJz587ls88+o0mTJuzates+n72CgkJVRBEcVZjDhw/z/fffExMTw8aNGzl48CAAzz//PFOmTCE2NpbGjRszadKkMvt16dKF/fv3k5ubC8CKFSsYMGAAqampfPzxx2zdupXo6GhCQ0PLFGpyc3MjOjqa4cOHM23aNHx9fRk2bBhjxowhJiaG9u3b37+TV1BQqLIoqqoqRknRpisZ+XB8Iy1ad8bW1haA3r17k5ubS0ZGBh07dgRg8ODBZWYXABqNhscee4x169bRr18/NmzYwH//+1927NjBH3/8Qdu2bQEoKiqidevWlv2eeOIJAJo3b87PP/98P05XQUHhIUQRHFWI8kWbsvL1bDuZzuojiXecD2rAgAF8+eWXuLq6EhoaioODA1JKHn30Ub777rsK99HpdACo1WoMBsPdnYyCgsI/FkVVVYUoXbQJzIWbsk7vZfL6WLKzs1m3bh12dna4uLhY7A1Lly61zD5K07FjR6Kjo5k/fz4DBgwAoFWrVvz+++/Ex8cD5lrgcXFxN+2Tg4MD2dnZ9+oUFRQU/gEogqMKUb5QUknhpsOfvUS3bt1o0cJcuGnJkiWMGzeO4OBgYmJimDBhwg3fpVar6dmzJ5s2bbIYxt3d3fn6668ZOHAgwcHBtG7dmlOnTt20T7169WLVqlWKcVxBQcGCkh23CqEUSlJQULhblOy4/zKUQkkKCgoPA4pxvAqhFEpSUFB4GFAERxWjT1MfRVAoKChUaRRVlYKCgoLCHXFXMw4hxAqgRAHvDGRIKZtU0C4ByAaMgOHvNtwoKCgoKPx93JXgkFI+XbIshJgOZN6keScpZerdHE9BQUFB4cFzT2wcQggBPAUoPqMKCgoK/3DulY2jPZAspTxTyXYJbBFCHBZCDL3ZFwkhhgohDgkhDqWkpNyj7ikoKCgo3CtuGQAohNgKeFWw6T0p5ZriNnOAeCnl9Eq+w0dKmSiE8AB+BUZKKXfesnNCpAAXbtXub8YNeNhUbA9bn5X+/v08bH1W+vvXqS2ldP87D3DXkeNCCA2QCDSXUl6+jfYTgRwpZeWl7KoQQohDD5sx/2Hrs9Lfv5+Hrc9Kf6s290JV1QU4VZnQEELYCSEcSpaBrsDxe3BcBQUFBYUHwL0QHAOAMnm6hRDeQoiNxf96AruFEEeBA8AGKeUv9+C4CgoKCgoPgLv2qpJSRlaw7grQvXj5HBByt8d5gMx70B34CzxsfVb6+/fzsPVZ6W8Vpkpnx1VQUFBQqHooKUcUFBQUFO4IRXAoKCgoKNwRiuAohxBiohAiUQgRU/zpXkm7x4QQp4UQ8UKIt+93P0v1Y6oQ4pQQIlYIsUoI4VxJuwQhxLHic3og1bFuNWZCCJ0QYkXx9v1CCN/730tLX2oKIbYLIf4QQpwQQoyuoE24ECKz1L1yYynG+8itrrEwM6t4fGOFEM0eRD9L9Seg1NjFCCGyhBCvl2vzQMdYCLFICHFNCHG81DpXIcSvQogzxX9dKtl3cHGbM0KIwfev1/cBKaXyKfUBJgJv3qKNGjgL+ANWwFEg8AH1tyugKV6eAkyppF0C4PYAx/WWYwa8CswtXh4ArHiA/a0ONCtedgDiKuhvOLD+QfXxTq8xZoeVTYAAWgH7H3Sfy90fVzEHr1WZMQY6AM2A46XW/Rd4u3j57Yp+c4ArcK74r0vxssuDHud79VFmHH+NMMyR8ueklEXA98DjD6IjUsotUkpD8b/7gBoPoh+3we2M2ePAkuLllUDn4jxo9x0pZZKUMrp4ORs4CTzshVIeB76RZvYBzkKI6g+6U8V0Bs5KKR90pogySHOGi7Ryq0vfp0uAPhXsGgH8KqVMk1KmY86Y8djf1tH7jCI4Kua14qn8okqmoT7ApVL/X6ZqPFRewPxGWRG3nS/sb+J2xszSplgYZgLV7kvvbkKxyqwpsL+Cza2FEEeFEJuEEEH3tWM3cqtrXFXvW6ggHqwUVWmMATyllEnFy1cxx6qVpyqP9V3zr6wAeLP8W8Ac4CPMP8KPgOmYH8gPjNvMF/YeYACWV/I17WSpfGFCiFPyNvKF/dsRQtgDPwGvSymzym2OxqxaySm2ha0G6t3vPpbiobzGQggroDfwTgWbq9oYl0FKKYUQ/7qYhn+l4JBSdrmddkKI+cD6CjYlAjVL/V+jeN3fwq36K4SIBHoCnWWxgrWC70gs/ntNCLEKs+rofj5UbmfMStpcLs6B5gRcvz/duxEhhBaz0Fgupfy5/PbSgkRKuVEI8ZUQwk0+oLozt3GN7+t9ewd0A6KllMnlN1S1MS4mWQhRXUqZVKzqu1ZBm0TM9pkSagBR96Fv9wVFVVWOcjrfvlScV+sgUE8I4Vf8tjQAWHs/+lceIcRjwHigt5Qyr5I2VSFf2O2M2VqgxPukH7CtMkH4d1NsW1kInJRSzqikjVeJDUYIEYb59/RABN1tXuO1wPPF3lWtgMxSKpcHyUAqUVNVpTEuRen7dDCwpoI2m4GuQgiXYnV31+J1/wwetHW+qn2ApcAxIBbzDVK9eL03sLFUu+6YPW3OYlYZPaj+xmPWpcYUf0q8kiz9xezJdLT4c+JB9beiMQM+xCz0AKyBH4vP6QDg/wDHtR1mdWVsqbHtDgwDhhW3ea14PI9idkxo8wD7W+E1LtdfAcwuHv9jQOiD6m+pftthFgROpdZVmTHGLNCSAD1mO8WLmO1uvwFngK2Aa3HbUGBBqX1fKL6X44EhD3qs7+VHSTmioKCgoHBHKKoqBQUFBYU7QhEcCgoKCgp3hCI4FBQUFBTuCEVwKCgoKCjcEYrgUFBQUFC4IxTBoaCgoKBwRyiCQ0FBQUHhjvh/GQ5VLCuaXHsAAAAASUVORK5CYII=\n",
-            "text/plain": [
-              "<Figure size 432x288 with 1 Axes>"
-            ]
-          },
-          "metadata": {
-            "needs_background": "light"
-          }
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "pyplot.scatter(result[:, 0], result[:, 1])\n",
-        "words = list(model.wv.vocab)[:100]\n",
-        "for i, word in enumerate(words):\n",
-        "\tpyplot.annotate(word, xy=(result[i, 0], result[i, 1]))\n",
-        "#pyplot.show()\n",
-        "pyplot.savefig('plot_w2v.png')"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 265
-        },
-        "id": "E79KLz3ARN14",
-        "outputId": "ad6fc517-77a7-4dce-ce1f-dd453187a43b"
-      },
-      "id": "E79KLz3ARN14",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "display_data",
-          "data": {
-            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAD4CAYAAAD7CAEUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeVhUVRvAf3eGAQYHRAQVSEVzRxQCFTNzTVqszDXT0hbNMrNSE0vTysrS9iy/NDXLzK3QtNLcck9RQCUXNHEBF5QdBpjlfH+MjMMwg4DDpvf3PD5y79y559y5977vOe92JCEEMjIyMjIypUVR1R2QkZGRkalZyIpDRkZGRqZMyIpDRkZGRqZMyIpDRkZGRqZMyIpDRkZGRqZMOFV1B0rC29tbBAQEVHU3ZGRkZGoMBw4cuCKE8KnINqq14ggICCA6OrqquyEjIyNTY5Ak6UxFtyGbqmRkZGRkyoSsOGRKzd13313VXZCRkakGyIpDptTs3r27qrsgIyNTDZAVh0yp0Wg0AMyePZsOHTrQrl07pk+fXsW9kpGRqWxkxSFTJjZu3EhCQgL79u0jNjaWAwcOsH379qruloyMTCVSraOqZKqWqJgkZm84TnK6Fj9PNQajYOPGjWzcuJGQkBAAsrOzSUhI4N57763i3srIyFQWZVIckiQtBPoCl4UQba/t8wKWAwFAIjBYCJFm47sjgKnXNmcKIb4vf7dlKpqomCSm/HIYrc4AQFK6lny9kYRLWUyZMoXnn3++insoIyNTVZTVVLUYuN9qXySwWQjRHNh8bbsI15TLdKAT0BGYLklSnTL3VqbSmL3huFlpWHJSdScLFy4kOzsbgKSkJC5fvlzZ3ZORkalCyjTjEEJslyQpwGr3o0D3a39/D2wDJlsdEwH8JYRIBZAk6S9MCmhZmXorU2kkp2uL75QkcusFMrq9C507dwZMDvMff/yRevXqVXIPZWRkqgpH+DjqCyEuXPv7IlDfxjH+wDmL7fPX9hVDkqTRwGiARo0aOaB7MuXBz1NNkoXyMGgzUbhq8PNUM378eMaPH1+FvZORkalKHBpVJUzLCd7UkoJCiG+FEGFCiDAfnwottyJTApMiWqJWKQHQZ13l4g8Tqdt5AJMiWlZxz2RkZKoaR8w4LkmS5CuEuCBJki9gy+CdxHVzFsAdmExaMtWUfiGmCeHsDcdJpi4dX/+BSREtzftlZGRuXxyhONYCI4BZ1/5fY+OYDcD7Fg7xPsAUB7QtU4H0C/GXFYWMjEwxymSqkiRpGbAHaClJ0nlJkp7FpDDukyQpAeh9bRtJksIkSVoAcM0p/i6w/9q/dwod5TIy1Zlt27YVKbUSFRXFv//+W4U9kpGpesoaVTXUzke9bBwbDTxnsb0QWFim3snIlBMhBEIIFIqbc+Nt27YNjUZjLvAYFRVF3759adOmjSO6KSNTI5FLjsjcMiQmJtKyZUueeuop2rZty7vvvmuzptaSJUto164d7du358knnwQgJSWFAQMG0KFDBzp06MCuXbtITExk3rx5fPrppwQHB/P333+zdu1aJk2aRHBwMKdOneLUqVPcf//9hIaG0rVrV44dO1ZVly8jU3kUjsyq47/Q0FAhI1NaTp8+LSRJEnv27BEbNmwQo0aNEkajURgMBvHQQw+Jv//+Wxw5ckQ0b95cpKSkCCGEuHr1qhBCiKFDh4odO3YIIYQ4c+aMaNWqlRBCiOnTp4vZs2eb2xgxYoRYuXKlebtnz57ixIkTQggh9u7dK3r06FEp1yojYw8gWlSwbJZrVcnUaCzraXmJDHx87yA8PJyJEyfarKkVFxfHoEGD8Pb2BsDLywuATZs2FfFdZGZmmrPj7ZGdnc3u3bsZNGiQeV9+fr6jL1FGptohKw6ZGot1Pa1LmXmk6xRExSQhhLBZU+vLL7+0eS6j0cjevXtxdXUtdftGoxFPT09iY2PLfxEyMjUQ2cchU2OxVU9LCMHsDceJiIiwWVOrZ8+erFy5kqtXrwKQmmoK7uvTp08RpVKoDNzd3cnKyjLvt9z28PCgSZMmrFy50tx2XFxcBV2tjEz1QVYcMjUWm/W0ru3v06cPTzzxBJ07dyYoKIiBAweSlZVFYGAgb775Jt26daN9+/a89tprAHzxxRdER0fTrl072rRpw7x58wB4+OGH+fXXXwkODmbHjh08/vjjzJ49m5CQEE6dOsXSpUv57rvvaN++PYGBgaxZYyuNSUbm1kIy+VKqJ2FhYSI6OrqquyFjwd13381PP/3EyJEj2bZtW5X2pcusLUXqaRXi76lmV2TPKuiRjEzVI0nSASFEWEW2Ic84ZMpEdVp33LKeViFqlVKupyUjU8HIikOmTGg0GpRKpTkaqSrpF+LPB/2D8PdUI2GaaXzQP0gukyIjU8HIpiqZMqHRaG4YpiojI1N1VIapSg7HlSkRW+uOy8jI3N7IiuMWxVrgl6ckur11x6NikmRzkIzMbYzs47gFKRT4SelaBCaBP+WXw0TFJJXpPPbWHZ+94biDeiojI1MTkRXHLYgtga/VGcos8O2tO24vf0JGRub2QFYctyAlJcaVBT9PdZFty3XHZWRkbl9kxXELYk+wl1Xgy+uOy8jI2EJWHLcgjkqMs8yTULmb1h3/3wdTZce4jMxtjhxVdQtSKNhvNqqq8FyyopCRkbFEVhy3KLLAl5GRqShkxVFJOCKvQkZGRqY6cNM+DkmSWkqSFGvxL1OSpFesjukuSVKGxTFv3Wy7NQlH5VXIyMjIVAduesYhhDgOBANIkqQEkoBfbRy6QwjR92bbq0wcNUsoKa9CnnXIyMjUNBxtquoFnBJCnHHweSsdW+U2pvxyGKDMwt5ReRUyMjIy1QFHh+M+Diyz81lnSZLiJEn6Q5KkQHsnkCRptCRJ0ZIkRaekpDi4e6XHUdnX4Li8ChkZGZnqgMMUhyRJzsAjwEobHx8EGgsh2gNfAlH2ziOE+FYIESaECPPx8XFU98qMI2cJ8oJDMjIytxKOnHE8ABwUQlyy/kAIkSmEyL729++ASpIkbwe27XAcOUuQFxySkZG5lXCkj2ModsxUkiQ1AC4JIYQkSR0xKayrDmzb4UyKaFnExwE3N0uQ8ypkZGRuFRyiOCRJqgXcBzxvsW8MgBBiHjAQeEGSJD2gBR4XFbj0oCOioRyZfS0jI1N+5s2bh5ubG0899RSLFy+mT58++Pn5VXW3bmtuuaVjraOhwDRTqEmmITlZUEbGNt27d2fOnDmEhRVfGdVgMKBUKm186/ZCXjq2HNT0nAlHhgHfiBkzZhAQEMDIkSMdet6ajKy0q54lS5YwZ84cJEmiXbt23HnnnWg0GgICAoiOjmbYsGGo1Wr27NlD69atGTJkCH/99Revv/46Qgjef/99hBA89NBDfPjhhwBoNBrGjx/PunXrUKvVrFmzhvr161fxlZZMYmIiffv25ciRI1XdlWLcctVxa3rORHnDgKNikugyawtNItfTZdYWOSu9HNyuGf7V6dmJj49n5syZbNmyhbi4OD7//HPzZwMHDiQsLIylS5cSGxuLWm0KVKlbty4HDx7k3nvvZfLkyWzZsoXY2Fj2799PVJQpgDMnJ4fw8HDi4uK49957mT9/fpVcX1UjSZJTSdul5ZZTHDUpZ8LWC1sexVco8P75YCj63AyS0rX079SsmABYsmQJ7dq1o3379jz55JNoNBrzy1eZPPjgg6Snp1d6uzfCkbk7NYXqpiy3bNnCoEGD8PY2BV16eXnd8DtDhgwBYP/+/XTv3h0fHx+cnJwYNmwY27dvB8DZ2Zm+fU2FK0JDQ0lMTKyYC3Awer2eYcOG0bp1awYOHEhubi4HDhygW7duhIaGEhERwYULFwCTGa/QtC9JkrckSYnX/h4pSdJaSZK2AJttbNeSJGmhJEn7JEmKkSTp0Rv165YzVTk6GqqisGeSqq1Wka7VFTu+JMVX0trghWaWwpHc7t278fb2JjU1tVQvZUXw+++/V0m7N6Kmz1bLQ3Ux7RaaCI9tjketz6JDTFKp269Vq9YNj1GpVEiSBIBSqUSv199UfyuL48eP891339GlSxeeeeYZ5s6dy6+//sqaNWvw8fFh+fLlvPnmmyxcuPBGp7oLaCeESJUkaaTV9vvAFiHEM5IkeQL7JEnaJITIsXeyW27GUVNyJuy9sJJEqZIFf/zxRzp27EhwcDCHfp6NMBZXHMnpWqJikgh48Hna392D08kpjH3jPaB0IzlH0K9fP0JDQwkMDOTbb78FICAggCtXrlRK+2WhJs1WHUV1UJaWsx6XRu24FLeN13/cRVRMEqmpqUWOdXd3Jysry+Z5OnbsyN9//82VK1cwGAwsW7aMbt26VcYlVBgNGzakS5cuAAwfPpwNGzZw5MgR7rvvPoKDg5k5cybnz58vzan+EkKk2tnuA0RKkhQLbANcgUYlneyWm3FAzciZsPdipufq+HRIcIkO2qNHj7J8+XJ27dqFSqWiQfij5Py7rdi5PN1UvDx7MWnJZ3Dv8BiGnDTWb93NewtW8+ZzAyrq0oqwcOFCvLy80Gq1dOjQgQEDKqfd8lBTZquOxM9TTZKNZ7EylaXlIMrZpzG1Ow8hcckkhv3kxKCIrgQEBJiPHTlyJGPGjDE7xy3x9fVl1qxZ9OjRw+wcf/TRG1pdqhWWwRleIoM8nbHI5+7u7gQGBha7dgAnJyeMRvPxrlYfW88eLLclYMC1grWl4pZUHDWBkl5YW4rP8oGS/t1A+t79dOjQAQBlehZ6Z/di5xICMk4eQHs6BuncEfQZl1Bq6rLojz280L9Hhcw6rKOSGp5ex9G9mwE4d+4cCQkJDm/TUdyOuTvVQVlaD6I0Qb3QBPVCAhbPeqjIZwMGDCgy+LD2VQwdOpShQ4cWayM7O9v898CBAxk4cODNd9zBWJuvL2XmkXIxiVmL1xI58hF++uknwsPDmT9/Pnv27KFz587odDpOnDhBYGAgAQEBHDhwoPB0ZbnADcA4SZLGXUvSDhFCxJT0BVlxVBE3emEtBbCnm4rsPD06oynnJkNbgNSiGzO++sQs1KJikni85yazee6Sk4IMrQ6BoHbnQbgHP0D24c1k7lvN2R2ree21KyxevNih12T94J869A8xOzawaPkahtzdjO7du5OXl+fQNh1NTZitOpLqoCyrw6ynOmDLfO3kdQcff/4F3384mTZt2jBu3DgiIiJ4+eWXycjIQK/X88orrxAYGMjEiRMZPHgwQBugLCWd3gU+Aw5JkqQATgMlLoFxyyUA1iTs5QzYSmK0pODKWVJ+eZfgF79k/8wBpKamkpWVRbdu3YiOjsbb2xuNRkP7qWs5GbOL9B0/Uv/x91A4q9FnXcG3job9M2/OZGSr77M3HC8iAHIT9pIdt4GQ52bxXT8/goOD+fPPPxk5cqS5nzf6LWRufW6FpF1H0CRyPbaksQSctpp5lYScAHiLY290ay9KCuDK+k/RBPXCs+uTxM2fRLu1b6NSqZg7d26xYydFtGRKTgG6q+e4+MNEAJQuat78esFN9dteRJh1n9VNQsmK+YP9s0cQuTeU8PDwMp0PHJ/06GhkhXfzVIdZT3WgJs28ZMVRDSlNREut1vfSonMEuyJ7mvdZ2nstbbqzazmTHPaow15IexFhSknCYDGDlZxU1B/8Nv6eaqLs9LOk81X3bP+arPCqG7ebidAW1cHfVFpkxVEN8fNUc+ZMIpdWTMf1jjbkJx1D6V4Xn/5TUbi4gUJV6geqIl5Ie4rNIARqlbLMD351CAktDzVV4clUT2rSzEtWHNWQSREtmbDwHPq0ZNwfeZ26D7zM1TWzkE7/Q93ez1f5A2VvSu1v4etITtfC4XXkHN/K1F+dSHzuOfr168cDDzzAPffcw+7du/H392fNmjU1aopuSU1VeDLVl5oy87rlEgBrMoUlSF5dHouLUsK5TgNc6jfF31PNY326Muoud07PeohdkT2r9OEqaUXDfiH+7IrsyapBDdCc3cnRuAPs3buX+fPnk5aWRkJCAmPHjiU+Ph5PT09Wr15dY1dIvB0TBmVkQJ5xVBus7eWZ+XpQqvh0SDD9QvyZM+dgEb9FVWJvSg3QZdYW04g7/nc6dO5lLgfRv39/duzYQZMmTQgODgau1wyaOrzmTNEtqUk2aRkZRyIrjmqCLXu5EKLa2sutp9TFFJ9Wx5ajaURZ1RxycXEx/61UKtFqtTbPVxOoSTZpGRlHIiuOakJNt5dbKz6XOwK5+vtnzPotjvtaePLrr7/yww8/mOtV3SrURIUnI3OzyIqjmmDtIHaqXR+/Z78228snTpxY7nNXRq6BtYJzadAMTdteHPzyBTqtcOe5557jtddew2CwnZ8iI1OTKCl593aYgcqZ45VMWbLFrbNny/NQVlZWbpdZW+xGWlnmmsjI1HTsvVMDQv1ZfSCpyjPgKyNzXI6qqkRKWjTnRuXgy7vgTnkWJ0pMTKRt27ZF9lmXR583bx6TJk0yfx6aH0fG5v8BcPmXmVxYPJ4L371I++z95mMKy6nn5OTw0EMP0b59e9q2bcvy5ctL8evJyFQP7L1Ty/45d9ssBOYwU9W11aayAAOgt9Z4kmkVlc+BB4FcYKQQ4qCj2q8J3ChhrCR7eXmTzRzlO7Euj75582a6dOnC7NmzAUjYu5FJL4xm/WU1xgfG09C3Hi93a8S7o/px9dXnqFu3rvlcf/75J35+fqxfvx6AjIyMMvWlupGYmMj9999PaGgoBw8eJDAwkCVLlnD06FFee+01srOz8fb2ZvHixfj6+tK9e3fmzJlDWFgYV65cISwsrNqtSHe7mFzKQ0kJsGU5vibjaB9HDyGEvRV6HgCaX/vXCfjm2v+3DWUV4pYvrz2D4o0eSj9PNf8dPURO/Ba8ej9fZH9JpOfk4RPcm4xzx3H3a0KPjsHEbFtPcnIyBQUFPPvsswQEBLB3714GDRpEdnY2Fy9eRK/X80i3buxYtoP3l10vpW6pOIKCgpgwYQKTJ0+mb9++dO3atcS+1AQcuFJblSOXUikZewmr1iV3LI+/1ahMU9WjwBJhYi/gKUmSbyW2XyHYWjfcHmVJGLM2TZX1nIVMimiJZ6NWRZTGjXINNsZfJCnxFMq2EfiNmkduTg5rVv1MenYucXFxdO3alYKCAnx8fFixYgW5ubkEBwcTExNDr169WLVqFXv27CEuLo6QkJBipdRbtGjBwYMHCQoKYurUqbzzzjslXkN1xPK+D/hmN94N/By1UluVczuuvV4W7CWsDu3UsEYmspYHR844BLBRkiQB/E8IYR136Q+cs9g+f23fBQf2oVIp68isLAlj1i+vPuMSl1ZMx8WvJflJR3H2bU7d4AhS//yF5t+ls3TpUgDGjx9PXl4earWaRYsW0S+kJUeid/PJxx9Tu980aqWeIOfvBcz4TcXbksT27dtxd3cvMrsxZFxG6e6D6x1tAHDxb03BhQT0XgEYjUb27t3Le++9x9atW9m3bx85OTlMmDABAH9/fwwGA25ubhw7doy9e/cWu7bk5GS8vLwYPnw4np6eLFhwc9V6KxtbC+6k5+qL5KyUdqW26rg+SVWHhld3M1lJ+Tthjb2qdd8dhSMVxz1CiCRJkuoBf0mSdEwIsb2sJ5EkaTQwGqBRoxKXva1yyup3KEvCmK2XVJ+WjE+/SJy9x3Plxwk0z45jU8w+1q5dy/vvv8+SJUvYsWMHTk5ObNq0iTfeeIPVq1dzT3Mf9jbzZt2sh3j44XlELvyWLl26kJ2djaurazFBaESYFgG4hrNvC1AoyDp/nMjISHN5dGdnZ1q3bs3Zs2fN+7p06YLBYKB169a0bNnSZin1w4cPM2nSJBQKBSqVim+++aaUv3j1wNZ912de5q1vf6HfN+NKvVJbx44dWbVqVRVdxXWsBbWnm4q0XF2x4yrD5FKZZrKbUVD2/JG3S16PwxSHECLp2v+XJUn6FegIWCqOJKChxfYd1/ZZn+db4FswheM6qn8VQXlGZqV9sGzZUZ0866Ou1wSjELjVD6Bdxy5IkkRQUBCJiYlkZGQwYsQIEhISyMrXk5KRS5PI9dRKPY5rhmlk26VLF1577TWGDRtG//79ueOOO2wKQkNmCvlJR3Hxb432+C48Qh8h99AG5syZQ7NmzRg5ciTdunVj/PjxRdaEdnZ2pl27dmzbtq3YNRU6gCMiIoiIiLjhb1BdsXV/nbzu4L/tv9C69delXqnt22+/5aGHSr9AT0VgS1CrFBIqpYTOcP31qyyTS2VVHJb9ODeHQ3wckiTVkiTJvfBvoA9wxOqwtcBTkolwIEMIUWPNVFCxRe4mRbREpZSK7JOUKgxCIIBcnZEVMReJiklCoVCg1+uZNm0aPXr0YOYPG3C6fwoF+fkI4Ep2PscuZhEVk0RkZCQLFixAq9XSpUsXjh07ZlcQZh1cT9L8MRjzsql3d3/enPUFgwYNIigoCIVCwZgxY276Omsitu6vpFDQ/slpHD16lNWrV+Pm5kZwcDDbt28nLi6O+Ph4Ro0aBUCrVq04dOgQMTExzJw5s0ojqmwJap1RUMvZyW5oeEVSWWYy2Y9zczhqxlEf+NUUcYsT8JMQ4k9JksYACCHmAb9jCsU9iSkc92kHtV1lOKrI3ZIlS5gzZw6SJNGuXTs++eQTPpw4inP/nkQAdXqNwsm9brHvFeiNzN5wnKWPNwVMYa3+/v7M3nCcqzEbihxrvFb3Ksgjj6CgIIKCgti/fz/Hjh3Dz9OjWNa6/6h5KCUJoxBFpvFvjRlSrB+Wgi8sLMzmbONWwtZ9lySpRjpB7QnkDK2O2Ol9Krk3lbcKXlX7cWo6DlEcQoj/gPY29s+z+FsAYx3RXnXBEUXu4uPjmTlzJrt378bb25vU1FReeuklsptH0KDDWPSZl7m0/C3qD37b5vctH/TXX3+dESNGcCbDgOudHWwe+9lnn7F161YUCgWBgYE88MAD0PhKmbPLq7sDsyKxvu+NGwfw1YZdNfL6q9taKJVVcbi6XXdNQy45cgNuVkDa+n70mVSW/XOOnDNxaBP+oW1jH3atmk9UVBQtWrSge/fupEsa8zmMuRn4jfofCufiD3VhSQ/LdhR24slLKv9RluusrDImMhVPdbyXlTEoqY7X7Sgqo+SIrDhK4GYfrqiYJCatiiviZFRIYLy2mb5zKQWXT6PybsS416dyPupj+vbty5gxY2g+/kcu5JRcELCwL0Cxfto71hEvhVyX6sbUpBlZTeqrI7lVr7syFIdcHbcEyhvhUeizSLicjdI7gDo9nyN1w1z0mSnAdZ9FVuwfIATa/6JZ8GNLCrasZevWrRgMBnxP/cblWqEk/zEXfeZllGoP6j/4Ml7+TUjP1RV50LvM2mJTadjyUZSWkl4q2T5sorQFK6t7xM7tEkJqTU24boPBgFKpvPGBlYysOEqgPAIyPj6eyGkz8BryIfUVbhi0WaT+NQ/3Do/iekeg2WfhP2oe7sEPIKnUKN1qk/r392iAJk2asGrVKsaOHUvyinEIdW1cG7WnSee+iP1LiPnfrlL3xygEp2eVHO5pS/gBJQo+2T5ccjhnZYWUylQ/cnJyGDx4MOfPn8dgMDBt2jQmT55MdHQ03t7eREdHM3HiRLZt20Z2djbjxo0jOjoaSZKYPn06AwYMQKPR8Pzzz7Np0ybmzp1LYmIiX3zxBQUFBXTq1Imvv/66ypWJrDhKoLQC0lL4Fhz6nVz/Djgr3ABQqt3JOxOL7upZ8/GiIBdjwfXzaoJ6Ubtdb7peWEHfvn3ZeS6fM22eIv+XKNSebnjnnkWxez75+fll6qdCkmgSud7ujMNa+MWvW8DoTW74dR1couCTl0wtWTnUxBnZrWq2gcq9NlsFPCdPnmzz2HfffZfatWtz+LBpwJGWlgaYlE+nTp34+OOPOXr0KB9++CG7du1CpVLx4osvsnTpUp566qkK6X9pkRWHHaJiksgt0Nv8LCf/enkJa+Gr1RmK15YSAt8nP0Zycrbb3tBODTkfBftOX+W3uMPkZOeicKmFz1Of46pSMqME/4S1IM8+vAnXgBC4FsJrz1RiM4bfIEjXFs8ahuuCT14yteTZaGXMyBwpDGuaaa0sVNa1Fd6PM/9d5cqq37iqe5FXnx1aYgHPTZs28fPPP5u369SpA5iWVB4wYAAAmzdv5sCBA3ToYIqS1Gq11KtXz2H9Li/yehw2KHzYbJVdAEjX6sxrYVgLX9dG7cg9thODNhMAgzYL14AQMg/8Zj6m4NJ/AKYoKZ2W4eGNmNkvCHd3d3755xRanQGFixtOteuTc2wnWp2Bj/48RlxcnM3+WK/lkXN4M4bs1CLH2EpuKusI2FLw9QvxZ1dkT2IiuzDM41i5X8LPPvuM3Nzccn23Kikp+dNeEbzSzMhKUzSzvGuz2KOsyXBlKexZ1VRGop/l/XDy8sfnqc/Ym65hzCuTeOedd8pcm8zV1dVsihJCMGLECGJjY4mNjeX48ePMmDHDYX0vL7LisIGth80ae2YJZ5/G1O48hEs/RZK88CXStizAq/doCi6eJHnhSyQveIGs2N8BcGvWiYaZR1g340l27NjB448/ztltP5O86GV0aReo+/BEsg9tJHnhS0R//DRjXpuCe8NWONdvSoNOfVkdfZaRI0fStm1bpj11PwNd4pgdpiX/YgJX1s0hedE4jLrr5i3rUbA94VfHTVVqwZeens7XX39t3i6rUKmpiqMk5XCjRblsERWTRPDbG3lleewNFYKjhWFZTGuOVloVTWWYDS3vhz7rKgqVC86tumFs+zAHDx401yYDWL16tfl79913H3PnzjVvF5qqLCmsNn358mUAUlNTOXPmjMP6Xl5kU5UNSvtQ2TNLaIJ6oQnqVWSfz6PF7ZyNmzZj17eHiuzrMHFxkfO53hFI9pHNqFzd2L/vH9xDH0H3XzSZGWmMmfAm9bNPkp2dTWJiIlevXmXWrFmABEYj7iEPolC5mM+llIqWMOnRyoele88WMa2plBLTHw4ESmeKioyM5NSpUwQHBxPQLpwdCVfIOrkfkMi+ewhTcgo4Er2bvWu+Z926dQC89NJLhIWFkZmZSXJyMj169MDb25utW7fa/a3LSkXbtW9kritLxI6tsO9CbDnVHd8bM9YAACAASURBVC0My2Jaq2mO/8owG1r+7rqURC5vWwSShKRw4offfkKr1fLss88ybdo0unfvbj526tSpjB07lrZt26JUKpk+fTr9+/cvcu42bdowc+ZM+vTpg9FoRKVSMXfuXBo3buyw/pcHWXHYwN7DZus4S/9CVszvSCoXNG17FTtWpZDQGYsWjevRyocus7YUETyW58u/eJKco9vxffoLkheOxZCTRuaBtRizU1F6+OCkqUvCf6dxMeTy559/kpiYSO3atXFucCee944gbfP/cA0IQeXZACi6QllUTBKrDyQVURp17hnGsPBGZt9NaZg1axZHjhwhNjaWVsNnkHvhH3yf/hKjNpML37+GS8O2/HwphQAb33355Zf55JNP2Lp1K97e3iW2czMJihVl13ZUOOeNZrjWCsHRwvBGwQ6OWFCsqqiMQA7L+6FuGoq6aShgmmmGhZnSKU6cOFHsexqNhu+//77Y/uzs7CLbQ4YMYciQ4qV+qhJZcdjA1sNmjaVZAkwvf1LIgzaP9b8m6CwFX49WPkUWtk9K1/LK8lhqOSsRRj0gkX8uHrcWnVGoXJFQ4OR1B5qg+0jf8QM+/d7Axbc5+g79yFr+OsMmvEvG+ZOoVCp0mVe5+vunCKMBfVqyWXH4WwgWW8JKAFuPpZRK8JqdgWcSSb2SQ1RMEsnHY6nV5l4khRJlrTq4NmpLwYUErriobSqO0lJWRVDTRsU3ErqebqoiAwzrZwduThiWNHsqaTZkSVWFYt9oQFEZgRy3Y5ShrDhsYPmwxSx8E0XOVdRKIx5hj2Bs0Yuznw5k9d6T9AvxZ9WqVaxbt45dixfz+POvseVUJm5hj3HxpykUXDgBwoiiWXO6Pb+TfpE9zetNj9+UQnZGKhe+f5U7XlhI9uFN5J7YjbEgD4SReoPeJvvIZvSZKRSkJCKpXNCnX0QUaJGUThjzstFnXMZdaeCSUYlP+BMYl76OR8RksmPWo3B2xdm/DeomdwGQvXsZze4KYNKkP/jjjz84cSmb2ncPoVbre8k7e4jMfb+ivrMDJ1QuvLDmC3ReTdAE9SZt22K0J/8BhZKxf3eg3/YVxYSJ3mBk0krbjnsAHw83jOlG83ZZFy8qqyKoaeGwJc1wVUqJ7Dy9OVAjKV3L6gNJDAj1Z+uxFIcJQ3uzp9L4+6pKSJZ2QFHRiX63Y5Sh7By3Q2HU0Pm968lOOsHZ44dRn9hI9KRw1CqlzYeila8HDwb54u+pxpCbTpunP2DZjn/JTk0hMjKyyLG2hFjBxVP49JtCgydmkR3zO0oPb5zc61I7fBC6lDNIShVZhzaAQsnVPz5HmZPCqSVvoM9K5cq6j9EE9iQr9g/UbbqTn3SMtG0LMeRm4O+pRn1+Hz1DmhMbG0tcXBztR88hbesi9BbRV+4hD+IR1Juca2HIBm0muQl78H32a/ye+QrlXaYQQUthIjmrMRZo0RkFrncEknN0B8JowJCbQd65I7j4tmD8o3fz77//kp+fT3p6Ops3b77eprs7WVlZJd6LsiqCiix3XxHYcrSDKUihlrNTERMnmJTm1mMp7IrsyelZD7ErsmeFCamSlG1ll1y3pjqVRi+UFxV9P6oL8ozDCuupb8PT6zi61yTozp07R0JCgt3vfbfzNDkGJ5p3y0aVl4byn8W8/89itFptsVLjfp5qzuZmFNnnGhCCUu0OQFbcn7g2CsLVtyVX1n2MpHLBuUFzXAOCcWvWgfR1H6HctwS3tr3Ijt+K39NfIoSR9O0/kLl7OahckZCY3MOfrk09efE3H2JjYxk6dChKpZI3B3ZmxNogCi4koHC5LlAt/SAKl1pIShVX//gctzs7cmfovUBRYaJUe+Di34bk715E3TQM53pNuLBoHCBRp/vTKDV1eO6BDpwYPJi2bdvSpEkTQkJCzN8fPXo0999/P35+fnad42W16TvKdFBZiWMljVibRK63+Z3Kmj3Z++2rQ12ymjazvJWQFYcF1lPfU4f+IWbHBhYtX8OQu5vRvXt38vLykCyik/Ly8jibmsuUXw6TladDUjlx+sgBtHl5vPHNaobc3YxOnTqRmmoa2RfGdE+KaMnExUUd0ApnF6ypffcQat89hAuLx6P08AEg4M4W7LpgygXpMmsLSfc+CYAkKajTbQR1uo0AIH3Hj7w772e6+jsxZMgQTp8+zcEzaXx3zV6uVEhIEqBQIsR1U5LQm8wikkKJ71OfkncmlvyE3WSf3wZTI4oJE59HJhXpc50ez5j/LvSrfPTRR3z00UfFrm/cuHGMGzfO3i0Byq4IbsZ0UKgsktK1SGB2Bld0Upw9c0pVl3epCvt9aRV2Vf82tzOy4rDAeuprzM8Fl1p8sf0s7b307N27FwAvLy+aNm1K165d+eWXX9CpNNR2a0/2ob8Q+gI8Og1AUjgx6onHmOacT0JCAr179wZMcdivvPIKzs7OXIqNQxRcby//QgJJ345G6eaJ5ORiThTMPbWfgkun0GemkO+sZui46+UGbIXUFuLWqiupf37J+gNZfPnefj5buo7538yj7oDmGPOyyUw8hG/XkQijHt2Vcwi9DqHPR3smDpc72tBADUlXctA064jLHW049r/nTBV/bQgTlUICiQpZbtSeIgCKRaWVJxwWTMJqxtr4Ilnz1r9paRzsjp6lVLXjtV+Iv3kZAIMQKCWJAaEV5zMoSyBEVf82tzNyWXULmkSuLyIshF7H5V9mYsi4xINdQ0lPT2fGjBn8+++/jB07lqCgILp27cq8hT+gbt4Jpbs3hswUDNosCi4mYMzNxMO9FmBSNqdPn+all15i0aJFNGvWjF69evH5558TNPU3Ejf/SNaBdfi/uAiMRi4sehnJWY0w6DBqM1FqvGg9+HWGdbyDPxd/ypYtW0oV8ZL83VgUbh6EvvAZKf/Fk7j2czDoMObloPJuRP0h75K+cyl5Z49gyL6CU+0GSM6u+Le7hymjHmfs00Mx6ApACDw69sfnrj7mUu62BHlJQvNGQrWq1gQpbeQQmOz69gpH2juPm0qBs5OSDK2uXMqkKutIVfa6FWUt2X8r19gqL/J6HJWsOEr70CYmJnLfffeZ/R317uqD0b8dBcnHUbp7k3P0b0AiaMTbHPhoOFExSQzpEUKDp+diPLyOe1s2YOncD4mKSeKJiLvxGvgOucd3YczLwrPrcABSN89HqalLvY59Sfx8KK1btTK3n5+fz9GjR+32tzRkH95EwcUEvO57gfSdS5FUamp3MiUfFQqGQpNNIVf/+AL3Dv1o0qylzZdYr9ez7vClUod1FpqC/EsIMbUnoG5mTRBrYZOTr7dbn6ss5y/t/bBcR6W6Cj1Lk50tKsrHYT14K6QkhS1TFHk9jkqmpKmvpbDxEhnki+tRMG3v8GR/wl4KMi7j1e4+cuK3oFA6MaprU7PANBgFAsjK0/HX8atMjTrM6gNJ6AUgbI901SoF0/u2ZsKSOsTGxgImpXX//fczcuRI9q39C2ff5miC7iNj51IMuel4952IyrsxqZvmobtyBmEw4HnPE7g1DzeH3dYbOL1IO65OSlzVKiTAy5CG2L6Ad3/PIv5yHnXvH4eqbkOurP8U9Z0dcPZuRHK6Fo1GQ3Z2Ntu2bWPq1Kl4eXkRHXeE2k99XepS45b+A1vmtooIubVlCiktNzKDlNYpq9UZmLE2nny9sUKSFN9//33eeOONcn+/NDOwpHStXTPhzXC7+C1q+kxJDse1wF6NIaBIfZ5LmXlcyswzZ1c38nLjhWeeJOzleShdNTgpFfTu0Y2U2M3M3nCctFMxKNQeKFxMpdZ1BsGPe88WeTFdGgaSm7AXoy4fY34u2lP7KDAY+WjLWdIUnrQcNp2omCSEECQkJDBhwgQCX/4O/dXz5Py7jfrDPqJOj2fJ2LuSrL0rcG3cHt+nPqXB0PdJ27rQlB9iAxehQ/HfLgpi11Jr3WTy/5jF+OefNhVly03j4rI3zM7y9J1Lyb+QYBql5+QwYcIEnn32WaKjo/n8889p8sKCMpcaL6SsGcn2BIlCkkrMei9NXoIlhWEQpQk7LYtwS9fqHB5KKoTAaDTy/vvvl/scULrfSIIKqVd1MwUiawo1rd6XLeQZhxW2nKq2VtgTQhQZDXdsUpePBvYkMTGRvjs+YcncOTzzzDPs370QyckF74deLbFdlwbNqNWqKxcWjUPp5olzgxYYjCYBU/fhiZzd+DWP3/8DXi4CT09PTum9yCk4h8q7Ea6N2yNJEiqfAAwZl6jrlEvyf/vI3PeLqa96HYZrqw+CKT8gG6jl7EQ/n8v85e3JE088wZgxY/D29mbUqFHceeed+HrX4WxiIlkxv1/vp5OCSREteWwKdOrUiYcffpi3336bJk2akJz+r81rK6nU+I2wJYyjYpLIybdd8t4gRJGRu/XIrix9qOOmYvrDgaUeCZam4sCNSE7XEhkZScOGDRk7diwAM2bMQKPRIIRgxYoV5Ofn89hjj/H222+TmJhIREQEnTp14sCBA3Ts2BGtVktwcDCBgYEsXbq0yPlLM9K9kZK3jDYrpDyZ+SX1pSaPxm9ETatsYIubVhySJDUElgD1MT1P3wohPrc6pjuwBjh9bdcvQoh3brbtysL6RXKqXR+/Z78271+8eLH5s4CAAI4cOQJAVFQUTaasx9KN5HnPsCLn8nv2emXZwtBba1SeDag/2PRzGTMu4/TXh8zecNyUGCYpkJQqACRJQiGM1FY78eo33zPnn6wiL7jh7PXqm3XcVFy6qOevCy4cTzjF+vXradu2LRqNhjZt2rB9+3YA3pm3nM+/+gpJ6YZKqeClns14pL0vAAMGDGDHjh3UqmUKACjJzFAaoWotkGyNNEtjRrEcuU/8fhsX/vgan8feKBZia0kdNxVuzk43JawKj3/7t3i7JfnBFIGmcXWyeYyfp5ohEUN45ZVXzIpjxYoVTJ48mV27drFv3z6EEHTs1ofVFz8jXeFBUkICz7wxmyVLlgCwcuVKs2kTyh5iXJKC9S/hs7LkT9woeqoyBWhlm41uhfwTR5iq9MAEIUQbIBwYK0lSGxvH7RBCBF/7V2OUBtxcJrKjYw+MCC5l5tl9eQ1CEBERwdHNKzBea7zg0qkix6Tl6sxCK1XljUvbPuhdavPBBx+gVqu5cuXKtb4LGigy6NbCh8mDuuLtYqR7y3qsXbsWMC04szMhhd0nr9Akcj25BXpTWK4FtkqNw3UTkOVxw8Ib3bAUeWlNTcnpWmZvOI7e1ROfx67b+4Wdtqc/HOiQzN9+If7EvNWHz4YEF6kNVgQJHmrnW8wko1JK5OTr6b88mf1HE1m48QBxcXHUqVOHw4cPs3HjRkJCQrizdRCH4v/lwlnTOEzpUY/FJ51vuHZH4fVbYss8Zs9c9NmQYHZF9rR7XWUx1VVU1ndZy/pXhdmoplU2sMVNKw4hxAUhxMFrf2cBR4GaMd+yQWJiIm3bti2yryS7a3R0NC+//HJldpGSIuGclAqmTZuGTqfjyvcvk7zgRdJ3/Gj3eH3WVQySgnOKBkyaNImmTZty+vRpWrVqRWBgIN988w3dunVj1KhRpKenM3ToUPbs2QOYXrpvt58mT29EYFJISOB5zdFuKfwtR3X+nmqbSmJmv6AbCu+SRmVp2xaTddBUut3PU038ugVk/PMLyd+9CJgiyS7/+h4XV7zFpQXPk7Z1YYWVzCgsQWFLyOoMgq3HUor40+q4qUCYTJMCcG5+N1M+XsC7ny9gyJAhCCGYMmUKsbGx+D39JX6j5+Pevg8ACpWLXaFbGkVr/ZveaD0RR/ghKmLUXR4lUBVlS24FP45DfRySJAUAIcA/Nj7uLElSHJAMTBRCxNs5x2hgNECjRo0c2b1yU7Ld1d9cOtkWddxUJZotykqhmawQS9+Ju7cfX/2xE7Vazf/+9z8eGJPEpFVx5qQ810btcG3UDgBNUG8I6o32vwNoT+5DK0m8/fYBvvnmGzIyMpg4cSJ6vZ6QkBDGjBmDi4sLd911F3PmzCEsLIy5c+cye8NxFP6B1BsYaO6DziCQpKKhk1OjDheJmios1FcegV2SGaVW666kbp5PvU6PMimiJU98uguP3i+Sc2TT9f5d+g+/p79g9pBQJg3pyc/DmtOwYdWYJSxNMl1mbSnynFgnbx4+fJhp06YxbNgwktO16LOuICmcip0TMFVI1ulQqVSlEsS2RrolmYvK6oewZQqqiOip8vgOKkqBVXXF3orGYYpDkiQNsBp4RQiRafXxQaCxECJbkqQHgSigua3zCCG+Bb4FUx6Ho/pXEtahtuk5+YwaNYrdu3fj7+/PmjVr+OzVYXw+Zw5hYT25cuUKYWFh9EtMZNu2bcyZM8e8SJE10x8OLCK8bZF/IYGc+C149X7+pq7jrka1mb3hOK8sj0UpSUXqTtmjcP0A67j8mJiYYsda1tvKzs62W0cpLVdHQOR6c35GWUNtrbG8P55uqmJrmxTiXP9O0GYwqasPTRRXaOxbj6xrZVoKcW3cHsmlFp9vO0ObNm04c+YMDRs2vGEfyktpBaStlSSNBVqUtbzw9fXF19eXo0eP0rlzZy6n5KBXOuPddyKSQlHsnKNHj6Zdu3bcdddd+AU9W2JAQHlHuqX1Q9jzZQwI9XdoaXgonxJwtAKrLhV7KxqHhONKkqTCpDSWCiF+sf5cCJEphMi+9vfvgEqSpJJX7qkkrKe3lzLzSDrzH216DSI+Ph5PT88iyz3a4mJGnl27ar8Qf2YPbF/UJGGFi2/zm1YaALtPpZpfgtIoDUtKemHt2Y1v9HLZy88opDSjOuv7Y2kOg+L+Ck2re9i9aT3Lly/nhWeeLHY+yUllblupVKLX247OchSlNUvY+i39np3LXS98Zt4eP348hw8fZukfO2j6zGeo6viaZ6CW5/zwww85evQoS5cuNbcvhDDXI5MwmTv9PFwqvLKtvVmAtanOESbD8vgOHG02qk4VeysSR0RVScB3wFEhxCd2jmkAXBJCCEmSOmJSWFdvtm1HYOtGO3nWZ1WiE68CoaGhJCYmArDt+GXGb9rCueSLXM4w5XEcSUjh2MUsvK8JwcIRxsoFX7D/r1+pV68eDRs25LHQUNbtXcecOXOIOu/Cki2HSb62FodlYp4xP5ecf7fhHvwAkiQVjYrKyyb3+C7c20fYvJbyTs/quKnKtZrepIiWvLI81ub3StMney+05QxDYWPmpDMIark4UcvFqdho0bnFPSxb9hVGbSbej3+AAtuKobIckaU1S5S27lJhqO4H/fsxe8Nx4tctwNPDg44tvHlv9DTesgrVnfx4BH7Ng/hnfzS1e40h/a+5hHfqxOXTR1n2+++sWPETzYcvJTk1E1XTcAIffs6hZpPSmurKii1zUHlqVznabHQrREyVBkeYqroATwKHJUkqlCJvAI0AhBDzgIHAC5Ik6QEt8LioJrVObN1QSXndNqxUKtFqtaRpDXy1OQHqNcOo16E3mvIFdOcSzdFLhaSfO07UnytJ+e8Ier2eu+66i9DQUPPnM/sF0cIDRv8gkb5zKYacdACEQUfqX9/gET4IlZOC2QPbM+GdOWToJDRte6F01aBPTUJ7aj/qOzs45PrVKiUPtfM1l8soNHEVmpkKi9tZUjiC2hXZk1eXx5ZLYUkUneX8evA8s/88RnJmfpGQUXszJ3vmF2efxujyclHU8kKp8UKfccnmNU+KaMmCneXoOGUP3yyNgCytABsyxBSq+/fYsfQL8afNkpeYPKpoqO4jjzzC9u3badSoEQkJCXz//feEh4eTmJhI05/f4IOpEwkPD2fjxo38tScW5WMf4K3Tk7L6XU4d3s+UnIIifboZKsKXYW8w80H/IHOpnLIoAUeajW6XzPebVhxCiJ0UtxhYH/MV8NXNtlUReNpxXntamZQuGt3RJ53AvV4zcv7dhiE3nVP/ewFjQS4KVw3pu5ahPbkPoc9HcnbDtWlH3NxMmeJtwnvy1ZaTXPzvKs8u3s/bSl8ebOdLg9qujOzdgq/WR5OLSWF5950AmEbVszccZ+iIZ/hx79nr/eo2gpyj2x1y7bZqRBUK6qR0rbnd7PitZB1YizDocfFtiVefF9jz1kO8mfUaSQt/QnJyod6AqShr1cGQk8bVDXPRp18EwKvPWNR3tCZj369kH/4LAE27CF4cN47gOjpatmyJX/Mgdv+zH5+BM8g5toPcYzsRBh1uzTvj2XWYjZ6XjN+zc81/F5pylJKEe1Bv/Lo+bBYmvZYt48cff6Rbt25FSuWXREWuZ16SALNUVpeuheqG1ncqFqoLJv9TQkICjRo1onHjxoSHh5vPY7m9ceNGtm/djHGXKUpOFOShS01G27Ctw5LRKqKCbUnmoKpeROl2qdh722eO25v3WO93Cn6EtDUfkhX7J06eDZAkBX7PfEXe2UNk7FmJ+1198ewyFIALi19BkXkBML3wO09eQajrICmUXM7UMuq1N1AkbCXjymWOHz9Ovt6IUZfHpRVvYczNQFK5UPf+cSTRkHmffIhB6ULtTv3Jiv2T7LgNCIMO7Yk91O37GgqVK3XcVDzUzreYs7EQy4QzyxlF4TroJYVr6q6cI/fodhoMm42kdOLqxq/J+XcbQpdHeHg4Hdx7ceTXuWTFbcDz7sdJ/Wserg2D8Og/FWE04CJ0dPXJ5ud/t+D75Cf41nYleclrDGj8AgAJCQm49BqHb9un0Z4+iD4tmQZPfQIIUla/S965I7g2bGu3f6XFKAQjXPejcdLQL6QnBQUFjB07lsjIyDIpjQkr4uzOwAoFVlRUFC1atKBNG1vpTGXHWlkVhuoWrrNy5swZpkyZwvPPF/WTJSYmmpMzC7HcFkKg6TQQTfADxdp0lGmlIiKIqrM56FaImCoNt73iyLCqilo4Qi3cP3HiRADWvLMR1TOmSZMuNYlLF0+Stm0R9QI74/7ETNL/3UnmP6sRunwMOelkZV9h+Z6TfLrxGFkn9qJp/wBOteuTm7AH7cn9+Ibdj0v8n+zfv59a3q1JSUmkwfA5qLz8yU8+ztWN39Bg6PvojUaka747t5Z34x58PwCZO34gwulf5s+aZu57WGMvc4ZwoYJQSqYIpMLqr5YzitKUx9CeiaXg0ikuLHkVDHp0aRcoOG+KpF68eDEvT/iQJ97ZhFLjhfbEHnRpyWja9uLCDxNQYaBdm5a0vO9eJoweTkHBftYuX0teVhoTJkxg4cKF+Pv7c2LNVxgL8pBUrhRcOE7+hROIgjwM2amom3fGtWFbUv/6BucGzdEE9Sb/4knStixAFGhRqD2o+9CrqDRe+HmqyS3Q283IxqJcl7OzsznTujSYi1XaGWlYCq2oqCj69u1bJsWh1+txcrL9Olor95JCdTUaDUlJSahUxYMwrImIiODbFeNxa9MdhbPaHOKrrOXpUNNKaWdSpRWy1d0cVNMjpkrDba84SvMQRsUkkZ133cmq8vLHd+Tn6BKjcY5dyVWPFqTu+w3fEZ/i5OFjWt/iXDwjH+6OcK2Nc4MWAHh0fIyLy94AIUjPyKSOQsEjjzzCof+S2bwvm5Q1s8xtFBYWtESXcoaUHT9gzMtB6PI461tUOFg+sNajVFvyTqszlCpst1bbntTpNhJ9xiWS5j3LjA8/471xw6lduzbndkehcXHCoFLh8+SnnP/yCZzj1xLy/MdcyoWkuCh+XvMnPTvfxW+//caxY8d466230Gg0AGRkZNDw/mHomnbl0rI3QOGE39NfmgMG3Nv3Qa1S4uKkwFRIWE/aX/PwGTANpVttco5uR7f3J85H/2HzujN2LycnfgvqRn4cb3UnoaGhnDp1irFjx5KSkoKbmxvz58+nVatWnDp1imHDhpGTk8Ojjz7KZ599Zq4A/MyYSDz6mZS0pRJL27YY7cl/UKmcmKjfSv/+/Vm7di1///03M2fONEfk2Wpv5MiRuLq6EhMTQ5cuXfjkE5uxJWUK1QXQaDT8+OOPKJXF1zG3pE+fPgx+/HGWfj8JoxBIzq54952IxrNupZhWLO9Vxp4ViM6DmfLLYS4nn+OLyc+ZS/dYU1HmoJpesbYyue0VR2keQnNdqGvos66iVLvT4K4+zBzVncGvvQeAQu2BsUBL7vFduLXsQp17hpkzmAFUdRtSu9NAjHlZ1Ok6nE+HfMz2Hz7m3rva8PfmOvg9/WWJfb3y+2fU6/8mzvWakn14EzGnbRcVLOxzaUpzGISwW78JTHkPKb+8i0dYPwC86jXgiZ4hvAcMHz6cL774AmcnBc1bN0fyVHPBqyFJp45yae44U4a7XkdSfg4pF87jWcuFp556ir///ptVq1YBkJubywcTxzDpl3jcQx8m79xhjAXXymPoCyA3gw+e7sZTvxtxBnSp5ym4coZLy6eaOmg00qZZY3N/LU0Fp48dpuDETn74bRsPtK1nDlIYPXo08+bNo3nz5vzzzz+8+OKLbNmyhfHjxzN+/HiGDh3KvHnzivwOeXojHta/nTaT3IQ93PnCfGYNaEf3JrXw9PTkkUceoW/fvgwcOBCAXr162WwP4Pz58+zevbtEIW9rcOP37NwiWemFfbfGUvha1lEr5LvZ03n4ieeK5MkIAa8uj2X2huMVKjwtn9GMPSuo3XkwWp2B/23/r8TvVYQ5qCJ9V7cit73iKM1DaD3i06UkcnnbIi5IEm83qkvzPs+QePBvLiwci7JWHfMMo/BcIy1yA10aBnL198/wCB/ErLUxXP3tN55//nmUHvXIObaTWq3uQQiBLuU0zvWaFmlXXBtlCoOenPhtKN3r2r2u0tp7SypaB+Ds3QjPrk9yacU0hF6HMfMKFy5cMH8uSRIFeiNHLmTjla5F074P6X9fBKMRSaGg7kOv4OLfGunwOoyJ29mxYwe+vr5ERkaycOFCAPrddQexyVn8kJ8LkpKLP0xE6PIx5mUxuXdj+oX4o1YYKVSDKu9G+D75MWDK54id3sdm3/POxeMV2AUXtRoPgoMzwwAAIABJREFUDw8eeeQR8vLy2L17N4MGDTIfl5+fD8CePXuIiooC4IknnjCbKQFcnYqnPClcaqFQOuN/+HuMdw3GLbBvsWOys7PttgcwaNAgfjt0scTnr6IdroUz1dIIz8L1YMLDw9m9ezcdOnTg6aefZvr06Vy+fJmlS5cSGBjIuHHjOHLkCDqdjhkzZvDoo4+yePFi1q5dS25uLqdOneKyVzvq9HiGtG2LEfoCkheNQ+XdCP29T+FuMBRLwlWr1cVmi39cm73dLLdCxdrK5LZXHHBjm6T1iM862zoqJokpdZqgvfd6wpllcT/LiriW5dMvu3ni5OHPV1tO0mTQFBLXfk7G7p/BaMCt9b1mxVHou/XsOpwLP0xA6eaBi29LXCmw2d+omCRz/kPuqf1IShXqgOBix6kUEpMiWprX2tZnXOLSium4+LUkP+moeZGorAO/IXR51On+DCm/vsfg4SNp3rw5Q4cOZeTIkfyxbQ917x1JStQsCi7/hyEvC4Xanbr3v4yqbkPOzx1Bg+EfsXXR28yfP59FixZx8OBBpkyZQsuWLfn555/ZuWABYU0COe/kRIOh73Pp+/HU8arDiN4hjBs3jtS4TeC6H/fwgRhzM8lPOopnQFumPtCC+Ph4AgMDzdduKfyy8vRm4QdgNBrx9PQsUj32Rjg5OdHE241clRKtzmA2I7q5OPPjb5uodfUYq1at4quvvjLPJKzbm7FofRHlUJhEGX85j99uIKz7hfhzOfkcrzw7lPojv6owM0pphefJkydZuXIlCxcupEOHDvz000/s3LmTtWvX8v7779OmTRt69uzJwoULSU9Pp2PHjvTu3RuA2NhYYmJi+GBDAnNGPYh76MPU6T6SrIPrzDPuuiKDuIQEli1bxvz58xk8eDCrV69m+PDhdmeLN0t1drhXR2TFUQoKR3ynv5+E90Ov4lS7frGVAS39Bf5WL7b1qN5W+XS9UsJ3yDtYV9IwarNw8qgHgHvIg7iHPAiY4p8/HVJcGVg6cfOTj1OQfByjLg+lxgtnb6vaXxJEn0kly2JtC31aMj79IlF6PE/S1yPR/ncAZa06qJuFk7b1O1A4cf7cWa46q2h0Zwvm/7aT/KxUrvw2G31aEpJKjaRyQZeSSMqv72HISQOjkeQFL9Dy5wlkZGTg5OTEyy+/zJo1axg8eDBz587l0KFDDGnaFLVKycG3+hC2thaDBw8mICAADw8PHu7bF9/Azny/aAF1eo0ma/v3pP+VwxPfGGh070DmTHvNlKVvIfwKZ3c5VrO7Jk2asHLlSgYNGoQQgkOHDtG+fXvCw8NZvXo1Q4YM4eeffzb/Jo0bN+bq+f+Y3bcFc34/QtKZOBq0aM9b9zelWxMN9To9SJcuXWja1KTo3d3dycrKAsDDw4Pa9fwZO/NrVM3vRgjB6RPxTMkpwDc1lz2xyeQ3vKPIbdHqDExYEcery2PNSuK+NvUJ8FLzbwUun1pa4dmkSROCgkwLnAUGBtKrVy8kSSIoKIjExETOnz/P2rVrmfN/9s47PKoybeO/c86cKZlMeg+E3qUXWVEEdUWKCIodG6hrWRULu+raGyqrotgbCqKCiIiCHVBBQAhFREB6SW+TzGTqKd8fJzNMkklIIK5+yn1dXBczc3re8z7v0+77v/8FwOfzceCAUdp9+umnM335Ad7fUIScnINSVYwpghbGJkv8Y3B7pi9sR58+xvgONeEeyXs7FvzRE+5/NBw3HHXQWILsirlGHDpkGIBaq1tV12t5GiE0RYsiqOphOpJQVZDzuzn4C3YQf/Il9ba/dHBO1BVnaOLUdR0xJg7Prz/UIkUEcH7/DpbWJ0DbPvUoQUwJ6ZhT21K9YxVSTDzxJ19CbI/heA9sNphnBZDi0/E6C9m19wCYzFiyuqC6Skkdeyfl37yCWl2BOb0DpoRMECV8e9bToXNnMhJiGTZsGIMHD+bpp59m7NixJCUlsXr1aoYNG8YNN9zA/Pnzw9fy5JNPsmfPHn766Sf27NnDnj17SJUDXHFaZ+Z1mx5+nkrN3wFqT3J1vbtzhxpNk3PnzuX666/nkUceIRgMctFFF9G7d29mzJjBxIkTefTRRznrrLOIj4+vGQ87qUjvz+Wjh9KlUwfOPu0kxo7ujrfaTYf+Y/H7/ciiwORb7mXRxjxWBDvxytT7uek/jzH95bewj7iV/QueRv3+3Vre5KYDTqS2AWoXzBIeS0plET++dh9XvNsV/84fyMxIjxq+GTZsWJh8MsSjtm/fPt566y0WLVpEdXU1O3fu5I477iAQCDBnzhwsFgtLly4lKSkpfM6GJs+EGDksE1tXNlkURSwWS/j/iqIgSRIffvghXbrUDqWtXbsWi8XCe2sPAhg8W1rtd+K8/tmc2cPBczXHhMNNuNG8xRAdzrHmOv4q/RctheOGIwKRYQ4t4GPjaw9w0TNlpDnMTH/0QU7v055n7/57mBQvmjJgNNe+bh6loUS00xNk7+OjaXfnEnQgYehlJESEv0JIjJF5ZFzPet/v27ePH6dfjiWzM4HC3Vjb9UFxFpL/5j/DzXQVK97CFJcSDl1VrJyLINvCfSKKs4i8V6/F2q4vanUFnu0rEe0JKGUHDQoURUGpyEe02LF1OwXPtu8BkGKNfEvyyFsofOdfAMhpbXHnfoqmBNhXVEWBuRV7V+2l/dBz2bdvH7169Qpfu8lkMuRqMVaoIei6zsyZMxkx4jDNivHca09w3qAaldwx5N1lJ9h4N4LE8fPPP6/3/LKzs1mzZg0fb8rn30++REVM63BnfOLwSTB8En5Z4vIIOeHkS58K7/+ZX+CzDzYTTOhA1tUvAfDcOhdeMSEsxBWJuLPqJ7PrQinPJ2bUrXQcOYnNT13OjTfeWC980xh+/vlnNm7ciM/no2PHjjzxxBNs3LiRW2+9ldmzZzNlypTwttEmT1kScPsOlzgXVfkoqZFNbmiCHjFiBDNnzmTmzJkIgsDGjRvDzYkQnQ1AECV0VWH59hKu7uOIety4uLha3uJHGw5x28uL0ZOM4ohjSWj/VfovWgrHDUcEIsMc3r25SLFJpJ3/ANkJNs46qz8XXlg7vNScuGhdCu3G3OIjSZyO7pVZ77vZs2fz2GOPoZTnYYpPJ27weVQsfxNd01A9lVT++CGVaxcgWmPRqiuoWPGWUQXmrUJXAjhXvAmCgBibCqKEe8MSECW8u9bi3fVjzVmMF16QZOTELNy5n6KrAUOWVhAoXvAgSBJoKoHivUiyxSDWUxWCJfuwtutH0ZaVPLDoDNxuL2+9/yFC1zN4vnQJ5SUS97+5GLfbzYwZh4n9RowYwUsvvYQrsQvPLNvD/j27EGOTEc3WqM8m2qTU1JVjbm4ul0/+BwWVXjDbSR51S6PCR3UXDdEYkJta8twQpPg0LNldKaosol27+uGbI2H48OE4HA4cDgfx8fGcffbZAPTs2ZOffvqp1rbRJs9qvxLuAQpB13Vun78ZgAPlHv7z0RamrreRpFdS5VO49957mTJlCr169ULTNNq1a1eLPTra84jtcxb5b/6TsowOcNFbDd5PpLe4s9CJufMpJAw5XFV3LAntv0L/RUvhuOGowaKNebUma3NqWyqWvUHFiln4OwwkPv60evscbVy0odCVJ6CwaGPeEckDP8w9xPLtJeHySW/RPna/9yDdL72P+IqHiDt7KgVvT0FXVdAU0DVQg6DraD43CCJSXCqKqxSCPqzt+iMnZePKXYzmKkYL6TxoKqak1ijO/HBIQYpPQ60sxn9oK4IjDTwVoGuI9gQ0dwUoRsxZik1Gl61I8RnomgqSDGqQmC5DyJt7J4qrjJjOJ2GumT8cg8bzzcInyPjyQ66+5LzwvV599dV8uWYLE8cMR9M1xJh40s69p9HnC8bkpOl6k1aOtUgVz/svGUeY5JubMA2FMI9Gi1yUa8JACLVCRKHwDUT31hZtzOPRJb9QtKeAXx5fxtQRXaKGleqi7uRZlzo/1CCr6jpTF2yGE64Ml6qXCfFIE56i24PLyG53IQ9fd1+tY1155ZVceeWV3LNoC++sOUDahPvDvyUOu4rEYVeRnWCrVzYcWd3Wrl27sLcY8szr4nhC+7dHi9Cq/39HKEQViVCTn5zaFtequTz0UP1QQ1MpmevSkgNMO7dnmBo8hApPkCnzNvHB+gONkn95g1otmvHiXzcQ0/VkyhQZryZjsTtQqiuIG3gOpsRMg7JdkDBZ7ZiTWyPaE1EqChFNZgB8+zbiyv3EOLgo1SrzVavLDU1zkwUQ0DwRUitBD6gKaCqaq6xWM4jqKsW3dyPBkr3oqoLuc+E7sBnf/s2kXzwNQRDx7dtI9c9fUzD7NrSAj6xJz1N8aB+PPPII+/btY8GCBUyaNImCzuNJvehR5KRW6AEfRe/fg+9Qwz0sYFCMNEUGti5te1M8g6wEW7OSpiHK8EgK8Wj0+o0hJBkcTc2ubdu25ObmArBgwQI8AZW7Fm4Jh5fynF6mLthMvtNHv4e+ZMjjy9iwv6LecaKhsfsMqno9XZRIsa5b523inkVb6u33yLieDOmQVO/75uYUfg8J1uZK0/5ZcdxwEL0MUXGVIcoWYnsMJ+2kCWzYsKHefkeS2ITocpZTF2zmgcVbKdrzC+VfvwKA78BP+A5tA2DV7vKjpkjX0QlqIIgmPDtWgSghp7QBTUEJ+FH9XkRLDAg6mt8DQPKY2zBnd0UwWUCuHQJyDDwHc0bHmtZzvXbviKYhJWaBaDL+hZrYLHYSTrkMW4eBJI+8GVNcCoLJTPpFj5FxyeN4tq8kptspOPqNxtq2H4HCXY3eU77TS/nXr+IYeA6ZVzxD6vi7KPvsuUb3CSV0j/SCN7VRMgSbLDG8ayrV/vqrdVkSGtVcj5TFvf/sHvUWHUeCrutRdR3uuOMOXnrpJfr27UtpaSlV3mDUMJqm6+Ex+EHuIfaUuI94zmiLoyZfLzB3zYGoz37uNX8L67IfrR5HtGsTgOFdU6PvcIz4PfTJ/6g4HqoiumsbavJDEBBEE/M/eTfqvkeKiz659JeoL7HTG8SS2QlLpiGE6DuwBUG2YW3VrdnXb83pRclHjxLTZQgAqteFNecEQMC7dwPF8+9DMNvQA15UdxmSPQE0FTEmAa26gvJvXgdNMfIRAQ9qwDAoiBK+3blh8SNEE4OmzmbjQ2Pwer3YOgzEl7cN0JFik0kZfStF8+/DFJOAe+ty0HViewwnULATz6+rkWxG0tN3yOgSt7XpDYD/YP1VaSSyEmwc2L+JYNlhlmA94CHDBneO7XPEhG6e08vUDzbz4CdbcXqCtcJXjeWSQgh11kdjEw4hMUbm/rONXpKmJlgtJrHWcep28EfKBIf+HxqrkeGbrl271spXzFX+hs5heeAQWl3/5uFzdz+NHYJAuzuXhK+zsWuPRu7YFOg1x4z2DI41pzCubzbr95fXqgzUgQ9z8xjQJul363P5K+C44SB6riLU5AfGhPHII49w8OBBfD4ft9xyC9deey2xsbG43caqbcGCBXz66ae89dZbtTiItmuZxHQbSvk3r6IrQUSTmeRRU5CTW4X5mJL+fh2uTZ8hCCLVvywn6Yx/NIsR1pzahvi/XUjZp0+BIFKx7HWSzriOksVPAmCKTyP+lImUfvwkuuJHdZWAIJFwyiVULHsT3VtFeMoyWXD0GYlr3UegqcjJrQxNC8kEAS8ZshdBEDDJMv6DW4xmOE1FrSqm6P3/AJB05nWorjLKPp9J/qyb0HweLFlNC0HI0mEnOBSvnzqiCxMe0sm87CmEmvCaTZa4c2zPJid0g5pey5DctXAL6/eXN0i30lCOJFolHUCM2RTuvqbmmIWVPqZEoe6o26QYQkPTslJZRPGCB8ma/GKtMMzVV1/NbbfdVo9M8UjFFSFEEl5OXbCZ4iXPYh8wDnNKDr989jZ3VRtsz6HrPlrtlcZyDsfKD7V8e8kxyRI35zqONwkexnHDwZGV7KaO6MLQa98kKSkJr9fLwIEDOe+886Juu2hjHku3FOCurKDPpEdpr+iUVVSScemTCKKEd98mnN/NJnX83eF9TPHphuJfTVns0SC25+nE9jy91neZlxkNWN49uZR/+SJawIM5tS1tzr4Zt6uK0mVvYIpLw5zZCdFsQ3Kk4t39I/ZuQ0k6bTIHnp5AyuhbAaj+5VtKl87gkydvQhfMiJLG+Vdczd5WI9ix6jPKP38ORBOi1Y4eDKBUFiHFJpN11UzcW74mULgzfF3WVj3w/PIttja9CZTsI1C8FwGYODiHN+am0ve2WVTIKbiWvEqXDAf3XDaCk04dzoFfPkfoNZasBBsT2iq1OqsjX/K2DWihR8IbVHlv7cGoE6EAPHVBb/Z9+wHXXnttWFflscceI7+qd9Tj7fj+E97sF8/070uiaptElok2NTxW16jVzQG8/vrrUfdrSt9QXQRVncSzbg5/DnFHhSbgcX2zj6j22BDEOp5NQwY0z+llyrxNPPjJVu4/u0eTJv6WmMybylN1vEnwMI7nODAGR2PJyulf7OCGux4JdxcfPHiQnTt31tvuQLmHuxZuwRNQielyMvlVAdw+BVHxULJoGvlv3EDFN68RKD1Qaz9/wU68e3Kbdc1NU5AwYGvfn/QLHkJOzCTzimcIJrXD0qY3WVc9R9bkF7B3PQXv3o04ep9JxiWPh8NnObctqH0gNUjWVTOx9xmJkNiarDbtWXXnaTx23XmYEjJIv+BBBEnGuXIuek2VTwiKuxzfQaNSJrbvKLSAl7zXrsO5ci7mjI7owO5CJ+KJl/LzrLspmDOVoCWOLXlGiefCOa9zosOJY+ldVMz+JztW1JO2D0Nqor5GQ6EXHWNMzJgxA4/HE06I3vPAw4gNHDu4bTnPLv6xwck6soy3Kd5AYoxcS0xM1DXScl/hrkvOYMKECXg8HoYNG8b69etRVZUrr7ySE044gZ49e7J3xXymnduTJKWcovf/Q9FbN1H41i0EKwrwHfjJKJuuQflXL+He8jUAhe/eib9gZy3uqM1zHqK6uprRo0dT8vbN5L9xQ7OFxNSI3EpkTqAhA1rhCTY5d9ASCfKm6oS3tD75/2cc9zhqMLpXZi2lvUjs/mktG7//glnzPubCkzoybNgwfD5fLQEgn8/Hz3mVxHQ3BqBQU0YZ1HSqvp9LRpf+6D3uQaksouDdu2od35LZKRwWS7DJjOmdWavcttITpPY0DCYRgnW/bASm+HTSJtxP3mvX1eKisp9wOiUfPowUm0iw3HhRy795FZQgQkRYTYpNBOHwOsOU0oZXXnqJ2c8+ht5jVDgWHz/kYly5i/Hu/hFbu37omoo5rR1ln80kdey/AfDuXodgMpN9zcuULnkGf9V2Spc8w5Jf+uLoNwZTYhaap5JA8V7ih1xC6bJXGDRoEIFAgMGDBzN79mwSEhLIzc3F5XJRVFqOX3agKAqtTz6Pg6s+Qg/60IJ+dJ8bW8dBWNv0Jli6H8+uddi7D8W1YQmSPZGUsf+i7POZBEsPIMXEY8nqQs+L7yInJ4eDBw+Sld0K3RZPTNeh6IqfPdPHYXIkI0hmI/8lyWi+KhRXGVvffQRRtpAx8b/hMtpI5Du9LNqY1ygbcQh1NUX8ZYc46/yZ3HXVOCZNmsSLLx5mA9i0aRN5eXnhElan00lCQgLTrnued5+5n/HjxzN/zW6e/nIH+7aXHHHREckdlZ1g4/PPPycrK4u5j7zKXQu3UO2uanT/7ARbg3rxkWGkxryCpoabWqLju6ley/EmwcM47nHUYPn2kgZ/0/wesNh57rsDbN++nTVr1gCQnp7Otm3b0DSNjz76iPKdGyh46xY8O9fg22e49QeenoBr/88EN31Mh/XP0LXwa9TqCvJenhyuogoe2oIjfz03D23Fs8MsfPrAZVS/fxsJX9zDv05rE9W9aMxoJMbIxMjR/7RKRT5xg8aTdc3LKGWHcP/0JXJNyW7lmg+Qk1uTcemTZF71HPGnTMT5XX2xI10N4tnxA75qF1UBKFn+FrqqUPblS1SunkfGpdMNwjpRpPqXFZjTOyCYZASp/jolULwPVIXkUTeTdPo1lH8xk6Qz/kHmlc+SOHwyzu/fwVtykAo5BX+/S/l+XzU3/Gcasiyzbt06/jbqArwmB7FDLiXzqpkc+H4BCadeiRSbjL3bqZgSMzFndMK793BVnCkuDWvrE5BT21H26VOIJjNZ17yMrirYsztjWzcLq9VKSkoKnW95GzmlDbYOAwxjoamkjrub1HF3oXqriO0/huzr3kS0xRPbfRhZV82MajTAWAVP/2LHUeUJJEcqnxYZxO4TJ05k5crDgunt27dnz5493HTTTXz++efExcXhcrnIy8tj/PjxAFwwuANr7hvF+9f+jW6ZcfVWzrIk1FNCDE3APXv25KuvvmL1+89xWVsPrdNTGrzOEPHn3sdHox1B9OpIXkFTwk1NqWw8EprjtdStjvsrGg047nGE0dggtbXrj2vjZ6ybfgV3rukf1mx+/PHHGTNmDKmpqQwYMICEdj2JHXk7JZ/8F++e9ajeKvSgj1YnnYO88xvWr19PUlISKalpZF9wP1tn348jPYfrT+3AN3nZfPTRR8yYMYNp06Zxww034Ha7OfPZ1fWID4+EUHx40cY8/v3hT/iVw1YmxEUFBj25KbkNgbztuH/6Cu/eDUZCXRBQyg6iuivQdY2iefcS28eg/Ch89050VUGUrYiqH8epk/AuegzvgZ+p3rocPejlwDPnY4pPR/NWUv3zMsq/fAk96KNg9u0k/f06nN/NRvVUUbzwEYIle0keeQvOFW+RcPJE/HnbKf7oUZTyfOSU1iiuMpDMVOXtQiwrxNZhEO+89gKa14vFYkGTrCheF6WLp2OKS0ULeEDXCBTtxl/wK6hBKlfPQ0rMwn/wZ3RVwV/wK/5Dv6CjY4pLI1ieR/GHD6N5Kin/7h3WWcyoqkogEMQ561+orjL8hbsMfRDZghb0Ezi0FT3ow/nt27jWf4zudxvX2tAYqpmEbz3KPAFC7RCXIAiUuv1MfmsdVbFFpF/+HDH2PF5++WXmz5/Ps88+W2v3UPJ3z8/r8RW7uLF/Nsu3l1CmBEmMkZk+oTf3fGFHcliowmBkjpyAN2zYwNKlS3nttWcZcfrp9Lpw8hFX+kfKCRwpF/O/yh0c56lqPlrE4xAE4SxBEHYIgrBLEIQ7o/xuEQRhXs3vawVBaNsS521JNDZIBZNM+gUPMnDq2yxatIgVK1YwbNgwJkyYwFMLvkMa9xhLYkdiSsymYNZNBEv2ofk9KOX5IJm45Orr+fXXX7n55pv528jz6XzLbJzWDDRvFW0ueYjnl+9ic4GXh97+jLvuuou3336b5557jvdXbiPfFZ06vSHYzVL4ZV+/v7yW0QCDLuTwBxFdV1Fdpdh7DEdOzEQpz0MQRKSYBNIvfQLJnojqc1G29FnQNVR3OegagsWOr6KI4oWPgKZSuWougsmMnNIGc2YnNH81CCKWVj3Ivn4WAMHS/RS+cweCbMXWcRCqpxJ0DefKuQTLDgI6SKawZ2LJ7EL8oHNBU9A8lZjiM3Bv+QrV50bXddauXYuqKlhyemHJ6YlS7UT3uQEda9u+ZF7+NHJKDo7+Y5FrGIYBNG8VcnoHYjoPQakowNq2D4lDLkEwmXh96Y9ceumlCIKAaI0lddzdSPYEWt04G8FkRpBk/HmGp2jO6ISjz1lkXTUTc2bnsKxvCJEtHZYaPY+jnQzVqhL8edsY8vgyzrn1CX70pLK7pJpilx/FU0m+08PiyhyGX3oTGzZswOFw0KpVKxYtWmQsIObncrCkAikuDVfhPj5Yu5cbTsogpepX/jO6O+P6ZpMSa+GNKwey9/HRxMVYGX2C8czy8/OJiYlh4sSJTJ06lQ0bNjRppX+knEDoGHUbYetu1xhaoreiJbyWvxqO2eMQBEECXgD+DhwC1gmCsFjX9cjW3slAha7rHQVBuAh4Ariw/tF+Pxxp9dNQR3hoH9+Bn3Du2kDmxOkgW2tW5gEE0cTCDfkMbJvMr0Vulu2uIsbhNSZtTQ3Hsn2Kxl0LtzDt3Mt4ffRopr/+Hu/dO4a0Cx5ETm7d5Pt4dHzP8LU1lLOJhGS1IzlSwwlx0Z6AUllUUwL6AJrXjSBbkJOyCRTtQXWVIVrtKM580i6aRvnSZ1CqirG26Y277CDB0gOkX/QovkNbqVz5LoGiXRS+M9U4mSghCCK6vxrFWUjK6NvIf/UaEodPwrXhU9TqSgQEYnuPpGrNByAI+A5sNihTMNhUzcmtUasrUCry2eGNxWSxorpKsHc/FdEcg+fXH0A04T/0C0Xz70PzudG2LkdyJKMrAXRVwZe3Hd3nxpzWLhx28+7JRdd1Hv94A/868URee+01hBgrCAK6qnBo5kSjz8XnxrV+Ebquo3mcBEv2oTgL0fweShc/iWC2IdkcdLjgLlRLPAXLZ6NUlVDoLOSCGaUMP+8KbJnDcJXmUzT/fqytuuPP247kSCb13HsQZQvBigLKv3oJzVOJIFuIH3IJpqRWuDYs4celz2JOyUE6YQT6ttUAqO4yypY+i65r3C2JLHjD0LWYM2cO//jHP1i7bR+KLpIy7i7khAzsXU9mzyvXceOCLE6LIB+MxLXXXkuvXr3o168fl19+OVOnTkUURWRZ5qWXDALHI/VhRMsJDO+ayvQvdtSijN90/5lhjyjP6UUShFrJ6cbO0VK9Fcd5qpqHlghVDQJ26bq+B0AQhPeBc4BIw3EO8EDN/xcAzwuCIOj6UTK//QaoO8hDEpqV3sMNY30Sg3Tt2pX+/fuzYcMGik2p2M+8hfzXbyDhlEsRrXb8pQcp+/JFgiX7wscODeQDu8sIqg0/cm9Q5eF3l5M7fSK7M0swZ3xLsOxQswzHA4u3cvfCn/A0kATR/NUUzL7VoAEJ+jFndETzuSiady9KVQm29gPwFe9FV/zISa0IeN1onkp0SQZdQ1dHPCtPAAAgAElEQVSDRl5C16n45hWD+0pT0VUFKTYZKS6NovfvBkEyPBNzDI5+ow3CxYDX8FoEAcEcU+u6BFHCX7ADJJOh+xH04f7pKyRHCoLFju6vxrt3I2DQwSBKTBx1Cmp1JZh8uDZ+hmiJwZrTC+eKWWh+N4I5BkEQQVcRqZGiBUyOFFRRNEqEdY2kkbfgXDEL3V/Nzlm383DZFERJQlf8FLx5IyBiiktBtMUaHpk5BkHXsGR3w5/3C/7CXWhBP+gaElbiu51M8cr5xAydBIBSdoj0i6ehBTwse/067ph9AXO+yUepyMcx9l8kj7yZkkWP4/n1B2J7DDfyPGfeiJyUjT9/BxXfvk32NbWlbAEyLjmsUZ95pRGaEoCRI0cC0KlTJ5YtW1aP0ylx+CQSh09CABZG6HusWLEi/P8nnniCJ554Ivw5kp24OYickJtS9tpc+dbjvRW/D1rCcGQDByM+HwJObGgbXdcVQRAqgWSgtO7BBEG4FrgWICcnp+7PvymOtOrYt28fO3bs4I033mDIkCE4ev0dbcNSwNDmrv7lO0o+noYe8NZreMt3enH5gghy449857J5nHDC4/xaXI2ckoOt/YBm3UPdxrdI6MEA5rT2pI7/D4JkouzLF1EqCtCDPlJG34oluxulnz5F/EkX4Vz1LpI9kfQLr6Lsq5fRg34E2YquKliyuhIs3YfqqULzuTEl1QgRSTL2bkNxb1HQFR+quxxdVVC9VYiyBceAc6je9i3JI/6JtfUJOFfOBVHC3vVkfHs3oLpKiO31d6SYRKrWf0yr698M94C4t3xDzm0Lwp+zJhmr6kMvTeLmmR/w8TY3lT99hT9vG+kXPMjB5y4hts9ZaP5qlLI8LDGxiJ50hOwTsHUYiGhzGGqLgoij5+lIZhuVa+YjOlIIJrdHVVQyzroWudMQfIe2UbVmPmnn3cuh5y9DTmqFnJpD4tDLw882ULKPimVvIHqdSNs+o1JMIGQabR0GIphkJFM8gi2er3KNUm5TQjrmdEP8yZzREaWyCC3gxZ+3nZKPDxuFkOJgUxAtFPZH6T84kndwNN7DH+Xe/mr4wyXHdV1/FXgVYMCAAb+7RxLZUZqkV5KSkcWQIQa1R5sTz2LPt0avgyAZeRB/wU4qlr8RXg2GeiGyEmxkjbm61iAP/WbN6YU1x9Cm6Hn+ray687QGqdePBd79mwgU7aZgttHUpysBLFldQZQoXTIDXfFjzuyEo/8Yqrd/j1JVTOnSGQaxoWgi/aJHKZxzO+bMTijOAlLG303RnNtJu+AhnMvfQCk7QNW6RQgCxA2+EOe3s0DxU7X2Q1CCuDd9TsLQy6n45nW0oA85uRWCyYKuKsQNGk/xhw/j2bkGR19jFax6XagRpIqe3etQqupXvy3MzQObUXGkVBaTP+smECVc6xYh2uKwdRpM0F2OX9WIZOISLYcllGyd/4b752/w7dtE2adPI5jMBBQNKeClYtmrqFUlFL7zL6zt+katpZXXvsW8Zx9Aa92fe16aR9nnsw7/GJFXMskmCp3VQP18E5oKuo5osYdlVMGIuXsCSr0S3bpoKC/Q3OTvsXZzN4SGvIA8p7fR8d6Y93A8sf37oCUMRx4QGUtpVfNdtG0OCYJgAuKBhktQ/iCo61oXVflwepSwiM0FA1oz/XsBQZRqSABB0oINljUCTc6jHE33b13ommpcWwTsJ5xG4qlXhj8rlUX4C34l4ZSJVG9djmixGxVTZhvxf7sQa+sTKF74CL79m6hc9R6CbMWc3h5bTi/KP58JgkDZ0meQYpPQdR2TPQFzWjv8h7YgWOxkTnwSMSaegjduBFGiat1HCKJEyqgpWLK7UrFiFvlv/hM5vT2aEsTapi/eXWtRq0oonncPSX+/Hkv2ubg3f4Vv/09IcalYknOoXPMB8YPPr8W/FNvzDIOfCaNkuOyz54gbfD7mlByUyiLyXp6Mo89ZWLK7UfbZc1gyOhEo3I1z1Xs4+p+NaI0lYehlxA04h6L3/4MpNglTbBK2dv0JFO0m45LHqfpxIcGKQjzbVxI3cBySLY5Y3YssK+x0yby+cAsHV3/W4N83JdZCapyVoipf1G1ESwym+HSqt6/E3vVksuKtvDgymb1aSqPjoa5ccSSa03/Q1C7qo0FjVCiNLZIa8x5C1/TgJ1vDhjVUiPBbGcDjaBnDsQ7oJAhCOwwDcRFQV+t0MXAFsBqYACz7I+U3GkJU1tyqYu57dSHjXrqJA+u+ZMKoM/ho8RIChbvo2P8Ukg/+yp5UO/E1TVDRBmxoMMfbZASBesR7cPiFaIjmQaksomj+/ZgzOhAo3I05JYfkMbeR//oN2Ludgm/fJuIGGfQllavnAzrmzC74D/1M3IBx5L1yNfYew/HuyUXzVBp9DUnZFM65gyJXGf5DWylZ+AjW9v1Q3GWGOFPZQQTJhHPFLDKvmEH8iedRunQGGRdP4+Dzl2HvdopRSQbEdDkZBInihY+gK0Fie49AkGTcW75CVzX8+TuQYhPx7FwTVixE17BkdkTzOIEibB0GYcnuCkD80MuoWj0PwWInrv9Y4gefH/W5hFD+zeuYkrJr6ayHEsylNQlmxxnXEqzIx/3TV3i2rzS8rT6Gpnv8kIsp++w5xJXvYG19WG3R1vFE3IumoSsBCt6+FdFsw5zegdZ9z+XumyaB2Y61TW+UysJa1yNgyKIu+sjEP4a254nPa3clSyJoNQuO5LPvoPzLF3GtnodqN/FxcCL33XcfH6w/wKrd5fXuVRaFI06KTU3+/pZEflNHdGHqB5vrUbE3hqZ6D76InJ7TG2TqB5tBOCyu1ZIG8LhBAqEl5m9BEEYBMwAJeFPX9UcFQXgIWK/r+mJBEKzAHKAvUA5cFEqmN4YBAwbo69evP+brO1rUTSqGJmtLRkdaa4V0796dOXPmkJuby+TJk4mLiwvTQEQmGo8FfR/6MmqIIrSCTr/0SaytulO6dAZycg6uDZ/i6DeK+BMnoLjKKJxzB5lXzkC0xlI0717M6R3w7d9EsHgvUlwaKaNvpXTxk+iaguRIQQ/4jf/HpWJOa4d741LEmHi06gocg85FdZcRKPgVze9FsiehB71Y2/bGvflLBElGkC3oSgDJnohgtpFw8iXEdBqMc+VcqtYtwpzekaCzAM1TiWiOQfNWItjiyL7mFfJfvw5BtpJw6pWULZ0B6MR0GWLI02oKUkIm9i5DqN66DEur7kixybg2foZktaNrCug6SSP+iRbwUvnDe4hWB6JsQdcUUsfdjSDJlH/xQjjclXj6NVhbda/3bH8rhJrjIPrkA/UrkCIZBBoLVUUeu6mIdg0NERkKwN7HRx/zpNnQeI6GxryoSDQnrHs0zykS0QgqbbL0hyrfFQQhV9f15iVHm3uOP/LC//c2HHUHZIildODts6IOvt9iJdLnwS+jJryVyiIK595JqxuMWLp3/2ZcuZ8QKNpDxiWPY4pPw7NzDZ4dq0gZczsArs1fEizdT9Lp17D/ybHk3GGEjYLOQko+epSsq2aS98o1aH63weRri0OtKjEMh8eJKTkHkyOZ2F5/x7dvE/EnXRj2ejzbVyJIMroaJG7QeKq3r0Jzl6OrQaMySraglB1ETm2LrikoZfmItlijRDboB5MMSsCg8TDHoPuNPAChMKBOTQe9DpKMyZGKpiloVSVY2/VFKc/H1nkwrvWLsWR1Rk7rgCkuDUurbhTN/TemxCzU6grMGR3IuOgxAmUHKZx9O6LZimCy0HrktfjLC5G6nYbvxw+o3LMZXQ3i6DcaR5+Rx/Q3DCE0+TYFDTHotsSxGzq+TZawmMSo4y00iR/rpNmQal+08zV1gm/qMaH5z6kuGjJSx2qQWhL/C8Pxh0uO/5EQ7UURBCGq69zU2HBzjUtlI1VSDZEOCQ1QXjSOwwezdRiEUllEbJ+RuHIXk3nZUxx4egLZVxv8SNXbVxpysIBSfojkkTfj2b4KPWjE7avW1CZH1FQF3WUU0KnucrSAF9CMUt6aHg1qSmWpIcQLwZTUCqV0f81vGElkJWDI2daU/PoPbsWc3jFM8e4/tB1/3g4Ek9kQntJ1Mq+YQd4rk1GrneTPusloZBQEsq55hUyHmYr37sBVVY1dEghKVrKvfAY1GOTQC5ejaypx/cYcxTOtjaZW+izamNds/YvmVhE1FJKyymI9mdtQuKglwlhNoXw/GiXApnocx1ptdbz818BxrqpGULejtE2btsz7YlXUl6QpDJtH0+Xa2EAPdRMDeH75tl7YxZzZGd/Bn1E9leiaimfbt1hzauL1uoZnu8F3VP3LCqytunPg6QkIVju+/ZtJPedO7F1OQnU78ez4wdhFVQiU7K91DsmRirVVd0SrI0yCKMhWBIsdwRKLOasbenVF2EBovgjVOTFi+EUm8QOHE8eqq17Fds316wiyFRDQFT/B8kO4N9UkpSWT0fsR9CGntkWQLeS/eQOapxKlPK8mVCVgciST99JV5M64hj0HCygtLuLA17OpXD2fQ2/eRMGc29DVIKq7aTKrYJBURmNabm4ndHOMRijH0Rw0NNE5PcEGu6hbYtKM1k0uSwIJNrlFlQCjoSWqrX4Pudo/Io57HEdAtKRipNcQahRsqH8i8qVqzootspO2ITbVusne2L6jqMr99PDvsUkknnolRe/dDejYOgwkppPBsyXIVvwFv1K5eh5iTAKp5/wb18alCKKJ2D6jKJp/b83kLONc9R560E/BrJtxDBiLaI09fBEhR0UyhY2DrgZBDYKmESjYUfvqdd34DWqx7SLJRjmqcYCozxJAkEzhRj5dDRrGR1PRlEC4sg01iC4aQztYno8Ul2o0HwKCxY6tXV+8O9diiuuIWl2JrvhJGvFPKpa/iZySgyCIBCvyMDlSkGKTMKe1A8BfuIuKZa+jB7yItjiSR9+KKTaJqvWLcW/6DFGSaN2nF99/8XGjnmVjvzVXylYWYfr5vZstWhSNuRaMCbChRHpL9Ez8FgyzkcdsyPOQBKFF8hDHy38NHDcczUTdkNSREn2RL1VTV2x1z9HQ2lMQRVLOvqPWd5HlqQD27qdi735q1P2TTr+m9heiBLpK9bZv0X0uxJgElLI8bJ1OBE1FsNqpXD0fXQ2ieavwF/yKWlVCxXezayqhahAyAAiHQ1HhixYOT/BKBA+XWl/DG0A021A1DYLGM6o11ykBwk8nJHcLyGntUKpK0YOguMtw9BiOJasrpZ9MR/dW4fnlO4PO5NBWrB0HY0nvQMWy10EQEWPi8e1eT/b1b6L53OS/fh32bsPQVYWKr14m9bx7kWLiqd72Hc7vZpMyagpVaxeQc92bXDKkPV9t3BtVtCiEexZtqSV1Wjek2djqXRIF1DoVSSapeXrgjXk0IT31IY8vizqpt9SkebT0Ho0Z3NAxG8p3aLre7HMeycD/lauqjhuOZqI5K8LmsoUezTlaCsHSg6CpZFw63ejN+OJ5rK1PoGzJMwTyd5B942yK5t+LWlVMxuVPI0gmCuf+G9GeiG//5hovIuQbCYY3Eek5CIZRqmVIbHHGHt6qWt8Ltnj0gMc4piAgJ7ciGFYQrJkWRAlLqx6oVSUoziJAw9yqO8GS/cT2Povqn78hUOAmtsspuH/6Etf6j0GUMCVkI8hmguX5OFp1wbX7RwIHt6C6y40kvmTCnNmJwtm3AXpNk55GsPwQgdL9FM27xzi/piHFJgEgp7ZFWTaD13/tj7nDYESzLSzHCoSZih9YvDWqZxrpdTZUPSUK4LCY6u0fGQ5tymTW0NiSBIHz+mfX0lOPNGqR+0o13kpTq55aAv9rlb4jne+vZijq4rjhaCaaGs+N9lI1dcXWlHOY4tPD4klHg7rqft79m0DXDB4rXUetKsG760fA4LfSqp0oFQWAQPGCh0g4+RKD70pxISS3BgTDY9EUMJkPh6PCqL8OlMy2w53hEStg3euCmpV0KIkdgiAIxpE0lWBFAZq3EtBAkokfNJ6KFW9Rueq9Gq9Hx7P9W9ImPEDJoseIG3QegeLdqMV7ELUgbzzxH6568GWsHQZStnQGotkGqoq9y0nE9joTmywRv+pZ9piMYgM5JYfMy56qdx9pE+7Hf3Arnl1rKVs5j6zJLxjVaqrOg59sBRpv/ITDf/OGUhtxVrnBcGhoUmtK015DY0vTdZZvL4kaSn3wk634glotSdzQuP1fGY1oxQLRwrwt5RX9lv0sfwb86ZLjIZnPdncuYcjjy5pFr9wUJDQiMRtCqDSv7gBrCn1zKP78+0AgbcIDxA8ch61dP1rd8DaCbEWMSUBXA1jb9kGQLTj6j8W14VPDS9AUTHFpCCYz8SddiK3jiaAEkOLSEO2JRu5CtoEoIoQpPoz70wM+oz8jLs0wNjUwJWUZBghAU42ciiCAIJEw9HKyrnsDENADHuSEDIMEUtco++pVVHcFsb1HYO8+FEQJXVWQk7KJ6XoKzhWz8Gz7noCrnOxs45lHTkWxfc7Cu28D5cvfRNdUpp6Sxo6Na0i0m5GTstE8VeFihFChgK5rqK5SrG16kTjsKvSAJ5xPASOUefv8zUf0IEMr4oaq6JzeYIPKfSE22Uh4gyq3z99cb/w3ltxtyKhUeIJNklb9LXCkYoFoKn0tQZF+vHqqcfypPI7fki4hdHy3L3osPoQjrW4ac3OPpqKmpWBt0xswWGo1fzWC2VZDUhhErSqm8N27UL2VEAzg2vAJmqcyvK+c1hb956+NXo3KIkwpOSCKxHQajGvjEmJ7noF741KkuFQ0jxXN7zKMiyMZrcRlHEsJ1PBWBVDKD4FoAl1BjEkgZcwdFLxxI4JsourHj3D/9BWC2Ya968kkn3UTYJAdZl7xDFJMfJgIsc3Uj3FtXErBnNuRYuJw9BuNFvDSccK/6LP3XX7cW0b6mNtQdZ2ypTOI6382jn5jqPj6ZYpn3ch7G7siyzJndUngy6CV1HF3Uf71K4bWiKbhGDAWOSmb0k+eMr5DD1OXALi3fI21bV9wJDf67AUIj5mGQi1SA8lsgYa101VdrzX+F23Mo9pff/xGlts2hx/tfzGJHils25BK329Fj/JXq55qCH8qw/Fbu5fTv9gRlS4htBI81kTZ75HbCMGckgOSiaL59xqMtlXF+A/8VJN7EIgbPIHKle+iKUHiBo6ncvX7hscQgiTjXPG2kccQRCRHCjEdB+HKXYx78+egqyhlh0DXsfcYbuhs1ECIiUd3lyGYbQiiHdFsQ7In4j/4M5mXP4UpPh3BbEWKT0PA4AZLv+ChMB0JGEUBod6S2J5nQA1nlaPvKBx9R9W6V6c3yIqM8xHKINQ1EgrdCYJA9qh/1lqlLtqYx3efbMWb3p6MS5+old8HyJj4ZNRn6t7yNXJKG0yNGA4BuHRwTvhct53egXsWb6sXamloXOgYq+qGJvxQqAmih8vsZolHxx++1+Y0Bf4vJtHGjNPRlCE3Fc0Jef0VKUj+VIbjt3YvGzvOMxf2CQvUTP9iR7MGT35+PjfffDP5Ha8yxJLcZdg6DGyRa24O2tzxUb3vqtZ9TLD8EHrQhyWzU00HthPd7yXxzBuo+PIFgsV7EEQTjoFj0ANeEoZdxaHnLsH98zcIJjPmrK74D21FsjnQdR05JYeU0VMAKFk8HdVTSTBgUJf4D23DnNIGOaMj/oM/o3qqMMWnG7TjzkIEqwNTQoYhqoThaURyc4k2h0HXriqYEjJIHjUF0WyjYsVbeHetBVHC1rYviadNrpd1KV74CGpVCel2ieLWt0Pfa0nLak38xf8lKMca3s6WrxAQiOtzJvb+54TZBEL5psq1C9GDXuSUNgQKd1H66X8RTGYyJv6XYNnBWuW8HSZM5ZFLhjLj1kuZsqIPK1eu5OKLL2bauRfVm4ga8gYa6uiORIUnyIOfbI36uydw+LtxfbNZv7+c99YeRNX1cMJ8QJuk360EtbHmvlir6TeboJtaPfVbRzn+qPhTGY7f2r1s6PjxNrne4LlzwSbW7y8Pcw1lOsz8a1T36PXxWVksWLCAIY8vY8eWPQQKd/4mhqOxlWlDcP/0Jaq3Cskai46AP28boj0JwRJjCDXJVhRnEXrQR/W2bxFMFnxzbkdXg2E6Ea26nIxLHkepKqHyh3m1jp90xrWULJqG5nPhP7gVW4cBaAEvSqXBJ1X6yXQSh09GD/gxZ3RCqcjHd/BnFGcRmVfOAEC0Oci88llUTyUlHz1G+oWPIpqtVK5ZQNW6RTj6jcazczVZV7+MIAi1mxAjkDzyFiSbg233n8bAgQM577zzcHqCWIIqStku3Fu+JuOypwGd4nduJ6tbf8qInvOydz0Z14ZPSRw+GUtmp1rlvDlZGaSX5rJq+WxuleIoP+DEllZBiF4nWl6usRVwaEw1xDMFDZeN6xD2yBdtzOPD3Lxw6EvVdT7MzWNAmySmndvzd1lVTx3RpUGiT2cTOa+OFk0Jef1Vk+h/KsNxtBUV+/bt46yzzgor+/Xo0YPZs2ezevVq7rjjDhRFYeDAgUz5xz3c9+mv7HzuinA8nZLd7Fr2BikXPoZz5VwUZyGKsxApLpXnv80Ofy6OS+X2wkncvfJFrIIx4J9//nlOOukk9u3bx5gxY7j/zU+4ZNpctKAf36FfiB98PvZuQ8PXKYsCZpNIdaD54SyBxqmrIxFJx554xrVUfPMaaRc9RtG7/0aw2InteQZK+aEwfXxM55MIludhik0h7cKHEGUrB2ZcgDWnJ94968Or8WBFPub09sSfeG74XFJMPCmjb6Xg7SmINgf+vO3oih/JnmSQLqoKVes+QnWXIshmRGssgsmCOb1d+Bj2rsYz8ufvIFh2kMK5NVK1qoI5qyuixY4gyZR99iwxHQZh6xjdKLtyF+P5dTVJbwmI1aW8/ukqtJpJ1H9oKzGd/4ZoNhQ9rB3/hmvvFu67biL3LJHDOQhRgKxEG646x44s5zUl2Mit8CDYE7EBfkXlF2uPsMGouwi5dd4mLh2cc8TJ2yQJYTbY5iDkSTc2CUYr9vhfYFzf7AbLmP8I+Ya/ahL9T2U4jqU5J1LZb9KkSTz99NO88sorfPPNN3Tu3JnLL7+cvNWLmXbu+Vz0vBCu2BjfsyP3fHW4ByFYeoD0S59ElC04V86t9TkY9KGcfieJKfFc2k3m5ptvJpLE8fxB7fj+trv44PNvsZ56TVT52saanBpDaPvm0rGr1RXoip+8Fy8HTQNdN/Qy3OVUb/sOPehH9VYZkrKl+ymccwdiTDy634tn94+ga+S9fDXIFnSfG2vbPmgBH+Vfv0ywdD+6quLoOwpBtobFi0KEjSZBIHH4ZNTqcqq3riD1nH/XuiebHKI4sYTv0tq2D6lj/1Xv/jMvfwbf/k1U71hF1YZPybj4sVq/+w78hG/fZjIu+y+ibKX4vbt4bUXjVUNOb5Bpn/+K0xMgJrRKVwIUVOqkm+s35skpOQy4yTCiep2JJSCYw1VKdSdvHZi75gAD2iSFw1b5Tm8tTe7pX+xo1Ggk2GQqvcGo4yY0Af9RJ8EHxvb4w3Zr/1WT6H8qwwFNr6hoTNlv4sSJPPzww7Rr147OnTsDcMUVV/DCCy8wZcoUMuKtrL/vTFJSUli/fj0W0+FJwtbxRMQIksFanzWVsq9eoKBoD7mShF6ZX++6+rVJROvfiucbYfBsDqlbNISICUN07K4a+dvExCQY9myYjj3xjGtx/bgQXZCIH3gOVes/xn/wZ2J7n0nsCafjXPUemsdJ4tDL8Oxcgyhb0PweVFcpUmwSki0Og31ZR5StmLO6oGsqlavnYW3Tm5RRU4zu7Fk3h3m3LNndwrxbnpo+EktWV8q/fIlgRT5yYhYOSeW6AQncOH4opucO35ex3cvh7bSAD9VdZohMBf3YOgzE0qq7YcjqQPN7EK2GiFWw7CDevO24IyqQLK16GJVXgyeADp6dq0kZczuaNR7VU1kjj2vDu2sdtvb9kCURkzUmXJorJ2Wje6s4O8PNK9uNMuFgeR7m1DbhczT2N9WhXj9FZDy9scndJks8MLYH6/eX1+paD/12pIqu5kyCTaGLb26Y67fo1m6phPZflYLkT2c4moIjKfsBJCQkUFYWXaTQZDKhaYaX4fP5aJ1kQ5UlnFBDvHcYkZ+r1i1Cikkgc9JM0HUOPDX+8G8+xchxfL8ZufwQZ0RcS11MHdGFqQs2N7jCzE6wUe1XcHqD9TwMU3yaEQJSAuTPuhnN58a3fzMCcPc/J3PjJWOJP+VSrDknoFQUECw7RMKwq8LeE4Bn93piTzgde4/hlHz0KJq/Gt3vIXPyC1T+MA/X5i+M71QFkyMVU0I6qrsMf8FORIuNQOFOvLvWUvXjQsDoiTDFp9fj3QoZDikmnuTRt1K6eLrBTwVM23UF2W071Op5MbabUmu7hFMuQzDbKFn4sMGeq+sknlbfcNja9ce18TPyXrsOOblVbc14QcCS0ZHYE06v6SiH2F4jMKd3ACD+pIsonH0bUmwycrKhv17pDXLjtZN57omHKRdl+v3zBaa8+BYfvfgIxTvzCAYVHAPG1jIcR0K0PEUolNTYYuK8/tnhBdWANkkNTpjHOglGSxRPXbAZdMLViEebPG7Jbu2WTGj/VSlI/pKG40jKfu+++y4DBgzglVdeYdeuXXTs2JE5c+Zw6qkG51Pbtm3Jzc1l5MiRfPjhh6TEWphybk9uWi1TrUJijExllJdc83swOZIRBBH3lq+M0A/w5dZCiqp8iE4vgtmGy+3i1nmbmDJvU9QO9MbivqHmw3Z3Ljl8bxEeRvGiaWgBL2VLZ5B+0aMorlLKljyDFvTx8Be7a61GLdnd0NFxfj8HXQ0imMzoQT+ptfixDk/c/sJdVG/7jrQJ91H6yVMECnZi7z0Cz/bvMKd3xJ+/g4RTr6d4/v1kXvFMeJJtCCHddgBbm97Yrnim1u/Tv9jB/OW5tVTlom0HRqiqMQgmQzM+ErqmGhVQ5hgA4gaNJ27Q+GHV1cwAAB+BSURBVHr7xg0YS9yAsbW+EwWB+aXZ9Lv97doJ7IvOZNHGvFrXHHmfR4M8p5eJg3PqeRMhLN9+WKe9sQn4WCfBaO9VtMXN7508bumE9l+RguQvaTiiufWmpFbs+W4h3bq9SPfu3XnuuecYPHgw559/fjg5ft111wFw//33M3nyZO69916GDRsGGINn08ntiI2N5SPFFHV16Og7ipJF03D/vAxb+/7hROsr3+0hJKhlzelF1ZoF5M26ifjB55PXbWg9vqD8Glr2hu6tLvtpiPocIKbT3/DuWIUYl4aclE3V2g+xtR9A9dbl4WOY0zvg/P4d7D1OQ05pgyiZEG1xyMmtqVz1Lp7tK7F3PzVMxy5a7IhWO+4tXxPT+W94dqzC2qYXuq6jeZwoZYfQNQ3FWUDZF8+DZMK14RMSz7gOQRAIFO0Or96bg3ynN/zCNqRf0VDjXJOO/8aNxPY+E0EyXpO6/RuNIXTOBlezLUwO8GFuXqNjoqk4lkmwOef5PfMmf9Rczv8n/CUUAOvGM0NhnBCOpOzXXDQleS1LAtMn9G5ysjsxRq4V327qdkplEYXv3kmr6w2lQPfWFZR/8TyCbEG0OjCn5GDveQYli6YR22M4vgNbcPQ/G+/udSgVBShVJVhad8fa+gQE2UblqneJ7T0C376NYTp2KSaeQNGeGn1xP5bsbiSPmoLz+7l4d61BdZUhJ7fC3mM48YPPRwv6qfjmNYO+Q9cxJaSTNuH+Jj7dw7Dm5bLwrgl0796ddncuoeL7d7C0PgFb2z61tqtLSy9LRnFDoBkVSA1R2zcViTEyG+87E2i61KkkCGh1hK2OtH00I/m/Uqf7X0q4Hgv+P6j4HQuOKwC2AKLFM2VJQBaFWl3gDSn7HQ2alLyOeL+bsn1TdJptsoSu16/KiUw8e3etRZAtCJKZtAn3ISdmUbrkGaw5PTEltULbvQ7fwa3ISVnIKTl4fv2BmPYD0YKHr68eHTtgTm9P6vi7KVs6g5Szp4Km4tu7Hke/s/H++gOx/ccS230ouq6jVOSRfNY/j3g/jcEqQVblz/zyS3e6d+9uVKCdMrHedgKgRZQXA6iqjlZvy8ZxrMurCk+QexZt4ZFxPZs0uUZKsjZ1Qg6RD/5eidojNSKG8Ft0fDcn2f1XTWi3JP70HkdDL11ijEyM2fSbJLSaqhcdWuE0V1+6LgQM43NFzxhuvPx8LFld8Odtw5zZCVv7AZR9PhNBlBCtDkyJmQQKdyHZE1CqSpBs8Vjb9kZXVQJFOzHFpeHP34EgmYjtcRrVO1YycdI/+DR3L4GAH9ePCzGntUOQLSSfdRNycmtKlzyDrcNA7F1PpvKHeTi/fwdLdjeQZJTKQkwJGQTytiMlpKNWFiPIVqSYOEOadsOSeqXBVT9+hHfXj2HvJWnEP0mym9nz1r/Qk9qgFW7nnHPG8dl7rxEfHw/mGPTTbqN05Xvh66jbUd6QJkk0JDZAbX6sEDAYBhqThQ39LesKPzV1PEWW67ZUVVNzEDmBNyQWFel9tdQ5m6uF/memCTnucbQAGpPIbMnBG4m6ScYjxZ7rKpjVDYvYZAlFVQlGWSbbZJEku4V8p5dXvitEqcgnddydyCm3UPj2rXhrKpYST73C4E5Kbk1szzOI7TEc53dzqFy7gGDZIYQadlo5KRtzRkd0fzWJp01GMFs5ITuecZc/wcXjR5F19UvISdn483dQ9uVL9foh4k+6kMo1H5Ax8Ul8B36ieMGDJF/0KHJCBtU7VuHbk0vyyJsBCBTvpeLrV+qVBsf1G0PCkIsBKP30Kby7f0TveTKtk2wMHZTNiy9+DMCV1UWMGTOGZ3YlRV0chDrKmwtftAfdAgh1aTeWc9kbpQy77nhKiJFx+5RaHnNkF3ldtuVoDYUNFV4cKyLPH1mgEYmW7vg+mmT3XzGh3ZI4JsMhCMJ04P/aO/fwqqorgf9WnuYBCY/wCqCgKC1jg0QEQUHEoqUdSLGUdJwCpQOilRnna+lg7VSgdkoNaLWtqFjwhaODLfhARCvlo6OFCgRQKxRRHAwpBHlFSOAm2fPHPTfc3JxzH7mvc8n6fd/9cnPPvuess8+5e5291tpr/SNwFtgHfMcYc9ym3X6gFmgEGuKtDf1J1gId/xvTadbjL4N/+8CnoTEDi3hm8//ZHqfO09S870Mn68ko7EFe9354mrw5obK6X4LnswPeYkMnDtFYe4S6D7dw4q3/puFkDWm5neg8dhY1q+9FsnPpfMOtzdllAS6w1qjcMKCAs1W7qXnxXASQaQg9AGT1vJTMwh4AZBddxLENv+XYxhXkXDyUjI5FLRz3PYZ8mX84/jaX9TnJr385H8+Zeprqa8ns2pfjdR4O15yifEhrG7TTw4FvRXkkiLQ29dm2w9l8lZOZRp2D8jl4vM4x9Uu6iGP1QDuF0NbCTU7VB2NNon576uxOPNHOON4A7jLGNIjIL4C7gP9waDvGGHMkyuNFTLzsmfG0qQYOElcsfD1suSQ9g6yMNLrlZnFE0ijq0ZMLRy+jpvpTb3EjSaOo7EfUfbSNpvpaCi2/QHbxFzh75JMW+8pME4ZfVgRAU1MTBYWFdJ/1cIvzELyp2MV6ijamCeNXBjbNWsdSXJjDRRdfzqacB6n7aCvH//SMN5LKii7KTBe+ffVFVL72Z56o+E++8J0HOYI3YaGvxniTMazaUcOPA87ZaYDq1DGfhgCbf2a6tFhX0OJ8Q6Ts8CmLYkuZ+1fL822/ZXhfrryws2PeKN+9Ymd68o/EmvvCTua/9H6rrAE+Amch/qvI/Qk1eMYzNDZRvoT2uno7mURVyMkY87oxxjdKbAaCB+YngVgVdvHHN/2vssxQvic3p6JR0ciwprIqYnv7qbONvDXver5R2pufff1y7vnHQWSkeUfoC/oNoXb7y83pxM8e2tccGZouQmGON2lfXlYGFZNLGNizIwAdO3Zk4ICL+VqHTyguzAFjKKw7yANTBvMfk68l8/h+AOr2bjlXhMlCgLfmXc/fPj5AWmY2+YPG0PGqSXiOfNLsuM/LyuBPr63mmmuuAaDGk0XT2TpO73mrxb5qas80v+/QoQO1tbXMvfEycjJbpvgQgbk3DmzR751yM8nLysDTZAisldUpN5OKb5Q0n38g6SI8MGUw+xd9lbfmXc+9ZZe3uqYPTBnMvWXe63rL8L6tIm59+cIq1u/h5tLi5u+m2xTu8jQajlspQuzur3DvwXAGz3g9mcfjt2eH3fVXZ3d8iaWPYwbwvMM2A7wuIgZ41BjzmNNORGQWMAugb9++MREs1vbMRNpU57/0fptkDDz2j6wfVsGIco69uYzPt79CQ+1nnK3ey2+fWsncZ/bToWsHdtwzjieeOMjWrR7v2pQXz+1n5cqV3HbbbXxeXU2ux8Ok8nLKrijm6l4z+enDozEfbCGnf2mr1fO+wevAh7s5unEFiCBpGRSMKKfh5JHmFeMXdLuQf5n7U2bOPMbipXdATiFZPS5tsa+iDufSuZSXlzNz5kyysx/iXxf8mnte9Z5jcWEOp3OzGP+lnnTt2rU586v/02+gm6He08TWT45y6mzrQkeZaULF5BLbio5O1/TessubV2kH+q2qjtfxu21VzYOoky/AH//7K9pSqoHE88k8Eb6E9rp6O5mEjKoSkT8APWw23W2MedFqczdwJTDJ2OxQRIqNMVUi0g2veWuOMWZTKOFitY4j1jituxDsnZuhcDJ7ramsckwpHYzCnEx23NPS8W8n84m3n+fz995k2Bf70bdvX4YMGcIlY7/Vph+gkx/HF0lkF1YaWMsCgkeahYqUAee+DCek1WkdRLRRQKHWDUSy/gFCrynZH3AP+vrEKfAiHrMAJXm4IqrKGHNDsO0iMh34GjDWTmlY+6iy/h4WkdXAVUBIxeFWYmlTDZY3py01nTPThPkTBrX6vCAns1WKkoIRU+gx+luYvGz+fLyOv57K5JRfDqxInKd2T7aB1e3Cefq1izQLpcTuv/9+li9fzsn6Bs70H03mxcM4/MICzHcf9ppvnnqE99/ZR+E1twQ9B6dop2OnPYxctKHNT7GhnLfhrn/wEUxpCLTIuQbBAy/0yVxpC9FGVd0E/BAYbYw57dAmD0gzxtRa78cBC6M5brKJldMvmMkhWKy/EwJMuaqP7UBgY0a3jnUuKssu91W4ztNwBvrAsOOMgu4tZhvgHGnmxLZt21ixYgVbtmxh7OKNbP/V7XQtPqc46zyNbNxTQ4cL7H0X4RJNBJLTg0aaSItBPli4bbj4F2ayw61hqKrQUotofRy/BrKBN6yiPpuNMbNFpBfwuDFmPNAdWG1tzwCeNca8FuVxE4rdTR1uRbRgZqi7fv+uo3JoS34lQ8uEdv5EEzsfrvM0nEHJ12ZNZVWrDL+Z6eGtKPbvU95/laFXjyUvL49DdZB76dXUH2jpFzpZ52HcpV3YGaR2dzi0NQLJKZy60ZgWysgp3DbSOyHVwlDba/nVVCYqxWGMucTh84PAeOv9R0BJNMdJJk439c8nXR4yr00oM1Q0g5gTToNGNDU84uY8DRwRwxghA/v0ZJ2HDR8cY01lFb0KczgGNJ051cL7nZ9pGNizI+UTzyn7gpxMRLwK1WmFsx1tGZSdlDk4K6Nw1gE5kWphqO21/GoqE1U4bnsg2E0dzXfj9VRYmGtvkrENWQ1jf4EmuDWVVYxctIF+89YyctEGxxDkUFSs39PKFONpMiH7NbBPs3sP4uSeP7Po5Z3MGdWHug83k9O/tLm4UrY0klPtDTAou6KYt+Zdz8eLvsqOe8ZR+ZNxfLzoq83lYcPBf1AOty9CXetQ24Ndu8BrmIphqLqAL/VQxRGCaG7qYN+N11Ph5/UNtgOYXUz9LcP7thqQAKwlH63i7iNdvxKI/0Ab+AR9aNU9NNR+FvEg6yuwtP1Xt3HvrK/zz1O/Q/8vlFA4opyaZ75Pxvr/4urSLwXdp9O1CDYoR9IXoa51qO121863puSBKYPjvk4i3jidf6rNnNoT532Sw2iJJgVzsO86OdhvLi1utSK5LYSbh2hNZZVtUSi7MM1o+iLSxI9OxCMltlPo782lxfxxd42tHysSOYKde6LCYd3sfG5r6LVijyvCcds70URQBftusCgk//KehbmZHD/tidhBGq6DseyKYirW72mlOOxszNHMvsLx6YTTr/FIY9GWBWSR9EVgNJlvvUg8kgz68FcUgVFabnM+x2oBn5uV4/mGzjhssEsy6PTkGem+2vqDaGva9XCexMNd0BjN036oYlWRDKJuGCBCzSaTKV+sZnephM5azqEzjiRgFwnlnx4iUmIRN2/3RDZmYBFrd1WHzGMVzmwg3AWN0TztB4vqCpyFhcINaxGc+mLMwKKkh5aGG7F3PjmfNTIrsahzPIBooqjiiX9EkC/JXuVPxvFLyznqRDhRQOEmiYsmaZ3dMXy4oX8jxakv/ri7Jun3T7gK4XxyPmtkVmLRGUcAqXYD+i+oCzYbCGeRVTjmlbY+7fu+45R7y639Gwy7vvh3F5xfOGt2UjFsNxiaWj2xqOIIIFVvwFCDf6ipfLzNPxs3bqRbVpZjESO392+4uOH+sTOjZaYLeVkZjvU93IjWEXcvqjgCSOUbMNjgH+1MKlqH9MaNG8nPz2fujd9K2f4NBzfcP+dDmvFI05CcD+ecSmhUlQ1uiNqJNdFERD339l7+ZdotnD1RA6aJghHl5HQoJGPrSvIyhaFDh7J06VKys7O56KKLmDZtGi+//DIej4dVq1ZxwQUXMHz4cNLT0ykqKuKbc37C2prC86p//Tkf759EE4/1Ou0FjapKEm6I2ok10TwJz394JZLbiV433wN4c0Ed/O33+NLMxWxfMo2pU6eydOlS7rzzTgC6du3K9u3befjhh1m8eDGPP/44s2fPJj8/nx/84AcA/CgO5xgroh34z8f7J9Gkmq+xvaFRVe2EaCKiPs/tRd3+HRzbuIL6A+/RcOIQGQXdOZbZFYBp06axadO58iqTJk0CoLS0lP3798fjdOJGtGlVlNigaUjcTbtUHLFK1BcNZWVllJaWMmjQIB57zFtJNz8/v3n7Cy+8wPTp0wGYOHEiTz31FACPPvoot9wSvCCR4zEDQnrDSUcyctEGMjoX03P6g2QWXcTxPz3D6b9tBpx/xNnZ3vKu6enpNDS0LsXqZtwajt3e0Dri7qbdmarckvt/+fLldO7cmbq6OoYOHcrNN9/cLF/F+j3s3bwNDlSzprKKxx57jJEjR9KvXz+WLFnC5s2b4y6ffz811H5Gek4H8geNIS07j9rtr9Bw4jAlBV6zwdNPP83o0aObv7tw4UIuu+wyhg0bBsD8+fPZunUrR48e5YknnkBE+PGPf8yUKVOorq5mypQpnDx5koaGBpYuXcq1114b9/NzQk0k7kCd3e6m3SmOZK0wDbSb9/n4FT7Y/CYABw4cYO/evTQ2mebB2gB1Zxuba38sXLiQMWPGsHr1ajp37hx3Of0dk56a/RzeuAJEkLQMOo+7naYzp1i+4F9Ze//3GXvtCGbPnt3cvqysjAULFjBs2DCOfH6G+5auIPsL13Ny25v0ubAfD1b8nDlz5jBq1CieffZZbrzxRu6++24aGxs5fdq2kGTCcEM4reJFfUXupd0pjmQ8UQbOcvbt2kLln9az4vkXmTLiEq677jrq6+s522ia25hGbyoRn1IbdeJdunTpwsGDBxMmp4+c/qXk9C9t1T5n+kMUF+aw3IpyWVNZRfHs5Xz39ToOfbCfp3ed4NSQb9P091/TeOoYncbOIqf0K5i+lzN69Gjeeecdhg4dyowZM/B4PJSVlTF48OC4nV84uCGcVlHcTrvzcSTD6RY4y2k6cxqy83ho0/+xe/fuZtNTWm4hniMHMKaJur/9ubn9x3/dwbp166isrGTx4sV8/PHHCZEzHHwKN9CpnDVgBM88+z8cfXcjuQPPmZ4C/QWjRo1i06ZNFBcXM3369GZfTrKIJohAUdoL7W7GkYwnysDZTE6/Umor1/FOxTTmbS5l+PDhAPQfP5OPfreAtJwCsnteQtPZekyDhxNv/IZX1q6iV69eLFmyhBkzZrBhwwasOu5xkzMcfAo3UOnkDryWo6/9isa6k3T/p0WcrdpN7Y515P3DWA4c/DufbtpERUUFn3zyCb1792bmzJmcOXOG7du3M3Xq1JidU1tQE4miBKfdKY5InG6xWsgVaDeXjEy6f3MBxYU5rPFbzPSLggHc1f/qVkpt5aubGGIdd8KECUyYMCFiGYLhO89gS0ELczI5dbYBT+O5Vv4KN1DpZBVdSNPZOtI7dCEjvzPpl17NmYO7qV4xh8z0dJY/eB89evTgySefpKKigszMTPLz85M+41AUJTRRrRwXkfnATKDG+uhHxphXbdrdBDwIpAOPG2MWhbP/ZFYAjGV+/zWVVcxdtbNFje3MNKFickmrfUWirObPn99iUV1bCFW7wf+cg8nmtNJXoIVCaq81EhQlUaTKyvEHjDGLnTaKSDrwG+DLwKfAOyLykjHmrzE4dtyIefRVoFXJwcqUaDNJML9GYHEl/0y8Fev38O/P76Bi/R7m3nhZ0FK4bS2CpSiKO0mEqeoq4ENjzEcAIvIcMBFwteKIZfRVxfo9LUw8AJ5G0yYl9LOf/Ywnn3ySbt260adPH0pLS9m3bx/f+973qKmpITc3l2XLljFw4EBWrVrFggULSE9Pp6CgoMXq7lDnI2CbE8hpHczPJ13OzyddrnH3itIOiIXiuENEpgJbge8bY44FbC8GDvj9/ykwzGlnIjILmAXQt2/fGIjXNmIZzx8rJbRt2zaee+45duzYQUNDA0OGDKG0tJRZs2bxyCOPMGDAALZs2cLtt9/Ohg0bWLhwIevXr6e4uJjjx4/b7jPS8ww2EwtnNbqiKKlPyHBcEfmDiLxn85oILAUuBgYD1cCSaAUyxjxmjLnSGHNlUVFRtLtrM7FMeRBtCLAv9ceXf/gox7sN5vU9x+jYsSMTJkygvr6et99+m8mTJzN48GBuvfVWqqurARg5ciTTp09n2bJlNDbam6MiPU+nAkG6slpR2g8hZxzGmBvC2ZGILANesdlUBfTx+7+39ZmriWXKg2hCgANNQ7X1Dc0pUgCampooLCxkx47WleceeeQRtmzZwtq1ayktLWXbtm106dKlzee5prKqlbPbh66sVpT2Q1SmKhHpaYyptv79OvCeTbN3gAEi0g+vwigH/ima4yaKWDmqo1FC/qah7D6D+OzVX3Jq+GQWvVTJZy+/zK233kq/fv1YtWoVkydPxhjDrl27KCkpYd++fQwbNoxhw4axbt06Dhw40EpxRHKeTiG7ArqyWlHaEdH6OO4TkcF4H0L3A7cCiEgvvGG3440xDSJyB7AebzjucmPM+1EeN+VoqxLyNwFl97iEvIHXUr1iDodzC5k0aigAK1eu5LbbbuPee+/F4/FQXl5OSUkJc+fOZe/evRhjGDt2LCUlJVGdg5M5ypDYBJGKoiQXrQDoctxUCc1NsiiKYk8i1nG0u1xVqYab6hK4SRZFUZJHu0s5kmq4qS6Bm2RRFCV5qKlKURTlPEJNVYqiKIrrUMWhKIqiRIQqDkVRFCUiVHEoiqIoEaGKQ1EURYkIVRyKoihKRKjiUBRFUSJCFYeiKIoSEao4FEVRlIjQlCMuw1fPW1N6KIriVlRxuAinet6gacsVRXEPaqpyEcHqeSuKorgFVRwuwqlQktbzVhTFTajicBFOdbu1nreiKG5CFYeL0EJJiqKkAuocdxFaKElRlFRAFYfLKLuiWBWFoiiuRk1ViqIoSkRENeMQkecBnwG+EDhujBls024/UAs0Ag3xLmuoKIqixI+oFIcxZorvvYgsAU4EaT7GGHMkmuMpiqIoyScmPg4REeCbwPWx2J+iKIriXmLl47gWOGSM2euw3QCvi8g2EZkVbEciMktEtorI1pqamhiJpyiKosQKMcYEbyDyB6CHzaa7jTEvWm2WAh8aY5Y47KPYGFMlIt2AN4A5xphNIYUTqQE+CdUuznQFUs3Elmoyq7zxJ9VkVnnbzoXGmKJ4HiCk4gi5A5EMoAooNcZ8Gkb7+cDnxpjFUR04QYjI1lRz5qeazCpv/Ek1mVVedxMLU9UNwG4npSEieSLSwfceGAe8F4PjKoqiKEkgFoqjHPhv/w9EpJeIvGr92x34XxHZCfwFWGuMeS0Gx1UURVGSQNRRVcaY6TafHQTGW+8/AkqiPU4SeSzZArSBVJNZ5Y0/qSazyutiovZxKIqiKO0LTTmiKIqiRIQqDkVRFCUiVHEEICLzRaRKRHZYr/EO7W4SkT0i8qGIzEu0nH5yVIjIbhHZJSKrRaTQod1+EXnXOqetiZbTkiFon4lItog8b23fIiIXJV7KZln6iMgfReSvIvK+iPybTZvrROSE373yk2TI6idP0GssXh6y+neXiAxJhpx+8lzm13c7ROSkiNwZ0CapfSwiy0XksIi85/dZZxF5Q0T2Wn87OXx3mtVmr4hMS5zUCcAYoy+/FzAf+EGINunAPqA/kAXsBL6YJHnHARnW+18Av3Botx/omsR+DdlnwO3AI9b7cuD5JMrbExhive8A/M1G3uuAV5IlY6TXGG/AyjpAgOHAlmTLHHB//B3v4jXX9DEwChgCvOf32X3APOv9PLvfHNAZ+Mj628l63ynZ/Ryrl8442sZVeFfKf2SMOQs8B0xMhiDGmNeNMQ3Wv5uB3smQIwzC6bOJwJPW+xeAsVYetIRjjKk2xmy33tcCHwCpXihlIvCU8bIZKBSRnskWymIssM8Yk+xMES0w3gwXRwM+9r9PnwTKbL56I/CGMeaoMeYY3owZN8VN0ASjisOeO6yp/HKHaWgxcMDv/09xx6AyA+8TpR1h5wuLE+H0WXMbSxmeALokRLogWCazK4AtNpuvFpGdIrJORAYlVLDWhLrGbr1vwWY9mB9u6mOA7saYauv93/GuVQvEzX0dNe2yAmCw/FvAUuCneH+EPwWW4B2Qk0aY+cLuBhqAlQ67ucb45QsTkd0mjHxh7R0RyQd+B9xpjDkZsHk7XtPK55YvbA0wINEy+pGS11hEsoAJwF02m93Wxy0wxhgRaXdrGtql4jDG3BBOOxFZBrxis6kK6OP3f2/rs7gQSl4RmQ58DRhrLAOrzT6qrL+HRWQ1XtNRIgeVcPrM1+ZTKwdaAfBZYsRrjYhk4lUaK40xvw/c7q9IjDGvisjDItLVJKnuTBjXOKH3bQR8BdhujDkUuMFtfWxxSER6GmOqLVPfYZs2VXj9Mz56AxsTIFtCUFNVAAE2369jn1frHWCAiPSznpbKgZcSIV8gInIT8ENggjHmtEMbN+QLC6fPXgJ80SffADY4KcJ4Y/lWfgt8YIy536FND58PRkSuwvt7SoqiC/MavwRMtaKrhgMn/EwuyeRbOJip3NTHfvjfp9OAF23arAfGiUgny9w9zvrs/CDZ3nm3vYCngXeBXXhvkJ7W572AV/3ajccbabMPr8koWfJ+iNeWusN6+aKSmuXFG8m003q9nyx57foMWIhX6QFcAKyyzukvQP8k9us1eM2Vu/z6djwwG5httbnD6s+deAMTRiRRXttrHCCvAL+x+v9d4Mpkyesndx5eRVDg95lr+hivQqsGPHj9FN/F63d7E9gL/AHobLW9Enjc77szrHv5Q+A7ye7rWL405YiiKIoSEWqqUhRFUSJCFYeiKIoSEao4FEVRlIhQxaEoiqJEhCoORVEUJSJUcSiKoigRoYpDURRFiYj/B/x/7ALPSAlRAAAAAElFTkSuQmCC\n",
-            "text/plain": [
-              "<Figure size 432x288 with 1 Axes>"
-            ]
-          },
-          "metadata": {
-            "needs_background": "light"
-          }
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "sATOlUC0TSH7"
-      },
-      "id": "sATOlUC0TSH7",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 6.2 Using TensorFlow projector\n",
-        "\n",
-        "As we saw during the course, TensorFlow provides a tool to vizualize word embeddings. We need to provide:    \n",
-        "* A TSV file with the vectors\n",
-        "* Another TSV file with the words\n",
-        "\n",
-        "The following code allows to write this file from the model. \n",
-        "\n",
-        "It comes from the source code of the script: https://radimrehurek.com/gensim/scripts/word2vec2tensor.html \n",
-        "\n",
-        "▶▶ **Run the followng code and then load the files within the TensorFlow projector. Look e.g. for 'citron', 'manger', 'pain'..., check their neighbors (with PCA and/or T-SNE).**\n",
-        "\n",
-        "https://projector.tensorflow.org/"
-      ],
-      "metadata": {
-        "id": "fCr9WTKLVRLM"
-      },
-      "id": "fCr9WTKLVRLM"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "#model = gensim.models.Word2Vec.load_word2vec_format(model_path, binary=True)\n",
-        "tensorsfp = \"model_word2vec_food_tensor.tsv\"\n",
-        "metadatafp = \"metadata_word2vec_food_tensor.tsv\"\n",
-        "with open( tensorsfp, 'w+') as tensors:\n",
-        "    with open( metadatafp, 'w+') as metadata:\n",
-        "         for word  in model.wv.index2word:\n",
-        "           metadata.write(word + '\\n')\n",
-        "           vector_row = '\\t'.join(map(str, model[word]))\n",
-        "           tensors.write(vector_row + '\\n')"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "I40CgQgJTSKd",
-        "outputId": "6c1ea1cf-4edb-4789-bce3-bc94eda968ae"
-      },
-      "id": "I40CgQgJTSKd",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:8: DeprecationWarning: Call to deprecated `__getitem__` (Method will be removed in 4.0.0, use self.wv.__getitem__() instead).\n",
-            "  \n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 7. Embeddings with multiword ngrams\n",
-        "\n",
-        "There is a *gensim.models.phrases* module which lets you automatically detect phrases longer than one word, using collocation statistics. Using phrases, you can learn a word2vec model where “words” are actually multiword expressions, such as new_york_times or financial_crisis:\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "wY8HkerUhbc7"
-      },
-      "id": "wY8HkerUhbc7"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from gensim.models import Phrases\n",
-        "\n",
-        "# Train a bigram detector.\n",
-        "bigram_transformer = Phrases(sentences)\n",
-        "\n",
-        "# Apply the trained MWE detector to a corpus, using the result to train a Word2vec model.\n",
-        "model = Word2Vec(bigram_transformer[sentences], min_count=10, iter=1)"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "RaYOSCa-TSUy",
-        "outputId": "e25e7a9a-aff5-4ee0-9739-b52b280ef6d8"
-      },
-      "id": "RaYOSCa-TSUy",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "2021-12-09 14:00:03,944 : INFO : collecting all words and their counts\n",
-            "2021-12-09 14:00:03,946 : INFO : PROGRESS: at sentence #0, processed 0 words and 0 word types\n",
-            "2021-12-09 14:00:04,450 : INFO : PROGRESS: at sentence #10000, processed 225563 words and 101148 word types\n",
-            "2021-12-09 14:00:05,273 : INFO : PROGRESS: at sentence #20000, processed 577005 words and 245881 word types\n",
-            "2021-12-09 14:00:06,113 : INFO : PROGRESS: at sentence #30000, processed 938610 words and 365789 word types\n",
-            "2021-12-09 14:00:06,814 : INFO : PROGRESS: at sentence #40000, processed 1243762 words and 439770 word types\n",
-            "2021-12-09 14:00:07,340 : INFO : PROGRESS: at sentence #50000, processed 1509850 words and 451467 word types\n",
-            "2021-12-09 14:00:08,099 : INFO : PROGRESS: at sentence #60000, processed 1850069 words and 541396 word types\n",
-            "2021-12-09 14:00:08,636 : INFO : PROGRESS: at sentence #70000, processed 2100079 words and 576226 word types\n",
-            "2021-12-09 14:00:09,424 : INFO : PROGRESS: at sentence #80000, processed 2443972 words and 662199 word types\n",
-            "2021-12-09 14:00:09,957 : INFO : PROGRESS: at sentence #90000, processed 2696025 words and 687402 word types\n",
-            "2021-12-09 14:00:10,613 : INFO : PROGRESS: at sentence #100000, processed 2981985 words and 715460 word types\n",
-            "2021-12-09 14:00:11,390 : INFO : PROGRESS: at sentence #110000, processed 3315886 words and 790591 word types\n",
-            "2021-12-09 14:00:11,953 : INFO : PROGRESS: at sentence #120000, processed 3582186 words and 819467 word types\n",
-            "2021-12-09 14:00:12,552 : INFO : PROGRESS: at sentence #130000, processed 3859527 words and 849056 word types\n",
-            "2021-12-09 14:00:13,353 : INFO : PROGRESS: at sentence #140000, processed 4215699 words and 927158 word types\n",
-            "2021-12-09 14:00:13,884 : INFO : PROGRESS: at sentence #150000, processed 4465459 words and 956268 word types\n",
-            "2021-12-09 14:00:14,506 : INFO : PROGRESS: at sentence #160000, processed 4756081 words and 993365 word types\n",
-            "2021-12-09 14:00:15,275 : INFO : PROGRESS: at sentence #170000, processed 5099599 words and 1061833 word types\n",
-            "2021-12-09 14:00:15,818 : INFO : PROGRESS: at sentence #180000, processed 5354527 words and 1083832 word types\n",
-            "2021-12-09 14:00:16,330 : INFO : PROGRESS: at sentence #190000, processed 5622983 words and 1088198 word types\n",
-            "2021-12-09 14:00:16,829 : INFO : PROGRESS: at sentence #200000, processed 5884849 words and 1092343 word types\n",
-            "2021-12-09 14:00:17,332 : INFO : PROGRESS: at sentence #210000, processed 6145297 words and 1097433 word types\n",
-            "2021-12-09 14:00:17,875 : INFO : PROGRESS: at sentence #220000, processed 6414040 words and 1111595 word types\n",
-            "2021-12-09 14:00:18,511 : INFO : PROGRESS: at sentence #230000, processed 6711537 words and 1145653 word types\n",
-            "2021-12-09 14:00:19,075 : INFO : PROGRESS: at sentence #240000, processed 6961377 words and 1194209 word types\n",
-            "2021-12-09 14:00:19,785 : INFO : PROGRESS: at sentence #250000, processed 7269924 words and 1247948 word types\n",
-            "2021-12-09 14:00:20,489 : INFO : PROGRESS: at sentence #260000, processed 7572737 words and 1311715 word types\n",
-            "2021-12-09 14:00:21,184 : INFO : PROGRESS: at sentence #270000, processed 7865663 words and 1369027 word types\n",
-            "2021-12-09 14:00:21,940 : INFO : PROGRESS: at sentence #280000, processed 8163702 words and 1423632 word types\n",
-            "2021-12-09 14:00:22,641 : INFO : PROGRESS: at sentence #290000, processed 8467384 words and 1474593 word types\n",
-            "2021-12-09 14:00:23,355 : INFO : PROGRESS: at sentence #300000, processed 8786003 words and 1523896 word types\n",
-            "2021-12-09 14:00:24,068 : INFO : PROGRESS: at sentence #310000, processed 9100416 words and 1569992 word types\n",
-            "2021-12-09 14:00:24,724 : INFO : PROGRESS: at sentence #320000, processed 9386761 words and 1608520 word types\n",
-            "2021-12-09 14:00:25,391 : INFO : PROGRESS: at sentence #330000, processed 9682471 words and 1647884 word types\n",
-            "2021-12-09 14:00:26,036 : INFO : PROGRESS: at sentence #340000, processed 9963364 words and 1684770 word types\n",
-            "2021-12-09 14:00:26,746 : INFO : PROGRESS: at sentence #350000, processed 10274773 words and 1726892 word types\n",
-            "2021-12-09 14:00:27,437 : INFO : PROGRESS: at sentence #360000, processed 10578702 words and 1764793 word types\n",
-            "2021-12-09 14:00:28,104 : INFO : PROGRESS: at sentence #370000, processed 10863737 words and 1800178 word types\n",
-            "2021-12-09 14:00:28,642 : INFO : PROGRESS: at sentence #380000, processed 11101088 words and 1833412 word types\n",
-            "2021-12-09 14:00:29,069 : INFO : PROGRESS: at sentence #390000, processed 11293353 words and 1851824 word types\n",
-            "2021-12-09 14:00:29,718 : INFO : PROGRESS: at sentence #400000, processed 11578113 words and 1894425 word types\n",
-            "2021-12-09 14:00:30,259 : INFO : PROGRESS: at sentence #410000, processed 11817502 words and 1924009 word types\n",
-            "2021-12-09 14:00:30,837 : INFO : PROGRESS: at sentence #420000, processed 12073310 words and 1962903 word types\n",
-            "2021-12-09 14:00:31,214 : INFO : PROGRESS: at sentence #430000, processed 12239667 words and 1983402 word types\n",
-            "2021-12-09 14:00:31,727 : INFO : PROGRESS: at sentence #440000, processed 12465649 words and 2008199 word types\n",
-            "2021-12-09 14:00:32,114 : INFO : PROGRESS: at sentence #450000, processed 12640016 words and 2022480 word types\n",
-            "2021-12-09 14:00:32,744 : INFO : PROGRESS: at sentence #460000, processed 12914272 words and 2052485 word types\n",
-            "2021-12-09 14:00:33,322 : INFO : PROGRESS: at sentence #470000, processed 13170164 words and 2085162 word types\n",
-            "2021-12-09 14:00:33,805 : INFO : PROGRESS: at sentence #480000, processed 13395346 words and 2098767 word types\n",
-            "2021-12-09 14:00:34,311 : INFO : PROGRESS: at sentence #490000, processed 13623967 words and 2118317 word types\n",
-            "2021-12-09 14:00:34,839 : INFO : PROGRESS: at sentence #500000, processed 13856058 words and 2136564 word types\n",
-            "2021-12-09 14:00:35,525 : INFO : PROGRESS: at sentence #510000, processed 14165789 words and 2166123 word types\n",
-            "2021-12-09 14:00:36,042 : INFO : PROGRESS: at sentence #520000, processed 14390623 words and 2186101 word types\n",
-            "2021-12-09 14:00:36,622 : INFO : PROGRESS: at sentence #530000, processed 14649350 words and 2215987 word types\n",
-            "2021-12-09 14:00:37,194 : INFO : PROGRESS: at sentence #540000, processed 14901362 words and 2246672 word types\n",
-            "2021-12-09 14:00:37,839 : INFO : PROGRESS: at sentence #550000, processed 15183462 words and 2283194 word types\n",
-            "2021-12-09 14:00:38,530 : INFO : PROGRESS: at sentence #560000, processed 15484113 words and 2316531 word types\n",
-            "2021-12-09 14:00:39,192 : INFO : PROGRESS: at sentence #570000, processed 15766487 words and 2352410 word types\n",
-            "2021-12-09 14:00:39,846 : INFO : PROGRESS: at sentence #580000, processed 16039019 words and 2383979 word types\n",
-            "2021-12-09 14:00:40,479 : INFO : PROGRESS: at sentence #590000, processed 16308605 words and 2412323 word types\n",
-            "2021-12-09 14:00:41,052 : INFO : PROGRESS: at sentence #600000, processed 16550906 words and 2435306 word types\n",
-            "2021-12-09 14:00:41,562 : INFO : PROGRESS: at sentence #610000, processed 16764303 words and 2458656 word types\n",
-            "2021-12-09 14:00:42,233 : INFO : PROGRESS: at sentence #620000, processed 17064329 words and 2483308 word types\n",
-            "2021-12-09 14:00:42,855 : INFO : PROGRESS: at sentence #630000, processed 17321800 words and 2508772 word types\n",
-            "2021-12-09 14:00:43,452 : INFO : PROGRESS: at sentence #640000, processed 17574611 words and 2534210 word types\n",
-            "2021-12-09 14:00:43,911 : INFO : PROGRESS: at sentence #650000, processed 17767660 words and 2554517 word types\n",
-            "2021-12-09 14:00:44,399 : INFO : PROGRESS: at sentence #660000, processed 17975982 words and 2572769 word types\n",
-            "2021-12-09 14:00:44,930 : INFO : PROGRESS: at sentence #670000, processed 18204699 words and 2595339 word types\n",
-            "2021-12-09 14:00:45,542 : INFO : PROGRESS: at sentence #680000, processed 18469750 words and 2624065 word types\n",
-            "2021-12-09 14:00:46,144 : INFO : PROGRESS: at sentence #690000, processed 18727388 words and 2649843 word types\n",
-            "2021-12-09 14:00:46,758 : INFO : PROGRESS: at sentence #700000, processed 18990506 words and 2680128 word types\n",
-            "2021-12-09 14:00:47,363 : INFO : PROGRESS: at sentence #710000, processed 19245564 words and 2708653 word types\n",
-            "2021-12-09 14:00:47,958 : INFO : PROGRESS: at sentence #720000, processed 19498061 words and 2738018 word types\n",
-            "2021-12-09 14:00:48,577 : INFO : PROGRESS: at sentence #730000, processed 19768141 words and 2767565 word types\n",
-            "2021-12-09 14:00:49,137 : INFO : PROGRESS: at sentence #740000, processed 20007749 words and 2786273 word types\n",
-            "2021-12-09 14:00:49,963 : INFO : PROGRESS: at sentence #750000, processed 20279512 words and 2819295 word types\n",
-            "2021-12-09 14:00:50,571 : INFO : PROGRESS: at sentence #760000, processed 20550456 words and 2847216 word types\n",
-            "2021-12-09 14:00:51,170 : INFO : PROGRESS: at sentence #770000, processed 20802902 words and 2871683 word types\n",
-            "2021-12-09 14:00:51,803 : INFO : PROGRESS: at sentence #780000, processed 21081124 words and 2900039 word types\n",
-            "2021-12-09 14:00:52,401 : INFO : PROGRESS: at sentence #790000, processed 21348998 words and 2920479 word types\n",
-            "2021-12-09 14:00:53,023 : INFO : PROGRESS: at sentence #800000, processed 21623252 words and 2943641 word types\n",
-            "2021-12-09 14:00:53,667 : INFO : PROGRESS: at sentence #810000, processed 21897534 words and 2969957 word types\n",
-            "2021-12-09 14:00:54,239 : INFO : PROGRESS: at sentence #820000, processed 22140050 words and 2989847 word types\n",
-            "2021-12-09 14:00:54,715 : INFO : PROGRESS: at sentence #830000, processed 22352306 words and 3004776 word types\n",
-            "2021-12-09 14:00:55,289 : INFO : PROGRESS: at sentence #840000, processed 22600070 words and 3027057 word types\n",
-            "2021-12-09 14:00:55,923 : INFO : PROGRESS: at sentence #850000, processed 22877333 words and 3053695 word types\n",
-            "2021-12-09 14:00:56,500 : INFO : PROGRESS: at sentence #860000, processed 23123404 words and 3071796 word types\n",
-            "2021-12-09 14:00:56,922 : INFO : PROGRESS: at sentence #870000, processed 23309866 words and 3083384 word types\n",
-            "2021-12-09 14:00:57,442 : INFO : PROGRESS: at sentence #880000, processed 23527942 words and 3102732 word types\n",
-            "2021-12-09 14:00:57,967 : INFO : PROGRESS: at sentence #890000, processed 23757208 words and 3121688 word types\n",
-            "2021-12-09 14:00:58,533 : INFO : PROGRESS: at sentence #900000, processed 24002251 words and 3143915 word types\n",
-            "2021-12-09 14:00:59,152 : INFO : PROGRESS: at sentence #910000, processed 24288687 words and 3157477 word types\n",
-            "2021-12-09 14:00:59,730 : INFO : PROGRESS: at sentence #920000, processed 24543879 words and 3178190 word types\n",
-            "2021-12-09 14:01:00,341 : INFO : PROGRESS: at sentence #930000, processed 24809243 words and 3203024 word types\n",
-            "2021-12-09 14:01:00,915 : INFO : PROGRESS: at sentence #940000, processed 25062466 words and 3226501 word types\n",
-            "2021-12-09 14:01:01,507 : INFO : PROGRESS: at sentence #950000, processed 25311455 words and 3248897 word types\n",
-            "2021-12-09 14:01:01,977 : INFO : PROGRESS: at sentence #960000, processed 25518623 words and 3262290 word types\n",
-            "2021-12-09 14:01:02,477 : INFO : PROGRESS: at sentence #970000, processed 25722593 words and 3276888 word types\n",
-            "2021-12-09 14:01:03,112 : INFO : PROGRESS: at sentence #980000, processed 25990527 words and 3295145 word types\n",
-            "2021-12-09 14:01:03,734 : INFO : PROGRESS: at sentence #990000, processed 26253387 words and 3315928 word types\n",
-            "2021-12-09 14:01:04,401 : INFO : PROGRESS: at sentence #1000000, processed 26526173 words and 3338203 word types\n",
-            "2021-12-09 14:01:05,050 : INFO : PROGRESS: at sentence #1010000, processed 26794546 words and 3362022 word types\n",
-            "2021-12-09 14:01:05,745 : INFO : PROGRESS: at sentence #1020000, processed 27084482 words and 3389687 word types\n",
-            "2021-12-09 14:01:06,357 : INFO : PROGRESS: at sentence #1030000, processed 27332440 words and 3409071 word types\n",
-            "2021-12-09 14:01:06,919 : INFO : PROGRESS: at sentence #1040000, processed 27572431 words and 3424871 word types\n",
-            "2021-12-09 14:01:07,507 : INFO : PROGRESS: at sentence #1050000, processed 27824398 words and 3441992 word types\n",
-            "2021-12-09 14:01:08,073 : INFO : PROGRESS: at sentence #1060000, processed 28062062 words and 3460509 word types\n",
-            "2021-12-09 14:01:08,645 : INFO : PROGRESS: at sentence #1070000, processed 28311350 words and 3476811 word types\n",
-            "2021-12-09 14:01:09,164 : INFO : PROGRESS: at sentence #1080000, processed 28536605 words and 3491690 word types\n",
-            "2021-12-09 14:01:09,754 : INFO : PROGRESS: at sentence #1090000, processed 28797405 words and 3509451 word types\n",
-            "2021-12-09 14:01:10,371 : INFO : PROGRESS: at sentence #1100000, processed 29056639 words and 3531446 word types\n",
-            "2021-12-09 14:01:10,945 : INFO : PROGRESS: at sentence #1110000, processed 29301469 words and 3549569 word types\n",
-            "2021-12-09 14:01:11,570 : INFO : PROGRESS: at sentence #1120000, processed 29567027 words and 3570180 word types\n",
-            "2021-12-09 14:01:12,270 : INFO : PROGRESS: at sentence #1130000, processed 29854534 words and 3593908 word types\n",
-            "2021-12-09 14:01:12,887 : INFO : PROGRESS: at sentence #1140000, processed 30119177 words and 3611172 word types\n",
-            "2021-12-09 14:01:13,493 : INFO : PROGRESS: at sentence #1150000, processed 30368650 words and 3631051 word types\n",
-            "2021-12-09 14:01:14,122 : INFO : PROGRESS: at sentence #1160000, processed 30632128 words and 3653267 word types\n",
-            "2021-12-09 14:01:14,211 : INFO : collected 3657179 word types from a corpus of 30667537 words (unigram + bigrams) and 1161270 sentences\n",
-            "2021-12-09 14:01:14,213 : INFO : using 3657179 counts as vocab in Phrases<0 vocab, min_count=5, threshold=10.0, max_vocab_size=40000000>\n",
-            "/usr/local/lib/python3.7/dist-packages/gensim/models/phrases.py:598: UserWarning: For a faster implementation, use the gensim.models.phrases.Phraser class\n",
-            "  warnings.warn(\"For a faster implementation, use the gensim.models.phrases.Phraser class\")\n",
-            "2021-12-09 14:01:14,220 : INFO : collecting all words and their counts\n",
-            "2021-12-09 14:01:14,224 : INFO : PROGRESS: at sentence #0, processed 0 words, keeping 0 word types\n",
-            "2021-12-09 14:01:15,482 : INFO : PROGRESS: at sentence #10000, processed 211775 words, keeping 20651 word types\n",
-            "2021-12-09 14:01:17,409 : INFO : PROGRESS: at sentence #20000, processed 543491 words, keeping 46126 word types\n",
-            "2021-12-09 14:01:19,344 : INFO : PROGRESS: at sentence #30000, processed 883881 words, keeping 65371 word types\n",
-            "2021-12-09 14:01:20,926 : INFO : PROGRESS: at sentence #40000, processed 1166610 words, keeping 77204 word types\n",
-            "2021-12-09 14:01:22,161 : INFO : PROGRESS: at sentence #50000, processed 1399794 words, keeping 79725 word types\n",
-            "2021-12-09 14:01:23,985 : INFO : PROGRESS: at sentence #60000, processed 1720190 words, keeping 93088 word types\n",
-            "2021-12-09 14:01:25,265 : INFO : PROGRESS: at sentence #70000, processed 1949489 words, keeping 98217 word types\n",
-            "2021-12-09 14:01:27,073 : INFO : PROGRESS: at sentence #80000, processed 2273721 words, keeping 110716 word types\n",
-            "2021-12-09 14:01:28,310 : INFO : PROGRESS: at sentence #90000, processed 2500646 words, keeping 114312 word types\n",
-            "2021-12-09 14:01:29,680 : INFO : PROGRESS: at sentence #100000, processed 2756504 words, keeping 118313 word types\n",
-            "2021-12-09 14:01:31,416 : INFO : PROGRESS: at sentence #110000, processed 3070178 words, keeping 128862 word types\n",
-            "2021-12-09 14:01:32,761 : INFO : PROGRESS: at sentence #120000, processed 3309645 words, keeping 132623 word types\n",
-            "2021-12-09 14:01:34,134 : INFO : PROGRESS: at sentence #130000, processed 3560153 words, keeping 136674 word types\n",
-            "2021-12-09 14:01:36,010 : INFO : PROGRESS: at sentence #140000, processed 3895525 words, keeping 147735 word types\n",
-            "2021-12-09 14:01:37,275 : INFO : PROGRESS: at sentence #150000, processed 4124550 words, keeping 151543 word types\n",
-            "2021-12-09 14:01:38,751 : INFO : PROGRESS: at sentence #160000, processed 4390572 words, keeping 156930 word types\n",
-            "2021-12-09 14:01:40,549 : INFO : PROGRESS: at sentence #170000, processed 4714088 words, keeping 166656 word types\n",
-            "2021-12-09 14:01:41,812 : INFO : PROGRESS: at sentence #180000, processed 4945011 words, keeping 169417 word types\n",
-            "2021-12-09 14:01:43,044 : INFO : PROGRESS: at sentence #190000, processed 5181248 words, keeping 170349 word types\n",
-            "2021-12-09 14:01:44,252 : INFO : PROGRESS: at sentence #200000, processed 5413344 words, keeping 171197 word types\n",
-            "2021-12-09 14:01:45,458 : INFO : PROGRESS: at sentence #210000, processed 5645175 words, keeping 172118 word types\n",
-            "2021-12-09 14:01:46,752 : INFO : PROGRESS: at sentence #220000, processed 5886060 words, keeping 174114 word types\n",
-            "2021-12-09 14:01:48,282 : INFO : PROGRESS: at sentence #230000, processed 6159261 words, keeping 178750 word types\n",
-            "2021-12-09 14:01:49,630 : INFO : PROGRESS: at sentence #240000, processed 6395874 words, keeping 184211 word types\n",
-            "2021-12-09 14:01:51,260 : INFO : PROGRESS: at sentence #250000, processed 6686461 words, keeping 190609 word types\n",
-            "2021-12-09 14:01:52,875 : INFO : PROGRESS: at sentence #260000, processed 6973658 words, keeping 197941 word types\n",
-            "2021-12-09 14:01:54,453 : INFO : PROGRESS: at sentence #270000, processed 7251609 words, keeping 204399 word types\n",
-            "2021-12-09 14:01:56,065 : INFO : PROGRESS: at sentence #280000, processed 7534710 words, keeping 210102 word types\n",
-            "2021-12-09 14:01:57,672 : INFO : PROGRESS: at sentence #290000, processed 7822623 words, keeping 214816 word types\n",
-            "2021-12-09 14:01:59,366 : INFO : PROGRESS: at sentence #300000, processed 8123023 words, keeping 219476 word types\n",
-            "2021-12-09 14:02:01,036 : INFO : PROGRESS: at sentence #310000, processed 8419114 words, keeping 223509 word types\n",
-            "2021-12-09 14:02:02,555 : INFO : PROGRESS: at sentence #320000, processed 8689288 words, keeping 226785 word types\n",
-            "2021-12-09 14:02:04,160 : INFO : PROGRESS: at sentence #330000, processed 8968177 words, keeping 229930 word types\n",
-            "2021-12-09 14:02:05,702 : INFO : PROGRESS: at sentence #340000, processed 9233128 words, keeping 233204 word types\n",
-            "2021-12-09 14:02:07,457 : INFO : PROGRESS: at sentence #350000, processed 9528528 words, keeping 236947 word types\n",
-            "2021-12-09 14:02:09,135 : INFO : PROGRESS: at sentence #360000, processed 9816106 words, keeping 240190 word types\n",
-            "2021-12-09 14:02:10,671 : INFO : PROGRESS: at sentence #370000, processed 10085123 words, keeping 243163 word types\n",
-            "2021-12-09 14:02:11,963 : INFO : PROGRESS: at sentence #380000, processed 10309907 words, keeping 246812 word types\n",
-            "2021-12-09 14:02:12,997 : INFO : PROGRESS: at sentence #390000, processed 10490049 words, keeping 248536 word types\n",
-            "2021-12-09 14:02:14,529 : INFO : PROGRESS: at sentence #400000, processed 10760169 words, keeping 252610 word types\n",
-            "2021-12-09 14:02:15,806 : INFO : PROGRESS: at sentence #410000, processed 10986226 words, keeping 255446 word types\n",
-            "2021-12-09 14:02:17,191 : INFO : PROGRESS: at sentence #420000, processed 11230184 words, keeping 259113 word types\n",
-            "2021-12-09 14:02:18,117 : INFO : PROGRESS: at sentence #430000, processed 11389361 words, keeping 260976 word types\n",
-            "2021-12-09 14:02:19,332 : INFO : PROGRESS: at sentence #440000, processed 11602250 words, keeping 263329 word types\n",
-            "2021-12-09 14:02:20,255 : INFO : PROGRESS: at sentence #450000, processed 11764673 words, keeping 264689 word types\n",
-            "2021-12-09 14:02:21,730 : INFO : PROGRESS: at sentence #460000, processed 12023689 words, keeping 267082 word types\n",
-            "2021-12-09 14:02:23,123 : INFO : PROGRESS: at sentence #470000, processed 12265699 words, keeping 270035 word types\n",
-            "2021-12-09 14:02:24,269 : INFO : PROGRESS: at sentence #480000, processed 12468016 words, keeping 271383 word types\n",
-            "2021-12-09 14:02:25,448 : INFO : PROGRESS: at sentence #490000, processed 12676187 words, keeping 273135 word types\n",
-            "2021-12-09 14:02:26,674 : INFO : PROGRESS: at sentence #500000, processed 12893088 words, keeping 274573 word types\n",
-            "2021-12-09 14:02:28,207 : INFO : PROGRESS: at sentence #510000, processed 13173646 words, keeping 277271 word types\n",
-            "2021-12-09 14:02:29,395 : INFO : PROGRESS: at sentence #520000, processed 13383390 words, keeping 278944 word types\n",
-            "2021-12-09 14:02:30,775 : INFO : PROGRESS: at sentence #530000, processed 13627012 words, keeping 281875 word types\n",
-            "2021-12-09 14:02:32,137 : INFO : PROGRESS: at sentence #540000, processed 13861208 words, keeping 284953 word types\n",
-            "2021-12-09 14:02:33,642 : INFO : PROGRESS: at sentence #550000, processed 14126122 words, keeping 288542 word types\n",
-            "2021-12-09 14:02:35,185 : INFO : PROGRESS: at sentence #560000, processed 14402497 words, keeping 291883 word types\n",
-            "2021-12-09 14:02:36,656 : INFO : PROGRESS: at sentence #570000, processed 14665798 words, keeping 295140 word types\n",
-            "2021-12-09 14:02:38,100 : INFO : PROGRESS: at sentence #580000, processed 14921317 words, keeping 298294 word types\n",
-            "2021-12-09 14:02:39,552 : INFO : PROGRESS: at sentence #590000, processed 15175561 words, keeping 300822 word types\n",
-            "2021-12-09 14:02:40,861 : INFO : PROGRESS: at sentence #600000, processed 15403117 words, keeping 302926 word types\n",
-            "2021-12-09 14:02:42,023 : INFO : PROGRESS: at sentence #610000, processed 15606135 words, keeping 305199 word types\n",
-            "2021-12-09 14:02:43,517 : INFO : PROGRESS: at sentence #620000, processed 15874192 words, keeping 307420 word types\n",
-            "2021-12-09 14:02:44,887 : INFO : PROGRESS: at sentence #630000, processed 16115036 words, keeping 310022 word types\n",
-            "2021-12-09 14:02:46,260 : INFO : PROGRESS: at sentence #640000, processed 16350281 words, keeping 312508 word types\n",
-            "2021-12-09 14:02:47,330 : INFO : PROGRESS: at sentence #650000, processed 16533448 words, keeping 314266 word types\n",
-            "2021-12-09 14:02:48,450 : INFO : PROGRESS: at sentence #660000, processed 16729391 words, keeping 315939 word types\n",
-            "2021-12-09 14:02:49,683 : INFO : PROGRESS: at sentence #670000, processed 16945121 words, keeping 318207 word types\n",
-            "2021-12-09 14:02:51,132 : INFO : PROGRESS: at sentence #680000, processed 17195181 words, keeping 320787 word types\n",
-            "2021-12-09 14:02:52,518 : INFO : PROGRESS: at sentence #690000, processed 17436605 words, keeping 323064 word types\n",
-            "2021-12-09 14:02:53,953 : INFO : PROGRESS: at sentence #700000, processed 17685596 words, keeping 325711 word types\n",
-            "2021-12-09 14:02:55,358 : INFO : PROGRESS: at sentence #710000, processed 17926526 words, keeping 327816 word types\n",
-            "2021-12-09 14:02:56,743 : INFO : PROGRESS: at sentence #720000, processed 18164987 words, keeping 330071 word types\n",
-            "2021-12-09 14:02:58,225 : INFO : PROGRESS: at sentence #730000, processed 18419472 words, keeping 332537 word types\n",
-            "2021-12-09 14:02:59,506 : INFO : PROGRESS: at sentence #740000, processed 18643690 words, keeping 333939 word types\n",
-            "2021-12-09 14:03:00,990 : INFO : PROGRESS: at sentence #750000, processed 18901396 words, keeping 336729 word types\n",
-            "2021-12-09 14:03:02,435 : INFO : PROGRESS: at sentence #760000, processed 19156020 words, keeping 338995 word types\n",
-            "2021-12-09 14:03:03,786 : INFO : PROGRESS: at sentence #770000, processed 19393794 words, keeping 340741 word types\n",
-            "2021-12-09 14:03:05,329 : INFO : PROGRESS: at sentence #780000, processed 19656854 words, keeping 343254 word types\n",
-            "2021-12-09 14:03:06,745 : INFO : PROGRESS: at sentence #790000, processed 19904287 words, keeping 345135 word types\n",
-            "2021-12-09 14:03:08,235 : INFO : PROGRESS: at sentence #800000, processed 20160772 words, keeping 347125 word types\n",
-            "2021-12-09 14:03:09,700 : INFO : PROGRESS: at sentence #810000, processed 20417710 words, keeping 349436 word types\n",
-            "2021-12-09 14:03:11,026 : INFO : PROGRESS: at sentence #820000, processed 20644833 words, keeping 350995 word types\n",
-            "2021-12-09 14:03:12,180 : INFO : PROGRESS: at sentence #830000, processed 20844270 words, keeping 352524 word types\n",
-            "2021-12-09 14:03:13,495 : INFO : PROGRESS: at sentence #840000, processed 21075343 words, keeping 354312 word types\n",
-            "2021-12-09 14:03:14,972 : INFO : PROGRESS: at sentence #850000, processed 21334401 words, keeping 356586 word types\n",
-            "2021-12-09 14:03:16,302 : INFO : PROGRESS: at sentence #860000, processed 21566010 words, keeping 357959 word types\n",
-            "2021-12-09 14:03:17,299 : INFO : PROGRESS: at sentence #870000, processed 21739015 words, keeping 359009 word types\n",
-            "2021-12-09 14:03:18,474 : INFO : PROGRESS: at sentence #880000, processed 21945404 words, keeping 360786 word types\n",
-            "2021-12-09 14:03:19,700 : INFO : PROGRESS: at sentence #890000, processed 22161143 words, keeping 362420 word types\n",
-            "2021-12-09 14:03:21,009 : INFO : PROGRESS: at sentence #900000, processed 22392197 words, keeping 364252 word types\n",
-            "2021-12-09 14:03:22,379 : INFO : PROGRESS: at sentence #910000, processed 22639652 words, keeping 365176 word types\n",
-            "2021-12-09 14:03:23,710 : INFO : PROGRESS: at sentence #920000, processed 22876523 words, keeping 366816 word types\n",
-            "2021-12-09 14:03:25,131 : INFO : PROGRESS: at sentence #930000, processed 23126148 words, keeping 368662 word types\n",
-            "2021-12-09 14:03:26,488 : INFO : PROGRESS: at sentence #940000, processed 23364903 words, keeping 370575 word types\n",
-            "2021-12-09 14:03:27,829 : INFO : PROGRESS: at sentence #950000, processed 23599935 words, keeping 372635 word types\n",
-            "2021-12-09 14:03:28,940 : INFO : PROGRESS: at sentence #960000, processed 23794199 words, keeping 373874 word types\n",
-            "2021-12-09 14:03:30,068 : INFO : PROGRESS: at sentence #970000, processed 23986391 words, keeping 375194 word types\n",
-            "2021-12-09 14:03:31,485 : INFO : PROGRESS: at sentence #980000, processed 24236625 words, keeping 376635 word types\n",
-            "2021-12-09 14:03:32,894 : INFO : PROGRESS: at sentence #990000, processed 24482286 words, keeping 378366 word types\n",
-            "2021-12-09 14:03:34,343 : INFO : PROGRESS: at sentence #1000000, processed 24736184 words, keeping 380370 word types\n",
-            "2021-12-09 14:03:35,791 : INFO : PROGRESS: at sentence #1010000, processed 24989306 words, keeping 382460 word types\n",
-            "2021-12-09 14:03:37,346 : INFO : PROGRESS: at sentence #1020000, processed 25265028 words, keeping 384518 word types\n",
-            "2021-12-09 14:03:38,674 : INFO : PROGRESS: at sentence #1030000, processed 25497294 words, keeping 385981 word types\n",
-            "2021-12-09 14:03:39,957 : INFO : PROGRESS: at sentence #1040000, processed 25723169 words, keeping 387204 word types\n",
-            "2021-12-09 14:03:41,311 : INFO : PROGRESS: at sentence #1050000, processed 25959511 words, keeping 388675 word types\n",
-            "2021-12-09 14:03:42,590 : INFO : PROGRESS: at sentence #1060000, processed 26183721 words, keeping 390257 word types\n",
-            "2021-12-09 14:03:43,951 : INFO : PROGRESS: at sentence #1070000, processed 26419216 words, keeping 391721 word types\n",
-            "2021-12-09 14:03:45,154 : INFO : PROGRESS: at sentence #1080000, processed 26629022 words, keeping 392929 word types\n",
-            "2021-12-09 14:03:46,523 : INFO : PROGRESS: at sentence #1090000, processed 26871107 words, keeping 394365 word types\n",
-            "2021-12-09 14:03:47,931 : INFO : PROGRESS: at sentence #1100000, processed 27114903 words, keeping 396305 word types\n",
-            "2021-12-09 14:03:49,244 : INFO : PROGRESS: at sentence #1110000, processed 27345651 words, keeping 397733 word types\n",
-            "2021-12-09 14:03:50,631 : INFO : PROGRESS: at sentence #1120000, processed 27593026 words, keeping 399499 word types\n",
-            "2021-12-09 14:03:52,173 : INFO : PROGRESS: at sentence #1130000, processed 27865776 words, keeping 401366 word types\n",
-            "2021-12-09 14:03:53,572 : INFO : PROGRESS: at sentence #1140000, processed 28116131 words, keeping 402710 word types\n",
-            "2021-12-09 14:03:54,926 : INFO : PROGRESS: at sentence #1150000, processed 28351335 words, keeping 404326 word types\n",
-            "2021-12-09 14:03:56,348 : INFO : PROGRESS: at sentence #1160000, processed 28600116 words, keeping 406173 word types\n",
-            "2021-12-09 14:03:56,539 : INFO : collected 406504 word types from a corpus of 28633747 raw words and 1161270 sentences\n",
-            "2021-12-09 14:03:56,540 : INFO : Loading a fresh vocabulary\n",
-            "2021-12-09 14:03:57,377 : INFO : effective_min_count=10 retains 71115 unique words (17% of original 406504, drops 335389)\n",
-            "2021-12-09 14:03:57,379 : INFO : effective_min_count=10 leaves 27922339 word corpus (97% of original 28633747, drops 711408)\n",
-            "2021-12-09 14:03:57,640 : INFO : deleting the raw counts dictionary of 406504 items\n",
-            "2021-12-09 14:03:57,656 : INFO : sample=0.001 downsamples 48 most-common words\n",
-            "2021-12-09 14:03:57,657 : INFO : downsampling leaves estimated 18887858 word corpus (67.6% of prior 27922339)\n",
-            "2021-12-09 14:03:57,952 : INFO : estimated required memory for 71115 words and 100 dimensions: 92449500 bytes\n",
-            "2021-12-09 14:03:57,956 : INFO : resetting layer weights\n",
-            "2021-12-09 14:04:13,057 : INFO : training model with 3 workers on 71115 vocabulary and 100 features, using sg=0 hs=0 sample=0.001 negative=5 window=5\n",
-            "2021-12-09 14:04:14,121 : INFO : EPOCH 1 - PROGRESS: at 0.66% examples, 99702 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:15,179 : INFO : EPOCH 1 - PROGRESS: at 1.15% examples, 100779 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:16,229 : INFO : EPOCH 1 - PROGRESS: at 1.54% examples, 101805 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:17,246 : INFO : EPOCH 1 - PROGRESS: at 1.93% examples, 103118 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:18,294 : INFO : EPOCH 1 - PROGRESS: at 2.36% examples, 103330 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:19,338 : INFO : EPOCH 1 - PROGRESS: at 2.76% examples, 103524 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:20,391 : INFO : EPOCH 1 - PROGRESS: at 3.26% examples, 103266 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:21,431 : INFO : EPOCH 1 - PROGRESS: at 3.88% examples, 102154 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:22,492 : INFO : EPOCH 1 - PROGRESS: at 4.48% examples, 101483 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:23,533 : INFO : EPOCH 1 - PROGRESS: at 4.90% examples, 101834 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:24,582 : INFO : EPOCH 1 - PROGRESS: at 5.36% examples, 101895 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:25,607 : INFO : EPOCH 1 - PROGRESS: at 5.97% examples, 101382 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:26,668 : INFO : EPOCH 1 - PROGRESS: at 6.42% examples, 101415 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:27,720 : INFO : EPOCH 1 - PROGRESS: at 6.83% examples, 101607 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:28,766 : INFO : EPOCH 1 - PROGRESS: at 7.42% examples, 101335 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:29,806 : INFO : EPOCH 1 - PROGRESS: at 8.05% examples, 101019 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:30,830 : INFO : EPOCH 1 - PROGRESS: at 8.57% examples, 100794 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:31,894 : INFO : EPOCH 1 - PROGRESS: at 8.99% examples, 100886 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:32,904 : INFO : EPOCH 1 - PROGRESS: at 9.39% examples, 100884 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:33,941 : INFO : EPOCH 1 - PROGRESS: at 9.98% examples, 100611 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:34,981 : INFO : EPOCH 1 - PROGRESS: at 10.54% examples, 100225 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:35,996 : INFO : EPOCH 1 - PROGRESS: at 11.09% examples, 100019 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:37,058 : INFO : EPOCH 1 - PROGRESS: at 11.53% examples, 100091 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:38,097 : INFO : EPOCH 1 - PROGRESS: at 11.92% examples, 100263 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:39,164 : INFO : EPOCH 1 - PROGRESS: at 12.48% examples, 100205 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:40,191 : INFO : EPOCH 1 - PROGRESS: at 13.04% examples, 99995 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:41,206 : INFO : EPOCH 1 - PROGRESS: at 13.59% examples, 99891 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:42,260 : INFO : EPOCH 1 - PROGRESS: at 14.02% examples, 99973 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:43,308 : INFO : EPOCH 1 - PROGRESS: at 14.41% examples, 100100 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:44,364 : INFO : EPOCH 1 - PROGRESS: at 14.99% examples, 100079 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:45,366 : INFO : EPOCH 1 - PROGRESS: at 15.56% examples, 99953 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:46,370 : INFO : EPOCH 1 - PROGRESS: at 16.18% examples, 99799 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:47,380 : INFO : EPOCH 1 - PROGRESS: at 16.81% examples, 99617 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:48,384 : INFO : EPOCH 1 - PROGRESS: at 17.44% examples, 99451 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:49,386 : INFO : EPOCH 1 - PROGRESS: at 18.07% examples, 99310 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:50,403 : INFO : EPOCH 1 - PROGRESS: at 18.64% examples, 99114 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:51,405 : INFO : EPOCH 1 - PROGRESS: at 19.21% examples, 98930 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:52,433 : INFO : EPOCH 1 - PROGRESS: at 19.69% examples, 98932 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:53,495 : INFO : EPOCH 1 - PROGRESS: at 20.24% examples, 98960 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:54,496 : INFO : EPOCH 1 - PROGRESS: at 20.78% examples, 98968 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:55,547 : INFO : EPOCH 1 - PROGRESS: at 21.24% examples, 98947 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:56,547 : INFO : EPOCH 1 - PROGRESS: at 21.70% examples, 98933 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:57,568 : INFO : EPOCH 1 - PROGRESS: at 22.14% examples, 98899 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:58,574 : INFO : EPOCH 1 - PROGRESS: at 22.59% examples, 98892 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:04:59,634 : INFO : EPOCH 1 - PROGRESS: at 23.08% examples, 98893 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:00,639 : INFO : EPOCH 1 - PROGRESS: at 23.54% examples, 98872 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:01,646 : INFO : EPOCH 1 - PROGRESS: at 23.99% examples, 98853 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:02,663 : INFO : EPOCH 1 - PROGRESS: at 24.46% examples, 98819 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:03,690 : INFO : EPOCH 1 - PROGRESS: at 24.89% examples, 98790 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:04,724 : INFO : EPOCH 1 - PROGRESS: at 25.34% examples, 98722 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:05,776 : INFO : EPOCH 1 - PROGRESS: at 25.74% examples, 98630 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:06,813 : INFO : EPOCH 1 - PROGRESS: at 26.18% examples, 98565 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:07,847 : INFO : EPOCH 1 - PROGRESS: at 26.61% examples, 98508 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:08,866 : INFO : EPOCH 1 - PROGRESS: at 27.07% examples, 98472 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:09,882 : INFO : EPOCH 1 - PROGRESS: at 27.58% examples, 98439 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:10,908 : INFO : EPOCH 1 - PROGRESS: at 28.08% examples, 98387 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:11,922 : INFO : EPOCH 1 - PROGRESS: at 28.50% examples, 98374 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:12,951 : INFO : EPOCH 1 - PROGRESS: at 29.00% examples, 98327 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:13,968 : INFO : EPOCH 1 - PROGRESS: at 29.49% examples, 98290 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:14,974 : INFO : EPOCH 1 - PROGRESS: at 29.90% examples, 98277 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:15,985 : INFO : EPOCH 1 - PROGRESS: at 30.34% examples, 98258 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:17,001 : INFO : EPOCH 1 - PROGRESS: at 30.78% examples, 98228 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:18,015 : INFO : EPOCH 1 - PROGRESS: at 31.25% examples, 98219 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:19,021 : INFO : EPOCH 1 - PROGRESS: at 31.71% examples, 98218 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:20,082 : INFO : EPOCH 1 - PROGRESS: at 32.26% examples, 98241 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:21,091 : INFO : EPOCH 1 - PROGRESS: at 32.95% examples, 98205 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:22,102 : INFO : EPOCH 1 - PROGRESS: at 33.63% examples, 98209 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:23,111 : INFO : EPOCH 1 - PROGRESS: at 34.09% examples, 98225 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:24,129 : INFO : EPOCH 1 - PROGRESS: at 34.61% examples, 98213 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:25,152 : INFO : EPOCH 1 - PROGRESS: at 35.21% examples, 98212 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:26,213 : INFO : EPOCH 1 - PROGRESS: at 35.65% examples, 98240 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:27,263 : INFO : EPOCH 1 - PROGRESS: at 36.36% examples, 98186 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:28,296 : INFO : EPOCH 1 - PROGRESS: at 37.10% examples, 98142 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:29,298 : INFO : EPOCH 1 - PROGRESS: at 37.67% examples, 98138 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:30,309 : INFO : EPOCH 1 - PROGRESS: at 38.49% examples, 98135 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:31,332 : INFO : EPOCH 1 - PROGRESS: at 39.02% examples, 98119 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:32,343 : INFO : EPOCH 1 - PROGRESS: at 39.56% examples, 98115 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:33,408 : INFO : EPOCH 1 - PROGRESS: at 40.11% examples, 98129 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:34,426 : INFO : EPOCH 1 - PROGRESS: at 40.73% examples, 98122 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:35,437 : INFO : EPOCH 1 - PROGRESS: at 41.33% examples, 98093 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:36,492 : INFO : EPOCH 1 - PROGRESS: at 42.01% examples, 98114 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:37,529 : INFO : EPOCH 1 - PROGRESS: at 42.61% examples, 98093 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:38,554 : INFO : EPOCH 1 - PROGRESS: at 43.15% examples, 98066 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:39,605 : INFO : EPOCH 1 - PROGRESS: at 43.56% examples, 98172 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:40,633 : INFO : EPOCH 1 - PROGRESS: at 44.21% examples, 98156 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:41,651 : INFO : EPOCH 1 - PROGRESS: at 44.81% examples, 98159 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:42,665 : INFO : EPOCH 1 - PROGRESS: at 45.34% examples, 98162 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:43,695 : INFO : EPOCH 1 - PROGRESS: at 45.87% examples, 98166 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:44,708 : INFO : EPOCH 1 - PROGRESS: at 46.43% examples, 98192 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:45,738 : INFO : EPOCH 1 - PROGRESS: at 46.93% examples, 98193 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:46,754 : INFO : EPOCH 1 - PROGRESS: at 47.40% examples, 98212 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:47,767 : INFO : EPOCH 1 - PROGRESS: at 47.90% examples, 98230 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:48,836 : INFO : EPOCH 1 - PROGRESS: at 48.35% examples, 98275 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:49,882 : INFO : EPOCH 1 - PROGRESS: at 48.87% examples, 98331 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:50,883 : INFO : EPOCH 1 - PROGRESS: at 49.39% examples, 98360 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:51,895 : INFO : EPOCH 1 - PROGRESS: at 49.90% examples, 98363 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:52,913 : INFO : EPOCH 1 - PROGRESS: at 50.44% examples, 98345 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:53,975 : INFO : EPOCH 1 - PROGRESS: at 50.97% examples, 98354 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:55,001 : INFO : EPOCH 1 - PROGRESS: at 51.54% examples, 98340 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:56,023 : INFO : EPOCH 1 - PROGRESS: at 52.15% examples, 98319 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:57,039 : INFO : EPOCH 1 - PROGRESS: at 52.74% examples, 98330 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:58,081 : INFO : EPOCH 1 - PROGRESS: at 53.29% examples, 98385 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:05:59,121 : INFO : EPOCH 1 - PROGRESS: at 53.76% examples, 98448 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:00,180 : INFO : EPOCH 1 - PROGRESS: at 54.38% examples, 98451 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:01,184 : INFO : EPOCH 1 - PROGRESS: at 54.90% examples, 98457 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:02,197 : INFO : EPOCH 1 - PROGRESS: at 55.50% examples, 98460 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:03,207 : INFO : EPOCH 1 - PROGRESS: at 56.22% examples, 98445 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:04,250 : INFO : EPOCH 1 - PROGRESS: at 56.88% examples, 98412 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:05,275 : INFO : EPOCH 1 - PROGRESS: at 57.52% examples, 98391 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:06,295 : INFO : EPOCH 1 - PROGRESS: at 58.00% examples, 98372 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:07,323 : INFO : EPOCH 1 - PROGRESS: at 58.54% examples, 98374 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:08,335 : INFO : EPOCH 1 - PROGRESS: at 59.09% examples, 98375 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:09,369 : INFO : EPOCH 1 - PROGRESS: at 59.61% examples, 98360 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:10,400 : INFO : EPOCH 1 - PROGRESS: at 60.12% examples, 98352 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:11,430 : INFO : EPOCH 1 - PROGRESS: at 60.68% examples, 98352 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:12,463 : INFO : EPOCH 1 - PROGRESS: at 61.19% examples, 98350 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:13,499 : INFO : EPOCH 1 - PROGRESS: at 61.74% examples, 98347 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:14,526 : INFO : EPOCH 1 - PROGRESS: at 62.24% examples, 98348 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:15,544 : INFO : EPOCH 1 - PROGRESS: at 62.75% examples, 98354 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:16,606 : INFO : EPOCH 1 - PROGRESS: at 63.32% examples, 98328 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:17,639 : INFO : EPOCH 1 - PROGRESS: at 63.89% examples, 98319 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:18,663 : INFO : EPOCH 1 - PROGRESS: at 64.38% examples, 98317 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:19,728 : INFO : EPOCH 1 - PROGRESS: at 64.89% examples, 98365 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:20,762 : INFO : EPOCH 1 - PROGRESS: at 65.42% examples, 98364 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:21,784 : INFO : EPOCH 1 - PROGRESS: at 65.96% examples, 98364 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:22,810 : INFO : EPOCH 1 - PROGRESS: at 66.51% examples, 98374 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:23,831 : INFO : EPOCH 1 - PROGRESS: at 66.96% examples, 98368 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:24,885 : INFO : EPOCH 1 - PROGRESS: at 67.49% examples, 98394 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:25,898 : INFO : EPOCH 1 - PROGRESS: at 68.04% examples, 98406 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:26,925 : INFO : EPOCH 1 - PROGRESS: at 68.52% examples, 98399 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:27,985 : INFO : EPOCH 1 - PROGRESS: at 69.09% examples, 98417 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:28,992 : INFO : EPOCH 1 - PROGRESS: at 69.56% examples, 98429 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:29,996 : INFO : EPOCH 1 - PROGRESS: at 70.11% examples, 98441 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:31,063 : INFO : EPOCH 1 - PROGRESS: at 70.77% examples, 98448 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:32,069 : INFO : EPOCH 1 - PROGRESS: at 71.40% examples, 98437 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:33,092 : INFO : EPOCH 1 - PROGRESS: at 71.99% examples, 98438 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:34,155 : INFO : EPOCH 1 - PROGRESS: at 72.54% examples, 98449 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:35,225 : INFO : EPOCH 1 - PROGRESS: at 73.05% examples, 98454 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:36,243 : INFO : EPOCH 1 - PROGRESS: at 73.63% examples, 98442 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:37,271 : INFO : EPOCH 1 - PROGRESS: at 74.17% examples, 98430 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:38,294 : INFO : EPOCH 1 - PROGRESS: at 74.95% examples, 98430 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:39,310 : INFO : EPOCH 1 - PROGRESS: at 75.58% examples, 98421 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:40,320 : INFO : EPOCH 1 - PROGRESS: at 76.19% examples, 98411 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:41,380 : INFO : EPOCH 1 - PROGRESS: at 76.81% examples, 98412 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:42,399 : INFO : EPOCH 1 - PROGRESS: at 77.36% examples, 98406 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:43,415 : INFO : EPOCH 1 - PROGRESS: at 77.86% examples, 98416 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:44,471 : INFO : EPOCH 1 - PROGRESS: at 78.45% examples, 98440 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:45,510 : INFO : EPOCH 1 - PROGRESS: at 79.01% examples, 98430 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:46,532 : INFO : EPOCH 1 - PROGRESS: at 79.52% examples, 98438 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:47,571 : INFO : EPOCH 1 - PROGRESS: at 80.03% examples, 98446 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:48,574 : INFO : EPOCH 1 - PROGRESS: at 80.56% examples, 98462 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:49,588 : INFO : EPOCH 1 - PROGRESS: at 81.09% examples, 98459 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:50,619 : INFO : EPOCH 1 - PROGRESS: at 81.47% examples, 98278 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:51,628 : INFO : EPOCH 1 - PROGRESS: at 82.16% examples, 98274 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:52,637 : INFO : EPOCH 1 - PROGRESS: at 82.75% examples, 98263 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:53,651 : INFO : EPOCH 1 - PROGRESS: at 83.43% examples, 98258 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:54,722 : INFO : EPOCH 1 - PROGRESS: at 84.03% examples, 98274 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:55,797 : INFO : EPOCH 1 - PROGRESS: at 84.58% examples, 98270 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:56,800 : INFO : EPOCH 1 - PROGRESS: at 85.11% examples, 98288 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:57,845 : INFO : EPOCH 1 - PROGRESS: at 85.65% examples, 98282 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:58,863 : INFO : EPOCH 1 - PROGRESS: at 86.12% examples, 98296 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:06:59,889 : INFO : EPOCH 1 - PROGRESS: at 86.62% examples, 98300 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:00,903 : INFO : EPOCH 1 - PROGRESS: at 87.10% examples, 98304 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:01,921 : INFO : EPOCH 1 - PROGRESS: at 87.56% examples, 98298 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:02,929 : INFO : EPOCH 1 - PROGRESS: at 88.09% examples, 98300 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:03,958 : INFO : EPOCH 1 - PROGRESS: at 88.66% examples, 98300 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:04,995 : INFO : EPOCH 1 - PROGRESS: at 89.23% examples, 98277 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:06,006 : INFO : EPOCH 1 - PROGRESS: at 89.83% examples, 98280 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:07,014 : INFO : EPOCH 1 - PROGRESS: at 90.34% examples, 98277 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:08,053 : INFO : EPOCH 1 - PROGRESS: at 90.88% examples, 98263 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:09,076 : INFO : EPOCH 1 - PROGRESS: at 91.51% examples, 98262 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:10,138 : INFO : EPOCH 1 - PROGRESS: at 92.05% examples, 98272 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:11,158 : INFO : EPOCH 1 - PROGRESS: at 92.69% examples, 98270 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:12,214 : INFO : EPOCH 1 - PROGRESS: at 93.27% examples, 98282 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:13,225 : INFO : EPOCH 1 - PROGRESS: at 93.80% examples, 98281 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:14,241 : INFO : EPOCH 1 - PROGRESS: at 94.31% examples, 98280 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:15,250 : INFO : EPOCH 1 - PROGRESS: at 94.86% examples, 98281 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:16,280 : INFO : EPOCH 1 - PROGRESS: at 95.44% examples, 98266 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:17,338 : INFO : EPOCH 1 - PROGRESS: at 95.99% examples, 98245 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:18,375 : INFO : EPOCH 1 - PROGRESS: at 96.48% examples, 98240 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:19,396 : INFO : EPOCH 1 - PROGRESS: at 96.96% examples, 98240 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:20,451 : INFO : EPOCH 1 - PROGRESS: at 97.48% examples, 98237 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:21,505 : INFO : EPOCH 1 - PROGRESS: at 98.01% examples, 98244 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:22,515 : INFO : EPOCH 1 - PROGRESS: at 98.56% examples, 98245 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:23,522 : INFO : EPOCH 1 - PROGRESS: at 99.10% examples, 98247 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:24,550 : INFO : EPOCH 1 - PROGRESS: at 99.61% examples, 98242 words/s, in_qsize 0, out_qsize 0\n",
-            "2021-12-09 14:07:25,284 : INFO : worker thread finished; awaiting finish of 2 more threads\n",
-            "2021-12-09 14:07:25,288 : INFO : worker thread finished; awaiting finish of 1 more threads\n",
-            "2021-12-09 14:07:25,294 : INFO : worker thread finished; awaiting finish of 0 more threads\n",
-            "2021-12-09 14:07:25,296 : INFO : EPOCH - 1 : training on 28633747 raw words (18886389 effective words) took 192.2s, 98247 effective words/s\n",
-            "2021-12-09 14:07:25,297 : INFO : training on a 28633747 raw words (18886389 effective words) took 192.2s, 98245 effective words/s\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "print(list(model.wv.vocab))"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "DOjkiWcUhwmH",
-        "outputId": "255a1719-1ad1-4378-c247-4b0c85cc602f"
-      },
-      "id": "DOjkiWcUhwmH",
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "['meilleur', 'espoir', 'féminin', ':', 'on', 'aurait_pu', 'ajouter', '.', 'malheureusement', ',', 'comme', 'presque', 'tout', 'ce', 'qui', 'est', 'bon', \"c'_est\", 'bourré', 'de', 'beurre', 'et', 'sucre', \"j'_avais\", 'déjà', 'façonné', 'une', 'recette', 'allégée', 'pour', 'weight_watchers', 'mais', 'elle', 'contenait', 'encore', 'du', 'un', 'peu', \"aujourd'_hui\", 'je', 'vous', 'propose', 'cette', 'que', \"j'_ai\", 'soir', 'sans', \"n'_empêche\", 'acheter', 'sa_propre', 'baguette_magique', 'ou', 'déguster', 'des', 'bières', 'au', 'pourrait', 'partir', 'bout', 'monde', '!', 'menthe', 'canne', 'rhum', 'citron_vert', 'sont', 'vos', 'meilleurs_amis', 'en', 'soirée', '?', 'parfois', 'rêve', \"d'\", 'verre', 'vin', 'la', 'marque', 'biscuits_oreo', 'a', 'pensé', 'aux', 'gourmandes', 'gourmands', \"s'_apprête\", 'à', 'lancer', 'gâteaux', 'dotés', 'nouvelles', 'saveurs', 'caramel', 'beurre_salé', 'noix', 'coco', 'rangez', 'les', 'parapluies', 'sortez', 'le', 'sel', 'citron', 'adore', 'savourer', 'avec_modération', 'cliquez_sur', \"l'\", 'étoile', 'noire', '★', 'blog', 'sélection', 'avant', 'nouveau', 'partenaire', 'ligne', 'nous', 'son', 'site', 'fonctionne', 'soit', 'sécurisé', 'notamment', 'phase', 'paiement', 'il', 'y', 'plus', 'correcte', 'enseigne', 'thé', 'bio', 'anti-', 'cookies', 'ça', 'environ_10', '%', 'cher', \"qu'\", 'américain', 'classique', 'fait', 'trouve', 'plutôt', 'dans', 'quartiers', 'voire', 'aisés', \"n'\", 'pas', 'rare', 'trouver', 'coins', 'moins', 'bien', 'fréquentés', 'version', 'pc', 'jeu', \"s'\", 'encombre', 'steam', 'obligatoirement', 'empêchera', 'personne', 'pirater', 'menace', 'rendre', 'processus', 'ennuyeux', 'bêtise', \"m'\", 'enlèvera', 'même', 'plaisir', 'trafiquer', 'heures', 'jouer', 'avec', 'mes_amis', 'reste', 'selon', 'moi', 'meilleure_solution', 'programme_minceur', 'chouchou', 'régime', 'the', 'programme', 'détox', 'par_excellence', 'selectionné', 'coulant', 'chocolat', 'livre', 'recettes', 'look', 'simple', '(', 'jean', '+', 'mocassins', ')', 'alors', 'touche', '«', '»', 'parce_que', 'sinon', \"s'_ennuie\", 'ferme', 'petit', 'sac', 'étoilé', 'mixé', 'foulard', 'pois', '220', 'grammes', 'farine', '1_sachet', 'levure_chimique', 'mélangez', 'levure', 'édulcorant', 'puis', 'œufs', 'frites_maison', 'trois', 'astuces', 'réussir', 'large', 'casserole', 'friteuse', 'verser', 'huile', 'bain', 'il_faut', 'dizaine', 'cm', 'épaisseur', 'laisser_refroidir', 'elles_doivent', 'être', 'température_ambiante', 'faire_cuire', 'pendant', 'temps', 'pommes', 'terre', 'façon', 'fois', 'frites', 'vous_pouvez', 'aussi', 'faire', 'réchauffer', '180°c', 'four', 'minutes', 'merci', 'alléchante', 'rien', 'dire', 'votre', 'parfaite', 'fais', 'vis', 'liège', 'truc', 'grasses', 'blanchir', '10_minutes', '2l', 'eau_bouillante', 'cuillère', 'soupe', 'vinaigre', 'procéder', 'double', 'cuisson', 'habituelle', 'jour_j', 'également', 'petits_morceaux', 'gingembre', 'confits', 'préparation', 'tarte', 'citron_meringuée', 'facile', 'sans_aucun', 'doute', 'mon', 'dessert_préféré', \"j'_avoue\", 'ne', 'dirait', 'si', 'juge', 'par', 'dizaines', 'base', 'sur', 'pourtant', 'détrône', 'plupart', 'desserts', \"j'\", 'ai_mangé', 'beaucoup', 'habitude', 'chez', 'pâtissier', 'préféré', 'jérôme', 'oliveira', 'cannes', 'première_fois', 'me_lance', \"m'_étais\", 'essayée', 'celle', 'pierre_hermé', 'meringue', 'était', 'vraiment', 'divine', 'trop', 'goût', 'quelques', 'autres', 'partage', 'inspirée', 'plusieurs', 'pâte_sablée', 'noisettes', 'récupérée', 'ma', 'ondulés', 'encyclopédie', 'valrhona', 'crémeux', 'délicieux', 'incroyablement', 'ni', 'gélatine', 'découvert', 'ai', 'je_crois', 'ailleurs', 'je_vais', 'utiliser', 'car', 'super', 'elles', '3', 'ces', 'font', 'savoureuse', 'acidulée', 'souhait', 'bon_goût', 'noisette', '180g', '360_g', '90', '270_g', '125g', 'jus', 'zeste', 'entre_eux', 'blanc', 'saladier', 'beurre_ramolli', 'sucre_glace', 'poudre', 'oeuf', '90_g', 'lorsque', 'mélange', 'homogène', 'ajoutez', 'brièvement', 'piquez', 'fond', 'faites_cuire', 'pâte', 'pendant_environ', '20_minutes', 'laissez_refroidir', 'pressez', 'citrons', 'oeufs_battus', 'cassé', 'carrés', 'remuez_vivement', \"jusqu'\", 'obtenir', 'mélange_homogène', 'disposez', 'crème', 'voir', 'note', 'bas', 'quand', 'ils_commencent', 'fermes', 'continuer', 'battre', 'blancs', 'neige', 'soient', 'recouvrir', 'enfournez', '150°c_pendant', 'quelques_minutes', 'peine', 'dore', 'restez_devant', 'étape', 'peut', 'aller', 'très', 'très_vite', 'étant', 'passage', 'tendance', 'liquéfier', 'intéressante', 'je_testerai', 'prochaine_fois', 'je_suis', 'toujours', 'recherche', 'c', 'oeufs', 'cotte', 'd', 'je_pense', 'tu_as', 'oublié', 'ingrédients', 'coucou', 'copine', 'éviter', 'ton', 'problème', 'fonte', 'curd', 'tu', 'dorer', 'te_conseille', 'achat', 'chalumeau', 'besoin', 'remettre', 'juste', 'flamme', 'tu_veux', 'tu_peux', 'cuisine', 'internet', 'possible', 'magasins_spécialisés', 'hâte', 'tester_ta', 'air', 'ainsi', 'blé', 'petit_épeautre', 'sucre_roux', 'zestes', 'orange', 'aussi_utiliser', 'grille', 'quadrillage', 'par_exemple', 'joli', 'mélanges', 'utilisé', '100_gr', '80_gr', '**', 'blond', 'roux', 'préchauffer', '180°_c', 'mélanger', 'lever', 'faire_chauffer', 'lait', 'incorporer', 'délicatement', 'soigneusement', 'plusieurs_fois', 'soulevant', 'spatule', 'ensuite', 'chaud', 'démouler', 'tiède', 'générale', 'concernant', 'sont_donnés', 'titre_indicatif', 'texte', '&', 'photographie', 'carole', '@', 'cha', 'retour', 'ne_connaissais', 'gateau', 'amande', 'riz', 'soja', '10g', 'matcha', 'anne', 'type', 'donne_envie', 'essayer', '-', 'contre', 'garnir', 'après', 'fruits', 'crus', 'cuits', 'bonne_idée', 'sera', 'saison', 'fraises', 'pourra', 'peut-être', 'se', 'servir', 'mix', 'graines', 'choix', 'autant', 'grâce', 'maison', 'maille', 'moutarde', 'ingrédient', 'idéale', 'twister', '200°c', 'hors', 'feu', 'rajouter', 'faire_revenir', 'feu_doux', 'cerfeuil', 'cubes', 'poissons', 'vin_blanc', 'oignon', 'persil_ciselé', 'ail_haché', 'réaliser', 'papillotes', 'heure', 'blinis', 'fondants', 'absolument_délicieux', 'trouvé', 'incontournable', 'me_plaît', '100_%', 'tant', 'texture', 'saveur', 'confère', 'salés', 'imaginé', 'mon_amie', 'monique', 'récemment', 'lancé', 'm', 'aux_côtés', 'amie', 'morgane', 'où', 'nom', 'magazine', 'composés', 'principalement', 'patate_douce', 'réduite', 'purée', 'blé_noir', 'appelée', 'sarrasin', 'poêle', 'graisser', 'aide', 'morceau', 'papier_absorbant', 'imbibé', '2', '3_cuillères', 'former', 'distincts', 'nombre', 'va_dépendre', 'diamètre', 'topinambours', 'gaufres', 'légumes', 'top', \"j'_adore\", 'cette_année', 'fort', 'séjour', 'estival', 'québec', 'avait', 'décidé', 'dose', 'cohésion', 'forte', 'au_sein', 'ses', 'cours', 'ok', 'pot', 'arrivée', 'stéphanie', 'dernière', 'service', 'comptabilité', 'léger', '1er_prix', 'cacahuètes', 'fruit', ';', 'mettait', 'grand', 'soin', 'lui', 'offert', 'sa_mère', 'servait', 'adapté', 'modestement', 'tête', 'convives', 'faisaient', 'compliments', 'parfum', 'paquet_cadeau', 'en_choisissant', 'option_parmi', 'suggestions', 'forzieri', 'carte_cadeau', '10_secondes', 'arrêt', 'rouge', 'refroidir', 'corps', 'paire', 'running', 'valise', 'pleine', 'papier', 'autre', 'alu', 'mettez', 'déjà_partagé', 'désormais', 'vous_aurez', 'semaine', 'devenue', 'tellement', 'célèbre', 'mondialement', 'parlant', 'empêcher', 'express', 'donnera', 'sa', 'place', 'produits', 'cake', '{', 'crème_fraiche', '}', 'sablés', 'châtaigne', 'pralin', 'je_lis', 'liste', 'interminable', 'versez', 'sauce', 'quantité_suffisante', 'napper', 'réservez', 'bonne_demi-heure', 'laisser', 'mêler', 'jamais', 'publié', 'crumble', 'partagée', 'annie', 'a_été', 'extraite', 'origine', 'vegan', 'sans_gluten', 'intéresser', 'fais_habituellement', 'crumbles', 'intolérance', 'publication', 'saine', 'mes', 'premières', 'motivations', 'voici', 'g', 'beurre_mou', 'banane', 'donnez', 'impulsions', 'ail_dégermé', 'parmesan_râpé', '10_cl', 'sec', 'absorbé', 'progressivement', 'bouillon', 'en_remuant', 'souvent', 'cuit', 'salez', 'poivrez', 'quelques_gouttes', 'vous_aimez', 'mérite', 'cet', 'honneur', 'doit_être', 'rapide', 'demander', 'présenté', 'nos', 'recettes_fétiches', 'celles', 'écrites', 'cahier', 'couvert', 'tâches', 'force', 'fameuse_tarte', 'meringuée', 'rhubarbe', 'font_partie', '1/2_citron', 'faites_blondir', 'flocons', 'avoine', 'étalés', 'plaque', 'pommes_coupées', 'petits_cubes', 'râpé', 'cannelle', 'glissez', 'petite', 'modéré', 'avez', 'marie', 'renvoie', 'audrey', 'article', 'suivi', 'lettre', '200_g', 'chocolat_noir', '64_%', '100_g', 'préchauffez', '(_th.6', 'faites_fondre', 'chocolat_cassé', 'morceaux', 'transférez', 'bol', 'robot', 'laissez', 'totalement', 'frais', 'prennent', 'contrôle', 'dévoilant', 'milk-shake', 'toute', 'publie', 'boit', 'pointe', 'pieds', 'préparer', 'pancakes', 'pleins', 'pépites', 'déjeuner', 'prendre', 'chaque', 'dimanche', 'séances', 'batch', 'cooking', 'fournée', 'doux', 'muffins', 'petites_faims', 'vendredi_soir', 'fermer', 'comptoir', 'bar', 'dont', 'notre', 'deux_verres', 'artichaut', 'partager', 'olive', 'pain', 'beau', 'gâteau', '–', 'flore', 'carte', 'hiver', 'angelina', 'mêlant', 'framboise', 'vanille', 'mango', 'tree', 'premier', 'smoothies', 'bowls', 'naturels', 'belle', 'terrasse', 'face', 'lac', 'emporter', 'nous_proposons', 'petits_déjeuners', 'fruités', 'brunchs', 'végétariens', 'large_choix', 'légumes_pressés', 'instant', 'sains', 'bols', 'tartines', 'midi', 'leur', 'donner', 'friandises', 'biscuits', 'provoque', 'diabète', 'eczéma', 'perte', 'pelage', 'tandis_que', 'merveilleux', 'chocolatier', 'mise', 'poivron_rouge', 'confectionner', 'pâtes', 'plus_tôt', 'reportage', 'partagé', 'brownie', 'faussement', 'fat', 'betterave', 'envier_aux', 'originaux', 'avantage', '0_%', 'culpabilité', 'simplicité', 'calories', 'coupées', 'inouï', 'naturellement', '•', 'parcourir', 'chapitres', 'signets', 'notes', 'vitesse', 'narration', 'traite', 'brosse', 'dent', 'suicide', 'anglais', 'jambe', 'bois', 'fils', 'laine', 'incendie', 'pains', 'plage', 'beignet', 'biere', 'plait', 'passe', 'va', 'peut-etre', 'allumer', 'non', 'posez', 'courgettes', 'petites_lamelles', 'feta', 'déposez', 'confites', 'devenir', 'fétiche', 'bienvenue', 'grappes', 'x', 'parisien', 'univers', 'plateforme', 'e-commerce', 'mettant', 'relation', 'acheteurs', 'hésitez', 'quel', 'burger', 'sushis', 'vous_souhaitez', 'développer', 'culture', 'manière', 'décalée', 'on_peut', 'dattes', 'confiture', 'tartiner', 'etc.', 'mis', 'point', 'fil', 'années', 'afin', 'oreilles', 'aman', \"s'_ouvrent\", 'durant', 'cela', 'arrive', 'met', 'cuve', '150g', '50g', '1g', 'pesée', 'rigueur', 'balance', '100g', 'beurre_pommade', 'route', 'secondes', 'simplement', 'sabler', '150°', 'chaleur_tournante', 'détaillez', 'cercles', 'emporte-pièce', 'retirez', 'excédent', 'faites', 'boule', 'attendez', 'quelques_instants', 'sortie', 'ils', 'assez', 'fragiles', 'chauds', 'riche', 'laissez_-les', 'évident', 'étale', 'disais', 'tes_conseils', 'nouvelle', 'grand_merci', 'tester', 'vite', 'gouter', 'je_peux', 'remplacer', 'tu_penses', 'attendait', 'avec_impatience', 'néanmoins', 'petite_question', 'remplace', 'pate', 'datte', 'jaime', 'nutella', 'tenter', 'version_revue', 'corrigée', 'label', 'histoire', 'doivent', 'lien', 'fête', 'erreur', 'phonétique', 'farce', 'halva', 'pistache', 'toutes', 'entend', 'batteur', 'main', '\"', 'couteaux', 'plastique', 'fer', 'faut', 'maryse', 'me_suis', 'lancée', 'hier_après-midi', 'cause', 'petit-fils', 'testée', 'adoptée', 'toutes_celles', 'excellent', 'nous_avons', 'ma_part', 'quel_moment', 'utilisez', '8g', 'pavot', 'bavé', 'me', 'tenait', 'cœur', 'sert', 'dessus', 'style', 'américains', 'permet', 'finitions', 'parfaites', 'être_conservée', 'frigo', 'chocolat_valrhona', '200g', 'travailler', 'application', 'il_convient', 'particulièrement', 'moulage', 'enrobage', 'bonbons', 'fluidité', 'permettant', 'révéler', 'couleur', 'blanche', 'kit', 'cookie', 'choc', 'soi-même', 'forme', 'délicieusement', 'recouverts', '6', 'empreintes', 'silicone', 'motifs', 'assortis', 'couler', 'plaques', 'déposer', 'vaisselle', 'mettre', 'valeur', 'autres_éléments', 'décoratifs', 'table', 'petits', 'rondins', 'peuvent', 'marque-place', 'sachets', 'kraft', 'ornés', 'feuille', 'houx', 'offrir', 'invités', 'photographié', 'plat', 'individuel', 'donne', '6_personnes', 'moule', '10', 'gr', '2_cuil', 'beurrez', 'souple', '18_cm', 'répartissez', 'miettes', 'spéculoos', 'mirabelles', 'préchauffez_votre', '170_°c', 'orange_amère', \"s'_harmonise\", 'neutre', 'dénaturer', 'celui', '25_g', 'couverture', 'faire_fondre', 'micro_ondes', '30', 's', 'défaut', 'au_bain-marie', '40_g', 'variété', 'juteuse', 'bouillant', 'sans_cesser', 'fouetter', 'faible_vitesse', 'projections', 'quelques_secondes', 'reverser', 'suite', 'mixer', 'mixeur_plongeant', 'min', 'bien_homogénéiser', 'ensemble', 'incorporant', 'parcelles', 'marmelade', 'cercle', '14', '150_g', '30_%', 'barry', 'ivoire', 'hacher', 'placer', 'chauffer', 'ébullition', '1', 'crème_fouettée', 'tiédi', 'remuer_vivement', 'détendre', 'appareil', 'restant', 'mélanger_délicatement', 'faire_retomber', 'fouet', 'opérant', 'geste', 'circulaire', 'vers', 'haut', 'moitié', 'mousse', 'congélateur', '5_min', 'centre', 'kamikazes', 'croustillant', 'couvrir', '70_g', '1/2', '125_g', 'type_45', '180°', 'beurre_tempéré', 'coupé', 'petits_dés', 'obtention', 'mélange_crémeux', 'consistance_crémeuse', 'décercler', 'dès', 'entièrement', 'humidité', 'évacuer', 'froide', 'grosse_cuillère', 'oranges_amères', '30_g', 'cassonade', 'amandes', 'pistaches', 'beurre_coupé', 'doigts', 'pétrir', 'grosses_miettes', 'grossières', '140_g', '60_g', 'cacao', 'fondre', 't°', 'doit', 'dépasser', '40°', 'remuer', 'parfaitement', 'fluide', 'colorant_vert', 'pistolet', 'peinture', 'attention', 'questions', 'réponses', 'trouvées', 'personnelle', 'part', 'présentent', 'elle-même', 'trouveront', 'réponse', 'lire', 'entier', 'poser', 'vos_questions', 'clairement', 'compréhension', 'pintade', 'jaune', 'champignons', 'visite', 'mensuelle', 'ici', 'revenu', 'cuisses', 'panier', 'voulu', 'moelleux', 'sucré', 'là', 'éric', 'préparé', 'pâtes_fraîches', 'trompettes', 'mort', 'donnerais', 'cocotte', 'réalisation', 'saler', 'poivrer', 'sont_cuits', 'déglacer', \"s'_évaporer\", 'réhydratés', 'eau', 'replacer', 'cuire', '1h30', 'retirer', 'filtrer', 'réduire', 'froid', 'tous', 'employés', 'viennent', 'garonne', '31', 'essayez', 'commentaire', '35g', 'gousse', 'gousses', 'sucre_vanillé', 'vanille_liquide', 'enfourner', 'four_préchauffé', '170°', 'pendant_15', 'coriandre', 'parmigiano', 'cabillaud', 'saisir', 'filets', '70°', 'gourmand', 'répartir', 'papier_sulfurisé', '200°_pendant', 'tian', 'mon_partenaire', 'utile', '1cs', 'dés', 'pêche', 'caraméliser', 'doucement', 'flamber', 'débarrasser', 'broyer', 'grossièrement', 'sac_plastique', 'taper', 'rouleau', ')_.dans', 'chaque_verrine', 'mascarpone', 'pêches', 'moment', 'partenaires', 'utiles', 'farcies', 'plat_beurré', '180°_pendant', 'courgette', 'farcie', 'sauce_tomate', 'nb_:', 'déjà_publié', 'semblable', 'année', 'grosses', 'boules', 'servies', 'tagliatelles', 'jaunes', 'fin', 'petites_boules', 'aplatir', 'fourchette', 'fera', 'dessin', 'favori', 'égoutter', 'ceux_qui', 'aurait', 'manqué', 'voici_donc', 'smoothie', 'prêts', 'découvrir', 'cela_faisait', 'longtemps', 'est_-ce', 'dernier', 'date', 'an', \"c'_était\", 'grains_entiers', 'réalisé', '20_min', 'choisissez', 'police', 'couleurs', 'votre_logo', 'css', 'personnalisés', 'créer', 'site_web', 'image', 'deuxième', 'jour', 'dieu_créa', 'homme', 'chat', 'troisième', 'animaux', 'végétaux', \"qu'_ils\", 'puissent', 'nourriture', 'jouets', 'créa', 'chien', 'faire-valoir', 'ma_soeur', 'aller_chercher', 'mondial', 'pourquoi', 'philippe', 'propriétaires', 'restaurant', 'ville', 'bordeaux', '1_heure', 'réfrigérateur', 'maizena', 'battez', 'cuisez', '7', 'cuisiné', 'souhaite_donner', 'avis', 'rapidement', 'planter', 'choux', 'suffit', 'sachez_que', '5', 'bouteille', 'compris', 'resto', 'agréable', 'addition', 'tourne_autour', 'gâté', 'île', 'réunion', 'canard', 'bien_doré', 'tomate', 'clou', 'girofle', 'ail', 'taillés', 'curcuma', 'idée', 'dessert', 'idéal', 'fêtes', 'mousseux', 'onctueux', 'apporte', 'fraîcheur', 'bien_évidemment', 'bonne_dose', 'conseillé', 'avance', '80g', '120g', '75g', '5g', 'changer', 'classiques', 'faire_dorer', 'goûts', 'poivre', 'curry', 'éventuellement', 'laisser_mijoter', 'vingtaine', 'régulièrement', 'rectifier', 'assaisonnement', 'spécial', 'renversée', '22_cm', '40g', '1/2_sachet', '20g', 'œuf', 'montés', 'retirée', '/', 'en_mélangeant', 'sorte', 'croûte', 'poulet', 'sauf', 'commencer_par', 'morilles', 'elles_sont', 'sèches', 'tremper', 'quelques_heures', 'garder', 'trempage', 'rinçant_bien', 'sous', 'enlever', 'petites', 'saletés', 'échalote_coupée', 'presque_entièrement', 'crème_fraîche', 'vous_avez', 'séchées', 'belle_couleur', 'épaissie', 'aux_morilles', 'aussitôt', '160g', '85g', '30cl', 'pincée', '160°c', 'étaler', 'aider', 'deux', 'feuilles', 'découper', 'formes', 'emporte-pièces', 'disposer', 'plaque_allant', 'four_recouverte', 'papier_cuisson', 'enfourner_pendant', '15_minutes', 'maximum', 'surveiller', 'cuisent', 'acheté', 'savoir', 'consiste', 'lentement', 'olives', 'imposante', 'meule', 'pierre', 'source', 'pouvoir', 'extraire', 'apprécie_guère', 'changements', 'température', 'aucun', 'compte', 'quelque', 'âme', 'vive', 'conseil', 'saurais', 'suivre', 'crie', 'mens', 'dis', 'bêtises', 'je_ferai', 'autrement', 'quoi', 'tu_fasses', 'tu_seras', 'ma_mère', 'étais', 'te', 'guerre', 'réussite', 'prévaloir', \"t'\", 'décevoir', 'déçu', 'ma_famille', 'mes_amours', 'ma_fille', 'oh', 'quitté', 'son_père', 'penché', 'pris', 'affaires', 'dit', 'prête', 'comprenait', \"j'_étais\", 'tu_sais', 'choses', 'arrivent', 'montée', 'tranquille', 'vieille', 'bagnole', 'changé', 'école', 'je_sais', 'veux', 'oui', 'aveux', 'je_prends', 'toi', 'es', 'soi-disant', 'meilleure', 'témoin', 'gentil', 'erreurs', 'montres', 'fidèle', 'depuis', 'enfance', 'modèle', 'patience', 'je_savais', \"j'_arriverais\", 'perdre', 'ta', 'confiance', 'mauvais', 'impuissance', 'mets', 'tes', 'belles', 'remontrances', 'puisque', 'cervelle', 'là_où', 'il_fallait', 'veuille', 'je_serais', 'cercueil', 'serais', 'ouvert', 'veines', \"c'\", 'vrai', 'foutue', 'seconde', 'chance', 'pardonne', 'recommence', 'conneries', 'te_dérange', 'demain', 'veille', 'vais', 'ange', 'dois', 'seule', 'vas_-y', 'ma_chère', 'poids', 'grands', 'échecs', 'respect', 'étouffer', 'déçue', 'sois', 'perdu', 'fallait', 'vie', 'vouloir', 'sauver', 'reprends', 'crucifix', 'laisse_-moi', 'sombrer', 'restera', \"p_'\", 'tit', 'rayon', 'amour', 'famille', 'bouée', 'secours', 'veut', 'ressembler', 'danse', 'maquille', 'souliers', 'offres', 'adopter', 'crains', 'béquille', 'emprunter', 'voilà', '2_cuillères', 'café', '6g', 'caroline', 'ravie', 'nager', 'plonger', 'sauces', 'genre', 'pratique', 'sport', 'travers', 'passoire', 'laisser_cuire', '10_min', 'en_continuant', 'formation', 'grumeaux', 'dernière_minute', 'bouillir', 'croûtes', 'feuilletées', 'puissant', 'tannique', 'grande', 'longueur', 'bouche', 'apprentissage', 'osé', 'sacrée', 'personnalité', 'caractère', 'a_fallu', 'corse', 'terrine', 'marinade', 'vin_rouge', \"lorsqu'_il\", 'réalisée', 'renforcer', 'viandes', 'piment', 'espelette', 'vient', 'relever', 'ont_permis', 'accord_mets', 'a_semblé', 'satisfaisant', 'ajuster', 'attendre', '24h', 'consommer', 'château', 'bordeaux_supérieur', '2014', 'campagne', 'première_tentative', 'barbecue', 'rester', 'esprit', 'très_simple', 'seulement', 'agrémenté', 'coup', 'coeur', 'cévennes', 'egoutter', 'stocker', 'saupoudrer', 'poivre_noir', 'kampot', 'proposer', 'assiette', 'couper', 'vert', 'rondelles', 'maquereau', 'quinoa', 'version_salée', 'complète', 'farine_blanche', 'farines', 'si_nécessaire', 'herbes', 'envelopper', 'film_alimentaire', 'cc', 'maïzena', 'levure_tamisées', 'beurre_fondu', 'fécule', 'bicarbonate', 'sortir', 'monter', 'chantilly', 'incorporer_progressivement', 'fondu', 'écrire', 'souvenirs', 'autour', 'vietnamienne', 'anéanti', 'clic', 'or', 'aurait_dû', 'leçon', 'échalote', 'huile_neutre', 'seiche', 'assez_vif', '5mn', 'saler_légèrement', 'réserver', 'matière_grasse', 'avoir', 'translucide', 'cuisant', 'mouiller', '15mn', 'encre', 'redonner', 'tour', 'chairs', 'prenant_soin', 'décorer', 'noir', 'très_appétissant', 'golden', 'détailler', 'lamelles', '4_càs', 'sucre_cristallisé', '2_sachets', 'petite_dose', 'celle-ci', 'précédente', 'départ', 'final', 'différence', 'essentielle', 'entre', 'manuelle', 'faite', 'palais', 'avertis', 'partie', 'préalablement_beurré', 'pomme', 'couche', 'secouer', '200°', \"j'_utilise\", 'éteindre', 'descendre', 'laissera', 'coupe', 'cas', 'compliqué', 'poêlée', 'jeter', 'chauffée', 'exhaler', 'poisson', '2kg', '30_mn', 'laisser_reposer', '5_mn', \"entr_'\", '***', 'manger', 'repas', 'par-dessus', 'tige', 'romarin', 'origan', 'séché', 'piquant', 'piments', 'inca', 'red', 'drop', 'assaisonnez', 'fleur', '4-6', 'grains', 'grosseur', 'pots', 'aime', 'arachides', '1/2_tasse', '125ml', 'margarine', 'graisse', 'tartinable', 'doré', 'shortening', 'végétal', 'allant_au', 'micro-_ondes', 'aient', 'consistance', 'onctueuse', 'très_bonne', 'five', 'roses', 'été', 'summum', 'envie', 'carottes', 'je_fais', 'difficile', '1/2_tasses', 'usage', 'conserve', 'ananas', 'broyés', 'ajout', '350°f', 'soude', 'si_désiré', '180ºc', '50', '60', 'complètement', 'fromage', 'reprises', 'hot_dogs', 'complètement_oublié', 'vous_allez', 'goûté', 'refaire', 'prochain', 'vous_trouverez', 'bbq', 'ketchup', 'relish', '375°f', 'quelques_cuillerées', 'fromage_râpé', 'environ_20', 'commencent', 'quiches', 'excellente', 'vu', 'pixel', 'nourrissant', 'très_polyvalent', 'y_ajoutant', 'garnitures', '400', 'degré', 'f', 'vous_devez', 'quiche', 'garnir_uniformément', 'jambon', 'train', 'vivarais', 'musée', 'tain', 'filé', 'gratuit', 'malade', 'nuit', 'recette_gagnante', 'bleuets', '1_tasse', '140_gr', 'non_blanchie', '½_c', '¼', 'soda', '½_tasse', '120_gr', 'salé', 'ramolli', '¾_tasse', '135', 'tassée', '90_gr', 'maïs', '4', 'oz', 'haché', '180_ml', '125_ml', '35_%', '15_%', 'champêtre', '3_tasses', '390', 'surgelés', 'myrtilles', '180_°c', '350_°f', 'crémer', 'batteur_électrique', 'basse_vitesse', 'ingrédients_secs', 'alternant', 'environ_45', 'cure-dent_inséré', 'ressorte_propre', 'calculer', '1/4', 'trop_liquide', 'yogourt', 'liquide', 'pratiques', 'plat_allant', 'fond_épais', 'antiadhésive', '25', '30_minutes', 'recette_originale', '12', 'moyens', '400_°f', '200_°c', 'moules', 'vous_obteniez', 'moyen', 'côté', '.dans', 'grand_bol', 'consistance_homogène', 'placez_-les', '375_°f', '190_°c', ')_.cuire', 'environ', '18-20', 'pendant_5', 'découvrez', 'ricardo', 'opté', 'congelées', 'laisse', '200', '°f', '100', '°c', 'assécher', 'linge_propre', 'augmenter', '1/4_tasse', '175_gr', 'portions', '355', '20_gr', 'tamisé', '1/2_c', '225_gr', '180_gr', 'légèrement', '70_%', 'ganache', '170_gr', '60_ml', 'chocolats', '1_minute', '25_minutes', 'biscuit', 'congelé', 'laisser_tiédir', 'gouttes', 'fumée', 'red_hot', 'grand_chaudron', 'côtes', 'cola', 'mijoter', 'chaude', 'laisser_mariner', 'griller', 'badigeonnant', 'salade', 'chou', '50_gr', 'tranchées', 'bananes', '8', 'crème_glacée', '3/4_tasse', 'grilloir', 'plats_individuels', 'dorer_légèrement', 'tranches', 'amandes_grillées', 'immédiatement', 'sirop', 'petite_casserole', 'cayenne', 'décortiquer', 'crevettes', 'finement', 'après_avoir', 'chair', 'avocat', 'arroser_généreusement', 'auteur', 'quartier', 'arroser', 'reposé', '5_minutes', 'hermétique', 'huilée', 'brochettes', 'couvercle', 'faisait_longtemps', 'je_voulais', 'saumon', 'planche', 'cèdre', 'placez', 'directement', 'pendant_20', 'précaution', 'agrémenter', 'seau', 'jetez', '-la', 'arrosez', 'permettra', 'confire', 'papiers', 'fouettez', 'babeurre', 'milieu', 'se_marient', 'toutefois', 'omettre', 'glaçage', \"j'_aime\", 'tamiser', 'commençant', 'terminant', '55', 'plante', 'potées', 'bacs', 'jardinières', 'photo', 'cap', 'latte', 'groin', 'dégusté', 'derniére', 'toasts', 'marmite', 'probablement', 'plugin', 'facilement', 'télécharger', 'installer', 'effectuer', 'travail', 'inutile', 'ralentissent', 'chargement', 'fonction', 'intégré', 'wordpress', 'compression', 'signifie', 'il_faudrait', 'méthodes', 'lentes', \"s'_agit\", 'bassin', 'utilitaire', 'destiné', 'vivier', 'truites', 'nous_goûtons', 'appelé', 'charme', 'émir', 'boucle', 'revenir', 'camp', 'aigres', 'pu', \"puisqu'_il\", 'pouvait', 'passée', \"s'_accumulent\", 'lus', 'sans_cesse', 'nouveautés', \"viennent_s'\", 'plaire', 'porter', 'témoignage', 'études', 'saucisson', 'yaourt', 'divers', 'signe', 'abondance', 'urss', 'incapable', 'fournir', 'boivent', \"s'_accrochent\", 'ils_étaient', 'prisonniers', 'distribution', 'devait', 'lieu', 'archevêque', 'chrétien', 'apparence', \"n'_hésite\", 'conseiller', 'agir', 'messe', 'pâques', 'cathédrale', 'devient', 'sang', 'hostie', 'christ', 'mythe', 'patriote', '-il', 'royaume', 'fille_aînée', 'spirituelle', 'pape', 'bras_armé', 'peuple', 'humble', 'vie_quotidienne', 'gobelet', 'toit', 'écrirai', 'inventer', \"m'_attendais\", \"j'_écris\", 'vérifié', 'étudié', 'actrice', 'cadeaux', 'émue', 'sincérité', 'bonhomme', 'flattée', 'convaincue', 'humanité', 'malgré', 'vanité', 'cinéma', 'saint', 'bourgogne', 'sait', 'fut', 'copain', 'leurs', 'reliques', 'commune', 'donna', 'connu', 'nous_pourrions', 'ulysse', 'siècle', '1990', 'apprend', 'art', 'volaille', 'élèves', 'inscrits', 'communication', 'restauration', 'salle', 'étudient', 'leur_cursus', 'mille', 'façons', 'composer', 'cocktails', 'première', 'ils_ont', 'œnologie', 'fabrication', 'vignobles', 'étrangers', 'explique', 'isabelle', 'mari', 'professeur', 'jeunes', 'aiment', 'mojito', 'eu', 'confie', 'cruche', 'recouvrez', 'crémant', 'épices', 'cl', 'eau-de-vie', '9', 'déco', 'aspect', 'givré', 'trempez', 'bord', 'pâte_feuilletée', 'achetée', 'étalez', 'chutney', 'bouts', 'boudins', 'roulez', 'dix_minutes', 'jeune', 'exprime', 'thème', 'rondelle', 'prime', '500_g', '18', 'levure_fraîche', 'levure_déshydratée', 'connaisseurs', 'local', 'températures', 'vous_obtenez', 'coulage', 'allez', 'exemple', 'total', 'retire', 'donc', 'laquelle', 'insérer', 'but', 'opération', 'pétrissage', '24', 'aquarelle', 'illustration', 'page', 'présentée', 'tutoyer', 'guinness', 'je_souhaitais', 'projet', 'fuite', 'heureuse', 'pensée', 'effluves', 'sucrées', 'récolte', 'gelée', 'rustique', 'rappelle', 'ci-dessous', 'définitivement', 'adoptée_par', 'fine', 'macérer', 'journée', 'raison', '750g', '1_kilo', 'choisir', 'je_préfère', 'sauvage', 'méprisé', 'consommé', 'cantine', 'lycée', 'métallique', 'boîte', 'prêt', 'emploi', 'compte_tenu', 'arrivages', 'fréquents', 'cuis', 'court-bouillon', 'diététique', 'méthode', 'nappé', 'vinaigrette', 'persil', 'suggestion', 'billet', 'sachant', 'fragile', 'recommandé', 'rillettes', 'toute_simple', 'congeler', 'inverse', 'vraie', 'stérilisée', 'maquereaux', 'offerts', 'vidés', 'gagner', '1/2_heure', 'reprendre', 'plein', 'feux_moyen', 'taille', 'indiqué_ci-dessus', 'il_suffit', 'prélever', 'assaisonner', 'composée', 'cidre', 'parsemer', 'guérande', 'timut', 'pamplemousse', 'se_détache', 'difficilement', 'pédoncule', 'écrase', 'proportion', '750_g', 'vous_préférez', '1_kg', 'mûres', '2_heures', 'tout_dépend', 'lors', 'cueillette', 'riches', 'pectine', 'facilite', 'apport', 'prise', 'ces_dernières', 'bombées', 'photos', 'permettre', 'repérer', 'arbuste', 'nature', 'passer', 'au_presse-purée', 'pulpe', '*', '1_litre', 'sureau', 'variante', 'fais_souvent', 'baies', 'éclater', 'presser', 'colorer', 'côtelettes', 'enrobées', 'beurre_mycryo', 'corps_gras', 'votre_choix', 'recouverte', 'papier_parchemin', 'tapis', 'badigeonnez_-les', 'couvrez', 'saupoudrez', 'chapelure', 'laissez_cuire', 'désirée', 'verdict', 'assurément', 'coloré', 'réfrigérer', 'amateurs', 'vont', 'se_régaler', '50_grammes', '80_grammes', '120_grammes', '2_citrons', '20_grammes', 'séparez', 'oignons', 'nouveaux', 'centilitres', '10_centilitres', 'laurier', 'amenez', 'feu_moyen', 'bonne', 'tranche', 'demi_sel', 'courses', '200_grammes', '150_grammes', '110_grammes', '1_paquet', 'dorure', 'faites_ramollir', 'malaxez', 'pommade', 'pluie', \"n'_hésitez\", 'vins', 'france', 'avril', 'mai_2015', '100_grammes', 'nestlé_dessert', 'je_dois', 'maury', 'marie_parfaitement', '125_grammes', 'vergeoise_brune', '200_degrés', 'mou', 'incorporez', 'hachez', 'copeaux', 'couteau', 'baissez', '180_degrés', '45_minutes', 'mer', 'coquilles_st', 'jacques', 'erquy', 'cocos', 'paimpol', 'choux_fleurs', 'mayonnaise', 'anchois', 'thym', 'césar', 'enrober', '12_minutes', 'bacon', 'ait', 'teinte_rosée', 'intérieur', 'retourner', 'refermable', 'retournant', 'galettes', 'cheddar', 'tiges', 'citronnelle', 'zeste_râpé', 'lime', 'menthe_fraîche', 'hachée', '425_f', 'elles_soient', 'tendres', 'dorées', 'gratiné', 'litres', 'trois_semaines', 'je_tenterais', 'avais', 'queues', 'vrai_délice', 'brisure', 'mélangé', 'comment', 'fini', 'restants', 'lendemain', 'oasis', 'mangue', 'biologique', 'drink', 'petite_parenthèse', 'essayé', 'cuir', 'méga', 'milanaise', '11', 'kg', '$', 'gros', 'format', '4,99', 'ordinaire', 'paquet', 'comparer', 'matin', 'mexicain', 'grosse_quantité', 'mange', 'plus_tard', 'tortillas', 'quesadillas', 'tartinade', 'soya', 'earth_balance', 'cube', 'work', 'faux', 'steak_haché', 'êtes', 'obligé', 'protéine', 'autre_chose', 'nous_allons', 'redimensionner', 'série', 'images', 'pixels', 'long', 'appliquer', 'filigrane', 'transparent', 'enregistrer', 'jpg', 'extension', 'fichier', 'bouton', 'action', 'chaleur', 'après-midi', 'prélasser', 'près', 'piscine', 'odeur', 'crème_solaire', 'déniché', 'avouer', 'environ_5', 'poitrines', 'réalisez', 'surprendra', 'août_2017', 'poêlon', 'demande', 'entrée', 'tels_quels', 'melons', 'fondue', 'saucissons', 'presto', 'cuites', 'autrement_dit', 'beurrés', 'pinottes', 'gars', 'adorent', 'suggère', 'paresseuse', \"c'_est-à-dire\", 'brasser', 'finalement', 'doubler', 'partent', 'vous_êtes', 'chanceux', 'bons', 'beurrées', 'lol', '2_tasses', 'soit_homogène', 'combiner', 'pouding', 'tasses', 'mélangeur_électrique', 'épaississement', 'étendre', 'terminer', 'ajoutant', 'québécoise', 'souche', \"lorsqu'\", 'pense', 'rôti', 'palette', 'surtout', 'bertrand', 'délicieuse', 'transmet', 'génération', 'contient', 'enveloppe', 'seriez_-vous', 'accord', 'avons', 'usé', 'corde', 'nouilles_soba', 'nouilles', 'ca', 'mein', 'soba', 'cuil', '325°f', 'viande', '2h30', 'gardé', 'bouchons', 'conserver', 'rendez-vous', 'page_facebook', 'colorée', 'en_fouettant', 'constamment', 'carré', 'pouces', 'découpé', 'faciliter', 'démoulage', 'assiettes', 'œufs_entiers', 'battus', 'servent', 'protéines', 'minéraux', 'gras', 'refais', 'plusieurs_années', 'connait', 'succès', 'piqué', 'longue_date', 'josée', 'chaleureuse', '..', 'muscade', '70', 'cure-dents_inséré', 'chef', 'répéter', 'mexicaine', 'salsa', 'touche_personnelle', 'recommande', 'halte', 'muriel', \"'_s\", 'kitchen', 'square', 'charmante', 'pudding', 'anglaise', 'lle', 'continuera', 'mercredi', 'enfants', 'grandir', 'parmesan', 'potiron', 'lardons', 'automne', 'nous_étions', 'samedi', 'chèvre', 'musique', 'en_attendant', 'sacs', 'assuré', 'nous_avions', 'jeux', 'occuper', 'reprend', 'parfums', 'différents', 'cadeau', 'anniversaire', 'petite_soeur', 'clair', 'goût_fruité', 'amande_amère', 'paysans', 'ont', 'reçu', 'seigneur', 'féodal', 'autorisation', 'eux-mêmes', 'vendre', 'indiquer', 'avaient', 'vignerons', 'brassée', 'genévrier', 'porte', 'quasi', 'estaminet', 'mot', 'biberon', 'quart', 'bavière', 'arrivé', 'réchauffé', 'deux_sets', 'tampons', 'supplémentaires', 'fournitures', 'lancement', 'sirote', 'grand_poêlon', 'échalotes', 'transférer', 'cocotte_allant', 'haricots_blancs', 'tomates', 'pendant_2h', '300', 'retranscrire', '●', 'demi-citron', 'chili', 'réunit', 'me_plaisent', 'énormément', 'aneth', '350', 'pendant_30', 'conviens', 'fun', 'reçoit', 'souper', 'curieux', 'modifiée', 'bruxelles', 'familiale', 'grillés', 'pétoncles', 'truffe', 'ciboulette', 'minute', 'grillé', 'tasse', 'grande_casserole', 'feu_moyen-vif', 'tomates_concassées', 'paprika', 'bisque', 'homard', 'commence', 'demi', 'épais', 'émincée', '30_ans', 'impossible', 'manquer', 'robot_culinaire', 'ge', \"'\", 'utilise', 'mélangeur', 'arachide', 'propre', 'évidemment', 'miel', '¾', 'érable', 'maman', 'papa', 'raifort', 'canicule', 'revue', 'enfant', 'contribuera', 'germe', 'œufs1', 'ricotta', 'yogourt_grec', '15', '1/3_tasse', '-1_sachet', 'porc', '3-4', 'sauce_worcestershire', 'faire_bouillir', 'environ_25', 'plats', 'pilés', 'broil', 'pesé', 'clémentines', 'enlevant', 'filaments', 'laver', 'hacher_finement', 'pelure', 'brassant', '20', '35_minutes', '310', 'ml', '10_ml', 'sucre2', 'compote', 'badigeonner', 'surface', 'lanière', 'poivron', 'armoire', 'tissu', 'ennuie', 'éternité', 'aînée', 'papillons', \"t'_es\", 'gentille', 'fille', 'rose_fluo', 'vert_anis', 'bleu_turquoise', 'craqué', 'magasin', 'vois', 'noirs', 'résultat', 'blouse', 'portée', 'patron', 'venir', 'nombreuses', 'puisse', 'convenir', 'patisseries', 'ayant', 'général', 'gout', 'friable', '400_ml', 'préalablement', 'moral', 'héroïne', 'elisabeth', 'gilbert', 'prie', 'périple', 'spirituel', 'italie', 'inde', 'compte_bancaire', 'approprié', \"s'_adonner\", 'vendanges_tardives', 'poches', 'yeux', 'avaler', 'ça_sent', 'vécu', 'thérapeutique', 'faim', 'délices', 'crêpes', 'peux', 'recommander', 'traditionnelles', 'imperceptible', 'seule_différence', 'initiale', 'mettons', 'collent', 'augmentée', 'dixit', 'aléatoire', \"parcequ_'\", 'proportions', 'faisant', 'celle_ci', 'lien_vers', 'vous_conseille', 'balader', 'intolérant', '170g', '1cc', '(_facultatif', 'déroulement', 'grand_marnier', 'phil', 'devra', 'patienter', 'titre', 'son_palmarès', 'sucrez', 'savagnin', 'contenu', 'sachet', \"constamment_jusqu'\", 'pâte_lisse', '30_cl', '40cl', 'suivant', 'consistance_désirée', 'aromates', 'éventuels', 'nommé', 'idéales', 'apéritif', 'toasts_grillés', 'présentation', 'originale', 'absorber', 'détremper', 'mon_blog', 'juin_2013', 'exactement', 'absolument', '500gr', 'levure_boulangère', '70gr', 'préparez', 'indications', 'vos_mains', 'commencez', 'sorties', 'suffisamment', 'amples', 'hacker', 'rosa', 'haute', 'jupon', 'manche', 'manches', 'courtes', 'pareil', 'homme_ivre', 'emporté', 'eternel', 'énumérer', 'péchés', 'commis', 'flots', 'larmes', 'esclaves', 'capturés', 'tenus', 'armée', 'vainqueur', '.il', 'tels', 'obligés', 'combattre', 'peuples', 'mêmes', 'ils_faisaient', 'autrefois', 'déjeuners', 'répertoire', 'offre', 'retrouvez', 'parfait', 'chia', 'cajou', 'connaître', 'alex', 'leduc', 'niveau', 'santé', 'penser', 'lit', 'combo', 'amandes_effilées', 'protéiné', 'avocats', 'idées', 'vous_invite', 'variations', 'favorites', 'aucune_raison', 'priver', 'nutritive', 'moulés', 'couvercles', 'mason', 'vous_pourriez', 'énergie', 'barres', 'soutenant', 'on_ajoute', 'pouce', 'green', 'cadre', 'fernandez', 'wells', 'sandwichs', 'trouvée', 'pur', 'paru', 'chez_hachette', 'an_dernier', 'gamme', 'givrée', 'délice_!', 'styliste', 'tenu', 'chapeau', 'soleil', 'finit', 'tenue', 'ne_sais', 'voit', 'accents', 'accentuer', 'coté', 'rafraîchissant', 'fruits_frais', '3_càs', 'ramequins', '30mn', 'lequel', 'flashé', 'murale', 'plis', 'marqués', 'déplier', 'lavande', 'sèche', 'pourrie', 'année_dernière', 'craque', 'clafoutis', 'cerises', 'maître', 'tirée', 'craquer', 'vraie_mine', 'ajoute', 'mi-cuisson', 'conservant', 'mercotte', 'fours', 'électrique', 'saliver', 'lisant', 'décompression', 'oublier', 'rythme', 'mode', 'we', 'hyper', 'active', 'occupée', 'engloutir', 'canapé', 'plaid', 'regarder', 'film', 'mangeant', 'suis', 'pâtissière', 'je_deviens', 'exceptionnelle', 'mamans', 'excellents', 'bluffée', 'dîner', 'thon', 'céleri', 'assembler', 'capacité', 'unique', 'connaitre', 'savoir_quels', 'mariages', 'fonctionnent', 'commencé', \"parce_qu'\", 'sucrée', 'myrtille', 'équilibrée', 'acidité', 'évoque', 'souvenir', 'goûter', 'festival', 'dorade', 'aubergines', 'préalablement_huilé', 'gruyère', 'émincées', 'tasser', 'apprendre', 'machine', 'coudre', 'trainait', 'placard', '15_mn', 'crème_liquide', 'bretagne', 'loire-atlantique', 'breton', 'ratée', 'carottes_râpées', 'prenez', 'cardamome', 'pendant_10-15', 'écumer', 'bocaux', 'abord', 'pâte_brisée', '2_cuillérées', 'beurrer', 'tourteau', 'arrondi', 'rond', 'abaisser', '180°c_pendant', 'minutes_environ', 'soulève', 'dôme', 'brunisse', 'velouté', 'calamars', 'champignons_crus', 'suprêmes', 'miso', 'cédrat', 'ressemble', 'énorme', 'irrégulière', 'peau', 'épaisse', 'rugueuse', 'prononcé', 'ouvrage', 'mère', 'malades', 'aigre', 'orangeade', 'aiguisée', 'narbonne', 'suc', 'aromatisée', 'écorce', 'doigt', 'goute', 'puits', 'levure_chimique1', 'sel2', 'abondamment', 'parfumé', 'kirsch', 'fruits_exotiques', 'fruits_rouges', '.et', 'devant', 'flamande', 'dite', 'juliette', 'échos', 'grand-mère', 'française', 'recette_secrète', 'sa_grand-mère', 'participant', 'enverra', 'anecdote', 'mail', 'traditionnelle', 'françoise', 'bernard', 'quinze_minutes', 'délayez', 'ils_parviennent', 'statuts', 'corporation', '26_janvier', '167', 'agréer', 'lieux', 'communautaires', 'boisson', 'appréciée', 'profession', 'obtient', 'privilège', 'distiller', 'alcools', 'liqueurs', 'bureau', 'chaise', 'télé', 'posée_sur', 'meuble', 'dû', 'rangement', 'couvertures', 'appoint', 'vide', 'présent', 'voiture', 'attend', 'garée', 'peinte', 'temple', 'bâti', 'mémoire', 'ascendants', 'gérant', 'java', 'bleue', 'père', 'adorable', 'petite_fille', 'ans', 'clients', 'saluant', 'informe', 'contiennent', 'palmiers', 'touffes', 'hautes', 'appelés', 'sympa', 'marquer', 'invité', 'originalement', 'net', 'emballé', 'rocher', 'guise', 'critères', 'précis', 'miroir', 'lin', 'installe', 'récupérer', 'chorizo', 'concentré', 'safran', 'pignon', 'arrière', 'tracez', '20_cm', 'carton', 'triangle', 'hauteur', 'bébés', 'naissent', 'amis', '2015', 'mangé', 'regardé', 'films', 'profité', 'cousu', 'nina', 'ménage', 'désinfectant', 'ajoutez_-y', 'eau_tiède', 'huile_essentielle', '1/2_litre', 'vinaigre_blanc', '17', 'équipement', 'vaporisateur', 'entonnoir', 'ses_frères', 'mammouth', 'incorporé', 'on_obtient', 'ressemblant', 'sable_grossier', 'emietter', '40_mn', '(_th', 'trop_vite', 'accompagner', 'glace', 'réussi', 'montage', 'auteure', 'importe', 'avons_pris', 'papilles', 'nouvelle_grille', 'rois', 'grillade', 'hi_hi', 'aucune', 'stock', \"j'_allais\", 'espérant', 'plaise', 'marques', 'fabriquer', 'rêvez', 'scotch', 'fixez', 'cure-dent', 'travaillé', 'beaux', 'projets', 'pêle-mêle', 'hélène', 'berre', 'pochette', 'marie-thérèse', 'aubin', 'étiquette', 'rétro', 'corinne', 'lacroix', 'panière', 'marie-anne', 'recommande_vivement', 'technique', 'éloignée', 'croix', 'certaines', 'grilles', 'modèles', 'sans_oublier', 'perles', 'voyagé', 'je_voudrais', 'exposé', \"j'_espère\", 'sérieuses', 'voila', 'pénis', 'ne_dépasse', 'agrandir', 'recours', 'chirurgie', 'articles', 'brèves', 'effets_secondaires', 'agrandissement', 'ceci', 'éjaculation', 'bande', 'normalement', 'coincé', 'déprimé', 'passez', 'vous_voulez', 'y_aura', 'apéro', 'je_viens', 'décharger', 'grand_récipient', 'consistance_sableuse', 'tronçons', '1cm', 'issue', 'charmant', 'marabout', 'préconisait', 'drastiquement', 'réduit', 'quantité', 'oxfam', '3_cs', 'lait_concentré', 'huile_végétale', 'tapisser', 'biscuité', 'étaler_uniformément', 'bain-marie', 'micro-_onde', 'refroidi', 'loin', 'considération', 'végétarienne', 'agneau', 'remplacé', 'tofu', 'feuilletés', 'concombre', 'cs', 'bandes', 'plaque_recouverte', 'risotto', 'poireaux', 'sauteuse', 'wok', \"remuer_jusqu'\", 'absorption', 'totale', 'cependant', 'revendiquant', 'authentique', 'belle-mère', 'iranienne', 'savait', 'parlait', 'emincer', 'orge', 'potage', '1/2h', 'persil_haché', 'permettait', 'outre', 'cuisiner', 'légume', 'négliger', 'pas_hésiter', 'ont_tendance', 'attacher', 'planchette', 'matière', 'personnellement', 'ciel', 'orage', 'caisse', 'meunier', 'vous_puissiez', 'tous_genres', 'je_referais', 'publications', 'sal', 'bal', 'gagné', 'tombola', 'février', 'jolie', 'décor', 'macaron', 'pure_gourmandise', 'ajouté', 'poignée', 'zone', 'accueil', 'fourni', 'bouteilles', 'agapes', 'communes', 'naturelles', 'dimanche_matin', 'chine', 'trouvailles', 'joli_bocal', 'grosse', 'contenance', 'quelques_jours', 'petits_moules', 'ma_maman', 'accro', 'farine_tamisée', 'boulot', '150_ml', 'préférence', '50ml', 'égouter', 'dissolution_complète', 'bain_marie', '5-6', 'lèche', 'tenir', 'coin', 'séparer', 'au_préalable', 'enfin', 'monté', 'saupoudré', 'torchon', 'plan', 'jupe', 'simili', 'très_facile', 'adoré', 'pourront', 'uns', 'estivale', 'diy', 'tabouret', 'table_basse', 'présentoir', 'plantes', 'pensez', 'pigments', 'filles', 'quasiment', 'moulin', 'couture', 'mal', 'peindre', 'meubles', 'attente', 'garage', '1€', 'soft', 'parti', 'menu', 'cakes', 'tomates_cerises', 'mozza', 'emmental', 'promis', 'aurélie', 'caro', 'étaient', 'aux_myrtilles', 'fabuleux', 'profite', 'remercier', 'marion', 'you', 'do_it', 'matériel', 'mener', 'événement', 'étiquettes', 'blogueuses', 'afficher', 'prénoms', 'blogs', 't-shirt', 'pochettes', 'tissus', 'décorées', 'ardoises', 'pailles', 'formes_géométriques', 'décoratives', 'siroter', 'lu', 'breizh', 'rennes', 'lily', 'little', 'factory', 'animé', 'atelier', 'créatif', 'personnalisation', 'tablettes', 'effigie', 'tablette', 'obtienne', 'jolie_couleur', 'sucres', 'oeuf_entier', 'préalablement_battu', 'omelette', 'gaufrier', 'dorée', 'précise', 'vierge', 'indication', 'vous_pourrez', 'fins', 'bobines', 'canettes', 'maintenant', 'hormis', 'j_utilise', 'hydrosoluble', 'courage', 'plusieurs_semaines', 'brodeuses', 'j_ai', 'v3', 'vr', 'bon_courage', 'époque', 'plaines', 'couvertes', 'cultures', 'partaient', 'caisses', 'entières', 'capitale', 'fines_lamelles', 'beurre_demi-sel', 'croquant', 'mes_mains', 'semble', 'désir', 'profane', 'voie', 'accès', 'écriture', 'accomplissement', 'vocation', 'poète', 'pourrait_-on', 'salut', 'spécifique', 'existence', 'littéraire', 'posthume', 'estime', 'avancer', 'sentir', 'soi', 'parler', 'paroles', 'importantes', 'gens', 'facilement_aux', '500g', 'farine_complète', '110', '25g', 'boulanger_sèche', 'pizza', 'deux_cuillères', 'délayer', 'intégrer', 'venu', 'gourmandises', 'chocolat_chaud', 'américaine', 'tout_simplement', 'pied', 'mandala', 'activités', 'coloriages', 'publier', 'sites', 'facebook', 'talons', 'extrémité', 'coudes', 'frictionner', 'fréquemment', 'brodé', 'coussin', 'rubans', 'boutons', 'nacre', 'broder', 'angela', 'robe', 'attiré', 'regards', 'émerveillés', 'magnifique_robe', 'vue', 'expo', 'journal', 'découverte', 'extraordinaire', 'lomo', '.en', 'charcuterie', 'espagnole', 'filet_mignon', '.sa', 'carrément', 'enchanté', \".d_'\", 'ai_utilisé', 'extra', 'jarret', 'fumé', 'dedans', 'bouquet_garni', 'piqués', 'clous', '.mettez', 'feu_vif', 'saucisses', 'piquées', '.laissez', 'mieux', 'hier', 'mois', 'concours', 'montagne', 'italienne', '.elle', \".c_'\", 'fruité', '.donc', 'italien', 'recommencez', 'se_mélangent', 'sur_instagram', 'éditeur', 'celui_ci', 'retoucher', 'corriger', 'effets', 'montages', 'collages', 'dessiné', \"m'_inspirant\", 'écossais', 'sources', 'espagne', 'glacé', 'servi', 'complété', 'perrier', 'maintenir', 'bungalow', 'climatisé', 'évite', 'salades', 'sandwiches', 'crudités', 'favoris', 'potages', 'froids', 'tirer', 'nez', 'scrap', 'album', 'turquoise', 'argent', 'hommes', 'pères', 'quelques_semaines', 'qualité', 'miséricorde', 'soigne', 'blessures', 'affligés', 'réconforte', 'faibles', 'compassion', 'orphelins', 'protège', 'droits', 'empêche', 'possède', 'protégés', '[', 'loi', 'islamique', ']', 'parmi', 'musulmans', 'destruction', 'exhorte', 'bonnes_œuvres', \"s'_abstenir\", 'commettre', 'choses_interdites', 'conditions', 'mayotte', 'séparé', 'physiquement', 'son_mari', 'voile', 'dit_-elle', 'clientes', 'recevaient', 'petits_cadeaux', 'clôturer', 'matinée', 'présents', 'église', 'amuse', 'bouches', 'chouquettes', 'arrosées', 'habituellement', 'fondant', 'rend', 'contrebalancer', 'lourd', 'quelque_chose', 'ouvrez', 'laissez_reposer', 'pâte_homogène', 'galette', 'pendant_30-35', 'surveillant', 'choisi', 'pique', 'écru', 'pelotes', 'auxquelles', 'sont_venues', 'touches', 'montrer', 'sans_doute', 'mister', 'p.', 'angleterre', 'vrac', 'vacances', 'popelini', 'travaux', 'avancent', 'parquet', 'plafond', 'posé', 'perspective', 'salon', 'bientôt', 'balade', 'gourmande', 'paris', 'epicerie', 'hema', 'marks_&', 'spencer', 'tea_time', 'scones', 'clotted_cream', 'and', 'jam', 'lecture', 'appris', 'tas', 'vigne', 'biodynamie', 'bd', 'fan', 'davodeau', 'trait', 'été_séduite', 'jardin', 'suite_→', 'tisser', 'cm_x', '77', 'garde', 'largeur', 'hanche', 'calculé', '1_cm', '4_cm', 'ourlet', 'élastique', 'message', 'remonte', 'juillet', 'envoyé', 'demandé', 'tombe', 'pile_poil', 'envies', 'légères', 'argument', 'convaincant', '1-', 'gardez', 'éteignez', 'hotte', 'évider', 'poires_cuites', 'dérange', 'épluchures', 'peler', 'vif', 'peaux', 'éplucher', 'émincer', 'piquer', 'poires', 'lame', 'vérifier', 'entrer', 'reposer', 'consistance_sirupeuse', 'citron_confit', 'basilic_frais', 'nice', 'sauce_soja', 'creux', 'contenir', 'rouler', 'huitres', 'égouttées', 'blondes', 'écumoire', 'araignée', 'ranger', 'friture', 'sauce_tartare', '1-_préchauffer', 'courge', 'brûler', 'échalote_hachée', 'évaporée', 'lard', 'émincé', 'faire_sauter', 'coloration', 'coupelle', 'maggi', 'bœuf', 'coulis', 'laisser_réduire', 'petits_bouillons', 'épaissi', 'faitout', 'ouvrir', 'fraichement', 'commencer', 'pie', 'aiment_beaucoup', 'insister_sur', 'division', 'pays', 'ethnies', 'principales', 'moyenne', 'guinée', 'groupe', 'région', 'côtière', 'basse', 'groupes', 'diversifiés', 'forestière', 'jeunesse', 'tom', 'lui_apprend', 'guitare', 'tartare', 'saumon_fumé', 'doublé', 'museau', 'cacher', 'broderie', 'coutures', 'pièces', 'quitte', 'bracelets', 'miss', 'garance', 'aimanté', 'préférée', 'gourmandise', 'petit_truc', 'surprend', 'sais', 'considère', 'épingles', 'sens', 'perpendiculaires', 'aiguille', 'casse', 'embêté', 'petite_boule', 'brossez', 'eau_froide', 'râpez', '-en', 'recueillir', 'incorporez_ensuite', 'lunchs', 'varier', 'canneberges_séchées', 'apporté_quelques', 'modifications', 'raisins_secs', 'seront', 'secs', 'environ_20-25', 'trop_sucrés', 'décorés', 'saupoudrés', '¼_tasse', '350f', 'extrait', 'citrouille', 'baisser', '300f', 'quelques_modifications', 'simplification', 'ont_été', 'faits', 'jeudi_soir', 'windows', 'color', 'dora', 'mickey', 'emballage', '5ème', 'modifié', 'déplaçant', 'ciseaux', 'prévus', 'ai_mis', 'réunir', 'mi-novembre', 'nathan', 'cherche', 'attaquée', 'démon', 'cuillères', 'van', 'pichets', 'terre_cuite', 'retourné', 'abandonnés', 'ils_devaient', 'complètent', 'composition', 'far', 'pruneaux', 'kouign_aman', 'bref', 'paradis', 'cafés', 'boissons_chaudes', 'sélectionnés', 'pâtisseries', 'viennoiseries', 'confectionnées', 'croque-monsieur', 'veggie', 'création', 'boissons', 'sont_proposées', 'vertus', 'différentes', 'énergisante', 'hydratante', 'chacun', 'adaptée', 'différents_modes', 'muesli', 'apporter', '210°', 'thermostat', '76', 'parsemez', 'verdures', \"m'_arrive\", 'jeunes_pousses', 'orties', 'rosé', 'chausse', 'réveille', 'lait_tiède', 'émiette', 'boulanger', '400_g', 'rajoute', 'cache', 'petit_trou', 'on_verse', 'remet', 'bonnes', 'vitesse_moyenne', 'aura', 'préchauffé', 'on_enfourne', '175°', 'chef_damien', 'préchauffage', '5_cl', 'tournesol', 'lys', 'buzet', 'souhaite', 'profitez', 'terroir', 'regardez', 'design', 'sobre', 'élégant', 'goûterez', 'jamie_oliver', 'voulu_tester', 'occasion', 'ami', 'peu_modifié', 'rose', 'fantaisie', '35_g', '300_g', 'prend', 'fond_amovible', 'vergeoise', 'travaille', 'on_incorpore', 'prépare', 'autre_récipient', 'tamise', 'th_6', 'pauvre', 'envi', 'citron_pressé', 'thermostat_5', 'amalgamez', 'respectant', 'ordre', '250_g', '15_cl', 'versant', '25_cl', 'muscat', 'baumes', 'venise', 'accompagne', 'merveille', 'y_compris', 'confection', 'emprunté', 'modifiant', 'trouverez', '600', 'recettes_traditionnelles', 'faciles', 'aux_éditions', 'michel', 'cuillerées', 'tamisée', '4_cuillerées', 'th7', 'pendant_25', 'sucre_semoule', 'etalez', 'remettez', 'servez', 'accompagné', 'crème_anglaise', 'fraise', '2004', 'émission', 'intituler', 'bon_appétit', 'bien_sûr', 'georges', 'cette_merveilleuse', '50_g', '170°c', 'bien_lisse', 'pommes_caramélisées', 'vider', 'pépins', 'séchés', 'constitué', 'original', 'conservation', 'longue', 'certains', 'conseillent', 'javel', 'ils_vont', 'généreusement', 'noyer', 'quelques_mètres', 'habitat', 'provient', 'keys', 'sud', 'floride', 'cultivé', 'récipient', 'citrons_verts', 'vanillés', 'garnis', 'lemon_curd', 'cassis', 'écossaise', 'trop_molle', 'refroidis', 'superposer', 'partie_supérieure', 'ramollir', 'finement_râpé', 'casser', 'glacer', 'festive', 'barbe', 'petits_oursons', 'guimauves', 'proviennent', 'épicerie_fine', 'oeufs_entiers', 'sucrer', 'petits_ramequins', 'cuillerée', 'lait_entier', 'colorant', 'couleur_désirée', 'garniture', 'canada', 'aumônières', 'creuser', 'crêpe', 'oranges', 'ramollissent', 'éloges', 'effectivement', 'rosés', '150_°c', 'fouillant', 'muffin', 'tombée_sur', 'isa', 'décidée', '400_f', 'inséré', 'ressorte', 'crustacé', 'tombé', 'péché', 'basée', 'magnifique', \"s'_évapore\", 'louche', 'remuer_délicatement', 'mn', 'couvrant', 'saint-jacques', 'colorent', 'patio', 'jouent', 'dehors', 'printemps', 'au_pif', 'tel', 'donné', 'portugais', '325_f', '160', 'veau', 'graduellement', 'arrosant_souvent', 'joues', 'pilons', 'panure', 'avons_eu', 'amplement', 'frire', '180', 'paner', 'levé', '1h', 'jeté', 'monsieur', 'préalablement_chauffé', 'soins', 'contenant', 'humide', 'vous_sentirez', 'confortable', 'tirez', 'respire', 'convivialité', \"s'_installe\", 'concocté', 'devrait', 'e', 'approprier', 'transat', 'évolutif', 'siège', 'âge', 'verrines', 'biscuits_graham', 'graham', 'exquise', 'brioches', 'noter', 'caractères', 'farine1_sachet', 'socle', 'levure_instantanée', 'chauffer_doucement', 'poursuivre', 'crochet_pétrisseur', \"pétrir_jusqu'\", 'pâte_souple', 'colle', 'toucher', 'légèrement_huilé', 'endroit', 'lumière_allumée', 'volume', 'environ_1h30', '400°f', 'poêle_antiadhésive', 'environ_15', 'soient_tendres', 'pin', 'grillées', '7-8', 'soient_dorés', '500_ml', 'saindoux', 'essence', 'croustillante', 'écraser', 'moelleuse', 'arrosé', 'tab', 'petite_touche', 'spray', 'embellissements', 'dodo', 'hein', 'prolongeant', 'tajine', 'polenta', 'courgettes_cuites', 'cumin', '2_pincées', 'coriandre_fraiche', 'laisse_refroidir', 'découpe', 'ils_pourront', 'étude', 'recherche_scientifique', 'se_compose', 'réduits', 'gélifiée', '400g', 'paquets', 'bâtonnets', 'enfonçant', 'tofu_soyeux', 'agar_agar', 'colorants', 'bleu', 'coco_râpée', 'caché', 'ptit', 'lapin', '350g', 'côtés', 'potimarron', 'riz_complet', '70g', 'perso', 'trop_sucré', 'xylitol', 'poudre_levante', 'il_faudra', 'reconstruire', 'extérieur', 'reconstruit', 'consignes', 'plusieurs_couches', 'praliné', 'fort_longtemps', 'hey', 'christine', 'nico', 'chocolat_concassé', 'tupp', 'margarine_fondue', 'refroidie', 'faire_torréfier', 'faire_ressortir', 'arômes', 'hacher_grossièrement', '10-15_min', 'purées', 'laisser_tièdir', 'crêpes_dentelles', 'réduites', 'praliné_feuilleté', 'refermer', 'rectangle', 'biscuit_joconde', 'livrer', 'mon_ptit', 'neveu', 'appliqué', 'z', 'passons', '4-5', 'càs', 'cupcakes', '100ml', 'desserts_préférés', 'gluten', 'alice', 'laure', 'pommier', '30-40', 'grill', 'joue', 'rôle_important', 'finale', 'vapeur', '45g', '1_càc', 'boulanger_déshydratée', 'cléa', 'allée', 'me_balader', 'résistant', 'maladies', 'fleurs', 'rouges', 'savant_mélange', 'rouille', 'mai', 'gelées', 'suspendre', 'rétroviseur', 'viande_coupée', 'mijoter_pendant', '3_heures', 'remuant', 'bière', 'pénètre', 'couper_grossièrement', 'brûlant', 'croûtons', 'oignon_finement', 'filet', 'tomates_pelées', 'alternativement', 'chevauchant', 'surle', 'branche', 'terre_vapeur', 'epluchez', 'asperges', 'conservez', 'têtes', 'eau_salée', 'chèvre_frais', 'commençant_par', 'déposant', 'pointes', 'th.7', 'disques', 'noires', 'doivent_rester', 'foie_gras', 'tartes', 'enduire', 'carotte', 'gros_morceaux', 'mouillez', 'mi_hauteur', '6_heures', 'ratatouille', 'ciselé', 'surmonter', '120gr', '10gr', '20gr', 'beurre1', 'brins', 'tuiles', 'petits_tas', '5cm', 'diametre', '2cm', '-les_refroidir', 'puis_décollez', '-les', 'moulez', 'cassez', '10mn', 'épaissir', 'oeufs_brouillés', '4_personnes', '40_cl', 'lait4', 'fumet', 'olivesel', '160°', 'placez_-y', 'rempli', 'mi-hauteur', 'capable', 'faites_bouillir', 'pinceau', 'badigeonnez', '25mn', 'remettez_-les', 'chauffé', 'faites_chauffer', 'escalopes', 'faites_-les', 'poêler', '1mn', 'baies_roses', 'brin', 'prévoyez', 'brisures', 'vous_ajouterez', 'juste_avant', 'céléri', 'beurre2', 'magret', 'pelez', 'émincez', 'faites_revenir', '2mn', 'toutes_parts', 'déglacez', 'mange-tout', 'egouttez', '4l', 'incisez', 'faites_-le', 'poursuivez', '-le', 'papier_alu', 'filtrez', 'détachez', 'pâtes_al', 'dente', 'louches', '4_pers', '150_gr', 'oeufs1', 'taillez', 'faites_-y', 'effeuillez', 'al_dente', 'vivement', 'q', 'faites_-la', '3mn', 'grand_saladier', 'courgette_râpée', 'salée', 'instructions', 'fabricant', 'égouttez_-les', 'coquillages', 'petite_cuillère', 'dressez', 'gratin', 'faites_gratiner', 'creme', 'roquette', 'décorez', 'hautement', 'addictive', 'soufflée', 'quelques_années', 'ma_copine', 'brillant', 'zou', 'quinzaine', 'on_remue', 'surveille', 'sort', 'tente', 'boulotter', 'petit-déjeuner', 'combien', 'profitons_-en', 'fraîche', 'légère', 'égouttez', 'tombant', 'hésité', '1,3', 'poudre1', 'arôme_naturel', 'arrosez_-les', 'arôme_vanille', 'grand_faitout', 'agar-agar', 'fermez_-les', 'mars', 'incorporez_-le', 'mélange_précédent', '180°c.dans', 'cul', 'poule', 'laissez_tiédir', 'jolies_assiettes', 'profiterole', 'appelle', 'fameuse', 'chérie', 'citron_meringué', 'hier_midi', 'opté_pour', 'light', 'ca_sent', 'faites_mariner', 'aiguillettes', 'anti-_adhésive', 'faites_dorer', 'entremets', 'alliant', 'tamisées', 'pâtisserie', '28', 'lait_bouillant', 'montez', 'puis_incorporez', '-la_délicatement', 'blancs_montés', 'mettez_-y', '120_g', 'portez', 'versez_-la', 'raviolis', 'zapetti', 'lance', 'réservé_aux', 'bloggeurs', 'eu_envie', 'dimension', 'rincez_-les', 'égouttés', 'ramequins_allant', 'nappez', 'provence', 'chaque_ramequin', 'liquider', 'dénichée', 'urgence', 'charles', 'compotes', 'sucre_ajouté', 'abricot', 'pas_hésité', 'thermomix', '65_g', 'solutions', 'nappage', 'assez_tôt', 'souhaité', 'œuvres', \"puisqu'\", \"s'_inscrivent\", 'pleine_conscience', 'chère', 'important', 'sourires', 'récréation', 'lèvres', 'village', 'nord', 'yvan', 'adolescent', 'souffrant', 'indifférence', 'plaisirs', 'singuliers', 'statues', 'collectionner', 'camembert', 'erre', 'suspect', 'voisin', 'assassiné', 'dada', 'achète', 'français', 'suivit', 'courts', 'cherchent', 'cépages', 'grands_crus', 'résumer', 'règne_animal', 'disant', 'roman', 'révèle', 'exposant', 'forcés', 'vivre', 'eux', 'nourrir', 'enrichir', 'au_fur', 'mesure', 'transformés', 'carres', 'pam', 'gloire', 'beauté', 'intéresse', 'classe', 'recevez', 'ai_préparé', 'restons', 'oiseaux', 'admirons', 'sandra', 'collègue', 'depuis_longtemps', 'fasse', 'trousse', 'toilette', 'découpez', 'rectangles', 'o', 'triangles', 'attache', 'parisienne', 'prima', 'chausson', 'models', 'ont_commencé', 'jadis', 'sibérie', 'tradition', 'occidentale', '56', 'arcanes', 'mineurs', 'touchés_par', 'cartes', 'consécration', 'assure', 'tarot', 'séparés', 'chandelle', 'sauge', 'encens', 'pierres', 'suffisante', 'écoles', 'enseignée', 'pèlerins', 'permission', 'personnel', 'avoir_accès', 'enseignements', 'outil', 'divination', 'majorité', 'préfère', 'chichi', 'prétendre', 'hermétiques', \"quoiqu'_il\", \"tels_qu'\", 'ils_furent', 'conservés', 'initiés', 'lignée', 'dos', 'pfff', 'brique', 'édifice', 'information', 'chercheurs', 'soigner', 'allez_-vous', 'cobaye', 'bras', 'pan', 'aventure', 'paysage', 'tableaux', 'ceci_près', 'ajoutait', 'oignons_confits', 'censés', 'douceur', 'types', 'mi-chemin_entre', 'strudel', 'ancienne', 'vous_découvrirez', 'vaut_vraiment', 'détour', 'zesté', 'blanchissez', 'fouet_électrique', 'terminant_par', 'cuite', 'bonjour', 'dites', '45', 'contente', 'grands_parents', 'natifs', 'bonheur', 'retrouver', 'esprit_quand', 'italienne_?', 'animatrice', 'connue', 'utilisant', 'citrouilles', 'petite_collation', \"n'_oubliez\", '180c', 'septembre_2012', 'remonter', 'panne', 'inspiration', 'sole', 'graissée', '375_f', '190', 'récupération', 'bite', 'raide', 'mec', 'minou', 'derriere', 'finit_par', 'sauvagement', 'cracher', 'superbe', 'faciale', 'filtre', 'obtenu', 'petits_biscuits', 'concoctés', 'maîtresse', 'staff', 'passion', 'cébette', 'soupes', '1_cuillère', 'menthe_ciselée', '1,5', 'gardant', 'mâche', 'complet_refroidissement', 'poudrer', '150°c', '6/7', 'mie', 'ramollie', 'fraîches', 'quelques_unes', 'vinaigre_balsamique', 'essorée', 'menthe_hachée', 'sicilien', 'équilibré', 'concentrées', 'cuvée', 'tenuta', 'tannin', 'patiné', 'très_harmonieux', 'aubergine', 'barolo', 'alcooleux', 'grande_finesse', 'rafraichissant', 'subtile', 'rehaussée', 'oranger', 'sublime', 'intensité', 'profondeur', 'au_delà', 'proposé', 'ouvre', 'possibilités', 'volant', 'passepoil', 'lingerie', 'dentelle', 'modifier', 'joliment', 'écrite', 'petite_trousse', 'trésors', 'broche', 'mini', 'trop_mimi', 'nounours', 'croquer', \"j'_attends\", 'p', 'chaux', 'chêne', 'destinée', 'décoration', 'épreuve', 'créative', 'raconter', 'cake_design', '125', '2_càs', 'mélanger_énergiquement', 'étendue', 'polices', 'excès', 'coques', 'vides', 'boire', 'gros_morceau', 'terre_cuites', 'largement', '2nd', 'tournedos', 'accompagnés', 'semoule', 'jolis', 'dorés', 'sucs', 'tartelettes', 'crabe', 'émiettées', 'champignons_noirs', 'vermicelles', 'pousses', 'larges_feuilles', 'menthe_fraiche', 'nuoc_mam', '80gr', 'battu', 'trouvera', 'sites_marchands', 'spécialisés', 'miens', 'œufs_restants', 'dépasse', '110°c', 'importance', 'refroidissement', 'complet', \"j'_insiste\", 'utilisation', 'spatule_souple', '1/3', 'on_appelle', '145°c', 'accroche', 'soif', 'attaque_franche', 'je_pourrais', 'arrêter', 'enjoindre', 'chez_moi', 'quelques_réflexions', 'livres', 'modifiez', 'textes', 'bannière', 'conversation', 'bande_dessinée', 'potager', 'passerelle', 'formule', 'cupuaçu', 'brésil', 'collagène', 'hydratation', 'confort', 'vos_lèvres', 'étui', 'mouchoirs', 'feutrine', 'cinnamon', 'patch', 'surprise', 'coussinet', 'aprés', 'free', 'malin', 'maline', 'pochon', \"j'_affectionne\", 'émotions', 'maternité', 'bonite', 'gravlax', 'condiment', 'rouget', 'escabèche', 'basilic', 'coriandre_fraîche', 'tourte', 'pigeon', 'corsé', 'truffe_noire', 'tuto', 'çà', 'entres', 'cette_période', 'noël', 'edition', ')_.la', 'ouverte', 'côte', 'mène', 'parking', 'bâtiment', 'clémentine', 'accompagnée', 'micro_onde', '30_min', 'four_éteint', 'nougat', 'crustacés', 'barquettes', 'prochaine', 'rencontre', 'aura_lieu', 'octobre', 'novembre', 'continué', 'projection', 'exploitation', 'amicale', 'confectionnés', 'terminé', 'châtaignes', 'tuyau', 'arrosage', 'débit', 'faible', 'plantations', 'pompe', 'courant', 'chambre', 'repeinte', 'appelez', '-moi', 'coussins', 'imagine', 'aisément', 'instrument', 'mobilisation', 'arme', 'guerre_froide', 'brusquement', 'relations_entre', 'continentale', 'japon', 'connaissent', 'regain', 'tension', 'résolument', 'dispositif', 'narratif', 'dispose', 'faculté', 'multiplier', 'changeant', 'position', 'caméra', 'introduisant', 'historique', 'exergue', 'survient', 'espace', 'champ', 'public', 'condition', 'pluralité', 'établie', 'domaine', 'récits', 'propos', 'objet', 'passé', 'scène', 'récit', 'contredit', 'précédent', 'corrige', 'complique', 'définition', 'démocratie', 'chiennes', 'auront', 'asséché', 'grottes', 'mines', 'griottes', 'cavernes', 'cuves', 'vignes', 'poussé', 'vent', 'divin', 'magique', 'déçoit', 'recèle', 'surprises', 'ressources', 'courir', 'pâtissiers', 'finir', 'accorder', '3_parfums', 'mettrais', 'crèmes', 'tiennent', 'gardent', 'davantage', 'tartelette', 'pignons', 'trentaine', '145', '190_g', 'masse', 'crue', 'ci-dessus', '200_gr', 'farine_t65', 'grossier', '190°c', 'mixée', 'y_ait', 'golden_syrup', '35/40', 'lab', 'gagnera', 'ice', 'labrador', 'réserve', 'produits_laitiers', 'survivre', 'mixe', 'fondre_doucement', 'quelques_louches', 'nécessaire', 'transformer', 'déroutant', 'équilibre', '230°c', '7-8_)', 'tôle', '-toi', 'frémir', 'levain', 'bakery', 'magnolia', 'consorts', 'battle', 'in', 'douzaine', 'ah_oui', 'rigole', 'ingredients', '1.5', '300g', 'grossierement', 'concassé', 'tu_vas', 'galérer', 'petis', 'préchauffe_ton', 'gateaux', 'tres', 'décolle', 'friables', 'ex_:', 'toi_aussi', 'janvier', 'annuelle', 'frangipane', 'pic', 'sale', 'tu_trouveras', 'toile', 'feront', 'meme', 'demi_verre', 'préchauffe', 'ps_:', 'trempés', 'tuerie', 'tue', 'petit_déj', 'tu_pourras', 'plaider', 'euh', 'céréales', 'affaire', 'lisse', 'marche', 'nickel', 'chunks', 'concassée', 'punition', 'délicat', 'substituer', 'vahiné', 'noisettes_concassées', 'extrême', 'urgent', 'virée', 'bats', 'fassent', 'bossé', 'prends', 'équivalent', '-lui', 'présentable', 'rapidos', 'a_priori', 'bougent', 'poil', 'seul', 'facilité', 'risque', 'péter', 'plombs', '500_grammes', '175', 'poulet_rôti', 'direct', 'jurer', 'boulettes', 'parfumées', 'keftas', 'b', 'tu_commences', 'tahin', 'hop', '200ml', 'creme_liquide', 'cuillere_a', 'cafe', '250g', 'poignee', 'fruits_secs', 'qui_trainent', 'pepites', 'degres', 'melange', 'ecrase', 'grave', 'petits_bouts', 'agave', 'pépite', 'cacahuète', 'pleine_saison', 'agrumes', 'droit', 'assemblage', 'réelle', 'paresseux', 'simplifiée', 'garnies', 'marinés', 'tendre', 'on_dirait', 'pâle', 'acidulé', 'véritable', 'brodée', 'st_valentin', 'plaît', 'imaginaires', 'gigoteuse', 'renards', 'chevrons', 'signés', 'mickaël', 'miller', 'henri', 'henriette', 'biais', 'liens', 'modif', 'encolure', 'devants', 'maintien', 'repensant', 'proposée', 'associant', 'melon', 'buvait', 'désagréable', 'voyageur', 'joies', 'semblent', 'dispensées', 'responsabilités', 'réflexion', 'comportent', 'sottise', 'têtue', 'aveuglement', 'égoïste', 'délibéré', 'serait', 'anodines', 'économique', 'voulait', 'vivantes', 'resterait', 'dort', 'rebelote', 'illustré', 'terrain', 'vivants', 'jours', 'lustres', 'coups', 'suites', 'femme', 'trapèze', 'plateaux', 'phrases', 'voix', 'revient', 'effet', 'cnp', 'monitoring', 'traque', 'quotidiennement', 'titres', 'trompeurs', 'manipulateurs', 'violations', 'présomption', 'innocence', 'injures', 'écrits', 'manipulations', 'informations', 'malveillants', 'usurpation', 'registre', 'journaux', 'rendez_vous', 'interpellations', 'sanctions', 'termes', 'ce_jour-là', 'engrangé', 'dix', 'transité', 'préau', 'fcfa', 'sept', 'enlevés', 'répartition', 'syndicats', 'convenu', 'collecte', 'sommes', 'rue', 'minuit', 'municipalité', 'reconnu', 'dieu', 'durera', 'agit', 'éprouve', 'crainte', '“', 'salaire', 'trois_mois', 'bénéficier', 'avantageux', 'multiples', 'raisons', 'bambous', 'tipi', 'soutiennent', 'sont_venus', 'tuteurs', 'plants', 'farine2', 'l', 'verres', 'blanchi', 'suivie', 'approche', 'chez_starbucks', 'souci', 'dessiner', 'entraîne', 'hé_hé', 'quant', 'connaît', 'oeufs-sucre', 'hâché', 'parsemé', 'plusieurs_heures', 'solides', 'petit_pot', 'ultra_rapide', 'crayons', 'crochets', 'pinceaux', 'maquillage', 'coton', 'anses', 'peu_partout', 'home_made', 'melanger', 'rendue_compte', 'pouvaient', 'etre', 'us', 'fecule', 'garantie', 'sans_ogm', 'digne', 'apres', 'mr', 'juger', 'visiter', 'turcs', 'frontière', 'tape', 'putain', \"j'_aie\", 'bébé', 'dan', 'ventre', 'dame', 'masser', 'merde', 'buffet', 'rattrapé', 'veste', 'cliente', 'manquant', 'gueule', 'mains', 'présente', 'marie-france', 'adaptation', 'coquelicot', 'jacqueline', 'remets', 'allé', 'hab', '4_cuillères', 'mélange_devienne', 'levure_incorporée', '160°c_pendant', 'rattraper', 'longs_mois', 'silence', 'fameux', 'new-york', 'franchement', 'tuerie_!', 'petites_merveilles', '110g', '90g', 'travaillez', '220g', 'jusquà', '12,5_cl', 'vitesse_lente', '375g', 'délicieuses_madeleines', 'réalisées', '92_%', 'écoeurant', \"j'_ajouterai\", 'cette_fois-ci', 'emmène', 'jolies', 'nid', 'lesquelles', 'glisser', 'œuf_dur', 'effet_garanti', 'devraient', 'ils_devraient', 'attendu', 'papillote', 'gambas', 'crevettes_marinées', 'frottée', 'chanté', 'tue-tête', 'veillées', 'folie', '10h', 'guacamole', 'typiquement', 'parle', 'produit', 'spiritualité', 'profonde', 'engagement', 'regard', '000_litres', 'nécessaires', 'produire', '16', 'totalité', 'prolonger', ')_.laisser', 'oeuf_battu', 'assaisonné', 'diverses', 'pain_rassis', 'gril', 'remplir', 'découvrent', 'six', 'sortes', 'couleurs_chatoyantes', 'donnent', 'piocher', 'battement', 'cils', 'boite', 'terminée', 'enveloppant', 'passant_par', 'promet', 'extase', 'première_bouchée', 'minimum', 'effort', 'pari', 'opter_pour', 'douce', 'heurter', 'noisette_grillée', '160_degrés', 'carreaux', 'mi_cuisson', 'dégustation', 'sucre_raffiné', 'food', 'box', 'top_chef', 'jules_verne', 'candidat', 'remarqué', '2012', 'épater_vos', 'noel', 'choisissant', 'affiné', 'retient', 'proche', 'cinq', 'sapins', 'coniques', 'ultra', 'mat', 'brossé', 'argentée', 'sommet', 'majestueux', 'planté', 'apparition', 'mouvement', 'rênes', 'finement_ciselés', 'reliés', 'cordelette', 'délicate', 'père_noel', 'traditionnel', 'bonnet', 'pompon', 'fine_couche', 'vos_papilles', 'habilement', 'très_agréable', 'textures', \"vient_s'\", 'opposer', 'légère_amertume', 'caramélisée', 'puissance_aromatique', 'épice', 'bouillon_cube', 'branches', 'mixez', '*au', 'contenants', 'velours', 'doublure', 'coupons', 'marché', 'st_pierre', 'placards', 'diable', 'meilleures', 'places', 'sol', 'argileux', 'enrichi', 'sable', 'avait_été', 'entreposé', 'anciens_propriétaires', 'ombre', 'mur', 'faire_valoir', 'petit_détail', 'ciment', 'me_rappelle', 'réside', 'acier', 'varie', 'bleu_marine', 'ventilateurs', 'air_ambiant', 'joué', 'petites_mains', 'range', 'crochet', 'sur_pinterest', 'régalade', 'valeur_sûre', 'sûre', 'evidemment', 'testé', 'epices', 'contemporain', 'tajines', 'ai_suivi', 'galère', 'je_comprends', 'charger', 'affiche', 'super_facile', 'quatre_quart', 'broyé', 'mixeur', 'liant', 'philadelphia', 'chocolat_milka', 'petites_boulettes', 'froides', 'dures', 'baton', 'sucette', 'boulette', 'plonge', 'support', 'stable', 'sécher', 'assez_rapidement', 'détails', 'vous_retrouverez', 'premier_post', 'repris', 'bocal', 'cerise', 'ôtez', 'pendant_10', 'sans_cessez', '210°c', '180gr', '1/2_cuillère', 'paume', 'mini_pizza', '100gr', \"j'_aurais\", 'remplissez', 'caissettes', 'déforment', 'gonflant', '2/3', '120ml', 'refroidir_complètement', 'cupcake', 'mélangez_délicatement', '280g', '190g', 'raclez', 'bords', 'battant', '30_secondes', 'air_libre', '225g', '450g', 'cream_cheese', 'vigoureusement', 'hyper_simple', 'décliner', 'infini', 'vos_envies', 'restes', '1_pincée', '25cl', '6cl', 'mettrez', 'racines', 'associé', 'imprimés', 'beige', 'sont_fabriqués', 'feutre', 'mm', 'fabriquées', 'cloches', 'apporté', 'mes_loulous', 'social', 'appuyer_sur', 'play', 'différentes_parties', 'visiteurs', 'culinaire', 'milliers', 'chercher', 'cuisinières', 'américaines', 'contrainte', 'raffiné', 'lisser', 'sceptique', 'voyant', 'cet_article', 'vidéo', 'furieuse_envie', 'me_lancer', 'virale', 'conviction', 'deux_cuillérées', 'battage', 'augmenté', 'fouets', 'miracle', 'béton', 'question', 'pois_chiche', 'sent', 'haricots_rouges', 'flageolets', 'indiqué', 'recherches', 'explique_comment', 'agrume', 'incrusté', 'aromatique', 'réalité', 'citrus', 'marrakech', 'désigne', 'citrus_limon', 'acide', 'limette', 'comprend', 'palestine', 'tunisie', 'généralement', 'acides', 'ceux', 'introduit', 'appellation', 'bergamote', 'fournisseur', 'magasins_bio', 'équipe', 'découvrit', 'décida', 'commercialiser', 'pari_réussi', 'prospère', 'étals', 'épiceries', \"j'_admets\", 'pensant', \"s'_agissait\", 'arôme', 'particulier', 'couleur_jaune', 'poire', 'amer', 'huiles_essentielles', 'thé_earl', 'grey', 'nancy', \"m'_amuser\", 'standard', 'lui_demandant', 'puristes', 'consomme', 'amertume', 'réalisés', 'poules', 'type_65', 'fondante', 'change', 'goût_inimitable', 'expliqué', 'épicerie', 'beurre_clarifié', 'longuement', 'brûlé', 'cancérigène', 'poêles', 'supporte', 'cuissons', 'prolongées', 'fraichement_pressé', 'pavlova', 'conjugue', 'versions', 'tentent', 'optez', 'pomelos', 'corses', 'revenus', '95_%', 'grenache', 'gris', 'cave', 'barrique', 'arête', '½', 'sichuan', 'lichette', 'touché', 'composé', 'recouvert', 'équilibrent', 'étapes', 'facilement_réalisable', 'prévoir', 'éléments', 'essorez', '24_heures', 'commencez_par', '20_g', \"lorsqu'_ils\", 'chemiser', 'enfournez_pendant', '13', 'laissez_complètement', '80_g', 'faites_torréfier', 'voyez', 'trop_épaisse', 'gavotte', 'écrasé', 'prélevez', 'laissez_infuser', 'plat_creux', 'entremet', 'uniformément', 'placez_-le', 'décoré', 'souhaitez', 'quai', 'crayon', 'mon_fils', 'brève', 'bavardage', \"pétrissez_jusqu'\", 'tapez', 'étalez_-la', 'millimètres', 'mine', 'enroulé', 'roulé', 'pareille', 'épuisement', 'déposez_-les', 'trempé', 'traits', '5_ans', 'quelle', 'petites_choses', 'participe', 'allait', 'aidé', 'abuser', 'grandit', 'génoise', 'quais', 'été_surpris', 'goût_subtil', 'relève', 'ça_sentait', 'punché', '600_g', 'fraises_coupées', 'imbibez', 'deuxième_partie', 'posez_-la', 'exercez', 'pression', 'crues', 'panisses', 'mon_fournil', 'dip', 'fromage_frais', 'resté', 'très_rafraîchissant', 'cocktails_alcoolisés', 'pancake', 'pendant_45', 'salez_poivrez', 'alsace', 'carbonara', 'cru', 'rencontré', 'mon_chéri', 'surpris', \"m'_as\", 'certifié', 'tact', 'tantinet', 'susceptible', 'aimer', 'en_veillant', 'oignon_ciselé', 'belle_coloration', 'chaudes', 'dégustez', 'légèreté', 'très_goûteuse', 'carrefour', 'ai_vu', 'teste', 'rajouté', 'régalé', 'seul_bémol', 'coupée', 'arrêtons', 'bla_bla', '8_personnes', 'démoulez_-la', 'crottin', 'torréfié', 'glace_vanille', 'bassine', 'formez', 'coriandre_hachée', 'gaufre', 'tropézienne', 'segment', 'diluer', 'bien_incorporé', 'filmez', 'contact', 'crème_pâtissière', 'chaut', 'transvasez', 'gélatine_ramollie', 'brioche', 'segments', 'sandwich', 'truite', 'ruser', 'petit_bonhomme', 'seigle', 'ingrédient_mystère', 'apprécier', 'franc_succès', 'avoué', 'préférer', 'coquin', \"pétrissant_jusqu'\", 'se_décolle', 'arrêtez', 'continuez', 'laissez_lever', 'petit_morceau', 'cornichons', 'finement_hachés', 'petits_pains', 'épeautre', 'se_régale', 'litre', 'doser', 'taux', 'sucre.', 'derniers', 'fiona', 'discuter_autour', 'petits_gâteaux', 'tourne_vers', 'col', 'douceurs', 'noyau', 'coco_rapée', 'poudre2', 'on_fouette', 'recouvre', 'petits_carrés', 'mina', 'adore_cuisiner', 'huile1', '(_th.6-7', '-_enduire', 'moitier', 'gruyère_râpé', 'on_retrouve', 'blogue', 'up', 'alléger', 'préparations', 'saveurs_acidulées', 'pomme_verte', 'oseille', 'essentiel', 'manquerait', 'demie', 'vous_profiterez', 'courge_musquée', 'râpée', 'verte', 'biseau', 'coriandre_ciselée', 'sésame', 'supplémentaire', 'chinoises', 'mieux_vaut', 'manque', 'dépendant', 'petites_modifications', 'tamari', 'fermentation', 'coréen', 'moulu', 'celui-ci', 'kimchi', 'taillé', 'bouchées', 'gros_sel', 'mélangée', 'petites_quantités', 'accompagnement', 'saveurs_asiatiques', 'roulés', 'nori', 'blender', 'congelée', 'tourner', 'congelés', 'remis', 'état', 'anciens', 'peu_près', 'ressorti', 'jeté_mon', 'dévolu_sur', 'différente', 'brownies', 'utilisée', 'molle', 'manipuler', 'concassez', 'amitié', 'joyau', 'écrin', 'précédemment', 'surgelées', 'préfére', 'trés', 'recueillie', 'décongélation', 'faîtes', 'décongeler', 'oubliant', 'dessous', 'récuperer', 'rajoutez', 'puis_éteignez', 'blanchissent', 'soulever', 'peau_croustillante', 'enduisez', 'maîzena', '3/4', 'technologie', 'cloud', 'richesse', 'fonctionnelle', 'fiabilité', 'égale', 'mises', 'permanentes', 'word', 'excel', 'pdf', 'jpeg', \"n'_oubliera\", 'aquatiques', 'saint_pierre', 'cravate', 'dimensions', 'adapter', 'petit_bout', 'conquises', 'divines', 'fraîchement_pressés', 'changent', 'quinze_jours', 'infusions', 'eaux', 'aromatisés', 'fêtards', 'seront_ravis', 'abattoir', 'trinquer', 'prix', 'accessibles', '4,50€', 'presse', '15€', 'achèvent', 'convaincre', 'matelas', 'junior', '10_ans', 'jo', 'lâcher', 'solide', 'pâquerettes', 'mes_amies', \"m'_occupe\", 'thèmes', 'différent', '2017', 'youtube', 'présenter', 'promouvoir', 'faute', \"j'_aimerais\", 'vos_amis', 'italiens', 'belle_expression', 'encourager', 'enthousiasme', 'voient', 'leurs_désirs', 'week-end', 'organise', 'home', 'bordure', 'supérieure', 'hommes_politiques', 'acteurs', 'chanteurs', 'sportifs', 'connus', 'nombreux', 'ont_accepté', 'eau_glacée', 'filmés', 'dollars', 'association', 'als', 'tricher', 'supprimer', 'rang', 'courte', 'pelote', 'suffira', 'économie', 'sure', 'moins_chers', 'commerce', 'benjamin', 'corn-flakes', 'sucrés', 'good', 'demi_citron', 'assiette_creuse', 'enrobe', 'tacos', 'affamés', 'till', 'cat', '(_aka', 'bonne_conscience', 'etc', 'potatoes', 'aliments', 'fraicheur', 'neuf', 'patates_douces', 'pois_chiches', 'finement_hachées', 'ces_derniers', 'inspecter', 'mes_placards', 'haricots', 'robot_mixeur', 'ail_épluché', 'sauce_piquante', 'yaourt_grec', 'vieux', 'collant', 'grosse_boule', 'nouer', '36', 'jersey', 'envers', 'posée', 'jetant', 'oeil', 'dernières', 'créations', 'éclosion', 'printanière', 'étalant', 'tons', 'garnie', 'sophie_dudemaine', '(_th6', '26_cm', 'poitrine_fumée', 'pendant_40', 'intercalant', 'sophie', 'remettent', 'magic', 'suggéré', 'tutoriaux', 'quelconque', 'once', 'animaient', 'pauses', 'mes_lecteurs', 'me_contentais', 'étrange', 'raffolent', 'dépassant', 'date_limite', 'consommation', 'traîner', '2_semaines', 'moisi', 'apparaisse', 'tapé', 'tu_es', 'obligée', 'racler', 'fonds', 'tiroir', 'rassembler', 'épars', 'puriste', 'tu_préfères', 'rappelles', 'ta_mère', 'tu_rajoutes', 'choisis', 'individuels', 'statistiquement', 'forcément', 'tu_utilises', 'foires', 'recommencer', 'zéro', 'mixture', 'petits_récipients', 'te_dis', 'chances', 'dégouline', 'partout', 'machins', '10_mn', 'fumer', 'clope', 'nettoyer', 'bordel', 'expérience', 'chimique', 'doses', 'raté', 'bah', 'ha', 'improvise', 'gâteau_magique', 'drogues', 'variées', 'occurrence', 'basiques', 'couches', 'reporter', 'ustensiles', 'fait_chier', 'écran', 'trop_conne', 'ordinateur', 'aspergé', 'normal', 'poses', 'transporter', 'dur', 'tu_auras', 'relire', 'aies', 'touiller', 'symboliquement', 'constater', \"s'_affaisse\", 'coupes', 'déposé', 'stabiliser', 'suspendu', 'imbiber', 'faites_frire', 'éponger', 'sopalin', 'beignets', 'mijote', 'jogging', 'éliminer', 'coutume', 'remercie', 'belle_soeur', 'napolitaine', 'transmis', 'moins_calorique', 'proposait', 'référence', 'réalise', 'placé_sous', 'purifier', 'nathalie', 'rapidité', 'générosité', 'joint', 'cordon', '1heure', 'ressors', 'v', 'it', 'tempeh', 'mollets', 'aidant', 'ingrédients_utilisés', 'tricot', '150', 'rejeté', 'surgelé', 'camille', 'servie', 'nouvel_an', 'simplifié', 'céleri_branche', 'sans_grumeaux', 'trop_fort', 'burgers', 'motivés', 'quelques-uns', 'fétiches', 'sûrement', 'sorti', '40_min', 'contentes', 'avalé', 'répondit', 'ron', 'tendant', 'attraper', 'hermione', 'se_dirigea', 'commença', 'drago', 'sentit', 'chaudron', 'versait', 'potion', 'préconisé', 'petits_loups', 'éclate', 'rigolo', 'uniquement', 'paille', 'difficulté', 'épluchés', 'épépiner', 'préssé', '2_cs', '1_cc', 'environ_30', 'ouvertes', 'cesser', 'oignons_émincés', 'ail_écrasées', 'carottes_coupées', 'coupés', 'carpaccio', 'smith', 'eau_citronnée', 'bouquet', 'quelques_feuilles', 'rincer', 'faire_mariner', 'additionné', 'poivrer_légèrement', 'centrifugeuse', 'récupère', 'mousseuse', 'pré', 'thermostat_6/7', 'essuyer', 'conserves', 'antan', 'ouais', 'pô', 'compliquée', 'dosage', 'évidents', 'tapenade', 'olives_vertes', 'diminuant', 'quantités', 'câpres', 'fortes', 'identiques', 'masqué', 'dernier_moment', 'émulsionner', 'ravioles', 'vaporiser', 'truffe_blanche', 'atteinte', 'lèchefrite', 'foies', 'oignon_émincé', 'blanchies', 'grands-mères', 'clin', 'œil', 'ma_grand-mère', 'maternelle', '500_gr', '30_gr', 'th', 'décide_alors', 'recréer', 'son_grand-père', 'cire', 'abeille', 'irritation', 'disparaît', 'mes_préférés', 'avocado_toast', 'crackers', 'bases', 'lentilles', 'lutter_contre', '0', 'toléré', 'st', 'eplucher', 'râper', 'râpe', 'cuit_vapeur', '800w', '15minutes', 'habituel', 'quelques_copeaux', 'fromage_fonde', 'déborde', 'oignon_rouge', 'poivres', 'sot', '35', 'thé_matcha', 'parfaitement_homogène', 'cranberry', \"nut_'\", 'fillette', 'ma_collègue', 'vente', 'broderies', 'août', 'viens', 'bourre', 'commander', '1ère', 'demoiselle', 'recevoir', 'déclic', 'direction', 'kirch', 'jardins', 'clôture', 'haie', 'chemins', 'fontaine', 'folies', 'grotte', 'labyrinthe', 'lettres', 'vieilles', 'dentelles', 'moutons', 'bougies', 'répulsif', 'leurs_besoins', 'forum', 'cocottes', 'avait_demandé', 'rubrique', 'challenges', 'week_end', 'très_utiles', 'on_voit', 'sélectionner', 'favories', 'commentaires', 'certain_temps', 'songe', 'aucun_doute', 'hérité', 'concède', 'permis', 'moyennes', 'noircissement', 'couscous', 'lait_chocolaté', 'laisser_gonfler', 'trancher', 'certainement', 'mangues', 'mures', 'patisserie', 'profond', 'sous_peine', 'débordement', 'pouvant_aller', 'sodium', 'dégâts', 'pendant_35', 'mélasse', 'convertie', 'besoins', 'allergies', 'bien_entendu', 'petits_bonhommes', 'appropriées', 'joué_!', 'défaire', 'substituts', 'alternance', 'levure_sèche', 'farine1', 'laisser_lever', 'dernière_fois', 'croissants', 'présence', 'soude1', 'second', 'poitrine', 'citron1', 'traces', 'canola', 'rôties', 'remplie', 'humain', 'réfectoire', 'lumineux', 'fenêtres', 'gai', 'accroc', 'fallu', 'expliquer', 'anonyme', 'puces', 'madrid', 'couronnée', 'churros', 'locale', 'rire', '4_heures', '^^', 'pousser', 'machin', 'non-_initiés', '13_ans', 'ado', '12_heures', 'bijoux', 'mes_copines', 'dois_-je', 'adresser', 'soutient', 'cheveux', 'plaquette', 'chouettes', 'hiboux', 'collection', 'reportée', 'déchirée', 'petits_détails', 'techniques', 'doublés', 'prévu', 'grand_chose', 'fière', 'constitution', 'tolère', 'représentants', 'légitimité', 'alloués', 'justificatif', 'suède', 'députée', 'sa_démission', 'carte_bancaire', 'professionnelle', 'réintroduire', 'évolution', 'considérer', 'instruments', 'biologiquement', 'pouvant', 'remède', 'poison', 'pomme_granny', 'hache', 'moi-même', 'pioché', 'carnets', 'julie_andrieu', 'sweet', 'parfumée', '800g', 'avancé', 'polaire', 'origami', 'malheureux', 'navires', 'flottille', '3.500', 'auxquels_il', 'tankers', 'qui_composent', '100.000', 'sillonnent', 'mers', 'google', 'assistant', 'votre_panier', 'ajoutera', 'coupez', '10min', 'environs', 'resultat', '50gr', '125gr', 'sesame', 'degage', 'egalement', '.puis', 'gonfler', 'abris', '40min', 'ignore', 'motif', 'somme', 'dépense', 'superflu', 'charitable', 'courageux', 'patient', 'dissuasion', 'coercition', 'au_contraire', 'motivation', 'encouragement', 'visible', 'positif', 'comportement', 'leçons', 'conseils', 'morale', 'resteront', 'belles_paroles', 'inactif', 'passif', 'seigneurs', 'continueront', 'diriger', 'exploiter', 'leurs_propres', 'intérêts', 'égoïsme', 'ils_deviennent', 'inutiles', 'risquant', 'enseignement', 'leur_propre', 'interprétation', 'allant', 'manipulation', 'cachés', 'domination', 'acquisition', 'richesses', 'matérielles', 'privilèges', 'non_seulement', 'chrétiens', 'embrouiller', 'religieux', 'permettent', 'satan', 'tromper', 'sous-entendu', 'rôle', 'se_déguiser', 'cherchant', 'religion', 'parvenu', 'tardivement', 'crédible', 'foi', '=', 'êtres_humains', 'planète', 'conflits', '-ce', 'christianisme', 'adoucissant', 'rechercher', 'appartenance', 'identitaire', 'national', 'authenticité', 'entendre', 'ses_propres', 'paraît', 'tilleul', 'déposée', 'inauguration', '1863', 'pont', 'napoléon_iii', 'confectionné', 'architecte', 'polonais', 'emmené', 'transformé', 'eugénie', 'copieux', 'vraies', 'mignardises', 'délicieuses', 'automnale', 'gentiment', 'fallut', 'adapte', 'savoir_comment', 'inauguré', 'cet_après-midi', 'bronzés', 'peine_sorti', 'ai_goûté', 'perdra', 'farine100g', 'oeufs100g', 'pré-chauffer', 'modifications_apportées', 'pascale_weeks', 'st_môret', 'flocon', 'smarties', 'idée_cadeau', 'offrez', 'indiquant', 'démarche', 'démouler_délicatement', 'laisser_complètement', 'proposez', 'trucs', 'inscrites', '1ère_partie', 'bienvenues', 'infos', 'comptera', '83', 'points', '71', 'futures', 'tamisez', '2-3', 'seule_fois', 'décoller', 'mélange_blanchisse', '60_%', '12cl', 'inspiré', 'régal', 'fariner', 'déposer_délicatement', 'lilo', 'aéré', 'incorporer_délicatement', 'comté', 'mienne', 'journaliste', 'collabore', 'magazines', 'sites_spécialisés', 'in_vino', 'veritas', 'belgique', 'pays-bas', 'suisse', 'premiers', 'prometteurs', 'à', 'estimer', 'stade', 'même', 'laissent', 'moindre', 'profitant', 'automnal', 'ballade', 'lucie', 'forêt', 'pourraient', 'couronne', 'en_revanche', \"n'_importe\", 'sujet', 'éclairci', 'possibilité', 'magenta', 'permanent', 'ombres', 'soutenues', 'virent', 'verdâtre', 'gadget', 'lecteurs', 'qui_visitent', \"s'_abonner\", 'galerie', 'solidaire', 'buvant', 'robinet', 'être_honnête', 'bougre', 'écrit', 'passages', 'homosexualité', 'manif', 'admirer', 'jolies_fleurs', 'bruyère', 'permise', 'luxe', 'passants', 'assemblés', 'je_comptais', 'grain', 'merguez', 'taureaux', 'boucs', 'enlève', \"c'est\", 'entrant', 'sacrifices', 'formé', 'accepté', '-dans', 'ô', 'prêtre', 'tient', 'debout', 'sacrifice', 'assis', 'droite', 'ses_ennemis', 'offrande', 'conduit', 'perfection', 'saints', 'mexique', 'chandeleur', 'jour_férié', 'tamales', 'salées', 'fourrées', 'détaillé', 'explications', 'il_existe', 'chaussettes', 'comprenant', 'sous_forme', 'impression', 'créatrice', 'demeurant', 'très_gentille', 'début', 'test', 'contenté', 'apposer', 'pull', 'maitrise', 'terme', 'torse', 'conventionnel', 'répond', 'perturber', 'habitués', 'brouillon', 'volantes', 'pile', 'vierges', 'copies', 'doubles', 'proprement', 'an_prochain', 'exercices', 'rédactions', 'calculs', 'dessins', 'découpes', 'au_cutter', 'moments', 'peintures', 'listes', 'téléphone', 'bidouiller', 'réputés', 'légende', 'abonnement', 'montant', 'conception', 'paniers', 'familles', 'medecin', 'balle', 'tendons', 'finis', 'précédents', 'éléments_suivants', 'victimes', 'espagnoles', 'belges', 'danoises', 'britanniques', 'danger', 'monarchies', 'chrétiennes', 'europe', 'favorisent', 'finalisation', 'invasion', 'extraterrestre', 'pro-', 'jésus', 'sacré', 'connaisseur', 'témoigne', 'rédigé', 'visage', 'françois_hollande', 'tandis', 'affiché', 'située', 'observe', 'chute', 'rochers', 'savoie', 'intervient', 'résonance', 'psychisme', 'publiée', '21', 'février_2015', 'évoquer', 'oiseau', 'affirme', 'corbeau', 'comportant', 'angle', 'gauche', 'pochons', 'assistantes', 'maternelles', 'mam', 'inquiétude', 'ouate', 'dossier', 'poussette', 'voulais', 'peur', 'ça_tienne', 'décousu', 'glissé', 'véritablement', 'sincèrement', 'apparences', 'reconnaissance', 'intérêt', 'conscience', 'dessein', 'intelligents', 'amène', 'lion', 'reçut', 'crime', 'croyait', 'coupable', 'condamné', 'avenir', 'fonctions', 'âne', 'lui-même', 'bête', 'cet_annuaire', 'adresse', 'vos_blogs', 'disposition', '250_grammes', 'ménager', 'crêpes_salées', 'quand-même', 'fiche', 'poivrons', 'forment', 'mosaïque', 'disparus', 'entends', 'déja', 'sénégal', 'craint', 'savent', 'réfrigirateur', 'traversé', 'nous_aurons', 'electricité', 'adepte', 'lapins', 'invitez', '�', 'rendre_visite', 'garçons', 'soeur', 'reprenne', 'hivernale', 'tjs', 'coloris', 'do', 'list', 'oblige', '40', 'kilos', 'premiers_tours', 'projetée', 'contraire', 'préconise', 'différée', 'commencera', 'omettant', 'vous_obtiendrez', 'cerneaux', 'auparavant', 'congèle', 'légèrement_sucré', 'façon_optimale', 'dégeler', 'propriétés', 'programmation', 'versée', 'tresse', 'excepté', '40_minutes', 'éventuelles', 'vends', 'sextoys', 'cosmétiques', 'huiles', 'massage', 'lubrifiant', 'ne_résiste', 'alla', 'approuvée_par', 'comité', 'figure', 'ten', 'happy', 'goûters', 'coco-', 'sulfate', 'sci', 'hydrolat', 'cosgard', 'durcit', 'financier', 'ores', 'commandé', 'métrages', 'viendront_garnir', 'garde-robe', 'lexique', 'témoigner', 'particulières', 'outils', '8ème', 'devinez', 'étonnant', 'conseille', 'annoncer', 'aux_marrons', 'effrayer', 'goûteurs', 'enchaîné', 'popcorn', 'lisent', 'thanksgiving', 'vend', 'correspondance', 'surement', 'ben', 'toussa', 'libanais', 'nous_aurions', 'inévitable', 'réfection', '10°', 'ménagères', 'profitent', 'fromages', 'navets', 'vaut', 'scandinave', 'godets', 'ampleur', 'allaitement', 'compatible', 'jugé', 'zip', 'sus', 'étroit', 'carrure', 'importante', 'thermostat_6', 'accorde', 'dernière_couche', 'mozzarella', 'compost', 'paillage', 'branchages', 'pailler', 'massifs', 'chemin', 'continuent', 'routes', 'intérieures', 'circulation', 'bus', 'tata', 'détracteurs', 'calvaire', 'populations', 'causé_par', 'sérieuse', 'fléau', 'plastiques', 'etat', 'éradiquer', 'conçus', 'détériorer', 'attendant', 'spectacle', 'déchets', 'arrêts', 'marchés', 'endroits', 'fortement', 'différents_acteurs', 'se_soucier', 'environnement', 'comportements', 'modes', 'responsables', 'apiculteurs', 'ruche', 'javascript', \"j'_achetais\", 'magasin_bio', 'ai_découvert', 'antigone_xxi', 'poussant', 'silencieux', 'refermé', 'longé', 'jardins_potagers', 'faisait', 'explose', 'brûle', 'abricots', 'accompagnent', 'recherché', 'mariage', 'gagnant', 'matières', 'magiques', 'résine', 'murano', 'papillon', 'véro', 'défi', 'géraldine', 'things', 'robe_rose', 'nécessite', 'repassage', 'accessoires', 'habillée', 'sûr', 'louper', 'promos', 'soutien', 'consacrée', 'mes_créations', 'multiplicité', 'livrée', 'administration', 'nazie', 'obsédée_par', 'rationalisation', '1934', '1943', 'établir', 'norme', 'poussettes', 'bosquet', 'derrière', 'gabarit', 'suspension', 'séparément', 'fraiche', 'boutique', 'empêcherait', '380_g', 'orange_pressé', 'farine_semi-complète', 'figues', 'solution', 'ultra_gourmand', 'nous_sommes', 'régalés', 'version_classique', 'cliquer_sur', 'olives_noires', '110°', 'porte_entrouverte', 'daurade', 'fines_tranches', 'fenouil', 'votre_convenance', 'fenouils', 'intercaler', 'marinée', 'tomates_séchées', 'scientifiques', 'suédois', 'meilleure_façon', 'whisky', 'exception', 'internautes', 'y_figurent', 'destinés', 'strictement', 'utilisateur', 'être_reproduits', 'ni_communiqués', 'tiers', 'utilisés', 'œuvres_dérivées', 'nettoyez', 'lavez', 'finement_ciselé', 'nicolas', 'revisiter', 'remplaçant', 'poulpe', 'takoyaki', '-2', 'dashi', 'incorporez_-y', 'remplacez', 'tomates_cerise', 'fiston', 'raffole', 'écouté', 'recommandations', 'ces_messieurs', 'nonna', 'non_traité', 'reserver', 'moins_1h', 'lavé', 'bottines', 'camel', 'mlm', 'patrons', 'marge', 'réduction', 'marges', 'échange', 'club', 'gratuite', 'sculpture', '1000°', 'initiative', 'objectif', 'semer', 'zizanie', 'sectarisme', 'médine', 'prière', 'qg', 'fomentation', 'croyants', 'prophète', 'ironie', 'bénéficié', 'largesses', 'fervents', 'partisans', 'ndlr_]', 'dotant', 'radio', 'équipements', 'population', 'dr', 'numéro', 'écouter', 'mondiale', 'liberté', 'refuse', '-t-elle', 'serrés', 'diviser', '24_cm', 'jatte', 'gôut', 'sablé', 'émietté', 'framboises', 'deniers', 'critique', 'contenter', 'inviter', 'procurer', 'copie', 'mots_croisés', 'dédicacée', 'heureusement', 'rentré', 'poterie', 'ponçage', 'rageant', 'relaxante', 'charge', 'trier', 'décider', 'faisselle', 'soit_lisse', 'démoulez', 'pièce', 'garde_robe', 'nos_chères', 'poupées', 'montrerais', 'essais', '247', 'coupez_-les', 'oignons_coupés', 'minuterie', '2_gousses', 'programmez', '100°c', 'vit', 'ôtant', 'réservée', '350_g', 'réglez', 'herbes_fraîches', '14_juillet', 'popotte', 'lolo', 'se_déguste', 'chauffez', '12_mn', '80°c', 'serrer', 'verdure', 'nanou', 'amaretti', 'pralinoise', 'véritable_délice', 'diminué', 'cristaux', 'grossière', 'amener', 'détaillées', 'farine_mélangée', 'entière', '4_cs', 'adapter_selon', 'indiquée', 'poudré', 'facultatif', 'amuses_bouche', 'rater', 'quelque_part', 'doutais', 'élasticité', 'bagels', 'sylvie', 'map', 'prélevée_sur', '210', 'puit', 'levure_délayée', 'grosses_pépites', 'coque', 'adaptations', 'modus', 'tronche', 'so', 'damnation', 'laissé', 'poil_trop', 'chauffe', '80_%', 'boudin', 'noisettes_grillées', 'élevés', '30e', 'zappé', '4e', 'repère', 'petite_merveille', 'speculoos', 'amoureux', 'recette_simplissime', 'revisite', 'vanille_fendue', 'grattée', 'parois', 'flan', 'gingembre_frais', '1_cs', 'gingembre_râpé', 'brunoise', 'veloutée', 'quatre', 'emplir', 'cabas', 'féra', 'zestez', 'étonnez', 'procure', 'trouble', 'sentiment', 'animal', 'baudroie', 'aux_éclats', 'lotte', 'assistance', 'demandez', 'poissonnier', 'quelques_brins', 'verveine_citronnée', 'ben_oui', 'wasabi', 'radis', 'nains', 'micro', 'transition', 'comme_dirait', 'indécis', '25_grammes', 'déshydratées', '300_grammes', 'pépère', 'volcan', 'personnes', 'chair_ferme', '40_grammes', 'ours', 'intégrez', 'hélas', \"s'_amuser\", 'drôlement', 'comestible', 'colorez', 'humectez', 'laissez_mijoter', 'demi-heure', 'vérifiant', 'rigolote', \"quoiqu'\", 'débile', 'vienne', 'percée', 'gouvernement', 'décret', 'jeudi', 'journal_officiel', 'encadre', 'produits_chimiques', 'usage_courant', 'explosifs', 'harcha', 'vrai_régal', 'typique', 'marocaine', 'traditionnellement', 'nombreuses_variantes', 'sur_youtube', 'connaissais_pas', 'belle_découverte', 'conseilles', 'inscrivez_-vous', 'ci_dessous', '30g', 'réduisez', 'charnière', 'laissez_-le', 'concassez_grossièrement', 'th5', 'malaxer', 'régulière', '15/20_minutes', 'bien_dorés', 'couche_fine', 'reblochon', 'th6', 'sent_bon', 'franc', 'pousse', 'apéros', 'entre_amis', 'tarte_fine', 'grand_format', 'salade_verte', 'garnir_généreusement', 'patissier', 'macarons', 'remuez_doucement', \"remuez_jusqu'\", '-y', 'meringues', 'ds', 'fermée', 'pinceau_badigeonnez', 'allumez', 'raisins', 'fruits_confits', 'pdt', 'rhum_brun', 'modérée', 'grosses_cuillères', 'moins_2h', 'gracieusement', 'fourrés', 'marchant', 'croissant', 'devenait', 'refuge', 'comorien', 'diplomatie', 'communauté', 'harmonie', 'a_-t-elle', 'immigrants', 'économiques', 'sénégalais', 'libyens', 'migrants', 'rendent', 'parent', 'saïd', 'profil', 'président', 'république', 'ambition', 'responsabilité', 'élève', 'baguette', 'probable', 'boulangerie', 'épi', 'poudlard', 'chocolatine', \"j'_imagine\", 'rares', 'quelques_exemples', 'ses_desseins', 'jolis_desserts', 'clafoutis_aux', 'exclusivement', 'lentilles_corail', 'fade', 'torsades', 'rapportée', 'échantillons', 'youpi', 'laitages', '1_cuil', '150_°', 'glacier', 'économe', 'rosace', 'entourez', 'pécan', 'rosaces', 'premier_essai', 'cherché', 'edda', 'ai_refait', 'divisé', 'versez_-le', 'quel_délice', 'légumes_coupés', 'rectifiez', 'certes', 'juin', 'françaises', 'streusel', '20cl', 'rincez', 'arrosant_régulièrement', 'fenêtre', 'volonté', 'hihi', '11_ans', 'entré', 'bâton', '400f', 'degrés', '375f', 'a_fortiori', 'chères', 'oignon_hachés', 'toasté', 'olive_vierge', 'épaisses', 'jambon_ibérique', 'naturel', 'nettoyée', 'da', 'aurez', 'préalablement_préchauffé', 'caviar', 'alpaga', 'brume', 'chaussons', 'pompons', 'noeud', 'rustiques', 'ressemblent', 'petits_choux', 'nous_appelons', 'lâcher_prise', 'apte', 'réceptacle', 'plénitude', 'sollicite', 'exutoire', 'bruno', 'pourrais', 'chiffon', 'garni', 'creusé', 'abricots_coupés', 'régalez_-vous', 'artistes', 'figuration', 'espère', 'relais', 'adultes', 'utilisent', 'crédulité', 'sage', 'père_noël', 'regarde', 'apportera', 'sticker', 'joyeux_noël', 'bonnes_fêtes', '€', 'bonne_vingtaine', 'prêtes', 'est_livrée', 'pad', 'transparentes', 'références', 'règles', 'po', 'parures', 'prenant', 'pseudo-', 'minestrone', \"s'_installent\", 'comblent', \"m'_empêcher\", 'procédant', 'différemment', '180_°', 'aident', 'rarement', 'gratuites', 'bonnes_manières', 'être_utilisée', '4_tasses', 'sauce_chili', 'rosbif', 'suggérés', 'omelettes', 'canapés', 'pizzas', 'coller', '350°_f', 'chacune', 'oignons_verts', 'attendrir', 'légèrement_dorée', 'homogénéité', 'soit_doré', 'usagers', 'saupoudre', 'adhère', 'cantaloup', 'moitiés', 'mes_préférées', 'cochons', 'chaudrons', 'doublant', 'mijoteuse', 'low', 'patate', 'seul_regret', 'gang', 'enfants_adorent', 'ajouts', 'prochaines', 'rice_krispies', 'fondues', 'bien_dorées', 'recettes_préférées', 'déjà_essayé', 'similaire', 'secrètes', 'moyennement', 'bigmac', 'rouge1', 'ail_hachée', 'sel1', 'tranché', 'fines', 'entre-temps', 'désire', 'préférées', 'boeuf_bourguignon', '350_degrés', 'beurre_manié', 'champignon', 'boeuf', 'ailes', 'taille_moyenne', 'mouillés', 'durcissent', 'intègre', 'béchamel', 'assez_épaisse', 'feta_émiettée', '150°_pendant', 'je_vois', 'moteur', 'voyage', 'fronton', 'déjeuné', 'aop', 'marc', 'verbe', 'ig', 'alcool', 'diablement', 'crème_fleurette', 'écrasez_-la', 'déplacé', 'goutte', 'valider', 'me_plait', 'assurer', 'te_tiens', 'intelligent', 'humains', 'financiers', 'réprimer', 'auxquels_viennent', 'divisions', 'croyances', 'propres', 'pouvant_servir', 'éventuel', '300°', 'trois_quart', 'challenge', 'combiné', 'je_devais', 'cocktail', 'short', 'brochette', 'décorations', 'mp', 'svp', 'calme', 'ruban', 'je_pensais', 'prénom', 'margaux', 'influence', 'château_margaux', 'appréciait', 'écrivain', 'nommer', 'aimables', 'me_permets', 'laisse_entrevoir', 'comprendre', 'qui_précède', 'très_tôt', 'assaisonnements', 'rehaussent', 'venant', 'assiste', 'agréablement', 'marine', 'ressortir', '450_g', 'poche', 'éclatée', 'graine', 'mince', 'eteignez', 'séchage', 'vaut_mieux', 'affiner', 'diffusée', 'emballez', 'boite_hermétique', 'écart', 'rogue', 'bouchon', 'puissance', 'réservez_-le', 'laissez_réduire', \"s'_initier\", 'coréenne', 'torture', 'olfactive', 'bruler', 'langue', 'testes', 'mon_entourage', 'déborder', 'dites_-moi', '7_décembre', 'aux_algues', 'apportent', 'aigreur', 'raisonnablement', 'fermentés', 'excessive', 'fermenté', 'arrosez_-le', 'algues', 'se_trouvent', 'algue', 'allumette', 'ciboule', '5_mm', 'souhaitées', 'découpant', 'sauter', 'celeri', 'prechauffer', 'tole', 'mourir', 'rendons', 'priori', 'certaine', 'actuelle', 'ne_savais', 'détourner', 'pinterest', 'ingrédients1', '300ml', 'eagle', 'brand', '200gr', 'gruau', 'amies', 'dealer', 'restait', 'devoir', '7g', 'tranchante', 'digeste', 'aveugle', 'nettement_plus', 'demeure', 'assez_simple', 'axé_sur', 'fruit_mûr', 'végétales', 'carafe', 'coûtait', 'illustre', 'sa_richesse', 'révolution_française', 'murs', 'sont_vendus', 'carrière', 'non-', 'collante', 'couverts', 'planification', 'financière', 'dolce', 'tabasco', 'je_referai', 'comme_tel.', 'enrobé', 'pacanes', 'écrasées', 'minuscules', 'donné_envie', '40-50', 'prémices', 'moisson', 'froment', 'portés', 'beth', 'gratitude', 'd.ieu', 'abondante', 'je_reviens', 'longue_absence', 'vraiment_délicieuse', 'éclairs', 'mon_mari', 'mes_enfants', 'me_plaisait', 'maîtrisez', 'trop_compliquée', 'tarder', '140g', 'énergiquement', 'centimètre', \"s'_échapper\", \"j'_éteins\", 'interieur', 'entrouverte', 'posté', 'jettent', 'mousses', 'spéculos', 'connaisse', '-100g', '-200g', '-50g', '-3', 'lotus', 'tassez', 'douille', 'pralinée', 'caramélisées', '50_%', 'crème_pralinée', 'neige_ferme', 'tombée', 'par_hasard', 'pralinés', 'feuilletant', 'ancien', 'fou', 'accroché', 'réutiliser', 'craquelin', 'paris-brest', 'comprends', 'simplifier', '-150g', 'faire_ramollir', '-70g', 'farine_t55', 'pochez', 'emporte_pièce', 'trois_quarts', 'garnissez', 'praliné_pur', 'finissez', 'déposez_délicatement', 'dômes', 'gélifiant', 'prenne', 'sphères', 'inserts', 'sphère', 'silpat', '150_degrés', 'nombreuses_recettes', 'chef_pâtissier', 'jonathan', 'blot', 'sauté', 'incroyable', 'ça_change', '-90g', 't55', 'yuzu', '85', 'blanchis', '120_degrés', 'tourne', 'regroupement', 'crédits', 'financement', 'trésorerie', 'budget', 'meilleurs', 'banques', 'indépendants', 'exclusivité', 'courtier', 'croire', 'espérance', 'centimètres', 'gde', '500', 'gde_farine', 'pétrissez', '150°_c', '—', 'of', 'waters', 'danone', 'indistinctement', 'spécialités', 'exotiques', 'tropicaux', 'lasse_pas', 'ancestrale', 'infusion', 'bue', 'agrémentée', 'soulager', 'rhume', 'maux', 'calmer', 'toux', 'soirées', 'minette', 'septembre', 'rentrée', 'diverses_méthodes', 'balles', 'suivante', 'sac_congélation', 'au-dessus', 'ballot', '2e', 'flan_pâtissier', '6_pers', 'maïzéna', 'mes_voeux', 'surimi', 'féta', 'yaourt_entier', 'repéré', 'éventails', 'relevé', 'tenté', 'éventail', 'détachant', '&_co', 'aimé', 'épaté', '18cm', 'décors', 'faible_puissance', 'tempérer', 'thermomètre', 'sonde', 'etaler', 'spatule_coudée', 'marbre', 'mastic', 'raclant', 'avce', '15g', 'yaourt_brassé', 'cela_dépend', 'laissez_-la', 'durcir', '3_mm', 'tite', 'nuoc_nam', 'ail_coupées', 'épépiné', 'émincé_finement', 'ai_ajouté', 'elles_noircissent', 'voisins', 'eu_lieu', 'tits_choux', '1h15', 'cinquantaine', '250ml', 'crans', 'préparée', 'aneth_ciselée', 'astuce', 'beure', 'tits', 'roi', 'par_rapport', 'martha_stewart', '130g', 'raies', 'requins', 'exercice', 'physique', 'sortira', 'prison', 'emprisonné', 'humour', 'british', 'omniprésent', 'je_publierai', 'as', 'mangée', \"aujourd'\", 'betterave_rouge', 'piperade', 'basque', 'info', 'blanches', 'colorées', 'placé', 'conçue', 'spirale', 'braises', 'fourche', 'dévorer', 'recycle', 'os', 'fanes', 'pelures', 'citations', 'argumenter', 'illustrer', 'guillemets', 'signaler', 'nettement', 'citation', 'industrie', 'observons', 'vents', 'océan', 'moulins', 'roue', 'politique', 'telles', 'orientations', 'production', 'coût', 'quatres', 'denrées', 'survie', 'raffinés', 'lait_écrémé', 'lutte', 'vaine', 'futile', 'père-noël', 'ramené', 'jusque', 'portant', 'corrida', 'course', 'marseillaise', 'dévoiler', 'verso', 'récente', 'mobile', 'topo', 'utilisées', 'prises', 'wiki', 'moudre', 'tel_quel', 'rincées', 't', 'je_réduis', 'étant_donné', '72_%', 'non_sucré', 'fondus', 'hachés', '170_g', 'mi-amer', 'pyrex', 'strict_minimum', 'viendra', '350_f', 'macis', 'miel_liquide', 't_-il', 'ramasser', 'vont_venir', 'moult', 'rangements', 'lait_végétal', '>', 'apparemment', 'marchand', 'cms', 'suffisent', 'impeccable', 'essaie', 'laits_végétaux', 'lourde', 'miam', 'citer', 'essayer_ta', 'adopté', 'flo', 'clea', 'bluffé', 'venait', \"j'_essaierai\", 'demi_litre', 'répondre', 'enlevé', 'pellicule', 'marron', 'zéro_déchet', 'je_trouvais', \"j'_achète\", 'assez_sucré', 'mentionne', 'disait', '90°', 'pendant_10mn', 'pensez_-vous', 'périgord', 'frédéric_bau', 'albin_michel', 'très_chocolatés', 'pimenter', 'gingembre_cristalisé', 'association_chocolat-gingembre', 'se_trouvaient', 'tomates_fraiches', 'ketchup_bio', 'mayonnaise_végane', 'libre', 'foin', 'rases', '1_h', 'cloison', 'poussière', 'arrete', 'résolvant', 'concoctée', 'membres', 'évoquait', 'mannequin', 'compoter', 'bien-aimés', 'mission', 'tribus', 'israël', 'avaient_été', 'dispersés', 'circoncision', 'gal', 'mots', 'toiture', 'barque', 'bleuté', 'cobalt', 'grisé', 'intéressant', 'nette', 'intensifier', 'variés', 'sombres', 'peignez', 'rame', 'extérieure', 'sombre', 'lattes', 'systématiquement', 'abordé', 'fusion', 'ambiance', 'stagiaires', 'gomme', 'masquer', \"j'_utiliserai\", 'plate', 'n°6', 'galaxy', 'manet', 'pose', 'clairs', 'accentue', 'marches', '31_mars', 'rock', 'ses_débuts', 'mouchoir', 'voyait', 'qu', 'jouir', 'africain', 'preparer', 'etai', 'servant', 'potée', 'jette', 'veulent', 'hier_soir', 'cuisinière', 'ww', 'colombo', 'créole', 'tirées', 'aiment_cuisiner', 'bu', 'transformera', 'cuira', 'dirigée_vers', 'liqueur', 'pisang', 'me_rassurer', 'me_disant', 'gite', 'menacer', 'demandant', 'crise', 'viennoiserie', 'reprise', 'ai_profité', 'parementure', 'finition', 'réfléchir', 'boutonnage', 'rendrait', 'expert', 'nettoyage', 'artichauts', 'persillade', 'tranches_minces', 'remuez', 'journées', 'incorporez_-les', 'émulsion', 'mexicaines', 'taboulé', 'laissez_évaporer', 'sauce_béchamel', '200_°', 'revenons', 'formidable', 'di', 'graissez', 'versez_-y', 'brie', 'réservez.3', 'petits_flans', 'flans', 'cuisinée', 'cuisinier', 'rebelle', 'seule_chose', 'améliorer', 'country', 'bread', 'tiré', 'kitchenaid', 'coucher', 'tard', 'mes_habitudes', 'mesures', 'trop_collante', 'levée', '450', 'mogador', 'pétrin', 'julie', 'ils_doivent', 'elles_puissent', 'rentrer', 'fourrez', 'accessible', 'éteint', 'interrupteur', 'programmateur', 'montait', 'paliers', 'nul', 'dégât', 'déclaré', 'assurance', 'dégâts_causés', 'trop_tard', 'rembourser', 'capitaine', 'bricoles', 'belle_aventure', 'envoyer', 'laissant', 'département', 'onze', 'stan', 'quatorze', 'quinze', 'eau_chaude', 'tante', 'déjà_bu', 'sorbet_citron', 'betteraves', 'winnie', 'copains', 'souffre', 'épaule', 'étamine', 'marie-pierre', 'caillou', 'viendrait', 'limonade', 'artisanale', 'jura', 'anis', 'distillé', 'caramélisé', 'gâter', 'reçue', 'producteur', 'créé', 'alphabet', 'ayant_servi', 'roche', 'ardenne', 'bien_expliquée', 'principal', 'robot_muni', 'k', 'brandy', 'glaçage_royal', 'trop_épais', 'bonne_consistance', 'réduisant', 'durée', 'gingerbread', 'caramels', 'siens', 'forts', '480', 'glucose', 'corn', '240_ml', 'soupe_rases', '1/2_cuil', 'goût_neutre', 'efforts', 'récompensés', 'grignoté', 'apéritifs', 'french', '165', 'tournant', 'dissout', '205', 'option', 'aluminium', 'renverser', 'charte', 'couverte', 'index', 'rubriques', 'kids', 'in_the', 'pensais', 'tranquillement', 'petit_déjeuner', 'réfléchis', 'improvisée', 'tomber', 'calorie', 'raisonnable', 'enlevez', 'placez_-la', 'renouvelez', '-30g', 'souchet', 'ingrédients_liquides', 'moulue', 'lin_moulues', 'lait_caillé', 'messages', '170_degrés', 'bibliothèque', 'premiere', '320_g', '180_c', 'convection', 'mauvaise_idée', 'réalisations', \"propose_aujourd'\", 'hui', 'base_biscuitée', 'ingrédients_cités', 'appuyant_légèrement', 'minimum_2h', 'besace', 'marsala', 'fleurs_comestibles', 'minutes.', 'lavabo', 'plier', 'rafraîchissante', 'délice', 'talent', 'rosée', 'magrets', 'diagonale', 'tranches_fines', 'nappés', 'basée_sur', 'manon', 'mandarines', 'litchis', 'palmier', 'jack', 'fines_lanières', 'exotique', 'exquis', 'milanese', 'tube', 'jarrets', 'servir.', 'gremolata', 'chaud.', 'bien.', 'légumes_sautés', 'nourrissantes', 'sauce_soya', 'bok_choy', 'jasmin', 'perlé', 'blé_entier', 'rassasiant', 'repas_complet', 'miche', 'pulser', 'croustade', 'plat_rectangulaire', 'mesurant', 'jolis_verres', 'regrouper', 'improvisé', 'trempées', 'fermentées', 'vieilli', 'semble_-t-il', 'dévoré', 'seul_coup', 'guar', 'experts', 'gluten_free', 'suggèrent', 'présentement', 'croute', 'née', 'concocter', 'tourtières', 'millet', 'faudrait', 'expérimente', 'nouvelles_façons', 'retrouvée', 'hummus', 'johnny', 'croustillants', 'rôtis', 'futur', \"cook_'\", 'régler', '15_min', 'toile_silpat', 'colore', 'communs', 'fournie', 'tresses', 'chignon', 'pétard', 'arceaux', 'relier', 'suit', 'serrée', 'arceau', 'madame', 'luck', 'souvenez', 'sara', 'loupé', 'céleste', 'semi', 'gabarits', 'fermoir', '40_ans', 'ride', 'enchante', 'générations', 'dominante', 'ficelle', 'claire', 'peps', 'mariage_réussi', 'mariés', 'différencier', 'invitations', 'faire-part', 'simples', 'invitation', 'réclamés_par', 'ma_belle-mère', 'ses_amis', '1760', \"s'_engager\", 'danoise', 'volé', 'motte', 'lave-vaisselle', 'béa', 'lessive', '1càs', 'rase', 'savon', 'paillette', 'marseille', 'marius', 'fabre', 'savon_noir', 'wc', 'cuvette', 'acide_citrique', '1_càs', '1/2l', '60_gr', 'boulanger_fraîche', 'mouille', 'pétris', '40°c', '60°c', 'malaxant', '220°', 'arthrose', 'bloquée', '3_semaines', 'ronde', 'sachertorte', 'vg', 'legumes', '.ajouter', '.les', 'boulgour', '.enfin', '22,5', 'évaporé', 'cocotte-minute', '-vous', 'initié', 'clara', 'ice_cream', 'macaronis', 'mayo', 'délayée', 'mélangés', 'longtemps_cherché', 'ai_trouvé', 'quantités_indiquées', 'détaillée', 'pu_goûter', 'rupture', 'légumes_verts', 'guide', 'foire', 'internationale', 'lyon', 'càc', 'eau_gazeuse', 'rhum_cubain', 'glaçons', \"puisqu'_elle\", '250°', 'je_venais', 'pralines_concassées', 'héhé', 'web', 'dorian', 'lait_fermenté', '-pour', '600_gr', 'farine3', 'cac', 'chou-fleur', 'arrangé', 'me_direz', 'augustin', 'blogger', 'inscrire', 'catégorie', 'cases', 'cocher', 'chose_promise', 'chose', 'due', 'poulettes', 'définitive', 'liens_vers', 'individus', 'intentionnés', 'espèce', 'protégée', 'pourraient_-ils', 'données', 'radicalement', 'opposée', 'intentions', 'fournissent', 'dise', 'dernieres', 'semaines', 'ete', 'intenses', 'c.a.s', 'egouter', 'calamars_farcis', 'grandes_tables', 'friche', 'dejeuner', 'combattants', 'asl', 'seraient', 'réunis', 'á', 'atteint', '14_ans', 'veuves', 'peint', 'tisanes', 'intention', 'évocation', 'réussie', 'robin', 'zorro', 'don_quichotte', 'héros', 'légendaires', 'préférés', 'confiait', 'gem', 'représentés', 'situations', 'quelle_différence', 'toutes_sortes', 'expériences', 'permises', 'expressément', 'voulues', 'acquérir', 'tous_ceux', 'gravité', 'intérieurement', 'spirituellement', 'transféré', 'fondement', 'immense', 'inébranlable', 'mensonge', 'conduirait', 'perdition', 'nous_pouvons', 'parole', 'domestiques', 'poussent', 'altitude', 'complexes', 'goûteux', 'déboucher', 'parts', 'tendresse', 'tonne', 'rappeler', 'supportent', 'décrite', 'scandaleuse', 'responsables_politiques', 'france_insoumise', 'lesquels', 'apprécieraient', 'soumise', 'extrême_gauche', 'parenthèse', 'scandales', 'auxquels', \"s'_accommode\", 'obligation', 'prélèvement', 'tva', 'première_nécessité', 'vol', 'manifeste', 'taxes', 'contributions', 'factures', 'edf', 'célébrissime', 'redevance', 'audiovisuelle', 'voler', 'détenteurs', 'téléviseurs', 'paient', 'forfait', 'regardent', 'programmes', 'service_public', 'centime', 'assemblée_nationale', 'ménagère', 'indispensable', 'supportable', '5€', 'malheur', \"s'_abat\", 'nos_concitoyens', '½_citron', 'système', 'tupperware', 'adopte', 'bouillonnant', 'varient', 'suffi', 'moelleuses', 'brune', 'linge', 'frotte', 'dindon', 'biscuits_émiettés', '*pour', 'rôtir', 'rebord', 'intestinal', 'digestion', 'pesanteur', 'civilisation', 'précisé', 'rendue', 'révolution', 'esprits', 'paix', 'bonne_volonté', 'entente', 'jugez', 'gloubiboulga', 'ultra_simple', 'coriandre_finement', 'aperçoit', 'occupé', 'rivage', 'coquillage', 'trou', 'affirmait', 'jean-paul_ii', 'compagnie', 'baal', '240°', 'th8', 'moule_rectangulaire', '30cm', 'lèche_frite', 'serré', 'dérouler', 'bûche', 'mafia', 'éd', 'hein_?', 'panoplie', 'antoine', 'toque', 'gant', 'trouvés', 'tutos', 'peut_-on', 'salariés', 'supprimant', 'calcul', 'bœuf_haché', 'gagnante', 'brunir', 'restantes', '×', 'je_prendrai', 'barre', ')_.préchauffer', 'crème_sure', 'légèrement_doré', 'laissé_tomber', 'je_pars', 'inspirera', '375', 'graisse_végétale', 'lait1', 'imprimer', \"m'_inspire\", 'averti', 'débutant', 'marier', 'bibi', 'con', 'veillé', 'section', 'pote', 'mecs', 'muscadet', 'évitez', '7h00', 'pointer', 'ah', 'hype', '8€', 'écouler', 'my_little', 'favorite', 'me_tente', 'avaient_laissé', 'ale', 'confesse', 'remède_miracle', 'vaincre', 'horizon', 'éveille', 'égayer', 'répandent', 'neigeux', \"dj_'\", 'lumière', 'éclaire', 'invente', 'rivière', 'tempête', 'cure', 'tiramisu', 'copa', 'tralala', 'diner', 'appui', 'niveaux', 'carrot_cake', 'réalisant', 'conseillais', 'ouf', 'bave', 'rapport', 'anglo-_saxonnes', 'pus', 'parce-que', 'ton_blog', 'fûts', '240', 'transférés', 'stéphane', 'aprés_midi', 'muraux', 'élastiques', 'hama', 'machines', 'métier', 'croquis', 'visuels', 'generale', 'coloriage', 'occasionnellement', 'provenant', 'industriel', 'jumeau', '.ils', 'modification', 'pages', 'forcées', 'icônes', 'navigateurs', \"s'_ouvre\", 'démarrage', 'avancée', 'aprem', 'pâtisserie_artisanale', 'échangeant', 'parents', 'dessinent', 'réservé', 'picard', 'mûre', 'tienne', 'bombée', 'oignons_rouges', 'évaporation', 'cliquer', 'tags', 'nuage', 'colonne', 'restaurant_parisien', 'existe', 'tiédir', 'cèpes', 'mn_environ', 'coquillettes', 'faire_gratiner', '190°', 'crème_épaississe', 'légumes_secs', ')_.vous', 'chef_doublement', 'officie', 'val_thorens', '4_ramequins', '45_mn', 'allumé', '25_mn', 'faire_croustiller', 'anneaux', 'crevettes_décortiquées', 'égoutté', '20_mn', 'retrouvé', 'cognac', 'passées', 'crème_épaisse', 'classeurs', 'débuts', 'indémodable', 'légèrement_modifié', 'beurre_persillé', 'escargots', 'escargot', 'gênant', 'arbre', 'carte_postale', 'portrait', 'signant', 'phrase', 'indicible', 'billes', 'poignées', 'volée', 'olympe', 'tiens', 'grand_mère', 'perds', 'serait_-ce', 'serrez', '60g', 'lavés', 'roquefort', 'faites_suer', 'œuf_battu', 'gorgonzola', '180_degré', 'revenues', 'ail_écrasée', 'parallèlement', 'sera_servi', 'faites_sauter', 'girolles', 'légèrement_grillées', 'échalotes_émincées', 'creuses', 'réservées', 'écrasez', 'digestive', 'banoffee', 'élément_déclencheur', 'accélérer', 'piqure', 'diabétique', 'pancréas', 'job', 'additionner', 'insuline', 'grandement', 'améliorée', 'ragoût', 'house', 'tanner', 'sortent', 'hihihihi', '-laisser_refroidir', '350°', 'hummm', 'réchaud', 'wow', 'savoureux', 'jurez', 'donnerai', '2c', '4h', 'je_cherchais', 'combler', 'fonctionner', 'ferait', 'c.à.s', 'oxydation', 'raisin', 'enduit', 'enduits', 'oignon_haché', 'poireau', 'thaïlandaise', 'fraises_fraîches', 'dissoudre', 'amusante', 'ingrédientspour', '90_grammes', '-_qs', 'troué', '90°c', 'laisser_sécher', 'torréfier', 'laisser_infuser', 'profiter', 'nectarines', 'démontrer', 'alimentation_saine', 'ennuyant', 'détruis_pas', 'me_dis', 'transmise', 'transmets', 'chaussette', 'archives', 'décorative', 'cheminée', 'sapin', 'mailles', 'régner', 'sont_nés', 'agent', 'stephen', 'charisme', 'passant', 'payer', 'pigeonnier', 'rendu', 'éclat', 'grs', 'rejoindre', 'courageuse', 'ombrelle', 'trousses', 'chartreuse', 'détours', 'gps', 'appartement', 'torsadé', 'larme', 'grand_renfort', 'sylvaner', 'alsa', 'yaourt_nature', 'coppa', 'beurré', '40mn', 'boudoirs', 'gelatine', 'biscuits_secs', '130_gr', 'gratins', '45mn', '250_gr', 'pelées', '70_gr', 'râper_finement', '20mn', 'dépend', 'chantilly_ferme', 'cà', 'café_rase', '-5', 'eventuellement', 'cous', 'oies', 'farcis', 'roues', 'tailles_différentes', 'there', 'are', 'beaumes-de-venise', 'faisons', '-nous', 'out_of', 'squares', 'were', 'to', 'their', 'three', 'doux_naturel', 'spécialité', 'ramassé', 'lectrices', 'été_touchée', 'inspirer', 'motivant', 'blabla', 'qqchose', 'dormir', 'moqueries', 'vêtements', 'seins', 'monstrueux', 'sourd', 'avalanche', 'débattre', 'submergé', 'sourire', 'radieux', 'luis', 'plantes_vertes', 'horrible', 'tapisserie', 'représentant', 'cauchemar', 'raves', 'verdâtres', 'violettes', \"j'_entendais\", 'comprenez', 'angles', 'collés', 'produit_phare', 'portes', 'euros', 'chais', 'propriété', 'butte', 'kiosque', 'mire', 'offrait', 'déesse', 'sacrés', 'échangeaient', 'voeux', 'oubliée', 'foodies', 'massalé', 'piment_doux', 'professionnel', 'aromatisé', 'bombé', '140', 'devienne_mousseux', 'régalez', \"za_'\", 'atar', 'croutons', 'épis', 'absorbe', 'garnier', 'éthique', 'périlleuse', 'passionnante', 'échappe', 'intérim', 'partition', 'ennuyeuse', 'oubli', 'précaire', 'bulles', 'bulle', 'artisanal', 'karité_nourrissant', 'glycérine', 'karité_brut', 'sélectionné', 'éclair', 'couche_épaisse', 'croquante', 'eclair', 'grenade', 'cool', 'changera', 'lait_jivara', 'nous_serons', 'beignes', 'indéterminé', \"j'_irai\", 'blogues', 'identique', 'grasse', 'lili', 'mettrai', \"j'_aurai\", 'satisfaite', 'optimale', 'goûteuse', 'rends', 'merveilleuse', 'combat', 'vendent', 'suivra', 'fouillé', 'confit', 'suis_allé', 'assez_rare', 'attends', 'dépenser', 'mieux_connaître', 'transformation', '5h', '300°f', 'frotter', 'papier_aluminium', 'retrouve', 'semaine_passée', 'élaborée', 'ses_mains', 'condiments', 'assortiment', 'issu', 'artisans', 'producteurs', 'cohérence', 'concept', 'barn', 'detox', 'choux_kale', 'fibres_solubles', 'insolubles', 'prévenant', 'augmentation', 'glycémie', '500ml', 'mixées', 'hibiscus', 'pollue', 'inépuisable', 'électricité', 'transformée', 'logements', 'pompes', 'mélangera', 'aurez_deviné', 'sections', \"réfrigérer_jusqu'\", 'levées', 'grands_groupes', 'cac_40', 'dividendes', 'aux_actionnaires', 'fortune', 'croit', 'clé', 'serrure', 'combinaison', 'poésie', 'vertu', 'votre_guise', 'mais_enivrez', 'esclaves_martyrisés', 'enivrez_-vous', 'citron*', '~', 'augmentant', 'arrow-root', 'pesez', 'testez', 'japonais', 'magasins', 'mirin', 'chouchen', 'estivaux', 'poêlées', 'légumes_cuits', 'poivron_jaune', 'spiruline', 'goûtez', '1-2', '100_ml', 'jet', 'énergique', 'sumac', 'poivrer_généreusement', 'très_populaire', 'industrielles', '330_g', 'mixant', 'rondes', 'veiller', 'assez_compacte', 'amidon', 'tamisant', 'passoire_fine', 'partie_inférieure', 'refroidisse', 'indique', 'virer', 'semis', 'éloigner', 'insectes', 'piéride', 'inciter', 'pondre', 'larves', 'grignotage', '80', 'pts', 'trame', '92', '79', 'alsacien', 'dessinée', 'jackie', '144', '174', 'octobre_2016', '82', '120', 'm.', '168', '127', '28_cm', 'mars_2015', '116', '164', 'septembre_2016', 'guy', '176', 'foyer', 'personnages', 'juillet_2012', 'delphine', '153', '107', '19', 'gland', 'charm', 'octobre_2013', '195', 'mon_péché', 'mignon', '20-30_minutes', 'rappelait', 'géographie', 'cooper', 'afrique', 'capitalisme', 'empire', 'payot', 'islam', 'sectaire', 'devenu', 'seuil', 'tuer', 'régimes', 'andrieu', '2016', 'marx', 'abraham', 'lincoln', 'inachevée', 'sécession', 'guerre_civile', 'esclavage', 'émancipation', 'aux_etats-unis', 'serge', 'parus', 'anarchie', 'librairie', '1989', 'fumoir', 'charbon', 'vedette', 'vertical', 'danette', 'pendant_1h', 'ceux-ci', 'fouetter_ensemble', 'remuer_doucement', 'vidéos', 'attendons', 'allure', 'autorité', 'conférée', 'imposer', 'égo', 'prouver', 'souverain', 'dépouiller', 'citoyen', 'trahison', 'chaussures', 'breuvages', 'frankenstein', 'boîtes', 'bien_dorée', 'mien', 'décadent', 'lb', 'mi', 'récipient_allant', 'pliant', 'froid_coupé', 'petits_pois', 'obtiennent', 'grumeleuse', 'toute_seule', 'pièce_montée', 'trop_occupé', 'immortaliser', 'fermant', 'entamée', 'taché', 'heu', 'sugar', 'baby', 'love', 'excités', 'consacrer', 'œuvre', 'instit', 'évènement', 'accord_préalable', 'auriez_pu', 'méfier', 'vase', 'éclaté', 'débris', 'vaudrait_mieux', 'balayette', 'ღ', 'reparti', 'cuillérée', 'tu_puisses', 'bisous', 'samedi_midi', 'n', 'légumineuses', '10-15_minutes', 'italiennes', 'me_souviens', 'noté', 'feu_moyen-doux', 'riz_cuit', 'sauce_blanche', 'naissance', 'statique', 'jointe', 'intriguée', 'pesto', '.je', 'progressé', 'aiguilles', 'aimant', ')_.pour', 'employé', 'logiciel', 'employer', 'concassés', 'bol_mélangeur', 'mini_tartelettes', 'minis', '10/12', 'croquants', 'verrine', 'fines_rondelles', '5_baies', 'touche_finale', 'herbes_aromatiques', 'frontière_entre', 'imaginaire', 'lue', 'vécue', 'aimée', 'parcourt', 'évoquant', 'oeuvre', 'né', 'bronx', 'traînait', 'parcouru', 'livret', 'partielle', 'optant', 'casquette', 'perruque', 'porteur', 'femmes', 'intéressés', 'vous_cherchez', 'extensions', 'bouclés', 'rebond', 'tenir_compte', 'vous_devrez', 'couple', 'tahini', 'secret', 'hard', 'thym_effeuillé', 'sarrasin_grillé', 'osso_buco', 'se_traduit', 'littéralement', 'faisant_référence', 'rouelles', 'tant_pis', 'esthétisme', 'garantis', 'gustatif', 'tomates_coupées', 'hachez_finement', 'dresser', 'pommeau', 'calvados', 'chinois', 'alexa', 'intolérante', 'laitage', 'galéré', 'nombreux_essais', 'découpées', 'encore_mous', 'sortant', 'arrache', 'cailloux', 'ramassés', 'limite', 'hamburger', 'mon_conjoint', 'marilou', 'certain', 'sucre1', 'retournant_souvent', 'poivrés', 'poêlés', 'insertion', '1er', 't150', '2ème', '3ème', 'lèche-frite', 'position_basse', '165°c', 'environ_15-20', 'abaisse', 'services_liés', 'superficie', 'corbeille', 'services', 'concierge', 'installations', 'comprennent', 'chocolat_mi-sucré', 'libèrent', 'laissant_couler', 'buche', 'marasquin', 'entrent', 'moment_où', 'vous_désirez', 'porcs', 'épicées', 'accompagnées', 'sauce_onctueuse', 'brunie', 'patates', 'bouillies', 'soit_translucide', 'grillée', 'quelques-unes', 'bouillonnante', 'vicky', 'épinards', 'ressort', 'désossé', 'ciselée', 'chaire', '(_optionnel', 'ciboulette_fraîche', 'calotte', 'égaliser', 'continuellement', 'pics', 'navigue', 'quête', 'idéalement', '50°c', 'éclats', 'thé_infusé', 'meilleures_conditions', 'guillemette', 'capes', 'assorti', 'huiler', 'tamisés', 'grosse_noix', 'perdrix', 'chaque_mois', '800_g', 'fiches', 'prêtée', 'vanillé', 'taillez_-les', 'abandonne', 'accompagnera_parfaitement', 'entrecôte', 'plancha', 'preneuse', 'effeuillé', 'dijon', 'poivrepréparation', 'beurrée', 'soient_cuits', 'cesse', 'joli_blog', 'by', 'morêt', '140°', 'congélation', 'fermé', 'écrasez_-les', 'cheesecake', 'hasard', 'bat', 'déroulé', 'extrêmement', 'magalie', 'aux_fourneaux', '.pour', 'citronnée', 'aimez', 'serez', 'déçus', 'dacquoise', '130_g', '2,5', 'fromage_blanc', '75_g', '8,5', 'bec', 'papier_sulfurisée', 'surplus', 'mélangez_doucement', 'gélatine_égouttées', 'pressant', '75_ml', 'gélatine_préalablement', 'brillante', 'colis', 'maroilles', '200°_c', 'privilégier', 'balançait', '160_g', 'dénoyautées', 'travaillant', 'pâte_étalée', 'as_-tu', 'laissée', 'tes_parents', 'arrives', '-tu', 'objets', 'toi-même', 'invitée', 'nos_vies', \"v_'\", 'rapports', 'choux_gras', 'choisit', 'poursuite', 'rhodoïd', 'artisan_chocolatier', 'a_permis', 'discuter', 'dictée', 'évitant_ainsi', 'devienne', 'noyaux', 'râpés', 'amandes_concassées', 'transparente', 'fermait', 'choeur', 'sculptures', 'candeur', 'new_york', '1938', 'représentations', '37', 'canetons', 'collecteur', 'eaux_pluviales', 'traverse', 'sont_tombés', 'interstices', 'larges', 'tentés', 'mains_nues', '8e', 'retourne', 'levier', 'posées', 'repérés', 'désespoir', 'adorables', 'bestioles', 'périr', 'riz_brun', 'sushi', 'orange_fraîchement', 'pressé', 'champs', 'florence', 'producteurs_locaux', 'feu_moyen-élevé', 'sauce_teriyaki', 'trio', 'légèrement_dorées', 'dams', 'très_intéressante', 'dénicher', 'nat', 'sont_arrivées', 'humidifiée', 'aquafaba', 'chic', 'nos_intérieurs', 'douces', 'cosy', 'remise', 'office', 'tourisme', 'tarif', 'volet_roulant', 'pascal', 'techniciens', 'sont_prêts', 'vanille2', 'pincées', 'refermez', 'osée', 'participer', 'soulef', 'gentillement', 'ingrédients_sauf', 'dorez', 'participez', 'farine1/2', 'beurre100_g', 'eh_oui', 'succombé', 'envoyez', 'prendra', 'buée', 'écœurante', 'hypermarché', 'tournez', 'crème_mousseline', 'démarre', 'grand_nombre', 'scolaires', 'associations', 'scolaire', 'émaillage', 'accident', 'éléphant', 'marmotte', 'émail', 'coulé', \"s'_engage\", 'reproduire', 'contenus', 'mandarine', 'gène', 'orangé', 'lie', '6-7', ')_.2', 'elle_enfile', 'beau_tablier', 'pose_devant', 'délicieux_tarama', 'faire_germer', 'accueilli', 'fût', 'campagnard', 'régionale', 'petits_pots', 'mémé', 'magnifiques', 'stériliser', 'four_solaire', 'polluant', 'banc', 'goyave', 'guyane', 'chanterelles', 'puis_baisser', 'évaporer', 'compagnon', 'saucisse', 'chips', 'sauvignon_blanc', 'frappé', 'se_décline', 'saisie', 'blanchie', 'fève', 'asperge', 'aromatiser', 'pochés', 'salicorne', 'fouler', 'fines_herbes', 'réveillon', 'parties', 'souterraines', 'moulues', 'semblables', 'flacon', 'abri', 'te_plaise', \"n'_hésites\", 'amalgamer', 'formant', '55_g', 'tempéré', 'pouilles', 'huilez', 'convenablement', 'campanie', 'je_suppose', 'carrosse', 'sardaigne', 'sicile', 'utilisait', 'émiettant', 'mélangeant', '250_ml', '450°f', '225°c', 'sans_arrêt', 'me_motive', 'celui-là', 'bonnes_choses', '260', 'bulles_»', 'effectuée', 'chocolate', 'ginger', 'lemon', 'girl', 'sorgho', 'allergènes', 'enjoy', 'life', 'gluten-free', 'demandait', 'tapioca', 'contacté', 'intéressé', '1kg', 'su', 'mamie', 'grange', 'ruine', 'parée', 'tablier', 'suisses', 'déchire', 'croquettes', 'nul_besoin', 'irrésistiblement', 'restent', \"m'_arrange\", 'cas_où', 'ça_finit', 'ramassent', 'buffalo', 'dégustés', 'ils_arrivent', 'maturité', 'dommage', 'découpés', '75_%', \"j'_opte\", '160_gr', 'pâte_obtenue', 'contempler', 'donc_décidé', '320', 'façonner', '1h00', 'alimentation', 'rassemble', 'apprécies', 'omis', 'basilic_thaï', 'flop', 'essai', 'taste', 'santa', 'fe', 'tomate_cerise', '680', 'tamiser_ensemble', 'portion', 'sauce_crémeuse', 'dents', 'nous_faisons', 'là-dedans', 'chroniques', 'maniaque', 'ferai', 'marbré', 'gratiner', 'franchir', 'marchander', 'gerbe', 'sels_minéraux', 'étouffé', '1_botte', 'fraîchement_pressé', 'remuer_énergiquement', 'ail_hachées', 'parsemant', 'ciboulette_ciselée', 'carotte_coupée', 'persil_hachés', 'foie', 'rognons', 'râble', 'désosser', 'boucher', 'grisâtre', 'déstabiliser', 'altère', 'laisse_reposer', 'bonne_dizaine', 'découpage', 'repose', 'fondent', 'utilisations', 'ultérieures', 'bonne_qualité', 'pleines', 'compter', '1,2_kg', 'ail_hachés', 'cinq_minutes', 'petits_bouquets', 'fiche_technique', 'donnée', 'sauvignon', 'merlot', 'cabernet_franc', 'petit_verdot', 'faut_-il', 'blanquette', 'singer', 'laisser_épaissir', 'gros_bouillons', 'ciselées', 'vietnam', 'désaltère', 'pauvres', 'tables', 'partant', 'hachis', 'régaler', 'pelé', 'membranes', 'laitue', 'piment_oiseau', 'saveur_piquante', 'tomate_coupée', 'surnage', 'palme', 'nems', 'crevette', 'subir', 'nem', 'vietnamien', 'biscuits_roses', 'farci', 'barcelone', 'coeur_coulant', 'nougatine', 'crêpes_dentelle', 'blanchisse', 'nappe', '150ml', 'turbine', 'sorbetière', '200º', 'vida', 'flambé', '115g', 'poelle', 'cranberries', 'étoiles', 'badiane', 'st_jacques', 'baigne', 'verrez', 'meringue_italienne', 'très_sympa', 'alicante', '/_mon-compte', '/_creation', '/_connexionle', 'club_{', '0_}', 'vos_favorisle', 'supprimé', 'vos_favorissupprimer', 'favorisajouter_aux', 'favorisvous_devez', 'connecté', 'vos_favorisse', 'connectercréer', 'comptefermer', 'entame', 'tricoté', 'triple', 'herbe', 'rehausse', 'crémeuse', 'regorgent', 'fêter', 'iphone', 'ebooks', 'libres', 'gratuits', 'tapoter', 'another', 'evan', 'roth', 'mérité', 'see', 'clips', 'rayons_x', 'aéroports', 'braiser', 'expliquées', 'analysées', 'modernes', 'mixtes', 'combi', 'procédés', 'sous_vide', 'emballages', 'bains', 'stratégies', 'chapeaux', '16h00', '20h00', 'réouverture', 'exposition', 'manquaient', 'problèmes', 'encadrement', 'retard', 'reussir', 'butterfly', 'allergique', 'faiblement', 'bn', 'goût_acidulé', 'ajoutés', 'contraste', 'exacte', 'solaires', 'violet', 'indigo', 'prisme', 'solaire', 'boeuf_haché', '8_heures', 'sourde', 'oreille', 'criant', 'mangent', 'mouton', 'ils_auraient', 'inventé', 'bouffer', '-ajouter', '-à', '-1', 'cristallisé', 'minimale', 'disparition', 'glaçon', 'disposant', '*les', 'retirez_-le', 'cannelés', 'remplissez_-les', 'démoulez_-les', 'pérou', 'argentine', 'conquis', 'pénétrante', 'développe', '-préchauffer', '140°c', 'verveine', 'turbot', 'émincer_finement', 'maintenez', 'shaker', 'étuver', 'quele', 'lui_donner', 'additionnel', 'radis_noir', 'me_revoici', 'lé', 'décortiquez', 'détaillez_-les', 'faite_maison', 'détendez', 'colorant_rouge', 'terminez_par', 'stylo', 'alimentaire', 'restée', 'cacaotée', 'qui_concerne', 'disposé', 'chocolat_dulcey', 'valhrona', 'cacao_amer', 'stoppez', 'termine', 'post', 'allers-retours', 'fraîchement', 'sarah', 'piquante', 'accompagnez', 'biscuits_sablés', 'panna_cotta', 'compotée', 'troupeau', 'cieux', 'nue', \"s'_assoit\", 'protagonistes', 'david', 'compositeur', 'chargé', 'vos_propres', 'ultime', 'disque', 'gary', 'juste_saisi', 'prétexte', 'année_2017', 'bill', 'refusait', 'emblée', 'concession', 'musicien', 'perfectionniste', 'attachant', 'espèces', 'ne_manquera', 'indispensables', 'arrangements', 'bel_objet', 'malicieux', 'singulier', 'bluffant', 'avoue', 'craquent', 'pressée', 'waouh', 'bizarre', 'introuvable', 'étonnante', 'choississez', 'sélectionnant', 'vous_habitez', 'bouse', 'vache', 'parfaits', 'egg', 'roll', 'consultée', 'poivron_vert', 'piment_fort', 'budapest', 'comptant', 'habitants', 'orchestres', 'permanents', 'orchestre', 'nationale', 'hongroise', 'opéra', '234', '105', '161', 'aire', 'urbaine', 'radio-', 'ile-de-france', 'contraction', 'annonce', 'arrivés', 'attaquer', 'vous-même', 'cordes', 'vibrato', 'lyrisme', 'crèpe', 'compositeurs', 'soviétiques', 'imposé', 'antidote', 'vertueux', 'me_semble', 'échapper', 'efficace', 'danser', 'délasser', 'métro', 'adeptes', 'tendre_enfance', 'racontant', 'avait_failli', 'patte', 'lunettes', 'trouille', 'robot_ménager', '1/3_cup', '1_cup', 'cup', 'cake_moelleux', 'trouveraient', 'croyez_-moi', '2_cups', 'créée', 'juillet_2005', 'cidres', 'artisanaux', 'bières_artisanales', 'préserver', 'rencontres', 'échanges', 'stand', 'commun', 'varié', 'texture_granuleuse', 'manteau', 'renvoi', 'endives', 'lasagnes', 'soufflés', 'grignoter', 'privé', 'vous_invitons', 'sites_internet', 'url', 'cochez', 'case', 'rédaction', 'link', 'building', 'complexe', 'principe', 'écrivez', 'e-mail', 'biensure', 'arcticle', 'email', 'inlassablement', 'ferme_familiale', 'irlande', 'pâturages', 'alentours', 'initie', 'dompter', 'suave', 'pourpres', 'serpolet', 'infusé', 'zeste_finement', 'zestes_râpés', 'coupant', 'petits_tronçons', 'gants', 'frottant', 'sauvages', 'normande', 'charnues', 'habituelles', 'aubaine', 'proximité', 'colza', 'produits_phytosanitaires', 'choucroute', 'perd', 'navet', 'cousin', 'cousins', 'cousines', 'intéressantes', 'choux-fleurs', 'brocolis', 'position_grill', 'rouleaux', 'sortis', '10cl', 'panais', 'huîtres', 'aromatiques', 'nectarine', 'disponibilité', 'continent', 'flexible', 'entendez', 'ne_renie', 'brûlures', 'devront', 'supporter', '130°', 'uniforme', 'piler', 'purée_obtenue', 'incorporée', 'fajitas', 'pressés', 'petits_monstres', 'aimeraient', 'mangeaient', 'kiki', 'costumes', 'fouiner', 'prier', 'commande', 'bienvenu', 'installé', 'rentrant', 'suprême', 'blettes', 'longtemps_hésité', 'arènes', 'fuits', 'remplies', 'canyon', 'pouls', 'accélère', 'principaux', 'venez', 'nini', \"j'_espére\", 'oulala', 'bonnes_résolutions', 'se_priver', 'alfredo', 'gratter', 'croque_monsieur', '1ére', 'mimi', 'gagne', '2éme', 'julia', 'coffret', 'initiation', 'en_cliquant', '===_>', '>_>', 'accordéon', 'basé_sur', 'vaste', 'enfin_bref', 'sucreries', 'visages', 'issues', 'mme', 'fée', 'boites', 'luminaire', 'savoir-faire', 'rénovation', '2006', '9ème', 'jean-baptiste', 'pigalle', 'cho', 'room', 'dédié', 'artisans_chocolatiers', 'régionaux', 'auteurs', 'croqueurs', 'attribué', 'awards', 'bronze', 'meilleurs_chocolatiers', 'via', 'figurent', 'palmarès', 'gilles', 'incontournables', 'figaro', 'puy', 'fougasse', 'type_55', 'endroit_tiède', 'courants', 'semaine_dernière', 'célébrer', 'barquette', 'reine', 'saba', 'fait_rêver', '4/5_personnes', 'débuter', 'valse', 'éditions_marabout', 'psychologiquement', '220_g', 't_45', 'doivent_être', 'steaks', 'pupilles', 'boulange', 'repos', 'gonfle', 'terriblement', 'farine_t45', 'émiettez', 'muni', 'réglé', 'romance', 'construction', 'raku', 'construire', 'modique', 'découpée', 'dégourdi', 'enfournement', 'tailles', 'latérales', 'situer', 'ouverture', 'placée', 'fixée', 'emplacement', 'grille_métallique', 'amovible', 'changée', 'bidon', 'facultative', 'gaz', 'dépoussiérer', 'métalliques', 'habillage', 'briques_réfractaires', 'briques', 'déplacées', 'conçu', 'habiller', 'courbe', 'correspondent', 'courbure', 'flammes', 'bruleur', 'alimenter', 'voûte', 'plaçant', 'réfractaire', 'stabilité', 'piliers', 'côté_opposé', '20mm', 'travaillées', 'fibre', 'irritante', 'use', 'kw', 'h', 'suffisant', 'trente', 'pallier', 'petits_trous', '8_mm', 'contrôler', 'prenez_soin', 'métal', 'déformer', 'ordinaires', 'constituer', 'cendrier', 'verticale', 'taillée', 'laisse_tomber', 'cendre', 'braise', 'lourdes', 'appuis', 'u', 'partiellement', 'faible_quantité', '10ml', 'petits_bols', 'oeufs_durs', 'sans_tarder', 'tutoriels', 'réaliser_vous-même', 'activement', 'thérapie', 'terminées', 'grande_joie', 'artagnan', 'brioché', 'tressée', 'inratable', 'attention_toutefois', 'prochains', 'posts', 'épater', 'briochettes', \"présente_aujourd'\", 'gut', 'pâtes_levées', 'fatigue', 'méthodologie', 'demandez_-vous', 'rajout', 'réhydratation', 'suivent', 'peuvent_se', 'rafraîchir', 'critiquer', 'fichue', 'pain_brioché', 'brioche_tressée', 'rappel', 'dure', 'génial', 'velléités', 'dégonfler', 'débordant', 'brûlante', 'transcendante', 'vilain', 'menteur', 'recommanderais', 'trempette', '75_gr', 'pub', '20_secondes', 'verse', 'réhydrate', 'hydratée', 'étuve', 'comprise_entre', '25°c', 'pétrie', 'linge_humide', 'pendant_1h15', 'écrasant', 'allume', 'pass', 'adulte', '2€', 'quotidien', 'mijoté', 'réchauffe', 'estomac', 'maîtriser', 'engin', 'cet_ustensile', 'ah_ah', 'je_reprends', 'flou', 'éprouvé', 'évitera', 'filo', 'cigares', 'secrète', 'seules', 'rapportent', 'milliards', 'par_an', 'chimiques', 'bleu_foncé', 'strié', '2_cuillerées', 'lanières', 'décilitres', 'résiduelle', 'casserolle', 'fouettant', '-_25g', 'emiettez', 'posez_-les', \"s'_éloigna\", 'rencontra', 'distance', 'mettaient', '½_verre', '3_litres', '48h', 'post-scriptum', 'novembre_2015', 'acacia', 'grappa', 'héritage', 'immonde', 'monte', 'consacrées', 'version_française', 'alice_feiring', 'spécialiste', 'new-yorkaise', 'normalisation', 'explorer', 'origines', 'nu', 'berceau', 'géorgie', 'tonnerre', 'marcher', '2011', 'consacre', 'édition', 'ouvrages', 'essentiellement', 'dédiés', 'biodynamique', 'publiant', 'emblématiques', 'jean-pierre', 'olivier', 'christophe', 'buccale', 'préciser', 'tournés', 'perturbés', 'triste', 'aulnay', 'tâter', 'anjou', 'eut', 'pléthore', 'idealwine', 'adjugé', '2000', 'yoda', 'millésimes', 'récents', 'petite_poignée', 'mythiques', 'fabrice', 'créateur', 'saines', 'vivant', 'société', 'impasse', 'guides', 'achats', 'fleurissent', 'moisissures', 'grandes', 'messes', 'médiatiques', 'fausses', 'bonnes_affaires', 'grande_distribution', 'opérations_commerciales', 'grande_échelle', 'palettes', 'permettront', 'écoulement', 'liquides', 'profusion', 'endiguer', 'fièvre', 'troupeaux', 'rendus', 'accros', 'médailles', 'distribuées', 'jurés', 'gourous', 'soi_disant', 'expertise', 'preparation', 'ôter', 'coeurs', 'quelles', 'occident', 'moitie', '35_min', 'rapé', '80ml', '1c', 'ail_écrasé', 'sauce_pimentée', 'brun_doré', 'plaque_garnie', 'obtenue', 'amandes_moulues', 'étalée', 'ne_noircissent', 'dépannage', 'réparé', 'air_succulente', 'gestion', '|', 'flux', 'pliez', 'ras', 'insérez', 'cotés', 'grince', 'vrai_dire', 'brunes', 'expliquant', 'lecteur', 'aborde', 'préjugés', 'se_souvient', 'pénélope', 'son_beau-père', 'mourrait', 'proclamé', 'yeux_fermés', 'trahir', 'louise', 'avions', 'spéciale', 'nommée', 'bella', 'bidouillé', 'tamis', 'kitchen_aid', 'médiatisation', 'médias', 'toussa_toussa', 'compléments', 'transportable', 'lunch', 'mug', 'bag', 'enterrées', 'mexicains', 'malaise', 'intégrés', 'sentiments', 'redonne', 'succinctement', 'promotions', 'ing', 'chez_eux', 'comptes', 'période', '1000€', 'utilisateurs', 'visualiser', 'limitative', 'exhaustive', '000', 'intégralement', 'accords_mets-vins', 'sommeliers', 'planifier', 'menus', 'automatique', 'incombe', 'comporte', 'aliment', 'générer', 'consommateurs', 'réactions_allergiques', 'intolérances', 'fabriqué', 'ballons', 'boucliers', 'peints', 'cartons', 'pochoirs', 'chevaliers', 'bretelles', 'francophone', 'passionnés', 'single_malt', 'foires_aux', 'rendez-vous_incontournable', 'impressions', 'dégustent', 'discussion', 'petits_sablés', '6-8', 'gomme_xanthane', 'laitier', 'soient_dorées', 'percer', 'complètement_fondu', 'fonde', 'substitut', 'produit_laitier', 'moule_carré', '30_ml', 'dissous', 'contenant_hermétique', 'dons', 'peluche', '<_/', 'qualifié', 'antiquité', 'opposition', 'plaine', 'null', 'voulez', 'expédition', 'vue_magnifique', 'flair', 'soumettre', 'vérifications', 'périodiques', 'donnez_-lui', 'mobilier', 'entretien', 'impliqué', 'exposée', 'conditions_climatiques', 'difficiles', 'visibilité', 'étage', 'poubelle', 'convenable', 'port', 'affichés', 'madeleines', 'madeleine', 'quarantaine', 'tu_ajoutes', 'émiettés', 'dénoyauter', 'chaque_alvéole', 'bosse', 'yop', 'accordez', 'écarts', 'saison_estivale', 'layer_cake', 'lilac', 'sépia', 'smoke', \"j'_essaie\", 'vous_possédez', 'stabilisateur', 'but_précis', 'densité', 'je_veux', 'chlorure', 'magnésium', 'nigari', 'coagulation', 'avez_-vous', 'rendu_compte', 'description', 'cela_fonctionne', 'vernis', 'fabuleuse', 'trouvaille', 'grand-mères', 'végétale', 'dense', 'maîtrise', '100°c_pendant', 'linda', 'louis', 'je_dirais', '8h', 'justement', 'résidus', 'petits_paquets', 'préparés', 'roussis', 'compléter', '7_heures', 'ui', 'thermostat_6-7', 'appuyer', 'émotion', 'éparpiller', 'mettez_-en', 'tahiné', 'sésame_grillées', 'ils_continueront', 'réactiver', 'devienne_translucide', 'nettoyés', 'ovale', 'smen', 'ghee', 'semoule_fine', 'réhydrater', 'nigelle', 'belle_boule', 'vitaminé', 'équeutées', 'lavées', 'pichet', 'quelques_rondelles', 'poële', 'pendant_2-3', 'confirme', \"s'_écouler\", 'échalottes', '1min', 'ail_émincés', 'initialement', 'mes_parents', 'marmiton', '1/2_càc', 'brick', 'séparant', 'se_congèlent', 'repasser', 'émaillée', 'cuivre', 'éliminées', 'vaisselles', 'anciennes', 'donnent_envie', 'torchons', 'vraiment_dommage', 'joli_mug', 'livrés', 'juste_sorties', 'craquants', 'bistrot', 'déguste', 'moelle', 'importation_privée', 'sérieux', 'feuilleter', 'nous_dégustons', 'bonne_bouteille', 'annecy', 'modestes', 'manifestations', 'poètes', 'race', 'prêtent', 'rayonnement', 'devaient', 'outrance', 'glorieuse', 'montantes', 'foule', 'dis_-je', 'revêtir', 'durable', 'nous_publions', 'notices', 'poèmes', 'séance', 'fraisier', \"j'_attendais\", 'mi-parcours', 'figer', '30min', 'boîte_hermétique', 'soldats', 'armes', 'avait_habillés', 'destin', 'soir_désoeuvrés', 'incertains', 'ma_vie', 'retenez_vos', 'heureux', 'fibres', 'proposition', 'medef', 'nicolas_sarkozy', 'vise', 'contrat', 'indemnité', 'employeur_devra', 'magie', 'inédit', 'sans_modération', 'numéros', 'comiques', 'proprement_parler', 'restaurants', 'connais', 'macaroni', 'courges', 'disquette', 'souvenue', 'bible', 'ramollis', 'introductions', 'avertie', 'testant', 'conséquence', 'modestie', 'interpellé', 'langoustines', 'pourriez', 'anguille', 'japonaise', 'diffuser', 'matelote', 'bourguignonne', 'parue', 'postée', 'octobre_2010', 'site_internet', 'splendide', 'notions', 'culot', 'éphémère', 'qi', 'wei', 'chefs', 'secrets', 'reconnaissante', 'mélange_épaississe', '5cl', '2g', '-préchauffez', 'gonflent', 'comptez', 'environ_20min', 'laissez_sécher', 'dressage', '15cl', 'poste', 'années_précédentes', 'je_tenais', 'logement', 'courchevel', 'stage', 'privée', 'actuellement', 'poster', 'grossièrement_hachés', 'gastronomie', 'achetant', 'toute_prête', 'honte', '240°c', 'badigeonnez_-la', 'absence', 'langues', 'ce_week-end', 'dégainé', 'recette_infaillible', 'recommandait', 'espacés', \"s'_étale\", '8_min', 'colorés', '-6', 'douille_munie', 'douille_cannelée', 'incorporez_délicatement', '35cl', '-faites', 'revisité', 'milan', 'sentez_-vous', 'félicitations', 'préservé', 'bonne_bouffe', 'sans_prétention', 'sympas', 'selfies', 'pleinement', 'concert', 'artiste', 'savez', 'retraite', 'calendrier', 'personnalisé', 'gratuitement', 'librement', '180_g', '2_rectangles', 'pistoles', 'tatin', 'fingers', '2_fourchettes', 'laisser_durcir', 'relisant', 'visionnant', 'belles_photos', \"quelqu'\", '62', 'ambrée', 'gélatine_égouttée', 'instantanée', 'tiédies', 'travail_fariné', 'décide', 'replonger', 'kougelhopf', 'délayant', 'ultra_gourmande', 'célèbre_pâtissier', 'christophe_adam', 'gélatine_essorée', 'brun', 'th.5/6', 'croustilles', '200_grs', 'aérien', 'petite_bibliothèque', 'éditions', 'larousse', \"s'_intitule\", '250_grs', '50_grs', '8/9', '250°c', 'demi-sel', 'goupillon', 'ferment', 'mangerais', 'sab', 'remplacé_par', 'piquée', 'sorbet', 'replier', '20_cl', '650', 'faire_suer', 'ail_pilé', 'braisée', 'goulash', 'pâton', 'évitant', 'compresses', 'stériles', 'prévoit', 'constance', 'délicatesse', 'recette_fétiche', 'substance', 'poudreuse', 'feux_doux', '230g', '1/2_cube', 'dilué', 'levure_diluée', 'ateliers', 'conférences', 'passionnants', 'créateurs', 'porteurs', 'pigment', 'spiruline_marine', '12_h', '14h30', '17h30', 'curiosité', 'me_semblait', 'approuvé', 'pâte_feuilleté', 'enfourné', '25_min', 'notice', 'rissoler', 'rechauffer', 'pendant_1h30', '2h', '200°c_pendant', 'protection', 'copyright', 'bavarois', 'lissant', 'tenez', 'paillassons', 'vendredi', '15_septembre', '29_septembre', '27_octobre', 'porto', 'gibier', 'herbes_hachées', 'airelles', 'journalistes', 'texto', 'clac', '20h', 'nouvel', 'assistant_personnel', '29', 'livraison', 'aigue', 'parade', 'transitoire', 'gain', 'carambars', 'température_moyenne', '(_th.5-6', '.verser', 'kiwis', 'contrepied', 'chouia', 'cranberries_séchées', 'mini-muffins', 'picorer', 'parfumés', 'mixés', '1_cuill', 'préalablement_tamisée', 'poignets', 'contribue', 'bien-être', 'extracteur', 'quels_sont', 'avantages', 'juicer', 'rigoureusement', 'saviez', 'je_connais', 'anormal', 'chéris', 'rituel', 'biscotte', 'hello', 'collants', 'écharpes', 'petits_bonheurs', 'sentent_bon', 'cahiers', 'neufs', 'câlins', 'basilic_séché', 'fermement', 'chamallows', 'classes', 'proposée_par', 'suffrages', 'électeurs', 'ps', 'passés', 'écolo', 'mécontents', 'volte-face', 'tendances', 'événements', 'sociaux', 'préoccupant', 'éloignés', 'turpitudes', 'opinion_publique', 'égarés', 'départementale', 'ressemblait', 'indigènes', 'ancrés', 'mouillage', 'zinc', 'cep', 'intelligibles', 'soignant', 'haute_voix', 'enseignant', 'sieur', 'jourdain', 'différentes_manières', 'prononcer', 'panneaux', 'camion', 'évacués', 'poteaux', 'débordait', 'courrier', 'entassés', 'gâtée', 'violette', 'promenade', 'amuse-bouche', 'rêver', 'serait_dommage', 'finisse', 'intégrant', 'me_trompe', 'trop_longtemps', 'inaperçu', 'se_transforme', 'cure_dent', 'nécéssaire', 'pourrit', 'différentes_préparations', 'zero', 'gaspillage', 'fans', 'préféreront', 'canneberges', 'version_originale', 'valeur_sure', 'régal_!', 'plusieurs_essais', 'actif', 'optionnel', 'peser', 'ça_tombe', 'convertis', 'fermentations', 'vous_serez', 't65', '60gr', 'tapotant', 'faire_adhérer', 'est_préférable', 'nestlé', 'cacaoté', 'bien-sûr', 'façonnage', 'fourrage', 'miam_!', 'excuse', 'vos_préférences', 'fraser', 'corne', 'retomber', 'pétrissant', 'incorporation', '10_%', 'rabattre', 'pâtons', 'souder', 'baguettes', '185°', 'réservant', 'délayé', 'flotter', 'légèrement_collante', 'réservés', 'tt', 'donnez_-moi', 'oui_oui', 'cruellement', 'gouteuse', 'allais', 'namandier', 'nous_adorons', 'feuilleté', 'désolée', 'sentant', 'pommettes', 'rythme_cardiaque', 'se_rapprocher', 'normale', 'retournai', 'comptait', 'restaurateur', 'véhicules', 'banque', 'compteur', 'latéral', 'restaurer', 'mob', 'je_prendrais', 'manquent', 'moche', 'incomplète', 'suivez', 'formés', 'eh', 'bulgares', 'arabes', 'cloître', 'chapelle', 'construite', 'fidèles', 'observance', 'règle', 'apprends', 'yahourt', 'servez_-vous', 'vous_remarquerez', 'entamé', 'noisettes_hachées', 'puree', 'dl', 'baigner', 'réalisable', 'démarrer', 'bouilloire', 'simplissime', 'aplatissez', 'petits_chaussons', 'fourrer', '280°c', '8/10', 'speculos', 'verts', 'zest', 'poudre_obtenue', '118°c', 'mini_muffins', 'tomates_confites', 'herbes_fraiches', '33_cl', 'sables', 'amusée', 'sculpter', '♡', 'vous_verrez', 'opérer', 'pétales', 'crème_onctueuse', 'oreos', 'apple_pie', 'cake_pop', 'choco', 'mousse_mascarpone', 'dévoile', '<_3', 'oeufs_fouettés', 'battre_énergiquement', '175°c', 'remué', '1càc', 'beurre_allégé', 'tours', 'servit', 'blanchiment', 'ébulition', 'ecrasez', 'cuillière', 'agressivité', 'soldat', 'aux_usa', '2001', 'oignon_coupé', 'maïzena_diluée', 'imprimé', 'crepes', 'realisé', 'atlantique', 'pain_marocain', 'abricots_secs', 'briouates', 'pastilla', 'tip_top', 'catastrophe', 'sémantique', 'loto', 'pièces_manquantes', '♥', 'architecture', 'maquettes', 'plusieurs_reprises', 'tintin', 'bâtiments', 'bruxelle', 'cheverny', 'expositions', 'novi', 'spectacles', 'saisons', 'congrès', 'hôtel', 'riez', 'nadine', 'munie', 'fondée', 'commanderie', 'parchemin', 'templiers', 'daté', 'conservé', '44', 'passionné', 'rachète', 'insuffle', 'élan', 'prairie', 'alain', 'clément', 'raynaud', 'patrick', 'fleury', 'lee', 'premier_plan', 'magnifier', 'cultive', 'caractéristique', 'siècles', 'première_guerre', 'constituait', 'élément_principal', 'pétri', 'communal', 'bluter', 'trilogie', 'toiles', 'soie', 'être_utilisées', 'souhaitée', 'ermitage', 'cliché', 'clichés', 'visites', 'dégradations', 'drogue', 'baise', 'baiser', 'vodka', 'branché', 'londres', 'sensation', 'enfile', 'cigarette', 'excitante', 'marrant', 'excitant', 'coule', 'repartie', 'me_hante', 'deviens', 'couples', 'reproduction', 'poivrons_farcis', 'saveur_particulière', 'jouissif', 'se_réfugier', 'bon_aloi', 'ventouse', 'alliée', 'pause', 'snacks', 'composez', 'catalogue', 'mes_frères', 'confitures', 'poisseux', 'dresse', 'appétissant', 'positionnée', 'éclatant', 'incubation', 'vendue', 'framboises_fraîches', 'gâteau_roulé', 'tagada', 'onctueuses', 'thé_vert', 'poche_munie', 'plaque_chemisée', 'dilue', 'trous', 'nous_préparons', 'notée', 'crèpes', 'martini', 'protègent', 'soucis', 'symbole', 'toastées', 'humm', 'unanimité', 'filmé', 'entourées', 'jambon_cru', 'sucré-salé', 'réveillera', 'vos_invités', 'apprécié', 'se_déroule', 'signé', 'pseudo', 'éditer', 'précisent', 'régime_alimentaire', 'féculents', 'oligoéléments', 'parking_gratuit', 'cuisine_équipée', 'cacaoyer', 'transformations', 'pressage', 'durcisse', 'plaquettes', 'poussins', '-on', 'dos_tourné', 'transforme', 'rigoler', 'ses_camarades', '(_jn', 'flotte', 'gouté', 'officielle', 'clandestines', 'apparaît', 'costume', 'fromagerie', 'charcuteries', 'livré', 'laines', 'écheveau', 'déesses', 'mette', 'thor', 'châle', 'leger', 'plumes', 'élu', 'trinque', 'trempe', 'se_promener', 'pointures', 'ajouré', 'flambe', 'te_souhaite', 'couteau_pointu', 'donneurs', 'boucler', 'déclarer', 'celà', 'impôts', 'construit', '1874', 'loc', 'halle', 'chants', 'ensoleillée', 'bouffe', 'orientale', 'montréal', 'soyez', 'végétarien', 'nous_saurons', 'satisfaire', 'vos_besoins', 'el', 'colombie', '(_cf', 'cet_atelier', 'vocabulaire', 'perdit', 'coulait', 'ses_amies', 'soutenaient', 'serrant', 'en-dessous', 'finissant', 'lécher', \"s'_arrêtant\", 'quelques_clics', 'loué', 'stopper', 'diffusion', 'temples', 'signature', 'prestige', 'saucer', 'liseuse', 'petit-déj', 'team', 'attribuée', 'vedettes', 'résidents', 'mini_cake', 'cheese_cake', 'mon_neveu', 'ma_nièce', 'lapine', 'ballerine', 'ourson', 'indien', 'extérieurs', 'vanity', 'bullet_journal', 'combine', 'agenda', 'calendriers', 'mensuelles', 'vision', 'indices', 'pelouse', 'calcinée', 'bâtisse', 'catacombes', 'affluence', 'touristes', 'vin_pétillant', 'désert', 'cordeliers', 'entiers', 'verre_doseur', 'comptine', 'envoutante', 'sortilège', 'buste', 'vide-poche', 'je_poursuis', 'partenariat', 'étal', 'vous_proposerai', '29_avril', 'versailles', 'tataki', 'nippone', 'étalé', 'mariné', 'couplé', 'bœuf_mariné', 'asiatiques', 'combava', 'rabougrie', 'inspirations', 'sarriette', 'choux_frisés', 'survécu', 'choux_rave', 'pointus', 'aménagement', 'céleris', 'demandent', 'planches', 'boisson_chaude', 'apports', 'kiwi', 'pur_jus', '2_verres', 'lev', 'inférieure', 'cf', 'tofs', 'excite', 'sirops', 'nique', 'ex', 'mécanique', 'râle', 'hic', 'shoah', 'élite', 'queue', 'vitre', 'décharge', 'énergétique', 'hot', 'front', 'boue', 'mates', 'teint', 'gay', 'nettoie', 'matins', 'cars', 'carters', 'fausse', 'moon', 'cultivateur', 'travailleur', 'taire', 'fesses', 'ci', 'ass', 'sujets', 'gaëlle', 'erwan', 'aimées', 'remémorer', 'procédé', 'pancetta', 'pique_nique', 'crudité', 'haricot', 'quatre-quart', 'grenadine', 'petite_troupe', 'trône', 'amas', 'observatoire', 'pique-nique', 'potache', 'beurre_fondu1', '30°c', 'fourré', \"j'_apprécie\", 'fondateurs', 'venus', 'craquelins', 'vitamine_c', 'bouillante', 'goulot', 'réchauffez', 'hachez_grossièrement', 'masque', 'fabriquée', 'édite', 'paléo', 'demandée', 'envoyée', '-8', '-une', 'manioc', '-1/2', 'barbapapa', 'copié', 'pers', '-250_g', 'sulfurisé', 'moustaches', 'caractéristiques', 'totoro', 'donut', 'glacage', '-100_gr', 'pâtisser', 'palet', 'réussis', 'lavoir', 'témoins', 'patrimoine', 'valorisé', 'vergers', 'fruitiers', 'pommiers', 'plantés', 'mas', 'vendu', 'hôte', 'liliane', 'personnage', 'jelly', 'fouillis', 'feuillage', 'sortais', 'se_transmet', 'apprit', 'format_a4', 'montmartre', 'protégé_par', 'cadenassée', 'croyez', 'se_révèle', 'botanique', 'déterminante', 'reconnaître', 'suer', 'bourbon', 'pimentée', 'th.6', 'dinde', 'laisser_colorer', 'préparation_précédente', 'plaque_creuse', 'dernière_étape', 'pochoir', 'dissoute', 'menthe_ciselées', 'cheddar_râpé', 'oignons_ciselés', 'varier_selon', 'vos_goûts', '220°c', 'pôele', 'suivis', 'tamisez_ensemble', 'grattez', 'démoulez_-le', 'déposez_-le', 'vérifiez', '35°c', 'dragées', 't°_ambiante', 'groseilles', 'gélatine_essorées', 'chauffant', '146', 'fouetter_vivement', 'bien_amalgamer', 'mince_filet', 'ganache_montée', '33_%', '3x', 'consistance_mousseuse', 'aérienne', 'rainbow_cake', 'marquent', 'deviennent', 'totaux', 'intervalle', 'bombe', '185_g', '175_g', 'robot_pétrisseur', 'amalgamé', 'détrempe', '2-', '5-', 'rabattez', 'ce_moment-là', 'manipulé', 'feu_modéré', '30-35_minutes', 'tiédie', 'appareils', 'caramélisés', 'tapissez', 'sphérique', 'emplissez', 'poudres', 'alaska', 'sablez', 'chaleur_statique', 'conservent', 'terminez', 'robot_pâtissier', 'pâte_précuite', 'diminuer', 'viscosité', 'se_développent', 'grainer', 'chantifix', 'tienne_bien', 'nappée', 'cellophane', 'confite', 'mélange_épaissit', 'épaississe', 'meilleure_tenue', 'biscuit_dacquoise', 'trempée', 'mixer_plongeant', '22', 'passionnée', 'grande_amatrice', 'donné_naissance', 'massif', 'décaper', 'brigitte', 'convient', 'destination', 'préférait', '1865', 'lunéville', 'paillettes', 'skin', 'terres', 'originelles', 'paraître', 'mai_2017', 'traduction', 'carrelage', 'grenier', 'collioure', 'vous_voudriez', 'compétences', 'jai', 'prochaine_étape', 'veillez', 'risquent', 'revisitées', 'filmer', '120°c', 'topping', 'prochainement', 'je_faisais', 'gombo', 'etant', 'instantanément', 'rapper', 'potasse', 'prete', 'gluante', 'appetit', 'mielleux', 'chocapic', 'special_k', 'arnaque', 'mettent', 'tonnes', 'céréale', 'fatiguer', 'fées', 'innombrables', 'bonne_vieille', 'sagesse', 'gaspiller', 'provisions', 'firent', 'mirent', 'dormaient', 'prit', 'mangea', 'miette', 'coucha', \"s'_endormit\", 'délivré', 'ciselez', 'bouquets', 'brocoli', 'bouillons', '2_litres', 'mixez_-les', 'sponge_cake', 'pâte_sucrée', 'complètement_absorbé', 'rincés', 'poêlez', 'adolescentes', 'eteindre', 'lait_bouilli', 'gratté', 'spécifiques', 'pris_soin', 'surveillez', 'peut_varier', 'égayer_vos', 'dégustant', 'irish_coffee', 'penchant', 'whiskey', 'vitesse_maximale', 'information_contenue', 'gènes', 'interviennent', 'fonctionnement', 'cellule', \"retrouve_aujourd'\", 'mon_frère', 'grilled_cheese', 'croque', 'my', 'banana_bread', 'simplicité_enfantine', 'activité', 'farfelu', 'tourte_aux', 'tagliatelles_fraîches', 'jamie', 'carotte_râpée', 'déclinable', 'rigolotes', 'session', 'pertinentes', 'ateliers_culinaires', 'couchage', 'punching-ball', '2005', '2008', 'royale', 'sépare', 'cour', 'cour_royale', 'mille_ans', 'poutargue', 'ceinture', 'rapporté', '125_gr', 'amendes', 'amende', 'amère', 'amalgame', 'trente_minutes', 'donnant', '1dans', '2dans', 'serpentin', '180_c°', 'etape_1', 'etape_2', 'tremblant', 'non_collante', 'ce_soir-là', 'hôtes', \"s'_apprêtent\", 'gorgée', 'arbois', 'escorté', 'augure', 'mille_feuilles', 'débouche', 'moscato', 'asti', 'nous_devrons', 'estimait', 'ses_croyances', 'venues', 'se_plaignait', 'radis_roses', 'pesait', 'son_escarcelle', 'jugeait', 'maigre', 'espérait', 'affinités', 'ignorer', 'modeste', 'consommations', 'excessives', 'répétées', 'tabac', 'provoquer', 'conduire', 'addiction', 'vais_-je', 'élevé', 'normandie', 'moulé', 'bouché', 'normand', '4°', 'règlementaires', 'saumure', 'endormir', 'agressif', 'conciliation', 'imaginer', 'façonnés', 'kouign_amann', 'célia', 'décerner', 'tentation', 'broyage', 'blé_tendre', 'brute', 'on_nomme', '-il_possible', 'mouture', 'pilon', 'on_constate', 'granuleuse', 'café_moulu', 'choque', 'très_satisfaisant', 't45', 'beurrier', 'céramique', 'être_conservé', 'baisse', 'étapes_suivantes', 'panez', 'œufs_battus', 'dévoué', 'centré_sur', 'voies', 'ne_fonctionnaient', 'existait', 'équilibre_entre', 'grandi', 'mûri', 'prunes', 'agen', '45_min', 'vous_choisirez', 'intrigue', 'principale', 'péripéties', 'crée', 'agence', '1000', '13e', 'trois_ans', 'dilution', 'complétement', '.quand', 'nam_pla', 'soupe_rase', 'position_chaleur', 'tournante', '180c°', 'peu_prés', '.mélanger', '.mettre', '1/2_gousse', 'équipé', 'crème_chantilly', 'pamplemousses', 'écrasée', 'coupez_-le', 'emballer', 'cuillére', 'supporte_mal', 'fortes_températures', '.y', 'tartine', 'ah_ben', 'etais', 'commissions', 'traire', \"t'_as\", 'moderne', 'ti', 'chéri', 'eh_bien', 'bin', 'terrible', 'bronzer', \"not_'\", 'camping', 'berry', \"ch_'\", 'jaloux', 'parceque', 'rentrés', 'biscottes', 'nos_jours', 'blogroll', 'coucou_mes', 'odeurs', 'tripes', 'choux_farcis', 'informatique', 'voyages', 'modérément', 'moineaux', 'obstacles', 'déplacements', 'voyants', 'organisation', 'nombreuses_vertus', 'antiseptique', 'conséquences', 'suivantes', 'torpeur', 'affaiblissement', 'défenses_immunitaires', 'constipation', 'tension_artérielle', 'insomnie', 'clarté', 'mentale', 'connues', 'appréciées', 'anti-_inflammatoire', 'antioxydante', 'haute_teneur', 'vitamine', 'appétit', 'exit', 'saut', 'digérer', 'contrairement', 'pourrait_penser', 'ressent', 'brûlure', 'peau_saine', 'radieuse', 'épure', 'éliminant', 'toxines', 'salive', 'acide_chlorhydrique', 'stimule', 'bile', 'favorise', 'élimination', 'urinaire', 'urine', 'potassium', 'cerveau', 'système_nerveux', 'ph', 'sanguin', 'métabolisé', 'alcalinisants', 'acidité_totale', 'acide_urique', 'causes', 'douloureux', 'inflammations', 'chargés', 'ions', 'négatifs', 'atteignant', 'digestif', 'organisme', 'facultés', 'énergisantes', 'activent', 'bonne_humeur', 'anxiété', 'symptômes', 'dépressifs', 'haleine', 'douleurs', 'dentaires', 'considérant', 'circonstances', '000_euros', 'quatre_pattes', 'envisager', 'adoption', 'transport', 'contrebande', 'plusieurs_manières', 'creusées', 'charrettes', 'tonneaux', 'cachant', 'chiens', 'persiste', 'pharmacie', 'biberons', 'épaississant', 'prescrit', 'pédiatre', 'vomit', 'jets', 'pleurer', 'ventilateur', 'console', 'composants', 'tir', 'distillerie', 'prune', 'généraux', 'usine', 'installés', 'joueur', 'sims', 'indépendamment', '20_000', '§', 'unité', 'poursuivie', 'démonstration', 'organisée', 'fédération', '40€', 'discrétion', 'macron', 'score', 'primaire', 'sobres', 'sincères', 'nous_souhaitons', 'vigneron', 'connaissance', 'sensibilité', 'exprimée', 'cuvées', 'élaborer', 'menés', 'épicurien', 'auriez_-vous', 'hs', 'appel', 'réparateur', 'électroménager', 'entreprise', 'spécialisée', 'réparation', 'caves', 'particuliers', 'réparer', 'petits_trésors', 'péril', 'soigné', 'lassé', 'bravo', 'pace', 'tutti', 'pere', 'fier', 'manu', 'memoires', 'additionne', 'ne_comprends', 'mesurer', 'cet_album', 'françois', 'bourgeon', 'mitchell', 'enregistrements', 'habits', 'rangée', 'manquait', 'alambic', 'quelque_sorte', 'fiable', 'proportions_données', 'critiques', 'blogueuse', 'quelquechose', 'remporte', 'englouti', 'soucier', 'oh_my', 'god', 'shortbreads', 'biscuit_friable', 'lésiner', 'évidence', 'conticini', 'himself', 'agrémentées', 'bémol', 'mes_yeux', 'pitié', 'voudrais', 'imaginée', 'basques', 'ruelle', \"s'_appelle\", 'cocteau', 'rues', 'surplombant', 'villa', 'a_posteriori', 'snack', 'animateurs', 'spaghettis_bolognaise', 'connaissais', \"j'_adorais\", '«_dessinons-la-mode', 'manuel', 'castors_juniors', 'rêve_secret', 'guinness_book', 'of_records', 'long_tricotin', 'pâte_fimo', 'tisane', 'rencontrée', 'génie', 'robes', 'princesse', 'créatrices', 'book', 'melangez', 'delicatement', 'farinez', 'abaissez', 'foncez', 'cela_évite', 'craquez', '1_cac', 'eau_tiede', 'deposer', '40_gr', 'tests', 'lasagne', 'semé', 'pastèques', 'cotes', 'nombreuses_variétés', 'observez', 'possibles', 'générique', 'assisté', 'définie', 'différence_entre', 'personnalisée', 'formatée', 'dérive', 'correspondants', 'anniversaires', 'réunions', 'familiales', 'salades_composées', 'personnalisées', 'signes', 'vingt_ans', 'documentaires', 'bio-', 'néo-', 'juifs', 'surdité', 'langage', '.ses', 'diffusés', 'arte', 'canal_+', 'channel', 'chaines', 'télévision', 'nappées', 'céleri-rave', 'thym_séché', 'perçue', 'savoyarde', 'tartiflette', 'reconstituant', 'explicitement', 'enveloppes', 'parlaient', 'honnêtes', 'pourboires', 'russe', 'reconnaît', '40gr', '175g', 'insiste', 'tonton', 'clefs', 'matériaux', 'constructions', 'lui_demanda', 'appréhension', 'crédit', 'ivresse', 'controversée', 'ressentir', 'intimement', 'danses', 'consciemment', 'nuages', 'garé', 'stupide', \"s'_arrêta\", 'abandonnant', 'sucre_vanillé1', 'moule_beurré', 'thermostat_7', ')_.4', 'enfoncez', 'entière_satisfaction', 'finalité', '120°', 'glacés', '100°', '50°', 'idem', 'deviennent_mousseux', '2cs', 'push', 'biscuit_sablé', '7-', 'figurines', 'cyclistes', 'of_course', 'variantes', 'secteurs', 'organismes_vivants', 'enzymes', 'levures', 'molécules', 'alternative', 'pétrole', 'chargée', 'r_&', 'loop', 'fabrique', 'économie_circulaire', 'industrie_alimentaire', 'ralenti', \"fouetter_jusqu'\", 'petite_quantité', 'complétement_refroidir', 'frigidaire', 'gélatines', 'essorées', 'cornet', '900_w', 'insister', '2_h', 'exagération', 'légérement', 'pourtour', 'colorant_jaune', 'remontant', 'faire_tourner', 'th_6/7', 'savarin', 'dérivée', 'pecorino', 'amené', 'ultérieur', 'mouche', 'délibérément', 'introduites', 'prouesse', 'concevoir', 'organismes', 'sciences', 'roussir', 'env', 'bons_sentiments', 'exprimés', 'rodée', 'conviennent', 'analysant', 'leurs_revendications', 'légitimer', 'pêcheurs', 'xviie_siècle', \"s'_enrichit\", 'vallée', 'elles_pourront', 'henry', 'iv', 'marraine', 'appréciera', 'madiran', 'terrines', 'cerf', 'médaillon', 'exister', 'auquel', 'mouvements', 'nous_négligeons', 'formulation', 'originelle', 'existant', 'nous_savons', 'nombreuses_possibilités', 'paramètres', 'impliquent', 'carbone', 'oxygène', 'remarquable', 'massives', 'donnent_naissance', 'admirables', 'relativité', 'quantique', 'canevas', 'théorie', 'fondamentale', 'science', 'devenant', 'adorer', 'contrefaçon', 'recel', '250', 'traiter', 'dédie', 'logo', 'plume', 'paon', 'explicatif', 'situation', 'pêcheur', 'chiffre', 'brasero', 'réservation', 'marcel', 'vidal', 'tapas', 'autres_gourmandises', 'jazzy', 'faire_griller', 'metier', 'tentant', 'regardons', 'enfoncer', 'nations', 'ils_auront', 'déterminés', 'offrant', 'racheté', \"vinrent_s'\", 'se_mit', 'violemment', 'vitres', 'angoisse', 'parcourue', 'voyaient', 'cône', 'portera', 'mikado', 'sticks', 'enrobés', 'concurrentes', 'pocky', '1966', 'vendeurs', \"hershey_'\", 'découvertes', 'blé_complet', 'petites_billes', 'tombés', 'réconfortant', 'livres_préférés', 'inratables', 'microondes', 'vous_décidez', 'lit_bébé', '20ème', 'banquette', 'rabattant', 'patine', \"j'_utilisais\", 'toute_façon', 'changement', 'géniale', 'rab', 'raper', 'terre_entière', 'sublimes', 'espagnol', 'come', 'back', 'épate', 'honneurs', 'dus', 'fagots', 'psy', 'pompé', 'allègrement', 'deux_citrons', 'colorer_légèrement', 'marrons_glacés', 'positivement', 'introuvables', 'dégueu', 'plutot', 'ingrédient_principal', 'respecte', 'manquez', 'gruyère_rapé', 'crame', 'oué', 'bechamel', 'flottent', 'touillez', 'inonder', '200_ml', 'mind', 'je_ferais', '2008-2009', 'paté', 'hénaff', 'pire', 'cramer', 'quoique', 'empreintes_digitales', 'débutants', 'présentés', 'me_restait', 'réel', 'petits_lapins', 'désespérés', 'sourds', 'aveugles', 'vote', 'social-démocrate', 'idole', 'loin_derrière', 'haine', 'féroce', 'ennemi', 'honnête', 'sincère', 'mélenchon', 'promettait', 'lune', 'quotidienne', 'nantis', 'spécimens', 'messieurs', 'dames', 'grandes_villes', 'brillantes', 'habitent', 'appartements', 'dorment', 'mitraillette', 'oreiller', 'transgénique', 'coca-cola', 'chanoine', 'syrien', 'bachar', 'daech', 'assassiner', 'préfèrent', 'crever', 'missiles', 'enfer', 'manipulés', 'tireurs', 'ficelles', 'voleurs', 'abusent', 'asservissement', 'inconditionnel', 'volontaire', 'sanglants', 'délires', 'mg', 'guy_demarle', 'perforée', 'stilton', 'foison', 'chemise', 'butternut', 'rôtie', 'riz_basmati', 'boisson_préférée', 'riz_soufflé', 'longues', 'épinard', 'copieuse', 'pâté', 'julien', 'alpages', 'cochon', 'crevettes_grises', 'île_flottante', 'belge', 'c.s.', 'petits_piments', 'bonne_trentaine', 'enfermés', 'faire_rissoler', 'pelée', 'bleues', 'brun_clair', 'immigration', 'clandestine', 'télécoms', 'institution', '88', 'fabriqués', 'habitait', 'colo', 'parc', 'arbres', 'grimper', 'mono', 'ils_savent', 'ballades', 'allés', 'sont_rentrés', 'entraine', 'marathon', 'venue', 'cheese', 'naan', 'bordures', 'deux_cuillers', 'ébène', 'charentes', 'pain_bis', 'dix-huit_ans', 'balises', 'balises_<', 'widgets', 'widget', 'articles_récents', '/_wp-content', '/_uploads', '07', 'soldés', 'regrette', 'tournée_vers', 'lenôtre', 'adolescente', 'victoire', 'gonflés', '110_g', 'douille_lisse', '1,5_cm', 'recouvertes', 'profiteroles', 'trop_tôt', 'légèrement_modifiée', 'plu', 'ait_absorbé', 'redéfinition', \"s'_agirait\", 'sa_capacité', 'discours', 'fondation', 'fraternité', 'hospitalité', 'psychanalyse', 'coordonnées', 'œdipe', 'deleuze', '1972', 'montrer_comment', 'codes', 'vont_-ils', '1980', 'loups', 'cité', 'séminaire', 'citant', 'longs', 'bs', '104', 'communiquent', 'ceux-là', 'imagination', 'répartissez_-le', 'grands_verres', 'gala', 'couleur_verte', 'remélanger', 'lamelle', 'positionnez', 'tulipe', 'corolle', 'corolles', 'retirez_-les', 'pavés', 'puissance_maxi', 'glaces', 'poulets', 'épluchez', 'soufflé', 'fois_refroidie', 'son_adolescence', 'katy', 'queen', 'considère_comme', 'grosse_influence', 'comme_alanis', 'morissette', 'heart_and', 'joni_mitchell', 'album_morning', 'view', 'groupe_incubus', 'pop_rock', 'années_80', 'mon_enfance', 'aimais', 'mijotée', 'botte', 'grande_sauteuse', 'encornets', 'ouvrant', 'profitais', 'se_plaint', 'tunnel', 'petites_cocottes', 'stratégique', 'créativité', 'instruction', 'intelligence', 'complémentaires', 'distinctes', 'apparaissait', 'yaourts', 'bagatelle', 'je_reçois', '60ml', 'bonnes_conditions', 'accéder', 'sont_indiqués', 'estimation', 'authentification', '.si', 'réponds', 'apporterait', 'souffert', 'précautions', 'gestes', 'lents', 'brise', 'montrant', 'huître', 'travaillée', 'très_agréables', 'tempura', 'magistrale', 'cohabiter', 'prendrons', 'directeur', 'thierry', 'champagne', 'lapereau', 'absinthe', 'paysan', 'bulbes', 'olivettes', 'macérées', 'ao', 'maxime', 'carafé', 'noble', 'combinant', 'maîtrisée', 'krug', '25_ans', 'racé', 'dur_dur', 'année_prochaine', 'pente', 'provençal', 'prennez', 'piéce', 'je_serai', 'entourée', 'chasse_aux', 'petits-enfants', 'gicle', 'charmantes', 'pralines_roses', 'philosophie', 'valoriser', 'façades', 'contemporaine', 'actuel', 'plénière', 'investissez', 'cotisation', 'version_2.0', 'john', 'paul', 'rime', '48', 'mailles_serrées', 'rangs', 'joindre', 'bride', 'citon', 'leau', 'carameliser', 'coter', 'endive', 'cote', 'tete', 'deco', 'saler_poivrer', 'recouper', 'dessu', '75_cl', 'joignez', 'decouper', 'apprendra', 'féminine', 'demi-tasse', '-elle', 'deviendra', 'faire_disparaître', '3,5', 'peut_contenir', 'réservoir', 'millésimé', 'gratin_dauphinois', 'particularité', 'précuites', 'durer', 'fermeté', 'laissez_frémir', 'notons', \"viendra_s'\", 'bilan', 'vague', 'braconnage', 'éléphants', 'cameroun', 'bourgeoise', 'concentrant', 'nuances', 'lumineuses', 'naturelle', 'faisant_semblant', 'bouquin', 'b2', 'pokemon', 'code', 'déverrouiller', 'comprendre_pourquoi', 'nintendo', 'comprendre_comment', 'faîtes_revenir', '8_mn', 'emporte', 'finement_émincés', 'vermicelle', 'belle_surprise', 'avenir_proche', 'cosmique', 'lectrice', 'moïse', 'envoie', 'matériau', 'représenter', 'levain_pétris', 'levain_arrosées', 'feras', 'dixième', 'épha', 'farine_pétrie', 'libation', 'plane', 'littérature_française', 'aigle', 'courbes', 'ciel_bleu', 'azur', 'cerveaux', 'imprime', 'vieillit', 'véracité', 'nervosité', 'douleur', 'êtres', 'conscient', 'trois_jours', 'ramequin', 'glacée', 'tâche', 'lunette', 'kilo', 'diluées', 'orange_sanguine', 'meyer', 'quel_point', 'écoute', 'chanson', 'résidait', 'extraction', 'filmée', 'soupe_miso', 'haricots_verts', 'packaging', 'expresso', 'enseignes', 'valent', 'longue_liste', 'résultats', 'revenait', 'réseau', 'intitulé', 'par_conséquent', 'connaissais_déjà', 'stimulent', 'combattent', 'deux_cuillerées', 'débute', 'directe', 'crachent', 'chique', 'urne', 'visière', 'colorier', 'autocollants', \"s'_inspirant\", 'modèles_proposés', 'pans', 'inférieur', 'supérieur', 'chevaucher', '3h', 'catastrophique', 'levure_maltée', 'enrichie', 'b12', 'shop', 'pates', 'conclu', 'sympathique', 'cérémonie', '3_cuillerées', '1_cuillerée', 'thème_choisi', 'put', 'prescrits', 'betteraves_rouges', 'remplissant', 'radiateur', 'zone_douloureuse', 'gros_bisous', 'rajoutant', 'croisement', 'chaînette', 'chanvre', 'restauré', 'phases', 'connétable', 'arêtes', 'mai_2016', 'concasser', 'vos_achats', 'musées', 'monuments', 'se_termine', 'visiblement', 'déjà_repéré', 'patients', 'paraissaient', 'détail', 'appartient', 'aucun_cas', 'adaptant', 'hommage', 'me_prévenir', 'vous_exigez', 'étreintes', 'dîners_aux', 'chandelles_arrosés', 'léa', 'sache', 'vacarme', 'élémentaires', 'recentrer', 'débat', 'au-delà', '80_000', 'dt', 'exiger', 'ressources_naturelles', 'accumuler', 'capitaux', 'capital', 'pouvoirs', 'subventions', 'remplacées_par', 'allocations', 'financières', 'accordées', 'cash', 'hand', 'incapables', 'dialoguer', 'consensus', 'favorisé', 'dégradation', 'sécuritaire', 'mobilisant', 'groupes_armés', 'issus', 'objectifs', 'contrairement_aux', 'boulangers', 'achètent', 'moins_cher', '50_kilos', 'mon_voisin', 'épicier', 'paye', 'injustice', \"viendrait_s'\", 'tristesse', 'rien_changé', 'largement_inspirée', 'cliquez', '5_litres', 'panko', 'activez', 'ajustez', 'bons_plans', 'profitables', 'virgile', 'détaché', 'intérieure', 'petites_tranches', 'doit_etre', 'bien_gonflés', 'er', 'petite_passoire', 'tiede', '12h', 'parsemée', 'tites', 're', 'mimines', '\"_}', 'remontent', 'solarium', 'rebelles', 'refusent', 'appellent', 'politiques', 'neutralité', 'impartialité', 'déontologie', 'vulgarité', 'systématiques', 'éditorial', 'assument', 'ils_appellent', 'glisse', 'madras', 'laisser_bouillir', 'trois_cuillerées', '1/2_paquet', 'sablé_breton', 'surélevée', 'plateau', 'tiéde', 'étirer', 'dégustez_-le', 'sablée', 'étalez_-le', 'elles_dorent', 'refroidissent', 'avc', 'dauphin', 'gourmet', 'cointreau', 'chaque_année', 'tranchée', 'caramel_blond', 'préchauffant', 'légerement', 'otez', 'décollez', 'restante', 'surface_plane', 'marrons', 'marron_glacé', 'ferais', 'bristol', 'pliées', 'maintenues', 'agrafes', 'croustillant_praliné', 'tenais', 'postant', 'inventeur', 'risquerait', 'crisco', 'ajoutée', 'magnet', 'smoothie_bowl', 'e-book', 'rougir', 'pourrons', '3€', 'paraissent', 'assez_épaisses', 'tasseaux', 'bac', 'rectangulaire', 'roulettes', 'casse_tête', 'gérer', 'être_servi', 'restez', 'bêtement', 'mécaniquement', 'hobbies', 'shopping', 'ecouter', 'musiques', 'electric', 'animale', 'canal', 'libérer', 'affirmer', \"s'_étonner\", 'adolescence', 'prodigue', 'se_mettent', 'récup', 'collé', 'recto_verso', 'papier_peint', 'contentée', 'renvoyer', 'visuellement', 'couché', 'méditerranéen', 'ensoleillées', 'recette_végétarienne', 'atouts', 'comprimés', 'minima', 'denses', 'flétan', 'roulez_-les', 'tartinée', 'deux_faces', 'alvéoles', 'leblanc', 'fermier', 'dîme', 'officier', 'duc', 'eau_plate', 'pétillante', 'eau_pétillante', 'oubliées', 'approuvées', 'empreinte', 'demarle', 'couleur_voulue', 'aux_éclaboussures', 'dimanche_dernier', 'francesca', 'arrière-goût', 'se_tourna', 'laissa_tomber', 'regardant', 'attentivement', 'taulier', 'ils_veulent', 'entrait', 'clitoris', 'provoquait', 'frissons', 'semence', 'twitter', 'dé', 'transmettre', 'souffrir', 'durent', 'coûtent', 'savants', 'diront', 'haute_température', 'pinces', 'sciure', 'élus', 'allégeance', 'condamnés', 'disparaître', 'exhalent', 'sanctionne', 'tirage', 'continue', 'librairies', 'spécialisées', 'invendus', 'surprendre', 'dérouter', 'apothéose', 'durement', 'escaliers', '1/2_cc', 'va_permettre', 'assouplir', '2eme', 'torchon_humide', 'genoise', 'contienne', 'seconde_guerre', 'parier', 'rolland', 'ils_avaient', 'revêtu', 'cloche', 'indigne', 'angle_droit', 'chœur', 'héberger', 'divinité', 'arts', 'chasse', 'agriculture', 'échappa', 'élucider', 'amadouer', 'eve', 'adam', 'défendu', 'noé', 'bateau', 'sauveur', 'abandonné', 'flottant', 'jardinier', 'dix_commandements', 'sévir', 'esther', 'ézéchiel', 'jumeaux', 'proverbes', 'jérémie', 'se_lamente', 'furent', 'couchés', 'évangile', 'matthieu', 'manuscrits', 'rédigés', 'avatar', 'isis', 'mères', 'préhistoire', 'singe', 'bouddha', 'multiplie', 'invite', 'népalais', 'disciple', 'ressuscite', 'lazare', 'procède', 'osiris', 'dionysos', 'naxos', 'dieux', 'recyclés', \"s'_affranchir\", 'obscurantisme', 'lumières', 'insultes', 'vernis-colle', 'microonde', 'écoulée', 'scintillant', 'légèrement_granuleux', 'retiré', 'étape_suivante', 'fermente', 'périssables', 'colorant_alimentaire', 'acrylique', 'après_séchage', 'apparaitre', 'périssable', 'comestibles', 'toxiques', 'colle_blanche', 'passez_-le', 'trente_secondes', 'adrénaline', 'phénomène', 'nous_apprenons', 'inestimable', 'fuir', 'nouveaux_membres', 'panisse', 'etats-unis', 'bonsoir', 'gifs', 'photos_prises', 'mon_panier', 'gâcher', 'guider', 'vachement', 'guerres', 'en-cas', 'alpha', 'oméga', 'exclusive', 'imaginez', 'embruns', 'puissante', 'océaniques', 'senteur', 'propreté', 'fut_construit', 'promontoire', 'dominant', 'loire', 'fortifié', 'défensif', 'invasions', 'normandes', 'ont_pu', 'opérations', 'hit', 'ground', 'rend_compte', 'generalement', 'probleme', 'mention', 'superman', 'pop', 'ca_marche', 'douteux', 'porcelaine', 'fixer', 'soutien_gorge', 'large_bande', 'irisé', 'galon', 'pailleté', 'récupéré', 'pyjama', 'oriental', 'jeans', 'fimo', 'kaki', 'serpente', 'liane', 'mobilité_réduite', 'seront_proposés', 'large_gamme', 'thés', 'brunch', '11h', 'insert', 'diffuseur', 'équipée', 'shooter', 'savoure', 'déconseillé', 'couches_lavables', 'diminue', 'lessive_maison', 'très_efficace', 'ne_supporte', 'gorgé', 'rincée', 'arrête', 'lavage', 'usages', \"m'_apprête\", 'interpelle', 'expliquez', 'vous_annoncez', '1,5_litre', 'hygiène', 'moitié-moitié', 'bloc', 'renseigner', 'savons', 'j´ai', 'baille', 'je_partais', 'servis', 'apparaître', 'vaisseau', 'provençale', 'provoqué', 'induction', 'initiatique', 'générant', 'installation', 'programmée', 'cœurs', 'oeuvrant', 'établisse', 'initiée', 'sainte', 'intemporel', 'initiateurs', 'parallèles', 'ère', 'verseau', 'teneur', 'prophéties', 'mayas', 'museum', 'crânes', 'aient_été', 'coloniale', 'catholiques', 'drôle', 'goûteur', 'affirme_-t-il', 'évoqué', 'hypothèse', 'ait_pu', 'jean-françois_copé', 'pressez_-en', 'poele', 'effeuillée', 'deviennent_translucides', 'assiettes_creuses', 'anisette', 'foucault', 'feindre', 'banlieue', 'soumission', 'discussions', 'sans_compter', 'royalties', 'éditeurs', 'solidarité', 'méfient', 'feraient', 'jouvence', 'désintoxication', 'épatant', 'apparent', 'complaire', 'décliné', 'peintre', 'cirque', 'banquiers', 'privés', 'genève', 'world', 'davos', 'fustige', 'aimablement', 'inutilité', 'calamiteuse', 'bâle', 'finesse', 'splendeur', 'coteaux', 'lavaux', 'symbolique', 'emblématique', 'réal', 'reposant', 'cimetière', 'foulée', 'romancier', 'autrichien', 'robert', 'genevois', 'philosophe', 'jeanne', 'combats', 'hidalgo', 'franz', 'weber', 'prose', 'gustave', 'rudesse', 'pinot_noir', 'grisons', 'exemplaire', 'désastreuses', 'helvétique', 'lustré', 'candide', 'allemand', 'jouant', 'éternel', \"l'_instar\", 'nietzsche', 'revenant', 'volontiers', 'lutteurs', 'culotte', 'soupçons', 'confusions', 'dictionnaire_amoureux', 'patrie', 'rousseau', 'particulière', 'oublie', 'cime', 'cervin', 'cinq_heures', \"s'_interroge\", '-t-il', 'partis_politiques', 'institutions', 'légalité', 'thermos', 'épingle', 'artifice', 'coquilles', 'chamallow', 'trop_sèche', 'socio-_économique', 'inévitablement', 'analyser', 'conflit', 'approches', 'sociale', 'mesuré', 'pertinence', 'fécondité', 'heuristique', 'élaborées', 'années_1960', '1970', 'félix', 'intuitions', 'kafka', 'appeler', 'sensible', 'réformes', 'institutionnelles', 'orientation', 'politique_économique', 'utopique', 'élection', 'dangereux', 'd‘une', 'populiste', 'démagogique', 'a_cessé', 'nos_goûters', 'palmes', 'brouette', 'monument', 'avant-garde', 'ouvrira', 'ses_portes', '14.000', 'm2', 'consacrés', 'civilisations', 'arrondies', \"s'_inspire\", 'ceps', 'bilbao', 'nord-ouest', 'ses_promoteurs', 'présidée_par', 'cazes', 'viticole', 'familial', 'domaines', 'jean-michel', 'visent', 'egypte', 'incohérence', 'fariné', 'aux_etats', 'unis', 'originaire', 'tranches_épaisses', '10s', 'nous_voyons', 'bof', 'blablater', 'barbie', 'se_reconnaîtra', 'sonnerie', 'multi', '10minutes', '37°', '5minutes', 'fonction_épi', 'fermer_hermétiquement', 'écartant', 'bites', 'raides', 'terrain_vague', 'berger', 'partis', 'résidence', 'affreuse', 'mépris', 'législation', 'farfelue', 'évoquée', 'résistance', 'dictature', 'totalitaire', 'sévit', 'congo', 'otage', 'républicaines', 'individu', 'joseph_kabila', 'rwanda', 'représenté_par', 'désiré', 'illustre_inconnu', 'nations_unies', 'ruse', 'ethnie', 'empêchés', 'gouverne', 'états_membres', 'cadastre', 'parc_national', '-faire', 'cavités', 'languettes', 'remuez_délicatement', 'drap', 'nuits', 'vérité', 'attributs', 'satisfont', 'croyant', 'comporter', 'concepts', 'organiser', 'vie_éternelle', 'garce', 'verge', 'avale', 'jaillit', 'repart', \"s'_arrête\", 'pointu', 'vous_connaissez', 'carry', 'cuisait', 'goûte', 'arno', 'tu_parles', 'dessine', 'échoppe', 'franchissent', 'punch', 'mouches', 'guêpes', 'souffle', 'effroi', 'jennifer', 'offerte', 'commerçants', 'fournisseurs', 'portait', 'notations', 'amusant', 'définir', 'inaccessible', 'hiérarchie', 'carlson', 'systèmes', 'langages', 'mauvais_goût', 'orthogonale', 'admissible', 'envisage', 'oracle', 'autoriser', 'certificat', 'chiffrer', 'nucléaires', 'je_devrais', 'mentionné', 'formidables', 'dès_maintenant', 'respiration', 'sonore', 'injustement', \"jimini_'\", 'entreprise_créée', 'commercialise', 'criquet', 'ver', 'grillon', 'alimentation_humaine', '1,2_million', 'leader_européen', 'fort_potentiel', 'start-up', 'noué', 'inra', 'steak', 'présenterait', 'asseoir', 'évêques', 'ordres', 'édifices', 'gothiques', 'beauvais', 'cologne', 'ses_disciples', 'bénédiction', 'autocuiseur', 'bananes_plantains', 'cacahouètes', 'banane_plantain', 'bouleau', '4/5', 'no', 'vapeurs', 'germanique', 'baroque', 'émincés', 'failli', 'ornées', 'hermès', 'héraclès', 'pratiquent', 'pasta', 'panini', 'spritz', 'piémont', 'toscane', 'enlevées', 'esclaves_sexuelles', 'raffermir', 'ultra_facile', 'normales', 'cultes', 'souhaiter', 'annee', 'découvre', 'installée', 'lucien', 'feux', '130°_pendant', 'refroidissement_complet', 'forcement', 'beaux_jours', 'saumon_gravlax', 'billets', 'indienne', 'cramé', 'évidés', 'huilé', 'farcir', '(_th6-7', 'tristes', '24/24', 'garderie', '18h15', 'retenue', 'courageusement', 'seule_larme', 'chouïa', 'rejoigne', 'boucles', 'formées', 'supportant', 'bénit', 'distribué', 'épilogue', 'baptisé', 'guinéens', 'sierra', 'ascenseur', 'hausse', 'coûte', 'coûter', 'acceptable', 'revienne', '74', 'consommateur', 'poursuivant', 'avertit', 'saisi', 'commission_nationale', 'concurrence', 'enquête', 'sénégalaise', 'boudé', 'substitué', 'locaux', 'conseillés', 'gardées', 'paques', 'souhaitent', 'fete', 'lundi', 'mangez', 'hum', 'vous_plaira', 'kiffez', 'mettra', \"com_'\", 'bonne_chance', 'joyeuse', 'marchais', 'miraculeux', 'sillage', 'aviez', 'sacrifié', 'grace', 'acceuillir', 'content', 'poème', 'plongeant', 'rencontrer', 'ciel_étoilé', 'opérationnel', 'togolais', 'milliard', 'f_cfa', 'complot', 'sureté', 'députés', 'exclus', 'parlement', 'unilatérale', 'développement', 'protéger', 'bruxelles_rôtis', 'anges', 'haricots_mungo', 'concombres', 'scone', 'végane', 'aurais', 'vitamix', 'vega', 'one', 'shot', 'grande_quantité', 'variables', 'gestes_simples', 'quotidiens', 'coulée', 'cuisines', 'enchaînement', 'tenant', 'permette', 'éphémères', 'buffets', 'proposent', 'ces_mêmes', 'désactiver', 'balise', 'script', 'fera_voyager', 'algerien', 'algérie', 'constantine', 'parlerai', 'incisions', 'massez', 'document', 'soutenir', 'beaux_arômes', 'sérénité', 'ruisseau', 'chante', 'cascade', 'bruyamment', 'reflètent', 'montagnes', 'enneigées', 'chimio', 'publicitaire', 'paie', 'ptc', 'pars', 'maniement', 'arc', 'épées', 'lances', 'bâtons', 'pieux', 'autres_choses', 'épée', 'arène', 'mes_découvertes', 'insolites', 'extrêmes', 'amoureuse', 'chats', 'réclamé', 'taxe', 'assainissement', 'syndicat', 'agglomération', 'longwy', 'rejets', 'petite_sœur', 'habite', '380g', 'possédant', 'sucre_perlé', 'préalablement_fondu', 'attendre_voici', 'voué', 'accommoder', '(_th.5', 'confectionnez', 'savez_-vous', 'évoluer', 'fumées', 'bactéries', 'carburant', 'réutilisés', 'fleuri', 'a_coûté', 'annuaire', 'strict', 'méritent', '25_%', 'fragrance', 'dioxyde', 'gold', 'antique', 'old', 'blue', 'recette_miracle', 'travailler_dur', 'fut_construite', 'entrepôt', 'souterrain', 'atténuer', 'xiiie_siècle', 'emprunts', 'aristote', 'maîtres', 'ecole', 'médecin', 'limaille', 'mêlée', 'bourrache', 'défaillances', 'maladie', 'dangereuse', 'cardiaque', 'ardent', 'très_utile', 'rate', 'passions', 'mélancolie', 'macéré', 'viandes_rôties', 'cavité', 'volailles', 'levure_émiettée', 'environ_10min', 'réajuster', 'incorporation_complète', 'pendant_15min', 'line', '2cc', 'mille_mercis', 'juste_rajouté', 'appétissantes', 'agricole', 'cage', 'aqueux', 'iode', 'insipides', 'roulées', 'aux_accents', 'ostéopathe', 'elia', 'salem', 'eau_minérale', 'commandement', 'balcon', 'usage_exclusif', 'rameaux', 'brosser', 'vœux', 'cacahouète', 'sonné', 'claudio', 'chaton', 'vôtre', 'orgueilleux', 'macédoine', 'soupçon', 'sabayon', 'triomphe', 'odorat', 'conclusion', 'renouveler', \"venue_s'\", 'compte_twitter', 'réseaux_sociaux', 'partageait', 'bienveillance', 'qualités', 'festives', 'se_cachent', 'vertus_thérapeutiques', 'reconnues', 'janine', 'chronologiquement', '3000', 'aquarelles', 'divers_objets', 'fleuris', 'redouté', 'contemporaines', 'témoignent', 'actualité', \"j'_aimais\", 'riga', 'kub', \"j'_essayerai\", 'long_terme', 'compte-tenu', 'jugements', 'rendu_public', 'judiciaire', 'ordonnateur', 'valablement', 'administratif', 'attestant', 'certificats', 'administratifs', '-je', 'établis', 'établissement', 'régulariser', 'dramatiques', 'poisson_grillé', 'bec_verseur', 'gaucher', 'tordre', 'extraterrestres', 'déguisés', 'dût', 'ordonner', 'kidnapper', 'frit', 'thèse', 'énoncé', 'mieux_vaudrait', 'lyre', 'accordée', 'désaccord', 'contredire', 'relations', 'solidarités', 'attendues', 'parvenue', 'hâter', 'donnant_accès', 'hésitante', 'fer_forgé', 'défendant', 'façade', 'lierre', 'pendu', 'crevasses', 'murailles', 'reflète', 'abandon', 'voudrait', 'prendrait', 'seras', 'samedis', 'satisfaction', 'résulte', 'rendre_compte', 'pensées', 'ses_pensées', 'survivent', 'perpétuent', 'accueillie', 'dédain', 'peurs', 'inquiétudes', 'fermiers', 'criminelle', 'déplorables', 'agnès', 'sentence', 'inscrivez', 'en_cochant', 'peut_etre', 'cultiver', 'floue', 'vœu', 'peaufiner', 'couronné', 'fleurie', 'habitée', 'ces_dames', '00', 'tartiné', 'sain', 'kouglof', 'pané', 'faisais', 'sicilienne', 'bel', 'apparat', 'healthy', 'connexe', 'infraction', 'solidairement', 'préjudice_subi', 'parties_civiles', 'sélectionnez', 'arriver', 'tee-shirt', 'brésilien', 'vivent', 'quatre_coins', 'je_prévois', 'je_pouvais', 'écrivant', 'weekend', 'fasciné_par', 'fantastique', 'hésiter', 'comentaire', 'je_viendrai', \"n'_hésiterai\", 'concerts', 'jazz', 'florentins', 'promoteurs', 'interroger', 'vitalité', 'spontanée', 'développé', 'inattendus', 'débats', 'stipulé', 'enseignants', 'relèvement', 'indiciaire', 'verront', 'décembre', 'payés', 'payé', 'strasbourg', 'statuettes', 'rudimentaires', 'plus_sophistiquées', 'lois', 'retours', 'ethnique', 'secte', 'être_humain', 'influencer', 'prières', 'système_solaire', 'créatures', 'génies', 'gardiens', 'prévenir', 'intrus', 'apparitions', 'sollicité', 'extérieures', 'projectiles', 'capables', 'atteindre', 'vêtu', 'dénudé', 'aérés', 'offrandes', 'universelles', 'nécessitera', 'plâtre', '100grs', 'modeler', '200grs', '15mm', 'tubes', 'deux_récipients', 'gobelets', 'suffisants', 'grelot', 'durci', 'creusez', 'accueillir', 'poncer', 'défauts', 'inclus', 'vingt-cinq', 'parvenir', 'intitulés', 'artefact', 'exercé', 'casse-tête', 'exact', \"j'_essayais\", 'décisif', 'produira', \"n'_arrivais\", 'laissais', 'je_décidais', 'deux_entités', 'génériques', 'confédération', 'grenouille', 'chaussure', 'randonnée', 'mes_jambes', 'ressemblaient', 'allumettes', 'deux_semaines', 'frustrant', 'brice', 'raisin_sec', 'ceci_étant', 'alexandra', 'retenu', 'être_utilisés', 'pense-bête', 'tableau', 'essuies', 'galet', 'scientifiquement', 'mesurable', 'statistiques', 'significatif', 'réveiller', 'sommeil', 'attrape', 'pattes', 'jaja', 'sa_composition', 'téléchargement', 'votez', 'mentionnez', 'obligatoire', 'jouissance', 'membre', 'lâcha', 'gorge', 'mon_estomac', 'me_demanda', 'pantalon', 'slip', 'boulghour', 'fraiches', '1_c.s', 'c.c', '1_c.c', '4_pincées', \"t'_intéresse\", 'makis', 'rapides', 'prépares', 'onigiri', 'lendemain_matin', 'bretzels', 'bière_maltée', 'kiri', 'bouder', 'saupoudrant', 'sirotait', 'nevers', 'nièvre', 'click', 'gratinez', 'écailler', '65g', 'courgettes_râpées', 'emmental_râpé', 'vous_devriez', 'viande_hachée', 'il_semblerait', 'hypocras', 'ait_été', 'redécouverte', 'occidentaux', 'moyen-âge', 'croisades', 'offrons', 'du_rhône', 'renommées', 'brocante', 'castillon', 'vestiges', 'romaine', 'chapelles', 'reclassement', 'catégorie_b', '2018', 'passent', '1er_janvier', 'revalorisée', '2019', '2020', 'spontanées', 'typiques', 'fermentation_naturelle', 'ira', 'cassées', 'crées', 'ils_reçoivent', 'digestifs', 'an_2000', 'calendrier_lunairedonc', 'nécessitait', 'turbiner', 'vous_veniez', 'pistaches_concassées', 'margot', 'attendra', 'cet_argent', 'nombreux_accessoires', 'étalage', '4_saisons', 'caisse_enregistreuse', 'chariot', 'supermarché', 'kits', 'dînette', 'nous_utilisons', 'girafe', 'incorpore', 'excitation', 'prévue', 'semaine_prochaine', 'raw', 'roulette', 'correspondante', 'bonus', 'petite_anecdote', 'chers', 'antidépresseurs', 'puisse_exister', \"jt_'\", 'ouai', 'jme', 'revoir', 'telephone', 'verrait', \"c'_etait\", 'reviendrait', 'culpabilise', 'fous', 'discute', 'pleure', 'affronter', 'je_descends', 'lesdits', 'engins', 'thaï', 'occurence', 'sen', 'couches_successives', 'ma_cousine', 'bail', 'avant-guerre', 'justifier', 'ajouterai', 'nan', 'a_déclaré', '“ce', 'thaïe', 'halloween', 'bizarres', 'goûtée', 'adorée', 'je_posterai', 'auprès', 'mes_collègues', 'jouet', 'terminera', 'mmmm', 'égouttée', 'raclette', 'andouille', 'infecter', 'sla', 'souffrent', 'emmanuel', 'engagent', 'procès', 'disparu', 'boutonnière', 'turquie', 'chercha', 'demanda', 'pays_européens', 'intermédiaire_entre', 'entailles', 'me_manquait', 'régulières', 'inscrit', 'malléable', 'variable', 'tourné', \"s'_adapte\", 'kale', 'étonnée', 'atteigne', 'interne', 'texture_parfaite', 'étages', 'grattant', 'jérusalem', 'ottolenghi', 'bette', 'carde', 'ne_pouvais', 'facteur', 'graisses_animales', 'produits_animaux', 'anti-_cancer', 'contenues_dans', 'je_mangeais', 'taillefine', 'demis', 'gardera', 'colin', 'chutes', 'marinées', 'attitude', 'souffrances', 'immigrés', 'clandestins', 'métiers', 'dits', 'assurance_maladie', 'absolument_nécessaire', 'employeurs', 'multinationales', 'forces', 'vitales', 'profits', 'marthe', 'absorbée', 'initial', 'apportait', 'investissements', 'climat', 'libération', 'bnp_paribas', 'implication', 'texas', 'joueurs', 'jackpot', 'garanti', 'bons_résultats', '22_août', 'matchs', 'européenne', '55_%', '7/7', '45_%', 'ligue_1', 'intéressera', 'spécialistes', 'championnat', '10/10', 'ponts', 'dentiste', 'sortit', 'indemne', 'coûts_supplémentaires', 'apprécient', 'répondent', 'exécution', 'empêchant', 'serveuse', 'cite', 'newtree', 'considérable', 'redémarrer', 'légèrement_fariné', 'positionner', 'th_7', 'humides', 'incorporées', 'cari', 'réunionnaise', 'réunionnais', 'gigembre', 'ave', 'coupées_grossièrement', 'instinct', 'existante', 'vorwerk', 'choisie', 'remercierai', 'ses_preuves', 'ne_perde', 'pétillant', 'quinconce', 'trempant', \"s'_écroule\", 'nouveauté', 'citerne', 'souris', 'brossage', 'payne', 'joints', 'trop_ténu', 'mw', 'abel', 'surnom', 'prient', 'ms', 'tf', 'ceux_ki', 'desir', 'ke', 'vou', 'kiff', 'tres_bonne', 'nous_voulons', 'nos_cœurs', 'ardent_désir', 'devise', 'ternir', 'artisan', 'chaînes', 'jurons', 'fidélité', 'lasser', 'togo', 'petrir', 'croise', 'subit', 'réaction_propre', 'loup-garou', 'foot', '2007', 'seuls', 'prenaient', 'indice', 'revalorisation', 'applicable', 'parcours', 'éducatif', 'accoucher', 'recemment', 'grossesse', 'pure_merveille', 'extra_fine', 'élixirs', 'recette_originelle', 'inventée', 'docteur', 'spiritueux', 'amers', 'développés', 'dynamique', 'jurassien', 'curieuse', 'pas_forcément', 'dépit', 'incrédulité', '85°', 'rajoutée', 'apparaissent', 'nous_mettons', 'val', 'cuiller', 'automne_prochain', 'plantes_médicinales', 'analyses', 'didier', 'étonné', 'distillation', 'sont_censés', 'grande_richesse', 'industrielle', 'alcool_neutre', 'verset', 'régale', 'cuill', 'sachez', 'arome', 'sons', '16h', '18_ans', 'caviste', 'nul_doute', 'clos', 'grands_noms', 'chinon', 'coteau', 'hin', 'tactile', 'chèvres', 'amateur', 'flacons', 'faugères', 'vouvray', 'languedoc', 'sylvain', 'jasnières', 'eric', 'auditoire', 'affamé', 'convoquer', 'introduction', 'a_débuté', 'pasteurisé', 'texture_fondante', 'garrigues', 'minéral', 'roussanne', 'marsanne', 'grenache_blanc', 'vermentino', 'complexité_aromatique', 'potentiel', 'surnommé', 'aoc', '1999', 'attaque', 'marquée_par', 'dégage', 'floral', 'oxydatif', 'encépagement', 'déclin', 'prime_abord', 'fonctionnait', 'côte-rôtie', 'situé', 'parc_naturel', 'syrah', 'structure_tannique', 'astringente', 'sa_jeunesse', 'glou', 'chenin', 'max', 'brasserie', 'institut', 'meurice', 'très_digeste', 'classée', '2010', 'disons_-le', 'cran', 'tarifaire', '75', 'qualitatif', 'âgé', 'panel', 'pinots_noirs', 'septentrionaux', 'singularité', 'rapport_qualité-prix', 'farinée', 'opération_terminée', 'quantité_égale', '5-10_minutes', 'ananas_caramélisé', '.ce', 'compromis', 'succulent', 'précuit', 'pouvons', 'elias', 'aucunement', 'marianne', 'chan', 'elizabeth', '12_min', 'dessinez', 'contour', 'contours', '½_cuillère', 'scrapcooking', 'dirai', '–_50g', '–_75g', '–_100g', 'préalablement_haché', 'fouettez_énergiquement', 'milk_shake', 'entendu_dire', 'hypothèses', '2013', 'rubis', 'news', 'mademoiselle', 'marou', 'rotation', 'présentons', 'vitamines', 'extracteurs', 'traditionnels', 'inconvénient', 'respecter', 'vitamin', 'bruyant', 'gros_avantage', 'précieux', 'nutriments', 'anti-_oxydants', 'qualité_nutritive', 'égal', 'réduisent', 'las', 'brice_hortefeux', 'ministre', 'désignant', 'motards', 'cible', 'prioritaire', 'contrôles', 'routiers', 'te_souviens', 'discrètement', 'dérobés', 'salir', 'complément', 'constitue', 'probité', \"s'_encombrer\", 'idées_reçues', 'jeûne', 'positive', 'pr', 'vos_coms', 'vielles', 'cendres', 'poupée', 'sentent', 'poney', 'so2', 'parlerais', 'produits_locaux', 'vincent', 'saumons', 'fumage', 'alterne', 'gentiane', 'auvergne', 'adresses', 'immensité', 'exceptionnel', 'tonic', 'campari', 'daurade_royale', 'troyes', 'cavistes', 'idoine', 'accoutumés', 'chiottes', 'winston', 'gin', '1984', 'auvergnat', 'émerveillé', 'francs', 'buveurs', \"m'_intéresse\", 'pas.', 'applaudissements', 'adéquat', \"s'_avèrent\", 'poncifs', 'courent', 'complexité', 'résumé', 'american', 'amérique', 'caractérise', 'ses_romans', 'rétablir', 'ségrégation', 'échelle', \"s'_engageant\", 'paradoxale', 'vaudra', 'trainé', 'cour_suprême', 'bien_rigolé', '2ans', 'mes_impressions', 'résument', 'grande_partie', 'répandre', 'ail_pelée', 'soufflées', 'sortez_-la', 'rhum_vieux', 'carambole', 'montrent', 'volants', 'non_identifiés', 'tsunami', 'plages', 'nippons', 'centrale', 'fukushima', 'pompiers', 'envoient', 'réacteur', 'auteuil', 'elixir', 'lorrain', 'vin_mariani', 'fournit', 'volumes', 'truffes', 'exemplaires', 'coca', 'chaque_participant', 'envoyait', 'effectuant', 'grille_tarifaire', 'présidente', 'torts', 'théologie', 'on_observe', 'chrétienne', 'thomas', 'aquin', 'théologique', 'me_dise', 'globe', 'prévenue', \"t'_envoie\", 'states', 'serrant_bien', 'mettez_-les', 'blondir', 'traverser', 'complétez', 'ça_marche', 'aidée', 'apprenti', 'canelés', 'connaissez', 'ne_brûle', 'déjà_testé', 'matières_grasses', 'faites_chauffez', 'fume', 'chant', 'prestations', 'duo', 'foncé', 'sans_pesticide', 'pots_stérilisés', 'sceller', 'mettez_-le', 'sirotant', 'délicieux_cocktails', 'tribu', 'gustatives', 'coliques', 'orthographe', 'nous_soyons', 'mets_préparés', 'associer', 'australie', 'californie', 'san', 'élaborés', 'chardonnay', 'chablis', 'meursault', 'montrachet', '.on', 'pencher', \"s'_abstiendra\", 'représente', 'hill', 'cabernet', 'colombie-britannique', 'nouvelle-zélande', 'prédilection', 'spaghettis', 'palourdes', 'teintes', 'aspect_visuel', 'jacobs', 'creek', 'brut', 'découle', 'sa_teneur', 'vin_effervescent', 'mendoza', '2,5_millions', 'viandes_rouges', 'sirène', 'vouée', 'noyade', 'habit', 'euro', 'chére', 'maillot', 'voyer', 'mon_loulou', 'tache', 'chemisier', 'voyais', 'jargon', 'soufre', 'indignes', 'labellisé', 'génère', 'blogosphère', 'lisibles', 'fermière', 't80', 'comté_râpé', 'souligne', 'mécanismes', 'charges_patronales', 'directes', 'indirectes', 'constate', 'informés', 'écrivent', 'parlent', 'charges', 'composent', 'correspondantes', 'petits_ronds', 'signifiant', 'inscrite', 'organisé_par', 'prunelle', 'grise', 'collectionneurs', 'remarque', 'gustative', 'veut_dire', 'nouveaux_contacts', 'votre_carnet', 'stockage', 'sauvegarde', 'sim', 'android', 'gigantesque', 'présentait', 'bonbon', 'très_appréciée', 'ecraser', 'habituels', 'impressionnant', 'bientot', 'recipe', 'i', 'made', 'for', 'ratés', 'précédentes', 'ayant_pris', 'bonnes_cuillères', 'café_soluble', 'dimanche_soir', 'parce', 'épuiser', 'mariant', 'quarts', 'préalablement_chauffée', 'pleurotes', '.une_fois', 'conviendrait', 'encourage', 'trace', 'préférable', 'jouera', 'beurres', 'karité', 'fluides', 'mousseline', 'nouée', 'echalotes', 'épluchées', 'cuillere', 'aucune_larme', 'propagande', 'supériorité', 'valide', 'contribution', 'nous_ferons', 'débarrasse', 'rangé', 'notoriété', 'talk', 'shows', 'télévision_publique', 'dénonciation', 'politiquement_correct', 'progressiste', 'idéologie', 'lot', 'impasses', 'agréables', 'minimes', 'existent', 'évaluation', 'toulouse', 'saint_jacques', 'compostelle', 'loue', 'duplex', 'rez', 'chaussée', 'tv', 'écran_plat', '81', 'plaques_vitrocéramiques', 'nominale', 'plumage', 'vertes', 'cou', 'iris', 'sexuel', 'adn', 'révèlera', 'sexe', 'nids', 'distribue', 'forte_chaleur', 'choux_chinois', 'réuni', 'moniteurs', 'collecte_?', 'vous_proposons', 'artisanales', 'minervois', 'bastide', 'lucques', 'antonin', 'plantes_sauvages', 'charcutier', '15_jours', '50_cl', 'filtré', 'turbo', 'filets_mignons', '15-20_mn', 'médaillons', 'libanaise', 'bricks', 'gi', 'musette', 'gp', 'general', 'munitions', 'grenades', 'explosives', 'shakespeare', 'fiers', 'primés', 'prépara', 'quitta', 'acheta', 'croisant', 'gigot', '-1/2_sachet', 'vos_paumes', 'pâte_granuleuse', 'ressort_sèche', 'harmoniser', 'coordonner', 'asbl', 'rationaliser', 'coûts', 'investir', 'socio-', 'interlocuteur', 'pouvoirs_publics', 'putes', 'leurs_bouches', 'faire_pipi', 'biensur', 'xp', 'grandeur_nature', 'recrues', 'policiers', 'arrondissement', 'parfume', 'rient', 'roulant', 'draps', 'piquants', 'uni', 'liberty', 'déroule', 'inscris', 'ramener', 'perdus', 'frapper', 'interdit', 'rassemblement', 'ascension', 'ultimes', 'luc_16', 'deux_maîtres', 'pouvez', 'mamon', 'achetés', 'aux_states', 'vos_commentaires', 'quelqu', 'mathéo', 'feter', 'pffff', 'deja', 'deuxieme', 'pti', '13_décembre', 'giulia', 'comblés', 'nos_bouts', 'je_viendrais', 'gastronome', 'pêchés', 'mignons', 'anna', 'pierrot', 'cuisse', 'espaces', 'ponctuent', '26', 'centré', '47', 'lignes', 'servira', 'qq_gouttes', 'soupe_bombées', 'échalotes_confites', 'chapon', 'trompette', 'oignon_piqué', 'briquette', '.faites', 'cocotte_minute', 'laissez_épaissir', 'vrai_bonheur', 'bambou', 'plusieurs_variétés', 'permettez', 'funky', 'romanesco', 'séchez_-les', 'convivial', 'pâté_chinois', 'ect', 'rages', 'c.soupe', 'collation', 'parterre', 'auriez', 'effilochée', 'sautoir', 'dune', 'intense', 'sautées', 'fruits_congelés', 'étudiante', 'pitas', 'huilés', 'épicés', '120_ml', 'limes', 'distante', 'affecter', 'remplacement', 'internaute', 'vingt', 'fichiers', 'déplacement', 'blocs', 'template', 'fichier_html', 'automatiquement', 'header', 'footer', 'surcharger', 'elles_devaient', 'longs_cheveux', 'lisses', 'yeux_couleur', 'regardait', 'gorgées', 'cales', 'camions', 'violer', 'humilier', 'lou', 'petite_larme', '°', 'electrique', 'téléréalité', 'ralentissement', 'autoroute', 'file', 'provoquée_par', 'évènements', 'tragiques', 'émerveiller', 'online', 'inquiétant', 'responsable', 'décalage', 'observer', 'limiter', 'engagé', 'millions', 'inter', 'international', 'a_affirmé', 'anatolie', 'guère', '108', 'inédites', 'tu_vois', 'pertinemment', 'bashung', 'aperçois', 'connexion', 'nerfs', 'douloureuse', 'acquiert', 'correctement', 'gêne', 'boisée', 'son_compagnon', 'nous_parlions', 'relativement', 'refait', 'plongé', 'obscurité', 'rude', 'mettais', 'originalité', 'numérique', 'offrent', 'spectateurs', 'endormis', 'traîneaux', 'villageois', 'buvaient', 'eu_droit', 'escrocs', 'maisons', 'littoral', 'surveillé', 'aménagé', 'bars', 'bancs', 'positionnés', 'usés', 'solitude', 'baigné', 'pales', 'certitude', 'il_pleut', 'autorités_locales', 'auraient', 'bannir', 'gilet', 'phalange', 'rémi', 'albums', 'saladiers', 'tentative', 'natation', 'vélo', 'scooter', 'siestes', 'mobiles', 'portraits', 'intéressants', 'auraient_pu', 'perdues', 'demi-sec', 'sucres_résiduels', 'on_utilisera', 'sucre_résiduel', 'soutirages', 'éclaircir', 'fermentent', 'adoucir', 'breuvage', 'fermenter', 'grillage', 'cages', 'mouillée', 'enrobée', 'vétérinaire', 'façon_régulière', 'interventions', 'non_lucratif', 'adresse_mail', 'nœuds', 'vos_cheveux', 'collations', 'devenir_autonome', 'perfectionné', 'décennie', 'effacer', 'positionnement', 'vinifiée', 'élevée', 'apportée_par', 'élevage', 'sélections', 'identifiées', 'mêmes_caractéristiques', 'vinification', 'griffon', 'typé', 'associe', 'onctuosité', 'bib', 'friand', 'épicé', 'dégusterez', 'chambré', 'viticulteur', 'depuis_2005', 'troqué', 'rugby', 'essuyez', 'prélevez_-en', 'zesteur', 'vire', '(_th.8', 'puis_baissez', '(_th.7', 'non_traitée', 'chemisez', 'précuire', 'rapez', 'haché_finement', 'fermez', 'embout', 'assurez', 'troupes', 'selles', 'prévision', 'chevaux', 'armature', 'flancs', 'nous_vivons', 'barmans', 'fauchés', 'portail', 'participatif', 'structure', 'désireuse', 'mammifères', 'reptiles', 'orchidées', 'produits_alimentaires', 'composites', 'chimie', 'tensioactifs', 'colles', 'biocarburants', 'principes_actifs', 'archive', '1986', 'notament', 'presence', 'tannins', 'moquette', 'tamponnez', 'chiffon_imbibé', 'remue', 'méninges', 'crâne', 'bien_gonflé', 'reposer_10', 'cassés', 'prenant_garde', 'olives_coupées', 'compotés', 'chansons', 'gainsbourg', 'hardy', 'tourbillon', 'détendu', 'brûlez', 'mon_sac', 'cachette', 'colloque', 'just', 'patti', 'lâche', 'pad_thaï', 'orthodoxe', 'directement_inspirée', 'poulet_émincé', 'mélangeaient', 'cacahuètes_pilées', 'dépendent', 'infinité', 'disponibilités', 'voluptueuse', 'hésitation', 'crêperie', 'dodus', 'fumantes', 'puissantes', 'kebab', 'soirs', 'hérétique', 'rappelez_-vous', 'rapadura', '35min', 'archi', 'vieillot', 'délaissés', 'kanelbullar', 'blonde', 'envié', 'détournée', 'mouillettes', 'poulain', 'ravissent', 'dément', 'carl', 'milles', 'jeune_femme', 'accueillis', 'tennis', 'a_annoncé', 'harengs', 'asperges_blanches', 'empressée', 'vitrines', 'chaises', 'déposa', 'manège', 'généralisée', 'martin', 'vintage', 'complété_par', 'instantané', 'orange_pressée', 'divins', 'maladresse', 'touchante', 'étudiant', 'médecine', 'tâché', '.le', 'libraire', 'ludwig', 'marguerite', 'alizée', 'quatrième', 'peter', 'sept_ans', 'chamade', 'edith', 'simone', 'beauvoir', 'carrie', 'romaines', 'partez', 'respectables', 'entreprises', 'noms', 'révélations', 'auditeurs', 'tabou', 'enfoncé', 'flipper', 'amphithéâtre', 'dégagé', 'logiquement', 'deux_rives', 'char', 'étiez', 'station', 'opposés', 'automobilistes', 'trafic', 'sentait', 'pions', 'trip', 'a_duré', 'paroxysme', 'sortilèges', 'fontaines', 'sorcières', 'nues', 'cueillir', 'saint-jean', 'millepertuis', 'consistance_souhaitée', 'nourri', 'performance', 'dangers', 'ne_saurais', 'scientifique', 'réjouir', 'toulousain', 'séjours', 'étranger', 'aucune_idée', 'qui_épatera', 'satisfera', 'contraintes', 'diplôme', 'satisfait', 'divertissement', 'huit', 'cent', 'mètres', 'protégé', 'me_maquille', 'culottes', 'vendues', 'super_u', 'maigrir', 'médecins', 'incertitude', 'constituaient', \"venant_s'\", 'supplice', 'boiseries', 'agressive', 'accentuant', 'assurent', 'polissage', 'lessives', 'olive_extra-vierge', 'appliquez', 'chiffon_doux', 'manuellement', 'siphon', 'pili_pili', 'opus', 'orée', 'ep', 'digital', 'reprenant', 'gaël', 'remettra', 'mardi', '19_juin', 'maroquinerie', '23', 'boyer', 'ménilmontant', 'gambetta', 'full', 'band', 'musiciens', 'show', 'mc', 'edgar', 'lui_offrit', 'lui_donna', 'serveurs', 'attendaient', 'kiffs', 'kiffer', 'cellules', 'opérateurs', 'voudront', 'voudra', 'prouvant', 'renversa', 'être_prévenue', 'enfiler', 'breloques', 'chaine', 'ball', 'coton_tige', 'dissolvant', '.vous', 'très_prochainement', 'désespère', 'pressait', 'chauffage', 'soupçonne', 'levés', 'voulaient', 'aperçue', 'négligé', 'elles-mêmes', 'intacte', 'déterminer', 'celcius', 'prié', 'remarquez', 'stérilisé', 'congélo', 'estragon', 'aurai', 'cuillèrée', 'canelle', 'cu', 'elle_corresponde', 'insupportable', 'inacceptable', 'légèrement_battus', 'certains_préfèrent', 'offraient', 'grande_variété', 'bûches', 'new', 'framboisier', 'j_avais', '.a', 'préalablement_mélangée', 'qs', 'allonger', 'who', 'run', 'a_estimé', 'opep', 'stricte', 'discipline', 'exercer', 'eat', 'fa', 'mike', 'moin', 'quentin', 'assirent', 'neji', 'posa', 'distingue', 'enceinte', 'confinement', 'sédiments', 'explosion', 'centrale_nucléaire', 'dispersion', 'isotopes', 'monts', 'vallées', 'humaine', 'broie', 'communautaire', 'centres', 'radioprotection', 'inoffensifs', 'brandit', 'diplomatique', 'tepco', 'simply', 'évalué', 'hole', 'relevés', 'investigations', 'comptaient', 'éclaireur', 'été_conçu', 'sébastien_kardinal', 'soutenu', 'joëlle', 'subi', 'compagne', 'edward', 'frère', 'sœur', \"j'_ouvris\", 'posés_sur', 'se_trouvait', 'me_levai', 'me_dirigeai', 'honteuse', 'ais', 'vidé', 'telle', 'gentillesse', 'generation', 'voyager', 'gustativement', 'vénézuela', 'cuba', 'tanzanie', 'concerner', 'vos_préparations', 'attirent', 'pavé', 'balise_alt', 'moteurs', 'sachent', 'relie', 'morue', 'façon_homogène', 'gingembre_haché', 'mariner', 'lest', 'brûlantes', 'timbre', 'portable', 'aucun_problème', 'cailles', 'caille', 'eliminer', 'échalotes_hachées', 'hachées', 'darnes', 'babas', 'tièdes', 'renferment', 'va_ravir', 'diamant', 'chauffés', 'aérée', 'gonflera', 'tapissée', 'préparées', 'dessèchement', 'fous_rires', 'sensations', 'thermiques', 'harry_potter', 'côtoient', 'réglisse', 'vénitien', 'longues_heures', 'terrasses', 'chevelure', 'coing', 'chaleureux', 'dégustations', 'boucherie', 'longue_série', 'furieux', 'rap_français', 'ont_grandi', 'emissions', 'débiles', 'milka', 'massages', 'chambres_confortables', 'traitements', 'frénésie', 'échauffement', 'brandt', 'décrire', 'insensé', 'satire', 'caricature', 'paradoxes', 'piqûres', 'moustique', 'guêpe', 'lavande_aspic', 'pure', 'piqûre', 'hongrie', 'alpes', 'arrosait', 'parfumerie', 'myrte', 'bétail', 'allaient', 'très_prisés', 'concrètes', 'moléculaire', 'faiblesse', 'se_lancent', '.au', 'panthéon', 'olfactifs', 'plomb', 'incruste', 'walter', 'pontoise', 'négociants', 'mérités', 'être_ajoutées', 'être_réduites', 'litière', 'grand_bonheur', 'mardi_matin', 'se_réveilla', 'rentra', 'cabaret', 'petites_fleurs', 'déposait', 'regarda', 'cueillie', 'fit', 'gâteau_moelleux', 'alluma', 'fourneau', 'redonnera', 'juteux', 'donneras', 'servante', \"s'_habilla\", 'verrière', 'se_détendre', 'amélioration', 'relationnelle', 'cet_instant', 'vaincu', 'inscription', 'géniales', 'atroce', 'beijing', 'viking', 'me_sentais', 'freeze', '17_juin', '♦', '16_juin', 'at_the', 'hut', 'monica', 'california', 'june', 'positionne', 'présumé', 'frange', 'militante', 'natures', 'intégristes', 'small', 'is_beautiful', 'auxerrois', 'quintessence', 'accompagnera', 'sandre', 'aligoté', 'flatteur', 'péjoratif', 'longe', 'gnocchis', 'sarrazin', 'ample', 'ouvrent', 'doté', 'sémillon', 'merveilleusement', 'tendu', 'cinsault', 'leclerc', 'cavalier', 'immédiat', 'majoritaire', 'disponible', 'généreux', 'confidentiel', '8000', 'compagnon_idéal', 'élégantes', 'notes_florales', \"s'_appuyant\", 'rendement', 'importants', 'sapidité', 'acidité_naturelle', 'millésime', 'dialogue', 'souplesse', 'premier_test', 't_80', 'mousser', 'cul-de-poule', 'texture_sableuse', 'circule', 'approuvée', '35_mn', 'hi', 'fixé', 'sien', 'insolence', 'fixa', 'hausser', 'épaules', 'spaghetti', 'signification', 'étagère', 'piles', 'cramée', 'tordues', 'enduites', 'récipients', 'desquels', 'visqueux', 'lambeaux', 'lis', 'défendre', 'demanderait', 'analyse', 'poussée', 'calorique', 'psp', 'merveilles', 'dégoutée', 'aimerais', 'body', 'quick', 'bruit', 'sp', 'me_revoilà', 'ses_dérivés', 'me_lasse', 'préparations_sucrées', 'entendre_parler', 'goûtant', 'fois_ci', 'retour_vers', 'petites_douceurs', 'sésames', 'orientales', 'promesse', 'régalée', 'petite_précision', 'se_conservent', 'made_in', 'choumicha', '40ml', 'satinée', 'cheveux_bruns', 'carats', 'vieil_ami', 'appétissants', 'fish', 'custard', 'plat_principal', 'réchauffent', 'crudivore', 'arguments', 'avisé', 'bretonne', 'dominique', 'superbes', 'déjà_testée', 'influencé', 'genres', 'cinématographique', 'maintes_reprises', 'rentable', '500_000', 'cet_événement', 'sérieusement', 'poignet', 'zac', 'choqué', 'tu_dois', 'repartir', 'match', 'obliger', 'piège', 'frangins', 'sky', 'bandoulière', 'atlas', 'bricolage', 'roumanie', 'apaiser', 'assise', 'apprécie', 'mauvaise_habitude', 'éclairent', '2_eme', 'dollar', 'margarita', '4-', 'files', 'profile', 'linéaires', 'immédiate', 'distille', 'raciste', 'roms', 'haut-parleur', 'embouteillages', 'connard', 'couteau_suisse', 'secréte', 'barmaid', 'ba', 'enfaite', '2cl', 'dégradé', 'versé', 'facil', 'truck', 'impressionant', 'avent', 'remplissait', 'carnaval', 'trompé', 'possede', 'modele', 'different', 'neiges', 'layette', 'brush', 'compte_google', 'devenir_membre', 'vos_contacts', 'google+', 'milk-shakes', 'cake_beurré', 'démoulé', \"s'_enchaînent\", 'jeunes_adultes', 'réinventer', \"s'_épanouissant\", 'mûrissant', 'fabriquent', 'sergio', 'consolider', 'apprentissages', 'évaluer', '-1/4', 'traitées', 'nutela', 'drapeau', 'moule_silicone', 'julienne', 'relevez', 'mendiant', 'adjonction', 'meilleures_sources', 'vitamines_b', 'céréales_complètes', 'cholestérol', 'ressentent', 'toxines_accumulées', 'participent', 'détoxication', 'système_immunitaire', 'oléagineux', 'substances', 'minérales', 'sélénium', 'illico', 'fresco', 'définis', 'papy', 'ému', 'quelques_larmes', 'senti', 'mon_coeur', 'pleuré', 'prendrais', 'friandise', 'contiennent_beaucoup', '65_%', 'sucres_raffinés', 'stimulants', 'favoriser', 'déshydraté', 'herboristerie', 'lier', 'académique', 'autorisée', 'cuisiniers', 'chou_chinois', 'séduire', 'ajouterais', 'index_glycémique', 'notion', 'copier-coller', '--_>', 'empêché', 'timidement', 'dépassée', 'chouette', 'séduite', 'paramétrer', 'investissement', 'at', 'haley', 'lança', 'enleva', 'naquit', 'treizième', 'détresse', 'parrain', 'pauvreté', 'gommes', 'xanthane', 'eau_thermale', '70°c', 'phase_aqueuse', 'phase_huileuse', 'élever', '5,5', 'sorbate', 'inefficace', 'traces_blanches', 'vous_seriez', 'glissant', 'hydratant', 'mortier', 'nettoyant', 'shampooing', 'argile', 'rhassoul', 'exfoliation', 'hydrate', 'apaise', 'adoucie', 'subtil', 'certaines_personnes', 'détestent', 'palmarosa', 'émulsifiant', 'merci_beaucoup', 'vos_messages', 'remerciement', 'différents_logiciels', 'montre', 'stupidité', 'médiateur', 'france_télévisions', '400_degrés', '.*', '15_ml', 'réconfort', 'maisonnée', 'salade_césar', 'je_rentrais', 'jacob', 'souriait', 'répondis', 'hibou', 'ile', 'ré', 'gélatine_fondue', 'avais_déjà', 'parlé', 'édition_limitée', 'stick', '1cuillère', 'hihihi', 'géré_par', 'men', '10ans', 'aout', '2003', 'sou', 'ondes', 'séche', 'plongez_-les', 'foncés', 'pâte_polymère', 'modelée', 'durcie', 'retravaillée', 'éteins', \"j'_enfourne\", '5min', 'brown', 'génoises', \"n'_hesitez\", 'plateformes', 'madison', 'accrocs', 'module', 'personnalisable', 'jusqu', '-100_g', 'brillants', 'parlons', 'intellectuellement', 'esthétiquement', 'sudoku', '3x3', 'chiffres', 'emmy', 'marrante', 'nos_voisins', 'outre-rhin', 'oserait', 'potion_magique', 'croisé', 'noyé', 'repartit', 'apercevoir', 'rutabaga', 'légumes_racines', 'christian', 'courge_spaghetti', 'circonstance', '95°c', 'enduite', 'easy', 'lobe', 'lentilles_vertes', 'serviront', 'topinambour', 'revint', '_', 'ma_chérie', 'saoule', 'viol', 'lisez', 'héritée', 'demi-siècle', 'mit', 'mother', 'share', 'this', 'family', 'some', 'printables', 'scandale', 'cheval', 'intégrée', 'commercialisées', 'victime', 'anthony', \"s'_exclama\", 'levant', 'serviteur', 'tendit', 'acceptèrent', 'gale', 'iraient', \"n'_oublie\", 'entrouvrir', 'préférez', 'choclat', 'second_saladier', 'pas_confondre', 'terroirs', \"s'_exprimer\", 'riesling', 'gewurztraminer', 'pinot_gris', 'appréciez', 'vrais', 'typés', 'atteignent', 'typicité', 'procurent', 'joie', 'sages', 'andré', 'regroupe', 'autorisés', 'tanins', 'rondeur', 'cuvée_spéciale', '“la', 'élaboré', 'vieilles_vignes', 'plantées', '1890', '1914', 'soyeux', 'aux_tanins', 'principales_caractéristiques', 'belle_concentration', 'vieillir', '“une', 'mourvèdre', 'durant_30', 'châteauneuf-du-pape_rouge', 'fruits_mûrs', 'garrigue', 'tendron', 'poulet_tandoori', 'châteauneuf-du-pape_blanc', 'mêle_puissance', 'distinction', 'aubépine', 'charpente', 'équilibres', 'concentration', 'roussane', 'cépage', '“un', 'précise_-t-on', 'parcelle', 'fruitsfrais', '90_%', 'barriques', '18_mois', 'charnu', \"s'_entremêlent\", 'griotte', 'poivrée', 'poursuit', 'belle_évolution', 'médaille', 'nez_subtil', 'bouqueté', 'aux_senteurs', 'florales', 'persistantes', 'quenelles', 'soyeuse', 'saumon_grillé', 'insolente', '20_%', 'chèvrefeuille', 'persistante', 'facture', 'correspond', 'châteauneuf-du-pape', 'appellera', 'marquis', 'mathieu', 'concentrée', 'sucrosité', 'nez_dominé', 'mûrs', 'pruneau', 'belle_robe', 'soutenue', '40_%', 'clairette', 'aux_reflets', 'très', 'aroma', 'savouré', 'où_dominent', 'senteurs', 'groseille', 'longue_finale', 'vous_apprécierez', 'vignoble', 'sols', 'graveleux', 'saint-julien', 'graves', 'collectionne', 'récompenses', 'haut-médoc', 'robe_intense', 'puissants', 'excellente_qualité', 'belle_teinte', 'marqué_par', 'persistant', '2009', 'sous-bois', 'bouche_puissante', 'très_typé', 'structuré', 'robe_grenat', 'mêle', 'élégance', 'bois_mûre', 'connotations', 'décèle', 'jolie_finale', 'corsée', 'truffée', 'médoc', 'cru_bourgeois', 'très_équilibré', 'belle_longueur', 'harmonieux', 'structurée', 'équilibrés', 'humus', 'aux_taninssoyeux', 'nez_intense', 'pivoine', 'belle_ampleur', 'subtilement', 'épicée', 'belle_finale', 'bourgeois', 'cabernet-sauvignon', 'tanins_présents', 'fruits_noirs', 'bien_charpenté', 'fruitscuits', 'adrien', 'qualifie', 'rouge_2013', 'taninssoyeux', 'excellente_évolution', 'rouge_cuvée', 'vendange', 'sous_contrôle', 'foudres', 'charpenté', 'grenat', 'alliant_couleur', 'bandol_rosé', 'rosé_2015', 'distingué', 'persistance', 'merlu', 'cycle', 'relayer', 'belle_intensité', 'épauler', 'finale_aromatique', 'dominée_par', '1975', 'principes', 'œnologiques', 'noblesse', 'élevage', '85_%', '21_jours', 'remontages', 'foudre', 'nez_complexe', 'bandol', 'bouche_ample', 'florale', 'jolie_teinte', 'arômes', 'folle', 'braquet', 'élevé_12', 'dominé_par', 'fruits_macérés', 'bouche_soyeuse', 'vinifié', 'rolle', 'très_charmeur', 'grande_complexité', 'petits_fruitssecs', 'intensément', 'flambées', 'fèves', 'se_caractérise', 'narcisse', 'bouche_persistante', 'discrètes', 'conférant', 'indéniable', 'associant_richesse', \"coteaux-d_'\", 'aix-en-provence', 'taninssouples', 'charnus', 'frisson', 'doublée', 'nuances_fruitées', 'robe_brillante', 'côtes-de-provence_rosé', 'bouche_délicate', 'associe_richesse', 'bel_équilibre', 'se_mêlent', 'charmeur', 'côtes-de-provencechâteau', 'couleur_profonde', 'rosé_2016', 'fleurs_fraîches', 'suavité', 'igp', 'var', 'chevalier', 'rascasse', 'fleurs_blanches', 'belle_persistance', 'maures', 'bouche_franche', 'très_élégant', 'séduit', 'millésime_2016', 'macération', 'pressurage', '“jus', 'isolé', 'fermentation_alcoolique', 'parfaire', 'exubérante', 'délivre', 'volumineux', 'belle_robejaune', 'très_séduisant', 'légèrement_épicé', 'robe_soutenue', 'parcellaire', 'reproduit', 'signée', 'sculpteur', '1987', 'reproduite', 'coffrets', 'robe_profonde', 'belle_harmonie', 'argiles', 'environnants', 'bouche_dense', 'relevée', 'teinte', 'assimilation', 'dira', 'mûr', 'qualitative', 'relevées', 'synthèse', 'autrichienne', 'altération', 'constituants', 'chris', 'conrad', 'propriétaire', 'possesseur', 'ajoutes', 'papier_sulfu', 'passes', 'gratinée', 'chez_toi', 'sors', 'oublies', 'arroses', 'ne_pus', 'mélange_onctueux', 'doit_ressortir', 'charlie', 'lia', 'figurine', 'pastilles', 'vint', 'saluer', 'remarqua', 'nettoyé', 'dépose', 'altruisme', 'tolérance', 'amorce', 'combines', 'industrie_pharmaceutique', 'cancer', 'cobayes', 'préparait', 'faisions', 'mains_pleines', 'maintenue', 'déteste', 'copier_/', 'sel1/2', 'ingrédients_préférés', 'sel1_sachet', 'bretzel', 'gastronomie_locale', 'dérangé', 'te_dire', 'rigolade', 'exempt', 'court', 'écarte', 'prouve', \"s'_emparer\", 'sacrifier', 'outres', 'bouc', 'sirènes', 'envergure', 'clique_sur', 'tes_amis', 'piste', 'jambes', 'ur', 'parisiennes', 'désossée', 'ficelée', 'refrain_:', 'ne_reviendrais', 'en_sortirais', 'tu_bouges', 'i_am', 'number', 'frite', \"let_'\", 'add_-on', \"j'_aimerai\", 'flûte', '13€', 'fdp', 'edit', 'flûtes', 'dégoter', 'hm', 'trié', 'tourtes', 'lump', 'plutôt_sympa', 'peyton', 'banale', 'exprès', 'coopérative', 'participants', 'libéré', 'expression', 'reignac', 'lueur', 'claquer', 'bricole', 'rimes', 'versons', 'déclaration', 'samedi_soir', 'entouré', 'âmes', 'mes_joues', 'nicholas', 'murmurer', 'répondu', \"t'_aime\", 'partit', 'petit_dej', 'c_pa', 'koi', 'apar', 'decidé', 'detre', 'best', 'mé', 'profs', 'ne_savent', 'ho', 'geule', 'meilleure_amie', 'ses_formes', 'virtuelle', 'sandrine', 'patricia', 'ridicule', 'riquiqui', 'te_remercie', 'mille_fois', '→', 'passeront', 'prendront', 'rf', 'souria', 'formule_spéciale', 'aloe_vera', 'rose_musquée', 'macadamia', 'vitamine_e', 'quantitative', 'nutrition', 'action_anti-', 'significative', 'rajeunit', 'limites', 'saveurs_artificielles', 'vrais_citrons', 'creuse', 'abondantes', 'égouts', 'constatant', 'suggéra', 'mon_père', 'singulière', 'décision', 'soustraire', 'formait', 'immanquablement', 'chaîne', 'réclame', 'voire_carrément', 'filer', 'succulente', 'basilic_haché', 'tapisse', 'sashimi', 'anguilles', 'jouée', 'jeux_vidéo', 'bowling', 'tigres', 'donuts', 'félins', 'compilation', 'grossir', 'emma', 'descendit', 'cassa', 'fis', 'colorations', 'émilie', 'rires', 'importé', 'conquérir', '19ème_siècle', 'fourrée', '12_mois', 'respecté', 'retraité', 'gaver', 'chier', 'jetait', 'bien_évidement', '7_jours', 'chiotte', '.par_contre', 'voulais_juste', 'décrasser', 'amplement_suffisant', '72', 'a_répondu', 'douche', 'jouis', 'ohh', 'flamand', 'instamment', '225_g', 'sympathiques', 'débouchage', 'temporaires', 'kakashi', 'lui_demandait', 'grande_vitesse', 'réflexes', 'déjà_parlé', 'webmiss', 'vous_etes', 'accepterais', 'icone', 'vacance', 'rentrée_scolaire', 'jeune_fille', 'âgée', '16ans', 'vivait', 'jessie', 'j', 'britney', 'single', 'like', 'clip', 'precis', 'exprimer', 'ressentis', 'commande_passée', 'nail_art', 'nn', 'laide', 'tros', 'puisant', 'jy', 'arive', 'alexander', 'reveille', 'charles_pic', 'neuvième', 'pénalité', 'partira', 'délai', 'dépassé', 'sanction', 'cerise_confite', 'amuser', 'petites_décorations', 'animer', 'appelées', 'excusez_-moi', 'cups', 'levure_fraiche', '1/2_c.a.c', '1/2_cup', 'c.a.c', 'cardamone', 'conviendra_parfaitement', 'concassées', '1_c.a.c', 'cerneau', 'grenoble', 'légumes_râpés', 'hareng', 'œufs_durs', 'terre_râpées', 'râpées', 'belles_tranches', 'pelle', 'anniv', 'sabrina', 'scénaristes', 'traitre', 'mégatron', 'vus', 'dit_-on', 'armées', 'cinquième', 'valu', 'tresor', 'drame', 'viril', \"s'_inquiète\", 'dark', 'laissez_reposez', 'cassée', 'reposez', '=s', 'confitures_maison', 'prochaines_années', 'enfermer', 'trouvons', 'galeries', 'actuelles', 'arriverait', 'civil', 'dommages', 'areva', '500€', 'sncf', 'maillots', 'fb', 'arrivez', 'interface', 'mêmes_raisons', 'réconforter', 'cé', 'juré', \"m'_engage\", 'lightning', 'thrash', 'death', 'black', ')_.en', 'metallica', 'considéré_comme', 'master_of', 'mediator', 'apelle', 'prof', 'tu_aimes', 'foutre', 'bizare', 'violon', 'harpe', 'vie_privée', 'prostituée', 'là-bas', 'iphone_7', 'existaient', 'main_gauche', 'main_droite', 'étincelle', 'marée', 'entourent', 'frères', 'sœurs', 'héritier', 'uchiwa', 'ma_puce', 'rejoignit', \"m'_attendait\", 'genoux', 'niall', 'mangeait', 'oréos', 'bob', 'éponge', 'mes_bras', 'boys', 'frappes', 'fiction', 'raconter_ma', 'trouvez', 'flynn', 'jeff', 'bridges', 'concepteur', 'héro', 'tron', 'sam', 'alan', 'bruce', 'actionne', 'laser', 'numérisé', 'vulgaire', 'rendait', 'elle_adorait', 'sakura', 'apercevait', 'soufflait', 'rajouta', 'arrivèrent', 'dirent', 'tu_adores', 'certaine_façon', 'attendais', 'dela', 'sa_carrière', 'son_arc', 'mannequinat', 'défilé', 'humanitaire', 'rap', 'apparaitra', 'rapeur', 'deidara', 'grosses_chaussettes', 'jsais', 'desoler', 'votée', '23_juillet', 'recent', 'passionnel', 'cheri', 'apprecie', 'baisers', 'fougueux', 'swiss', 'diamond', '260°c', 'rester_fidèle', \"s'_inscrire\", 'newsletter', 'vos_favoris', 'remplit', 'lucy', 'va_-t-elle', 'accepter', 'ses_pouvoirs', 'risquer', 'reflet', 'demon', 'rin', 'save', 'toujour', 'tou', 'fanta_citron', 'paroissiens', 'prêtres', 'adressés', 'interprète', 'troquer', 'cuirs', '1e', 'punie', 'barbu', 'pis', 'formulaire', 'chiante', 'sadique', 'contes', 'aventureuse', 'aimerait', \"s'_évader\", 'naïve', 'péché_mignon', 'hamburgers', 'kinders', 'fait_grossir', 'jugée', 'jamais_vu', 'hait', 'essaye', 'joe', 'samsung', 'bahut', 'très_rarement', 'colère', \"m'_empêche\", 'simpa', \"presqu'\", 'transpirer', 'chasseurs', 'justes', 'pvc', 'perches', 'retrouvés', 'marne', 'raconte', 'apprenant', 'notre_enfance', 'coq', '123', 'tendis', \"j'ai\", 'décente', 'appuya', 'apparut', 'candidate', 'cv', 'reconstruction', 'instances', 'disciplinaires', 'suspendue', 'renouvelle', 'traumatismes', 'mairie', 'accouchement', 'actes', 'caf', 'sécu', 'mutuelle', 'pendants', 'tété', 'balayer', 'muscu', 'lavant', 'se_doucher', 'soiré', 'pleures', 'ainée', 'me_donnait', 'choux_fleur', 'beurk', '1er_avril', 'farces', 'buis', 'catholique', '1er_mai', 'muguet', '1945', 'guerre_mondiale', 'armistice', 'hitler', 'camps', 'jésus_christ', 'pentecôte', '3e', 'œufs_montés', 'rejetée_par', \"t'_écris\", '^_^', 'tu_viendras', 'terrier', 'danielle', 'invisible', 'ces_temps-ci', 'photoshoot', 'paul_smith', \"bailey_'\", 'légumes_croquants', 'mozarella', 'pastèque', 'iles', 'givrées', '225', '8-10_minutes', 'glacez', 'va_bientôt', 'j_adore', 'harry', 'severus', 'montraient', 'décrocher', 'réussit', 'tremblements', 'mème', 'yanis', 'calmement', 'minimalisme', 'détonnant', 'complots', \"s'_accaparer\", 'flot', 'réfugiés', 'misère', 'exposés', 'engage', 'québécois', 'parlais', 'minutieuse', 'concrète', 'doutent', 'identité', 'souveraineté', 'supporté', 'politiciens', 'dirigeants', 'organismes_publics', 'consacré', 'loisirs', 'appartenant', 'huissier', 'recoin', 'tuée', 'monétaire', \"s'_assoir\", 'jme_suis', 'derniers_mois', 'jpense', 'banni', 'tjr', '118', 'regime', 'sucrerie', 'cie', 'sodas', 'matiere', 'prepare', 'andouillettes', 'ciseler', 'sableux', 'tu_souhaites', 'decembre', '1982', 'astro', 'juan', 'sa_mere', 'frere', 'piloter', 'memoire', 'lisa', 'preferer', 'erika', 'patinage', 'sean', 'basket', 'equipe', 'betty', 'deteste', 'batard', 'vaches', 'ma_bite', 'pister', 'fallais', \"r_'\", 'matricule', 'identifié', 'tony', 'ze', 'viser', 'tranchant', 'sisi', 'toto', 'sucer', 'mesdames', 'devrais', 'zouk', 'pute', 'voeu', 'vant', 'shit', 'pète', 'baver', 'belleville', 'savais', 'quel_âge', 'confond', 'ton_cul', 'nage', \"s'_évade\", 'pacifique', 'bloquer', 'remerci', 'man', 'suis_né', 'arrivants', 'ronaldinho', 'crew', 'platines', 'dédicasse', 'roule', 'vicieux', 'rêvais', 'limer', 'barreaux', 'zoo', 'vaux_mieux', 'auras', 'couille', 'écris', 'déscend', 'fumais', 'braquage', 'dédicace', 'pleurent', 'lits', 'saigner', 'nike', 'vip', \"m'_arrête\", 'mon_sky', 'omar', 'gamelle', 'co-', 'détenu', 'embrouille', 'serieux', 'alloc', 'cloque', 'braque', 'cross', 'grossistes', 'maque', 'crois', 'croma', 'rais', 'bercy', 'ja', 'r6', 'vers_9h', '10e', 'quiconque', 'couter', 'men_fou', 'crack', 'au_parloire', 'ça_cale', 'maxou', 'farouche', 'mahmoud', 'enfoirés', 'salim', 'frelon', 'ya', 'dirons', 'kil', 'violent', 'enregistre', 'flow', 'cam', 'paro', 'zied', 'bouna', 'nos_puch-ca', 'allons', 'chasser', 'flic', 'prévenu', 'charms', 'cas_échéant', 'entre_copines', 'détruit', 'finira', '-t-on', 'priorités', 'pasque', 'pollution', 'tombera', 'reprendra', 'reviendra', 'me_nourris', 'je_déteste', 'admirant', 'précipitamment', 'referma', 'aération', 'généreuse', 'cheveux_blonds', 'couloirs', 'se_retourna', 'fascinante', 'ramena', 'légère_coloration', '5-7', 'min.', 'quatre_coupes', 'transparents', 'manière_suivante', 'etape', 'piña_colada', 'prélevés', 'surmonté', 'alor', 'lache', 'garcon', 'pensent', 'blesser', 'etes', 'soufrir', 'soyer', 'nos_équipes', 'legacy', 'milk-shake_banane', 'réaliste', 'capture', 'traitera', 'rejoignis', 'zoé', 'confondant', 'tutu', 'rentrèrent', 'restèrent', 'chauffeur', 'accompagnant', 'auto-', 'attitré', 'embrassant', 'moto', 'murmura', 'blondi', 'plongea', 'respirant', 'douce_odeur', 'ses_lèvres', 'repassant', 'donnaient', 'pauline', 'hour', 'cricket', 'citée', 'justesse', 'super_contente', 'hello_kitty', 'voisine', 'se_balader', 'dites_moi', 'fantasme', 'yeux_bleus', 'dissolution', 'fastidieux', 'surgraissage', '8_%', 'me_devais', 'tu_manges', 'plats_pimentés', 'fritures', 'autres_nourritures', 'préférées_viendront', 'soul', 'society', 'regardée', 'fringant', 'bottes', 'possédaient', 'réparations', 'take', 'care', 'commanda', 'damon', 'salvatore', 'épisode', 'capturée', 'klaus', 'vampire', 'tyler', 'capturé', 'intime', 'blogs_préférés', 'souvienne', 'hurler', 'telement', 'evolution', 'trotteur', 'courire', 'ki', 'bouge', 'naime_pas', 'prefere', 'rester_debout', 'ken', 'tien', 'kelke', 'taime', 'deau', 'debut', 'troisieme', 'cest', 'oui-oui', 'kan', 'chatouille', 'fai', 'trembler', 'foto', 'surtou', 'speciale', 'rdv', 'grossit', 'bizou', 'trésor', '◆', 'activer', 'déplacer', 'autorise', 'ajustements', 'déplacez', 'reviennent', 'paramètre', 'lente', 'modifie', 'false', 'concevez', 'disponibles_dans', 'uniques', 'monstres', 'ralentie', 'brûlent', 'canard_confit', '.une', 'camomille', 'demi-citron_vert', 'plantez', 'grillades', 'bulbe', 'teintures', 'décoctions', 'cataplasme', 'essences', 'actifs', 'hypocrisie', 'auraient_été', 'élue', 'leila', 'poignards', 'ignorance', 'cet_organe', 'mystérieux', 'va_durer', 'shampoings', 'gel_douche', 'hydrater', 'touchée', 'santal', 'habileté', 'déficience', 'muffins_anglais', 'fic', 'manga', 'kilari', '<', 'prologue', 'croix_rouge', 'micro-', 'pou', 'chauve', 'guimauve', 'nos_crânes', 'oblige_-nous', 'nos_cerveaux', 'crient_grâce', 'certains_aiment', 'rend_heureux', '71_/', '285', 'cheville', 'tre', 'lara', 'commandes', 'temari', 'exécutant', 'fixait', 'dragon', 'slayer', 'demi_heure', 'natsu', '*il', 'baka', 'débarquer', 'chloé', 'ôta', 'son_manteau', 'burberry', \"vint_s'\", 'bass', 'logan', 'tutoriel', 'customisé', 'comprit', \"s'_adresser\", 'vénus', 'nain', 'eviter', 'mâcher', 'chewing_gum', 'laissa', 'espaçant', 'préalablement_coupé', 'bruns', 'mira', 'entrain', 'draguer', 'trompe', 'mirajane', 'passa', 'erza', 'abord_croyant', 'puis_hésitant', 'criminels', 'tuant_grâce', 'death_note', 'littérature', 'impliquer', 'tu_gagnes', 'trophée', 'virtuel', 'ptdr', 'abusé', 'pk', 'star', 'été_condamnée', '000_dollars', 'mangeons', 'éteinte', 'liniment', 'mauvaises', 'très_appréciés', 'furet', 'super_sympa', 'skyrock', 'tweeter', 'dévoilée', 'admins', 'rebecca', 'anderson', 'conte', 'holmes', 'aptitudes', 'rapproché', 'divers_types', 'dit_-il', 'dakota', 'illégal', 'interdite', 'malfaiteurs', 'délits', 'églises', 'hôtels', 'gares', 'san_antonio', 'clins', 'attouchements', 'mesquite', 'étranges', 'justin_bieber', 'sourit', 'reprit', 'stipuler', 'vanessa', 'bouffant', 'lampe', 'rougit', 'flatteurs', 'sirius', 'élixir', 'cérémonial', 'remarquer', 'entourage', 'étonner', 'éveiller', 'fierté', 'connecter', 'bonté', 'ancêtre', 'entraide', 'géant', 'calcule', 'temp', 'synchro', 'conquête', 'discipliner', 'grandissant', 'entendant', 'logique', 'chapitre', 'captivant', 'gagnants', 'illumine', 'usant', 'transportant', 'philosophique', 'altesse', 'dégout', 'élévation', 'mémorable', 'triomphal', 'indétrônable', 'champion', 'contrées', 'ensoleillé', 'cités', 'minotaure', 'casino', \"s'_écoule\", 'renfort', 'planétaire', 'reconnue', 'exploits', 'légendaire', 'royal', 'loyal', 'phénoménal', 'colossal', 'immortel', 'gémeaux', 'admis', 'déploie', 'vogue', 'inoubliable', \"ç_'\", 'touchant', 'brulant', 'prestation', 'techniquement', 'brigand', 'sanglant', 'cadran', 'savant', 'tend', 'soudain', 'clandestin', 'festin', 'fesse', 'din', 'rein', 'serein', 'olympique', 'lampes', 'brille', 'prince', 'coince', 'rince', 'centre-ville', 'méthodique', 'tic_tac', 'toc', 'cric', 'croc', 'débloque', 'canadien', 'entorse', 'morse', 'rhinocéros', 'bosses', 'précoce', 'renforce', 'horde', 'concorde', 'avion', 'ages', 'remuage', 'sue', 'spot', 'potes', 'million', 'paragraphes', 'hip_hop', 'astucieux', 'couplets', 'plaies', 'valet', 'balais', 'navette', 'navire', 'nie', 'tigre', 'napoléon', 'néons', 'gédéon', 'caméléon', 'ment', 'bénie', 'priant', 'résonnance', 'protecteur', 'zones', 'age', 'charismatiques', 'énigmatique', 'sympatique', 'paradisiaque', 'chantant', 'mélodie', 'mélo', 'délit', 'affole', 'techno', 'pette', 'taureau', 'troue', 'lève', 'flambeau', 'corbeaux', 'tombeau', 'odin', 'pro', 'otan', 'plans', 'tourments', 'compromettant', 'délirant', 'cent_ans', 'clan', 'méchant', 'perdant', 'perde', 'défend', 'fulgurante', 'figue', 'fente', 'rie', 'mure', 'cur', 'humeur', 'hummer', 'summer', 'sum', 'massue', 'ardue', 'saga', 'magnat', 'blague', 'drague', 'nana', 'na', 'yo', 'tua', 'brave', 'crocodiles', 'tôt', 'affreux', 'ragot', 'promène', 'radeau', 'dague', 'mac', 'ados', 'macro', 'salaud', 'dépanne', \"j'_avale\", 'mégane', 'lots', 'lancelot', 'dance', 'slow', 'camelot', 'désinfectante', 'gazelle', 'paz', 'finie', 'zen', 'débarras', 'déborah', 'torah', 'corridor', 'corp', 'record', 'bogota', 'boycotter', 'oréo', 'démontre', 'météo', 'théo', 'pythagore', 'rita', 'python', 'bison', 'dérision', 'visions', 'vison', 'dom_pérignon', 'incision', 'rémy', 'syrie', 'sir', 'tire', 'muses', 'ruses', 'fusibles', 'fusils', 'fusée', 'fusionner', 'accuse', 'exclu', 'daccord', 'mord', 'tyson', 'elf', 'trèfle', 'flèche', 'trève', 'conne', 'orgueil', 'pue', 'culs', 'écureuil', 'recu', 'fauteuil', 'recueil', 'buts', 'écueil', 'chevreuil', 'matou', 'mirage', 'rage', 'zoro', 'joyaux', 'royaux', 'choyer', 'royauté', 'sursauter', 'veule', 'désirs', 'exfolier', 'planer', 'bi', 'bitume', 'assume', 'récidive', 'coutumes', 'dunes', 'allo', 'galop', 'fissures', 'défie', 'messi', 'engendre', 'détente', 'ma_trace', 'tracks', 'gérald', 'figurant', 'fulgurant', 'fur', 'piano', 'pinocchio', 'luciano', 'anneau', 'agneaux', 'néo', 'mélodieux', 'surprenant', 'mystérieusement', 'ressenties', 'pesant', 'sensoriel', 'rappeur', 'mega', 'fast', 'infinie', 'transparence', 'lent', 'fumeux', 'tarzan', 'barbares', 'delta', 'caca', 'talentueux', 'stratagème', 'mystique', 'clique', 'labo', 'studio', 'yvon', 'mieu', 'grimpe', 'mic', 'tisse', 'métisse', 'hivers', 'divan', 'diva', 'flamboyant', 'honorable', 'armer', 'boxe', 'poétique', 'métaphorique', 'psychologique', 'horloge', 'fric', 'habile', 'déverse', 'éden', 'emblème', 'parsème', 'traine', 'rêves', 'enchaine', 'chienne', 'duchesse', 'tigresse', 'mémoires', 'next', 'naître', 'kilomètres', 'corvette', 'espoirs', 'prédit', 'sans_phosphate', 'complémentaire', 'passez_-les', 'ebay', 'vous_demandera', 'compte_paypal', 'risqué', 'monde_entier', 'drama', 'choses_intéressantes', 'croisons', 'urban', 'me_parait', 'particulièrement_intéressante', 'swag', 'ta_fiction', 'arret', '=d', 'disaient', 'bourrés', \"parce-qu_'\", 'gravement', 'équivalence', 'immondes', \"j'_essaye\", 'ouin', 'démontage', 'revenue', 'tournée', 'petites_filles', '8_ans', 'fauteuils', 'chambres', 'remplis', 'cheap', 'ché', 'moiet', 'venais', 'mangeai', 'dedant', \"j'_entends\", 'abats', 'préoccupations', 'femme_actuelle', 'vaisseaux', 'cons', 'pilotes', 'texture_aérienne', 'cornflakes', 'rattachée', 'attelle', 'étudiants', 'qualité_nutritionnelle', 'étreinte', 'sav', 'crème_fouetté', 'je_commençais', 'arriva', 'regrets', 'apportés', 'infirmités', 'descendis', 'sortait', 'attendent', 'rentrera', 'mangerai', '*_*', 'plus_précisément', 'laisserai', 'serai', 'spoiler', 'anime', 'oav', 'playlist', 'k-pop', 'trainer', 'reins', 'lula', 'kirsh', 'regle', 'tu_cliques', 'répéta', 'ses_prunelles', 'prunelles', 'attrapa', 'accrocher', 'asiatique', 'rentabiliser', \"m'_appelle\", 'habillages', 'tiphaine', 'sm', 'rpg', 'nick', 'coquille', 'repense', 'fessait', 'ta_maman', 'souriant', 'bataille', 'rachel', 'certaines_règles', 'commenter', 'défier', 'figurer', 'pomper', 'pisser', 'bourgade', 'mississippi', 'absente', 'agité', 'blouson', 'mièvrerie', 'empêcha', 'aria', 'léna', 'pensait', 'piper', 'descendent', 'leurs_pouvoirs', 'démons', 'détruire', \"s'_approprier\", 'échangé', 'soupira', 'jeta', 'retourna', 'saoul', 'puis_-je', 'remporter', 'baissée', 'recourir', 'achever', 'consistant', 'venaient', \".j_'\", 'perdaient', 'ouvrit', 'commode', 'tourner_vers', 'poutine', 'ashley', 'répare', 'pénétration', 'conduite', 'définit', 'confusion', 'expiation', 'préservatif', 'dut', 'gênée', 'sasuke', 'karin', 'élément', 'chakra', 'naruto', 'kyubi', 'secrétaire', 'soutenez', 'nœud', 'garçon', 'mouvant', '______♣', '_____________-', 'interprètes', 'messagerie', 'précisez', 'décos', 'scrapbooking', 'personnalités', 'résolution', 'se_leva', 'ramassa', 'rapprochement', 'prochains_jours', 'éliminés', 'emilie', 'guillaume', 'presse_people', 'com', 'académie', 'maire', 'féliciter', 'publications_scientifiques', 'opinions', 'miennes', 'magistral', 'je_sors', 'mon_ange', 'passera', 'respirer', 'paupières', 'inférieures', 'histoires', 'finissent', 'ils_vécurent', 'eurent_beaucoup', 'enfants.', 'horreur', 'pensons', 'théière', 'dérangent', 'décoction', 'niaouli', 'angine', 'mutants', 'sentis', 'narines', 'honnêteté', 'humilité', 'véritables_fondations', 'nelson_mandela', 'ce_mois-ci', 'prétend', 'identifier', 'observant', 'traité', 'commandez', 'paypal', '*si', 'ornements', 'liquidation', 'touche_alt', 'enfoncée', 'se_débarrasser', 'favorable', 'bourrée', 'fautes', 'grammaire', 'ponctuation', 'mon_avis', 'souhaites', 'cliqué', 'dix_doigts', 'clavier', 'tournent_autour', 'certe', 'connaissait', 'empoisonné', 'aimaient', 'matt', 'traduire', 'plaisanter', 'cuistots', 'roulante', 'chicorée', '8d', 'apprend_peu', 'bonjours', 'admirateur', 'cherry', 'choquant', 'kevin', 'tot', 'etait', 'lala', 'xd', 'désirer', 'interdits', 'validation', 'acquis', 'personnelles', 'justifiées', 'brook', 'mâle', 'labrador_chocolat', 'élargir', 'accommodant', 'grenouilles', 'bagage', 'ecoute', 'mag', 'entourer', 'rumeurs', 'appartiendra', 'tu_devrais', 'torturer', 'arriere', 'bonne_soirée', 'oh_oui', 'brooke', 'lucas', 'paragraphe', 'basique', 'diversification_alimentaire', '3cs', 'petits_cailloux', 'aime_beaucoup', 'pêché_mignon', 'nourrissante', 'argan', 'cicatrisante', 'décevants', 'aimes', 'coach', 'candidats', 'réels', 'je_voyais', 'dilemme', 'arrangerait', 'participation', 'côtoyé', 'illogique', 'éliminé', 'frustration', 'appart', 'seaux', 'ras_bord', '<_<', 'meilleures_amies', 'dégeu', 'gémit', 'agacé', 'interêt', 'twilight', 'sur_msn', 'inscriptions', 'sincerement', 'bonne_visite', 'criait', '28_ans', 'bac_+5', 'épuisant', 'rolling_stones', 'cheveux_brun', 'stars', 'panoramique', 'spacieux', 'appeller', \"m'_assis\", 'me_leva', 'go', 'persos', 'dispo', 'ainé', 'tragique', 'contraint', 'sienne', 'espacées', 'remit', 'mèche', 'relevant', 'croisa', 'liam', 'souffla', 'aîné', 'abdos', 'dynamiser', 'éclairage', 'serveuses', 'rejoins', 'emily', 'encaisser', 'client', 'débarrassé', 'enchaîne', 'permanence', 'elu', 'statut', 'objet_sexuel', 'punk', 'anné', 'crete', 'percing', 'drogué', 'aillant', 'apercu', 'approchez', 'pa', 'tré', '150_000', 'livrera', 'coopération', 'fausse_brune', 'preuve', 'me_montrez', 'yeux_marron', 'hocha', 'lui_fit', 'tira', 'traversa', 'garcons', 'poufs', 'airs', \"s'_assit\", 'pouf', 'dépendre', 'ration', 'flingue', 'habituée', 'lα', 'c`est', 'vomir', 'batte', 'ton_corps', '-si', 'marquez', 'nous_essayerons', 'nous_essayons', 'nouveaux_formats', 'cicatrices', 'ne_partiront', 'déceptions', 'éxiste', 'high_voltage', 'world_championship', 'wrestling', 'wcw', 'pv', 'nuire', 'infecte', 'set', 'nous_cherchons', 'vos_impressions', 'vie_spirituelle', 'je_descendis', 'va_falloir', 'fatima', 'être_généreuse', 'nulle', 'tomba', 'me_promener', 'vêtement', 'musclé', \"m'_étonne\", '9_septembre', 'scanner', 'séquelles', 'prononciation', 'artistes_tels', 'chœurs', 'figuré', 'he', 'synergie', '5_gouttes', 'interview', 'isabella', 'riant', 'tu_pouvais', 'entra', 'karine', 'marmotte_elle', 'pli', 'regardai', 'comptent', 'astral', 'je_regardais', 'petit_frère', 'julian', 'parla', 'rencontrés', 'beast', 'etc_..', 'devons', 'défaite', 'prenait', \"s'_habiller\", 'plancher', 'grant', 'surnaturels', '.mélangez', '23_cm', 'haricots_secs', 'poussai', 'produisit', 'grincement', 'contamination', 'seuils', 'commercialisation', 'radioactivité', '200_km', 'accidentée', 'contrôlée', 'esperant', 'deprime', 'tibétain', 'nos_propres', 'théories', 'réussissant', 'globale', 'refroidit', 'ailleur', 'annexe', 'amortir', 'son_adversaire', 'verra', 'se_rendit', 'ino', 'aie', 'dévalisé', 'manucure', 'tenten', 'fitness', 'relaxant', 'hinata', 'tsunade', 'poker', 'anko', \"croq_'\", 'resortir', 'se_dirigèrent', 'sépulture', 'ma_sœur', 'cessé', 'gravier', 'discution', 'avala', 'ichigo', 'époque_où', 'photofiltre', 'sephora', 'engueuler', 'magazin', 'cdi', 'quitter', 'recommandable', 'chacunes', 'mes_cheveux', 'tablette_entière', 'courut', 'rentra_chez', 'manqua', \"n'_arrêtait\", 'ne_cessait', 'flemme', 'regrettait', 'eue', 'pop-corn', 'dirigeait', 'vigiles', 'gardait', 'occasions', 'caressa', 'arrêté', 'coiffer', \"s'_apprêtait\", 'karaoké', 'se_dérouler', 'elle_entendit', 'sonner', 'stresser', 'alla_ouvrir', 'rendant', 'vigile', 'ambre', 'amusé', 'figures', 'appuyait', 'sonnette', \"s'_agisse\", 'se_retrouva', 'violets', 'jeune_homme', '€_ttc', 'ip', 'mauritanie', 'jerry', 'arriverais', '*o*', 'accepte', 'préviens', 'neko', 'méchante', 'poils', 'me_dirige', 'bonne_odeur', 'maquillés', 'observent', 'androgyne', 'parte', 'isoler', 'vous_mettiez', 'wwe', 'maria', 'mémorables', 'incluant', 'entrevue', 'eugene', 'william', 'regal', 'gagnés', 'resistance', 'répliquer', 'invita', 'sans_armesqu', 'autre_destina', 'lever_matineux', 'incertainsdites_ces', 'granola', 'parie', 'capturer', 'nouvelles_expériences', 'acceptes', 'apprends_-nous', 'étudier', 'cheveux_noirs', 'marqué', 'sceau_maudit', 'branche_principale', 'bouchée', 'trop_épaisses', 'tier', 'pate_sablée', 'éparpillez', 'tartinez', 'mayonnaises', 'descendant', 'désoler', 'bouclé', 'mes_devoirs', 'h24', 'prévenez', 'vous_ferez', 'me_précipite', 'ne_put', 'imparfait', 'subjectif', 'lachez', 'rapporta', 'chocolats_chauds', 'journal_intime', 'guêpes_(', 'choses.', 'anachronique', 'datant', 'véto', 'obsolète', 'dortoir', 'night', 'fut_contraint', 'ne_savait', 'travaillait', 'me_levais', 'onze_heures', 'buvais', 'passait', 'suicidaire', 'assassinat', 'voisines', 'tueuse', 'irène', 'roque', 'crier', 'ji', 'rigolant', 'étouffe', 'aboutir', 'hybride', 'tournai', 'meilleur_ami', 'ris', 'intrigué', 'frappés', 'voyageant', 'profita', 'gustav', 'assoir', 'trouva', 'gazinière', 'attrapant', 'continuait', 'émerger', 'observa', 'aspirine', 'souffre_douleur', 'son_frère', 'p.s.', 'chasses', 'réacteurs', 'tchad', 'aimants', 'rattachent', 'tourniquet', 'attractions', 'centrifuge', 'inversé', 'photovoltaïque', 'masses', 'cela_évitera', 'boutade', 'célibataires', \"n'_oublions\", 'génératrice', 'aille', 'entraîné', 'amiis', 'clik', 'avoiir', 'populaire', 'elle_apprendra', 'couru', '♫', 'fichu', 'cul_sec', 'balança', 'me_retrouvais', '16_ans', \"j'_habite\", 'lille', 'lsd', \"m'_envoyer\", 'poke', \"m'_installe\", 'classeur', 'fonctionnel', 'maîtrisant', 'dénoncer', 'ingrid', 'renaud', 'akira', 'marre', 'appela', 'inconsciente', 'quand_soudain', \"j'_entendis\", 'carrée', 'neville', 'ferma', 'quil_avait', 'qui_surprend', 'force_surhumaine', 'arracher', 'tabourets', 'détient', 'officiellement', 'pastis', 'échappée', 'asile', 'imminente', 'heaven', 'sa_fortune', 'kinder', 'tes_yeux', \"s'_approcha\", 'selena', 'rinçage', 'charcot', 'enferme', 'raconté', 'montré', 'nouvelle_génération', 'sex', 'sensuelle', 'fucking', 'fantômes', 'fatal', 'united', 'usa', 'fatal_four', 'poid', '1_er', 'consécutif', 'fed', '51', 'em', '510', 'the_best', '-ils', 'tripler', 'voyelles', 'abréger', 'majuscules', 'milieux', 'servirais', 'curé', 'boive', 'nous_changeons', 'dope', 'dédier', 'creer', 'contactez_moi', 'vous_donnerai', 'signer', 'malice', 'argenté', 'contacte', 'ses_yeux', 'day', 'class', 'arrivait', 'chemise_blanche', 'insistance', 'dépendait', 'panse', 'cheveux_secs', 'msn', 'désolé', 'reve', 'cheveux_blond', 'serre', 'concurence_comme', 'aces', 'etre_titulaire', 'ma_placefaire', 'plutôt_rare', 'hall', 'coffres', 'mala', 'nation', 'malienne', 'recoller', 'malle', 'accompagnait', 'ne_sauraient', 'lasse', 'forcer', 'léo', 'refaisant', 'georg', 'réveillé', 'troncs', 'enterrés', 'jetés', 'étangs', '60_000', 'préjudice_moral', 'bernadette', 'lemoine', '30_000', 'chantal', '15_000', 'procédure', 'montants', 'commission', 'indemnisation', 'infractions', 'pourrai', 'culture_générale', 'châtains', 'grands_yeux', 'leva', 'sorcière', 'océanique', 'films_préférés', 'calligraphie', '♣', 'blog.', 'permanente', 'éprouver', 'attirance', 'affamée', \"j'_espérais\", 'masochiste', 'puisse_paraître', 'mary', 'goût_sucré', 'sanji', \"t'_inquiete\", 'n°1', 'légitime', 'éduqués', 'croyance', 'subjective', 'dynamite', 'allah', 'petites_étoiles', 'merveilleuses', 'be', 'rythmes', 'consommant', 'devis', 'achèvement', 'serrurier', 'briard', 'commerciaux', 'inventaire', 'comparaison', 'prévenez_-moi', 'être_prévenu', 'jouait', 'observée', 'détournant', 'serveur', 'glissée', 'agitée', 'avoir_bu', 'aboutissement', 'métaux', 'fermeture', 'provisoire', 'explique_-t-il', 'humiliée', \"t'_aimes\", 'visée', 'pédagogique', 'illustratrice', 'vendeur', 'vous_recevrez', 'sketch', 'adresse_msn', 'essuie_tes', \"t'_empêche\", 'shinigami', 'lui_apprenait', 'quincy', 'indonésien', 'sont_devenus', 'populaires', 'golfe', 'nécessitent', 'macérée', 'naturaliste', 'james', 'injecter', 'arsenic', 'brisé', 'accidentellement', 'genre_musical', 'reggae', 'lilly', 'infirmerie', \"j'_entrai\", 'trouvai', 'zayn', 'je_hais', 'mutation', 'tributaire', 'impliquant', 'clubs', 'formateurs', 'récoltent', 'nombreuses_années', 'dédommager', 'frais_engagés', 'coûteux', 'se_contentant', 'symboliques', 'hé_oui', 'protéinés', 'yoplait', 'tuent', 'emi', 'casque', 'sexualité', 'morphée', 'je_finirai', \"m'_endormir\", 'appuyée', 'oursons', 'tropicale', 'qui_relie', 'prairies', 'orges', \"s'_étendent\", 'îles', \"s'_allonge\", 'aller_dormir', 'utopie', 'bétise', 'gravé', 'banal', 'métropole', 'escalade', 'sécurité', 'mètre', 'penche', 'basé', 'mere', 'franchie', 'asseya', 'béquilles', 'adorait', 'souffre-douleur', 'amusera', '9_mois', '6_mois', 'revu', 'taches', 'yeux_bleu', 'sourir', 'caprice', 'température_souhaitée', 'textile', 'saponification', 'démarrant', 'concentrations', 'intensités', 'gel', 'freddie', 'collège', 'allemagne', 'encadrant', 'développeur', 'maladroite', 'guérir', 'asie', 'bloque', \"s'_envole\", \"s'_échappe\", 'ne_connaissait', 'londonien', 'jason', \"s'_effondrer\", 'sitôt', 'cuver_son', 'redevienne', \"s'_empressa\", 'gérants', 'sirop_refroidi', 'reviews', 'oc', 'globalement', 'continuaient', 'très_sympathique', 'tumblr', 'instagram', 'cigare', 'tour_eiffel', 'fumeur', 'playboy', 'rengaine', 'blessant', 'broyant', 'envieux', 'musik', 'cliquez_ici', 'invoquent', '3,9', 'serons', 'roy', 'spécimen', 'agé', '15ans', 'renversant', 'indifférent', 'flottait', 'célibataire', 'probabilité', 'retira', 'embrasser', 'enregistrement', 'ets', 'plagiat', 'é', 'komme', 'connes', 'fo', 'mare', 'kii', 'renverse', 'moii', 'è', 'leur_voue', 'haine_farouche', \"n'_hésitera\", 'luffy_comme', 'appât_quand', 'lui-même_pirate', 'sortaient', 'surpoids', 'résister', 'honteux', 'celtique', 'adrian', 'von', 'loup', 'veilles', 'bibliothèques', 'obstiné', \"s'_occupait\", 'tentait', 'brule', 'promotion', 'frappant', 'aiderait', 'plie', 'claques', 'obama', 'valser', 'mental', 'scruter', 'puise', \"s'_épuise\", 'connaitra', 'heather', 'april', 'oeuvres', 'intolérants', 'racistes', 'fachos', 'antisémite', 'ma_couette', 'housse', 'couette', 'continua', 'réécrit', 'laura', 'formats', 'maximiser', 'vous_aimerez', 'have', 'everything', 'close', 'can', 'keep', 'your', 'few', 'flower', 'boxes', 'observation', 'plusieurs_possibilités', 'amusantes', 'verrou', 'renforts', 'présentées', 'fanatiques', 'hockey', 'musclés', 'abdominaux', 'nous_buvons', 'thé_glacé', 'mi-temps', 'arrêtée', 'benzema', 'frappe', 'enroulée', 'ol', 'tentatives', 'inquiéter', 'muraille', 'lyonnaise', 'représentée', 'encaissé', 'champions', 'cédric', 'leslie', 'estelle', 'endormie', 'epaule', 'mes_envies', 'vagues', 'sanglots', 'plaie', 'tatoué', 'on_crie', 'amv', 'fanfictions', 'op', 'end', 'lien_visible', 'wonka', 'ticket', 'concour', 'willy_wonka', 'récompenser', 'québécoises', 'ramens', 'revers', 'déplorable', 'psychopathe', \"m'_assois\", 'prés', \"t'_entends\", 'vien', 'kurt', 'sida', 'bleach', 'works', 'lave', 'matos', 'toxico', 'voulant', 'traitée', 'souhaits', 'vous_mettrez', 'devenons', 'equitation', '6ans', 'lea', 'meilleur_amie', 'verez', 'one_direction', 'forever', 'faudra', 'deschamps', '19_ans', 'opaline', 'inconnue', 'bataillon', 'fatigué', 'lui_répondis', 'large_sourire', 'nouvel_album', 'positives', 'tit_déj', 'te_plait', 'promo', 'conseillée', 'parait', 'limités', 'mon_pêché', 'énerver', 'marrer', 'avoir_mangé', 'septième', '29_juin', 'way', 'kelly', 'phoenix', 'mendes', \"j'_oubliais\", 'répétitif', 'pété', 'câble', 'sa_soeur', 'distributeur', 'aise', 'a_ordonné', 'puck', 'vous_inquiétez', 'bonnes_vacances', 'moment_précis', 'dulce', 'fringues', 'zara', 'confirmation', 'robert_pattinson', 'greene', 'taylor_lautner', 'saga_twilight', 'kristen_stewart', 'vera', 'voter', 'bieber', 'daigne', 'courrir', 'attendait_devant', 'claque', 'bise', 'rentre', 'impatient', 'bouger', 'embrasse', 'embarque', 'western', 'party', 'diversion', 'hanna', 'désastre', 'rayons', 'plusieur', 'mourire', 'doctrines', 'pratiqué', 'elijah', 'muhammad', 'préfigure', '6000', 'maléfique', 'africains', 'déporté', 'malcolm', 'étau', 'congénères', 'commerçant', 'habitaient', 'quartier_résidentiel', 'travaillaient', 'pourkoi', 'quii', 'decouvrir', 'villes', 'alliance', 'autres_dieux', 'se_prosterner', 'devant_eux', 'bret', 'yumi', 'affection', 'descend', 'dej', 'boutiques', '19h00', 'milkshake', 'mcdo', 'refouler', 'envahir', 'se_retint', 'recracher', 'fics', 'traductions', 'disponibles', 'basées_sur', 'inspirés', 'tokio_hotel', 'avertissement', 'bisou', 'séparait', 'détourna', 'observait', 'deck', 'tournois', 'rebondissement', 'policier', 'organique', 'acceptation', 'kleenex', 'gestuelle', 'apprivoiser', 'approcher', 'caresser', 'charnelle', 'estampillée', 'mylène', 'relation_amoureuse', 'se_succèdent', 'collaborateur', 'chanteuse', 'sensations_fortes', 'big', 'mountain', 'provenir', 'instabilité', 'menaces', 'effondrement', 'effets_sonores', 'trains', 'enregistrés', 'réalisme', 'téméraires', 'billes_re-fré', \"ouaisc_'\", 'bandits', 'zone_sensibledite', 'nuisible', 'france_paisible', 'lear-di_encore', 'condiparfois', 'calibre', 'broutilles_papymais', 'sa_hen', 'zarrebita_vu', 'fois_condamnéson', 'ramer', 'tous_damnés', 'se_cramerpour', 'ton_cou', 'ta_jouesi', \"t'_assume\", 'zin-cou_on', 'genouxjuste', 'prierque_dieu', 'opprimés', 'réprimé', 'familleevite', 'déprimer', 'pas_icidemande', 'bot_quand', \"carrotec_'\", 'comme_baisé', 'capote', 'pétition', 'hésitez_pas', 'devra_verser', 'agressée', 'leurs_proches', 'maths', 'nuggets', 'one_piece', 'avoir_lu', 'illustrant', 'moment_skyblog', 'skyrock_sont', 'maintenance', 'il_vireront', 'audience', 'ministère', 'nomme', 'buffy', 'puce', 'mordre', 'quelqun', 'chapter', '=_>', 'restructuration', 'contrepoids', 'pressoir', 'attestent', 'collier', 'ginny', 'molly', 'arthur', 'moldus', 'fred', 'george', 'ses_parents', 'hagrid', 'emploie', 'déception', 'fatiguée', 'sii', 'ouii', 'toii', 'ton_prénom', 'néglige', 'gourde', 'ton_frère', 'ahmad', 'comme_schumi', 'courir_vers', 'comme_gebreselassie', 'jordan', 'comme_federer', 'amy_winehouse', \"n'_hésitent\", 'certain_nombre', 'canon', 'descriptive', 'conduisit', 'protestations', 'aaah', \"rock_'\", \"n'_roll\", 'chanter', 'retournent', 'slims', 'vintages', 'folles', 'franges', 'téte', 'inoubliables', 'snake', 'kenneth', 'baker', 'duel', 'revolver', 'ninja', 'tank', 'variant', 'confiée', 'entrainé', 'stress', 'ski', '1001', 'trouverai', 'serviette', 'lui_apporta', 'boxeur', 'rosalie', 'rejoindront', 'emmett', 'jasper', 'nous_irons', 'voitures', 'volvo', 'devais', 'ils_voulaient', \"m'_habiller\", 'jolie_robe', 'photographe', 'énervant', 'regretter', 'laissons', '17ans', 'ma_veste', 'vieille_dame', 'économies', 'trois_étoiles', 'université', 'aujourd_hui', 'dorme', 'accordait', 'sous-vêtement', 'rentrent', 'sentais', 'serra', 'sourie', 'séparée', \"m'_habille\", 'descendait', 'sous-vêtements', 'indescriptible', 'hurlent', 'étouffant', 'refuser', 'essuya', 'détachée', 'je_descendais', 'colla', 'son_torse', 'regardais', 'tristement', 'envoya', 'forcé', 'me_posais', 'prive', 'elle_descendit', 'avertir', 'dépendra', \"s'_éloigner\", 'semblait', 'simon', 'mentor', 'sabre', 'canons', 'grand-père', 'vendait', 'tonneau', 'atout', 'chassé', 'négociant', 'enerver', 'me_regarda', 'baraka', 'jugement', 'vous_engagez', 'n°2', 'astringentes', 'fortifiantes', 'antiseptiques', 'réguler', 'sébum', 'cuir_chevelu', 'suffit_simplement', 'séparations', '52', '38', '170', 'gramme', '330', '280', 'silencieuse', 'dissimuler', 'orphelinat', 'on_mangera', 'peluches', 'géantes', 'accueilleront', 'closes', 'jalousement', 'magnifiques_yeux', 'utilité', 'redresser', 'engloutit', 'crunch', 'descendu', 'avait_commandé', 'cappuccino', 'faillit', 'fumante', 'devenir_fan', 'carrées', 'rose_clair', 'acompte', '13_juillet', '^-^', 'reproductions', 'jake', '119', 'opposé', 'gonds', 'roti', 'tarte_meringuée', 'toma', 'japan', 'guitariste', 'hide', 'très_exaltant', \"m'_exploite\", 'honteusement', 'vrai_don', 'serait_idiot', 'réceptionner', 'passeur', 'lycéenne', 'farouches', 'twix', '.2', '.ajoutez', '1.5_cm', 'creme_fraiche', 'preparé', 'cereales', 'tu_pourrais', 'creme_chantilly', 'mors', 'réagis', '15-20_minutes', 'bcp', 'grossi', 'jument', 'elena', 'caresse_-moi', 'puisse_apprendre', \"t'_aimer\", '13h30', 'wendy', 'rentrer_chez', 'rassemblée', 'chanteur', 'tribut', 'suffirait', 'imaginant', 'nombreuse', 'loufoque', 'nous_descendons', 'dirige_vers', 'écrivains', 'maquillée', 'bling-bling', 'décolleté', 'sexy', 'call_of', 'duty', 'porté', 'commenté', 'veuillez', 'psn', 'sur_fb', 'bac_pro', 'jeux_vidéos', 'laid', 'votre_profil', 'pensa', 'ma_cherie', 'pourais', 'hurle', \"s'_embrassent\", 'doux_parfum', 'enivrant', 'appréhende', '01', '8mm', 'tatouages', '03', '1an', '06', 'superficielle', 'adhère_totalement', 'terminal', 'soldes', 'mes_converses', 'clowns', 'araignées', 'carpe_diem', 'efface', 'remords', '27', 'chemises', 'je_crains', 'soeurs', 'verre_rempli', 'rageux', 'cris', 'perçant', 'déchirer', 'essayent', 'repousser', '9h', 'fumant', 'gabriella', 'rendit', 'kim', 'nerveusement', 'impatience', 'devint', 'jared', 'sentie', 'revis', 'luna', '>_<', 'stp', 'monstre', '6cm', 'cheveux_mi-longs', 'attachés', 'relief', 'kfc', 'ice-tea', 'glacon', 'xdd', 'connor', 'appât', 'attirer', 'vampires', 'funérailles', 'pasteur', 'rebondir', 'ne_supportais', 'vibration', 'corruption', 'valeurs', 'rendaient', 'hypersensible', 'incorruptible', 'évier', 'loge', '4eme', 'proposés', 'district', 'chat_retombe', 'ses_pattes', 'tartine_beurrée', 'retombe_toujours', 'ouvrait', 'tweets', 'réactions', 'dévastée', 'arriva_devant', 'franchit', 'blaze', 'silver', 'amy', 'vanilla', 'gif', 'émoticônes', 'vas', 'nouvelle_fenêtre', 'enregistrez', 'documents', 'ont_décidé', 'réciter', 'contrebasse', 'lâchez', 'bilal', 'jongler', 'après_midi', \"m'_ennuie\", 'flemmard', 'nous_installons', 'table_ronde', 'sandy', 'blaise', 'effleurer', 'pt', 'vous_saurez', \"s'_endormir\", 'ecosse', 'oser', 'pourries', 'ragots', 'rat', 'insulter', 'pédophile', 'blagues', 'smirnoff', 'babybel', 'secret_story', 'meal', 'mc_do', 'ses_devoirs', 'grimaces', 'confortables', 'sièges', 'ferons', 'petites_tartines', 'se_trouvant', \"j'_irais\", 'fiere', '25_juin', 'ton_âme', 'verrai', 'oublierai_jamais', 'peter_pan', 'serment', 'white', 'fait_vibrer', 'empécher', 'michael_jackson', 'résonne', 'casses', 'cœur_tatoué', 'toast', 'certaines_associations', 'bastions', 'percés', 'officiel', 'narcissisme', 'fictions', '.alors', 'exploit', 'marina', 'yeux_marrons', 'lunatique', 'déplacés', 'stop', 'quelconques', 'demoiselles', 'proviseur', 'interactif', 'sportif', 'petiit', 'bou', 'bouille', 'cécile', 'papoter', 'a+', 'désespérée', 'atmosphère', 'adieu', 'orphelin', 'prononcées', 'nouveaux_talents', 'embaucher', 'sebastian', 'campagne_militaire', 'égypte', 'resté_nerveux', 'voulant_gagner', 'lance-flammes', 'destructrice', 'quel_type', 'convienne', '-50_g', 'refroidies', 'faire_circuler', 'parmis', 'courrait', 'cetait', 'enorme', 'mouillé', 'separer', 'sceaux', 'cria', 'renard', 'jackson', 'progression', 'socle_commun', 'bibliographie', 'son_entourage', 'chad', 'ont_développé', 'repertoire', 'one-shot', 'odd', 'féerie', 'imprégné', 'ivan', 'dingue', 'silhouette', 'attirée_par', 'ignorait', 'tourna', 'mangas', 'detroit', 'metal', 'city', 'beck', 'crient', 'rapproche', 'seul_but', 'dépanneur', 'rétablissement', 'verrous', 'serrures', 'chad_michael', 'murray', 'lucas_scott', 'médias_people', 'sophia_bush', 'oo', 'couz', 'tn', 'pourras', 'réellement', 't_-on', 'retrouvera', 'promettre', 'affronte', 'repartira', 'marchera', 'castiel', 'gamine', 'croyais', 'niquer', 'bobo', 'apparente_disproportion', 'faveur', 'sofa', 'couleur_marron', 'plasma', 'colocataire', 'plût', '20_ans', 'habillé', 'réveillent', 'risquerais', 'compromettre', 'misères', 'discrète', 'mon_beau-père', '>>', 'conclut', 'essuyant', 'cristallines', '.après', 'jeunes_femmes', 'couloir', 'arrêtèrent', 'remonta', 'lui_donnant', 'mains_vides', 'jess', 'pourai', 'plin', 'attestation', 'chirurgien', 'rob', 'parfumeurs', 'fragrances', 'jean-christophe', 'hérault', 'survivant', 'casse_toi', 'gemma', 'compenser', 'grignote', 'kai', 'pieu', 'magiciens', 'évoquent', 'privilégient', 'aurait_été', 'sacro-_saint', 'affectueux', 'imposante_grille', 'salomé', 'dix-huit', 'panneau', 'horaires', 'resta', 'doutes', 'télépathie', 'coucher_tard', 'mac_do', 'sms', 'pouur', 'se_moquer', 'ordi', \"mat_'\", 'se_plaindre', 'raler', 'delire', 'delhaize', \"n'_oublierais\", 'aprés_avoir', 'délire', 'nessa', 'réviser', '►', 'prendre_connaissance', 'co-_cocaïne', 'samir_rejoins', 'dauphinemademoiselle_devient', 'intimesun_garrot', 'seringue', 'bim', 'bimmais_elle', 'orange_sanguineelle', 'drame_cette', 'soirée_entre', 'copinesil_est', 'mat_quant', 'keufs_font', 'dringil_vendait', 'dope_mais', 'il_comparaît', '20_piges', 'ferme_ferme', 'x4', 'intervenir', 'mére', 'present', 'ter', 'colombe', \"k_'\", 'mission_impossible', 'pendules', 'agresse', 'porte_parole', 'imagines', 'jen', 'reculer', 'colombienne', 'condé', 'deal', 'brik', 'pd', 'créature', 'jalousie', 'âme_sœur', 'entendit', 'yu', 'christelle', \"s'_acharne\", 'équipages', '49', 'programmé', 'communications', 'multitude', 'facteurs', 'me_tendit', 'refusa', 'releva', 'progresser', 'me_débrouiller', 'se_gave', 'ensoleillés', 'évincé', 'vouler', 'boufer', 'diminutif', 'bourrin', 'sauf-conduit', 'universel', 'incognito', 'connaissez_-vous', 'interet', 'entretenir', 'skyblog', 'blogueurs', 'foutu', 'maintenent', 'aurez_compris', 'heure_actuelle', 'chere', \"j'_aii\", 'trajet', 'consonnes_notamment', 'protectrice', 'mon_pére', 'kristen', 'dîners', 'arrosés', 'loulou', 'exploser', 'mdr', 'bon_bah', 'decrire', 'raport', 'morel', 'toute_allure', 'tes_amies', 'orange.je', 'apres_avoir', 'disons', 'potable', 'timide', 'bouc-émissaire', 'méfiez_-vous', 'trompeuses', 'nappante', 'arrosant', 'recrache', 'mins', '++', 'rit', 'kiffe', 'barbes', 'ac', 'mdrr', 'osait', 'ns', 'trouée', 'pff', 'banderole', 'masters', 'miami', 'disputera', '14_novembre', 'précisement', 'cinema', 'cousine', 'potos', 'tournoi', 'évader', 'me_bats', 'faire_avancer', 'arrivera', 'pétitions', 'nombreux_blogs', 'actions', 'attentionné', 'fau', 'confondre', 'timidité', 'yen_a', 'bc', 'racisme', 'c_t', 'tu_devais', 'epoque', 'fé', 'jé', 'vécus', 'reveil', 'comte', 'sauve', 'tél', 'qualite', 'defaut', 'naïveté', 'embarrassante', 'vecu', 'c_po', 'trop_cool', '22h', 'duré', 'ka', 'preferee_:', 'nrj', 'bourrer', 'jamais_gouté', 'derniere', 'envoye', 'premiere_fois', 'ss', 'hydra', 'mamy', 'manchester_united', 'baskets', 'jdr', 'j_aimerais', 'pharmacienne', 'stylistes', 'givenchy', 'chanel', 'kif', 'convaincu', 'retenir', 'empli', 'sunshine', 'png', 'perfectionner', 'fête_nationale', 'studios', 'kiss', 'fm', 'seattle', 'washington', '170°c_pendant', 'patisser', 'toffee', 'konoha', 'supervisé_par', 'rasengan', 'plante_verte', 'antenne', 'linux', 'compétent', 'rassurée', 'werner', 'tète', 'adossé', 'elise', 'nuttela', 'fixe', 'doudou', 'goulûment', 'brillait', 'retentit', 'honnete', 'acceptent', 'peinture_blanche', 'volley', 'boul', 'c2', 'repartissez', 'filtrant', '*-*', 'jean_samir', 'rejoint_quelques', 'porte_dauphine', \"mad_'\", 'moiselle_devient', 'intimes', 'garrot', 'copines', 'dring_dring', 'il_comparait', 'chandelles', 'je_passerais', 'écoutant', 'music', 'traîné', 'pressa', 'prétendent', 'arrêtent', 'voiler', 'batailles', 'classes_sociales', 'idéologiques', 'religieuses', 'weekends', 'mont', 'ravitailler', 'gamins', 'frère_jumeau', 'marcha', 'je_franchis', 'quittant', 'coincés', 'narrateur', 'retransmettre', 'confusion_possible', 'boissons_favorites', 'tequila', 'sulfureux', 'nestle', 'mon_cheri', 'banania', 'lila', 'doit_rester', 'embrassa', 'accueille', 'applique', 'carthame', 'dentifrice', 'hauts', 'tensions', 'delires', 'fanta', 'egoiste', 'attachante', 'artificielle', 'capricieuse', 'nouvelles_destinations', '■', 'votre_navigateur', 'ce_lien', 'menu_déroulant', '130', 'aperçu', 'arrondis', 'renchérit', 'lynn', 'dvd', 'florent', 'maeva', 'boxer', '21h', 'self', 'aaron', 'aux_malheurs', 'empereur', 'émeraude', 'leurs_alliés', 'andy', 'tortue', 'pourri', 'nectar', 'cadavre', 'gargantua', 'philtre', 'ut', 'near', 'rival', 'traîne', 'read', 'prédisposé', 'l._)', 'laisse_tenter', 'désolation', 'me_fis', 'aye', 'insultant', 'han', 'stef', 'player', 'province', 'insulte', 'habité', 'chuis', 'bourges', 'instant_présent', 'romantique', 'jalouse', 'kinder_surprise', 'plages_naturistes', 'sauna', 'hammam', 'troisièmement', 'être_célibataire', 'allier', 'perfect', 'touch', 'inclure', 'proposées', 'fâcheuse_tendance', 'tiret', 'réplique', 'brian', 'laissait', 'quelques_gorgées', 'okay', 'posta', 'don', 'ethan', 'eden', 'tatouage', 'discutez', 'saurez', 'acteur', 'tatoueur', 'exige', 'risques', 'virus', 'hépatite', 'infections', 'dues', 'micro-_organismes', 'usage_unique', 'buse', 'manchon', 'stérilisation', 'autoclave', 'gavottes', 'chatte', 'caline', \"s'_occupe\", 'équitation', 'accessoire', 'personnage_principal', 'proches', 'ennemis', 'finira_par', 'racontera', 'ceintures', 'me_demandais', 'repli', 'redoutable', 'new_jersey', 'inachevé', 'artificiel', 'enveloppée', 'absurdité', 'luii', 'pantalons', 'jolies_filles', 'serviable', 'poli', 'sourcils', 'beaux_yeux', 'imprévisible', 'autonome', 'indépendant', 'mature', 'avant-bras', 'bons_conseils', 'bourer', 'cannabis', 'bronzé', 'dailleur', 'défois', 'sincere', 'bavard', 'muet', 'carpe', 'retiens', 'abimer', 'téléphoné', 'angel', 'conté', 'ptite', 'femme_enceinte', 'simpsons', 'paske', 'fout', 'coiffe', 'ose', 'déménager', 'sait_jamais', 'rassurant', 'irremplaçable', \"s'_excuser\", 'préfere', 'ses_cousines', 'kel', 'aimait', 'vrm', 'ils_arrivèrent', 'centre_commercial', 'prirent', 'film_préféré', 'coca_cola', 'te_plaît', 'consistera', 'battra', 'intéresserait', '__', 'félicitation', 'retenez', 'ça.', 'clignote', 'alarme', 'se_méfier', 'donnèrent', 'sasori', 'avait_préparé', 'adressa', 'renchérir', 'exigence', 'rapportait', 'parvenait', 'aide_financière', 'matthew', 'intenable', 'won', 'gil', 'ra', 'im', 'ma_marraine', 'lacher', 'se_venger', 'knight', 'habitué', 'interets', 'clopes', 'devil', 'ç', 'calma', 'solennel', 'joy', 'dates', '1°', 'rangés', 'entreprit', 'déjà_présents', 'soupir', 'soulagement', \"s'_écrouler\", 'marié', 'mariée', 'curaçao_bleu', 'entre_guillemets', 'parlez', 'skype', 'piteux', 'détruite', 'contempla', 'montrez', 'jamais_eu', 'pére', 'fracasser', 'braquer', 'pêcher', 'statue', 'directrice', 'me_baigner', \"●j_'\", 'souffle_coupé', 'poing_entre', 'douleur_atroce', \"m'_irradie\", 'toute_entière', 'aucun_geste', 'consoler', 'fait_ruisseler', 'larmes_amères', 'vraies_larmes', 'futilités', 'pp', 'zénith', '17h00', 'rejoin', '18h00', 'se_séparent', 'fouille', 'placées', 'eva', 'scéne', '22h30', '23h00', 'caverne', 'formule_magique', 'gavé', 'cristiano', 'me_sourit', 'anorexique', 'se_tournèrent', 'dirigeant', 'cena_entrait', 'rivalité', 'bischoff_quand', 'croisade', 'envahisseurs', 'extreme_championship', 'réunion._[', '56_]', 'cena', 'il_sélectionnait', 'jericho', 'cena._[', 'leur_feud', 'heel', 'foule_choisissait', 'huer_cena', 'leurs_matches.', '[_58', 'fans_poursuivaient', 'rivalité_suivante', 'kurt_angle', '[_59', 'nouveau_challenger', 'bischoff_après', 'cena_battait', \"you_'\", 're_fired', 'envoyant', 'show._[', 'feud_progressait', 'huait', '[_61', 'tel_point', 'commentateurs_américains', 'étaient_obligés', 'finissaient_par', 'appeler_cena', 'champion_controversé', 'affirmant', 'personnes_avient', 'profon_dégoût', 'ring', 'choix_fashion.', '[_62', 'réactions_contrastées', 'cena_conservait', 'sa_feud', 'perdant_contre', 'par_disqualification', '[_63', 'unforgiven', 'aux_survivor', 'series', 'novembre._[', '64', 'feud_avec', 'angle_voyait', 'aussi_cena', 'répertoire_–', 'stfu_–', 'triple_threat', '28_novembre', 'raw._[', '65', 'ndt', 'peanut_butter', 'andreas', '04', '05', 'essais_libres', 'briefing', 'matinal', '1ère_manche', 'grille_inversée', 'seconde_manche', 'finirais', 'resterais', 'mes_grands-parents', 'chronos', 'dgsi', '6ème', '18_septembre', 'coupa', 'deux_côtés', 'rattachées', 'organisations', 'créées', 'violence', 'instrumental', 'prevenir', 'romane', 'dispensée', 'james_cameron', 'remporté', 'succés', 'entrés', '600_millions', 'verrouillée', 'protégeant', 'vitrine', 'éteintes', \"m'_expliqua\", 'demandes', 'ouest', 'wilson', 'se_transformait', 'elle_cherchait', 'était_censée', 'surgissent', 'loquet', 'signe_astrologique', 'grand_frère', 'sadie', 'harley', 'béguin', 'the_great', 'pearl', 'radiohead', 'coldplay', 'our', 'lady', 'peace', 'johnson', 'cheeseburger', 'jeu_vidéo', 'james_bond', '007', \"m'_attire\", 'particuliere', 'manie', 'soulevé', 'persévérance', 'écoutera', 'parlera', 'riien', \"t'_empecher\", 'derière', 'voiir', 'faiire', 'tourneront', 'viie', 'aimera', 'iil', \"j'_allai\", \"appart_'\", 'trombe', 'bam', 'klaxon', 'nous_devons', 'ça_pue', 'nulle_part', 'loisir', 'sceptre', 'ses_poings', 'infliger', 'mercenaire', 'haches', 'bouclier', 'reçus', '400_coups', 'francis', 'école_militaire', 'reese', 'maligne', 'dewey', 'aube', 'enfermé', 'opale', 'me_rends', 'jeunes_gens', 'pratiquement', 'purent', 'selle', 'ils_boivent', 'examens', 'brevet', 'crut', 'solos', 'batterie', 'polyvalent', 'niveau_sonore', 'live', 'poing', 'censé', 'malédiction', 'pansement', 'tarifs', 'supposée', 'fila', 'plant', 'amos', 'cei', \"m'_apelle\", 'transcrire', 'grimoire', 'potions', 'cristal', 'réagissant', 'précisément', 'énergies', 'canaliser', 'quartz', 'emmagasiner', 'future', 'devient_dépendant', 'fumer_tue', 'tu_finis', 'te_brûler', 'connards', 'ils_profitent', 'vie.', 'synonyme', 'attirés_par', 'moa', 'aidez', 'défense', 'profit', 'choz', 'entendu', 'nouvel_article', 'mr_lunard', 'professeur_rogue', 'approuve_mr', 'lunard', 'horrible_crétin', 'sai', 'huy', 'fuit', 'bras_chargés', 'inutilement', 'maxi', 'brunissent', 'environ_400', 'vitamines_c', '17h', 'scénario', 'talentueuse', 'beau_gosse', 'final_fantasy', 'get', 'karl', 'froufrous', 'motifs_enfantins', 'pastelles_(', 'vieux_rose', 'prévenues', 'préf', 'convainc', 'glee', 'résiste', 'mary-kate', 'passive', 'décisions', 'jumelles', '1837', 'pastéis', 'belém', 'nata', 'vendus', 'gardée', 'oter', '9/10', 'quel_objet', 'comme_projectile', 'ia', 'facilités', 'jte', 'laisserais', 'seron', 'ravies', 'cet_ordre', 'essoré', 'foutez', \"énergiquement_jusqu'\", 'ice_tea', 'coralie', 'compositions', 'ville_natale', 'huit_ans', 'losange', 'quelquefois', 'herbe_verte', 'fossé', 'réveillez', 'disparue', 'votre_guise.', 'essaya', 'ven', 'achetez', 'prévenez_moi', 'hanches', 'fond_sonore', 'premiers_soins', 'shiki', 'tu_dis', 'tes_stylos', 'smiley', 'tu_écris', 'exciter', 'innocent', 'te_lèves', 'pleut', 'fais_semblant', 'te_regardes', 'miroirs', 'rétroviseurs', 'ramasse', 'famous', 'bang', 'ceii', 'te_tapes', 'fou_rire', 'interdiction', 'sieste', 'grande_différence', 'jtm', 'pop_corn', 'tu_donnes', 'finissent_par', 'semblant', '15min', 'imiter', 'tu_pleures', 'comportait', 'maintes', 'coupures', 'pût', 'katana', 'dix_mètres', 'invitons', 'émiettez_-le', \"marguerite_c'\", 'mes_coups', 'blues', 'échanger', 'enregistrées', 'chagrin', 'esque', 'temperature', 'justin', 'glissa', 'couplet', 'tunes', 'mes_doigts', 'verni', 'fuck', 'rey', 'verras', 'gray', 'failles', 'chopé', 'say', 'maniere', 'tué', 'chatain', 'se_retrouvent', 'protege', 'rancoeur', 'amitier', 'méfiance', 'evite', 'sj', 'précisant', 'a_reçu', 'pistolet_destiné', 'abattre', 'rima', 'ils_mangent', 'nourrit', 'peuvent_-elles', 'clef', 'dégagez', \"s'_amuse\", 'quinze_ans', 'n°3', 'n°4', 'n°5', 'n°7', 'cardio', 'n°8', 'n°9', 'n°10', 'boir', 'n°12', 'provocations', 'pardonner', 'dautre', 'pouvais', 'je_passerai', 'mes_journées', 'itachi', 'abolir', 'tort', 'festivals', 'fi', 'before', 'tro', 'jete', 'oeuf1', ')_.3', 'trop_compact', 'compacte', 'emballée', 'fêté', 'gogo', 'se_démarquer', 'rompu', 'shane', 'hybrides', 'hayley', 'aidés', 'abondant', 'dormir_chez', 'style_gothique', 'pourpre', 'manteaux', 'cet_hiver', 'versa', 'passa_devant', 'disent', \"s'_asseoir\", 'claqua', 'clones', 'vinrent', 'nous_dirigeons', 'pointée', 'surnoms', 'envoi', 'cacahuette', 'croutes', 'hannah', 'walker', 'sèche-linge', 'plaça', 'contemplant', 'fayard', 'fauchon', 'réception', 'décontractée', 'investiture', 'bague', 'fiançailles', 'plum', 'tendue', 'spacieuse', 'pensionnat', 'faisant_valoir', 'supérieurs', 'vôtres', 'résoudre', 'liés', 'tess', 'nos_pères', 'nous_suivons', 'video', 'arrivant', 'enthousiastes', '1977', 'jute', 'nous_montons', 'diriger_vers', 'auto', 'lèchent', 'embêter', 'gare', 'isole', 'acquise', ')_babar2', ')_franklin3', 'accordéon4_)', 'mon_chéri6', 'chat7_)', 'patate8_)', 'mon_cousin9', 'con10_)', 'ma_grand-mère11', ')_barbie12', 'père_noel13', 'culotte14_)', 'petite_souris15', ')_astérix16', 'velo17_)', 'mon_téléphone18', ')_tarzan19', 'camenbère20_)', 'rien21_)', 'mon_père22', 'balle23_)', 'bague24_)', 'blonde25_)', 'du_chocolat26', 'voisin27_)', 'ma_copine28', 'meilleure_amie29', 'choux_fleurs30', 'loulou31_)', 'animée', 'lopez', 'maudit', 'jamais_parlé', 'resort', 'peines', 'nos_émotions', 'company', 'abc', 'hbo', 'fox', 'cbs', 'refusé', 'tombes', 'compliment', 'comédies', 'options', 'big_mac', 'chaos', 'prestement', 'haussa', 'ma_fic', 'pommes_duchesses', 'sorta', \"m'_habilla\", 'lilou', 'partirent', 'assemblée', \"s'_empresse\", 'anecdotes', 'amante', 'discuté', '61', 'bute', 'me_ferais', 'mécréants', \"j'_imitais\", \"j'_appréciais\", 'vous_pouviez', 'néant', 'citroen', 'néerlandais', 'barman', 'finissait', 'obligea', 'jane', 'accompagna', 'caitlin', 'anais', 'pilules', 'mistral', 'ranch', 'obstacle', 'pas_exceptionnels', 'monde_prête', 'veux_-tu', 'rapporte', 'devoirs', 'rangent', 'chocapics', 'multivitaminé', 'glander', 'fainéants', 'toutes_façons', 'skins', 'grandis', 'sex_and', 'foetus', 'cogne', 'gueules', 'arrachant', 'saigne', 'bâtard', 'beauf', 'félin', 'se_redressa', 'comparable', 'cheveux_bouclés', 'morte', 'reconnus', 'thrash_metal', 'influents', 'megadeth', 'anthrax', 'être_inscrit', 'newsletters', 'me_demandant', '15_ans', 'détruisant', 'second_set', 'atterri', 'ressenti', 'amélie', 'miam_miam', 'du_jacobinisme', 'abbé', 'barruel', 'illuminés', 'fondé', '1776', 'infiltré', 'franc-maçonnerie', 'asservir', 'ne_tarda', 'mark', 'ledit', 'nouveau_concept', 'bell', '270', 'voyons_comment', 'luc', 'ai_eu', 'vous_pouver', 'sante', 'armure', 'lorsqu', 'dix_huit', 'vendez', 'partait', 'électronique', 'ryan', 'initialement_composé', 'eli', 'ponette', 'classic', 'crins', '106', '23h', \"s'_assied\", 'loïc', 'pantins', \"s'_incliner\", 'explicite', 'pineapple', 'ne_perdez', 'publicité', 'descendue', 'hmm', 'descends', 'jvous', 'vous_aviez', 'jardinière', 'syllabes', 'serait_cool', 'vengeance', 'at_home', 'ciné', 'souhaite_partager', 'nageur', 'zoomer', 'forain', 'navigateur', 'gentleman', 'son_fils', 'avril_lavigne', 'lindsay', 'médicaments', 'brocs', 'serviettes', 'musculature', 'tête_baissée', 'descende', 'normaux', 'tommy', 'éclata', 'bleuet', 'isaac', \"s'_installa\", 'choper', 'alexis', 'carbure', 'brulé', 'petit_nuage', 'gère', 'ennuyer', 'jeunes_hommes', 'te_dise', 'comblée', 'räikkönen', 'renoue_avec', 'alonso', 'ennuis', 'répétition', 'grande-bretagne', 'pénalisé', 'dix_places', 'spectaculaires', 'remontées', 'peloton', 'achève', 'andrew', 'révélant', 'bisexualité', 'explicitant', 'chantage', 'alcoolisme', 'simuler', 'causé', 'volontairement', 'voldemort', 'médium', 'tele', 'me_méfie', 'pourraient_-elles', 'hostiles', 'plantureux', 'tout_arrosé', 'reconnais', 'étalon', 'plains', 'clash', 'meuf', 'racaille', 'ai_voulu', 'piges', 'je_buvais', 'rabaisser', 'démontrant', 'ses_limites', 'tremplin', 'redescendre', 'extravagante', 'chocolaterie', 'freins', '100_mètres', 'frein', 'hachoir', 'réunissez', 'cives', '12cm', 'versez_lentement', '✔', 'émincez_finement', 'retournez', 'imprégner', 'laissez_mariner', '1,5l', 'supprimez', 'sortez_-les', 'désossez', 'jamaïque', '50cl', 'servez_aussitôt', 'retournez_-les', 'épongez_-les', 'laissez_macérer', 'pelez_-les', 'augmentez', 'piment_haché', 'frits', 'petits_plaisirs', 'artifices', 'noeuds', 'portent', 'baie_vitrée', 'agitation', 'clôtures', 'forger', 'canards', 'enrichissante', 'rice', 'âgés', 'cet_endroit', 'infernal', 'moite', 'brûlée', 'exacts', 'del', 'religions', 'représentées', 'magie_blanche', 'égoïstes', 'rassemblez', 'étés', 'diocèse', 'abbesse', 'couvent', 'bénédictin', 'concrétiser', 'mage', 'autel', 'point_focal', 'sataniste', 'sacramentel', 'parles', 'stimuler', 'satanique', 'stimulant', 'qui_suivent', 'tourmenté', 'agonie', 'signaux', 'voudraient', 'déjà_vidé', 'tombe_toujours', 'discothèques', 'dimanches', 'tartines_beurrées', 'adolescents', 'rationnelle', 'savaient', 'criaient', 'kimono', 'lourdement', 'subsiste', 'hauteurs_vertigineuses', 'elle_coupait', 'se_contenta', \"j'_espere\", 'regulierement', 'interessant', 'gouts', 'vos_gouts', \"t'_aiime\", 'pendent', 'graver', 'cantines', 'vek', 'demie_heure', 'sonne', 'étai', 'putin', 'serve', 'breff', 'i_love', 'inexplicable', 'damour', 'sui', 'pres', 'croi', 'scrabble', 'son_voisin', 'personnes_âgées', 'mauvaise_odeur', 'aisselles', 'reception', 'lucia', 'fesait', 'musicale', 'raw_[', '54', 'cheveux_châtains', 'veloutés', 'blanchâtre', '24h_/', 'régnait', 'laisse_aller', 'connecte', 'leader', 'stimulateur', 'être_prévenus', 'dites_-le', 'absenté', 'concours_organisé', 'inquiétant_willy', 'découvrira', 'cinq_tickets', 'fabrication_gagnera', 'double_ration', 'johnny_depp', 'avenue', 'ça_dépend', 'irlandais', 'déstabilisé', 'parodie', 'mozart', 'cachet', 'cheval_enivre', 'maitre', 'se_remémorer', 'ces_deux-là', 'turin', 'nouvelles_versions', 'bijou', 'dormait', 'cute', 'cassie', \"comm_'\", 'offrit', 'remercia', 'réfrigéré', 'dessinées', 'dressée', \"m'_enchante\", 'trilogies', 'george_lucas', 'intégrale', 'frères_scott', 'prison_break', 'véhicule', 'policiers_ont', 'marteaux', 'base-ball', 'amortisseurs', 'susceptibles', 'étrangler', 'recracha', 'blanc1', 'je_sui', 'memes', 'nous_separe', 'trahis', 'ma_mere', 'coran', 'fleurir', 'inquiet', 'romans', 'géo', 'photo_ci-dessus', 'tailleur', 'centrage', 'configuration', 'configurer', 'bloody_rose', 'serie', 'grande_qualité', 'scenario', 'soignée', 'detail', 'reviens', 'feeling', 'embellir', 'ma_fiction', 'coms', 'lut', 'u_u', 'animation', 'plaque_beurrée', 'asperger', '.moi', 'comprendra', 'couturier', 'commençons_par', 'commencement', 'cp', 'college', 'peu_pres', 'enfait', 'nesquik', 'crié', 'reussi', 'rousse', 'pas_moicertains', 'persone', 'suicidaires', 'soleils', 'aucun_catéchisme', 'assumant', 'matérialisme', 'renonçant', 'toute_morale', 'booba_avance', 'visage_découvert', 'premier_album', 'solo_temps', '2002', 'sans_entrave', 'ni_inhibition', 'extrême_particularité', 'ses_visions', 'fœtus_avec', 'exposant_sa', 'sommeil_concevoir', 'son_insomnie', 'yeux_brun', 'menait', 'toute_sorte', 'marchait', 'petite_astuce', 'comédons', 'imperfections', 'haïr', 'misérable', 'vidait', 'vendeuse', 'kidnappé', 'malsains', 'caprices', 'reves', 'considere', 'chanceuse', 'aile', 'échec', 'cree', 'licorne', 'commençaient', 'fatiguées', 'créés', 'samuel', 'fotos', 'répandues', 'ben_voila', 'se_sentent', 'bouquins', 'psychologie', 'réjouit', 'arracha', 'zeler', 'kabylie', 'pirate', 'dar', 'daron', 'gun', 'pret_a', 'dotée', 'terroristes', 'ali', 'théodore', 'los_angeles', 'bous', 'croqué', 'voila_voila', 'répète', 'vous_vouliez', 'suffisait', 'mlle', 'kara', 'fiancée', \"s'_ennuyer\", 'savannah', 'alcoolique', 'fit_remarquer', 'escorte', 'pieds-joints_dans', \"penséesj_'\", 'ai_pris', 'savon_parfuméje', 'laisse_laisse', 'eau_douceun', 'couleur_salée', 'mousseles_bulles', 'se_trémoussentles', \"m'_éclaboussentje\", 'parfum_moussant', 'eau_parfuméej', 'me_noyerje', 'enversun_peu', 'merles_bulles', 'savon_restent', 'airles_boules', \"m'_exaspèrentje\", 'tu_verras', 'simple_copain', 'invité._>', '>_*', 'véritable_ami', 'ouvre_ton', 'se_sert.', 'pleurer._>', 'épaules_trempées', 'tes_larmes.', 'tes_parents.', 'leurs_numéros', 'carnet', 'adresses._>', 'tes_fêtes.', 'arrive_tôt', \"t'_aider\", 'nettoyer._>', 'tu_appelles', 'se_coucher.', 'appeler._>', 'ta_romantique', 'amour._>', 'chantage_avec.', 'finie_quand', 'dispute._>', 'tu_sois', 'lui._>', 'furtivement', 'trouvant', 'palpitant', 'chateau', 'questionna', 'vieil_homme', 'crétin', 'est-ce-que', 'dolls', 'compréhensibles', 'troupe', 'très_intéressant', 'poneys', 'soignées', 'completement', 'affalé', 'me_lève', 'photographique', 'cm1', 'norman', 'victor', 'tournent', 'télés', 'meurt', 'dix_ans', 'taille_suffisante', 'câlin', 'wind', 'traquer', 'marginal', 'accusé', 'meurtre', 'jean-françois', 'décrypter', 'élaborant', 'intrépide', 'gré', 'jolies_photos', 'album_photo', 'confié', 'écho', 'chantait', 'england', 'cindy', 'elodie', 'laiteuse', 'compétiteurs', 'brutal', 'kane', 'smackdown', 'draft', 'destructeur', 'bonne_santé', 'gym', 'eût', 'autorisé', 'économise', 'tuile', 'pi', 'a_pri', 'nest', 'ag', 'revendication', 'régularisation', 'sans-papiers', 'primaires', 'collèges', 'lycées', 'je_souhaiterais', 'grille-pain', 'toilettes', 'ai_appris', 'croques', 'eclate', 'mon_frere', 'lange', 'gardien', 'toni', 'tan', 'enssemble', 'cri', 'gent', 'déraper', 'allongée', 'réclamant', 'bouleversant', 'tu_sauras', 'otre', 'visité', 'ecrit', 'andréa', '17_ans', 'saint_tropez', 'bled', 'appellé', 'ste', '.je_suis', 'sonna', 'nous_partons', 'termina', 'commenca', 'journer', 'escalier', 'apporta', 'assit', 'jesse', 'enchanter', '.voila', 'idees', 'haines', 'misere', 'meurent', 'retrouvent', 'ameliorer', 'd_etre', 'souffrance', 'coute', 'amicalement', 'pervers', 'admire', 'se_démarque', 'stressé', 'lady_gaga', 'constructive', 'pleurs', 'yaoi', 'copiez', 'fidele', \"m'_inquiete\", 'quand_meme', 'séries_tv', 'manuelles', 'sociétés', 'matinées', 'bleus', 'était_assise', 'croqua', 'fbi', 'frank', 'grecque', 'recommandation', 'son_épouse', 'avéré', 'cinéma_américain', '350_millions', 'voté', 'nouveau_chapitre', '160_°c', 'périmètre', '7.5', 'faisant_attention', 'poile', 'marchands', 'secouant', '126', 'langoustes', 'brancher', 'acceptant', 'fabi', 'ahh', 'pensant_très', 'se_gratter', 'montre_autour', 'renault_4l', 'bouilli', 'emballés', 'peut_paraître', '187', 'rapporter', 'humaines', 'inquiétante', 'agricoles', 'mèches', 'platine', 'vestiaires', 'boude', 'diras', 'cliquer_dessus', 'jb', 'lon', 'gronder', 'énervé', 'strictement_rien', 'ravi', 'ramène', 'colonies', 'monnaie', 'meurtriers', 'ptet', 'regardaient', 'soit_disant', 'tombent', 'overdose', 'liien', 'gaffe', 'kat', 'r', 'retournais', 'balancé', 'tapi', 'maron', '♥♥', 'toxique', 'se_précipita', 'abruti', 'cachaient', 'fard', 'paupière', 'essayant', 'jules', 'cellulaire', 'dark_vador', 'bipolaire', '43', 'faire_chier', 'compliqués', 'vous_voudrez', 'sentiers', 'confronté', 'intimidation', 'greg', 'gina', 'indiennes', 'irlandaises', 'high_school', 'musical', 'espéraient', 'saurait', 'malheureuse', 'tenues', 'sont_arrivés', 'inspira', 'échappait', 'séries', 'sil', 'lycéen', 'surnomme', 'plein_milieu', 'moue', 'craquante', 'reconnaitre', 'humidifie', 'fascine', 'ravis', \"m'_inquiète\", 'activé', 'se_mirent', 'poursuivait', 'châtain', 'métis', 'trouvait', 'futur_mari', 'cruz', 'négociations', 'franchise', 'disney', '2,7_milliards', 'arcade', 'damien', 'saez', 'pion', 'allemands', 'willow', 'restera_toujours', 'circle', 'électromagnétique', 'ma_ptite', 'dévore', '7h30', 'dla', 'lave_vaisselle', 'pu_constater', \"m'_amuse\", 'réveil', 'petit_déjeune', 'restés', 'adidas', 'chicha', 'fiesta', 'oran', 'compile', 'dj', 'réunie', 'nano', 'manoir', 'pièges', 'énigme', 'exécute', 'traître', 'tyran', 'essuie', 'dernier_souffle', 'douille_unie', 'monstrueuse', 'alien', 'brun_foncé', '213', 'fluff', 'marshmallow', '260_g', 'cacahuètes_grillées', 'secoua', 'mauvaise_humeur', \"prud'_hommes\", 'nullité', 'réintégration', 'ordonné', 'douze_mois', 'exposants', 'participeront', 'adeline', 'caressé', 'gros_câlins', 'nourris', 'surveillance', 'sauvée', 's_intimes', 'fui', 'expliqua', 'proposa', 'renne', '25_décembre', 'tirant', 'distribuer', '.cependant', 'vieil', 'anglophone', 'moches', 'répondait', 'appelait', 'méthode_consiste', 'renversé', 'excitée', 'racheter', 'faille', 'griffes', 'cornes', 'bovins', 'extreme', 'ideal', 'tenir_debout', 'singes', 'sont_capables', 'prouesses', 'insoupçonnées', 'représenté', 'avait_provoqué', 'rapprochement_entre', 'albus', 'éloignement', 'demandés', 'ooh', 'holly', 'ludique', 'jenny', 'miley', 'musicalement', 'organisateurs', 'débordés', 'salles', 'produits_dérivés', 'énormes', 'cartes_postales', 't-shirts', 'posters', 'consacrent', 'dépenses', 'déterminée', 'épargnée', 'somme_équivalente', '2,5_%', 'nécessiteux', 'constituera', 'pilier', 'guérison', 'nombres', 'gervais', 'grande_soeur', '.parce_que', 'tu_resteras', 'ma_voisine', 'rebonds', 'finales', 'm_&', 'gladiateurs', 'centièmes', 'rider', 'steve', 'michael', 'australien', 'outsider', 'qui_souhaitent', 'élaboration', 'kid', 'me_contacter', 'réagir', 'cafétéria', 'distributeurs', 'démesuré', 'asse', 'phares', 'assister', 'impuissante', 'sociologie', 'idiote', 'exemples', 'inventés', 'portaient', 'répondis_-je', 'comprenne', 'attende', 'irlandaise', 'sharingan', 'diplômé', 'quil', 'pètent', 'reprendrais', 'affiches', 'streaming', 'sucettes', 'couettes', 'promit', 'vues', 'hordes', \"s'_élancer\", 'nos_frères', 'briser', 'ivres', 'sanguinaires', 'armoires', 'échantillon', 'silex', 'pnj', 'quete', 'picon', 'modo', 'green_day', 'cd', 'ambassadeur', 'équipes', 'missions', 'ca_va', '1*', 'lisait', ':_intérrogatoires', 'contre_espionnage', 'instructeur', 'ncis', 'type_us', 'ex_zone', 'soviétique', 'parle_couramment', 'levres', 'ils_prirent', 'passèrent', 'pizzeria', 'louer', 'rendrai', 'sebastien', 'côter', 'jedi', 'manier', 'plais', 'natif', \"s'_avère\", 'conceptions', 'inédits', 'connaissances', 'par_ex.', 'votre_signature', 'adresses_email', 'apparaissaient', 'store', 'petit_poney', '16_août', 'soccer', 'gardienne', 'exagérer', 'jpeux', 'mirroir', 'obsession', 'extremement', 'teindre', 'meches', 'kelkun', 'mauvaise', 'continu', 'emmerde', 'hate', 'secondaire', 'coiffure', 'comprises', 'yeux_verts', 'réaction', 'me_dirigea', 'buanderie', 'reprenez', 'poussez', 'petites_coupes', 'réservez_-les', 'endroit_sec', 'cuilliere', 'harmonieusement', 'excusez', 'mélancolique', 'a_montré', 'vivante', 'retrouva', 'blancheur', 'géné', 'arma', 'voix_haute', 'voix_basse', 'coma', 'répondit_-il', 'annonçait', 'emmenait', 'cyrus', 'habiter', 'esmée', 'salue', 'bienveillant', 'désirez', 'dudit', 'saké', 'amortisseur', 'saura', 'mépriser', 'forfaits', 'pqt', 'bille', 'orne', 'monotonie', 'débardeur', 'gris_foncé', 'gris_clair', 'attaché', 'très_expressif', 'aisé', 'math', 'travail_forcé', 'enflammer', 'compartiment', 'papier_journal', 'vinaigré', 'ai_lu', 'gélification', 'tombèrent', 'je_passai', 'baissa', 'absent', 'lana', 'clark', 'structures', 'raccorder', 'solidaires', 'matraque', 'arrivais', 'discographie', 'complete', 'téléchargés', 'connotation', 'perverse', 'diplome', 'ninjas', 'bisoux', 'se_ressourcer', 'bain_moussant', 'anti-_cernes', 'dissimule', 'cernes', 'frére', 'me_rapelle', 'méme', 'fréres', 'facons', 'serieusement', 'créditer', 'tres_bon', 'récupéra', 'commentez', 'me_voles', 'looks', 'classement', 'surpassé', 'prévisions', 'optimistes', 'quatrième_position', 'te_remercier', 'orages', 'gronde', 'saint_louis', 'octobre_2009', 'évolue', 'aimerais_-tu', 'acceptez', 'starbucks', \"j'_attendis\", 'attendrissant', 'lassant', 'islam_consiste', 'autre_divinité', 'mohammed', 'accomplir', 'prière_rituelle', 'impôt_rituel', 'pèlerinage', 'voyage_rendent', 'episode', 'amours', 'amitiés', 'compliquées', 'superpose', 'deuxièmement', 'générales', 'publiées', '85_g', '137', 'colorant_bleu', 'charlotte', '.avec', '160°_pendant', '275_g', 'pince', 'orangettes', 'meringue_française', 'bonhommes', '190°_pendant', 'ariver', 'davoir', 'me_disais', 'capté', 'mascara', 'dégoulinant', 'pleurant', 'éclatante', 'true', 'suggérant', 'avancement', 'major', 'donateur', 'avai', 'ect_..', 'styles', 'delà', 'mauve', 'fushia', 'tulle', 'satin', 'lèvre', 'pulpeuse', 'espérer', 'ramenée', 'androïde', 'dominer', 'shadow', 'je_ressens', 'inconnu', 'ailé', '150_€', 'n°', 'neige_merveilleux', 'même_substance', 'organique_pourrissante', 'nous_appartenons', 'même_tas', 'lécher_ensuite', 'voulu_adjoindre', 'caractéristique_propre', 'mesure_où', 'ils_aiment', 'hotel_formant', 'expression_tokio', 'hotel', 'enveloppez', 'sérum', 'longueurs', 'tissage', 'vanilles', 'séchez', 'allures', 'scoot', 'laisserait', 'donnerait', 'possiblité', 'kinder_bueno', 'détestait', 'se_voient', 'recommença', 'moqueur', 'idiot', 'allé_chercher', 'entendis', 'savais_pas', 'débranché', 'nous_rentrons', 'nous_prenons', 'décroché', 'accepta', 'rangea', 'ipod', 'monta', 'gueuler', 'explosé', 'caleçon', 'souri', 'vitrée', 'pliée', 'nous_continuons', 'rigolé', '11_heures', 'dormez', 'dormais', '+++', 'précision', 'dîmes', '_je', 'rôles', 'granger', 'entendus', 'sorcellerie', 'malfoy', 'serpentard', 'retenus', 'verrais', \"t'_empêcher\", 'me_souvenais', 'crois_-moi', 'capacités', 'arrogance', 'contradiction', 'loyauté', 'employeur', 'oliver', 'arrow', 'malfrats', 'katrin', 'andréas', 'descendirent', 'bagnoles', 'tués', 'brûlés', 'vifs', 'pourcentage', 'bénéfices', 'soliste', 'hollywood', 'records', 'médical', 'bouf', '.aime', 'casseur', 'enfila', 'aimeront', \"n'_hesiter\", 'am', 'momo', 'sauta', 'kikou', 'discuta', 'énerve', 'bye', 'dirais', 'déshabille', 'lava', 'concerne', 'algérienne', 'vous_étiez', 'loges', 'amoureuses', 'nous-même', 'apaisement', 'désarroi', 'skate', 'se_déplacer', 'tricks', 'environnement_urbain', 'street', 'skateparks', 'brûlait', 'myspace', 'tropical', 'loll', 'défis', 'aiime', 'focus', 'maiis', 'saint_nicolas', 'leurs_parents', 'ai_acheté', 'escabeau', 'dissimulé', 'piercing', 'gentils', 'consommation_annuelle', 'engloutie', '14_février', 'sensibiliser', 'st-valentin', '14_mars', 'ayant_reçu', 'chocolatiers', 'cet_évènement', 'ses_collègues', 'couvrait', 'avk', 'sans_crainte', 'dotre', 'mwa', 'osi', 'orai', 'gene', 'diesel', \"s'_ouvrait\", 'trafique', 'danois', 'faible_teneur', 'porte_coulissante', 'rideau', 'aspiré', 'décante', 'samoussa', 'riz_cantonnais', 'chouilla', 'tu_saches', 'voulus', 'jcrois', 'hériter', 'mule', 'niqué', 'déchirés', 'palier', 'sony', 'plongée', 'dettes', 'ils_disent', 'ons', 'illusions', 'dégrade', 'abus', 'proverbe', 'me_gêne', 'entête', 'me_sers', '~~', 'cordons', 'macdo', 'fifa', '2-0', 'varsovie', 'tourbillons', 'desfois', 'huitre', 'ses_jambes', 'publiques', 'pigeons', 'malibu', 'revoit', 'entraînement', 'orochimaru', 'prononçant', 'dsl', '29_mai', 'saurons', 'croissance', 'prévenus', \"s'_apelle\", 'rer', 'catherine', 'touts', 'visités', 'plain', 'elles_mangent', 'dallas', '5113', 'fermai', 'joseph', 'jonas', 'casa', 'chicken', 'passe-temps', 'musculation', 'composa', 'je_vai', 'shake', 'rendent_heureux', 'déclare', 'depp', 'stupides', 'bourrelets', 'ouh', 'dressées', 'crasseux', 'hume', 'faute_grave', 'utilement', 'dévisser', 'colonel', 'aucunes', 'poursuites', 'lancées', 'chomage', 'jean-marc', 'interrogations', 'danny', 'horaires_correspondent', 'épreuves', 'télévision_diffusera', 'ou_entrecoupée', 'très_encourageante', 'lui_tendit', 'tempérance', 'booth', 'attendit', 'blessure', 'trainant', 'différences', 'argumente', 'arrêtera', 'armé', 'sdf', 'al', 'traditions', 'crèvent', 'éclairés', 'feuilleton', 'stations', 'frontières', 'irak', 'attire', 'se_bousculent', 'ne_répond', 'appellerai', 'superette', 'zoe', 'pardonnez', 'continuant', 'apel', 'me_leve', 'mon_pere', 'lectures', 'légendes', 'ever', 'after', 'high', 'gaia', 'sentinelles', 'dole', 'foret', 'ténèbres', 'cassandra', \"o_'\", 'paulette', 'reines', 'attentat', 'lauren', 'mireille', 'out', 'paraîtra', 'épiderme', 'imbibées', 'éclaircit', 'ongles', 'josephine', 'macho', 'ronge', 'stressée', 'angelina_jolie', 'dévouement', 'égard', 'messager', 'déjeune', '.tout', 'jvais', 'allèrent', 'sans_broncher', 'nous_espérons', 'nos_lecteurs', 'réguliers', 'monge', 'nous_rendons', 'me_dirigeais', 'je_passais', 'infirmière', \"j'_etais\", 'hôpital', 'agathe', 'tmtc', 'elo', 'habitez', 'destinataire', 'internationaux', 'entassées', 'supprimées', 'vous_pourez', 'accent', 'déblocage', 'hp', 'rappelez', 'assigné', 'novice', 'f1', 'elfes', 'camera', 'realiser', 'nouvelles_rencontres', 'entre_potes', 'faux-culs', 'hypocrites', 'trice', 'berk', 'réapparaître', 'caresses', 'condamnations', 'comores', '[_réf', 'revendre', 'abuse', 'poto', 'rampe', 'causer', 'tribunal', 'ghetto', 'control', 'constant', 'illicites', 'way_match', 'event', 'bénévoles', 'oeuvré', 'meetings', 'gambettes', 'sculptées', 'e-mails', 'concerné', 'poussa', 'dis_-moi', 'axé', 'gothique', 'waldorf', '90_millions', 'albums_vendus', ']_[', '57_millions', 'faiit', 'grass', 'nesquick', '=dje', 'indigestion', 'réalisables', 'bombardier', 'nucléaire', 'celia', 'britannique', 'aigu', 'répertoriée', 'se_dépêcha', 'lui_sourit', 'paya', 'mutisme', 'acquiesça', 'derniers_jours', 'alignant', 'successivement', 'mika', 'justice', '1200_euros', 'forest', 'universal', 'steven', 'tempo', 'apparait', 'évêque', 'rome', 'fonder', 'interpolation', 'iiie_siècle', 'collégiale', 'sacerdoce', 'apostolique', 'ier', '217', 'gas', 'divorce', 'meufs', 'avi', 'ardoise', 'volonter', 'explication', 'genou', 'blotti', 'son_jumeau', 'étrangement', 'débouchant', 'inattendue', 'révélait', 'certain_pourcentage', 'morts', 'récompense', 'gagner_99', '999_clochettes', '100_000', 'clochettes', 'me_demandait', 'simple_copine', 'tes_fêtes', 'injuste', 'sa_cousine', 'vampire_diaries', \"j'_attend\", 'couleur_brun', 'aperçut', 'creusée', 'disputes', 'deviner', \"s'_élargit\", 'mobb_deep', 'm.o.p.', 'bénéficiant', 'entraînant', 'conséquente', \"lorsque_quelqu'\", 'boisson_enivrante', 'rejettent', 'centimes', 'irait', 'ballotin', 'neuhaus', 'assieds', 'quatrième_année', 'limité', 'disco', 'savourez', 'gamin', 'inversant', 'croisière', 'renaissance', 'revien', 'renouveau', 'premieres', 'bourgeons', 'pureté', 'entoure', 'vigilants', 'utérus', 'mes_pensées', 'pèsent', 'fardeau', 'ivre', 'aperçus', 'archevêque_lui', 'sainte_vierge', 'étroitement', '10_commandements', 'apôtres', 'jésus-christ', 'ses_apôtres', 'judas', 'devez', 'ben_laden', 'septième_jour', 'mexico', 'eau_bénite', 'bénir', 'ponce', 'pilate', 'hosties', 'iront', 'enculer', 'chenille', 'eponge', 'jade', 'an_passé', 'récoltés', '4000', 'aux_restos', '5,1', 'se_contentaient', 'avances', 'effacé', 'bêtes', 'téléphonique', 'alla_chercher', 'luke', 'attaqua', 'laits', 'courait', 'ne_comprenais', 'balancer', 'remplaça', 'rentrées', 'dorm', 'again', \"t'_empeche\", 'defois', 'te_ferai', 'préalablement_battus', 'connerie', 'textos', 'fellation', 'soixante-neuf', 'partouze', 'masturbation', 'tantrisme', 'kama-sutra', 'brouette_thaïlandaise.mieux', 'expérimenté', 'équipier', 'andrea', 'schumacher', 'embrayage', 'two', 'raconta', 'veuf', 'souterrains', \"s'_empressant\", 'herta', \"pim_'\", 'transgresser', 'délaisse', 'losers', 'moustiques', 'pollen', 'ordonnance', 'divaguer', 'connaissant', 'je_verrais', 'réfléchie', 'yoann', 'loool', 'marines', 'observé', 'a_suscité', 'admettre', 'résider', 'désarmés', 'meneur', 'fc', 'demandaient', 'hassan', 'lui_donnait', 'combattant', 'mello', '27_ans', 'collet', 'lançait', 'jais', 'petit_bou', 'je_continuerais', 'éjecter', 'détesté', 'contrecoup', 'augmentations', 'échappent', 'énergétiques', 'icare', 'celles-ci', 'épuisées', 'je_voudrai', 'eus', 'gémissement', 'chocola', 'jles', 'certaine_personne', 'cicatrice', 'je_perdrais', 'reveiller', 'chaz', 'buvez', '7h', 'lesbienne', 'démonté', 'dopamine', 'sérotonine', '13_mai', 'super_gentil', 'α', 'lαrmes', 'mαis', 'possession', 'wahou', '*je', 'voix_off', 'pubs', 'déodorant', 'crèmes_dépilatoires', 'minettes', 'hystériques', 'obsédées_par', 'leur_déodorant', 'nageront_dans', \"apprenant_qu'\", 'fabrique_maintenant', 'sans_irritation', 'teuf', 'queue_pendant', 'se_désherberont', 'spray_enfermées', 'passer_immédiatement', 'sortiront', 'imberbes', 'donc_baisables', 'leur_filer', 'orgasme', 'boutoir_mal', 'assenés', 'ces_vilaines', 'maladies_vénériennes', 'qui_décimaient', 'prostituées_autrefois', 'vous_décimeront', 'tes_pareilles', 'jeunes_minettes', 'aux_préservatifs', 'préservatifs_machin', 'tape_-toi', 'suce', 'triolisme', 'sodomie', 'plein_air', 'parkings_par', 'unie', 'recherchée', 'associée', 'crinière', 'hallucinations', 'jeunes_filles', 'pair', 'mercii', 'grande_majorité', 'endettés', 'chinoise', \"s'_occupent\", 'belles_histoires', 'entaille', 'glissait', 'agrandi', 'lieutenant', 'ravin', 'gus', 'red_bull', 'capuche', 'soucieux', 'réponde', 'emprise', \"n'_ose\", 'kaulitz', '21_ans', '.ensuite', 'chui', 'ptit_bout', 'circuits', 'chocolatines', 'publiés', 'basculer', '1_dl', 'lise', \"s'_ensuit\", 'deux_équipes', 'parvient', 'inconsciemment', 'vivez', 'demanderai', 'discutions', 'sceau', 'admiration', 'central_park', 'tropicales', 'maxence', 'décrivait', 'croiser', 'astrologique_:', 'residence', 'négligeable', 'immersion', 'circuit', 'hélicoptère', 'nounou', \"s'_occuper\", 'poliment', 'restaurent', 'changea', 'me_regardait', 'veux_dire', 'oula', 'larry', '^', 'longue_attente', 'se_précipite', 'compose', 'poemes', 'destinées', 'succes', 'piercings', 'ray_ban', 'baptême', 'malgres', 'baptiser', 'confesser', 'converses', 'énervée', 'leche', \"s'_habitue\", 'guerrier', 'premier_virage', 'boueux', '15ème', 'neurones', 'evangile', 'roulent', 'coulent', 'moque', 'serres', 'lancent', 'laissent_quelque', 'feraient_mieux', 'nous_aimons', 'bagues', 'boris', 'bruits', 'clés', 'frappent', 'buissons', 'kate', 'promener', 'flasher', 'barça', 'blasé', 'léché', 'retrait', 'ces_publicités', 'con_dont', 'te_tutoient', 'te_vendre', 'arriérés', 'tutoyer_sinon', 'ont_ramené', \"'_teuf\", 'claudia', 'routine', 'répartie', 'grecs', 'gourcuff', 'té', 'tu_regardes', 'penses', 'souffles', 'cable', 'roi_lion', 'bazar', 'écrive', 'wikipédia', 'blanco', 'intellos', 'cachent', 'liz', 'mtv', 'a_expliqué', 'casting', 'bryan', 'importer', 'aux_états-unis', 'mené', 'possessive', 'yuki', '8h30', 'enzo', 'gosse', 'drole', 'pence', 'neuf_ans', 'pendant_sept', 'boot_camp', 'redressement', 'discipline_militaires', 'féminins', 'délier', 'télétobises5_)', 'récent', 'déclarations', 'roma', 'evenements', 'gazon', \"s'_incruster\", 'avoire', 'quon', 'sports', 'nuls', 'diire', 'maiden', 'ct', 'préfèré', 'randall', 'extasie', 'nouvelle_star', 'pitoyable', 'partagez', 'locution', 'triviale', 'opium', 'médicale', 'oserais', 'emballe', 'eh_ben', 'ta_mere', 'ta_soeur', 'agilité', 'courtoisie', 'mon_copain', '*.*', 'augmentait', 'restaient', 'paisible', 'trouvais', 'park', 'tranquilles', 'descendaient', 'cascades', 'déduis', \"m'_endors\", 'apparement', 'bordélique', 'déduire', \"m'_attarder\", 'je_verrai', '2heures', 'aspirants', 'apprennent', 'clans', 'hold', 'espérons', 'internationales', 'britney_spears', 'joyce', 'portefeuille', 'treillis', 'tout.', 'plats_épicés', 'pissenlit', 'sont_idéales', 'sabbat', 'considérées_comme', 'sacrées', 'écosse', 'fouettée', 'présager', 'récoltes', 'hydromel', 'réjouissances', 'civet', 'évoluée', 'enfantines', 'carambar', 'euh_..', 'zut', 'beug', '=p', 'descendus', 'vêtue', 'tartina', 'emmena', 'aidera', 'quelques_uns', 'tendrement', 'biz', 'vi', 'lorque', 'legerement', 'river', 'se_rapproche', 'acces', 'sela', 'leve', 'se_contenter', 'aquarium', 'flottantes', 'météorite', 'polynésiens', 'vivaient', 'mauvais_escient', 'noie', 'expressifs', 'prestance', 'four_seasons', 'super_junior', 'représentait', 'substantifs', 'plates', \"hell_'\", '1_mètre', '69', 'incultes', 'te_jure', 'lundi_matin', 'éclairée', 'bouclée', '11_h', 'détend', 'mabille', 'qua', 'sers', 'équation', 'finiront_par', 'abandonner', 'sûrs', 'talents', 'respectifs', \"s'_opposer\", 'fessais', 'mélanie', 'cop', ':_00', 'yoghourt', 'allai', 'mangèrent', 'céréal', 'robots', 'regles', 'laisseront', 'gagneront', 'judiciaires', 'spéciales', 'sont_exempts', 'toute_punition', 'sont_autorisés', 'meurtres', 'incendies', 'matières_médicamenteuses', 'goudron', 'vermillon', 'retrouverai', 'comble', 'hypocrite', 'confier', 'classe_moyenne', 'constituées', 'dandy', 'famille_unie', 'immense_plaisir', 'entamer', 'inventif', 'produisant', 'dispersées', 'therm', 'assemblez', 'premier_baiser', 'paysages', 'biscuits_tendres', 'guirlandes', 'pieds_nus', 'fourchettes', 'bicyclette', 'cet_aspect', 'tentes', 'fourrures', 'orteils', 'haïs', 'putains', 'flous', 'tabliers', 'léopard', 'ballerines', 'rationnel', 'déformés', 'masques', 'droites', 'pancartes', 'astronautes', 'ronds', 'contaminé', 'constellations', 'celle-là', 'pascale', 'enroulant', 'feutres', 'codés', 'mortes', 'barbouiller', 'poings', 'fermés', 'ampoules', 'cache-cache', 'hexagone', 'arc-en-ciel', 'forêts', 'pyramides', 'capteurs', 'bandeaux', 'pompette', 'cravates', 'zèbre', 'habillés', 'pourrez', '17_octobre', 'réédition', 'soufflette', 'bosser', 'ukraine', 'heureuses', 'mériter', 'seconds', 'souvient', 'terne', 'justine', 'rose_bonbon', 'phobie', 'étonnamment', 'gluant', 'limaces', 'déhanché', 'emma_peel', 'marilyn', 'schtroumpfette', 'lara_croft', 'naomi_campbell', 'cindy_crawford', 'delicieuse', 'ballon', 'ego', 'mon_collègue', 'préétablie', 'ses_capacités', 'pal', 'incluent', 'trajectoire', 'empruntés', 'tu_devras', 'juvia', 'leo', 'vla', 'invoque', 'kon', 'lotre', 'pod', 'nocturne', 'alala', 'pathétique', 'lake', 'gallery', 'lafayette', 'daims', 'mouvementé', 'rendra', 'entrainement', 'reunion', 'ecran', \"s'_habille\", 'prada', 'americain', 'fac', 'queu', 'visa', 'guichet', 'douanier', 'mineur', 'douane', 'ma_valise', 'douanes', 'galere', \"n'_arrivez\", 'fonctionnera', 'hana', 'subtils', 'organes', 'énergie_vitale', 'racine', 'cicatrisation', 'blonds', 'mêlés', 'séance_photo', 'haha', 'tu_connais', 'enormement', 'cherie', 'trottoir', 'délimitant', 'fumer_donne', 'caries', 'actimel_rend', 'os_solides', 'garçons_naissent', 'ça_brule', 'printanier', 'fanfiction', 'relations_amoureuses', 'diffèrent', 'cacahuete', 'coiffures', 'sketchs', 'confrérie', 'rend_hommage', 'personnels', 'solennelle', 'basilique', 'invites', 'parrains', 'festivités', 'ivrogne', 'conseillait', 'fou_rires', 'snow', 'blade', 'simpson', '~~_>', 'jl', 'pluvieux', 'douté', 'aune', 'couronnement', 'troisième_set', 'houleux', 'terrorisme', '100_kg', 'domicile', 'furie', 'dragueur', 'valable', 'shots', 'repasse', 'corn_flakes', 'cirage', 'hayden', '12_septembre', 'écrans', 'box_office', 'domine', 'the_last', 'snob', 'peanut', 'se_hâta', 'eau.', 'rua', 'durs', 'ma_chienne', 'benny', 'déménagement', 'geniale', 'donnons', 'oublions_pas', 'jugent', 'commençait', 'mordait', 'calais', 'mails', 'consulte', 'signatures', '-un', 'taylor', 'percé', 'paires', 'ton_prenom', 'fait_allusion', 'friser', 'bouffes', \"t'_emmerde\", 'fake', 'plv', 'régulierement', 'critiquent', 'dejà', 'font_semblant', 'épisodes', 'espèce_humaine', 'peut_-elle', 'impunément', 'controle', 'cyclope', 'éte', 'veritable', 'se_ruer', 'état_brut', 'nous_devrions', 'stores', 'booster', 'princes', 'régnant', 'serviteurs', 'tu_rigoles', 'finiront', 'allongées', 'logée', 'crane', 'doliprane', \"t'_arrives\", 'menotté', 'urgences', 'crocs', 'reportages', 'fiché', 'maillons', 'désolant', 'rééducation', 'voyous', 'came', 'branchées', 'paname', 'oublient', 'abîmer', 'voleur', 'repentir', 'écarter', 'contaminés', 'préceptes', 'accumule', 'nos_ancêtres', 'carrières', 'sportives', 'mon_chum', 'me_reveiller', 'cotées', 'dauphins', 'oncles', 'renier', 'calins', 'mondes', 'conter', 'ma_best', 'mc_donald', 'subway', 'pepsi', 'glaciale', 'regina', 'montra', 'sautent', 'entrainer', 'tkt', 'serieu', 'longeur', 'parano', 'mp3', 'tf1', 'rouen', 'terminale', 'dieppe', 'yoshi', 'mario_kart', 'nombril', 'elysée', 'présentateur', 'sportive', 'm6', 'burn', \"m'_énerve\", 'lisseur', 'hélium', 'assurés', 'resservir', 'forêt_noire', 'valait_mieux', \"j'_arrivais\", 'luffy', 'collègues', 'innocents', 'décourager', 'cet_homme', 'kelle', 'metro', '14h', 'mickael', 'katie', 'droguée', 'haribo', 'mili', 'sandwich_jambon', 'déguisé', 'brassé', 'essuyé', 'passais', 'tes_potes', 'frileuse', 'tes_bras', 'cfa', 'revenais', 'reparle', 'nier', '2mois', 'je_continuais', \"t'_embrasser\", 'assez_vite', 'demandais', 'bonheurs', 'portatif', 'garde-manger', \"j'_exagère\", 'kamasutra', 'cacahuetes', 'milkshake_banane', 'juventus', '7,5_millions', '22_ans', 'transfert', 'définitif', 'truk', 'queje', 'informer', 'code_barre', 'décrivant', 'supprime', 'rebours', 'yi', 'mario', 'centaine', 'entrèrent', 'pèche', 'daisy', 'luigi', 'fit_entendre', 'sans_relâche', 'théâtre', 'sordide', 'epinards', 'handball', 'augmente', 'mentalité', 'correct', 'chocs', 'réagi', 'm^me', 'vraiment_apprécié', \"m'_embête\", 'ne_changera', 'te_mentir', 'rapel', 'harissa', 'coccinelle', 'alicia', \"n'_osais\", 'familière', 'bon_escient', 'balayage', 'viseur', 'naviguant', 'réintégrer', 'approvisionnement', 'stocks', 'produits_vendus', 'passagers', 'ventes', 'hors_taxes', 'bordelais', 'refrain', 'pleurait', 'crises', 'cycles', 'bouleversé', 'sorbonne', 'méditer', 'interrogatoire', 'avatars', 'logiciels', 'caféine', 'nombreux_aliments', 'fructose', 'suspecte', 'permit', 'paraissait', 'shoot', 'snif', 'ganja', 'marie-jeanne', 'beuh', 'buvard', 'brouette_thaïlandaise', 'abbey_road', 'hendrix', 'sauvé', 'installant', 'reprocher', 'lui_confier', 'tripe', 'noi', 'jms', 'pulls', 'flingues', 'zigiie', '_____', 'gorger', 'réfléchissant', 'profondément', 'mincir', 'amande_douce', 'levez', 'tu_dors', 'axel', 'brillent', 'baissant', 'nai', 'nourriture_préférée', 'quatre-épices', '32', 'païens', 'prospérité', 'calcium_rend', 'mcgonagall', 'multiplié_par', 'augmentent', 'externes', 'marteau', 'eau_potable', 'occupation', 'donneront', 'entierement', '10_000', 'matériel_pouvant', 'unes', 'volés', 'anaïs', 'mon_profil', 'chewing-gum', 'glorieux', 'territoire', 'haïti', 'cicatriser', 'secher', 'tempérament', 'confiant', 'amu', 'se_distingue', 'après-shampoing', 'rickman', 'mar', 'rihanna', 'pe', 'toi.', 'big_show', 'vince', 'veu', 'orton', 'vraimen', 'batista', 'poura', 'c_etait', 'randy', 'vs', \"'_z\", 'sé', 'triper', 'je_lai', 'bagarre', 'journé', 'mélissa', 'alix', 'tof', 'javai', 'judicieux', 'tempêtes', 'haarp', 'visibles', 'tj', 'gacher', 'foute', 'tp', 'font_grossir', 'regroupant', 'lorie', 'gérard', 'vives', 'remportent', \"viendront_s'\", 'artistiques', 'volets', 'ai_oublié', 'solène', 'deb', 'sablier', 'rentrez', 'manquera', 'bûcheron', 'alchimiste', 'craft', 'trophées', 'ça_coute', 'répandu', 'inventant', 'prophétie', 'stefan', 'redevenu', 'sanguinaire', 'atrocités', 'sang_humain', 'déchet', 'profondes', 'il_suffirait', 'pardonné', 'sur-le-champ', 'mikados', 'gribouiller', 'pokémon', 'transports', 'basés_sur', 'précieusement', 'perdez', 'fictifs', 'anti', 'ferra', 'oups', 'jtai', 'désespérer', 'concepteurs', 'presente', 'papi', 'maroc', 'etudes', 'dakar', 'sait_mourir', 'bis', \"pourvu_qu'\", \"m'_importent\", 'défunt', 'résolutions', 'guitares', 'efficacité', 'basses', 'incursions', 'mélodies', 'influences', 'hardcore', 'attaquent', 'intégrisme', 'carrement', 'écoeurer', 'impressionnante', 'rende_compte', '1985', '86', 'roussillon', 'étions', 'je_travaillais', 'discutait', 'piètres', 'moins_12h', 'torrent', 'requin', 'quelques_règles', 'arranger', 'appuyant', 'disposez_-les', 'recueillez', 'avais_parlé', 'mimosa', 'gastronomiques', 'wallons', 'feuilletée', 'brisée', 'répertorier', 'répertoriés', 'apprise', 'pissé', 'milk', 'existe_aucune', 'grand_public', 'sister', 'pleine_lune', 'roxane', 'vie_sexuelle', 'stylos', 'beat', 'dansé', 'filme', 'decider', 'kdo', 'retrouverez', 'ellen', 'acceuil', 'pαs', 'pincement', 'quαnd', 'laisses', 'reproche', 'tecktonik', 'dal', 'journalistiques', 'ils_firent', 'partagèrent', 'chichis', 'offrirent', 'etoiles', 'clignotent', 'ces_moments', 'stables', 'craintes', 'croient', 'concocte', 'petit_déjeuné', 'pleine_forme', 'café_expresso', 'ogre', 'story', \"m'_indiquer\", 'refusera', 'feignant', 'combinée', 'affaibli', 'parviendra', 'combat_contre', 'sensei', 'corps-à-corps', 'considérablement', 'rick', 'cody', 'désignée', 'deuxième_étage', 'livrant', 'commançant_par', 'ouvres', 'tu_cherches', 'ta_tartine', 'souffler', 'dauphine_mademoiselle', 'devient_folle', 'chaques', 'goutter', 'paparazzis', 'inconnus', 'mouillées', 'mettres', 'uno', 'ciseau', 'ping_pong', 'miné', 'signifier', 'sdb', 'arriére', 'au_badminton', 'conversations', 'trash', 'tes_questions', 'bloquait', 'hawaii', 'poussés', 'maquillages', 'emprunte', 'bergère', 'riait', 'absolue', 'étang', 'patinoire', 'affreusement', 'drôles', 'frisé', 'autobus', \"s'_obstine\", 'plaint', 'trappe', 'prague', 'tchèque', 'williams', 'beatles', 'item', 'activa', 'organisé', 'passionnément', 'jtd', 'bsx', 'pronostic', 'égratignures', 'appareil_photo', 'achete', \"n'_empeche\", 'ouvertures', 'mama', '3ans', 'matinales', 'crême', 'petit_+', 'équivalentes', 'saint-valentin', 'manquais', 'demi-verre', 'achevez', 'filtrée', 'dégraissée', 'confirmer', 'smash', 'équipage', 'âges', 'esquiver', 'patrouille', \"pom_'\", 'tang', 'soup', 'ace', 'prétention', 'liront', 'critiqué', 'ouvertement', 'article_paru', 'times', 'reprochait', 'doper', 'tom_cruise', 'réconciliation', 'générée_par', 'reversée', 'discutaient', 'joyeusement', 'commercial', 'molette', 'mandy', 'flashback', 'compté', 'marvin', 'masculin', 'zum', 'taille_réelle', 'gossip', 'vérités', 'préliminaires', 'diamants', 'extraordinairement', 'tantôt', 'exubérance', 'lointain', 'inari', '<<', 'devenus', 'rituelle', \"qu'il\", 'mes_reves', 'brenda', 'temps.', 'lui.', \"d'un\", 'scene', 'sueur', \"c'était\", 'pep', 'meilleur_joueur', 'toits', 'reflets', 'brasseries', 'ruelles', 'nuque', 'promenant', 'velo', 'etoile', 'réclamer', 'décédé', 'wayne_normalise', 'remix', 'déménage', 'refusée', 'calin', 'faîte', 'fanatique', 'shampoing', 'respectent', 'etaient', 'falaise', 'nous_retrouvons', 'brisées', 'laurent', 'soumis', 'vénéré', 'paillasson', 'douteuse', 'irréprochable', 'béatitude', 'ingérer', 'fair', 'rp', 'gagnée', 'attitudes', 'aude', 'manue', 'surprenante', 'nos_coeurs', 'ptites', 'tournage', 'productions', 'ouarzazate', 'précédé', 'réalisateur', 'stone', 'ridley_scott', 'bras_gauche', 'angélina', 'décréter', 'séduisante', 'affalée', 'jetée', 'philo', 'cadette', 'pensés', 'nous-mêmes', 'pouvions', 'attrayant', 'se_délecter', 'freezer', 'anéantir', 'aussitôt_changé', 'puis_croqué', 'par_boo', 'transfusion', 'deuxième_set', 'complètement_différent', 'paulo', 'manifestement', 'cassez_-y', 'dynamisme', 'scénariste', 'préservés', 'apart', 'classés', 'ordre_alphabétique', '1300', 'old_school', 'éclairé', 'femelle', 'cachait', 'mâles', 'terra', 'bougie', 'parfait_glacé', 'saute', 'sereine', 'jetais', 'brusque', 'particules', 'franck', 'mass', 'laurel', 'hardi', 'strass', 'yang', 'sans_zidane', 'jasmine', 'écouteurs', 'marylin', 'titi', 'petit_dejeuner', 'pere_noel', 'batman', 'professeurs', 'courent_après', \"s'_appuie\", 'établissements', 'existants', 'améliorant', 'enseignement_supérieur', 'importations', 'consommation_courante', '4,6', 'féte', 'votres', 'son_oncle', 'participé', 'débarquement', 'gibbs', '”', 'éloge', 'ennui', 'sébastien', 'pete', 'coche', '+_15g', '10-15', 'aussitot', 'râpez_finement', 'mousse_onctueuse', 'mini_cakes', 'poignard', 'tapée', 'mdrrr', 'fille_ki', 'heart', 'girls', 'maime', 'amusez', 'resterai', 'dirigé_vers', 'tomtom', \".aujourd_'\", 'attentes', 'ramen', 'metre', 'apre', 'repondre', 'ue', 'désagréments', 'notées', 'laves', 'aucun_intérêt', 'cet_outil', 'avan', 'carte_bleue', 'jamai', 'mek', 'av', 'appele', 'dispute', 'criquets', 'reconnaisse', 'se_plaignent', 'annonçant', 'dérisoires', '3eme', 'ne_cessent', 'toute_facon', 'fofolle', 'mêlé', 'aima', 'confidence', 'connai', 'shoping', '.nous', 'gere', 'cacahouette', 'bill_gates', 'transes', 'dalaï_lama', 'résurrection', 'pamela_anderson', 'woodstock', 'rave', 'plus_orgasmiques', 'défonce', 'morrison', 'pc_portable', 'portugal', '√', 'soprano', 'khalifa', 'incomparable', 'voilà_pourquoi', 'dansent', 'chantent', 'vieille_femme', 'perdue', 'hantent', 'cyril', 'filleul', 'très_gentil', 'satanée', \"j'_accepterai\", '31_juillet', 'vielle', 'gratte', 'tu_veu', 'derange', 'percussions', 'remplacée_par', 'grève', 'tarde', 'serments', 'brisent', 'cr', 'desert', \"^^j_'\", 'finirait', 'être_utile', '==_>', 'juska', 'homogéne', '95g', '6e', '7e', '-le_refroidir', 'démoule', 'vérifie', 'dilués', 'user', 'tympans', 'aigus', 'soupirant', 'quan', 'je_supprimerai', 'ossi', 'bélier', 'incompréhension', 'guerlain', 'mes_potes', 'année_passée', 'règles_dignes', 'approché', 'lunaire', 'pale', 'comblé', 'égarer', 'délaisser', \"s'_effrite\", 'cheveu', 'fastidieuse', 'ruines', 'aux_larmes', 'faucon', 'lacs', 'entrailles', 'paresse', 'relax', 'aurais_pu', 'nous_connaissons', 'partageons', 'rappelé', 'lutter', 'allié', 'territoriale', 'résilier', 'insuffisance', 'aptitude', 'mages', 'airelle', 'angélique', 'comms', 'confidente', 'clown', 'indochine', 'periode', 'tokyo', '²', 'pib', 'alcoolisées', 'football', 'illusion', '.tu', 'carnage', 'omg', 'hé_bien', 'dégustait', 'steven_spielberg', 'jurassic_park', 'appliquent', 'pilotage', 'embarqués', 'électriques', 'examen', 'environ_300', 'pilote', 'y_parvenir', 'voilou', 'sellette', 'ici-même', '+2', 'rende', 'vo', 'glace_pilée', 'cadavres', 'malédictions', 'nièce', 'dracula', 'se_taire', 'raccourci', 'snowboard', '19e', 'cole', 'admin', 'réservations', 'validée', 'ajoutons', 'règlement', 'dissiper', 'karen', 'filles_mangent', 'boisson_alcoolisée', 'saupoudrez_-les', 'censure', 'injurieux', 'people', 'algerie', 'abonné', 'releve', 'péniblement', 'lumineuse', '.si_vous', \"'_qua\", '.._♥', 'éparpillés', '4_coins', 'picardie', 'ma_jumelle', 'dédicacé', 'manzana', 'orangina', 'sanguine', 'marseillais', 'speed', 'doi', 'souligné', 'additionnels', 'presentation', 'premièrement', 'asticots', 'entrepris', 'me_manques', 'universitaire', 'ambitions', 'forgé', 'encor', 'imprévus', 'déconne', 'écoutent', 'crêtes', 'coqs', 'puissiez', '1m', 'proie', 'bananes_coupées', 'manqué_beurré', 'union', 'arnaud', 'tireur', 'jeremy', 'râler', 'aie_aie', 'habitudes', 'xv', 'glorieuses', 'all_blacks', 'first', 'perpétué', '210_°c', 'cartonnée', 'son_compère', 'rejoindra', 'buffon', 'débarque', 'effort_financier', 'hors-sujet', 'courante', 'vitesse_supérieure', 'redevenir', 'shin', 'sonia', 'bons_souvenirs', 'mmm', 'boss', 'laetitia', 'vomi', 'sunday', 'rassure', 'chocolaté', 'gazeuse', 'oral', 'efficaces', 'copier', 'infinity', 'ward', 'dun', 'essuie_nos', 'publique', 'limpression', 'progresse', 'aprems', 'nuits_blanches', '0n', 'portails', 'aa', 'mes_ongles', 'adoptent', 'corail', '28_mars', 'chocolat_viennois', 'édifiée', '800_000', 'curtis', 'son_rival', 'supprimés', 'stupéfait', 'mtn', 'charleroi', 'explosions', 'bambins', 'envolées', 'adoration', 'raccrocher', 'caen', 'c_tro', 'essuyer_tes', '-de', 'gâte', 'planta', 'soupire', 'myrrhe', 'grosso_modo', 'collector', 'select', 'versus', 'fait_exploser', 'suffisaient', 'fried', 'déchiffrer', 'francais', 'germaine', 'service_après-vente', 'flexipan', 'tétons', 'elleest', 'elleaime', 'souriante', 'son_cousin', 'têtu', 'nicole', 'habitant', 'ses_désirs', 'dring', 'exclut', 'révélé', 'édition_spéciale', 'ont_cessé', '4ème', 'contiendra', 'assassin', 'bordées', 'volet', 'rôle_principal', 'panda', 'role', 'rêvait', \"s'_exprime\", 'nous_prévoyons', 'touristique', 'chatter', 'lamentable', '147', 'motorisations', 'cylindres', 'v8', 'sauts', 'alterné', 'viré', 'arrogant', 'éponyme', 'emprunt', 'stérilité', 'assimile', 'redoutablement', 'foncer', 'décident', 'trouvent', 'tomber_amoureuse', 'entament', 'elles_offrent', 'jamais_osé', 'trouvaient', 'déprime', 'se_souvenant', 'fringue', 'rejoint', 'espere', 'dirigé', 'elles_deviennent', 'mangées', 'mécaniques', 'adhérence', 'signe_particulier', 'mohamed', 'étonne', 'romantisme', 'eternité', 'realise', 'actualités', 'divers_domaines', 'mentionnées', 'diffère', 'réputation', 'antidépresseur', 'armand', 'comtesse', 'symboles', '<_33', 'lui*', 'ii', 'contrasté', 'acceptées', 'légende_raconte', 'grue', 'surnaturelle', 'accru', 'clientèle', 'mignonne', 'petite_dédicace', 'xxx', 'collaboration', 'allumez_votre', '6h', 'ventre_vide', 'remède_naturel', 'noni', 'dire_adieu', 'aventures', 'amazing', 'poussin', 'hésite', 'blindé', 'vegas', 'décomposition', 'écrevisse', 'missile', 'chercheuse', 'enleve', 'fonce', 'se_referme', 'deuxiéme', 'ann', 'avek', 'cey', 'suporte', 'caractere', 'phone', 'elle_aiime', 'guele', 'repond', 'gro', 'gabrielle', 'leurre', 'martinet', 'sanglante', 'pulsions', 'meurtrières', 'plantant', 'vices', 'crucifié', 'bouscule', 'proies', 'silencieusement', 'carcasse', 'ressorts', 'rouillés', 'séquence', 'pornographique', 'enfonce', 'militaire', 'arabe', 'tueur', 'fentes', 'benoit', 'pay_per', 'views', 'wwf', 'défiant', 'hais', 'compétence', 'consultation', 'merite', 'decouvert', 'saviez_-vous', 'abou', 'combustible', 'calice', 'yavait', 'nikel', 'olympia', 'coulaient', 'boissons_gazeuses', 'décorée', 'penalty', 'honnêtement', 'fourrure', 'mangeurs', 'pognon', 'bush', 'sorry', 'fait_mouche', 'boost', 'picole', 'confectionnée', 'minho', 'pendule', 'tes_cotés', '-mettre', 'perdent', '-laissez', 'recommencer_fréquemment', 'percevoir', 'capuccino', 'steack', 'clochard', 'casseroles', 'prenons', 'bourratif', 'flics', 'supercherie', 'pannes', 'sous-sol', 'midis', 'cafétérias', 'sessions', 'sont_succédés', 'avais_trouvé', 'a_-t-il', 'quatre_roues', '3-6', 'dure_journée', 'endorphine', 'hormone', 'cocaine', 'aventurier', 'derniere_fois', 'écoutes', 'endorphines', 'tiroirs', 'babioles', 'dépouillé', 'sufit', 'off', 'défiler', 'photogénique', 'illustrations', 'premier_single', '7_juin', \"j'_essaierais\", 'napalm', 'énième', 'emmener', 'demi-bouteille', 'samy', 'catcheurs', 'adversaire', 'menottes', 'je_reconnais', 'cheveux_courts', 'récupèrent', '\"_.si', 'encouragez', 'dégueulasse', 'mess', 'je_pourrai', 'robbie', 'cuisto', \"décap_'\", 'bandeau', 'romano', 'officiels', 'olympiques', 'décidèrent', 'jouissant', 'popularité', 'xixe_siècle', 'gréco-', 'leurs_adversaires', 'mandaté', 'renseignements', 'paradoxalement', '1er_octobre', '1937', 'gégé', 'barbies', 'ennemies', 'nos_vélos', 'posés', \"s'_arrêtent\", 'cruel', 'tao', 'depuis_2002', 'categorie', 'nous_découvrirons', 'halo', 'canadienne', 'rassurer', 'soulagée', 'nous_aimerions', \"s'_abstiennent\", 'fairy_tail', 'celle_employée', '11_septembre', 'distinguer', 'certaines_conditions', 'éleveurs', 'soupçonnait', 'improbable', 'existait_déjà', 'antérieur', 'rumeur', 'crache', 'tais', 'jet_set', 'dette', 'chers_amis', 'cinquante', 'coffre', 'bagages', 'parallèle', 'réelles', 'averse', 'séchant', 'leurs_sourires', 'tenue_secrète', 'alchimistes', 'activité_professionnelle', 'formules', 'fins_personnelles', 'habilité', 'incantations', 'cell', 'javais', 'caressant', 'rève', 'couts', 'exceptionnels', 'perche', 'priorité', 'leurs_ambitions', 'sociales', 'parer', 'diplômes', 'bone', 'nen', 'journey', 'poubelles', 'étre', 'bouffé', 'riire', 'tonique', 'fera_plaisir', 'réalisatrice', 'fascination', '21_novembre', '2_ème', '78', 'bavarde', 'hypnotiser', 'boo', 'sangoku', 'chrono', 'ligne_droite', 'lool', 'jetai', '3_eme', 't3', 'certaines_scènes', 'martine', 'germain', 'débiter', 'strates', 'différentes_couches', 'géologue', 'clémence', 'indiquent', 'ec', 'agresser', 'rho', 'choquée', 'mystère', 'asseyez_-vous', '67', 'rodriguez', 'civile', 'gwen', 'arborant', 'doudoune', 'imagination_débordante', 'scott', 'réglement', '^.^', 'volent', 'chelou', 'sarkozy', 'zizi', 'vaquer', 'théobromine', \"s'_attache\", 'manques', 'états', 'nerveux', 'curatif', 'symptomatique', 'troubles', 'siècle_dernier', 'chocolatés', 'glands', 'opinion', 'répandue', 'orgie', 'démesurée', 'fondamentalement', 'pourvu', 'latérale', 'panier_»', 'coke', 'villevanille_ou', 'pipi', 'wtf', 'fît', 'salin', 'calvin_klein', 'lointains', 'power', 'to_the', 'ligue', 'mats', 'dépensé', 'salarial', 'offense', 'préparant', \"m'_empecher\", \"m'_attache\", 'vespa', 'dépendante', 'contradictoire', 'depui', 'r1', 'deu', 'momen', 'b1', 'jespere', 'tiff', 'malou', 'genial', 'gen', 'encombrer', '12_cl', 'grillez', 'étendez', 'aspergez', 'wraps', 'narine', 'éveil', 'viendront', 'boulet', 'pâture_aux', 'tanin', 'quatre_saisons', 'envolée', 'battements', 'continus', 'sans_scrupule', 'recueilli', 'épique', 'chorégraphe', 'fourbe', 'atypique', 'répliques', 'maurice', 'dédé', 'traites', 'sont_cools', 'entre_quinze', 'calcium', 'vitamine_d', 'px', 'vt', 'delir', 'excité', 'brassage', 'abouti', 'confie_-t-il', 'fièrement', 'semblent_avoir', 'glacées', 'marjolaine', 'réfléchit', 'artificiels', 'décrit', 'baudelaire', 'désigner', 'carr', '>__', 'tu_vidais', 'ta_boite', 'arbore', 'hissé', 'pieuvre', 'ocean', 'judo', 'maitrises', 'suffisance', 'maquillé', 'chargeur', '▪', 'sacoche', 'requis', 'lane', 'obtinrent', 'heures_creuses', 'utiliserait', 'océane', 'knorr', 'enchainé', 'jeudis', 'mourrir', 'groupie', 'déranger', 'tjrs', 'ferez', 'voi', 'ls', '5eme', 'hot_dog', 'apple_store', 'south', 'state', 'brooklyn', 'bridge', 'dns', 'moma', 'chinatown', 'italy', 'fabuleuses', 'harlem', 'taxi', 'broadway', 'grande_roue', 'enormes', 'posant', 'profonds', 'prêter', 'briquet', 'lâché', 'attrapé', 'désireux', 'guerriers', 'quela', 'partouse', '.mieux_que', 'please', 'massacre', 'supplie', 'compagnons', 'depend', 'arrêtais', 'aps', 'expressif', 'personnages_principaux', 'choisisse', 'amphore', 'retenu_prisonnier', 'concentrés', 'fréquenté', 'rouillé', 'éventé', 'rue_saint', 'dom', 'six_mois', 'vite_possible', 'pluus', 'escaladant', '****', 'rappeller', 'systéme', 'jetter', 'instants', 'radical', 'baissé', \"s'_empara\", 'daller', 'soule', 'bocoup', 'serena', 'pourrir', 'olympique_lyonnais', 'real_madrid', 'modalités', 'attaquant', 'karim_benzema', 'm€', 'montant_maximum', '41', 'varoma', 'carre', 'vous_servirez', 'petits_fours', '400_gr', '300gr', 'concentre', 'repenser', 'bons_moments', 'gonflée', 'dabord', 'remi', 'gens_ki', 'voulé', 'mank', 'realité', 'kom', 'pri', 'choi', 'profitable', 'dura', 'nostalgie', 'interieure', 'font_penser', 'automates', 'terreur', 'enfantine', 'glaçe', 'sales', 'frôlent', \"m'_écoeure\", 'répugne', 'caniche', 'manières', 'passifs', 'ce1', 'scout', 'obéissant', 'fraternel', 'courtois', 'chevaleresque', 'pets', 'fêteet', 'douze_bouteilles', '20ans', 'entreprenant', 'ouverts', 'jumelle', 'banana', 'aqua', 'mangeais', 'nord-est', 'spécialisé', 'gauffre', 'crepe', 'eme', 'classements', 'join', 'vait', 'pyjamas', 'injecté', 'injecte', 'petite_puce', 'décédée', 'comprimé', 'contractions', 'gynécologue', '550', '42', 'autopsie', 'habille', 'retournée', 'pouvé', 'oranges_pressées', '09', '10.00', 'entraîneur', 'conditionner', 'sèche-cheveux', 'espionner', '15.00', 'massé', 'nicole_kidman', 'tant_attendue', 'keith', 'ont_révélé', 'respective', 'complémenter', '.attention', 'terre_crue', 'croquette', 'aprèm', 'allégé', 'cannette', 'cornichon', 'mous', 'caramels_mous', 'complets', '1884', 'destruction_massive', 'fiole', 'décontamination', 'sagit', 'experience', 'statut_social', 'suffixe', 'matinale', 'axe', 'consistent', 'you_tube', 'récupérateur', 'consentement', 'implicite', 'entraînait', 'entrées', 'gomis', \"n'_ayez\", 'nirvana', '99', \"s'_entendent\", 'rigolades', 'mes_sentiments', 'ébats', 'inaccessibles', 'aventureux', 'assassine', 'grasse_matinée', 'balançoire', 'tomber_amoureux', 'rose_pâle', 'escarpins', 'daim', 'punaise', '6h00', '·', 'ses_épaules', 'rejet', 'prendre_soin', 'blessée', 'demeurer', 'besoin.', \"d'une\", \"l'amour\", 'co-_cocaine', 'soiree_entre', 'albert', 'eusse', 'br', 'nanas', 'attentif', 'supers', 'jaillir', 'interminables', 'maggie', 'cassonnade', 'kelke_chose', 'téquila', 'poursuites_pénales', 'devoir_verser', 'chronique', 'funès', 'filmographie', 'gendarme', 'avare', 'claude', 'extra-terrestres', '1973', 'grandeurs', 'perché', 'edouard', 'denys', 'grandes_vacances', 'oscar', 'déchaîne', 'bons_vivants', '1964', '1963', 'pissenlits', 'epsom', 'deauville', 'soupirer', 'sucre_muscovado', 'prechauffez', 'emincez', 'prolongez', 'croûtage', 'meilleure_levée', 'ton_pile', 'caresse', 'nes', 'jsui', 'invincible', '5ans', 'jean_louis', 'essayait', 'deux_piliers', 'reculé', 'accordera', \"t'_inquiètes\", 'carnivores', 'convenait', 'éducation', 'décidément', 'baron', 'pinte', 'tu_fumes', 'saint-nicolas', 'me_maquiller', 'alzheimer', 'contacts', 'impressionner', 'coupes_remplies', 'douze', 'eux-même', '182', 'présentes', 'incroyables', 'harmonieuse', 'reconnaîtront', 'jadore', 'psk', 'cété', 'fr', 'assises', 'essonne', 'armés', 'bazooka', 'fusil', 'assaut', 'explosif', 'baril', 'éclatent', 'inconscients', 'tenteraient', 'craché', 'positionné', 'incruster', 'piégé', 'morgue', 'déserte', '1,2', 'boum', 'pick_up', 'cowboy', 'clio', 'ptit_dej', 'squatter', 'coin_supérieur', '19h', 'crash', 'voulut', 'psychologues', 'suivaient', 'eux_mêmes', 'thérapies', \"s'_avança\", 'révérence', 'présentant', 'partie_intégrante', 'régit', 'perse', 'refasse', 'lampadaire', 'fixation', 'biens', 'pupitre', 'distinction_entre', 'portique', 'consacrant', 'sont_restées', 'cose', 'avoisinant', 'pain_perdu', 'pain_rassi', 'revêtement_anti-', 'adhérent', 'retirer_délicatement', 'film_étirable', 'virginie', 'meche', 'peus', 'mor', 'dir', 'courrier_postal', 'lamas', 'lutins', 'écrevisses', 'trop_mignon', 'tiendrait', 'victoria', 'johanna', 'valentin', 'benoît', 'laurie', 'coktails', 'eau_changée', 'foireux', 'celas', 'adverse', 'equipes', 'chialer', 'volait', 'abîme', 'évasion', 'mords', 'deviné', 'jimmy', 'eucalyptus', '41,5', 'jm', 'tapie', 'scorpion', 'délicieux_merguez', 'asser', 'prince_charmant', 'prédéfini', 'biensûr', \"t'_auras\", 'dd', 'externe', 'parrait', 'touffe', 'inscrivant', 'centre_ville', 'nous_arrêtons', 'retirai', 'gaule', 'méta', 'travaillés', \"m'_installai\", 'pédale', 'me_regardent', 'ques', 'pu_résister', 'fantasmer', 'terrasse_ensoleillée', 'commencée', 'présenta', 'fessant', 'mater', 'menuiserie', 'dossiers', 'pourvoir', 'dépôt', 'dires', 'roula', 'pas_grand-chose', 'préparai', 'bolognaise', 'demain_matin', 'quels', 'me_donna', 'sperme', 'laissai', 'aucune_trace', 'fenêtre_ouverte', 'réductions', 'lui_demander', 'seize', 'rentrai', 'pre', 'attacha', 'installa', 'avança', 'arrêta', 'mies', 'bander', 'brutalement', 'cabine', 'espèrent', 'matte', 'vestiaire', 'choppe', 'arts_plastiques', 'patronne', 'muré', 'repensé', 'rené', 'génétique', 'promettez', 'marrantes', 'horreurs', 'bagarres', 'bannières', '1997', 'century', 'condamner', 'enfilé', 'ses_potes', 'belles_choses', 'photographier', 'addict', 'zoom', 'pressez_-les', 'années_1970', 'boom', 'sa_personnalité', 'mixte', 'lola', 'sinistre', 'hat', 'intégralité', 'warrior', 'annif', 'bohneur', 'prétextant', 'carter', 'épuisé', 'appuyé', 'ont_continué', 'allées', '.merci', 'certaines_choses', 'ex.', 'ny', 'pink', 'mon_skyblog', 'thermostat_180°', '25_gr', 'recipient', 'composant', 'amaretto', 'moka', 'limoncello', 'desserrer', 'roulotte', 'barrette', 'bœufs', 'charrette', 'brainstorming', 'rejette', 'mon_facetoi', 'mon_nombril', 'ta_glacetu', \"gestet_'\", 'zesteje_suis', 'tassetoi', 'paragraphetu_es', 'lapsus', 'gaffetoi', 'causetoi', 'divan_moi', 'névrosetoi', 'épine_moi', 'rosetu_es', 'tristesse_moi', 'poètetu_es', 'bêtetu_es', 'flic_moi', 'surmoi', 'parfum_préféré', 'trinité', 'païenne', 'formulé', 'dogme', 'central', 'aorte', 'raquette', 'ballet', 'vieillard', 'épice_toi', 'vicaire', 'guépard_moi', 'épitapheet_toi', 'grâcetu_es', 'délir', 'footing', 'viennent_compléter', 'impulsion', 'pui', 'vaux', 'caveau', 'promu', 'grade', 'constatez', 'pitite', 'nono', 'etles', 'insensée', 'cocaïne', 'raisins_explosent', 'permettrait', 'n_roll', 'reconnaissant', 'but_principal', 'miniature', 'add', 'anglaises', 'délirs', 'dublin', 'convoité', 'gossip_girl', 'résolue', 'classer', 'présidé', 'habités', 'côme', 'rondeau', 'perchoir', 'exil', 'cardinal', 'remonté', 'compact', 'réclamait', 'sommelier', 'substantielle', 'trading', '500.000', 'thibaut', 'néophyte', 'viticoles', 'sponsoring', 'opérateur', 'compagnie_aérienne', 'phare', 'équipiers', 'hortense', 'court_bouillon', 'épépinez', 'rougets', 'sonorité', 'envoûtante', 'desseins', 'slogan', 'vende', 'plusieurs_milliers', 'quasiment_jamais', 'biographie', 'antiques', 'buisson', 'préparatifs', 'torse_nu', 'cte', 'craquant', 'mesdemoiselles', 'voui', 'voyons', 've', 'questionnaire', 'fiancé', 'aurai_jamais', 'épouser', 'méditerranée', 'méditerranéens', 'professionnels', 'continents', 'contribuant', 'convergence', 'offrira', 'privilégié', 'communiquer', 'pavillon', '2.0', 'héberge', 'entretiens', 'transversal', 'stratégie', 'nouvel_épisode', 'première_édition', 'week-end_dernier', 'grégoire', 'aka', 'rassemblés', 'organisés', 'juillet_2010', 'geeks', 'alterner', 'avec_brio', 'professionnalisme', 'real', 'tous_horizons', 'confondus', 'engagements', 'filière', 'actions_concrètes', 'initiatives', 'filière_viticole', '1901', 'promeut', 'proposant', 'marie-christine', 'loi_evin', 'liée', 'revitaliser', 'émettre', 'entremise', 'gourou', 'marketing', 'alabama', 'diaboliser', 'culturelle', 'appréciation', 'wine', 'institute', 'partageant', 'dimension_culturelle', 'historiquement', 'évolutions', 'législatives', 'liées', 'confirmée', 'salons', 'jusque_là', 'supports', 'dorénavant', 'impératifs', 'sénat', 'sembler', 'libertés', 'défenseur', 'lutte_contre', 'actions_menées', 'european', 'drinking', 'prévention', 'fédère', 'vitivinicole', 'culturelles', 'bacchus', 'grec', 'extatique', 'te_revoir', 'pet', 'aragon', 'acolytes', 'urbain', 'genre_humain', 'dix_mille', 'refrains', 'fécondes', '19_octobre', 'maitresse', 'verbiage_vire', 'au_verbeux', 'véritable_honneur', 'te_rencontrer', 'feel', 'tai', 'soire', 'tm', 'photographies', 'assorties', 'confirment', 'échafaudage', 'diagrammes', 'trois-rivières', 'chroniqueur', 'poirier', 'franco', 'ford', 'rouillée', 'être_titulaire', 'établi', 'collectives', '.des', 'commercialisé', 'tune', 'rasoir', 'maladroitement', 'verglas', 'ses_talents', 'comédien', 'danseur', 'cumulant', '60_millions', 'réfrigération', 'coffre-fort', 'encastrables', 'équiper', 'saint-gilles', '73', 'sous_prétexte', 'subrepticement', 'schweppes', 'meute', 'piquent', 'jantes', 'allu', 'allument', 'talus', 'willy', 'empile', 'ptits', 'argent_sale', 'maris', 'emmènent', 'maîtresses', 'ibis', 'luge', 'frangin', 'vaisseaux_sanguins', 'cambriolages', 'changes', 'tass', 'sous-sols', 'homosexuels', 'ame', 'bilingue', 'visiteur', 'fuyez', 'aucun_risque', 'amatrice', 'excellant', 'makrout', 'makrouts', 'pâte_molle', 'noisettes_caramélisées', '25€', '33', '28€', '95', '25_€', 'ecrivez', 'suggérer', 'arabie', 'entrainent', 'seront_renvoyées', 'escompte_sera', 'florian', 'droitier', 'entraineur', 'pck', 'ell', 'di_ke', 'plusse', 'comentaires', '2°', 'paroi', 'récapitulatif', 'changez', 'livreur', 'exigez', 'france.', 'hurlant', 'vous_laisserez', 'quelque_chose.', 'autre.', 'psychique', \"qu'on\", 'riff', 'reprennent', 'sept_jours', 'légaux', 'refusez', 'on_verra', 'garderais', 'changerais', 'candy', 'grisant', 'sangs', 'inspirent', 'électro', 'hip-hop', 'détonant', 'doudous', 'mes_passions', 'ri', 'pikachu', 'cogner', 'touchent', 'pat', 'contestataires', 'baignant', 'endemol', 'imparable', 'dominos', 'équilibriste', 'dernier_épisode', 'the_city', 'révolutions', 'technologiques', 'informaticien', 'mimer', 'pré_grille', 'tracé', 'compense', 'aplanir', 'responses_to', 'ait_plu', 'granulés', 'tournesols', 'fait_exprès', 'rosier', 'blette', 'fange', 'cristalline', 'voulons', 'lit_pliant', 'jessica', 'mutuellement', 'dupe', \"s'_inquiéter\", 'ports', 'savoir-vivre', 'évité', 'casiers', 'recevra', 'poussera', 'tu_revienne', 'séparation', 'vsd', 'truite_fumée', 'mandoline', 'petits_triangles', 'vit3', 'proportionnelle', 'cracker', '7cl', '4cl', '-les_délicatement', 'extrémités', 'ajoutant_progressivement', 'dit_précédemment', 'évolué', 'collaborations', 'diversité', 'noces', 'essayage', 'rêvé', '6/8', 'je_mettrai', 'hot-dog', 'gels', 'deo', 'coop', 'anastasia', 'chiant', 'glacons', '3h30', '12_juillet', '08', 'briochée', 'mélangent', 'blinder', 'pâte_levée', 'vec', 'divinement_bon', '50_ml', 'fouet_manuel', 'précèdent', 'basboussa', 'vos_soirées', 'revisitée', 'meilleur_pâtissier', 'parfumer', 'gruyere', 'savoyard', 'cuisson_lente', 'rondelles_fines', 'danettes', 'essentiels', 'louis_vuitton', 'gucci', 'disposent', 'exclusif', 'audacieux', 'éblouissante', 'lacoste', '3a', 'coulante', 'whoopies', 'spirales', 'quatre_quarts', 'grés', 'hypothétiques', 'rejeter', 'grande_diversité', 'novembre_2010', 'filou', 'meublé', 'entendais', 'sommée', 'inuit', 'incollable_sur', 'ramadan', 'videos', 'merci_bcp', 'estimée', 'ardeurs', 'finances', 'photos_[', 'dépannage_serrurier', 'voice', 'bips', 'balades', 'imbécile', 'kévin', 'demeuré', 'incontestable', 'demeurés', 'insupportables', 'aucune_chance', 'être_amenée', 'mensonges', 'gags', 'dirige', 'systeme', 'mauvaises_nouvelles', 'amants', 'agitent', 'mente', 'religieuse', 'indéfiniment', 'être_remplacée', 'sécuriser', 'cadenas', 'applications', 'nouvelles_technologies', 'collins', 'multimedia', 'partners', 'hachette', 'légèrement_refroidi', 'mi-chemin', '420', 'demi_sachet', 'ce_temps-là', 'je_suiis', '1préchauffer', 'éléctrique', 'perpendiculaire', 'immenses', 'centenaires', 'enthousiaste', 'tuant', '↑', 'acides_aminés', 'anti-_taches', 'jaunies', 'tachées', 'assainir', 'vos_gencives', 'naît', 'envahissant', 'mention_spéciale', 'diablo', 'killer', 'allusion', 'comics', 'boomerang', 'flash', 'négative', 'vanne', 'vannes', 'quinn', 'point_positif', 'décalé', 'joker', 'gangster', 'effrayant', 'déplaît', 'dit_lui-même', 'scènes', 'ses_dires', 'amanda', 'viola', 'davis', 'divertir', 'gâchée', 'court_instant', 'antérieure', 'grand_plaisir', 'vf', 'déplu', 'doublage', 'sentier', 'motoneige', 'skis', 'récupérés', 'se_déplace', '30ml', '30°', 'hippopotame_boit', 'rhino_balance', 'ils_volent', 'surtt', 'tahiti', 'ts', 'wai', 'séduisant', 'évaporateur', 'échangeur', 'thermique', 'calorifique', 'absorbant', 'latente', 'réfrigérant', 'vaporise', 'cet_appareil', 'arrêtant', 'compresseur', 'organe', 'physiques', 'prochain_article', '2h00', 'wii', 'posais', 'étendu', 'saint_valentin', 'déconner', 'trop_dur', 'sculpey', 'mes_versets', 'déverser', 'abandonnée', 'alban', 'rape', 'ma_tante', 'détaille', '700', 'faites_blanchir', 'puncher', 'entasser', 'salam', 'j`aime', 'moyen_orient', 'turque', 'j`ai', 'istanbul', 'pendant_30min', 'gateaux_secs', 'ratiba', 'polyvalence', 'ambitieux', 'outillage', 'gesso', 'désaltérer', 'empruntant', 'menant', 'planètes', 'galaxie', 'ferments', 'parasites', 'posera', 'pasteurisation', 'défini', 'passerais', 'culte', 'cana', 'alourdir', 'sévèrement', 'retaper', 'démolir', 'démolition', 'tombaient', 'camargue', 'magazins', 'ecrire', 'concurence', 'franche', 'pleiin', 'dira_jamais', 'acte', 'félicie', 'épluchage', '1786', 'je_reviendrai', 'empressé', 'coude', 'corsage', 'entrepreneurs', 'constaté', 'recensement', 'situées', 'guadeloupe', 'martinique', 'tracy', '28_octobre', 'peste', 'gaspille', 'roland', 'moisissure', 'dureté', 'valeur_calorique', 'graisses', 'jure', 'nota_:', 'durcira', 'refroidissant', 'couvre', 'arrose', 'finalise', 'foyers', 'croisez', 'charment', 'tartine_grillée', 'confession', 'laisser_macérer', 'moût', '1,5_kg', 'bonbonne', 'acide_ascorbique', 'suif', 'dre', 'aucune_difficulté', 'hurlait', 'vraiment_géniale', 'bellevue', 'paraissant', 'boisson_alcoolique', 'exerce', 'leurs_qualités', 'lobby', 'extrémiste', 'adversaires', \"s'_accorde\", 'consommation_modérée', 'limite_raisonnable', 'bénéfice', 'sanitaire', 'nous_assurons', 'coordination', 'étroite', 'nos_confrères', 'riposte', '1981', 'jean-paul', 'trimestrielle', 'éclairer', 'igor', 'juin_dernier', 'croix-rouge', 'détestez', 'transpiration', 'ne_supportez', 'chicons', 'symbolisme', 'vautours', 'block', 'fluo', 'mon_nombrilet', 'passetu_es', 'têtetu_es', 'blindage', 'raccommodage', 'agrée', 'amorces', 'synthétique', '3ds', 'associés', 'wii_u', 'attrait', 'bidons', 'guidés', 'lions', 'captivité', 'enclos', 'coup_sûr', 'flèches', 'traquent', '4x4', \"àl_'\", 'vous_rajouterez', 'dûe', 'alentour', 'rongé', 'demeures', 'virage', 'visuelle', 'raph', 'graphiste', 'labels', 'pleuvent', 'dio', 'hartmann', 'guitaristes', 'saupoudrée', 'goûtés', 'ressemblante', 'pratiquant', 'boulangeries', 'quiche_lorraine', '2min', 'informations_utiles', 'suppressions', 'vous_aimeriez', 'contexte', 'obtenus', 'évasée', 'ian', 'douter', 'subsister', 'reprendre_confiance', 'existance', 'remuez_énergiquement', 'arborait', 'bronzée', 'emplis', \"n'_hésita\", 'pm', 'ro', 'toute_nue', 'découvrant', 'trois_étages', 'débilité', 'baileys', 'fleure', 'ampoule', 'chaplin', 'blanche_neige', 'danseuse', 'moustache', 'passe-partout', 'roméo', 'tim_burton', 'milliardaire', 'écologie', 'nicolas_hulot', 'comédiens', 'semelles', 'guidon', 'guillaume_canet', 'gravure', 'vanessa_paradis', 'immeuble', 'passager', 'tabernacle', 'exposer', 'excalibur', 'centaines', 'pseudonyme', 'presenter', 'mélange_sableux', 'premiers_frémissements', 'yann', 'tarte_tropézienne', 'péniche', '.pendant_ce', 'tania', 'malraux', 'couvre-sol', 'calcaire', \"s'_habituer\", 'épaisse_couche', 'désinfecter', 'tu_arrives', 'grande_surprise', 'étouffa', 'revanche', 'vidant', 'appâts', 'incarné', 'duels', 'insensible', 'inégalé', 'épuise', 'stresse', 'évacué', 'serrurier_métallier', 'viognier', 'super_cool', 'jones', 'collec', 'ma_viie', 'cassoulet', 'sacher', '/_off', 'tonus', 'tomas', 'prévoyance', 'paolo', 'olaf', 'discret', 'barcelona', 'castor', 'ricin', 'duveteuse', 'coconut', 'végétaline', 'soulage', 'peaux_sèches', 'irritées', 'revitalisant', 'calmante', 'adoucissante', 'adoucit', 'régénérant', 'recalculer', 'menthe_poivrée', 'rafraichit', 'vivifiante', 'migraines', 'envois', 'consisté', 'swan', 'funeste', 'impacte', 'monde_viticole', 'systématique', 'diminution', 'biodiversité', 'légalement', 'lord', 'gravées', 'serrurerie', 'dansait', 'tournait', '34', 'lama', '---_>', 'passeport', 'apo', 'entraient', 'garde_boue', 'arrières', 'impériale', 'currys', 'familiaux', 'longévité', 'certains_aliments', 'nuisent', 'culinaires', 'pendant_20min', 'assemble', 'homogénéisation', '-50', 'faire_mousser', 'déprimant', 'grands-parents', 'tantes', 'lié', 'confidences', 'formons', 'ayons', 'précieuses', 'demandons', 'vies', 'enterrement', 'siam', 'brassicacées', 'intermédiaire', 'notre_organisme', 'glass', 'brutale', 'animées', 'transitions', 'converti', 'collage', 'désaltérant', 'polyphénols', 'renforcent', 'capillaires', 'sanguins', 'vasculaire', 'marie_jeanne', 'canabis', 'payole', 'buvar', 'thailandaise', 'georges_lucas', 'integrale', 'muppet_shows', 'dehanché', 'schtroumphette', 'naomie_campbell', 'alain_delon', 'neil_amstrong', 'space_mountain', 'nde', 'lazard', 'injections', 'colagene', 'sand', 'rimbaud', 'demain_midi', 'boulimique', 'coûtera', 'produits_naturels', 'étonnera', 'épuisée', 'tardif', 'pros', 'greffe', 'intervention', 'fous_rire', 'eté', 'rever', 'mil', 'approfondir', 'rogers', 'administrer', 'effets_indésirables', 'insisté', 'manquements', 'considérables', 'prodigués', 'informé', 'donnés', 'ventilation', 'unanimement', 'dépassement', 'stades', '-et', 'présentez', 'visual', 'kei', 'jojo', 'conventions', 'hiro', 'parlante', 'lustre', 'confrontation', 'laissant_derrière', 'aimable', 'courir_partout', 'créent', 'tu_passes', 'sud_ouest', 'gers', 'pins', 'globales', 'aristocratique', 'reposa', 'chevet', 'raccroche', 'ne_manquent', 'son_portefeuille', 'baume', 'viva', 'juicy', 'cents', 'aidait', 'deezer', 'preneuse_!', 'baseball', 'vécut', 'raisonner', 'conjoint', 'pommes_fondantes', 'savoureuses', 'empêchent', 'rêvent', 'concret', 'fantôme', 'surpasser', 'traducteur', 'rdc', 'sautez', 'tuez', 'visez', 'frappez', 'tuera', 'relèvera', 'placement', 'entrave', 'p.s', '7-je_connais', 'foutage', 'lamour', '£', 'ft', 'qd', 'accordent', 'vestimentaire', 'raser', 'mucilage', 'citrus_limonum', 'olive_extra', 'virgin', 'oil', 'lécithine', 'copacabana', 'beurre_corporel', 'exfoliant', 'theobroma', 'sativa', 'moulus', 'acide_stéarique', 'ciste', 'microbes', 'purifie', 'stimulantes', 'menthe_verte', 'utiliserez', 'aucuns', 'souhaiteraient', 'bayonne', 'saxophone', 'artificielles', 'brigade', 'géniaux', 'se_référer', \"n'_hésiterais\", 'intéressait', 'naviguer', 'défouloir', 'charismatique', 'ses_pulsions', 'garanties', 'foutoir', 'régiment', 'squelettes', 'servirai', 'effectifs', 'acceptons', 'nous_donnons', 'flemmarde', 'colérique', 'bottle', 'shiraz', 'baignoire', '♠', 'adultère', 'pension', 'jupiter', 'guilde', 'résisté', 'convive', 'faiblit', 'twa', 'notre_amitier', 'fusillade', 'franco-', 'crazy', 'mon_idole', 'ressentait', 'affichant', 'fall', 'incarner', \"s'_imposer\", 'plaisent', 'poursuivi', 'soignés', 'sait_parfaitement', 'sondage', 'soyons_fous', 'grand-maman', 'guident', 'interpeller', 'conseil_municipal', 'préoccupante', 'desserte', 'ferroviaire', 'cahors', 'horaire', '9_décembre', 'rff', 'grille_horaire', 'rétabli', 'intermédiaires', 'annoncé', 'conseil_régional', 'bits', 'familier', 'drones', 'raven', 'sexuels', 'périodique', 'abdomen', 'ske', 'metter', 'zelda', 'oracles', 'seasons', 'phantom', 'perce', 'reboucher', 'pied_joints', 'savon_parfumé', \"m'_éclaboussent\", 'rep', 'fesais', '&_m', 'vue_panoramique', 'aix', 'pleuvoir', 'il_pleuvait', 'moman', '[_x', 'x_]', 'bourse', 'pressante', 'payait', 'refiler', 'calé', 'restau', 'débattu', 'manèges', 'disneyland', 'nos_délires', 'vélos', 'yeah', 'douée', '266', '267', '268', '269', '271', '272', '273', '274', '275', '276', '277', '278', '279', '281', 'jay', 'uk', 'je_mourrais', 'emportée', 'marins', 'fanny', 'seb', 'cigarettes', 'derniers_instants', 'huit_heures', 'complètes', 'financièrement', 'non_exhaustive', 'sensorielles', 'perceptions', 'adaptées', '4d', 'régénération', 'nouvelle_dimension', 'badge', 'magnétique', 'me_plaindre', 'décris', 'cete', 'rejoignent', 'recrutement', 'emo', 'prétendu', 'apparu', 'dirigée_contre', 'exerçait', 'distances', 'mausolée', 'maternel', '23_mai', 'grasse_mat', 'pendentif', 'mâchoire', 'talon', 'activateur', 'pulvérisateur', 'tailler', 'athéniens', 'fortifier', 'avant-poste', 'contreplaqué', 'quincaillerie', 'diverse', \"s'_effectue\", 'déplaire', 'approbation', 'régulation', 'routier', 'logistiques', \"s'_élève\", 'me_lasser', 'affective', 'engloutis', 'pu_découvrir', 'hôtesse', 'admirablement', 'oreo', 'voulue', 'réveilla', 'motive', 'approcha', 'hanté', 'nous_allions', 'fixant', 'glamour', 'fertile', 'bourguignon', 'abimés', 'pays_natal', 'citoyens', 'constituent', 'axes', 'prioritaires', 'compatriotes', 'caution', 'etat_français', 'campagne_électorale', '.---------------------♥', 'intellectuelles', 'expérimentées', '530', 'rapelle', 'municipalités', 'intègrent', 'campagnes', 'opposées', 'fédération_française', '1996', 'fédérer', 'juridique', 'assurances', 'quelques_glaçons', 'mixes', 'publiera', 'apprenne', 'decide', 'broutilles', 'defauts', 'gardes', 'camionnette', 'privant', 'cadres', 'repliant', 'horizons', 'vivre_ensemble', 'bouc_émissaire', 'stigmatiser', 'maghrébins', 'cherchait', 'années_60', 'ils_eurent', 'mafieux', 'étrangère', 'dénonce', 'sous-officiers', 'confisqué', 'indépendance', 'complicité', 'ecole_nationale', 'journalisme', 'hebdomadaire', 'salaire_mensuel', 'six_cents', 'dinars', 'trois_cent', 'soixante', 'déclinée', 'développées', 'déclinaisons', 'se_dressait', 'malencontreusement', 'parvint', 'escalader', 'fermées', 'illégales', 'aurevoir', 'funny', 'bear', 'medium', 'mel', 'collée', 'stévia', 'assez_consistante', '75_grammes', 'sa_sœur', 'sadisme', 'aider_financièrement', 'répit', 'telles_que', 'autres_types', 'séduisent', 'atterrissage', 'dean', 'lock', 'long_métrage', 'pure_tradition', 'hollywoodienne', 'mes_escarpins', 'soutien-gorge', 'nylon', 'enfoiré', 'citronné', '1,5_litres', 'heures_fixes', 'produits_céréaliers', 'leurs_différences', 'pagnol', 'oncle', 'neuve', 'porto-_vecchio', 'and_the', '1955', 'hundred', '1961', 'photocopie', 'arrêtés', 'hollandais', 'suivirent', 'obligèrent', 'premier_frémissement', 'levure_dissoute', 'viande_cuite', 'laissé_refroidir', 'viandes_cuites', 'ila', 'vosges', 'matches', 'heures_passées', 'poux', 'égérie', 'politicien', 'tribune', 'paysanne', 'semi-épaisse', 'agitant', 'frémissement', 'noilly_prat', 'tortilla', 'charcuterie_locale', 'forez', 'saint-joseph', 'ronfle', 'nuit_blanche', 'requise', 'soudainement', 'oû', 'reconstituer', 'provenait', 'entourant', 'négativement', 'mériterait', 'prononcée', 'syndicalistes', 'téléphone_portable', 'télécommande', 'téléviseur', 'atlanta', 'ét', 'origin', 'élémentaire', 'niais', \"s'_efface\", '7eme', 'fais_chier', 'indélébile', 'gente_féminine', 'blaireau', 'sonnets', 'treille', 'plusieures', 'me_ferai', '2_càc', 'dégazer', 'éco-', 'grand-chose', 'victorieux', 'sous_licence', '1_million', 'briller', 'je_dirai', 'galanterie', 'attirant', 'secrètement', 'pâtés', 'crabes', 'déshydratée', 'dressant', 'sarcasme', 'faires', 'ensembles', 'jvou', 'commen', 'grandissante', 'ks', 'arreter', 'tres_tres', \"t'_arrêtes\", 'maigres', 'foutent', 'correspondait', 'coincée', 'replié', 'brefs', 'hum_hum', 'dénudée', 'star_ac', 'boissons_préférées', 'the_beach', 'fruit_exotique', 'délaissé', 'grippe', 'épidémie', 'cet_argument', 'catégorique', 'primitive', 'écoeurante', '12_ans', 'cafetière', 'rideaux_étaient', 'pâles', 'lésion', 'janvier_2013', 'maximale', 'plafonné', '950', 'détecter', 'célébrités', 'employée', 'partenariats', 'publicités', 'relations_publiques', 'mundo', 'question_concernant', 'nous_arrivons', 'débarqué', 'barbelés', 'barrière', 'ennemie', 'fusent', 'bourreaux', 'resserrer', 'etrange', 'rappelant', 'se_retrouvait', 'mouais', 'septique', 'boston', 'grandiose', 'webcam', 'coquine', 'harceler', 'atteintes', 'puissamment', 'orifice', 'lui_obéir', 'posséder', 'aspirant', 'quelle_raison', 'button', 'faudrait_-il', 'entité', 'irrésistible', 'malbouffe', 'interviews', 'éco', 'subtilité', 'copiant', 'emplettes', 'rayée', \"chaqu_'\", 'reflets_dorés', 'ne_saurait', '==', 'bebe', 'volontaires', 'aptes', '35_ans', '31_décembre', 'gendarmerie', 'créme', 'ils_maîtrisent', 'techniques_secrètes', 'grand_classique', 'hautain', 'nous_trouvons', 'insignifiant', 'sardine', 'ines', 'granita', 'choquer', 'pansements', '*le', 'soudaine', 'actrices', 'watson', 'orly', 'acajou', 'boisson_favorite', 'nais', 'jaimerais', 'surment', 'echec', 'expéditions', 'consultant', 'triompher', 'obésité', 'persévérer', 'tango', 'michelin', 'réflecteur', 'injustices', 'métabolisme', 'plongez', 'solidifier', 'vos_ongles', 'spécialement', '◊', 'rien_étudié', 'bonne_note.', 'chocolat_blanc.', 'ronge_mes', 'ongles._[', 'jeux_vidéo.', 'visages._[', 'noms._[', 'dates_importantes.', '30.000', '5.000', 'transferts', 'monétaires', 'arrêt_cardiaque', 'meurs', 'unit', 'exterieur', 'echange', 'respectueux', 'respectueuse', 'maki', 'logiciel_gratuit', 'orthographes', 'résidu', 'remémorant', 'hurlement', 'amour_envers', 'alliés', 'réagit', 'froncer', 'friends', 'mauvaise_conscience', 'reçois', 'ã', 'cosmos', 'space', 'colique', 'extra-terrestre', 'comptoirs', 'latitude', 'apnée', 'transmutation', 'virement', 'vomis', 'colmater', 'vessie', 'spatiale', 'nasa', 'nausée', 'cockpit', 'orbite', 'pulvérise', 'me_réveille', 'ébriété', 'fossile', 'camouflage', 'chômage', 'licence', 'tampon', 'crampons', 'vétéran', 'gnôle', 'saturne', 'jupiler', 'bayern', 'munich', 'alerte', 'dopage', 'alcoolémie', 'crevé', 'transversale', 'plantée', 'colon', \"s'_établit\", 'soutirer', 'alcooliques', 'large_public', 'arrêtes', 'antilles', 'kilogrammes', 'sympathie', 'fondamental', '31°', 'burro', '12h30', '.ou', 'vous_gênez', 'visitées', 'amen', '-aime', 'vêtements_serrés-aime', \"moutarde-célébrité_qu'\", 'mike_ness', 'al_pacino-', 'william_shakespeare', 'claquant', 'préférant', '❤', 'vital', 'mai_2006', 'mitigé', '38_millions', 'étincelant', 'dalle', 'connaissaient', 'kylie', '50min', 'schnaps', '75cl', 'cerises_noires', 'dénoyautés', 'cônes', 'quatre_heures', 'alexia', 'nous_savions', 'partou', 'amour_inconditionnel', 'disciples', \"s'_attachera\", 'méprisera', 'basculé', 'deux_moitiés', 'foncier', 'vertueuse', 'sensé', 'reconnait', 'gagnez', 'années_passées', 'éducateur', 'probabilités', 'directeurs', 'progrès', 'artistique', 'adjectif', 'distinctive', 'argent_public', 'publics', 'approchait', 'hell', 'naomi', 'goss', 'fana', 'i0_-', 'pret', 'électroménagers', 'avalait', 'changeait', 'persona', 'devraient_être', 'vérification', 'mot-clé', 'sitemap', 'aspects', \"m'_habitue\", 'avalant', 'élargie', 'arsenal', 'lues', 'révélation', 'condition_humaine', 'régissant', 'éternels', 'payant', 'fréquentait', 'admission', 'subissait', 'confuses', 'débordé', 'forums', 'tetes', 'ceux_ci', 'rocket', 'bras_droit', 'reduit', 'canape', 'etiquettes', 'magasine', 'tremble', 'apprentie', 'tro_choux', 'aliments_préférés', 'choco-', 'wisky', 'mains_douces', 'frottez_-les', 'ème', 'beaux_ongles', 'écailles', 'cheveux_gras', 'précises', 'répondrai', 'désuétude', 'média', 'cordon_bleu', 'savonnette', 'désignés', 'originaires', 'irai', 'jusqua', 'granules', 'mon_cousin', \"grey_'\", 's_anatomy', 'cristiano_ronaldo', 'inattendues', 'delight', 'slim', 'bracelet', '16_millions', 'complices', 'moindres', 'faq', 'très_douée', 'certaine_somme', 'parrainer', 'contreparties', 'atteints', 'premier_lieu', 'contrats', 'mécène', 'augmentera', 'obole', 'environ_450', 'donnait', 'plagier', 'strictement_interdit', 'se_posent', \"*j_'\", 'pluvieuse', 'becs', 'je_fus', 'chu', 'aspirateur', 'relooker', 'bastien', 'subite', 'teck', 'bb', '11h30', 'subitement', 'affichait', 'manettes', 'retrouvais', 'flora', 'bizarrement', 'tg', 'cinéphiles', 'citadin', 'autochtones', 'jump', 'improvisés', 'faudrai', 'provoqua', 'equipement', 'puzzle', 'prévisualiser', 'puiis', 'bee', 'péte', 'playa', 'business', 'infiltrer', 'criminel', 'amicaux', '-elles', 'longue_haleine', '1ères', '-pas', 'carlisle', 'sembla', 'suspend', '200°c_durant', 'celles-là', 'tord', 'montent', 'décède', 'string', \"s'_avérer\", 'rituels', 'sans_hésiter', 'modern', 'dressez_-les', 'piment_antillais', 'dessalée', ')_.•', 'cassolettes', 'faîtes_fondre', 'propositions', 'prod', 'merçi', 'quotient', 'nous_demandons', 'vac', 'tech', 'hyperactif', 'propulseur', 'chocolatée', 'comparé', 'foutus', 'régénération_cellulaire', \"m'_excuse\", 'co', 'nous_lançons', 'sa_notoriété', 'dosé', 'chiot', 'grands_restaurants', 'cornets', 'republic', 'down', 'every', 'hope', 'is', 'make', 'that', 'money', 'watch', 'problèmes_financiers', 'usée', 'sablonneux', 'schémas', 'démonstrations', 'pôle', 'majeur', 'se_targuer', 'pardon', 'mdrrrr', 'grande_sœur', 'clay', 'repartis', 'installez', 'pulvérisez', 'insecticide', 'broyées', 'recycler', 'demi-litre', 'immerger', 'recevant', 'signifiait', 'relation_entre', 'valait', 'flatter', 'crouton', 'sa_timidité', 'fragilité', 'comme_larbin', 'valérie', 'suivait', 'windows_live', 'messenger', 'nombreuses_fonctionnalités', 'futurs', 'plugins', 'nouvelles_fonctions', 'designs', 'pain_complet', 'sucres_ajoutés', 'je_montais', 'gênés', 'naitre', 'arrivons', 'monture', 'admet', 'empêchez', 'cassandre', 'taxer', 'pourait', 'idoles', 'aimerai', 'je_mettais', 'aurais_jamais', 'ne_cessera', 'réalisera', 'rivières', 'aha', 'ingénieur', 'strange', 'couvrent', 'osaka', 'admettons', 'mes_soeurs', 'entendait', 'mortelle', 'porte_dauphinemad', \"'_moiselle\", 'mon_ordi', 'merdes', 'calculette', 'soucoupe', 'mentir', 'marmitte', '*a', 'restriction', '.mais', 'évanouir', 'réapprendre', 'here', 'relents', 'pourriture', 'recueillant', 'renonce', 'interprétant', 'malefoy', '18_décembre', '3d', 'sorcier', 'bénéfique', 'descente', 'pine', 'mon_pote', 'allégrement', 'plantation', 'balcons', 'qualiter', 'esperer', 'élégants', 'assortie', 'claviers', 'atmosphère_mélancolique', 'enfantin', 'glucides', 'épouse', 'rôle_essentiel', 'humbles', 'jsuis', 'certains_passages', 'rejoignant', 'maitriser', 'amandine', 'plaque_couverte', 'enrouler', 'soit-disant', 'annees', 'ségolène', 'achètera', 'gibson', 'naturiste', 'homo', 'donneur', 'appartenir', 'siennes', 'boots', 'croquer_dedans', 'va_devoir', 'entreprend', 'arrivées', 'jury', 'compétition', 'jurys', 'gastronomie_française', 'pirates', 'joins', 'partagera', 'renforcé', 'je_perds', 'gomez', 'obtiens', 'avait_emmené', 'recul', 'arrivage', 'nous_attendons', 'jamais_bu', 'rendre_hommage', 'bienvenus', 'achetait', 'mécontentement', 'roses_rouges', 'mon_ame', 'obscur', 'glacial', 'souhaitait', 'corporels', 'mincuisson', 'miningrédients', 'paradoxe', 'phénomènes', 'autre_part', 'résume', 'paella', 'madrilène', 'pot-au-feu', '500_f', 'champignons_sautés', 'soit_dorée', 'appétissante', 'papier_essuie-tout', 'moussant', 'sans_coloration', 'ci-haut', 'riviera', 'gâteries', 'fureur', 'grignotant', 'ont_voté', 'décline', 'préssés', 'tricoter', 'accrochée', '02', 'mars_2008', 'endurer', 'jonas_brothers', 'coréens', \"s'_impose\", 'bg', 'aucune_utilité', 'fondés', 'ardente', 'aphrodisiaque', 'stanley', 'espion', 'excentrique', 'coût_global', 'frais_postaux', 'exigées', 'haute_autorité', 'dawn', 'blood', 'séduction', 'caillé', 'heur', 'pudeur', 'chasteté', 'liza', 'visitent', 'aillent', 'déposent', 'attaques', 'voisinage', 'orbe', 'ont_montré', 'démaquillant', 'liégeois', 'gymnastique', 'chevilles', 'poutre', 'cale', 'cravache', 'loco', 'impossibilité', 'renaît', 'subjectivité', 'historienne', 'ses_alliés', 'gigantesques', 'innocente', 'contactant', 'mali', 'mathias', '1,1_million', 'chaussé', 'comporté', 'rentrait', 'rai', 'voleuse', 'diabolique', 'mustang', 'dirigeante', 'perdait', 'se_souviendra', 'xvi', 'appartiennent', 'enseignés', 'vieu', 'dangereusement_serré', 'baklava', 'potins', 'suppression', 'menée', 'bureaux', 'situés', 'san_sebastian', 'los', 'es_-tu', 'entretiennent', 'ami_véritable', 'arrivé_devant', 'pires', 'ak', 'changerait', 'choze', 'bouffée', 'doutait', 'morgan', 'gâche', 'dépends', 'muscler', 'activité_sportive', 'plaisante', 'mains_bandait', 'terre_promise', 'haut_col', 'me_foudroie', 'femme_obscurefruit', 'sombres_extases', 'ma_bouchesavane', 'horizons_purs', 'savane', 'qui_frémis', 'caresses_ferventes', 'esttamtam_sculpté', 'tamtam_tendu', 'gronde_sous', 'vainqueurta_voix', 'contralto', 'chant_spirituel', 'athlète', 'attaches', 'célestes', 'racial', 'violente', 'casier', 'interaction', 'cérémonies', 'diffusé', 'brive', 'echo', 'eclater', 'clermont', 'delle', 'endurci', 'inquiété', '○', 'règles_spécifiques', 'alibi', 'michele', 'signale', 'risqueraient', 'içi', 'approfondie', '0000', 'gauchère', 'précieuse', 'strauss', 'inquiète', 'horoscope', 'ressens', 'enregistré', 'fruitées', 'sponsor', 'transaction', 'opérés', 'bénédicte', 'personnaliser', 'décortiqués', 'profitez_-en', 'bonshommes', 'petits-beurre', 'émietter', 'tressé', 'piques', \"it_'\", 'with', 'téléphoner', 'mystérieuse', 'activant', '3g', 'taupe', 'odieuse', 'soutiens', 'vrais_amis', 'sf', 'what_the', 'anglophones', 'plaira', 'cas_contraire', 'rafraichissante', 'king', 'toutou', 'embûches', 'dissensions', 'journee', 'dove', 'vérifiée', 'redresse', 'discutant', 'beau_sourire', 'jlui', 'se_sente', 'onde', 'bulletin', 'déclencher', 'alarme_incendie', 'rayer', 'cds', 'gâteaux_faits', 'ape', 'pasje', 'marées', 'mes_peines', 'dernières_années', 'pouront', \"-c_'\", 'intuition', 'mechant', 'anonymement', 'conservatrice', 'multipliés', 'véhiculer', 'kathy', 'cappucino', 'catcheur', 'arbitre', 'challenger', 'se_déroulera', 'irrespectueux', 'stipulation', 'bank', 's_gagne', 'mallette', 'standing', 'quit', 'clock', 'prenom', 'chara', 'shine', 'occupe', 'intelligente', 'grand_chelem', 'roger_federer', 'pleine_dents', 'marchent', 'immobiliser', 'effrayé', 'mélangeait', 'shikakai', 'vétiver', \"t'_inscrire\", 'sommaire', 'papyrus', 'frère_aîné', 'dramas', 'zidane', 'paris_hilton', 'ralliement', 'disparitions', 'poussaient', 'pulpeuses', 'pandora', 'petit_dejeuné', 'colliers', 't_-elle', 'lâchant', 'tarée', 'starbuck', 'coca_light', 'boa', 'premiere_chose', 'msg', 'droitière', 'stretch', 'sniff', 'lo', '1o', 'arnaques', 'délecter', 'moullier', 'vetement', 'dirigeant_vers', 'perler', 'furieuse', 'ravagé', 'resume', 'délectable', 'meringuer', 'scenes', 'destiner', '23_ans', 'nous_acceptons', 'chèques', 'retards', 'rassurés', 'appréciations', 'pertes', '-1_cuillère', 'mugs', '800', 'beaufort', 'solidays', 'refus', 'locations', 'appuie_sur', 'triche', 'dépression', 'saurai', 'entreposer', 'petite_demi-heure', 'chaud-froid', 'molles', 'silicones', 'années_70', 'repeint', 'camping-car', 'deux-roues', 'aspirer', 'pourrais_-je', 'bleu_ciel', 'éclairages', 'modérer', '12_cupcakes', 'éclabousse', 'douilles', 'fige', 'dégouliner', 'déclarés', 'affligeant', '–et', 'cet_engin', 'étanche', 'technologique', 'pointure', 'attraction', 'ameublement', 'vaccin', 'médicament', 'zodiaque', 'température_extérieure', 'feuillette', 'envoler', 'recrute', 'moisis', 'bataillons', '28_juin', 'peau_sensible', 'oculaire', 'ardeur', 'déconnecter', 'mettions', 'chalon', 'aux_antilles', 'océan_indien', 'non_stop', 'engrenage', 'nourrissent', 'babylone', 'engraisse', 'crève', 'nouvelle_version', 'indépendante', 'pénétra', 'lugubre', 'microsoft', 'nombreuses_fonctions', 'fonctionnalités', 'gaby', 'demeurent', 'répondra', 'into', 'se_pencha', 'jeune_couple', \"venu_s'\", 'affirmaient', 'voili_voilou', 'ptits_choux', 'abreuvés', 'soupirs', 'date_précise', 'désaccords', 'littéraires', 'taxis', 'vitale', 'nouveaux_chapitres', 'cliker_sur', \"n'_hesite\", 'audace', 'ses_compagnons', 'deuxième_disque', 'rush', 'head', '.il_faut', 'avant-goût', 'osmose', 'as_déjà', 'popote', 'enfonça', 'apprécie_beaucoup', 'automate', 'commando', 'natte', 'imitant', 'maintenan', 'opéré', 'eucharistique', 'présence_réelle', 'caillots', 'inégaux', 'tristan', 'sharon', 'corbeilles', 'linges', 'chaudière', 'pâtée', 'cuvier', 'continuèrent', 'retentissant', '&_é', 'améliore', 'agissent', 'tattoo', 'comic', 'marqueurs', 'caser', 'dégouter', 'folkloriques', 'sangle', 'bassiste', 'obligeant', 'nullement', 'accoutumée', 'barrer', 'stérile', 'obèse', 'union_nationale', 'modernité', 'africaines', 'poulette', 'parrainage', 'unicef', 'nous_défendons', 'endommagé', 'sang_innocent', '10-12', 'circonférence', 'espacement', 'rocaille', 'perle', '15cm', 'tresser', '2,5_cm', 'momentanément', 'griffe', 'embouts', 'kris', 'pourrait_croire', 'envahissante', 'gifle', 'monumentale', 'fonctionnalité', 'efficacement', 'invitant', 'cambadélis', 'mme_royal', 'sa_candidature', 'célèbres', 'fut_rempli', 'leva_lentement', 'songeant', 'cela_démontre', 'complètement_rempli', 'brouillard', 'pilotée_par', 'sharp', 'finish', 'sprint', 'banales', 'commandant', '2nde', 'cupidon', 'dépôts', 'sexuelle', 'buzz', 'médiatique', 'madonna', '210_degrés', 'parmesan_rapé', '220_degrés', 'partie_basse', 'calque_>', 'dupliquer', 'calque', 'vous_appliquerez', 'adaptez', 'graisseux', 'appliquant', 'je_présume', 'garderai', 'angoisses', 'divorcé', 'pépé', 'marin', 'éduque', 'trés_trés', 'émouvant', 'p.s_:', 'admirable', 'constructif', '24cm', 'marshmallows', 'ferrero_rocher', 'agendas', 'gents', 'dimitri', 'lun', 'cynisme', 'proclamer', 'citrons_jaunes', 'retournez_-le', 'écoeuré', 'groupies', 'patins', 'nourritures', 'périscope', 'sous-marin', 'descendance', \"s'_allument\", 'stabilisation', 'malin_plaisir', 'olivia_ruiz', 'elle_dort', 'dix_premiers', 'reposaient', 'kia', 'rio', 'peugeot', '208', 'gti', 'racing', 'volkswagen', 'polo', 'hold-up', 'huitième', 'lair', 'chandail', 'tickets', 'assaisonnés', 'grimace', 'consommés', 'psycho', 'homophobes', 'rôle_consiste', \"s'_installèrent\", 'lait_tiédi', 'tourtière', 'introduire', 'endroit_où', 'visant', 'validés', 'estimés', 'disposée', 'copieusement', 'convoyeur', 'distrayant', 'enfouir', 'tréfonds', 'sa_mission', 'sein', 'biien', 'manhattan', 'faiseur', 'miroiter', 'enivrent', 'démêler', 'negro', 'tousser', 'mami', 'clochette', 'attirées', 'incident', 'polaroid', 'kangourou', 'sanders', 'masque_hydratant', 'hippie', 'orgies', 'nespresso', 'julien_doré', 'manoeuvre', 'embryons', 'administrateur', 'légal', 'bénéficiaire', 'ong', 'situation_difficile', 'abonnez_-vous', 'chaîne_youtube', 'abonner', \"s'_enfuir\", '2_bols', 'bit', 'longer', 'selena_gomez', 'demi_lovato', 'traduit', 'poitiers', 'system', 'délirer', 'je_deteste', 'blake', 'nouvelle_catégorie', 'germer', 'évidement', 'amant', 'satisfaisants', 'qui_défilent', 'beaucoup_plu', 'mns', 'ecriture', 'gommer', '1_cuillérée', 'lean', 'abomination', 'cinéastes', 'pianiste', 'transporté', 'habillement', 'déconcertante', 'lawrence', \"chef-d_'\", 'magnifiquement', 'vieillissant', 'fresques', 'somptueuse', 'longs_métrages', 'aboutie', 'cinéaste', 'apogée', 'sa_gloire', 'rediffusions', 'alimentent', 'tournages', 'septembre_dernier', 'trot', 'bo', 'décrypte', 'lachez_vos', 'comm', '1/5', 'séparées', 'indépendantes', 'dés.2', 'sel.2', 'touaregs', 'assimiler', 'couleurs_différentes', 'concrètement', 'hair', 'raphaël', '1998', 'dick', 'dérivés', 'différents_styles', 'abordée', 'rencontrez', 'poilus', 'magasiner', 'latino-', 'steph', 'cendrillon', 'rasé', 'coiffeur', 'dressing', 'voudrai', 'massacrer', 'immortelle', 'couilles', 'tueurs', 'souhaiterais', '1994', 'ed', 'wood', 'enquêteur', 'débusquer', 'hollow', 'funèbres', 'ravissant', 'leonardo', 'testament', 'napolitains', 'thrillers', 'mj', 'ignoble', 'pq', 'rapeller', 'merciiii', 'sautée', 'michalak', 'marquait', 'crépuscule', 'défouler', 'céline_dion', 'dépendance', 'maudite', 'cette_foisje', 'vers_toipas', 'toicette_foisje', 'sans_toicette', 'foistous_ces', 'sur_moitoi', 'reste_lasur', 'pascette_fois', 'x3', 'foiscette_foisje', '14_décembre', 'offenser', 'cameron', 'appréciés', 'positifs', 'fait_chavirer', 'tit_bout', 'gamines', '-ajoutez', 'jan', 'tendent', 'plaque_huilée', 'gomme_arabique', 'œuf_entier', 'étoilée', '10m', 'horriblement', 'plein_potentiel', 'brunit', '2_c.à.s', 'transvaser', 'gougères', 'déjà_publiée', 'abréviation', 'houmous', 'carottes_épluchées', 'cake_pops', 'pops', 'forme_allongée', 'donne_faim', 'dragibus', 'avoir_participé', 'musclée', 'écurie', 'lheure', 'dy', 'ancien_ministre', 'ump', 'député-maire', 'interpréter', 'cuivré', 'abandonna', 'semaine_aimes', 'remarques', 'natacha', 'franky', 'insuffler', 'projectile', 'ancre', 'saint_martin', 'obligatoires', 'charité', 'janvier_2006', 'souveraine', 'pyramide', 'méchants', 'dalles', 'prêtant', 'oeuf_dur', '24_avril', 'salade_composée', '26_avril', 'dérapage', 'contrôlé', 'vexé', 'repérée', 'débauche', 'jean_michel', 'jarre', 'together', 'now', 'baloomoi', 'entraîner', 'tentez', 'juriste', 'foulards', 'mamma', 'kcal', 'excessivement', 'poisson_pané', 'obligeait', \"t'_inquiète\", \"s'_occupa\", 'tps', 'malchance', 'kand', 'der', 'ser', 'li', 'ci_dessus', 'lavais', 'ramenait', 'réflexe', 'joris', 'crique', 'rendent_compte', 'ses_employés', 'agents', 'écrasés', 'répondez', 'avarice', \"s'_empressent\", 'tueries', \"j'_rapperais\", 'rapperais_toujours', 'ne_changerais', 'malgrès', 'échoue', 'peut_trouver', \"'_espere\", 'esperes', 'neuf_quatre', 'combat_continu', 'déserté', 'nous_devions', '1l', 'ail_épluchées', 'tanaisie', 'dépurative', 'voies_respiratoires', 'bouillie', 'sucre_candi', 'sevrage', 'anonymes', 'sensualité', 'perceptible', 'catégoriquement', 'réfléchi', 'décidés', 'me_rassure', 'finn', 'blair', 'sylvia', 'reflechir', 'ke_j', '250gr', 'sel1_cuillère', '.bon', 'rapprocher', 'fine_tranche', 'confiserie', 'traitement', 'résultant', 'enveloppez_-le', 'oeuf_fouetté', 'jamais_mangé', 'carlos', 'wallace', 'rangées', 'çe', 'goût_amer', 'âtre', 'etablir', 'évangélisation', 'louange', 'sauvés', '59', 'luxembourg', 'libertinage', 'moine', 'bouddhiste', 'corrompu', 'italian', 'ecris', 'pit', 'cinq_ans', 'carine', 'nous_comptons', 'dividende', 'résultat_net', 'directions', 'obèses', 'plaisait', 'tomlinson', 'songeait', 'eleanor', 'métaphore', 'cachée', 'alcools_forts', 'vraisemblablement', 'extravertie', 'cuisaient', 'corvée', 'pétillantes', 'lointaines', 'kumquat', 'accords', 'musc', 'dexter', 'mangeable', \"m'_assoir\", 'substantiel', 'must', 'intégrales', 'fluos', 'messages_privés', 'lubrifiants', 'vaseline', 'pommades', 'proscrits', 'préservatifs', 'latex', 'piquez_-les', 'cannelle_moulue', 'diluée', 'avoir_laissé', 'comprendront', 'revaloriser', 'dofus', 'moyen_terme', 'nous_préférons', 'sorts', 'spéciaux', 'joués', 'familiers', 'haut_niveau', 'lacunes', 'évolutive', 'canaux', 'contraints', 'allouée', 'profondeurs', 'glace_preferee', 'répertorié', 'défoncée', 'oreillers', 'daniel', 'john_wayne', 'refaite', 'coriande', \"bun_'\", 'bienfaits', 'percevait', 'accumulée', 'piété', 'attachement', 'amour_fraternel', 'fraternelle', '^^et', 'dancing', 'with_the', 'project', 'season', 'séries_télévisées', 'visé', 'impulsif', 'fidèlement', 'glauque', 'siffle', 'moufles', 'crade', 'feuilles_mortes', 'sept_heures', 'ondulé', 'différents_thèmes', 'pseudos', 'caractères_spéciaux', 'excursion', 'son_amant', 'déclara', 'comique', 'étaiit', 'abîmés', 'iceberg', 'joyeux_anniversaire', 'passaient', 'magasines', 'layla', 'lui_tendant', 'transmit', 'will', 'travailleuse', 'blesse', 'nerveuse', 'couzine', 'emmerder', 'maquiller', 'mathilde', 'incontestablement', 'coulées', 'coiffée', 'evidement', 'brisés', \"j'_apprends\", 'précipiter', 'réciproques', 'accroitre', 'incontrôlable', 'desservir', 'ma_tite', 'inspecteur', 'gran', \"-j_'\", 'attractif', 'cliqué_sur', 'mon_corp', 'ors', 'jvai', 'redbull', 'quesque', 'jle', 'vrément', 'épiques', 'épopée', 'monday', 'wake', 'gogole', 'tte', 'nous_fûmes', 'banana_split', 'banane_coupée', 'nappages', '15_secondes', 'fix', 'cinquième_membre', \"m'_occuper\", 'ti_frere', 'cruelle', 'elle_creve', 'diamant_noire', 'appercoit_avec', \"'_hagar\", 'son_pére', 'emblé_elle', 'discours_violents', 'eccart', 'venir_embrasser', 'gauffres', 'on_pétrit', 'juin_2010', 'consciente', 'underground', 'signal', 'artificiellement', 'général_lié', 'attirance_profonde', 'avons_trouvé', 'avons_pu', 'aimés', 'quelles_sont', 'insecte', 'ouïe', 'capsule', 'ongle', 'rongés', 'protocole', 'materiel', 'cuticules', 'repousse', 'cotton', 'dégraissant', 'expres', 'tips', 'sauras', 'conjugaison', 'xo', 'john_lennon', 'norton', 'gwyneth', 'utilitaires', 'huhu', 'déposera', 'hugo', 'lunes', 'consécutives', 'vaguement', 'aborder', '_un', \"s'_inquiètent\", 'angie', 'boulle', 'avé', 'visuel', 'adhésives', 'psychédéliques', 'lacet', 'hopital', 'chorale', 'gymnase', 'incompréhensible', 'limousine', 'redescend', 'accomplissent', 'ca_serais', 'crétins', 'concrétisent', 'manies', 'savigny', 'chelles', 'noisy', 'céder', 'rougeurs', 'points_noirs', 'aurore', 'hé', 'cacahuètes_enrobées', 'échouer', 'douches', 'capsules', '.ma', 'se_résume', '.lorsque', 'granulé', 'camphre', 'ses_vertus', 'exellent', 'essentielles', 'doug', 'patiemment', 'mâché', 'bloody', 'valentine', 'manifester', 'princesses', 'affirmation', 'apris', 'sa_nomination', 'reviendrais', 'bises', 'pleurais', 'toucheront', 'battante', 'gercées', 'sentait_bon', 'trahie', 'aversion', 'complice', 'ingrédient_secret', 'mettrait', 'suspens', 'mieux_cerner', 'extraordinaires', 'provoquent', 'divas', 'riz_vinaigré', \"j'_éspère\", 'comprenaient', 'arretez', 'apaisante', 'ette', 'conduisait', 'détourne', 'reprenons', '__________', 'benji', 'chevre', 'seguin', 'sueurs_froides', 'angoissé', 'etats', 'rectifié', 'coupait', 'hors-ligne', 'vous_sentez', 'épargner', 'arcs', 'fête_foraine', 'empirer', 'fancy', 'dior', 'lip', 'gloss', 'perception', 'son_paternel', 'cafard', 'soulard', 'battue', 'huiles_végétales', 'je_mettrais', 'numeros', 'geler', 'tarés', 'barriere', 'melle', 'numero', 'x_x', 'got', 'know', 'loupée', 'cadrage', 'geant', 'tell', 'what', 'to_do', 'wish', 'quittent', 'chantés', 'preferé', 'peche', 'fosse', '1ere', 'voirs', 'vous_prendrez', 'bonnets_rouges', 'élancé', 'universités', 'devrais_-je', 'encaisse', 'collectif', 'gignac', 'week', 'juju', 'sor', 'depart', '8h00', 'tri', 'doublez', '-125g', 'lissez', 'calle', 'lumière_douce', 'civilisés', 'vous_aidera', 'spé', 'svt', 'magnum', 'aline', 'etablissement', 'batiment', 'etant_donné', 'eleves', 'patiente', 'ultérieurement', 'mia', 'dictionnaire', 'demande_pardon', 'souviens_-toi', 'taquiner', 'revêt', 'jupes', '19h30', 'fine_lamelle', 'dead', 'lacazette', 'flanc', 'quelques_centimètres', 'hygiénique', 'sensée', 'ordonna', 'expressions', 'sans_mors', 'sans_éperon', 'sans_bride', 'partons', 'ciel_féerique', 'animosité', 'naissante', 'coiffés', 'je_portais', 'lustucru', 'lierres', 'quelques_goutes', 'réaction_chimique', 'crème_lavante', \".l_'\", 'fie', 'photographes', 'dc', 'ora', 'language', 'yassa', 'cuisine_sénégalaise', 'habitats', 'affectent', 'hector', 'compri', 'copin', 'demi-finales', 'précédant', 'tamisés_ensemble', 'espece', 'bon_fonctionnement', '8cm', 'vans', 'détachés', 'légers', \"s'_envolent\", 'lens', 'testostérone', 'pamela', 'faire_trébucher', 'chum', 'inséparable', 'annulé', 'michael_schumacher', 'provisoirement', 'manœuvre', 'stipule', 'positions', 'jugeant', 'commissaires', 'qualification', 'affiliation', 'ausi', 'soirer', 'nos_régions', 'départements', 'véritables', 'juliette_binoche', 'inscription_validée', 'politesse', 'reglement', 'machinalement', 'elle_attrapa', 'redécouvrir', 'cabines', 'interchangeables', 'logos', 'clicker', 'épanouie', 'gerer', 'massepain', 'emplois', 'clinique', 'gave', 'caissière', 'présentations', 'farah', 'grande_fan', 'sévère', 'harper', 'island', 'athlétisme', 'superficielles', 'chez_mamie', 'lecteur_cd', 'baba', 'chorégraphies', 'neveux', 'kimi', 'felipe', '8e_place', 'rivaux', '17e', 'suive', 'fight', 'peti', 'marant', 'comencer', 'gente', 'sociable', 'absences', \"moij_'\", 'moije', 'réalisent', 'comédie', 'len', 'assumer', 'coment', 'pago', 'parfoi', 'minime', 'limitée', 'prolonge', 'vacation', 'préfères', 'cafards', 'creve', 'téléphones', 'koala', 'blessé', 'forgeron', 'rides', 'rappela', 'avait_annoncé', 'sorciers', 'vous_étes', 'totalement_différent', 'point_commun', 'effraie', 'maison_hantée', 'cétait', 'controler', 'demain_soir', 'vous_viendrez', '@@', 'me_diras', 'naze', '21h30', 'illimité', 'je_dors', 'astronaute', 'dors', 'pate_fimo', 'arnaquer', 'infiniment', 'minable', 'sa_majesté', 'honfleur', 'usager', 'deviendra_répandu', 'deviendra_naturel', 'milk-shake_vanille', 'celine', 'veuillez_préciser', 'kira', 'décidera', 'règne', 'steve_jobs', 'tony_blair', 'trampoline', 'prout', 'duvet', 'brasseurs', 'bidou', 'devine', 'équestre', 'petite_pause', 'pleine_nuit', 'ressemblais', 'extérieurement', 'tellement_heureuse', 'compliquer', 'chicane', 'produisait', 'expliquait', 'reparties', 'smileys', 'schtroumpfs', 'cullen', 'aujourdhui', 'bombes', 'pinard', 'joyeux', 'spectre', 'attribut', 'sème', 'brebis', 'renommée', 'calomnie', 'insouciance', 'justifie', 'â', 'ruisseaux', 'vieillesse', 'noémie', 'tu_goûtes', 'profites', 'sacre', 'déchiré', 'fatiguant', 'mourra', 'excusé', 'pain_grillé', 'scoop', 'dernier_chapitre', '13_juin', 'sherman', 'yoga', 'golf', 'historiques', 'roberts', 'drew', 'roller', 'porte-monnaie', 'sydney', 'loyale', 'peyotl', 'muppets_show', 'cindy_crowford', \"m'_empiffrer\", 'cochonneries', 'apres_midi', 'meur', 'spa', 'matter', 'saule', 'mammifère', 'kitty', 'ème_siècle', 'moyen_age', 'elément', 'vice', 'regret', 'elfe', 'vidéo-', 'coulisses', 'tremplin_vers', 'terre_coupées', 'déconnecte', 'ps3', 'geek', 'blandine', 'ames', 'dispensé', 'vigueur', 'ferrari', 'communautés', 'reversement', 'aires', 'protégées', 'population_locale', 'tunnels', 'vivres', '____________', 'capter', '___', 'thessalie', 'immodérée', 'ils_aimaient', 'adoraient', 'querelles', 'ivrognes', 'liban', 'récentes', 'oi', 'biére', 'deborah', 'soeurette', 'hillary', 'oci', 'hilary', 'bé', 'gratos', 'deuil', \"s'_échappent\", 'matrix', 'planet', 'fx', 'effets_spéciaux', 'hubert', 'joly', 'alfred', 'besson', 'possédait', 'plats_préférés', 'crimes', 'veillant', 'autres_termes', 'brouiller', 'pension_alimentaire', 'optimiser', 'exo', 'items', 'castro', 'jungle', 'isolée', 'parti_communiste', 'ami_ordinaire', 'ramene', 'delirs', 'screens', 'smile', 'hémoglobine', 'nos_papilles', 'pétasse', 'courra', 'prononça', \"s'_adressant\", 'superstar', 'amber', 'ain', '9_avril', 'kermesse', 'neptune', 'financer', 'puisse_lâcher', 'animal_familier', 'importante_décision', 'animaux_méritent', 'nos_soins', 'appropriée', 'wrestlemania', 'fab_four', 'ça_valait', 'chicago', 'allongé', 'baldaquin', 'capitalistes', 'ingérence', 'barbara', 'kola', 'may', 'cry', 'fantome', 'bonnets', 'témoignages', 'ziva', 'trooop', 'heuresement', 'essaies', 'rattrape', 'insistant', 'mangés', 'multipliez', 'infime_partie', 'fouiller', 'poussiéreux', 'majeure', 'émergents', 'plate-forme', 'proche_avenir', 'braver', 'adresse_suivante', 'sarko', 'refondre', 'laisse_guider', '*0*', 'pratiquer', 'cheminé', 'ils_entrent', 'occupations', 'recommandés', 'mêmes_erreurs', 'servirait', 'me_dérange', 'braguette', 'rembourrage', 'trop_courte', 'réveillée', 'devenez', 'alexandre', 'pj', 'confié_christine', 'cordon._\"', 'prevu', 'arrété', 'boira', 'emmene', 'reservé', 'pollué', 'promets', 'envolé', 'arrangement', 'mande', 'argile_verte', 'détergent', 'pores', 'tonifiant', 'peaux_irritées', 'certains_disent', 'beh', 'élites', 'cautionner', 'malsain', 'alias', 'chopper', 'usopp', 'thriller', 'signées', 'barack_obama', 'iso', 'comparée', 'agile', 'pleur', 'emparer', 'partageront', 'optionnels', 'sangria', 'cui', 'seche', 'demende', 'gains', 'produiront', 'boy', 'abrite', 'saillantes', 'conclus', 'bocou', 'inconscient', 'ont_précédés', '-_vous-plaît', 'romain', 'etats_unis', 'fonctionne_parfaitement', 'niki', \"n'_osait\", 'gonflé', 'ella', 'représentation', 'blocage', 'humilié', 'abrutis', 'jeun', 'muqueuse', 'œsophage', 'homéopathique', 'acidulés', 'attirante', 'russie', 'faisant_parti', 'bêta', 'correcteur', 'olala', 'inventions', 'différents_parfums', 'miniatures', 'inactifs', 'légions', 'imbéciles', 'collectivité', 'valises', 'marquée', 'barbarie', 'époques', 'singles', 'gros_succès', 'seven', 'décrites', 'sa_signature', 'orné', 'correspondre', 'anita', 'jt', 'pouvai', 'acceder', 'chiara', 'aveuglé', \"m'_habituer\", 'décents', 'me_rendis', 'psychologiques', 'eyes', 'fashion', 'coings', 'déguisements', 'rappelons', 'obtiendrez', 'méritez', 'joujou', 'jutsus', 'remède_contre', 'poisons', 'encouragent', 'écharpe', 'montrera', 'interesse', 'charlottes', '1200', 'faisant_partie', 'cow-boys', 'contre-pied', 'lituanie', 'tu_feras', 'véra', 'chip', 'famine', 'eleve', 'modelage', 'taré', 'vautour', 'arrêtait', 'immuable', 'samedi_matin', 'camarade', 'retrouvailles', 'extrement', 'collegue', 'camarades', 'montagnard', 'zigzagant', 'pistes', 'consumer', 'dégoûté', 'couchent', 'lâchent', 'méritaient', 'posent', 'incarcération', 'cacahuéte', 'fon', 'raisonnement', 'grande_surface', 'saint-pierre', 'oléron', 'escalope', 'veaux', 'visionné', '2011-2012', 'creation', 'confondu', 'je_taime', 'économiquement', 'prix_abordables', 'clotilde', 'jtrouve', 'sy', 'sidney', 'school', 'garden', 'embauche', 'watts', 'autoroutes', 'encadré', 'thc', 'fais_gaffe', 'rouiller', 'fesant', 'défilent', 'fuis', \"j'_oublirais\", 'versent', 'malins', 'espérances', 'nette_préférence', 'appels', 'fabien', 'éclaté_au-dessus', 'intolérable', 'moins_inattendu', 'mobilité', 'sont_devenues', 'appelez_moi', 'séquelles_physiques', 'bide', 'vous_sachiez', 'tomes', 'ultimate', 'séparent', 'vertige', 'vains', 'idiots', 'simulation', 'mortel', '^^je', 'ébauche', 'rapaces', 'ils_réalisent', 'périls', 'jours_fériés', 'grandes_occasions', 'te_plais', 'cone', 'cout', 'nou', 'excuses', 'irrités', 'tues', 'cpp', 'perdure', 'niqueu_sa', 'as_vu', 'levrette', 'aida', 'je_préparais', 'mena', 'denise', 'consultations', 'marabouts', 'succession', 'nourrissez', 'alimentation_équilibrée', 'diarrhée', 'digère', 'voila_pourquoi', 'décalés', 'convenables', 'entrez', 'desproges', 'verlaine', 'godard', 'beau_milieu', 'prophètes', 'lançant', 'size', 'préfet', 'president', \"inch_'\", 'listing', 'alchimie', 'professionnelles', 'invention', 'batonnets', 'obliques', '2mm', 'calée', 'cadre_inox', 'congel', 'qq', 'puissance_moyenne', '55°c', 'coudée', '900', 'cacao_tamisés', 'mélange_précédant', 'première_couche', 'congel_pendant', 'brillance', '40_°', 'notoriété_publique', 'anus', 'tu_iras', 'bretons', 'nantes', 'clow', 'hurlé', 'ryo', '5°', 'validé', 'pareillement', 'impératif', 'guignol', 'vous_tomberez', 'fumait', 'pleine_période', 'prétendants', 'fustiger', 'lepen', 'points_faibles', 'premiers_mois', 'ils_vireront', '3-4_minutes', 'cuise', 'devienne_crémeux', '2_cuillers', 'ça_brûle', 'courez', 'incorporer_doucement', 'maniére', 'noircit', 'ceinture_noire', 'art_martial', 'infâmes', 'visitez', 'desire', 'melangé', 'rougeur', 'altérations', 'zones_sensibles', 'accessoirement', 'criminalité', 'confortablement', 'barmen', 'tegoshi', 'cuver', 'demi-tour', 'précisions', 'testicules', 'male', 'dentition', 'buches', 'praline', 'royaume_sera', 'prêchée', 'fauve', 'acides_gras', 'mono-_insaturés', '{_refrain', 'x2_}', \"j'_éviterais\", 'saouler', 'différentes_phases', 'dernières_technologies', 'réciproque', 'inimaginable', 'trouveras', 'stevie', 'nut', 'minoritaire', 'black_metal', 'organiste', 'noce', 'trois_places', 'll', 'soutif', 'soufflant', 'écaille', 'lilas', 'exprimez', 'participante', 'vertues', 'rousseur', 'teinture', 'benjoin', 'gommage', 'peeling', 'nutritif', 'reduire', 'germes', 'groupe_b', 'excellentes', 'justifiée', 'suspicion', 'implantés', 'peau_douce', 'nadia', 'marde', 'salopes', 'mon_placard', 'enfers', 'terminent', \"mouv_'\", 'animateur', 'carriere', 'relancer', 'culturel', '1er_mars', 'nba', 'captain', 'sour', '17_novembre', 'cheuveux', 'assé', 'rhabiller', 'mortelles', 'peigne', 'frai', 'docile', 'domestique', 'grande_utilité', 'respectivement', 'envoyez_moi', 'cotée', 'hoche', 'vous_apporte', 'runes', 'kan_meme', 'isolant', 'électrode', 'marron_foncé', 'carburation', 'gicleur', 'silva', 'valence', 'remercions', 'cyan', 'aides', 'ai_décidé', 'san_diego', 'redire', 'méconnu', 'spartacus', 'romains', 'germaniques', 'rébellion', 'se_rapprochant', 'venin', 'mordu', 'déjà_posté', 'sauraient', 'donjons', 'dimanches_soirs', 'enquêter', 'exclure', 'donnez_-nous', 'cachez', 'armée_israélienne', 'formellement', 'communiste', 'peuplés', 'inclu', 'voulai', 'malheuresement', 'proprietaire', 'pleine_dent', 'flanqué', 'menton', 'réalistes', 'violons', 'pianos', 'beats', 'industriels', 'vraie_amie', 'battants', 'cheikh', 'vicissitudes', 'chantre', 'questionne', 'inchallah', 'mentionner', 'publiquement', 'leurs_biens', 'prélève', 'inique', 'commet', 'kir', 'assurée', 'darling', 'causalité', 'pisse', 'obéit', 'ansi', 'radicales', 'adresse_e-mail', 'répondrais', 'se_composait', 'toaster', 'gryffondor', 'remportera', 'perroquets', 'gabon', 'xbox_one', 'walt_disney', 'jenson_button', 'honda', 'ross', 'trois_couples', 'sont_constitués', 'toro', 'honey', 'émotive', 'jamais_quitté', 'this_is', 'ba_oui', 'franchouillard', 'rillette', 'étouffée', 'amères', 'collége', 'vous-meme', 'energie', 'sentez', 'vos_proches', 'émises', 'soupoudrez', 'amical', 'guidance', 'remerciez', 'rayonner', 'visualisez', 'auchan', 'écoutait', 'rnb', 'prenais', 'engueulades', 'remarquée', 'desktop', 'inclut', 'arrière_plan', 'cerisier', 'pocher', 'st-jacques', 'gardez_-les', 'grand_cru', 'classé', 'tu_ouvres', \"m'_approcher\", 'adresses.un_simple', 'copain_apporte', 'sous-produits', 'me_permettrai', 'vingtième', 'tu_ailles', 'sud-africain', 'boîte_mail', 'téléchargements', 'magot', 'zapper', 'rendre_témoignage', 'betises', 'bustier', 'montrait', 'craven', 'rideaux', 'glue', 'penderie', 'baby-sitter', 'pilé', 'premiers_jours', 'demeurait', 'travail_acharné', 'menuisier', 'rest', 'godin', 'apaisent', \"m'_envoyant\", 'cocon', 'fauteuil_roulant', 'affectueusement', 'malabar', 'rafle', 'shooting', 'hospital', 'vé', 'victuailles', 'succion', 'enivre', 'se_prémunir', 'critère', 'nous_considérons', 'esthétique', 'pas_forcement', 'remercié', 'empeche', 'tsé', 'hun', 'pocket', 'imite', 'pike', 'jveux', 'aim', 'retouchée', 'races', 'boniche', 'disparaisse', '17_heures', 'aéroport', 'campings', 'siciliens', 'etna', 'écume', 'vole', 'guetter', 'perchée', 'poteau', 'cabane', 'envahie', 'odorantes', 'écureuils', 'traversent', 'plaintes', 'mildiou', 'albums_photos', \"presqu'_île\", 'blessées', 'abîmées', 'secourir', 'abeilles', 'redécouvre', 'bigorneaux', 'carapaces', 'docs', 'remplissent', 'roches', 'amputé', 'se_promène', 'envahissent', 'tun', '1974', 'paco', 'récré', 'appropriés', 'origine_allemande', 'meurtri', 'motifs_floraux', 'rêvasser', 'sardines', 'lient', 'aval', '12ème', 'nous_puissions', 'jessy', 'ma_poulette', 'l_interieur', 'exterieure', 'crotte', 'peignoir', 'roberto', 'oubliez', 'beau_cadeau', 'marqua', 'remboursés', 'cynthia', 'magasinage', 'gobelins', 'hola', 'liker', 'pmu', 'trés_fort', 'ces_chiffres', '160_000', 'rapée', 'mauvaises_habitudes', 'lamborghini', 'pick-up', 'education', 'célébrité', 'hobby', 'entiere', 'ted', 'seule_traite', 'sprüngli', '1845', 'zurich', 'confiseur', '1899', 'manufacture', 'berne', 'lindt', 'confectionne', 'pralines', 'croissante', 'chocolats_fins', 'saveur_sucrée', 'doit_contenir', '21_juin', 'directive_européenne', 'relative', 'appliquée', 'directive', 'poids_total', 'mention_«', 'mentions', 'sont_autorisées', 'y_repense', 'sa_patrie', 'pluto', '.je_pense', 'passerai', 'téléspectateurs', 'cumul', '1,7', 'coincer', 'gore', 'montana', 'couronner', 'je_restais', 'fois_rentré', 'aid', 'reverse', 'affichées', 'filleuls', 'surchargé', 'léthargie', 'condensé', 'temps_réel', 'rigolos', 'potentiels', 'accroches', 'autrui', 'leurs_intérêts', 'nouriture', 'okonomiyaki', 'flavour', 'gyudon', 'agacent', 'qui_périssent', 'virginia', 'vivienne', 'expiré', 'vocale', 'ttc', 'roules', 'couchers', 'céline', 'pole', 'première_ligne', 'leurs_camarades', 'œuvrer', 'expérimenter', 'dancer', 'traitres', 'differentes', 'ses_qualités', 'bénis', 'gosier', 'troués', 'magicien', 'pharaon', 'moralité', 'biotechnologie', 'serpents', 'empecher', 'gosses', 'commencèrent', 'tournées', 'ravioli', 'seré', 'hahaha', 'abusive', 'enterrer', 'médiévale', 'ceci_dit', 'lui_répondit', 'dévaliser', 'ces_fameuses', 'barres_énergétiques', 'faire_frire', 'alle', 'etapes', 'mathématique', 'dégraisser', 'york', 'patients_souffrant', 'fatigue_chronique', 'forte_proportion', 'teinté', 'impact', 'cérébrale', 'sentaient', 'précisons', 'moulages', 'affinage', 'matière_première', 'variétés', 'qualificatif', 'produits_fabriqués', 'saisonnière', 'représentent', 'ballotins', 'réglementées', 'produit_fini', 'apparence_physique', 'stérilisateur', 'immergé', 'on_retire', '600g', 'profitait', 'ascendant', 'privait', 'joueuses', 'estuaire', 'locales', 'sobrement', 'rico', 'répandit', 'community', 'tome', 'temporelle', 'me_passionne', 'astérix', 'collections', \"s'_intéresser\", 'relations_humaines', 'girofles', 'quest', 'téméraire', 'dessins_animés', 'transats', 'porno', 'portables', 'illimités', 'saw', 'bourrées', 'boulets', 'valériane', 'concernés', 'ele', 'mandragore', 'non_alcoolisé', 'ingéré', 'boisson_alcoolisé', 'tribal', 'jamel', 'gâchis', 'haricot_rouge', 'égales', 'conseillera', 'dissertation', 'arrivaient', 'récolter', 'marionnettes', 'bah_oui', 'archéologie', 'châteaux', 'bueno', 'adores', 'marrants', 'premier_épisode', '13_février', 'vladimir', 'edge', 'interviendra', 'intervienne', 'entende', 'este', 'quelques_mots', 'piéton', 'parapluie', 'décolletés', 'époustouflants', 'plaindre', 'pdc', 'cpe', 'légion', 'martyre', 'arak', 'nouvelle_alliance', 'retournait', 'aventuriers', 'hostile', 'insultants', 'bien-sur', 'slam', 'rêveuse', 'woman', 'paniquer', 'émissions', 'génétiquement', 'môme', 'osseuse', 'pare-chocs', 'quotidiennes', 'accusant', 'perpétuité', 'poly', '11h00', 'décapotable', '8-p', 'pointant', 'petits_trucs', 'superficiels', 'comment_résister', 'passoa', 'coiffeuse', 'potions_magiques', 'rêveur', 'je_décidai', 'questionner', 'supérette', 'caloriques', 'goinfrer', 'avait_ramené', 'ô_combien', 'necessaire', 'md', 'mon_dressing', 'yvonne', 'tac', 'litchi', 'patou', 'contactez', 'bling_bling', 'quelques_surprises', 'beaux_cheveux', 'teints', 'karite', 'nivea', 'prouvé', 'moselle', 'gaillard', 'convie', 'son_épopée', 'prions', 'ingestion', 'dénaturés', 'fuites', 'update', 'adéquatement', 'ramassis', 'peinture_acrylique', 'shawn', 'cade', 'nous_commençons', '5_comms', 'vetements', 'atterrit', 'frankie', 'vitraux', 'purifiant', 'nora', 'cabanes', 'claquent', 'tardives', 'causées_par', 'constipe', 'dès_lors', 'frimousse', 'frisés', 'conan', 'cadillac', 'violetta', 'bree', \"s'_endort\", 'troisièmes', 'faire_fonctionner', 'ey', 'célib', 'métamorphose', 'geisha', 'rites', 'sied', 'déjouer', 'rivales', 'ses_copines', 'se_moquent', 'blanc_beur', 'brassardsils_disent', 'madrassails_disent', 'vouloir_crucifier', 'merde_provient', 'méditerranéeje_dis', 'nous_incriminent', 'tort_derrière', 'leur_bureauje', 'banania_ni', 'bénioui_(', 'basanésils_disent', 'burgaudje_dis', 'incline', 'impose', \"t'_attends\", 'incliné', 'dale', 'orleans', 'demandai', '6_ramequins', 'noa', 'cherchais', 'sinn', 'te_connaitre', 'yen', 'jva', 'descriptions', 'pressions', 'exclue', 'me_dises', 'épave', 'saint-laurent', 'penn', 'alison', 'bastille', 'attractifs', 'essuie_glace', 'enfiin', 'fame', 'grd', 'diit', 'encors', 'zik', 'und', 'mini_bar', 'intro', 'mimolette', 'pif', 'gadgets', 'résigner', 'exploite', 'néfastes', 'soiree', 'enceintes', '*****', 'me_sui', '400gr', 'pensse', 'apré', 'muscle', 'batonnet', 'homéopathie', 'engagée', 'leurs_voisins', 'rendues', 'gradué', '3.5', 'environ_35', 'hameçon', 'licornes', 'spiderman', 'ie', 'glaude', 'enivré', 'beuverie', 'loins', 'ruiné', 'instruire', 'maires', 'présidents', 'chié', 'bikini', 'alcoolisé', 'friend', 'tower', 'nommant', 'lorenzo', 'millénaire', 'désinfectantes', 'donnez_-vous', 'libre_service', 'interrogés', 'attraits', 'ils_répondirent', 'abreuver', 'tu_cherche', 'sonneries', 'tu_réponds', 'prévois', 'beu', \"×_j'\", 'autos', 'plutard', 'rover', 'lautre', 'motos', 'impatiente', 'desjardins', 'protections', 'degrès', 'dépendances', 'allemande', 'mon_grand-père', 'diète', 'je_rêvais', 'brompton', 'sherbrooke', 'économiser', 'gêner', 'flyers', 'matérialiser', 'choses_simples', 'aller_visiter', 'dicton', 'caviars', 'rive_gauche', 'king_james', 'nous_buvions', 'comparant', 'teen', 'lambris', 'orientaux', 'mêlaient', 'plombier', 'granité', 'funk', 'prèfèrè_:', 'brad', '.la', 'accusations', 'gavin_arvizo', 'accuser_jackson', 'avoir_abusé', 'cadet', '96', 'deux_reprises', 'est_masturbé', 'être_informé', 'animations', 'surnaturel', 'époux', 'proprement_dite', 'sa_belle-mère', 'relisez', 'carreau', 'today', 'prevenu', 'jérome', 'liégeoise', 'fringale', 'se_goinfrer', 'nicotine', 'sixième', 'ordonne', 'mes_proches', 'faire_taire', 'relié', 'dessin_animé', 'viennois', '210g', 'porteront', 'coopératif', 'retenter', 'accessible_depuis', 'gratuité', 'affichée', '000_$', 'son_ex-femme', 'souvien', 'premiére', 'damme', 'mon_papa', 'shu', 'petra', 'break', '*q*', 'assouvir', 'votes', 'fumigènes', 'caddie', 'assoiffé', 'barricades', 'muscles', 'artère', 'émerge', 'papote', 'avon', 'pii', 'gan', 'liberte', 'dame_blanche', 'blocus', 'stands', 'cotiser', 'cubis', '500_litres', 'pur_bonheur', 'dormi', 'recule', '10_places', '13ème', 'mclaren', 'piquet', 'très_décevant', 'vettel', 'sera_pénalisé', 'malaisie', 'israéliens', 'ont_refusé', 'territoires_occupés', 'aumône', 'adversité', 'immatures', 'classe_ouvrière', 'éboueurs', 'sanitaires', 'qui_puent', 'prennent_soin', 'choupinette', 'entendue', 'apercevant', 'bourrage', '20h30', 'mikael', 'om', 'égalisation', 'heinz', 'cissé', 'super_mignon', 'flippant', 'guérison_sexuelle', 'me_donnes', 'saisit', 'nous_sentons', 'coûteuses', 'myriade', 'danseuses', 'what_you', 'sainteté', 'cortège', 'they', 'flâner', 'mezzanine', 'beaulieu', 'auditions', 'gèle', 'débuté', 'coureur', 'diam', 'vita', 'banlieue_parisienne', 'soumises', 'pvp', 'solo', 'stuff', 'beaujolais', 'coéquipiers', 'drogués', 'férocité', 'vos_tenues', 'brouillé', 'prophète_mouhammad', 'alayhi_wa', 'sallam_)', 'oummah', 'qui_considéreront', 'étant_licites.', '(_boukhâri', 'tambour', 'luth', 'milo', 'amusement', 'repondu', 'personnelement', 'els', 'ga', 'maladroit', 'se_limitent', 'porterait', 'tarte_tatin', 'veux_piquer', 'mohamed_ali', 'bouffons', 'pelé_etre', 'spartiate', 'comme_chabal', 'danes', 'instants_magique', \"m'_entendra\", 'lui_arracherai', 'joueuse', 'mi-journée', 'abondants', 'suivies', 'tagine', 'méchoui', 'ils_utilisent', 'oignions', 'ails', 'miels', 'berbère', 'aimeriez', 'rassurez', 'assaisonnée', 'citées', 'cadbury', 'oranges_sanguines', 'défoncé', 'annonces', '4,5', 'dindes', '2,8', 'mettez_-la', 'austère', 'wesh', 'ahah', 'nous_allâmes', 'occupera', 'fatalement', 'pacte', 'minuscule', 'pincé', 'liverpool', 'jus_dorange', 'fameuses', 'requinquer', 'details', '38_cm', 'den', 'diodes', 'organisez', 'traiteur', 'attentionnée', 'autoritaire', 'envisagé', 'devises', 'gache', 'méchanceté', 'retardement', 'repeindre', 'cibles', 'paraitre', 'collimateur', 'suture', 'accolades', 'sournois', 'coupure', 'intempéries', 'time', 'prochain_album', 'rancune', 'bonnes_bases', 'vulgaires', 'bras_tendu', 'tendus', 'àla', 'indiquées', '1983', 'miguel', '1993', 'millier', 'équivaut', \"s'_efforce\", 'monotone', 'sans_encombre', 'rédigées', 'yes', 'the_body', 'moringa', 'monoï', 'yves_rocher', 'agira', 'sèche_cheveux', 'promesses', 'ai_rencontré', 'attachée', 'vexe', 'ma_mére', 'démaquiller', \"j'_adorerais\", 'ma_chambre.', 'coureurs', 'performances', 'complément_alimentaire', 'ornementation', 'fixés', 'argile_blanche', 'agrémente', 'soissons', 'devien', 'para', 'boursin', 'revus', 'caractériser', 'laval', 'qe', 'naked', 'escorter', 'chercheur', 'codec', 'conseillère', 'parachute', 'berge', 'détenteur', 'davy', 'arme_nucléaire', 'troisième_position', 'son_coéquipier', 'deuxième_position', 'lai', 'fc_barcelone', 'compétitions', 'prestigieuses', '21_décembre', 'obtenues', 'argentin', 'podium', 'enchantée', 'represente', 'ane', 'nous_gardons', 'adresse_email', 'tombées', 'fictif', 'scouts', 'model', 'nouvelle_collection', 'tenant_compte', 'nous_utilisions', 'menus_enfants', 'banquette_arrière', 'fument', 'pénétrer', 'vagin', 'empressement', 'mardi_soir', 'pensai', 'eter', 'salami', 'samedi_prochain', 'georgette', 'chandeliers', 'puissances', 'panaché', 'rapprochée', 'songer', 'preuves', 'confident', 'barrières', 'film_protecteur', 'anormalement', 'abusez', 'auberge', '.comme', 'metz', 'thionville', 'oubliera', 'elles_restent', 'bloquées', 'gros_mots', 'dαns', 'decu', 'mangaka', 'lah', 'éprouvent', 'nécessité', '70_000', 'postez', 'mêmes_principes', 'quantité_raisonnable', 'intimité', 'tromperie', 'marchandise', 'affectée', 'fonctionnelles', 'liberté_individuelle', 'occidental', 'sociologue', 'aggravée', 'difficultés_économiques', 'négation', 'construits', 'zone_touchée', 'séisme', 'disputé', 'tremblement', 'pèse', 'distraction', 'conquêtes', 'cure_detox', 'développée', 'agissant', 'repose_sur', 'constituée', 'gingembre_moulu', 'diluez', 'détendue', 'ayez', 'aliments_transformés', 'aliments_frits', 'farine_raffinée', 'détoxification', 'accumulés', 'circuler', 'acné', 'accompagnaient', 'citronnade', 'gourmets', 'meilleur_rapport', 'diapo', 'créera', 'urines', 'maso', 'jon', 'daddy', 'investisseur', 'perçu_comme', 'avocate', 'etage', 'rocky', 'cass', 'rebel', 'verbal', 'comence', 'gav', 'pier', 'determiner', 'bay', 'apparament', 'fondait', 'billy', 'burritos', '&_jerry', 'envahi', 'pistou', 'instructif', 'irc', 'civilisé', 'libéral', 'vecteur', 'impérial', 'crème_brulée', 'vêtues', 'fatigués', 'manipulant', 'jaillissent', 'parcourent', 'putride', 'furoncles', 'lépreux', 'écoule', 'chimère', 'fantassin', 'vastes', 'casques', 'horribles', 'ppour', 'rayé', 'strip', 'pipe', 'remede', 'couleur_foncée', 'deux_gorgées', 'aligne', 'actionnaire', 'cadence', 'fus', 'faste', 'pies', 'glandes', 'utilités', 'marqueur', 'odorant', 'parfois_difficile', 'écoutez', 'innovant', 'helene', 'espagnols', 'soumet', 'stylés', 'land', 'non-_stop', 'ma_chatte', 'tortues', 'salinas', 'ramènent', 'press', 'branchés', 'tiendrais', 'viagra', 'perron', 'agiter', 'ferraille', 'eni', 'passionnant', 'hadès', 'w', 'seringues', 'pipette', 'compte-gouttes', 'teintés', 'eau_florale', 'lydia', 'mans', 'hôtel-restaurant', 'longue_gorgée', 'tu_deviens', 'alerter', 'échappatoire', 'décape', 'classification', 'craindre', 'ness', '=o', 'horizontal', 'appuie', 'ecritures', 'nous_passons', 'castel', 'capot', 'imitation', '4_pattes', 'approuve', 'oublia', 'accuser', 'flatte', 'amitié_négligée', 'harris', 'bombardement', 'escapade', 'ponton', 'i_want', 'pony', 'clem', 'paradise', 'dégouté', 'révélateur', 'sont_acceptés', 'saisissez', 'dégraissez', 'certains_moments', 'inconnues', 'destructrices', '42_ans', '58', 'seine', 'arpenter', 'énergies_renouvelables', 'énergies_fossiles', 'galas', 'moins_chère', 'compétente', 'nous_pourrons', 'argents', 'ai_envi', '1992', 'tuées', 'conséquent', 'followers', 'type_van', 'houten', 'mélange_chocolaté', 'tempérée', 'titanic', 'arf', 'travaillent', 'écritures', 'elles_gardent', 'traînent', 'rappellent', 'reproches', 'madone', 'mille_feux', 'roucou', 'devinrent', 'chocolat*', 'conservait', 'customisée', 'récupérait', 'porte_monnaie', 'emprisonnement', 'orchestré', 'tuerait', 'baisers_-', 'saturation', '-_agitez', 'avec_ménagement', '2_pamplemousses', 'faire_rougir', '2_kiwis', 'pelés', '4_eme', 'on_retiendra', 'fais_confiance', 'petit_garçon', 'paupiette', 'souler', 'température_ambianteessentiel', 'non_pelées', '-_manoeuvrer', 'beacoup', 'africaine', 'flavie', 'tems', 'lumiere', 'croate', '1,5_million', '1,8_milliard', 'établit', '128', 'cumulées', '17_millions', 'royaume-uni', '♪', 'poumons', 'éloigné', 'surf', 'spas', 'lourds', 'bento', 'dégaine', 'jin', 'fit_signe', 'gout_amer', 'redevient', 'héroïnes', 'parmi_lesquels', 'sha', 'xl', 'rappeurs', 'lloyd', 'banks', 'young', 'buck', 'te_demandent', 'tiennes', 'école_primaire', 'gruyére', 'autan', 'has_been', 'vaillance', 'p0ur', 'affut', 'peinent', 'hymne', 'aimons', 'métissage', 'présage', 'galères', 'salope', 'ferrais', 'horse', 'lignées', 'fauves', 'ai_pensé', 'merle', 'leon', 'mandat', 'laché', 'viiie', 'proxy', 'serpent', 'spirit', 'slovaque', 'internat', 'faillis', 'vénérable', \"hors-d_'\", 'elsa', 'avoir_recours', 'héréditaires', 'lena', 'mélangez_vigoureusement', '175_°c', 'réservez_-la', 'nappez_-les', \"s'_empiffrer\", 'tram', 'atroces', 'survivants', 'envoyés', 'juste_sortis', 'attaquait', 'subtil_mélange', 'moldu', 'commentant', 'téléphonie_mobile', 'agée', 'estivales', 'clignotant', 'pogne', 'mood', 'sauvetage', 'sonorités', 'casablanca', 'trouves', 'ne_collent', 'romy', 'malgrés', 'inaptitude', 'attentive', 'cava', 'nos_ennemis', 'ophélie', 'allan', 'faisan', 'reliées', 'rive', 'locomotive', 'voie_ferrée', 'exportation', 'gogos', 'brésilienne', 'billard', 'walibi', 'parcs', 'reparler', 'pleines_dents', 'trivial', 'embrassé', 'gueul', 'doués', 'touchait', 'mvp', 'ecw', 'échelles', 'poids_lourds', 'francaise', 'débrouille', 'everest', 'pendan', \"j'_ose\", 'déguiser', 'tapper', 'deçu', 'cream', 'pcq', 'cor', 'snap', 'ke_lon', 'coeur_tendre', 'écoulé', 'rares_exceptions', 'agences', 'mannequins', 'profils', 'salarié', 'débarrassés', 'eau_oxygénée', 'pes', 'bep', 'gêné', 'je_testerais', '6,5', 'butter', 'anciennement', 'piraté', 'maud', 'intello', 'accession', 'buteur', 'footballeur', 'algérien', 'épine', 'jesus', 'ya_eu', 'sucre.2', 'mécanos', 'vitesses', 'electro', 'conditionnée', 'plusieurs_générations', 'leaders', 'vigilance', 'puma', 'christophe_maé', 'neuilly', 'champagnes', 'bob_marley', 'amelie', 'menteurs', 'escompte', \"s'_empare\", 'spleen', 'écrivait', 'couleur_lie', 'macher', 'atténue', 'constante', 'colline', 'munissez_-vous', 'apprenez', 'coincé_entre', 'imaginés', 'deus', 'aeg', 'aver', 'meaux', 'spam', 'jour.', 'couleur_préférée', 'martha', 'je_laime', 'fast-food', 'possédez', '5000', 'travées', 'concoctée_par', 'psg', 'xbox', 'socialement', 'compo', 'craquage', 'clement', 'beaux_arts', 'dreams', 'fly', 'rainbow', 'roumain', 'fiorentina', '29_ans', 'ancien_club', 'chelsea', 'statistique', 'théorème', 'particule', 'oeil_nu', 'avancées', 'élevées', 'négatif', '12_décembre', 'strong', 'cette_image', 'fast_and', 'furious', 'malte', 'bien_mérité', 'ski_alpin', 'contacter', 'dehor', 'kit_kat', 'depression', 'éloignez', 'brûlera', 'accrochez', 'punaises', 'idylle', 'bras_dessous', 'srx', 'clean', 'bedo', 'pines', 'stylet', 'bicolore', 'respirations', 'marlène', 'avoit', 'extincteur', 'devan', 'auditorium', 'fertiles', 'aride', 'ici-bas', 'yeux_noirs', 'magie_noire', 'délivrer', 'td', 'viande_crue', 'gaspard', 'verbe_aimer', '46', 'pathologie', 'santé_cardiovasculaire', 'raffinée', 'theme', 'sunny', 'murmure', 'humer', '●_parce', 'a_redonné', 'bateaux', 'approchant', 'bougé', 'effondrée', 'planque', 'navettes', 'négociation', 'étonnants', 'ma_collection', 'uniformes', 'interprétations', 'pharaonique', 'très_doué', 'myope', 'fraises_tagada', 'médiocre', \"s'_appuyer\", 'petits_beurres', 'se_battent', 'ee', 'oreille_come', 'mercredi_soir', 'spécial_k', 'épiler', 'figés', 'remanger', 'cabinet', '17ème', 'comparativement', 'baby-foot', 'kome', 'fraise_tagada', 'but_étant', 'gros_calibres', 'frottez', 'forcez', 'qualifier', 'mignonnes', 'treize', 'tranquilement', 'oubliez_pas', 'réinsertion', 'milieu_carcéral', 'ans.', 'reproché', 'gab', 'perfecto', 'porsche', 'développa', 'routière', '15_piges', '21_septembre', 'dec', '19_décembre', 'pref', 'exercée', '10km', 'firme', 'marmottes', 'larguer', 'casimir', 'dev', 'ola', 'rythmique', 'dylan', 'joey', 'pearson', 'etait_tres', 'avais_jamais', 'se_désaltérer', 'kayak', 'bravoure', 'blessés', 'réelle_menace', 'accidents', 'cirques', 'athlètes', 'effectués', 'lanceur', 'déchu', 'etude', '1919', 'marcus', 'censée', 'rapatriement', 'dialectes', 'déboule', 'colonie', 'administrée', 'clame', 'prônant', 'marijuana', 'sacrement', 'impôt', 'hachés_finement', 'paranormal', 'fenetre', 'rubrique_«', 'onglet_«', 'gravés', 'peas', 'recopier', 'mmmh', 'eclairs', 'millefeuilles', 'malveillantes', 'romana', 'rails', 'connu_sous', 'das', 'respectable', 'crémier', 'emy', 'dynamiques', 'années_1980', 'san_francisco', 'area', 'finlandais', 'arrachent', 'nelson', 'piscine_intérieure', 'sexuelles', 'dégats', '63', 'sit', 'tu_détestes', 'solitaire', 'vénère', 'rade', 'envoies', 'etes_-vous', 'loterie', 'me_préparais', 'éternelle', 'infuser', 'bonne_mine', 'bronzage', 'exfoliante', 'anti-_rides', 'sanctifié', 'soumets', 'furtif', 'cartel', 'rêverie', 'me_convenait', 'intégrité', 'attendue', 'maisonnettes', 'cancale', 'arreté', 'rames', 'joanna', 'polie', 'ju', 'parapharmacie', 'rayon_bio', 'transit', 'environnantes', 'lancôme', 'escrime', 'brooks', 'hits', '☮', 'pingouin', \"m'_allonger\", 'mille-feuilles', 'ambidextre', 'craie', 'engager', 'manchester_city', 'liquidités', 'jamais_réussi', 'gt', 'capte', 'dangereusement', 'sublimé', 'continuité', '/_thé', 'carapace', 'polystyrène', 'clementine', 'moisie', 'ta_gueule', 'emportent', 'chevalerie', \"s'_engageait\", 'lointaine', 'soubrette', 'numériques', 'bitmap', 'sont_constituées', 'mii', 'mehdi', 'zac_efron', 'indiana_jones', '284', 'louvre', 'eglise', 'finissaient', 'pompidou', 'posaient', 'brulées', 'toutes_seules', 'jean-luc', 'oreillettes', 'appareils_photos', 'bloqué', 'trajets', 'tenaient', 'galilée', 'grincer', 'plié', 'réveils', 'béret', 'lavent', 'français_boivent', 'écu', 'fumés', 'surnommée', '24_mars', 'makeup', 'intéressée_par', 'psychologue', 'zébré', 'sarcastique', 'peut_paraitre', 'mes_péchés', 'cavale', 'butin', 'sergio_pérez', 'sauber', 'nico_rosberg', \"s'_élançait\", 'avant-dernière', 'ambiguïté', 'pronom', 'inaugurée', 'chrétienté', 'canoë', 'meeting', 'lotos', 'tarbes', 'telment', 'tu_laisses', 'navy', 'au-dehors', 'boulevard', 'mathématiques', 'se_prononce', 'tag', 'effraction', 'compare', 'deux-sèvres', 'gens_pensent', 'aucune_hésitation', 'airbag', 'historiens', 'païen', 'of_the', 'quad', 'égout', 'disparut', 'enterré', 'envol', 'faussée', 'malheurs', 'dissipe', 'gravée', 'pda', 'locataires', 'résident', 'glaires', 'vinyl', 'civils', 'croisent', 'fréquente', 'renault', 'occulte', 'convertir', 'comptables', 'secrétaires', 'partagent', 'rtt', 'ouvriers', 'engraisser', 'pompier', '[_69', 'débarquent', 'slt', 'tito', 'per', 'pese', 'comet', 'tare', '93', 'morsures', 'suporter', 'apollon', 'faut_savoir', 'timon', 'pietro_ferrero', 'alba', 'camus', 'jettera', 'pulco', 'fetes', 'pask', 'helena', 'déclarant', 'même_veine', 'crescendo', 'rythmiques', 'urbains', 'contradictions', 'évoluent', 'structurer', '5kg', 'amines', 'obéir', 'épouvantail', 'éloigne', 'noiret', 'cherchez', 'cessez', 'animalier', 'humidifié', 'tabasser', 'denver', 'planning', 'jetons', 'sont_glissés', 'morpion', 'aligner', 'colonnes', 'galets', 'one_tree', 'nagui', 'agatha_christie', 'calzone', 'biologie', 'bounty', 'nolwenn', 'smart', 'josh', 'jean-luc_delarue', 'coyote', 'cauet', 'c1', 'reno', 'rompre', 'célibat', 'conclure', 'motivée', 'priait', 'soutenait', 'meilleure_qualité', 'apportée', 'name', 'game', 'beaute', 'preferes', 'boissons_alcoolisées', 'enchaînant', 'victoires', 'auxquelles_viennent', 'bolton', '3-1', '“en', 'nettoyante', 'lumière_tamisée', 'sophia', 'portos', 'langue_maternelle', 'décerné', '1991', 'ordure', 'son_goku', 'maturités', 'chataigne', '180_grammes', \"s'_appelait\", 'recherche_médicale', 'dirigeantes', 'aïe', 'marquera', 'tribunes', \"s'_élancera\", 'prudence', 'plats_cuisinés', 'ils_contiennent', 'étuvée', 'peuvent_contenir', 'magnums', 'foll', 'deg', 'piece', 'caler', 'pendre', 'idiotes', 'michelle', 'elastique', 'mythologique', 'gourmette', 'minnie', 'vim', 'morose', 'silences', 'je_retiens', 'imprudence', 'antony', 'diabolo', 'espadrilles', 'orlando', 'bloom', 'ping', '4*', 'kent', 'bart', 'ton_boy', '4_étoiles', 'mercedes', 'rectifie', 'diet', 'contres', 'manaudou', 'taff', 'précurseur', 'soulèvement', 'ghettos', 'incontesté', 'émeutes', 'paternel', 'démantelé', 'escroc', 'nés', 'décès', 'grièvement', 'cols', 'musulman', 'jésuite', 'apportant', 'ptis', 'crèche', 'trèèès', 'raide_dingue', 'mystères', 'fertilité', 'libre_arbitre', 'individualisme', 'sénatrice', 'aurait_accepté', 'privilégiées', 'intouchable', 'lionel', 'saver', '4h30', 'daube', 'csa', 'daphné', 'fêtait', 'divinités', 'résonnent', '\\\\', '4€', 'loa', 'screen', 'fuel', 'signe_astro', 'fiat', 'rendez', 'gorges', 'interdisent', 'grossiers', 'désirent', 'tête-à-tête', 'dissuader', 'esclave', 'vassal', 'anvers', 'inflige', 'déposés', 'scellée', 'sait_-on', 'pouver', 'aimai', 'devrai', 'chake', 'reussite', 'transpire', 'mômes', 'réglés', '1500€', 'merdique', \"mcdonald_'\", 'arts_appliqués', 'penne', 'franchissant', 'notorious_big', 'tue_pac', 'propre_pistolet', 'conduisant', 'tu_oublies', 'veillent', 'filtres', 'vous_intéressent', 'outil_indispensable', 'diners', 'romantiques', 'incandescente', 'planquer', 'cables', 'banco', 'matières_premières', 'lucile', 'sommeille', 'conformité', 'illuminer', 'relancé', 'litron', 'étymologie', 'samouraï', 'xe_siècle', 'ordonnait', 'majeure_partie', 'empruntée', 'sceau_sacré', 'perrine', 'pls', 'expliquée', 'ces_termes', 'verité', 'plusieurs_tentatives', 'retrancher', 'maintes_fois', 'subissant', 'exécutés', 'adriana', 'ôtent', 'disparait', \"s'_enfuit\", 'mentalement', 'fonction_publique', 'grille_indiciaire', 'retrace', 'lights', 'revolution', 'constat', 'limpide', 'loccasion', 'médiation', 'au_détriment', 'brad_pitt', 'affleck', 'grêle', '7,5', 'jeux_olympique', 'abstenir', 'irritent', 'intestins', 'doom', 'tend_vers', 'sans_risquer', 'bizoux', 'hershey', 'board', 'descentes', 'accepterai', '[_♥', 'mal.', 'autres.', '♥_]', 'panique', 'se_débrouiller', 'délivrance', 'projecteurs', 'aux_abords', 'singapour', 'sammy', 'meilleur_moyen', 'défenseurs', '(_2-1', 'turquoises', 'baignade', 'hanté_par', 'côté_obscur', 'palpatine', 'sapeurs-pompiers', 'géants', '1re', 'déménagé', '13_janvier', 'figée', 'trompeuse', 'what_else', 'biento', 'extinction', 'massa', 'pole_position', 'hamilton', 'son_sillage', 'immobile', 'nero', 'dériver', 'paisiblement', 'th.5', 'protégeait', 'étendant', 'yamamoto', 'pages_suivantes', 'mo', 'jesper', 'diverses_techniques', 'convictions', 'démissionne', 'refusant', 'territorial', 'centre_équestre', 'ruinée', 'dépourvu', 'faisant_croire', 'supposé', 'road', 'eddie', 'malt', 'remèdes', 'forte_dose', 'nocif', 'médicinaux', 'filtrage', 'ustensile', 'momies', 'cessera', 'poumon', 'gastriques', 'onyx', 'fièvres', 'fards', 'saphir', 'répands', 'ardentes', 'protége', 'surabondance', 'humeurs', 'granit', 'degustation', 'deguster', 'domage', 'policière', 'petite_culotte', 'ces_mocassins', 'petites_dentelles', 'porte-jartelle', 'gros_nichon', 'répartissant', 'couche_uniforme', '1h_minimum', 'kumquats', 'evitez', 'tee', 'mixage', 'infime', 'oubliés', 'bein', 'intrigues', 'coups_portés', 'devenaient_plus', 'rythme_monstrueux', 'insoutenable', 'je_devenais', 'cauchemar_implacable', 'terrifiant', 'qui_agonisait', \"m'_exaspèrent\", 'portes_ouvertes', 'obligations', 'deviendront', 'vendetta', 'paf', 'dialogues', 'crevettes_roses', 'poularde', 'lottes', 'raie', 'jambons', 'précuits', 'shiitake', 'évaporation_complète', 'noilly', 'se_marier', 'bodegas', 'dispendieux', 'fèves_fraîches', 'ahhh', 'excellente_source', \"q_'\", 'malgache', 'aigri', 'infirme', 'dépressif', 'renvoyé', 'défait', 'prédomine', 'fonts', 'intérets', '24_h', 'concubine', 'concubinage', 'casier_judiciaire', 'passion_folle', 'lost', 'dr_house', 'heroes', 'magies', 'choisies', 'individuellement', 'débloquer', 'vaincus', 'font_office', 'nôtre', 'pensaient', 'trompent', '31_janvier', 'about', 'mignardise', 'émerveille', 'libérés', 'montrés', 'cachées', 'flandre', 'grèce_antique', 'conspiration', \"s'_emparent\", 'law', 'depuit', '`', 'déjà_goûté', 'recettes_faciles', 'fire', 'field', 'beautiful', 'vain', 'canadiens', 'ratées', 'travestir', 'cora', '*et', 'dialecte', 'amsterdam', 'normands', 'signent', 'sacha', 'fin_septembre', 'relance', 'satisfactions', 'adressé', 'bha', 'tri_sélectif', 'citoyen_lambda', 'régis', 'menage', 'pren', 'louve', 'ses_charmes', 'qcm', 'craies', 'cessent', 'extraits', 'punis', 'capricieux', 'vainqueurs', 'deep', 'intervenu', 'elan', 'béarnais', 'contractuellement', 'récompensant', 'accompli', 'constituant', 'facon', 'déplace', 'bitch', 'croche', 'dany', 'canette', 'tissus_tachés', 'pol', 'chauffeurs', 'juive', 'révisée', 'tramways', 'jante', 'sejour', 'cumule', 'rsa', 'allocation', 'allocations_familiales', 'handicapés', 'bourses', '398', '192', 'ressortissants', 'incitant', 'là-haut', 'nous_servons', 'pourrions', 'barrages', 'fleuves', '4-4', 'cao', 'liu', 'bei', 'kadhafi', 'mercenaires', 'différents_types', 'rats', 'pivot', 'défenses', 'adverses', 'athlétique', 'chéries', 'équité', 'conformément_aux', 'nous_reconnaissons', 'question_suivante', 'devons_-nous', 'certaine_manière', 'non_négligeable', 'celib', 'aphrodisiaques', 'robuste', 'sang-froid', 'arts_martiaux', 'sous-estimer', 'ses_adversaires', 'intelligence_artificielle', 'cas_extrêmes', 'forgée', 'alliage', 'illimitée', '-des', 'frustrations', 'sentimentales', 'has', 'brain', 'depose', '.faire', 'cervelas', 'concentrer', '000_exemplaires', 'emmenés', 'paramount', '87', 'suffit_amplement', 'monaco', '1950', 'société_générale', 'mangeuse', 'gertrude', 'ouragan', 'second_degré', 'poncho', 'ecossais', 'berlin', 'musicales', 'muse', 'propres_règles', 'meilleur_souvenir', 'cb', 'picture', 'chili_con', 'carne', 'animal_préféré', 'switch', 'sketches', 'neuf_mois', 'branchée', 'conforme', 'vos_publications', 'attrayantes', 'caron', 'génépi', 'mon_pseudo', 'zakât', 'ramadhân', 'sabots', 'west', 'coast', 'ana', 'divertissante', 'nocive', 'cures', 'génoise_nature', 'argentées', 'nommés', 'auxquels_viendront', 'basta', 'transforma', 'js', 'alger', 'déperdition', 'glissante', 'paradoxal', 'protection_contre', 'ont_aidé', 'invoquer', 'monarque', 'invocation', 'cardinaux', 'fougères', 'camp_présidentiel', 'opposants', 'maintient', 'petites_bulles', 'canif', 'espresso', 'mona', 'profiteurs', 'get_27', 'fraîche1', 'se_dégustent', 'regroupent', 'offensive', 'clinton', 'réforme', 'christopher', 'conseilla', 'limitant', 'nomma', 'inspecteur_général', 'enquêter_sur', 'primordiale', 'differente', 'default', 'malorie', 'trouées', 'partitions', 'bic', 'choupette', ')_.-le', 'bierre', \"val-d_'\", 'oise', 'ay', 'living', 'gelés', 'sweat', 'fitch', 'ipod_touch', 'paupière_mobile', 'faire_pétiller', 'oublierais', 'garenne', 'english', 'italiano', 'chanson_préférée', '7_milliards', 'participations', 'versées', 'collectivités_locales', 'amplifie', 'conforte', 'vatican', 'grades', 'universitaires', 'instituts', 'mars_2011', '.tu_es', '.toi', \".t_'\", 'rafale', 'pupille', 'veine', 'névrose', 'potence', 'transe', 'richard', 'disciplines', 'pratiquait', 'voltige', 'jambon-beurre', 'accordés', 'esr', 'pétillants', 'jc', 'petits_paniers', 'organza', 'sublimé_par', 'naissances', 'repartent', 'evenement', 'plexi', 'etiquette', 'druide', 'x2', 'tunique', 'jeune_pilote', 'trulli', 'qualifications', 'modique_somme', '100€', 'amabilité', 'jeûner', 'efforcez_-vous', 'gamelles', 'ses_caprices', 'espionnage', 'infiltration', 'symbiose', 'maya', 'moi._\"', 'glissés', 'gagnantes', 'guitar', 'away', 'aurait_voulu', 'branch', 'let', 'boi', 'appelles', 'penses_-tu', 'dansant', 'bien-aimé', '3*', 'bad', 'fléchettes', 'états_unis', 'lever_tôt', 'barca', 'monster', 'jla', '206', 'commençai', 'dificile', 'prépa', 'right', 'marchandises', 'atention', 'ne_manquerais', 'nova', 'mère-grand', 'petit_chaperon', 'chevillette', 'bobinette', 'moi.', 'tendait', 'bts', 'st_jean', 'malgre', 'entrevoir', \"s'_éloigne\", 'riviere', 'aussy', 'princeton', 'roc', 'xavier', 'dotées', 'épargnant', 'dépourvues', 'prototype', 'meringué', 'moquer', 'déliré', '94', 'autorisant', 'contourné', 'bugs', 'discutent', 'racontes', 'goûtera', 'faction', 'rei', 'ac_toi', 'grande_importance', 'scintillantes', 'sensibles', 'décrivent', 'défit', \"s'_arrêtera\", 'melody', 'réconfortants', 'barrage', 'se_réjouit', 'chef_cuisinier', 'pilées', 'seul_hic', 'exhiber', 'claqué', 'vigoureux', 'amplifier', 'noyée', 'bizar', 'jongle', 'congé', 'grèce', 'dream', 'children', 'where', 'not', 'by_the', 'grégory', 'finies', 'carlo', 'bolide', 'franklin', 'tools', 'tuileries', 'safari', 'camaïeu', 'joconde', 'climatisés', 'fournaise', 'deuxième_volet', 'nikos', 'pactole', 'regagner', 'remplacés_par', 'jouez', 'meurtrier', 'fnac', 'burkina', 'cara', 'dough', 'fudge', 'marbrée', 'garcia', 'almond', 'monkey', 'coffee', 'mint', 'chunk', 'préssée', 'kyo', 'beau_goss', 'aime_regarder', 'mes_souvenirs', 'gar', 'ajouta', 'étagères', 'ébranler', 'sans_faille', 'croyez_-vous', 'qualif', 'aldi', 'servaient', 'clore', 'échoué', 'radios', 'perpétuer', 'renouer', 'terribles', 'consécutive', 'a_remporté', 'diots', 'commençais', 'incertitudes', 'hachez_-le', \"t'_interrogent\", 'ibn', 'ad', 'boirait', 'hante', 'enfouie', 'cédé', 'dragon_ball', 'comptabiliser', '1946', 'giandujot', 'gianduja', 'légèrement_battu', 'deux-trois', 'banane_écrasée', 'pendant_20-25', '20-25_minutes', 'philippines', 'collez', 'classifier', 'gastro-', 'infaillible', 'festifs', 'essayons', 'enivrantes', 'mes_recherches', 'parution', 'ingrédient_essentiel', 'personne_indifférent', 'sans_culpabiliser', 'ma_fournée', 'recettes_salées', 'complications', 'super_chouette', 'dûs', 'isaïe', 'annoncée', 'enclin', 'milice', 'résolu', 'revendiquer', 'consistante', 'ont_répondu', 'sont_obligés', '4/4', 'élèvent', 'environ_1h', 'uen', 'rayon_frais', 'moussé', 'pavots', 'lien_direct', 'concrets', 'réalités', 'contrario', 'ses_pairs', 'déployer', 'cros', '130°c', 'projetait', 'cuisine_moléculaire', 'allergiques', 'giovanni', 'probant', 'basse_température', 'fragmentation', 'lactique', 'cabillaud_rôti', 'cheminement', 'temporairement', 'questionnement', 'supposons', 'produisent', 'hésitant', 'ciron', 'affublé', 'légitimes', 'nécessairement', 'socrate', 'cyniques', 'kant', 'xviiième_siècle', 'propre_entendement', 'confirmé', 'tee_shirt', 'précipité', 'atterrir', 'lubéron', 'aoste', 'médicis', 'connue_sous', 'lourmarin', 'albert_camus', 'décemment', 'humblement', 'conditions_?', 'pita', 'chocos', 'emplacements', 'fuchsia', 'stupeur', 'lina', 'beaucoup_apprécié', 'va-vite', 'kaoka', 'remédie', \"j'_imaginais\", '240_°c', 'récipient_rempli', 'tonka', 'meringuées', 'succulentes', 'laissée_tenter', 'telle_quelle', 'appuyés', 'artillerie', 'remarquablement', 'roger', 'annales', 'deux_soeurs', 'aidées', 'nee', 'verite', 'dispositions', 'intéret', 'reproduise', 'kamut', 'pâtes_cuites', '(_th7', 'paupiettes', 'trognon', 't110', 'francine', 'presse_écrite', 'être_utilisé', 'humiliation', 'certains_cas', 'sadiques', 'temporaire', 'négociées', 'érotique', 'ordre_établi', 'coeur_fondant', 'amal', 'supposer', 'négatives', 'a4', 'a3', 'linéaire', 'divergences', 'symétrie', 'ogm', 'cannibales', 'combinés', 'inverser', 'savon_liquide', 'requiert', 'solvants', 'origine_naturelle', 'aromazone', 'extraites', 'arnica', 'calendula', 'camélia', 'extraits_végétaux', 'actifs_naturels', 'q10', 'provitamine', 'conservateurs', 'sans_danger', 'exceptions', 'répondant', \"j'_eus\", 'singulières', 'isla', 'montpellier', 'amuse-gueules', 'certains_voyagent', '«_ressentir', 'qui_croisent', 'programmer', 'snaps', 'mentionnés', 'abordables', 'cet_effet', 'énergisant', 'tangerine', 'purifiantes', 'petit_grain', 'surgras', 'cacao-', 'consume', 'deux_facteurs', 'nous_venons', 'encoches', 'chefnini', 'douceurs_sucrées', 'tapant', 'diagonal', 'enroulez', 'béatrice', 'sont_disposés', 'ils_sortent', 'saignante', 'perpétré', 'appuyant_sur', 'gâchette', 'député', 'briochin', 'tièdir', '3°', 'étirant', '6°', 'princess', 'sont_réunis', 'imitations', 'perceuse', 'intrusion', 'scintillante', 'misé_sur', 'reduction', 'contrôlable', 'zombies', 'hack', 'gemmes', 'crown', 'tool', 'approximative', 'teintée', 'ancien_numéro', '3-', 'soulevez', 'décembre_dernier', 'nous_voulions', 'refaits', 'picasso', '1956', 'admise', 'retravailler', 'documentaire', '1954', 'surgir', 'vraisemblable', 'va-et-vient', \"s'_approcher\", 'volontier', 'notification', 'requêtes', '1500', 'justifiant', 'procès_verbal', 'annexé', 'empêchait', 'vraiment_génial', 'innovante', 'yves', 'sécateur', 'trois_mouvements', \"j'_envisageais\", 'moines', 'caipirinha', 'rail', 'roulage', 'apparente', 'combustible_nucléaire', 'ex-premier_ministre', 'sont_entrés', 'fukushima-daiichi', 'prendraient', 'quarante_ans', 'plusieurs_centaines', 'yens', 'nikkei', 'transporteur', 'imprégnation', 'mainte', 'citadelle', 'croisée', 'petites_meringues', 'brindilles', 'menthes', 'signifiant_«', 'torréfaction', 'démocratisation', 'révolution_industrielle', 'bienfaisant', 'chocolatière', 'fabriques', 'couramment', 'catalogne', 'pyrénées-orientales', '1815', 'van_houten', 'cailler', 'suchard', '1824', '1828', 'chocolateries', 'cacao_maigre', 'relatives', '1830', '1856', '1870', 'émile', 'menier', 'seine-et-marne', '1875', '1879', 'consistait', 'broyeur', 'années_1920', 'barres_chocolatées', '30_grammes', 'flambez', 'couleur_claire', 'impérativement', '86_%', 'péninsule', 'portuaire', 'aménagement_intérieur', 'utilisables', 'schtroumpf', 'lush', 'retenter_sa', 'répété', 'éducative', 'opposant', 'périphérie', 'délaissée', 'guardian', 'parlementaire', 'surchargés', 'ancienneté', 'sahel', 'paieront', 'notre_catalogue', 'modérateur', 'ambitionne', 'discernement', 'pondération', 'découlent', 'environnementales', 'répercussions', 'officiant', 'égarement', 'désintéressement', 'in_fine', 'escomptés', 'contraires', 'curly', 'ta_voix', '-au', 'muscade_râpée', 'citron_vert1', '-verser', 'essuie-tout', 'grands_enjeux', 'juice', 'débarquant', 'pluton', 'se_cachait', 'anémone', 'luca', \"m'_empresse\", 'remarquables', 'truie', 'lucifer', 'faire_parvenir', 'direz', 'prédire', 'rando', 'apuis', 'chiots', 'socialiste', \"z_'\", 'héréditaire', 'jus_sanguinis', 'nationalité', 'détermination', 'élections', 'oppose', '270g', 'flute', 'prealablement', '1litre', 'coquette', 'yeux_rivés', 'théoriciens', 'designer', 'casseurs', 'aérosol', 'antiadhésif', 'équivalents', 'syntaxe', 'anton', 'plomberie', 'eaux_usées', 'h2o', 'difficultés', 'travailleurs', 'plombiers', 'value', 'envisagez', 'when', 'ahurissant', 'broches', 'pointues', 'deux_extrémités', 'vaillant', 'tragédie', 'purement', 'irrémédiablement', 'protagoniste', 'tortueux', 'hérésie', 'reynaud', 'tentations', 'sensuelles', 'carême', 'enchantement', 'décaféiné', 'jolis_petits', 'nutritives', 'miracles', 'marcher_pieds', 'nus', 'soirées_entre', 'aérant', 'svp_merci', 'pourriez_-vous', 'myriam', 'specialiste', '(_sic', 'autobiographique', 'émouvante', 'européennes', '18h30', 'conférence', 'gaulois', 'parenthèses', 'vos_paroles', 'équivalente', 'braisé', 'empare', 'sultan', 'tiendraient', 'cinq_cents', 'amusés', 'votre_tenue', 'sublimant', 'ses_proches', \"pep_'\", 'se_rapprochait', 'me_dépêche', 'performants', 'modération', 'épaulé_par', 'sono', 'danseurs', 'grotesque', 'conformes', 'voudrait_dire', 'égaux', 'surdimensionné', 'excentricité', 'grise_mine', 'sherry', 'sentimental', \"s'_ajoutent\", 'relis', 'campement', 'randonneurs', 'trail', 'jacuzzi', 'fantastiques', '°°', 'barrés', 'poulet_découpé', 'sautés', 'craquantes', 'fouetter_énergiquement', 'souviens', 'ambulance', 'frappée', 'aux_enfers', 'trop_lourd', 'sans_craindre', 'consultez', 'progressives', '45-50', 'mini-cakes', 'préalablement_ramolli', 'embaume', 'emporte_pièces', 'faites_-en', 'jolie_boite', 'mi-cuit', 'tranchez', 'bios', 'gross', 'enfants_sages', '1944', 'antérieurs', 'progressions', 'perçu', 'branchements', 'divisant', 'certitudes', 'placés', 'pédophiles', 'salutaires', 'déshabiller', 'tomber_malade', 'dépêche', 'négro', 'vous_fassiez', 'démonte', 'radiateurs', 'foiré', 'investie', 'objectivement', 'lui_redonner', 'astre', 'retouches', 'peut_provoquer', 'matrice', 'ranimer', 'optimus', 'réparée', 'formuler', 'disaient_-ils', 'hosts', 'instructions_ci-dessous', 'environ_10-15', 'translucides', 'fondantes', 'dosettes', 'lautrec', '240g', 'je_trouverai', 'blueberry', 'espacer', '115_g', 'conscients', 'caroube', 'débutent', 'secteur', 'alarmes', '500_euros', 'fonctionnaires', 'traumatisme', 'surmontée', 'fève_tonka', 'sommier', 'corinthe', 'exploitation_familiale', 'indéniablement', 'je_prenais', 'accommode', 'sciemment', 'raffolait', 'sauce_brune', \"s'_envoler\", 'mordant', 'qualifiés', 'espadon', 'élimine', 'correspondant', 'indicateurs', 'exp', 'induit', 'produite', 'corrélation', 'soude_caustique', 'suivants_:', 'quantité_souhaitée', 'émulsionnant', 'th_8', 'bords_hauts', 'gratin_beurré', 'finement_émincé', 'millilitres', 'blancs_commencent', 'traversant', 'continues', 'ficelé', 'respectées', 'réservait', 'aro', 'mensuellement', 'aises', 'biens_matériels', 'onglet', 'ta_souris', 'parvenez', 'affranchir', 'corser', 'ci-contre', 'nous_contacter', 'nous_marchons', 'année_consécutive', 'arlette', 'sont_allés', 'charmes', 'polar', 'lisle', 'tarn', 'quelques_précisions', 'verdun', 'affluent', 'bloquent', 'dégoté', 'aficionados', 'mamies', 'accrochés', 'torturé', 'inconscience', 'départs', 'gage', 'jeune_garçon', 'manges', 'boyaux', 'grammage', 'pack', 'illustrée', 'enregistrée', 'comptines', 'deux_tiers', 'couleur_souhaitée', '2.dans', '1.préchauffez', 'légèrement_caraméliser', 'pommes_râpées', 'casanova', 'avant-hier', 'fourniture', 'jours_suivants', 'couleur_brune', 'cgt', 'modificateurs', '50_000', 'cuistot', '300_000', 'primes', 'badigeonne', '2_faces', 'ta_copine', 'rigola', 'sirotent', 'rentré_chez', 'passons_maintenant', 'diaporama', 'diaporamas', 'ko', '1_cuillere', 'gros_cubes', 'cinétique', 'leader_price', 'démographie', 'retraites', 'contribuer', 'tumeurs', 'nordique', 'atours', 'épurée', 'susan', 'diadème', 'sellerie', 'cape', 'herse', 'tirait', 'concentrer_sur', \"t'_engages\", 'salutations', 'brother', 'revivre', 'abordés', 'luminosité', 'pétale', 'hydro', 'tint', 'façon_uniforme', 'foundation', 'petites_touches', 'waterproof', 'sophistiquée', 'esquimau', 'sanctuaire', 'évocations', 'endroits_où', 'saisis', 'burette', 'minutieusement', 'rhumatismes', 'gnome', 'cet_arbre', 'babines', 'suçant', 'extrèmement', 'battait', 'indian', 'œufs_brouillés', 'improviser', 'nombreux_bienfaits', 'répétez', 'tartre', 'plaque_dentaire', 'diane', 'complex', 'sous_réserve', 'sifflet', 'projetées', 'iop', 'snoopy', 'pains_perdus', 'rooibos', 'police_nationale', 'tragédies', 'explore', 'avortement', 'tombe_amoureux', 'délaissant', 'faut_absolument', 'eu_recours', 'rénovation_&', 'isolation', 'fournissant', 'rôtissoire', 'amalgamée', 'encas', 'sans_adjonction', 'arrosée', 'perdreau', 'canard_sauvage', 'viande_maigre', 'belette', 'lécha', 'y_adjoindre', 'délirante', 'débordante', 'charmés', '1995', 'recueils', 'perrault', 'exporte', 'hésita', 'parmi_eux', 'ordinateurs', 'connectée', 'gaara', \"s'_infiltrer\", 'akatsuki', 'lambert', 'fronts', 'taule', 'aurait_permis', 'champêtres', 'grandeur', 'guerrière', 'regardera', 'pantin', 'sans_fil', 'effondré', 'dop', 'nous_pensons', 'désespérément', 'allonge', 'cordial', 'fédéraux', '1_ère', 'très_appréciable', 'faces', '53', 'supplément', 'partages', 'superbes_photos', 'raki', 'distillant', 'ceylan', 'produite_par', 'decida', 'espéré', 'cinéma_français', '13_novembre', 'précautionneusement', 'leurs_capacités', 'déchéance', 'questionnements', 'bonnes_adresses', 'eaux_gazeuses', 'aromatisées', 'adhésif', 'commise', 'rendre_malade', 'stephanie', 'laurence', 'falls', 'tende', 'moro', 'forges', 'samouraïs', 'sont_produites', 'brulée', 'q3', 'décroche', 'fernando', 'inceste', 'pas_nécessairement', '1790', '1795', 'dépêchez_-vous', 'sont_alignées', 'techniques_utilisées', 'grandes_chances', 'boisson_pétillante', 'lait_démaquillant', 'acérola', 'grillons', 'blattes', 'weasley', 'trempait', 'signalée', 'rapport_annuel', 'feuillages', 'percuter', '23h30', 'frêle', 'engagea', 'découvris', 'eh_bah', 'tout-puissant', '50-60', 'mélanger_vigoureusement', 'levy', 'impassible', 'prosecco', 'essentiellement_concentrée', 'villeneuve', 'plongés', 'cérémonie_religieuse', 'animés', 'femelles', 'renseignement', 'leurs_vies', 'perle_rare', 'animaux_sauvages', 'accrocheur', 'fleurons', 'katherine', 'terrains', 'systems', 'arrangée', 'vous_passiez', '[_vous', 'électrifiée', 'générateur', 'aux_alentours', 'cueillies', 'voue', 'envier', 'régénérante', 'doit_obligatoirement', 'validez', 'lactée', 'tradition_familiale', \"t'_aimeront\", 'quoique_tu', 'cela_arrivera', 'vérité_telle', 'vois._\"', 'cafeteria', 'amuse-gueule', 'sournoise', 'plaquer', 'rapprochés', 'burent', 'encadrent', 'dès_demain', 'libre_cours', 'faire_blondir', 'pain_viennois', 'parlez_-en', 'restos', 'faire_pardonner', 'jeunes_enfants', 'soap', 'prend_soin', 'préservant', '91', 'samir', 'nasri', 'omet', 'allumée', 'bouillis', '26_mai', 'quel_bonheur', 'bradley', 'fassions', 'supplier', 'glory', 'malo', 'possèdent', 'se_suicider', 'smartphone', 'qr_code', 'accueillante', 'arrangeant', 'rentrant_chez', 'siroté', 'ne_mangera', '“je', 'agis', 'immangeable', 'surprit', 'déambuler', \"s'_écria\", 'calculatrice', 'sèchement', 'clim', 'premières_places', 'déloger', 'stoppé', 'guidant', 'faire_bouger', 'vingt-cinq_ans', 'enroule', 'sculptés', 'assurez_-vous', 'voudriez', 'désinformation', 'zack', 'oeufs_montés', 'taverne', 'thunes', 'amiens', 'nantais', 'rennais', 'havre', 'dreux', 'mulhouse', '335', '18/20', 'fut_obligé', 'remédier', 'royaumes', 'bonnie', 'collantes', 'laque', 'calimero', 'démarré', 'voulait_dire', 'cuilleres', 'blan', 'beur', 'transpercer', 'faisant_glisser', 'part_entière', 'compétitions_sportives', 'performante', 'notable', 'maquette', 'terrace', 'protecteurs', 'restaurateurs', 'manchester', 'raffinage', 'anhydride_carbonique', 'recouvrée', 'matières_organiques', 'retirées', 'râpant', 'bonnes_odeurs', 'désintéressée', 'sourcil', 'tremblante', 'retenait', 'torrents', 'opportunités', 'sets', 'dégoût', 'résistantes', 'intelligentes', '.un', 'se_retrouvèrent', 'ont_subi', 'téléchargeable', 'sax', 'lavée', 'se_déroulait', 'costa', 'orfèvrerie', 'foil', 'heidi', 'haricot_vert', 'rosbeef', 'game_of', 'thrones', 'allie', 'meg', 'blanche-neige', 'monde_connaît', 'empoisonnement', 'assimilant', 'couleur_beige', 'flatterie', 'dukan', 'strictes', '0.5', 'éviers', 'eau_savonneuse', 'antioxydant', 'gélules', 'sont_capturés', 'manière_égale', 'bonnes_bouteilles', 'nouvel_échec', 'steaks_hachés', 'webmaster', 'notre_annuaire', '---', 'candice', 'supposent', 'nouvelle_fonctionnalité', 'voir_apparaître', 'bete', 'imposant', 'assiete', 'm.pokora', 'kiffé', '+5', 'antioxydants', 'nos_grands-mères', 'conservées', '80°', 'actu', 'margarine_végétale', 'saturée', 'émulsifiants', 'élevages', 'émergence', 'aux_antibiotiques', 'faufiler', 'attendiez', 'volcanique', 'étienne', 'transvase', 'machination', 'retombe', 'renflouer', 's3', 'plein_hiver', '3kg', 'rouleau_compresseur', 'recherchant', 'bulot', 'aimepas', 'yoyo', 'factice', '.plus', 'informatiques', 'croître', 'hunger_games', 'fiscale', 'etats_américains', 'ont_augmenté', 'années_1990', 'bla-bla', 'sd', 'adhésion', 'tournure', 'prendre_conscience', 'ravages', 'adieux', 'kobe', 'téléchargeables', 'durée_limitée', 'traduits', 'gn', 'simplisme', 'id', 'willem', 'accumulé', 'scotché', 'dénommé', 'enseigner', 'postes', 'mica', 'compresser', 'nous_mettrons', 'bordelaise', 'alléchantes', 'allumage', 'portions_individuelles', 'oblique', 'chinois_étamine', 'kings', 'très_costaud', 'suivants', 'sont_parfaits', 'canneberge', 'arriverai', \"n'_oubliant\", 'nombreux_arbres', 'petite_gorgée', '6-7_)', 'daurades', 'tahina', 'version_simplifiée', 'couscoussier', 'ajoutent', 'détache', 'détacher', 'aérer', 'chaque_convive', 'rehausser', 'saucier', '¤', 'débouchent', '9h30', 'eur', 'access', 'etudiants', '11ème', 'respectez', 'apr', '+1', 'refermant', 'traînaient', 'sauront', 'hv', 'délicates', 'poudrées', 'very', 'osent', 'gênent', 'todd', 'tim', 'drake', 'permets', 'catch', 'kpop', 'lewis', \"j'_ignorais\", 'analysé', 'descripteurs', 'sensoriels', 'nous_achetons', 'matériels', 'materiels', '&_²', 'élégante', 'quatre_chaises', 'cloner', 'allongés', 'assistante', 'retournèrent', 'séducteur', 'bonheure', 'couzin', \"n'_ayons\", 'détenant', 'interphone', 'porche', 'délinquant', 'prononcés', 'thune', 'exploité', 'se_défouler', 'v0us', 'secrete', 'aura_plu', '70_grammes', 'proposera', 'likez', 'se_détachent', 'tenace', 'comprise', 'mes_valises', \"m'_installa\", 'navré', 'dents_blanches', 'trempez_-y', 'clause', 'avidement', 'shrek', 'faits_divers', 'démarches_administratives', 'minières', 'investisseurs', 'miniers', 'accusés', 'devront_verser', '50_millions', 'ar', 'imminent', 'retrouverait', 'dévorée', 'berges', 'corrompus', 'réputé', 'nouveaux_arrivants', 'judith', 'absents', 'croisés', 'se_rétracter', 'frappées', 'oignons_hachés', 'préservent', 'mentholé', 'infuse', 'rochelle', 'éme', 'chiper', 'entretemps', 'entent', 'manuscrite', 'packs', 'no-', 'step', 'acceptée', 'netvibes', 'informations_pratiques', 'didactique', 'intéressent', 'réflexions', 'approchaient', 'annexes', 'vinyle', 'produit_nettoyant', 'bactéricide', 'adressant', 'hotmail', 'brouillons', 'dog', 'éveillé', 'revigorant', 'latéralement', 'tachée', 'voute', 'je_vivais', 'ressentais', 'longuement_hésité', 'gaïa', 'berner', 'mano', 'circus', 'énervement', 'garer', 'riceys', 'jus_multifruits', 'merry', 'floc', 'angélus', 'saint_emilion', 'léon', 'démasquer', 'rythmée', 'catastrophes_naturelles', 'stratège', 'terminés', 'expérimentations', 'caraïbes', 'soudan', 'aurélia', 'rousses', 'multijoueur', 'suffiront', 'aparté', 'refile', 'noisettes_fraiches', 'astringence', 'gouleyant', 'sermon', 'bott', \"s'_ouvrit\", 'bougeait', 'pénétrant', 'rajoutera', 'retarder', 'propos_désobligeants', 'retirés', 'chèque', 'mitrailleuse', 'marais', '14_avril', 'attribution', 'phalanges', 'hue', 'orgeat', 'girly', 'hormones', 'gum', 'warner', 'reconnaissent', 'herbivores', 'rudy', 'retournons', 'feux_rouges', 'coupent', 'bouchés', 'petits_cercles', 'tires', 'frise', 'faire_abstraction', 'chaotique', 'avais_promis', 'convention', 'aly', '[_68', 'nami', 'clique_droit', 'discriminations', '1cl', 'flaques', 'animes', 'fourneaux', 'décibels', 'glorifier', 'cheveux_ternes', 'commes', 'indéterminée', 'rance', 'tout_bonnement', 'disque_dur', 'vrille', 'fusible', 'hala', 'inspire', 'purple', 'dépouille', 'affinée', 'avarié', 'crayon_noir', 'accentué', 'débarqués', 'dragée', 'on_remarquera', 'réputée', 'doter', 'racailles', \"j'aime\", 'cauchemars', 'artères', 'intelligemment', 'martyr', 'grandes_lignes', 'sora', 'pouvoirs_magiques', 'faillite', 'aucun_soucis', 'laissiez', 'millieu', 'flasques', 'brighton', '1971', 'se_contentent', 'folk', 'acoustique', 'deluxe', 'chasseur', 'conformisme', 'ramblas', 'fascinant', 'corte', 'ingles', 'tricycle', 'her', 'optique', 'retournera', 'lyonnais', 'crapauds', 'mitaines', 'laisse_deviner', 'stella', 'ash', 'planqué', 'manifesté', 'barré', 'répartit', 'achevée', 'crêpière', 'réclamée', 'bornes', 'nil', 'scribe', 'créances', 'crottes', 'expulser', 'démente', 'langouste', 'impossibles', 'secoué', 'manuscrit', 'originel', 'fiente', 'mêlerez', 'fourmis', 'pilez', 'vos_convives', 'contents', 'palace', 'docteurs', 'repoussa', 'se_rendirent', 'sith', 'bâtir', 'remake', 'île_déserte', 'aurait_aimé', 'biologiste', 'comédie_musicale', 'pâteux', 'lésions', 'très_déçue', 'je_continuerai', 'gerald', '18h', 'ça_coûte', 'fugace', 'zz', 'traversait', 'téléphonez', 'phoque', 'chlore', 'pieces', 'je_teste', 'asphalte', 'fuyant', 'taf', 'elle_dispose', 'arg', 'ses_ardeurs', 'demanderont', 'coupe-faim', 'système_digestif', 'canalisation', 'canalisations', 'doué', 'passerait', 'scalpel', 'greffer', 'nobles', 'aisée', 'maude', 'pendue', 'bistro', 'cal', 'pécher', 'chapelet', 'partagerai', 'campus', 'km', 'sant', 'tombeaux', '*une', 'proteger', 'piétons', 'sautant', 'playstation', 'bug', 'martina', 'j_espere', 'faiblesses', 'harem', 'se_contentait', 'salua', 'recouvrer', 'amélioré', 'gérante', 'rafraichir', 'contemplation', 'te_promets', 'tumeur', 'revois', 'partagés', 'kaffir', '☼', 'icône', 'leds', 'twin', 'alimenté', 'usb', 'me_servais', 'corbières', 'se_procurer', 'cellier', 'bouleverser', 'nolan', 'contemple', 'dépressive', 'morbide', 'détestable', 'trompée', 'ermite', 'été_déçue', 'retardée', 'infantile', 'emprisonnée', 'effrayante', 'dramatique', 'photographiée', 'décevante', 'frisée', 'hash', 'nostalgique', 'euphorique', 'répétée', 'copiée', 'voyeurisme', 'protestante', 'athée', 'menacée', 'défendue', 'cuisinait', 'mascotte', 'principe_fondamental', 'fantaisiste', 'cobra', 'mulet', 'redoute', 'recrue', 'chameau', 'batteries', 'crocodile', 'mangeur', 'ses_congénères', 'religieusement', 'sursaut', 'levi', 'cox', 'déj', 'brunette', 'redis', 'ces_memes', 'synonymes', 'étonnement', 'skipper', 'aura_fallu', 'trente-trois', 'favorables', 'respectif', 'entités', 'amenées', 'bubble', 'distinguait', 'institut_pasteur', 'raviver', 'rincage', 'bye_bye', 'jutsu', 'téléporter', 'pecher', \"j'_essayerais\", 'irréguliers', 'yosemite', 'valley', 'las_vegas', 'caesar', 'motel', 'filent', 'mt', 'indifféremment', 'menacé', '.3', \"m'_aideront\", 'roulée', 'mon_fiancé', 'défoncer', 'calmé', '2.000', 'îles_flottantes', 'christina', 'carla', 'effectif', 'rencontrent', 'démo', '.c', 'yummy', 'croirait', 'pakistanais', 'adulé', 'trahisons', 'oeufs2', 'ramollisse', 'sableuse', 'gâteau_breton', 'tassé', 'pliable', 'opérationnelles', \"s'_extirper\", 'ladite', 'refermée', \"m'_excuser\", 'center', 'ecrasé', 'monteur', '1889', 'fixes', 'bricoleur', 'nettoyeur', 'haute_pression', '.en_effet', 'nombreuses_reprises', 'entièrement_équipée', 'extravagant', 'suspendues', 'offenses', 'plaques_chauffantes', 'dosages', 'provocateur', 'marussia', '15h', '17_h', 'karaté', 'deuxième_guerre', 'petit_dèj', 'gerbes', 'étincelles', 'noah', 'myrtilles_fraîches', 'gouda', 'hollande', 'bicentenaire', 'waterloo', 'rouvrir', 'backing', 'philips', 'équilibre_parfait', 'poulet_grillé', 'faites_griller', '300_gr', 'beurre_ramoli', 'raccrocha', 'haut_parleur', 'adobe', 'illustrator', 'adobe_photoshop', 'photoshop', 'element', 'mate', 'wikipedia', 'léonie', 'twingo', 'goinfre', 'biggie', 'lil_cease', 'affirment', \"biggie_n'\", 'apparue', 'humbrol', 'rendre_jaloux', 'démonter', 'cubi', 'résulta', 'politique_étrangère', 'contrer', 'hillary_clinton', 'partageais', '16_novembre', 'cet_exercice', 'sculpte', 'décapant', 'tu_meurs', 'clics', 'hero', 'felix', 'noyés', 'dernière_gorgée', 'possesseurs', 'fendu', 'amandes_torréfiées', 'bp', 'timbré', 'spécifications', 'fréquence', 'rédigez', 'fasses', 'esthéticienne', 'déluge', 'biographies', 'choisie_parmi', 'inconfortable', 'épilation', 'considérée_comme', 'iconique', 'emplie', 'attaqué', 'riposter', 'tatie', 'parme', 'préparez_-vous', 'levre', 'vous_arrivez', 'souterraine', 'chauve-souris', 'nous_présentons', 'ça_repart', 'facette', 'février_2012', 'appuyez_sur', 'arrive_parfois', 'taïwanais', 'bonnes_raisons', 'inversion', 'vêtements_serrés', 'endroits_hauts', 'se_connecte', 'sulfureuse', 'o_o', 'pas_exagérer', 'ètre', 'excuser', 'dorothée', 'richie', 'garnit', 'ai_laissé', 'celles_ci', 'offertes', 'quelques_dizaines', 'suspendus', 'plafonnier', 'couleurs_vives', 'manchons', 'leurs_propriétés', 'bowl_cake', 'écrémé', 'familiariser_avec', 'miel1', 'variez', 'aliment_riche', 'énergie_nécessaire', 'incluez', 'tâches_ménagères', 'boys_band', 'antigel', 'krusty', 'soucoupes', 'ont_bu', 'coupe-coupe', 'rassuré', 'économisé', 'lucky', 'strike', 'cambriolage', 'escaladé', 'caméras', 'squatté', 'pornos', 'denrées_alimentaires', 'bougies_parfumées', 'pop_art', 'dali', 'representer', 'philosophes', 'mordus', 'embellit', 'gâteaux_secs', 'rajoutent', 'rivoli', 'pointés', 'finira_jamais', 'arraché', 'appartenait', 'ancien_propriétaire', '.je_vais', 'prédécesseur', 'cours_duquel', 'marine_nationale', 'moyens_matériels', 'haies', 'affût', 'bonn', 'levait', 'fêter_dignement', 'interrompre', 'commandées', 'grimpa', 'privilégiée', 'extensible', 'prisées', 'transitent', 'insouciante', 'portière', 'argentique', 'réfugiée', 'pantoufles', 'tournant_autour', 'rendez_compte', 'persuadé', 'crampe', 'vous_rendrez', 'laxatif', 'excitants', 'puzzles', 'se_réfugie', 'décontracté', '600_grammes', 'afflux', 'réduira', 'agression', 'flottes', 'iran', 'vont_-elles', 'ping-pong', 'va_exploser', 'aménager', 'guide_touristique', 'projeter', 'freres', 'peace_and', 'scan', 'sami', 'reconverti', 'arrière_gauche', 'lévitation', 'canari', 'perla', 'ramenés', 'acceptait', 'remord', 'reliée', 'converse', 'ouvris', 'goutté', 'cancérigènes', 'optez_plutôt', 'écorces', 'insolite', 'illisible', 'pourrait_-elle', '26_octobre', 'amenant', 'locataire', \"s'_engageaient\", 'envahit', 'bon_ok', 'ils_possèdent', 'reçoivent', \"t'_aimais\", 'luther', 'dressés', 'éducation_nationale', 'medecine', 'exponentielle', 'elvis', 'mick', 'amaury', 'incantation', 'druides', 'pharmaciens', 'merlin', 'pourparlers', 'planifié', 'bouche_pleine', '10h30', 'ses_descendants', 'héritiers', 'grâces', 'ponctuée', 'prêter_attention', 'ses_habits', 'préoccupé', 'purification', 'chuck', 'beckham', 'ndlr_)', 'surfaces', 'subtiles', 'dam', 'rallier', 'pont_entre', 'diversifiée', 'pinto', 'finance', 'effectué', 'vînt', 'taudis', 'ignobles', 'se_dépêcher', 'tic', 'sexiste', 'badges', 'ils_choisissent', 'maitres', 'taiwan', 'diverses_activités', 'commerciales', 'conviendra', 'chicon', 'rongeurs', 'fournira', 'écart_entre', 'teignes', 'ruches', 'rencontrerez', 'améliorez', 'avancez', 'récupérez', 'faire_exploser', 'caserne', 'mini-pizzas', 'raclé', 'fréquentée', 'thierry_mugler', 'oréal', 'lovely', 'games', '7ème', 'arrière-plan', 'zazie', 'cet_égard', '“il', 'pénétré', 'vestibule', 'heidegger', 'primordial', 'créas', '₪', '48_h', 'annule', 'fitou', 'je_commencerai', 'réparti', 'leurs_maîtres', 'boards', 'disposées', 'lotion', 'renvois', '6_avril', '4ans', 'année_scolaire', 'resemble', 'croie', 'ttes', 'aucun_prétexte', 'mâchoires', 'arrondie', 'charnue', 'calcaires', 'osseux', 'implantées', 'odorante', 'cède', 'pend', 'ils_vivent', 'main_levée', 'défilés', 'twist', 'mercredis', 'hors_pair', 'périodicité', 'porridge', 'vocations', 'aéronautique', 'constructeurs', 'air_france', 'gregory', 'manœuvrer', 'mouler', '.cet', 'ingredient', 'volante', 'x-men', 'allaitantes', 'vétérinaires', 'gargantuesque', 'cercueils', 'donnes', 'réussira', 'glacière', 'correcteur_orthographique', 'multilingue', 'habillez', 'gou', 'plon', 'second_disque', 'obscure', 'hanter', 'islande', 'peuplé', 'forteresses', 'stoppe', 'miley_cyrus', 'staline', 'néerlandaise', 'secouée', 'glorifie', 'tel.', 'annonça', 'collées', 'raplapla', 'methode', '210°_c', 'hmmm', 'syndrome', 'glissement', 'bonde', 'inondé', 'cette_fabuleuse', 'soignent', 'partirai', 'emportant', 'cette_heure-ci', 'sommes_-nous', 'maléfiques', '(_therm', '180°c.2', 'notant', 'universelle', 'squats', 'raffermit', 'articulations', 'vernies', 'abécédaire', 'aek', 'éternelles', 'pils', 'dion', 'nimporte', 'del_rey', 'dirigé_par', 'mod', 'acceptés', 'se_chargera', 'tentera', 'libère', 'traversez', 'gommages', 'paddock', 'liseré', 'charbon_végétal', 'rabbit', 'manifs', 'arriveront', 'consigne', 'là-dessus', 'zombie', 'dévoilé', 'buffer', 'produisaient', 'survenu', 'flashs', '46_ans', 'vieillis', 'déforestation', 'parmi_lesquelles', 'fait_naître', 'antivol', 'lupin', 'mythique', 'cruauté', 'zeus', 'égorger', 'surprenants', 'contestataire', 'blés', '.on_peut', 'choisir_parmi', 'obligez', 'cohen', 'border', 'lâches', 'compartiments', 'se_disputent', 'majordome', 'madagascar', 'allumant', 'ordinateur_portable', 'valoir', 'adhérer', 'se_soucient', 'redemander', 'occupant', 'stoppa', 'ria', 'nelly', 'télé-réalité', 'désigné', 'gouverner', 'prêtresse', 'destinait', 'rite', 'exigée', 'valant', 'homer', 'nath', 'ils_partent', 'pain_pita', 'totalisé', '150_millions', 'derrière_eux', 'calculateur', 'jean_luc', 'légué', 'fandom', 'portugaise', 'qune', 'cherches', 'orange_confite', 'vibrer', 'mérites', 'cocote', 'paint', 'léonard', 'vinci', 'goethe', 'bourreau', 'naive', 'avènement', 'hugues', 'syllabe', 'mineure', 'cré', 'vin_diou', 'endiablé', 'réveillant', 'fumez', 'luit', 'changés', 'préserve', 'enfoui', 'effective', 'assemblé', 'relatant', 'sente', 'accélèrent', 'saturé', '____', 'kirk', 'chargea', 'coiffé', 'conjugale', 'braisées', 'flag', 'bissap', 'boissons_locales', 'délais', 'occasionnés_par', '75gr', 'ecoeurant', 'racontent', '200_millions', 'charly', 'tapissé', 'tibet', 'armée_américaine', 'amazon', '12€', 'importation', 'chacha', 'all', 'hamster', 'indes', 'ingurgiter', 'etc_etc', 'pandas', 'a_valu', 'appelaient', 'ghz', 'inexistant', 'idee', 'pneus', 'baking_powder', 'connectant', '48_heures', 'gandhi', 'plaqué', 'tyrolienne', 'cgi', 'superieur', 'me_rattrape', 'ibiza', 'ricky', 'jf', 'nef', 'damnés', 'commémorer', 'etres', 'warhammer', 'deux_versions', 'titans', 'tuning', 'tranquillité', 'girard', 'corey', 'chauffait', 'encourageantes', 'augures', 'edwards', 'cédant', \"s'_étendait\", 'poignant', 'ornée', 'guérit', 'monstrueuses', 'siege', 'réduisez_-les', 'éclaircissant', 'clarifie', 'foncée', 'mêmes_proportions', 'klein', 'confia', 'contrastes', 'dévorent', \"s'_endorment\", 'considèrent', 'bip', 'croquent', 'demi-frère', 'méprenez_pas', 'implacable', 'noble_cause', 'mocha', \"n'_oublierai\", 'premier_message', 'parié', 'résultante', 'lux', 'haussant', 'cela_signifie', 'adaptés', 'plaisant', 'très_pratique', '*la', 'lais', 'louloute', 'maple', 'déni', 'grands_classiques', 'ladurée', 'supplétif', 'racontée', 'fâché', 'équivalant', '2_demis', 'alcool_fort', 'pitoyables', 'renforcés', 'conteste', 'mms', 'aimme', 'utilisera', 'écrira', 'droitiers', 'jeune_âge', 'gauchers', 'contrarié', 'infrarouge', '10_kilos', 'cerveau_humain', '78_%', 'ne_coagule', 'jetées', 'collectées', 'voyageurs', 'vénitiens', '720', '2500', 'pourcentages', 'découverts', 'premier_volet', 'hannibal', 'interrogé', 'feves', 'interrompu', 'voyez_-vous', 'ne_boirai', 'trés_bon', 'réunissant', 'volées', 'graviers', 'nuée', 'dix-neuf', 'nourrissait', 'poussières', 'échappé', 'ajoutées', 'pressent', 'reflex', 'séduits_par', 'marco', 'déplacée', 'tellement_aimé', 'dégraissé', 'gages', 'conchage', 'cristallisation', 'munies', 'brasseur', '45_degrés', 'chop', 'jude', 'aux_enchères', 'houblon', 'jusque-là', 'intéressés_par', 'a_réagi', 'intellectuels', 'accrocheurs', 'mélodiques', 'féroces', 'ses_pires', 'monde.', 'surplombé', 'bagel', 'distinguée', 'heures_perdues', 'enveloppés', 'bananier', 'étoffée', 'pierres_chaudes', 'notre_partenaire', 'lucille', 'métaphores', 'demi-douzaine', 'immatriculation', 'pioche', '.de_leur', '.de', 'reset', 'bouvier', '1979', '17_septembre', '29_août', 'auquel_viennent', 'lefebvre', '1978', '1895', 'tenta', 'départemental', 'theatre', 'chiche', 'exigé', 'eurent', 'causée_par', 'trouvable', 'grandes_surfaces', 'récipient_adapté', 'fois_sortis', 'percez', 'grappe', 'root', 'déguisée', 'usines', 'déguisement', 'help', 'como', 'if', 'last', 'adage', 'estiment', 'lésés', 'fonda', 'endormi', 'lui_apportant', 'nous_ferions', 'rend_malade', 'league', 'propulse', 'prestigieuse', 'contradictoires', 'éventuelle', 'sol_américain', 'exhaustif', 'existantes', 'boues', 'couleur_différente', 'plaisanterie', 'automobiliste', 'finger', 'romulus', 'meilleurs_moments', 'jtdr', 'je_trouverais', 'plusieurs_sortes', 'effets_néfastes', 'entourait', 'prolongé', 'viendraient', 'initiaux', 'snickers', 'états-unis', 'faites_réduire', 'gratinées', 'bandage', 'lulu', 'européens', 'se_retirent', 'concordance', 'gachette', '370', 'violines', 'bourgeois_siffler', 'taquiner_leur', '300€', '800€', 'graphite', 'att', 'calandre', 'élargies', 'quelques_phrases', 'ecoutez', 'serait_intéressant', 'téléfilm', 'ingrédient_indispensable', 'jolies_choses', 'multiple', 'freinages', 'encourageant', 'technologies', 'douarnenez', 'cela_provoque', 'dumbledore', 'imprévue', 'longue_portée', 'tirés', 'rafales', 'virtualisation', 'négocier', 'grillent', 'mx', 'suspense', 'claires', 'pertinente', 'antonio', 'déclenché', 'doseur', 'grenoblois', 'livrent', '3.0', 'blister', '40_millions', 'répartis', 'jenifer', 'sens_inverse', 'distants', 'étonnés', 'arlequin', 'marquage', 'bavette', 'ent', 'coline', 'se_dressent', 'craig', 'armstrong', 'dix_jours', 'réconcilier', 'evelyne', 'repenti', 'prie_dieu', 'existé', 'rêvée', 'gênants', 'baie', 'hudson', 'bai', '22_mai', 'faisant_fondre', 'nutritifs', 'peu_calorique', 'gazelles', '100_millions', 'elles_prennent', 'vanner', 'ponctuel', 'sérigraphie', 'communiqué', 'dicte', 'couraient', 'touchaient', 'avantageusement', 'dégorger', 'aillé', 'persillé', 'négocie', 'étala', 'récupérant', 'th.6/7', 'percées', 'min_environ', 'effilées', 'mardis', 'vendredis', 'week-ends', 'paiera', 'se_rencontrent', 'saintes', 'camper', 'on_regrettera', 'crème_brûlée', 'antillais', 'obligent', 'patrouilles', 'porte-bagages', 'conteneur', 'jours.', 'ôte', 'chromé', 'automobiles', 'pare-brise', 'principe_actif', '2.8', 'ostéoporose', \"n'_oubliait\", 'déviation', 'illuminations', 'regimes', 'première_manche', 'concurrents', 'améliorera', 'erdogan', 'prospectus', 'tomates_fraîches', 'wings', 'ailerons', 'ipad', 'détecte', 'granolas', 'pout', 'agite', 'song', 'jose', 'tres_vite', 'legume', 'retirant', 'chemisée', 'existent_déjà', 'menaçait', 'irréfutable', 'rodolphe', 'ambulants', 'soon', 'sandro', 'osera', 'depuis_2003', 'irakiens', '000_morts', 'verticalement', 'pluies', 'goutes', \"m'_évader\", 'loir', 'espérée', 'maximilien', 'bouclier_humain', 'je_souhaiterai', 'télécharger_gratuitement', 'remixer', 'étude_scientifique', 'troublants', 'propices', 'joutes', 'xviiie_siècle', 'impact_positif', 'libido', 'rendus_compte', 'porta', 'perturbe', 'trouvèrent', 'unes_après', 'réel_intérêt', 'equilibre', 'avait_averti', 'lvl', 'patissière', 'consommait', 'ressemblance', 'servantes', 'poils_incarnés', 'géorgien', 'tardé', 'accélération', 'coéquipier', 'loi_interdit', 'débits', 'martyrs', 'succomber', 'ses_origines', 'me_tarde', 'retenant', 'gémir', 'naissait', 'nous_contrôlons', 'militaires', 'nino', 'héroine', 'miner', 'salué', 'ingéniosité', 'tentais', 'synthétiser', 'choses_importantes', 'remplisse', 'bordeau', \"m'_arrivait\", 'ignorant', 'confus', 'accoudoir', 'surgit', 'cavalière', 'considérés_comme', 'raz', 'minutes.5', 'horizontalement', '20min', 'lardon', 'ladies', 'galant', 'grande_dame', 'soldé', 'after_effects', 'infographiste', 'graphisme', 'adressait', 'racontait', 'nouvo', 'tronc', 'make_it', 'you_are', 'yvelines', 'instituer', 'réciprocité', 'ordre_public', 'société_civile', 'protocoles', 'sion', 'trois_couches', 'tc', 'grattage', 'multitudes', 'cesar', 'prématuré', 'dénier', 'mes_origines', 'son_patronyme', 'perry', 'vih', 'aide_humanitaire', 'trêve', 'trouverais', 'originales', 'comme_licites.', 'qui_considèreront', 'devinette', 'devrait_suffire', 'yaourts_nature', 'vous_adorez', 'kawaii', 'p2', '5e', 'spice', 'medicament', 'ludo', 'emission', 'television', 'paranoïa', 'belles_filles', 'téléspectateur', 'die', 'ill', 'vivement_conseillé', 'effets_positifs', 'prenez_garde', '155', 'rallumez', 'courbatures', 'humanitaires', 'fractures', 'état_civil', 'flétries', 'éduqué', 'récalcitrants', 'fra', 'dicter', 'grossesses', 'dévotion', 'cannettes', 'elliot', 'balances', 'mésaventure', 'ta_fiche', 'apprêter', 'sandales', 'virtuose', 'david_guetta', 'dinette', '270°c', 'pendant_1heure', 'cannelé_doit', 'commissaire', 'milliardaires', 'cioccolato', 'pantomime', 'rançon', 'aliments_sucrés', 'untel', 'je_penserais', 'reconnut', 'respectés', 'aupres', '24_juillet', 'lec', 'frasques', 'entretient', 'joel', 'argentés', 'pig', 'se_bonifie', 'préalablement_lavés', 'guigui', 'radar', 'détecteur', 'subissent', 'ciré', 'modelé', 'chimistes', 'verreries', 'jonché', 'gauthier', 'avez_déjà', 'ressource', 'survol', 'minérale', 'ingrédients_suivants', 'fragment', 'pointue', 'ridicules', 'énigmes', 'consolation', 'secoue', '1,1', '1,9', '1-_préchauffez', '6-', 'trempé_ta', 'ses_larmeset', 'meure', 'planete', 'illuminera', 'embase', 'freine', 'spécialité_culinaire', 'forme_ronde', 'généralement_utilisés', 'crêpes_suzette', 'auguste_escoffier', 'suzette', 'pays_basque', 'part_égale', 'dosa', 'teff', 'fonio', 'russes', 'universellement', 'considérés', 'manières_différentes', 'enroulés', 'tartinés', 'slave', 'cottage', 'champignons_hachés', 'amann', 'crumpets', 'spongieux', 'victorienne', 'fabricants', 'branle', 'ressentit', 'mal-être', 'lévy', 'paris_-', 'maçons', 'royan', 'detruire', 'montparnasse', 'me_levant', 'tics', 'arménie', 'jeunes_générations', 'sissi', 'clafouti', 'cota', 'nouilles_chinoises', 'riz_cantonais', 'fourme', 'moments_difficiles', 'remettant', 'trèèèès', '27_mars', 'personne.', 'tripoter', 'spy', 'mour', 'coluche', 'effectuées', 'ont_démontré', '12_août', 'dayton', 'ohio', 'trahissait', 'new_breed', 'originals', 'burke', 'coûtant', 'pourris', 'rock_the', 'pretty', 'stylisme', 'hirondelle', 'formule_1', 'insulté', 'sature', 'menez', 'frédéric', 'devancer', 'grondin', 'grosse_pincée', 'farniente', 'kiné', 'ergo', 'opérationnelle', 'vie_courante', 'se_débrouille', 'agace', 'revendique', 'girondins', 'mélange_beurre-sucre', 'dessécher', 'vous_mélangerez', 'fleurette', 'crémes', 'mr_bricolage', 'chocolat.', 'orner', 'hallucination', 'troublée', 'dante', 'dégradés', 'saloperies', 'isolés', 'gad_elmaleh', 'abattus', 'longues_années', 'tremblay', 'hallal', 'soft_)', 'payement', 'pina_colada', 'gloria', 'démoniaque', '40e', 'ben_arfa', 'phocéens', '0-1', 'chaine_youtube', 'frayeur', 'suivront', 'frotté', 'frôlé', 'shooté', 'majeures', 'retrouvées', 'tireuse', 'pac', '24_décembre', 'gelé', 'embrouilles', 'ingrédients_restants', 'roulez_-la', 'pendant_15-20', 'après_refroidissement', 'certification', 'contre-attaque', 'pommé', 'captiver', 'banals', 'pneu', 'changerai', 'drames', 'saccharose', 'photocopieuse', 'chalet', 'rallye', 'porte-bonheur', 'doc', 'cerf-volant', 'lampions', 'raiponce', 'cultivée', 'grues', 'movie', 'days', 'piñata', 'stages', 'cactus', 'geoffrey', 'majuscule', 'être_réchauffés', 'gargouille', 'surlendemain', 'jamais_existé', 'plug', 'atrocement', 'jeux_video', 'high-tech', 'aux_chandelles', '11_novembre', 'resident_evil', 'toujours_rêvé', 'dessinateur', 'miro', 'tu_rentres', 'tourmente', 'fixent', 'rosées', 'société_française', 'eco', 'por', 'dénigrer', 'ardèche', 'honorée', 'instaure', 'pérenne', 'exonérations', 'cotisations_sociales', 'fiscales', 'ils_prennent', 'vestes', 'absorption_complète', 'difference', 'passablement', 'euclide', 'plongeon', 'most', 'wanted', 'consoles', 'inédite', 'dignes', 'rescousse', 'nouvelles_perspectives', 'vis-à-vis', 'milices', '<_3parce', 'aurélien', 'patientez_quelques', 'pèle', 'surs', 'militants', 'suffisament', 'fréquent', '21e', 'infanterie', '1er_juillet', 'outre-mer', 'arles', 'jui', 'obligera', 'beau_souvenir', 'avait_accepté', 'ei', 'dépassent', 'frédérique', 'muets', 'carpes', 'répliqué', 'exprimé', 'tordu', 'mal_tourné', 'doughnuts', 'sr', 'penserai', 'reflets_violets', '.est', 'nécessiter', 'chantiers', 'productif', 'innove', 'perturbé', 'tactique', 'citron.3', 'photographiées', 'cts', 'aisées', 'boursier', 'oliviers', 'piccolo', 'avoirs', 'tentons', 'retouche', 'ragout', '5,6', 'sustenter', 'carottes_rapées', 'franchi', 'fatras', 'dû_verser', 'mao', 'sainte_anne', 'reims', 'stickers', 'avons_-nous', '16h30', 'écouteur', 'dopé', 'ajoutiez', 'entrin', 'dana', 'rend_heureuse', 'telecharger', 'cella', 'demanderais', 'assistent', 'usure', 'vilaine', 'qu_ils', '.pas', 'immature', '.ces', 'vitaminées', 'trottoirs', 'autiste', 'épines', 'bel_avenir', 'violents', 'region', 'ous', 'rallyes', 'millénaires', 'produites', 'ils_venaient', 'chope', 'beuure', 'bouddhisme', 'occidentales', 'dogs', 'échine', '2x', '3cm', 'équipez_-vous', 'vous_déposerez', 'coupe_remplie', 'amena', 'mon_oncle', 'abîmé', 'aguerri', 'gâtés', 'gavés', 'euphorie', 'kro', 'liste_noire', 'bonne_foi', 'sens_moral', 'ouimonamour_8.0', 'tuasraisonmachérie_14.7', 'invitera', 'detruit', 'decks', 'particulierement', 'jeton', 'vortex', 'activation', 'intérêt_général', 'nouille', 'menaçant', 'obstination', 'ador', 'douglas', 'idéaliste', 'denis', 'alberto', 'pensionnaires', '3-0', 'coup_franc', 'repoussé', 'cartier', 'apportez', 'tu_reçois', 'injure', 'repassé', 'wall', 'hamac', 'chaque_pièce', 'enrique', 'février_2009', 'avril_2009', 'pesés', 'leurs_homologues', \"s'_épanouir\", 'saison_passée', 'ferguson', 'expliquais', '.mon', '$_$', 'petits_coeurs', 'scientologie', 'reponses', 'soufflet', 'potier', 'développant', 'contraindre', 'certaine_température', 'dégagent', 'délicat_parfum', 'brock', 'chambers', 'projeté', 'haute_dose', 'ruiner', 'coupole', 'commerciale', 'investi', 'bimbo', 'équilibrer', 'gong', 'débrouiller', 'espiègle', 'verifier', 'rayures', 'hystérique', 'mini-four', 'reponse', 'révoltes', 'ravira', 'nous_reviendrons', 'blackberry', 'likes', 'cyprien', 'shorts', 'voltaire', 'apple', '24_février', 'ruby', 'rd', 'july', 'cligno', 'amorto', 'energy', 'povre', 'caniveau', 'clone', 'biodégradable', 'utiliserai', 'beacon', 'effet_positif', 'aviation', 'combinent', 'unités', 'four_crématoire', 'nazis', 'après-guerre', 'reich', '1933', 'communistes', 'fortifie', 'sanctifie', 'dévot', 'wa', 'se_situe', 'lang', '400_000', 'media', '4,9_milliards', 'aplatis', '1000_euros', 'moscou', '6500', 'héroïque', 'roi_louis', 'gratification', '11-_si', 'tu_croises', 'demande_-lui', 'ta_valise', 'tgv', 'pépin', 'frôle', 'épluché', 'surveillée', 'demouler', '15/20', 'maï', 'potter', 'precision', 'parque', 'saline', '*un', 'traverses', 'utilisable', 'allégés', 'laa', 'gardés', 'consulter', 'recharger', 'taguer', 'rougis', 'bun', 'ès', 'spirou', 'parviennent', 'humoristique', 'cacha', 'européen', \"s'_étalent\", 'incrustation', 'colocation', 'débutante', \"s'_amusent\", 'se_basent', 'préfixe', 'se_concentre', '13_millions', 'attribuées', 'freestyle', 'trick', 'effectue', 'managers', 'ferrero', 'ciblé', 'renommée_internationale', 'vin_californien', 'opte', 'pharmaceutique', 'pilule', 'irriter', '.car', 'irréalisable', 'arriverons', 'gamers', 'gamer', 'xbox_360', 'dernier_cri', 'laisser_pousser', 'demie_cuillère', 'beurre_citronné', 'secouer_énergiquement', 'appartiens', 'coloc', 'partante', 'chopine', 'terrestre', 'bizard', 'indulgent', 'coton_imbibé', 'fault', 'dja', \"j'_ajouterais\", 'boussole', 'cj', 'shakira', 'trop_marrant', 'acheteur', 'hurlements', 'revenez', 'provocation', 'médecin_généraliste', 'chaleurs', 'année_derniere', 'denrée', 'make-up', 'glam', 'chics', 'corniche', 'californienne', 'paste', 'moeurs', 'paque', 'chuck_norris', 'cheveux_longs', 'exterminer', 'descendante', 'examinant', 'petits_défauts', 'se_soucie', 'citoyenneté', 'tripoli', 'union_africaine', 'électoral', 'préambule', 'sont_repartis', 'homicide', 'odyssée', 'black_and', '17.000', 'cagnotte', 'président_américain', 'amiral', 'abolition', 'son_gendre', 'enchainer', 'redescendu', 'sii_toi', 'te_rendent', 'ton_stylo', '475', 'prof_veut', 'omniprésente', 'marquise', 'tracteur', 'tondre', 'cerfs', 'vichy', 'cassettes', \"s'_amusait\", 'obélix', 'spots', 'sculpté', 'hallucinant', 'polis', 'déversé', 'intestin', 'fabricateur', 'rom', 'j`adore', 'gerber', 'agriculteurs', 'tchat', 'dyonisos', 'aurais_-je', 'majoritairement', 'pas-de-calais', 'faon', 'nous_arrivâmes', 'possiblement', 'alone', 'fleuriste', 'houston', 'trops', 'podiums', 'haute_couture', 'vivra', 'fougère', '142', 'auxiliaire', 'rem', 'impatients', 'suv', 'hénné', 'existerait', 'vice-versa', 'histoir', 'frigot', 'wolf', 'cuisinez', 'gros_trous', 'jaune_pâle', 'savamment', 'enverrai', 'federico', 'exclusifs', 'jojoba', 'restructurantes', 'wu', 'éléments_nutritifs', 'changées', 'brider', 'tartines_grillées', 'pedro', 't_i', 'fragments', 'naissant', 'signalé', 'me_doutais', 'ppr', 'christophe_colomb', 'communauté_européenne', 'se_gaver', 'appuyer_dessus', 'fribourg', 'reformer', '25_juillet', 'focu', 'je_rajouterai', 'biryani', '1/2_h', 'civique', 'préparent', 'enivrante', 'ca_change', 'carabine', 'bals', 'verve', 'quid', 'juristes', 'repérage', 'exceptionnellement', 'ils_pouvaient', 'espions', 'points_communs', 'ils_savaient', 'se_situant', 'kazakhstan', 'accidenté', 'aventurer', 'homélie', 'codage', 'budgétaire', 'dico', 'lego', 'performant', 'moments_inoubliables', 'lampe_torche', 'sucre3', 'mathématicien', 'astronome', 'commandements', 'imam', 'hadith', 'cygne', 'prostituées', 'kilomètre', 'sortons_bras', 'arrogance_allons', 'mon_étendard', 'ul', 'compétitivité', 'monoplaces', 'condamne', 'formatrice', 'titulaires', 'remplissage', 'oaxaca', 'orange_fraichement', 'enveloppées', 'haricots_noirs', 'culturels', 'falafels', 'autres_délices', 'bassines', 'assassins', 'fosses', 'écrivaine', 'purificateur', 'toute_attente', 'soyez_sûr', 'recevront', 'écolos', 'pures', 'dépensés', 'troubler', 'rapportera', 'endommager', 'mes_excuses', 'fautif', 'réussissez', 'créme_fraiche', 'enchaînent', 'virgule', 'virgules', 'intensif', 'pénibles', 'dernièrement', 'faisait_défaut', '660', 'amoureusement', 'entretenu', 'grouille', 'balai', 'oeillet', 'géranium', 'lièvres', 'jacinthe', 'orchidée', 'pénitence', 'dérangeait', 'me_paraissait', 'indiqua', 'gentlemen', 'élysée', 'minoritaires', 'great', '.j', 'lucratif', '84', '750', '25_ml', '1_goutte', '750_watts', 'poireaux_cuits', 'aucun_élément', 'observateur', 'évidente', 'entree', '8_h', 'demarre', 'écuries', 'souffleur', 'cavaliers', \"m'_impliquer\", '-125_g', 'achetées', 'saleté', 'alphonse', 'amusez_-vous', 'mouettes', 'sans_tabou', 'immediatement', 'ces_moments-là', 'semblaient', 'chut', 'much', 'yé', 'hippies', 'affinité', 'hésitent', 'guidé_par', 'royalement', 'empèche', 'ux', 'technologie_moderne', 'sagement', 'caramel_salé', 'contracté', 'chenilles', 'vendée', 'réserves', 'agent_secret', 'marchandes', 'étouffante', 'occupés', 'e_n', 'tabloïds', 'surprenantes', 'omega', 'fraction', 'suis_fier', 'macadam', 'défile', 'sèvres', 'accordant', 'contenues', 'intéressée', 'irons', 'venger', 'roussette', 'closer', \"s'_applique\", 'blush', 'choisira', 'lamentablement', 'réutilisé', 'crise_cardiaque', 'luxure', 'voyance', 'tiennent_compte', 'quimper', 'focaliser', 'restreindre', 'consciences', 'women', 'championship', 'velvet', 'tara', '100_km', 'limitation', 'coste', 'booste', 'se_réunissent', 'abominables', 'plusieur_fois', 'remélangez', 'radin', 'pendait', 'more', 'exprimait', 'contentement', 'cuillers', 'chariots', 'marmotte_met', 'terroriste', 'cutter', 'emeraude', 'pps', 'champignons_coupés', 'nous_rencontrons', 'immortalité', 'consommez', 'lunaires', 'corner', '9e', 'observateurs', 'supporters', 'collective', 'sud-coréen', 'talisman', 'hard_rock', 'dolby', '5.1', 'suppléments', 'selection', '2,3', 'dépanner', '.ps', 'armée_française', 'toulon', 'région_parisienne', 'croquantes', 'lézard', 'animalerie', 'soupoudrer', 'suicides', 'provincial', 'marche_arrière', 'chain', 'brandon', 'ingrédients_humides', 'déposez_-y', 'onces', 'dégager', 'essoufflé', 'théatre', 'ainsi_obtenue', 'petits_cœurs', 'cultivent', 'creusent', 'same', 'conviés', 'séjourner', 'louis_xiv', 'étudie', 'nîmes', 'côtoie', 'annabelle', 'chantes', 'méchantes', 'soho', 'pje', 'trop_dure', 'dee', 'ma_mamie', 'quun', 'traversin', 'ronger', 'perfectionne', 'réutilisant', 'banquier', 'confessions', 'americains', 'funèbre', 'avait_promis', 'referai', 'hétéro', '6eme', 'apartement', 'enveloppez_-les', 'poivre_moulu', 'bousculer', 'ginette', 'laitière', 'make_up', 'absolu', 'moqué', 'raphael', 'dérisoire', 'océans', 'indirect', 'clé_usb', 'pièce_jointe', 'sophistication', 'démérite', 'banquet', 'pulsion', 'alsacienne', 'gentile', 'taquin', 'déterminé', 'partagées', 'verser_100.000', 'pincee', 'geul', 'mangiez', 'larmoyant', 'aimante', 'irrésistibles', 'abu', 'cassent', 'deuxième_couche', '300_ml', 'engendré', '500_millions', 'réglementation', 'vois_-tu', 'snapchat', 'insta', 'souhaiteriez', 'cloture', 'abstraction', 'gaëtan', 'emile', 'stern', 'alimentations', 'banalité', 'ran', 'aquatique', 'crête', 'dorsale', 'moins_prononcée', 'longue_queue', 'imposition', 'béni', 'évangéliser', 'contrarier', 'cachée_sous', 'entasse', 'nombre_impressionnant', \"s'_attabler\", 'late', 'rivaliser_avec', 'tunisien', 'tunisienne', '_______', 'valorisante', 'insignifiants', 'echanger', 'surligner', 'beigbeder', 'curaçao', 'sous-entendus', 'pornographiques', 'astronomie', 'latin', 'prochaines_semaines', 'mythologie', 'lira', 'ponctué', 'difficulté_supplémentaire', 'troisième_volet', 'campbell', 'konami', 'énorme_potentiel', 'pincer', 'sem', 'tina', 'timides', 'se_joignent', 'cherchaient', 'pichon', 'chill', 'cherchera', 'clic_droit', 'désactivé', 'porte_fermée', 'reconversion', 'dépotoir', 'préchauffée', 'récompensé', 'métropolitains', 'descendants', 'engagés', '1848', '1882', 'telemen', 'jaimerai', 'baraque', 'pendus', 'cache_derrière', 'surveillants', 'mafé', 'gaelle', 'text', 'inbuvable', '9-', 'sympathisants', 'maquis', 'pierres_dressées', 'divination_ne', 'jeter_parmi', 'invoquer_allah', 'pêché', 'bonnes_oeuvres', 'leur_prohibition', 'ils_soient', 'salaires', 'laps', 'déjantée', 'choisis_parmi', 'sélectionnées', 'cet_établissement', 'gardon', 'coincées', 'déo', 'sensés', 'athéna', 'touche_perso', 'chassis', 'ayant_subi', 'conservateur', 'pressées', 'moins_coûteux', 'réglementée', 'norme_nf', 'pétards', 'délicieuses_pâtisseries', 'paellas', 'divulguer', 'vos_listes', 'trips', 'votants', 'emmènera', 'sève', 'psychose', 'thelma', 'tomber_dedans', 'raclettes', 'certaines_maladies', 'offensifs', 'kun', 'imaginait', 'notation', 'improvisation', '23_novembre', 'créant', 'vitaminique', 'gestation', 'rapporteur', 'quinquina', 'limon', 'madère', 'rally', 'una', 'entièrement_dédié', '16_octobre', '11_mars', 'optimiste', 'spontané', 'casquettes', 'wonder', '.son', 'abstenez_-vous', 'dissonance', 'désordre', 'lyrics', 'mangeront', 'multicolore', 'st_tropez', 'mentaux', 'torche', 'sof', 'mouette', 'secondaires', '5h30', 'kms', 'animera', 'crémière', 'capitole', 'essui', 'diminuez', 'marinez', 'pimentez', 'touchera', 'utilisons', 'attrayante', 'barthélémy', 'ainés', 'croyez_moi', 'chatons', 'accrochage', 'ferry', '13h', 'big_ben', 'rabat', 'toronto', 'jean-claude', 'oxford', 'fish_and', 'burger_king', 'punir', 'pitch', 'renommer', 'bahu', 'tronçonneuse', 'longs_traits', 'caco', 'pâque', 'hommages', 'dérivé', 'triple_sec', 'to_be', 'chagrins', 'périmé', 'world_of', 'warcraft', 'cacaoyers', 'malicieusement', 'beyoncé', 'prospection', 'violoncelle', 'master', 'incessant', 'colette', 'couteau_économe', 'defendre', 'soulignant', 'china', 'interroge', 'bugey', 'dégrader', 'souvenu', 'dépassés', 'dojo', 'entraîna', 'parades', 'droles', 'moyennant', 'diplomate', 'commerce_international', 'toute_particulière', 'conviviale', 'célébrée', 'interprétée', 'ludovic', 'informations_supplémentaires', 'se_moque', 'charlot', 'motard', 'vorace', 'teigne', 'adresses_mail', 'candidature', 'country_club', 'antarctique', 'sauterelles', 'baobab', 'lisbonne', 'tweet', '500_€', '30_juin', 'croatie', 'essaient', 'risquée', 'renseigné', 'coton-tige', 'tribunal_correctionnel', 'plaignant', 'verser_2.000', 'procédure_abusive', 'dino', 'entreront', 'tourteaux', 'cigognes', 'servez_tiède', 'remplacant', 'fleuve', 'tends', 'déconnecté', 'soulagent', 'blancs_battus', 'surmontez', 'poids_lourd', 'décorez_-la', 'fins_bâtonnets', '166', 'bière_pression', 'fantasmes', 'rajouts', 'che', 'degli', 'dei', 'forma', 'rosso', 'miele', 'centro', 'otto', 'voce', 'magnifient', 'dépuratif', 'capotes', '1960', 'roanne', 'détaillés', '11e', 'pères_noël', 'anisée', 'villages', 'soulier', 'piscines', 'étirements', 'catastrophes', 'itinéraires', 'laquais', 'manipulent', '31_août', 'cubaine', 'intimider', 'laveuse', 'téflon', 'far_west', 'reposait', 'embarquer', 'âpres', 'admiré', 'entendons', 'posons', 'réfugier', \"s'_élance\", 'peu_probable', 'nous_décidons', 'maracuja', 'problemes', 'tricolore', 'gris_anthracite', 'arrangent', 'nazareth', 'mai_2008', 'cricri', 'nous_mangeons', 'gonflées', 'communique', 'moulée', 'terrarium', 'enrichissez', 'habituer', 'téléfilms', 'corée', 'pologne', 'traumatisé', 'etape_3', 'dame-jeanne', '29°c', '16°c', 'lyrique', 'omniprésence', '.non', 'sobriété', 'délirants', 'souriants', 'érection', 'néon', 'attentifs', 'imprévisibles', 'addictifs', 'impressionnants', 'c4', 'incompréhensibles', 'attachants', 'transperce', 'sin', 'odieux', 'marocains', '10000', 'talons_aiguilles', 'nous_tenons', 'captures', 'ty', 'tirs', 'prévues', 'professionnellement', 'relationnel', 'partisan', 'championnats', 'zob', 'élitiste', 'te_dirai', 'sondages', 'demi-orange', 'injection', 'morphine', 'attirail', 'séquestre', 'catamaran', 'convaincante', '3_pincées', 'grès', 'rectification', 'réconfortante', 'faro', 'rondeurs', 'renferme', 'vidange', 'graisseuses', 'enveloppement', 'guarana', 'crépite', 'célèbre_marque', 'sévigné', 'satiné', 'démaquillage', '97_%', 'déclarent', 'ont_prouvé', 'hépatiques', 'recherches_effectuées', 'ralentit', 'personnes_sensibles', 'ulcère', 'restreint', 'bonnes_graisses', 'psychiques', 'bénéfiques', 'préfèreront', 'transit_intestinal', 'diabétiques', 'déséquilibre', 'maladies_cardio-', 'vasculaires', 'vieillissement', 'radicaux_libres', 'consomment', 'migraine', 'tyramine', 'survenue', 'équilibre_alimentaire', 'kcal_/', 'alimentaires', 'activité_physique', 'nombreuses_études', 'corrélation_entre', 'diététiques', 'propulser', 'soumissions', 'manette', 'cassant', 'nous_remercions', 'départementaux', 'révisé', 'révision', 'tu_voi', 'caravane', 'tondeuse', 'core', 'réve', 'aven', 'dim', 'habitation', 'masse_musculaire', 'ecclésiastique', 'chiite', 'fondateur', 'tuteur', 'abbas', 'préparera', 'traitent', 'se_transforment', 'allouer', 'surfer', 'prévient', 'bêta-carotène', 'stimulante', 'only', 'yeu', 'différentes_variétés', 'chou-rave', 'cresson', 'néfaste', 'pierres_précieuses', 'retouché', 'constructives', 'bridget_jones', 'morfondre', 'potagers', 'collectifs', 'découvert_récemment', 'existera', 'cannelé', 'nas', 'améliorations', '21_août', 'dailymotion', 'soleil_levant', 'hadrien', 'locomotion', 'misérables', 'bolo', 'juif', 'mrs_weasley', 'je_préférais', 'bons_numéros', '2o', 'envole', 'toije', 'lancés', 'barra', 'nous_arrivions', 'precieux', 'fane', 'respiratoires', 'votre_garde-robe', 'cheveux_colorés', 'jfk', 'condamnée', 'verser_1000€', 'pnl', 'pû', 'inné', 'bjr', 'viendrons', 'buveuse', 'autours', '✖', 'kb', 'gogol', 'buddy', 'brunis', 'auront_lieu', 'essais_qualificatifs', 'gênes', 'linceul', 'panser', 'renoncer', 'noue', 'volatil', 'similitudes', 'presque_impossible', 'nous_portons', 'joan', 'ire', 'ressortie', 'plaque_chauffante', 'roue_arrière', 'montesquieu', 'apprentis', 'gerard', 'orthophoniste', 'biarritz', 'démarrent', 'machiavélique', 'falaises', 'draw', 'fusionne', 'invoqué', 'bouffon', 'aler', 'aeroport', 'sortirent', 'commissariat', 'chouquette', 'nourir', 'robe_jaune', 'ambré', 'siecle', 'millau', 'domi', 'aux_allures', 'key', 'lentille', 'influe_sur', 'commodités', 'unilever', 'enroulées', 'buffet_froid', 'picotement', 'supplementaire', '1400', 'nemo', 'graf', 'number_one', 'abonnés_absents', '1-3', 'angus', 'australienne', 'problem', 'child', 'astrologie', 'séries_américaines', 'brochet', 'ramenant', 'obstruction', 'we_are', 'the_world', 'refuserait', 'dinner', 'récepteurs', 'taquine', 'tant_attendu', '315', 'tric', 'gin_tonic', 'chute_libre', 'entre_parenthèse', '1967', 'jolis_reflets', 'dernier_rinçage', 'plus.', 'croustillantes', 'saupoudrées', 'v2', 'prodiges', 'chassant', 'tes_amours', 'marante', '196', '199', 'poignarder', 'scie', 'production_annuelle', 'durablement', 'apaisée', 'préviennent', 'agressions', 'karité_protège', 'insaponifiables', 'estompe', 'ils_travaillent', 'fanatisme', 'violé', 'concours_national', 'hôtesses', 'wi-fi', 'pma', 'super_mario', '°c_pendant', 'tiédisse', 'lorraine', 'viii', 'angers', 'horticulture', 'spécialité_locale', 'pau', 'bieres', 'expliquera', 'statutaire', 'souverainistes', 'ivoiriens', 'majoritaires', 'cia', 'entendent', 'onu', 'répondaient', 'masses_populaires', 'sceptiques', 'meme_probleme', 'caisson', 'chassent', 'recenser', 'sinistrés', 'acheminement', 'promises', 'réflex', 'narratrice', 'volvic', 'sniffer', 'volts', 'lucidité', 'barreau', 'sotte', 'relativiser', 'agissements', 'finissons', 'fugue', 'servitude', 'remontée', 'hyper_rapide', 'four_horsemen', 'belles_rencontres', 'ardennes', 'terre_sautées', '16a', 'colons', 'citronnier', 'comédienne', 'émotionnelle', 'indélicats', 'approximativement', 'apologie', 'intellectuel', 'paravent', 'inodore', 'insipide', 'émanant', 'frustrée', 'musicienne', 'aujourdui', 'année_précédente', 'coquins', 'fast_food', 'vous_exposez', 'carrottes', 'prendrez', 'remplisser', 'particulièrement_aimé', 'duquel', 'rien.', 'auquels', 'rêvant', 'homologation', 'nécessitant', 'cylindrée', 'zakat', 'motivé', 'farm', 'rich', 'apprenait', 'animaux_domestiques', '50cm', 'bache', 'laporte', 'communiquée', 'catharsis', 'vecteurs', 'cassette', 'exceptée', 'désirait', 'ont_su', 'centenaire', 'préparons', 'modem', 'cedric', 'vw', 'sigle', 'lissé', 'élargi', 'pare-choc', 'audi', 'bi-', 'cabriolet', 'torride', 'penchée_sur', 'impitoyable', 'serbie', 'union_européenne', 'fédérale', 'décisive', 'mondialiste', 'delicieux', 'vico', 'chanteuses', 'opera', 'toul', 'coquines', 'satellite', 'climatisation', 'canapé-lit', 'special', 'payez', 'cuisine_asiatique', 'ebullition', 'pessimiste', 'institutrice', '·emma_aime', 'devenir_translucide', 'boutin', 'desperados', 'tpe', 'c°', 'caoutchouc', 'arche', 'tréteaux', 'potentiellement', 'fendre', 'offriront', 'arborer', 'honoré', 'tambouille', 'calment', 'recherchent', 'parisiens', '99_%', 'berbères', 'impie', 'métronome', 'similaires', 'rencontrées', 'nhk', 'ciblée', 'surchauffe', 'condenseur', 'réacteur_4', \".n_'\", 'ait_eu', 'trempa', 'chieuse', 'faisans', 'smooth', 'empresser', 'gueux', 'mais_chut', 'champs_elysées', 'découvrirez', 'virils', 'evier', 'chewing-gums', 'newport', 'beach', 'dictionnaires', 'engouffrer', 'exigences', 'vocal', 'quota', 'irais', 'moët', 'chandon', 'filez', 'chercheurs_ont', 'manquants', 'eddy', 'ona', 'designers', 'différencie', 'vaiselle', 'hypnose', 'noz', 'initier', 'menthol', 'history', 'prévoyant', 'dernières_nouvelles', 'abominable', 'inattention', 'bavarder', 'autorisées', 'éprouvante', 'fertiliser', 'inventent', 'cervoise', 'transportent', 'amphores', 'châtaignier', 'garantir', 'gauloise', 'cerevisiae', 'cérès', 'déposèrent', 'été_condamné', 'necessaires', 'mille_feuille', 'longtemp', 'for_the', 'al_pacino', 'prononce', 'rossi', 'repoussée', 'kart', 'dégagée', 'assistants', 'détrempée', 'laissez_-moi', 'accrue', 'géante', 'move', 'voie_publique', 'réclamation', 'grèves', 'autruche', 'calquée', 'parviens', 'dommageable', 'gsm', 'déversent', 'percussion', 'médocs', 'obsédé_par', 'simultanément', 'atteind', 'nageoires', 'plastic', 'enrobez', 'plat_huilé', '230°', 'totalement_incorporé', 'croquets', 'glané', \"assassin_'\", 's_creed', 'fuseaux', 'cea', 'informations_concernant', 'remy', 'prener', 'épices_douces', 'tipiak', 'coupon', 'gaspacho', 'club_guy', '750_ml', 'nigella_lawson', 'blogosphère_depuis', 'battle_food', '-500g', 'francophones', 'miriam', 'vilaines', 'plusieurs_versions', 'chausser', 'infâme', 'obscène', 'personnages_attachants', 'son_acolyte', 'bonnes_idées', 'spectaculaire', \"s'_agripper\", 'dogmes', 'embuscade', 'ajouterait', '1/1', 'pluches', 'blogueurs_culinaires', 'agrémentez', 'jambon_fumé', 'salidou', 'bouillonner', 'réapparaît', 'hachis_parmentier', 'couper_finement', 'communier', 'présidentielle', 'jeunes_mariés', 'bovine', 'dot', 'pécule', 'protestantes', 'identifiant', 'subsistance', 'congolais', 'couple_présidentiel', 'peuplée', 'enjeu', 'émotionnel', 'sacrilège', 'choux_cabus', 'pesticides', 'kremlin', 'lénine', 'baklavas', 'décortiquées', 'grossièrement_hachées', '-_90g', \"s'_achève\", 'coupe_glacée', 'laïcité', 'transposition', 'orgue', 'leurs_activités', 'déterminants', 'cidre_brut', 'mes_papilles', 'sylvestre', 'poché', 'réitère', 'réessayer', 'ajustement', 'oyé', 'addicts', 'christophe_michalak', 'réglée', \"n'_osent\", 'prosciutto', 'framboises_surgelées', 'framboises_entières', 'bruschetta', 'speck', 'emporter_partout', 'toastez', 'dessèche', 'grande_jatte', 'se_répand', 'texture_crémeuse', 'puis_tapoter', ')_.faire', 'mixer_finement', 'nourrissants', 'végétaliens', '1868', 'amandes_complètes', 'adoptez', 'souples', 'toblerone', 'écrivais', 'corrosif', 'sel_marin', 'helmut', 'graz', 'relatif', 'aménagements', 'entracte', 'farouchement', 'impérialisme', 'nationaliste', 'écrit_-il', 'avisa', 'fable', 'regroupées', 'sang_versé', 'neutres', 'froissé', 'amusants', 'étire', 'sans_soufre', 'authentiques', 'bons_vins', 'accords_mets', 'gratinés', 'superposées', 'recommandées', 'veuve', 'implique', 'basilic_ciselé', 'vanillée', 'conservera', 'enduisant', 'sirupeux', 'guanaja', 'notes_aromatiques', 'feuilletage', 'fruitée', 'crème_diplomate', 'rafraîchissants', 'crumble_croustillant', 'infect', 'sentira', 'incrustés', 'funestes', 'maîtrisées', '1902', 'composante', 'argilo-_calcaire', 'notes_minérales', 'grande_élégance', 'christophe_felder', 'décliner_selon', 'annoncés', 'bon_compromis', 'aléatoirement', 'facilitée', 'féculent', 'certaines_recettes', 'kenwood', 'colorante', 'doublement', 'abîmée', 'conservée', 'fernand', 'donner_naissance', 'grande_marmite', 'ses_propriétés', 'canne_blond', 'non_raffiné', 'opératoires', 'incidence_sur', 'façon_naturelle', 'chêne_français', 'imbuvable', 'irouléguy', 'ribeiro', 'nous_consommons', 'uranus', 'supposant', 'newton', 'expliquerait', 'lucide', 'grande_nouveauté', 'créatives', '350gr', '170gr', 'vous_apprendrez', 'série_animée', 'diposer', 'hâchée', 'implants', 'boostent', 'amènent', 'enseignante', 'grec_ancien', 'grande_bassine', 'poussoir', 'boyau', 'laisser_roussir', 'chiffonnade', 'psychiatre', 'new-yorkais', 'fifty', 'chez_marabout', 'mélange_mousseux', 'soient_fermes', 'madeira', 'assez_souple', 'texture_légère', 'inversée', '60cm', '20cm', 'pithiviers', 'laborieux', 'carvi', '53_%', 'craignez', 'chocolat-framboise', 'shortbread', 'labeur', '39', 'zéros', 'appâter', 'parmentier', 'xérès', 'sauce_vierge', 'pochées', 'conformément', 'assignés', \"s'_engagent\", 'préavis', 'poivrons_rouges', 'légèrement_dorés', 'enlevée', 'retranscris', 'pâtes_alimentaires', 'végétalien', 'deviendrait', 'altérer', 'recettes_végétariennes', 'surréalisme', 'doctrine', 'peux_te', \"s'_apparente\", 'exprimant', 'deuxième_étape', 'plots', 'étain', 'soudée', 'brides', 'soudées', 'garde-corps', 'maintenu', 'soudé', 'gésiers', 'délimix', 'provençales', 'spécificité', 'maussade', 'contemporains', 'produits_ménagers', 'flashé_sur', 'tombait', 'recopiée', 'pictogrammes', 'modulables', 'nous_guident', 'nous_soutiennent', 'élevant_nos', 'vibrations', 'canelé', 'jeep', 'coffret_contient', 'realisation', 'boitier', 'mode_opératoire', 'libéraux', 'paëlla', 'kefta', 'version_sucrée', 'chataignes', 'haute_qualité', 'radicale', 'accomplie', 'catalane', 'collaborateurs', 'titille', 'sensuels', 'envoûtants', 'rissolée', 'boirais', 'arn', 'infrastructure', 'ironiquement', 'années_90', 'lui_reprocher', 'balls', 'recommandent', 'pannacotta', 'sainte-catherine', 'rincé', 'méfaits', 'champignons_émincés', 'éloquence', 'fouette', 'macérat', 'amandes_douces', 'irritations', 'réparateurs', 'poitevin', 'photosensibilisante', 'eau_micellaire', 'silice', '27_juin', 'visionner', 'musicaux', 'stockholm', 'séculaire', 'iii', 'urgente', 'rareté', 'fonciers', 'autorités', 'égalitaire', 'logé', 'amarante', 'monsanto', 'révolutionner', 'meuniers', 'répercuter', 'samedi_dernier', 'ramolisse', 'tétine', 'partenaire_idéal', 'comparatifs', 'résidences', 'dortoirs', 'iss', 'hélicoptères', 'marscarpone', 'voulez_-vous', 'aïl', 'aigre-doux', 'salariale', 'rentabilité', 'culture_locale', 'initiales', 'traîtres', 'okinawa', 'imbattable', 'rassasié', 'situe', 'genièvre', \"s'_épanouit\", 'brutes', 'ardéchois', \"s'_exprimait\", 'jehan', 'perlant', 'inhabituelle', 'fil_conducteur', 'dégustateur', 'vendange_manuelle', 'mûrir', 'gorgés', \"s'_aperçoit\", 'éclore', 'cilaos', 'chai', 'tropiques', 'chose_aisée', 'blanc_sec', 'over', 'cuisineaz', 'respectée', 'th.8', 'copeau', 'échalotte', 'rolex', 'raffinement', 'songes', 'hongrois', 'refaites', 'farinés', 'rotir', 'coupes_budgétaires', 'enjeux', 'pak', 'laisser_compoter', 'crevettes_sautées', 'pommes_cuites', 'recoit', 'empoisonner', 'bécher', 'chimiste', 'ralentir', 'aux_peaux', '3l', 'déposées', 'grande_adepte', 'exploration', 'disputer', 'conais', 'nam', 'reculés', 'charmants', 'approuvés', 'fêta', 'cuillérées', 'chou_kale', 'hisser', 'petits_nids', 'noix_concassées', 're-mélanger', 'bonne_alternative', 'allez_-y', 'ingrédient_magique', 'entendu_parler', 'abattu', 'ces_jours-ci', 'décortiqué', 'effilocher', 'éculée', 'front_national', 'votent', 'impérialiste', 'depuis_2006', 'formage', 'séparateur', 'raisins_noirs', 'firmware', 'frottés', 'imaginations', 'formica', 'épluche', 'soupape', 'moule_rond', 'ye', 'mcgill', 'détective', 'cooking_chef', 'graal', 'joute', 'inventait', 'étable', 'bird', 'amorcer', 'crunchy', 'déclinaison', 'horace', 'amélie_poulain', 'notables', 'falloir', 'réversible', 'alternez', 'méconnues', 'rayonne', 'calamar', 'safranée', 'sarlat', 'déjà_évoqué', 'devrait_plaire', 'regent', 'o-', 'brulent', 'faisable', 'cosmétique', 'beauty', 'cellulose', 'macérât', 'shampoing_solide', 'fortifiant', 'noirmoutier', 'incolore', 'oranges_confites', 'verbales', 'associées', 'du_xxe', 'légitimation', 'démarches', 'usuel', 'vous_connecter', 'compétitive', 'facilitant', 'équitable', 'anne-sophie', 'se_fige', 'goutez', 'sais_-je', 'se_réunissaient', 'empereurs', 'pluie_fine', 'aroma-zone', 'marie_laforêt', 'recommande_fortement', 'copier_coller', '-20', 'sont_parfaites', 'cagettes', 'vous_rateriez', 'capillaire', 'buns', 'coleslaw', 'publiez', 'secouez', 'trônant', 'génèrent', 'bière_blonde', 'délicieuses_crêpes', 'couplée', 'réécriture', 'choisiront', 'petites_phrases', 'bête_comme', 'composteur', 'antagonistes', 'powell', 'prisonnier', 'rappé', 'châtaigner', 'parterres', 'vivaces', 'germination', 'tentée', 'greffes', 'notre_hôte', 'jardiniers', 'fichier_pdf', 'dimanches_matins', 'plantes_aromatiques', 'cachemire', 'présidentielles', 'devra_également', 'euro_symbolique', 'door', 'vtt', 'hangars', 'effrayants', 'attentats', 'daesh', 'oligarchie', 'nouvel_ordre', 'gauchistes', 'oenologie', 'aux_webmasters', 'janvier_2008', 'catégories', 'visiteurs_uniques', 'niagara', 'pacha', '550g', '45min', '30gr', 'trianon', '150gr', 'cake_marbré', 'truffé', 'manipulable', 'marbrage', 'avec_sursis', 'perçue_comme', 'involontaire', 'condamnant', 'goûteuses', 'gouvernante', 'beste', 'représentatif', 'lui_présenta', 'publies', 'rioja', 'célébration', 'écologique', 'achevé', 'placera', 'recopie', 'sans_lactose', 'imbibés', 'contenaient', 'rigides', 'hésitations', '55g', '280_g', 'substituant', 'annuel', 'soumettez', 'prix_élevé', 'septembre_2017', 'vermouth', 'couvents', 'effect', '77_ans', 'mortels', 'framboisiers', 'certifiés', 'fabrications', 'crémeuses', 'dlc', 'savoir_combien', 'torréfiées', 'souvant', 'déplaise_aux', 'grincheux', 'constament', 'pb', 'exellente', 'inci', 'inutilisable', 'ai_réalisé', 'ont_échoué', 'nous_parlons', 'léger_goût', 'aigrir', 'cristallise', 'épaissit', 't_55', 'fromage_philadelphia', 'st_moret', 'biscuits_écrasés', 'glaçage_miroir', 'figurait', 'biscuit_roulé', '10mm', 'prévoyait', 'propriété_intellectuelle', '-250g', 'mœlleux', '-75g', '14_août', 'défunte', 'follement', 'cannibalisme', 'seins_nus', 'laisse_découvrir', 'grosse_boîte', 'rigide', 'languette', 'romanesque', 'douai', '12_mai', 'jauge', 'adjoindre', 'facilité_déconcertante', 'sera_impossible', 'gélifier', 'inventez', 'enclave', 'derniere_minute', 'insoumis', 'invraisemblable', 'sonores', 'ne_noircisse', 'on_pèle', '30aine', 'laissés', 'véranda', 'transporte', 'aéro', 'ça_évite', 'hors-série', 'sainement', 'sans_chichis', 'mensuel', 'amandes_caramélisées', 'balsamique', 'sont_conçues', 'interrogées', 'corpus', 'langue_française', 'implanté', 'cocotiers', 'rénové', 'affectives', 'bruyante', 'début_janvier', 'étonnantes', 'procurée', 'menti', 'jenna', 'rasée', 'squelette', 'ingénieurs', 'intersection', 'formée', 'imprimée', 'différentes_sortes', 'mauves', '218', 'déroulez', 'tomates_farcies', '375_g', 'émiettée', 'contact_direct', 'apparaîtra', 'reliant', 'passerelles', 'contournant', 'plates-formes', 'clarke', 'aloé_vera', 'apôtre', 'aboutissent', 'discréditer', 'sèment', 'assemblées', 'rafraichi', 'autolyse', 'fournil', 'épépinées', 'paraît_trop', 'régions', 'rameau', 'environ_40', 'fouace', 'se_décolleront', 'remplissez_-le', 'sablage', 'couteau_ressorte', 'rouelle', 'imprévu', 'minéralité', 'ravier', 'mélangez_énergiquement', 'publient', 'shakes', 'hydrolats', 'solubles', 'companion', 'fendue', 'forte_teneur', 'fortes_chaleurs', 'augmenter_légèrement', 'noircisse', 'couchée', 'recoins', 'kombucha', '§_§', 'fournitures_scolaires', 'réhausser', 'déo_maison', 'roll_-on', 'violine', 'henné', '-leur', 'henné_neutre', 'schéma', 'préface', 'jacques_perrin', 'égaré', 'conventionnels', 'aspartame', 'rémunération', 'soirée_dansante', 'vos_évènements', 'format_pdf', 'monochrome', 'interêts', 'sillon', 'nocturnes', 'plantent', 'malsaines', 'bulgarie', 'inspirées', 'suie', 'rhums', 'vodkas', 'savoirs', 'nous_sortons', '-mélanger', 'suez', 'ils_utilisaient', 'améthyste', 'lave-linge', 'quelques_bricoles', 'veolia', 'félicité', '9_janvier', 'panorama', 'clients_peuvent', 'bains_privées', 'douche_disponibles', 'chaque_chambre', 'petites_bêtes', 'glutamate', 'période_estivale', 'essorer', 'lap', 'galanga', 'riz_gluant', 'lilian', 'lp', 'accrochées', 'périodes', 'innovation', 'catalyseur', 'bobos', 'mie_dense', 'ispahan', 'gardais', 'électorale', 'cumuler', 'mandats', 'différents_composants', 'terre_épluchées', 'ma_pal', 'embonpoint', 'je_croyais', 'leurs_expériences', 'acceptera', 'home-made', 'démêlant', 'fahrenheit', 'formation_professionnelle', 'visas', 'parfum_subtil', 'fabriquant', 'épluchée', 'rotis', 'saignant', 'enveloppé', 'frittes', 'mesclun', 'feuilles_séchées', 'additionnée', 'pepins', 'revêtement_antiadhésif', 'm3', 'hydratantes', 'caissette', 'chronomètre', 'vegans', 'qques', '52_ans', '37°c', 'façon_générale', 'presse-ail', 'aurez_remarqué', 'scampis', 'fioritures', 'floues', 'gouvernementaux', 'souverainiste', 'effeuiller', 'artichauts_coupés', 'coquilles_saint-jacques', 'ils_devront', 'laisser_blondir', 'tentacules', 'leur_coquille', 'vernie', 'moins_onéreux', 'individuelle', 'petite_variante', 'mottes', 'empilées', 'suppose', 'trois_cents', 'indiqués', 'écaler', 'cantal', 'oeuf_mollet', 'jalonnent', 'délie', 'débarbouiller', 'dêtre', 'vic', 'indigné', 'indignation', 'solvant', 'ange_gardien', 'indiquez', 'assortir', 'garda', 'enfermée', 'invitent', 'chambres_comportent', 'bains_attenantes', 'bouilloire_électrique', 'baignoire_disponibles', 'prochains_mois', 'encres', 'snack_bar', 'musique_live', 'grignotages', 'commercialisés', 'saint_michel', 'gaufrettes', 'raquettes', '13_septembre', 'adhéré', 'trop_prononcé', 'ont_adorés', 'reposée', 'meilleures_recettes', \"m'_inspirer\", 'entres_elles', 'fizz', 'participantes', 'dîner_dans', 'marronniers', 'situés_dans', 'bar-cafétéria', 'je_cuis', 'marché_chinois', 'actionnaires', 'shanghai', 'gèrent', 'restaurants_gastronomiques', 'riley', 'exécuté', 'éleveur', 'acquéreur', 'soixante-dix', 'fondamentaux', 'meilleurs_résultats', 'rapportez', 'excédentaire', 'cubitainer', 'épuisés', 'goût_prononcé', 'cabernets', 'url_]', 'hôtel_appart', \"'_city\", 'touches_modernes', 'juniors', 'étudiantes', 'faisant_appel', 'vivons', 'auxquels_viendra', '2015-2016', 'œufs_pochés', 'baptiste', 'beaucoup_aimé', 'ester', 'mf', 'editions', 'napperons', 'ambert', 'chapatis', 'sous-titre', 'écrit_-elle', 'paralysie', 'immobilisation', 'se_vident', 'satellites', 'apparus', 'garages', 'conducteurs', 'séjournent', 'kitchenette', 'climatiseur', 'serviettes_disponibles', 'sont_équipées', 'toilettes_privées', 'malveillant', 'chambres_classiques', 'minibar', 'poursuivit', 'accras', 'nuance', 'éclaboussures', 'historiographie', 'deux_camps', 'oppositions', 'violences', 'commises', 'étudiées', 'chambres_insonorisées', 'fenêtres_isolées', 'acoustiquement', 'jus_fraîchement', 'bar_lounge', 'maîtrises', 'fluctuations', 'thalasso', 'wi-fi_gratuit', 'se_délecte', 'pendant_15mn', 'premier_réflexe', 'incarne', 'toilette_gratuits', 'sèche-cheveux_disponibles', 'cartable', 'établissement_comporte', 'insonorisées_équipées', 'gâteau_zébré', 'intéressées', 'massacres', 'interdisait', 'science-fiction', 'encouragé', 'installées', 'tacher', 'adoucis', 'emprisonner', 'hermétiquement', 'j.-c.', 'bed_and', 'breakfast', 'diables', 'clients_obtiennent', 'chambres_complétées', 'bidet', 'séjournant_dans', 'cet_appartement', 'cuisine_ouverte', 'table_céramique', 'pantoufles_disponibles', 'chalets', 'chambres_dotées', 'balcon_privé', 'accéder_facilement', 'établissement_propose', 'chambres_attirantes', 'équipées_avec', 'télévision_par', 'ambiance_chaleureuse', 'présentoirs', 'ricains', 'raid', 'gaga', 'climatiseur_individuel', 'désirons', 'affres', 'résidents_peuvent', 'blu', 'side', 'hotel_&', 'bains_personnelles', 'cafétière_/', 'théière_électrique', 'blog_culinaire', 'coupez_-la', '-10', 'humidifier', 'allège', 'remplaçable', 'osez', 'intactes', \"foster_'\", 'cet_hôtel', '82_chambres', 'équipements_essentiels', 'chaînes_multiples', 'téléphone_idd', 'meilleurs_délais', 'osteria', 'bidet_disponibles', '233', 'chambres_fonctionnelles', 'appart_hotel', 'lecteur_dvd', \"s'_enorgueillissent\", 'décor_traditionnel', 'cuisson.3', 'pâtes_brisées', 'lactose', 'loose', 'géométriques', 'propriété_comporte', '282', 'chambres_modernes', 'viper', 'exploré', 'bergerac', 'bar_bar', 'lounge', 'petite_annonce', 'chambres_comprennent', 'assez_épais', 'moëlleux', 'applatir', 'emportes_pièces', 'ramollies', 'propriété_offre', 'internet_sans', 'restaurante', 'taverna', 'évaluations', 'paperasse', 'apartment', 'tardive', 'indonésie', 'avant_jc', 'ancien_président', 'intercontinental', 'luxury', 'vin_chilien', 'conférence_internationale', 'tempranillo', 'porte_ouverte', 'vin_prestigieux', 'organisatrice', 'mieux_appréhender', 'connexions', 'codification', 'autres_équipements', 'peignoirs_éponge', 'par-ci_par-là', 'bain_disponibles', 'opta', 'capri', 'préservation', 'himalaya', 'bitter', 'sempiternel', 'drinks', 'filtrés', 'diluant', 'figues_sèches', 'superfood', 'moindre_mesure', 'protéinées', 'chlorella', 'chlorophylle', 'graphique', 'gourdes', 'représentaient', '34_%', 'packagings', '33cl', 'concernera', 'chambres_éclatantes', 'chauffage_central', 'individuelles', 'elles_comporte', 'système_stéréo', 'peinture_cuite', 'valables', 'castres', 'cette_propriété', 'appartement_supérieur', 'sont_dotées', 'procure_wi-fi', 'garderobe', 'chaînes_satellites', '64_chambres', 'baignoire_spa', 'insonorisées', 'citronniers', 'terrasse_privée', '252', 'tv_payante', 'chambres_formidables', 'équipements_modernes', 'climatisateur', '129_chambres', 'baignoire_hydro-', 'elles_comprend', 'pierre_&', 'séjour_agréable', 'issambres', 'septembre_2014', 'tome_1', 'bains_séparées', '105_chambres', 'cuisine_disposent', 'hostel_ont', 'adjectifs', '104_chambres', 'ceux-ci_viennent', 'sanctuaires', 'aphrodite', 'artémis', 'italia', 'est_présentée', 'apartamento', 'ressert', 'hôtel_bed', 'and_breakfast', 'séjour_confortable', '5_étages', 'bains_familiales', 'chambres_proposant', 'bains_carrelées', 'cuisinette', 'sciences_po', 'établissement_comprend', '1947', '1953', 'monuments_historiques', 'exportateur', 'iie', 'iiie', 'balinais', 'manifestent', 'ambassade', 'abords', 'immédiats', 'fresh', 'courtoisie_disponibles', 'attenantes', 'hôtel_proposent', 'chambre_lits', 'jumeaux_standard', 'décor_brillant', 'jujube', 'soja_texturées', 'sauce_barbecue', 'bodega', 'appartement_offre', 'lits_doubles', 'lits_jumeaux', '4_étages', 'toxicité', 'chambre_double', 'coffre_personnel', 'chambres_spacieuses', 'flux_rss', 'diffusez', 'annuaires', 'intérieur_rustique', 'est_équipé', 'apartamentos_mansion', 'nazaret', 'goelia', '63_chambres', 'toilettes_séparées', 'fournis', 'voyageurs_visitant', 'clocher', 'capres', 'je_remplacerai', 'saint-raphaël', 'aparthotel', 'adeje', 'apartamentos', 'ordinateur_personnel', 'hôtel_comporte', 'apartahotel', 'benidorm', 'elles_comprennent', 'hôtel_residence', 'assurer_aux', 'cathy', 'avait_apporté', 'berck', '66_chambres', 'appartement_silencieux', 'confort_comprennent', 'faciliter_votre', 'residence_hoteliere', 'las_palmeras', '&_spa', '33_chambres', 'hotes', 'chambres_individuelles', 'machine_nespresso', 'établissement_dispose', 'ristorante', 'gelateria', '98_chambres', 'bains_intégrées', 'subsistent', 'polonaise', 'mendiants', '1verre', '700g', 'râpez_-les', 'reversez', 'madame_vacances', '102_chambres', 'chrome', 'orangée', 'blé_dur', 'rifugio', 'onagre', 'assouplissant', 'agents_hydratants', 'acide_hyaluronique', 'dosés', 'peau_neuve', 'co2', 'bisabolol', 'thématique', 'chambre_triple', 'décor_moderne', 'agua', 'pineda', 'pasticceria', 'delice', 'hôtel_hôtel', 'régulier', 'ouillage', 'vinifier', 'rigoureux', 'impacts', 'accueillera', 'puerto', 'bello', 'voiles', 'gréoux-les-bains', '172', 'executive', '134', 'vue_saisissante', 'gratte-ciel', 'coffre_privé', 'sans_conteste', 'mâcon', 'beaune', 'déploient', 'morvan', 'saône', 'bresse', 'mâconnais', 'note_sucrée', 'lodge', 'residence_nemea', 'hameau', 'paprikas', '4_bols', '190_degrés', 'étuvés', 'chez_hellofresh', 'légumes_fondants', 'poisson_saisi', 'yaourt_agrémenté', 'demi-écrémé', 'églefin', 'jambon_serrano', 'râpe_fine', '½_cc', \"i-cook_'\", 'meringue_suisse', 'passe_asiatique', 'préparations_hellofresh', 'soupe_coco-', 'udon', 'box_hellofresh', 'quelques_scampis', 'hellofresh_trouvée', 'sésame_grillé', 'ssd', 'designer_propose', 'situé_dans', 'logis', 'colombier', 'ecole_supérieure', 'professorat', 'sigma', 'filaire', 'hôtel_central', '490', 'type_briochin', 'lauriers', 'intérieur_méditerranéen', 'se_relaxer', 'chambres_douillettes', 'hôtel_comportant', '78_chambres', 'ristorante_da', 'gigi', 'proposent_wi-fi', 'sea', 'gardens', 'est_livré', 'auguste', 'tv_lcd', 'dénia', 'comporte_12', 'breakfast_manoir', 'houlette', 'hébergeur', 'détaillant', 'différentes_fonctions', 'communément', 'aurait_-il', 'caffe', 'matisse', 'vau', 'piazza', 'residence_club', 'mmv', 'cimes', 'aparthotel_lagrange', 'équipées', 'villa_dispose', 'laguna', 'beach_hotel', 'ravda', 'studio_supérieur', 'lido', 'chianti', 'loyer', 'san_marco', 'comporte_9', 'bains_ouvertes', 'introspection', 'requête', 'sites_web', 'algorithme', 'sejours', 'budget_offrant', 'comporte_22', 'peau_mixte', 'purifiante', 'aloe', 'néroli', 'suite_junior', 'hotel_restaurant', 'est_fourni', 'studio_standard', 'monumental', 'chambres_chics', 'intérieur_contemporain', 'jacuzzi_disponibles', 'fratelli', 'mont_blanc', 'chamonix', 'roof', 'ordinateur_portatif', 'breakfast_bed', '&_breakfast', 'oporto', 'douro', '148', 'chambres_aérées', 'sorrento', 'précédent_article', 'cristina', 'restaurante_el', 'villas_disposent', 'bar_bar-cafétéria', 'boat', 'vacances_casa', 'las_palmas', 'bains_privée', 'chambres_vastes', 'bar_lobby', 'bar_sert', \"all_'\", 'spacieuses', 'b_&', 'terres_rouges', 'mallorca', 'mini-réfrigérateur', 'columbia', 'bibione', 'beatrice', 'cuisine_partagée', 'bungalows', 'del_sol', 'mare_nostrum', 'cusine', 'cucina', 'suites_offre', 'séchoir', 'bains_individuelles', 'hôtel_best', 'hostal', 'villas', 'corralejo', 'vue_spectaculaire', 'pessac', 'rooms', 'hotel_offre', '32_chambres', 'chambres_climatisées', 'yacht', 'hotels', 'villa_offre', 'resort_disposent', 'holiday_home', 'tavernes', 'ligne_téléphonique', 'beach_offre', 'cuisines_possédant', 'villa_propose', 'canapés_lits', 'trattoria', 'soucieuse', 'employant', 'machiavel', 'khan', 'margaret', 'bourru', 'chambres_non-', 'avenida', 'salou', 'éclatantes_équipées', 'bains_communes', 'chambres_élégantes', '52_chambres', 'sont_libres', 'libre-service', 'éclatantes', 'vacances_residence', 'sont_aménagées', 'tavern', 'osteria_del', '139_chambres', 'style_contemporain', 'grandes_fenêtres', 'appartement_standard', 'intérieur_brillant', 'invitées', 'pouliguen', 'appartamenti', 'gastronomique', 'bach', 'lisbon', 'ristorante_al', 'bed', 'residenza', 'appartamento', '162_chambres', 'hôtel_sweet', 'ristorante_pizzeria', 'birreria', '255', 'sabotage', 'upgrade', 'abattoirs', 'pool', 'douche_hydro-', 'massage_disponibles', 'podere', '67_chambres', 'terrazza', '145_chambres', 'premium', 'presse_pantalon', 'loft', 'intérieur_moderne', 'quadruple_room', 'single_room', 'barbecues', 'cuisine-salon_équipée', 'wave', '184', 'hôtel_odalys', 'cabre', 'hi-fi', '5_bedroom', 'fabulous', 'beach_resort', 'alouette', 'autres_commodités', 'loir-et-cher', 'san_carlos', 'málaga', 'villa_cami', 'holiday_house', 'qualité_supérieure', 'appartement_studio', 'distributeur_automatique', 'del_mar', 'payet', 'racer', 'haute_densité', 'resort_zaton', 'holiday', 'bar_snack', 'eaux_minérales', 'cambrils', 'halles', 'intérieur_attirant', 'coquilles_saint', 'cookies_croustillants', 'vacanze', 'climatisées_équipées', 'kitchenette_équipée', 'finca', 'marlin', 'attenant', 'comporte_18', 'coral', 'avec_freezer', 'antonia', 'comporte_14', 'chambre_quadruple', 'haut_plafond', 'playa_del', 'sont_servies', 'from', 'rental_apartment', 'vue_splendide', 'collines', 'marco_polo', 'lits_superposés', 'santander', 'roulottes', 'guyenne', 'douillettes', 'apartaments', 'fattoria', 'aliments_riches', 'alcudia', 'corso', '1er_décembre', 'cuisinette_équipée', 'antica', 'valle', 'villa_familial', 'flor', 'intérieur_élégant', 'beach_bar', 'konoba', 'boissons_froides', 'atrium', 'agde', '39_chambres', 'besançon', 'bain_privée', 'miroir_grossissant', 'resort_devon', 'las_americas', 'bar_douillet', 'chambres_calmes', 'eton', 'comptoir_santé', 'individuelles_équipées', 'torre', 'privées', 'résidentiel', 'bains_partagées', 'apart_inn', 'alignés', 'appareils_électroménagers', 'consommatrice', 'empuriabrava', 'cuisine_commune', 'stay', 'lobby_bar', 'sul_mare', 'rimini', '&_golf', 'compactes', 't1', 'effet_pluie', 'casa_di', 'système_audio', 'fontana', 'sweet_inn', 'apparthotel', 'and_spa', 'rideaux_occultants', '122', 'hôtel_aparthotel', '57', 'cook', 'thermes', 'lons-le-saunier', 'sofia', 'castello', 'milano', 'ressources_humaines', 'qualifiées', 'moindre_coût', 'picnic', 'rain', 'bastion', 'masseria', 'informée', 'vous_abonner', 'asador', '\"_poolside', '124_chambres', 'standard_équipées', 'house_of', 'cala', '3dans', 'pâte_filo', '1préchauffez', 'diamètre_environ', 'recto_/', 'mousse_légère', 'débarrassez', 'arrêtez_-vous', '110_gr', 'crémez', 'consistance_voulue', 'gardez_-en', 'passez_-la', 'badigeonnez_-en', 'elles_commencent', 'disperser', 'calissons', 'flamiche', 'pommes_épluchées', 'cottages', 'vue_fascinante', 'buenos_aires', 'apart_hotel', 'appartement_procure', 'climatisées', 'château_médiéval', 'médiéval', 'chypre', 'rental_villa', 'saint-cyprien', '2_bedrooms', '6_persons', 'bottega', 'rafraîchissements', 'villa_carrer', 'puig', 'hostel', 'san_lorenzo', \"dell_'\", '[_caption', 'id=_\"', '\"_align=', '\"_width=', '\"_caption=', '/_caption', 'excellence', 'pilot', 'inn', 'ship', 'style_moderne', 'hotel_procure', 'quay', 'holidays', 'taksim', 'peri', 'hôtes_offrent', 'slantchev_briag', 'k2', 'the_old', 'mill', 'rural', '1700', 'palazzo', 'agriturismo', 'diana', 'bones', 'venezia', 'evo', 'intérieur_standard', '44_chambres', 'hôtel_las', '106_chambres', 'calmes', 'séchoir_disponibles', 'apartamentos_las', 'travel', 'hotel_residence', 'marino', 'cafe_restaurant', 'trattoria_da', 'angelo', 'adana', 'sofrasi', 'villas_propose', 'antibiotiques', 'pulmonaire', 'hôtel_come', 'in_sicily', 'beachfront', \"sant_'\", 'only_adults', 'hôtel_casa', 'bains_adaptées', '111_chambres', 'plagne', 'macdonald', 'ermita', '6_étages', 'pub_and', 'lisboa', 'accueillant', 'expressos', 'india', 'surface_habitable', 'locanda', 'antico', 'cuisine-coin', 'apartamentos_turisticos', 'solar', 'bar_vaste', '47_chambres', 'platja', 'vue_formidable', 'seafood', 'billards', 'hôtes_disponibles', 'double_room', 'economy', 'twin_room', 'fournies_par', 'san_miguel', 'abona', 'family_hotel', 'pomorie', 'vvf_villages', 'cast', 'tea', 'mediterraneo', 'split', 'belvedere', 'comporte_7', 'alpine', 'lago', 'golf_resort', 'bed_&', 'sunset', 'frappés_aux', '62_chambres', 'trade', 'hongkong', 'rentals', 'borgo', 'brasa', 'empilement', 'mesures_prises', 'aménagée', 'crète', 'cafés_servis', 'istambul', 'petrus', 'restaurant_at', 'locazione_turistica', 'douche_puissante', 'gato', 'levante', 'apartcomplex', 'villa_el', 'b_palermit', \"'_amo\", 'conil', 'frontera', 'tv_plasma', '41_chambres', 'musée_gourmand', 'villas_procure', 'villa_can', 'suite_familiale', 'luxe_offrant', 'jardines', 'limassol', 'se_situent', 'gaston', 'poggio', 'bellavista', 'fisher', 'nerja', 'laitiers', 'wellness', 'décor_rustique', 'azzurra', 'casa_vacanze', 'flats', 'croisette', 'douche_séparée', '115', 'cafe_bar', 'topaz', 'décor_contemporain', 'playa_blanca', 'lagos', 'aptos', 'arena', '136', 'matera', 'farina', 'sant_antoni', 'portmany', '56_chambres', 'poêle_fournis', 'vaisselle_fournis', 'bellagio', 'double_vitrage', 'abe', 'métamorphosé', 'maintenus', 'johann', 'survit', 'folklore', 'cargill', 'coffee_shop', 'président_trump', 'téhéran', 'respectait', 'ses_engagements', 'europe_occidentale', 'elite', 'tribeca', 'verde', 'fuente', 'hôtel_familial', 'sun', 'luxueuses', 'hippolyte', 'cuisine-salon', 'mauro', 'livigno', 'hôtel_contemporain', 'haus', 'frame', 'harrys', 'bains_vastes', 'décor_classique', 'quintuple', 'can_picafort', 'margherita', 'indian_restaurant', 'della', 'modernes_équipées', 'laver_fournis', 'triple_room', 'jumeaux_économique', 'napoli', 'vecchia', 'canton', 'azzurro', 'reina', 'comporte_11', 'b_villa', 'capo', 'bain_individuelle', 'pietro', 'forno', 'cottage_propose', 'paradiso', 'delfino', 'penthouse', 'alvor', 'casas', 'rye', 'osteria_da', 'alpina', 'frigidaire_fournis', '117_chambres', 'comme_6-bed', 'mixed_dorm', 'bains_individuelle', 'sa_clientèle', 'compagnies', 'africa', 'pra', 'respirent', 'arms', 'resort_camping', 'accueille_clients', 'resort_velazquez', '7.4', 'holiday_inn', 'chambres_luxueuses', 'breakfast_obtiennent', 'grille-pain_fournis', 'oro', 'asia', 'health', 'sl', 'luxury_villas', 'guesthouse', 'wine_bar', 'resort_procure', 'chinese_restaurant', 'veilleuse', 'giardino', 'family_room', 'quetsches', 'jumeaux_familiale', 'alessandra', 'thai', 'mulino', 'domus', 'hotel_ristorante', 'durand', 'calculée', 'correction', 'bouchonné', 'water', 'adega', 'attirantes', 'hôtel_barut', 'sunwing_side', 'beach_procure', 'sidé', 'tubercules', 'agora', 'mares', 'retro', 'grotta', 'midas', 'thermal', 'town', 'silvia', 'peillon', 'workshop', 'giorgio', 'aquitaine', 'douillettes_équipées', 'north', 'albufeira', 'bowl', 'fenals', 'profumo_di', 'comparent', 'bâtonnet', 'devient_mousseux', 'touquet', 'friendly', 'nada', 'inn_offre', 'lloret', 'open', 'best_western', 'derby', 'creperie', 'gran_canaria', 'maritimes', 'parasols', 'taro', 'dolce_vita', 'suites_procure', 'gianni', 'sea_view', 'pom', 'ambassador', 'restoran', 'stube', 'umami', 'residence_villa', 'muro', 'bains_spacieuses', 'di_san', '74_chambres', '84_chambres', 'nommées', 'b_hotel', 'pizzeria_da', 'inaugure', 'mk2', 'agency', 'appartement_familial', 'march', 'gérone', 'déficiences', 'family_resort', 'kensington', '4.0', 'archéologique', 'régional', 'church', 'bungalow_standard', '79_chambres', 'subie', 'sordides', 'idea', 'bossu', 'mykonos', 'fleurer', 'napolitain', 'chocolat_durcisse', 'sommets', 'ils_durciront', 'superposés', '156_chambres', 'plafond_voûté', 'hôtelier', 'isola', 'atlantico', '138', 'vue_inoubliable', 'bain_individuelles', 'enoteca', '53_chambres', 'hacienda', 'hôtel_attrayant', 'ab', 'pozzo', 'sapori', '151', 'décor_élégant', 'combe', 'beach_club', 'natural', 'odalys', 'residences', 'grandes_maisons', 'rectangulaires', 'ottoman', 'hôtes_équipées', 'apiculteur', '2_dl', 'position_gril', 'cantina', 'satellite_ainsi', 'b_casa', 'bombay', 'cinquante_ans', 'récurrent', \"puisqu'_ils\", 'se_rebeller', 'opérations_militaires', 'orthodoxes', 'manœuvres', 'leurs_revenus', 'austérité', 'structurel', 'gendarmes', 'luz', 'irritant', 'webmasters', 'europa', 'guest_house', 'wrap', 'ignorez', 'fig', 'baita', 'individuelles_salle', 'chaîne_hi-fi', 'badia', 'appartement_splendide', 'lagrange', '112_chambres', 'amici', 'dining', 'london', 'hotel_obtiennent', 'page_promotions', 'camilao', 'remises_allant', '68_chambres', 'lits_queen', 'aurelia', 'intérieur_italien', 'dépourvus', '&_nbsp', 'dormir_dehors', 'jamais_goûté', 'vendéenne', 'couperet', '(_t.6', 'rappez', 'suintant', 'replacez', 'sleep', 'zahara', 'rempart', 'ottomane', 'verjus', 'vaches_laitières', 'enrico', 'officiers', 'tis', 'pourra_apprécier', 'atmosphère_chaleureuse', '-4', 'bedroom_villa', 'séduiront', 'abordable', 'scala', 'eurl', 'casa_del', 'gelato', 'steakhouse', 'ribeira', '163', 'perturbation', 'perturbations', 'posture', 'etat_hébreu', 'houblons', 'malts', '-_inh', 'mile', 'wild', 'technicien', 'plagiée', 'restituer', '1930', 'restaurant_italien', 'pittoresque', 'melbourne', 'soit_évaporé', 'ail_émincé', 'tulipes', 'daytona', 'mandarin', 'taberna', 'magdalena', 'annoncent', 'négociateur', 'désintéressé', 'église_catholique', 'hôtes_casa', 'breakfast_casa', 'non-_fumeur', 'mochi', 'chartier', 'armoiries', 'audio', 'qr_codes', 'punta', 'location', 'lychee', 'palma', 'faire_revivre', 'holiday_club', 'saint-tropez', 'gestionnaire', 'organisme_public', 'valorisent', 'collectivités', 'éthiques', 'by_diamond', 'resorts', 'ihome', 'dijonnais', 'outre-manche', 'mio', 'gusto', 'organic', 'deli', 'bike', 'ulivi', 'fumeur_équipées', 'foods', 'digue', 'royales', 'bahia', 'resort_offre', 'residence_pierre', '&_vacances', 'augusta', 'fellini', 'raquel', 'cassolette', 'coin_salon', 'bains_privative', 'plaques_électriques', 'vérone', 'experte', 'innovants', 'traditional', 'nombreuses_personnes', 'hôtel_adagio', '97_chambres', '2_cuilleres', 'vegetale', 'lower', 'azul', 'bey', 'tonnelle', 'portal', 'mosaïques', 'lima', 'chambres_contemporaines', 'premier_étage', 'corton', 'déclarée', 'caduque', 'diplomates', 'nord-sud', 'meson', 'kitchenette_proposée', 'oceano', 'proportionnalité', 'abu_dhabi', 'downtown', 'club_by', 'diamond_resorts', 'cibler', 'annonceurs', 'data', 'vrt', 'novotel', 'marisa', 'belle_epoque', 'gites', 'aurora', 'saint-paul', '50_mètres', 'bean', '1.6', 'morlaix', 'melissa', 'sunrise', 'acacias', 'antre', 'trajectoires', 'harcèlement', 'théorique', 'romeo', \"reese_'\", 'saint_malo', 'petits_cakes', 'valette', '&_suites', 'meublées', '34_chambres', 'pai', 'hôtel_occupant', 'odalys_appart', 'casale', 'cagliari', 'voulu_tenter', 'fonctionné', 'the_new', 'vall', 'pizzeria_al', 'décor_luxurieux', 'demarrer', 'estrela', 'bourgeoisie', 'terriens', 'élevant', 'poseidon', '1800', 'traduisent', 'handicapé', 'payent', 'quel_dommage', 'fleming', 'remparts', 'portobello', 'familia', 'steak_house', '59_chambres', 'apartments', 'damier', 'camoufler', '61_chambres', 'exécutive', 'bianca', 'décor_intelligent', 'hôtel_apartment', '230_millions', 'converties', '221', 'torre_del', 'orion', 'archi_simple', 'saura_ravir', 'attenantes_avec', 'brighton_and', 'hove', 'suite_pensé', 'renseignée', 'remous', 'vitrocéramique', 'lits_king', 'àb', 'corona', 'ideale', 'parrilla', 'vacances_gite', 'carmen', 'immobilier', 'couchant', 'umberto', 'fia', 'bmw', 'mercedes-benz', '2.5', 'hotel_disposent', 'raccordement', \"s'_ajuste\", 'market', 'catering', 'family_restaurant', '&_b', 'villas_offre', 'ivy', 'autofinancement', 'citoyenne', '10€', 'amap', 'villa_rua', 'victor_hugo', 'corneille', 'encouragés', 'acabit', 'se_préparent', 'captain_america', 'iron_man', 'wolverine', 'emballage_carton', 'expédier', 'câbles', 'richmond', 'calant', 'faye', 'bières_locales', 'me_trouvais', 'mercier', 'vmc', 'interrupteurs', 'luminaires', 'carrelages', 'explosa', 'stupéfiants', '-vous_tenter', 'endiablée', 'adhérents', 'ristourne', 'incompétents', 'peu_scrupuleux', 'ares', 'yin', \"venaient_s'\", 'nombre_incalculable', 'campos', 'suis_fan', 'norbert', 'gateway', 'mobiliser', 'communauté_scientifique', 'troublant', 'rayonnante', 'mal_nommer', 'abusif', 'médiateurs', 'perçus', 'discothèque', 'kenzo', 'eye-liner', 'superposition', 'tardy', 'mille-feuille', 'endurance', 'périodiquement', 'pharmacies', 'proposeront', 'déteint', \"s'_inquiétait\", 'distributions', 'térébenthine', 'lavis', 'duke', 'wellington', 'moucherons', 'officine', 'bronche', 'peignoirs', 'parages', 'opportun', 'pare', 'amazone', 'injectés', '505', 'simulant', 'sang_séché', 'credo', 'mig', 'modélisme', 'on_croirait', 'saisissant', 'réunies', 'foi_chrétienne', 'cruches', 'rafraîchissement', 'vante', 'conjoints', 'pouvons_-nous', 'subordonnés', 'vouer', 'moment_opportun', 'souhaitera', 'tout-petits', 'sensiblement', 'entrainant', 'objectif_final', 'plaque_vitro', 'jolie_boîte', 'fabrizio', 'pratiquement_tous', 'ametlla', '4_bedrooms', 'sont_considérés', 'favorisant', 'anya', 'sollicitations', 'petit-ami', 'sexuellement', 'fervente', 'surviennent', 'bronchite', 'serrées', 'depasse', 'plusieurs_textes', 'nous_fabriquons', 'bavaroise', 'boulangère', 'lei', 'eugène', 'crise_économique', 'accueillit', 'mineures', 'services_rendus', 'conjugal', 'sauvegarder', 'burkina_faso', 'papaye', 'coulants', 'patientez_5', 'coulez', 'écrivez_-nous', 'notre_équipe', 'informations_suivantes', 'non_content', 'souhaiterait', 'vissée', 'exécutif', 'absurde', 'laissez_agir', 'je_recommencerai', 'figé', 'dégageait', 'se_promènent', 'déploiement', 'déclencheur', 'villas_comprend', '8_juillet', 'sacrements', 'autriche', 'antimoine', 'miraculeusement', 'appliqua', 'richelieu', 'affaiblir', 'centralisée', 'gs', '9_cases', 'photo_ci-dessous', 'marque-pages', 'référent', 'nous_payons', 'italian_restaurant', 'bauer', '2024', 'appelant', 'gb', 'vitamine_k', 'effervescence', 'ancrée', 'tompress', 'groupe_m6', '47_ans', 'dispenser', 'nébuleuse', 'vous_pensiez', 'enveloppent', 'alhambra', 'nouvelles_!', 'saxo', 'aubrac', 'fierté_nationale', 'best_of', 'grands_vins', 'fréquenter', 'rarissime', 'colorant_naturel', 'carmin', 'anis_vert', 'minimum_1h', 'luxueuse', 'servir_loyalement', 'canal_alpha', 'tracer', 'ellipse', 'affichage', 'casual', 'emoji', 'temperature_ambiante', 'démontrent', 'protectrices', 'actives', 'parcourant', 'sans_interruption', 'aux_extrémités', 'vivi', 'vil', 'astrologiques', 'capricorne', 'magnets', 'posait', 'pelouses', 'orangées', 'modules', 'convenance', 'serruriers', 'vous_tombez', 'auquel_vient', '4_cuil', 'fâchés', 'campo', 'conducteur', 'cambouis', 'pu_rencontrer', 'marta', 'niveau_supérieur', 'grille_salariale', 'referme', 'synopsis', 'couvrez_-le', 'banquettes', '/_fr', 'no_stress', 'vos_coordonnées', '70€', 'evaluer', 'conditionné', 'température_entre', 'stupidement', 'db', 'tamarin', 'crépitent', 'fenugrec', 'tandoori', 'garlic', 'bruni', 'tarantino', 'mémo', 'retracer', 'sans_scrupules', 'détoxifier', 'thierry_casasnovas', 'régénère', 'ses_connaissances', 'utopies', 'indemnités', 'stationnement', 'indicateur', 'bonnes_sources', 'oligo-_éléments', 'extraction_lente', 'ambulant', 'constructifs', 'accabler', 'respectives', 'illimitées', 'expéditeur', 'défaites', 'croisements', 'html5', 'e-learning', 'hitchcock', 'invitait', 'puaient', 'estomacs', 'tropicana', 'au-dessous', 'nous_ajoutons', 'maj', 'pointeur', 'servais', 'riverains', 'tenteront', 'musulmane', 'écartés', 'mêlées', 'cigarette_électronique', 'délectables', 'honoraires', 'commissaire-priseur', 'sous-titres', 'hydratez', 'crème_hydratante', 'ajuste', 'fumes', 'pourvue', 'figent', 'priere', 'aus', 'ils_aient', 'organisées', 'créez', 'enrichis', 'karité_bio', 'jojoba_bio', 'poupe', 'coriandre_moulue', 'faisant_bouillir', 'draco', 'petites_assiettes', 'sake', 'petit_ourson', 'xvième_siècle', 'reviendrai', 'mon_vagalame', 'hotelier', 'prodige', 'corrigé', 'huissiers', 'organisationnelles', 'in_situ', 'surcharge', 'tournedos_rossini', 'audiences', 'provoquant', 'années_soixante', 'toile_cirée', 'semblé', 'étinceler', 'géniteurs', 'daigné', 'olivia', 'annotations', 'manquantes', 'supermarchés', 'lolita', 'paumes', 'lyophilisé', 'rez-de-chaussée', 'services_publics', 'fêter_ça', 'hôpitaux', 'scanners', 'barrettes', 'présentateurs', 'dièse', 'télévisés', 'affichent', 'collusion', 'établies', 'marrons_chauds', 'samedi_après-midi', 'interrompue', 'irrégulier', \"s'_écrasent\", 'beckett', 'ouzo', 'gratis', 'tiny', 'greniers', 'indissociable', 'thaïlande', 'tee-shirts', 'fiscaux', 'avis_favorable', 'indéfectible', 'militantisme', 'dignité', 'exigent', 'patriotisme', 'collecter', 'hercule', '‘', 'psychédélique', 'application_iphone', 'vino', 'quiz', 'galler', 'eldorado', 'télévisions', 'reversés', '12_janvier', 'futuroscope', 'big_bang', 'bunny', 'tapage', 'liquoreux', 'sauternes', 's1', 'tin', 'takumi', 'cil', 'grand_désespoir', 'ridiculiser', 'perpétuelle', 'différer', 'aimes_-tu', '4_décembre', 'texture_homogène', 'offrirait', 'osier', 'warm', 'kool', 'sous_pression', 'compas', 'promoteur', 'négocié', 'égalité', 'écus', 'fusionné', 'charter', 'adèle', 'anti-_déprime', 'récupérera', 'vannerie', 'céramiques', 'réseaux', 'macabre', 'délinquance', 'barbus', 'repentis', 'dépot', 'représailles', 'drive', 'crosse', 'latine', 'hectares', 'conservatoire', 'mènera', 'dangereuses', 'testées', 'sûres', 'savage', 'nouvelles_fonctionnalités', 'associations_caritatives', 'assoiffés', '1er_août', 'election', 'auditeur', 'cette_nuit-là', 'affrontement', 'vases', 'caire', 'esmeralda', '65_gr', \"s'_enfonce\", '380', 'horizontale', 'conquise', 'pastels', 'nouvel_arrivant', 'généreuses', 'flambant_neuve', 'ch', \"m'_interesse\", 'exalte', 'nougats', 'totalement_vide', 'démos', 'lui_proposa', 'récoltez', 'matifier', 'peaux_grasses', 'poreuses', 'ingrédients_indispensables', 'chez_soi', 'contenue', 'petits_rectangles', 'explique_pourquoi', 'travaillez_ensemble', 'sortez_-le', 'imposantes', 'station_service', 'rapées', \"s'_écrasa\", 'angels', 'interdites', 'last_but', 'interposer', 'pourcent', 'dégraissage', 'h1', 'h2', 'nous_venions', 'miel*', 'se_concentrer', 'traqué', 'replace', 'ala', 'fourre-tout', 'arcade_sourcilière', 'donne_naissance', 'smallville', 'président_erdogan', 'moore', 'son_ainé', 'uht', 'rend_visite', 'mouth', 'hypnotique', 'entêtement', 'se_privent', 'éloquent', 'dénominations', \"s'_appliquent\", 'multiplication', 'chartes', 'commerce_équitable', 'bonnes_pratiques', \"s'_améliorent\", 'populations_locales', 'dérober', 'londonienne', 'inespérée', 'musculaire', 'peau.', 'demi-heure_avant', 'amandes_amères', 'crème_frangipane', '230', 'soudés', '210_°', 'vidée', 'fracas', 'cuisinant', 'attira', 'déplaise', 'remette', 'délectation', 'désagréables', 'accélérateur', \"venus_s'\", 'gui', 'délicieuse_odeur', 'frissonner', 'laisser_agir', 'siamois', 'obtint', 'foreign', 'appellations', '1968', 'privilégiant', 'préféraient', 'donnerons', \"j'_écrivais\", 'garnison', 'gouverneurs', 'xve', 'xviiie', 'foix', 'timbale', 'year', 'xvie_siècle', 'enfilant', 'pastel', 'meules', 'anissa', '♥anissa', 'miss_dior', 'requiem', 'désactive', 'jouables', 'aiderons', 'splash', 'islandais', 'coiffant', 'dociles', 'bousculé', 'xvii', '6,6', '340_millions', 'hansel', 'gretel', 'py', 'drone', 'occultes', 'pir', 'nerf', 'assumé', 'moisir', 'granite', 'éthiopie', 'neuves', 'impec', 'petit_livret', 'sèche_linge', 'disjoncter', 'démontré', 'federer', 'australiens', 'pièces_uniques', 'onirique', 'admirateurs', 'envoyaient', 'tignasse', 'anti-_cellulite', '600_euros', 'ht', 'sundae', 'griffonner', 'brunâtre', 'recouvrait', 'songé', 'géré', 'extras', 'corrompue', 'délimite', 'nouvelles_possibilités', 'accordé', 'jetables', 'réutilisables', 'apportées', 'bloggeuse', 'graphismes', 'pénètrent', 'simpliste', 'personellement', 'vous_trompez', 'obsolètes', 'estimé', 'défaillant', 'capitalisation', 'épaisseurs', 'décoratif', 'nous_désirons', 'chèques_cadeaux', 'ministres', 'subventionner', 'bobby', 'spin-off', 'pesticide', 'points_négatifs', 'vainement', 'gra', 'croco', 'situation_actuelle', 'adjuvant', 'xxe_siècle', 'sclérose', '396', 'drapeaux', 'décollent', 'on_assiste', 'procession', 'multiplient', 'excés', 'moitiè', 'bestouney', 'ktm', 'chti', 'psk_mouth', 'chou_fleur', 'exotisme', 'langue_étrangère', '29_octobre', 'causant', 'colere', 'cheescake', 'barsac', 'drôme', 'indiscutable', 'allergie', 'démangeaisons', 'homogène.3', 'ai_testé', 'filières', 'yui', \"m'_assoie\", 'aient_pu', 'inerte', 'conditionne', 'renforçant', 'display', 'bond', 'panade', 'errance', 'affilée', 'jouaient', 'poussais', 'me_rappelais', 'georgie', 'prétentieux', '1d', 'contactez_-moi', 'émane', 'marriott', 'retraités', 'traders', 'caricatures', 'transcende', 'émission_ait', 'été_retirée', 'britney_retourne', 'repart_vite', 'censées', 'expériences_culinaires', 'sifflement', 'brouille', 'prétendues', 'somptueuses', 'variait', 'hobbit', 'autobiographie', 'catalogues', 'optimisés', 'visualisation', 'industrialisation', 'galles', 'êtres_vivants', 'commercialisant', 'hydratent', 'piquez_-la', 'ballets', 'boyfriend', 'plein_cœur', 'surcroît', 'dernières_nouveautés', 'roulais', 'ses_faces', 'film_transparent', 'surmontés', 'liez', 'abanico', '24_octobre', 'vibre', 'monopoly', 'ambiances', 'très_efficaces', 'lèvres_sèches', 'paternelle', 'désireuses', 'règlement_intérieur', 'kick', 'projette', 'éruption', 'vous_recherchez', 'affecte', 'stewart', 'amnésie', 'baston', 'allumés', 'moule_huilé', 'tempe', 'elisa', 'nutrition_sportive', 'embrasure', 'glissent', 'sous_linux', 'annette', 'andre', 'rentrez_chez', 'recommandée', 'problème_majeur', 'chantier', 'ganaches', '16ème', 'présentera', 'avant-première', 'philosophiques', 'poétiques', 'marocain', 'caudalies', 'grands_amateurs', 'toujours_évident', 'dasn', 'cuisine_indienne', 'mcdonalds', 'nos_habitudes', 'chauffante', 'indiquait', 'recolter', 'recouvrant', 'deuxième_édition', 'serpillère', 'firefox', 'goûtais', 'par_inadvertance', 'mauvaise_foi', 'mes_soins', 'halls', 'recruter', 'rendre_accessible', 'frida', 'régions_productrices', 'cultivés', 'cabernet_sauvignon', 'evans', 'restrictions', 'coursier', 'année_approchent', 'mènent', 'blondinet', '.~', 'aérez', 'ventiler', 'montre_comment', 'croustille', 'répression', 'mafieuse', 'filature', 'enquêteurs', 'presse_purée', 'façonnez', '50kg', 'causée', 'www', 'brigands', 'bretelle', 'compoté', 'pigeonneau', 'poêlé', 'safrané', 'ampli', 'conseillerai', 'motiver', 'hands', 'vraiment_sympa', 'perpétue', 'six_ans', 'dessinant', 'bénévolat', 'bouteilles_vides', 'adressée', 'asso', 'cliquetis', 'hérisson', '47_%', 'accélérant', 'fâcheux', 'courriers', 'intrusions', 'miraculeuse', 'spartiates', 'se_situer', 'fabrication_artisanale', 'providence', 'background', 'dotation', 'dotations', 'replonge', 'déjà_prévus', 'rayure', 'poilu', 'repliées', 'vaille', 'serrait', 'évacuation', 'voudriez_-vous', 'confirmés', 'palmer', 'converser', 'aisance', 'molière', 'cognacs', 'ses_péchés', 'gate', 'gangs', 'plongeons', 'bisounours', 'marron_clair', 'basic', 'topissime', 'génialissime', 'se_régalent', 'jambonneau', 'vos_bouts', 'fillettes', 'allen', 'espionne', 'mandorle', 'bonne_rasade', 'déroger', 'style_vestimentaire', 'abonnement_mensuel', 'vous_conseillons', 'vos_désirs', 'antistress', 'carol', 'goûtait', 'privilégiés', 'repus', 'tapa', 'interprété', 'ronaldo', 'owen', 'cegep', 'dinosaures', 'kong', 'sa_splendeur', 'macbook', 'perturbée', 'asséchant', 'mcgee', 'abby', 'collerette', 'journée_passée', 'divise', 'voudrez', 'cueille', 'inonde', 'lacets', 'olonne', 'bavure', 'vine', 'madara', 'bénéficie', 'intitulée', 'adams', 'relu', 'brett', 'être_élancé', 'motor', 'navets_coupés', 'finement_haché', 'pois_cassés', 'nouvelle_rubrique', 'arrachage', 'rejeton', 'délimitée', \"s'_étend\", 'exprima', 'apparaissant', 'lecteur_audio', 'carte_mémoire', 'dispositifs', '12v', 'guinguette', 'fab', 'monet', 'dissimulés', 'espaces_verts', 'évitait', 'opportunité', 'ses_états', 'dressé', 'babar', 'euthanasie', 'controles', 'qlq', 'transformant', 'polluée', 'citron_acidulé', 'se_multiplient', 'proposons', 'installer_confortablement', '2000€', 'archers', 'ien', 'se_heurte', 'fatale', 'kill', 'dormant', 'topics', 'minceur', 'rta', 'précède', 'borne', 'interactive', 'nadal', 'cloud_computing', 'hébergement', 'virtuels', 'liv', 'surréaliste', 'beaujolais_nouveau', 'manifestation', 'saint_joseph', 'riz_rouge', 'lui_confère', 'tonalité', 'rougeâtre', 'cholesterol', 'policosanol', 'champignon_microscopique', 'cet_épisode', 'placent', 'tes_compagnons', 'idéaux', 'écuyer', 'ton_écuyer', 'demi-avocat', 'chen', 'caché_derrière', 'jacky', 'plairait', 'n`est', 'spécificités', 'climatisation_réversible', 'cardio-_vasculaire', 'compléments_alimentaires', 'larme_devant', 'franchises', 'mes_fesses', 'faire.', 'médicaux', 'secours_populaire', 'valeurs_humanistes', 'lorrains', 'groupe_ble', 'entité_ble', 'dispositifs_médicaux', 'frontiere', 'remises', 'arbustes', 'fera_gagner', '0,5', 'confectionnent', 'rivets', 'solidité', 'nouvelle_édition', 'mélancoliques', 'méconnus', 'bienfait', 'déployée', 'lauréat', 'buveur', 'délibération', 'décidées', 'briochés', 'fendues', 'canne_complet', 'suis_allée', '3min', 'açaï', 'meilleure_conservation', 'ça_fonctionne', 'violentes', 'yaourte', 'illustrateur', '1921', 'frottement', 'janeiro', '1,15', '228', 'af', '1er_juin', 'succès_grandissant', 'refusaient', 'thermomètres', 'sondes', 'variateur', 'chap', 'mrs', 'palestinien', 'payée', 'vous_considérez', 'alors_ayez', 'réflexe_location', 'économisez_jus', 'fin_août', 'appréhender', 'clergé', 'déconseille', 'marguerites', 'fol', 'pige', 'hawai', 'pacifiques', 'trouer', 'sentimentale', 'persuader', 'pouvant_accueillir', 'confiseurs', 'pâte_briochée', 'finistère', 'baratte', 'résolut', 'inattendu', 'fermentée', 'arômes_subtils', 'on_excepte', 'mue', 'perrin', 'commissure', 'bruitages', 'anomalies', 'hart', 'partiront', 'amplificateur', 'admises', 'tennessee', 'reforme', 'personnalisables', 'transformers', 'chorégraphie', 'calvin', 'souls', 'savourant', '300_€', 'faire_briller', 'sonic', 'lms', 'brouhaha', 'échappant', 'quiétude', 'ne_fonctionnent', 'brindille', 'egouttez_-les', 'chipolatas', 'purifiés', '2ième', 'ses_partenaires', 'était_fixé', 'noircis', 'superficiel', 'mot_clé', 'grises', 'namur', 'sucres_lents', 'isolants', 'quels_types', 'commit', 'charmeurs', 'liga', 'approchent', 'trop_compliqué', 'intégrateur', 'crm', 'avançant', 'agrandit', 'loger', 'apprises', 'remus', 'préjugé', 'discrimination', 'jill', 'seal', 'svelte', 'dominic', 'publicitaires', 'astra', 'dash', 'tops', 'oeuvres_caritatives', 'défavorisés', 'vidéos_youtube', 'abusez_pas', '20e', 'chouchous', 'nicky', 'adresse_électronique', 'postale', 'délivrée', 'ignorent', 'manganèse', 'vitamines_e', 'b5', 'apprécieront', 'resteras', 'probléme', 'quelques_lignes', 'occasionner', 'vos_souhaits', 'inférieurs', 'dérailler', 'harold', 'qu`on', '58_ans', 'serait_-il', 'place_importante', 'codes_promos', 'global', 'provinces', 'contrée', 'pays_concernés', 'financés_par', '238', 'apparurent', 'oppression', 'après-shampooing', 'solde', 'découvriront', 'dix_aiment', 'tartes_salées', 'leviers', 'clients_potentiels', 'adwords', 'nombreux_avantages', 'supprimée', 'nbc', 'protester', 'evasion', '1903', '65_ans', 'désespéré', 'arrivee', 'expliquer_pourquoi', 'regardés', \"c'_ets\", 'clé_3g', 'référencer', 'panacée', 'désinfecte', 'extraient', 'méthodes_naturelles', 'valeur_ajoutée', 'tirent', 'stabilisé', 'nouveaux_débouchés', 'pyrolyse', 'préférerais', 'pesante', 'lui_plaire', 'intérieurs', 'coûta', 'éparpillant', 'constata', 'stoppée', 'anti-_âge', 'détenir', 'avaient_porté', 'plainte_contre', '1000_€', 'dégoulinante', 'persuadée', 'temporelles', 'musulmanes', 'aux_brisures', 'misant_sur', 'tweed', 'silhouettes', 'chiné', 'leggings', 'nude', 'pardessus', 'diffuseurs', 'défendent', 'occupait', 'stupéfaction', 'brésiliens', 'bilou', 'codé', 'how', 'neil', 'offices', 'corvées', 'assaillants', 'mortellement', 'se_contentera', 'ballonnements', 'laitues', 'cultivées', 'nitrates', 'ily', 'boisé', 'calabre', 'autorisent', 'reinette', 'reprenait', 'aventuré', 'dénuée', 'attribue', '2000_euros', 'fumeurs', 'fidélisation', 'robe_rouge', 'evident', 'jouais', 'agreable', 'luter', 'sèvre', 'défendre_contre', 'amene', 'tu_perds', 'tapent', \"j'_apprenne\", 'cerner', 'leur_insu', 'nécropole', 'fermera', 'essieu', 'lissage', 'modifiable', 'procurant', 'maine', 'nouveau_président', 'contexte_actuel', 'idol', 'certaines_circonstances', 'communion_sous', 'saint_sacrement', 'célébré', 'saint_sacrifice', 'viatique', 'confiés', 'préside', 'diacres', 'distribuent', 'nées', 'terre_rissolées', 'liturgique', 'approvisionné', 'liturgie', 'eucharistie', 'chaptalisation', 'additif', 'vin_muté', 'libations', 'judaïsme', 'kiddouch', 'célébrations', 'eucharistiques', 'personnes_présentes', 'substantiellement', 'transsubstantiation', 'sacristie', 'communion', 'plus_élaborées', 'composantes', 'bénédictions', 'symbolise', 'consistoire', 'régions_viticoles', \"s'_oriente\", 'transvasé', 'pékin', '7€', '23_décembre', 'trs', 'petite-fille', '000_€', 'friande', 'mozilla', 'securite', '&_sommelier', 'officiel_du', 'verrerie', 'meilleur_sommelier', 'félicite', '14ème', 'carafes', 'spirits', 'sourate', 'envoûtant', 'cheveux_foncés', 'incité', 'rapport_qualité', 'crépus', 'modifiées', 'cata', 'contrepartie', 'transmettent', 'leurs_connaissances', 'palet_breton', 'senseo', '5/10', 'proportionnellement', 'pholos', 'centaure', 'chiron', 'groupe_américain', 'heavy_metal', 'pionnier', 'poudrez', 'seize_ans', 'révéla', 'temps_partiel', 'traditionelle', 'escale', 'cumulé', '=3', 'carnivore', 'délicats', 'assortiments', 'plus_exigeants', 'torréfiée', 'broyée', 'genèse', 'aztèques', 'associent', 'plusieurs_siècles', 'territoires', 'considéraient', 'nous_disposons', 'jours_froids', 'vont_célébrer', '3e_édition', 'haute-savoie', 'cap_periaz', 'seynod', 'harvey', 'volontariste', 'sécurité_routière', 'présidentiels', 'santé_publique', 'renforcement', 'consommée', '12,7', '0,8_%', 'ténébreux', 'attachées', 'débrouillé', 'belles_couleurs', 'ivoirien', '630', 'émoluments', 'anecdotique', 'paresseuses', 'dégoûter', 'incinération', 'scories', 'vous_souhaiterez', 'castes', 'élément_nutritif', 'dégainer', 'gilets', 'propice', 'forcée', 'quittait', 'pointait', 'lutin', 'étalages', 'susi', 'bailey', 'embellissement', 'inconditionnels', 'tire-bouchon', 'ragoûts', 'rassasier', 'soupé', 'rt', 'stabilise', 'quils', 'pédales', 'heineken', 'croyaient', 'brigades', 'crs', 'cellulaires', 'malien', 'affaire_elf', 'lamborghinismiss_ouvre', 'ton_garage', 'ma_audisaveur', 'risqueecarte', 'goute_ma', 'chipselle', 'sort_beaucoupelle', 'fait_cramee', 'barbecuea_200', 'periph', 'vrai_garssur', 'banquette_arriere', 'gout_paprika', 'bourdon', 'disparues', 'coupables', 'bine', 'empathie', 'confondent', 'cohorte', 'gouffre', 'ambroise', 'marche-pied', 'empiéter_sur', '97', 'claudel', 'vélodrome', 'bonds', '365_jours', 'accompte', 'pickles', 'cocktail_explosif', 'ricard', 'fait_remarquer', 'montrais', 'expliquerai', '60_grammes', 'quittez', 'percuté', 'collision', 'quatre_ans', 'cyril_lignac', 'pétille', 'sophistiqué', 'vert_émeraude', 'drag', 'ghislaine', 'sous-jacente', 'attelage', 'prédiction', 'développera', 'heures_supplémentaires', '9_février', 'invités_arrivent', 'âpre', 'premier_rang', 'autographe', 'anodine', 'pasteis', 'munch', 'resister', 'juillet_2008', 'labs', 'vanter', 'surgi', 'petits_plats', 'tiendra', 'couleurs_chaudes', 'hivernales', 'jérémy', 'guirlande', 'retrouveront', 'reconnecter', 'n.b.', \"n'_est-ce-pas\", 'colmar', 'florissante', 'renouvellement', 'vel', 'hiv', '15.000', 'foufou', 'mwen', '✓', 'sénateur', 'leg', 'kilomètres_parcourus', 'infortune', 'cours_desquels', 'incarnat', 'formations', 'parait_-il', 'tottenham', 'isolement', 'kri', 'oit', 'irm', 'claquement', 'plusieurs_dizaines', 'apero', '21h00', 'conso', 'victorien', 'prédateurs', 'attendez_-vous', 'pancarte', 'grrr', 'politicienne', 'stories', 'répertoriées', 'circulation_sanguine', 'tonifiante', 'tribulations', 'glande', 'fût_-ce', 'lui_reproche', 'entreprendre', 'châtiment', 'remerciant', 'où_provient', 'sid', 'mp4', 'ovales', '1x', 'fevrier', 'modulaire', 'ambiant', '410', 'punching_ball', 'déjà_annoncées', 'hulk_hogan', 'iron', 'concessions', 'plougastel', 'caravanes', 'sélectionnée', 'therm.6', 'couleur_ambrée', 'fantastik', 'couverture_ivoire', 'batteur_muni', 'audible', '60_ans', 'qualité_irréprochable', '350_gr', 'saladier.2', 'poivre1', 'eau1', 'ardemment', 'cocktail_molotov', 'creme_anglaise', 'bisphénol_a', 'détergents', 'détruisent', 'liaisons', 'earth', '450_millions', 'thermostat_8', 'préalablement_lavées', 'super_héros', 'réticences', 'carbonisé', 'nos_vestes', 'bulgare', 'morsure', 'mélangez_vivement', 'ajoutez_-lui', 'réservez_-en', 'incorporez_-la', 'uv', 'modérateurs', 'cic', 'minerve', 'sprite', 'démocrate', 'expansion', 'muslim', 'fléaux', 'aiguisé', 'mastering', 'conseillez', 'peux_-tu', 'jurée', 'mousserons', 'riz_pilaf', 'aligot', 'slogans', 'villepin', 'christiane', 'radars', '♥♥♥', 'se_réjouir', 'décidant', 'natur', 'pl', 'montoya', 'colombien', '6h30', 'nommera', '292', 'décembre_2011', 'preniez', 'big_up', 'croisement_entre', 'funéraire', 'éclectisme', 'flexibilité', 'manquons', 'lubrifier', 'baleine', 'sn', 'osant', 'vingt_minutes', 'grams', 'vocales', 'amalgames', 'personnalise', 'dodge', 'marinière', 'parut', 'mi-juin', 'travails', 'indomptable', 'repoussant', 'puiser', 'karim', 'boissons_fermentées', 'confèrent', 'fêtes_religieuses', 'balkans', 'virilité', 'amérique_latine', 'egyptiens', 'fabriquait', 'égyptienne', 'funéraires', 'hébreux', 'réjouit_dieu', 'condamnation', 'tumultueuses', 'religion_chrétienne', 'viticulture', 'prouvent', 'iliade', 'galien', 'abbayes', 'monastères', 'surveillent', 'xixème_siècle', 'choléra', 'fortement_recommandé', 'batre', 'anthologie', 'beaucoups', 'biscuits_fourrés', 'ignoré', 'commandants', 'virtuelles', 'internes', 'jim', 'beethoven', 'malpropre', 'aristocrate', 'alcôve', 'était_occupée', 'exclamation', 'différents_éléments', 'ouvragée', 'bienfaiteur', 'caissier', 'songea', 'égarée', 'fournies', 'ondulées', 'déterminent', 'exécrable', 'célèbre_fabricant', 'créoles', 'bel_oeil', 'plusieurs_mètres', 'vous_alliez', 'érudition', 'tardifs', 'pintes', 'motion', 'force_physique', 'photo-', 'cuisinés', 'karl_lagerfeld', \"m'_ennuyer\", 'pester', 'bicyclettes', 'enivrer', 'jeter_dedans', 'trench', 'multicolores', 'georges_v', 'interessante', 'alcoolisés', 'montées', 'balise_<', 'roster', 'logent', 'suspectes', 'kitkat', 'contrôleurs', 'homos', 'kawa', 'integrer', 'auto-_dérision', 'piou', 'uniformiser', 'malaxeur', 'égalisez', 'wolfgang', 'incorrecte', 'apéro_improvisé', 'relai', 'ses_faiblesses', 'immunité', 'importée', \"s'_enflamme\", 'je_désirais', 'vénérer', 'me_réjouis', 'solliciter', 'erronées', \"s'_occupera\", 'mirabelle', 'ne_cesserai', 'avais_envie', 'cet_ouvrage', 'qui_voudraient', 'certains_aspects', 'récapitule', 'remerciements', 'humoriste', 'cet_incident', '\\\\o_/', 'vilains', 'cessa', 'nouvelles_techniques', 'antérieures', 'remontez', 'dirigez', 'manivelle', 'hunters', 'couvrit', 'inversement', \"s'_accordent\", 'site_dédié', 'revente', 'cotation', 'igloo', 'tournantes', \"t'_avoue\", 'doive', 'formel', 'drift', 'rédiger', 'incompris', 'octobre_dernier', 'se_déplacent', 'pimenté', 'koh-lanta', 'face_cachée', 'morsi', 'hilarité', 'app', 'révolutionne', 'provenance_directe', '50_centimes', 'never', 'février_2010', 'saloperie', 'pris_conscience', 'fâcher', 'interdire', 'orléans', 'bourg', 'jo-', 'lift', 'alberta', 'cabanon', 'inside', 'maxim', 'toulousaine', 'frappa', 'brou', 'hong', 'développement_international', 'hong_kong', 'phényléthylamine', \"'_up\", 'pourront_également', 'ironique', 'injustes', '1949', 'sporting', 'honorablement', 'vos_attentes', 'marker', 'jamais_pensé', 'quittera', '22_mars', 'ker', 'chaise_haute', 'parts_égales', 'pentagone', 'tu_prennes', 'centaures', 'versés', '.ca', 'briquettes', 'relou', 'référendum', '1891', 'initiative_populaire', 'agenouiller', 'annoncées', 'sest', 'assurait', 'bois_dormant', 'apocalypse', 'proclamant', 'saints_anges', 'divorcés', 'distinctifs', 'irene', 'vendredi_matin', 'brocantes', 'tremblait', 'coktail', 'champomy', 'nous_recherchons', 'significations', 'équerre', 'illuminati', 'méditation', 'opère', 'soso', 'activités_manuelles', 'chevronné', 'neutralisation', 'agresseur', 'uns_contre', 'presque_exclusivement', 'importés', 'farineuse', 'apareil', 'semoules', 'purs', 'empires', 'groupe_électrogène', 'trailer', 'jeux_olympiques', 'employaient', 'acharnée', 'mutations', 'débarasser', 'charmer', 'hills', 'natale', 'bon_augure', 'décortique', 'séchée', 'agitez', 'vingt-quatre_heures', 'vaporisez', 'cot', 'kyle', 'six_semaines', 'saillie', 'cierge', 'ces_gens-là', 'operation', 'entraînements', 'manipulateur', 'pièces_détachées', 'improviste', 'matériaux_utilisés', 'brosses', 'précipitation', 'y_reviendrons', 'crawl', 'plaisantant', 'quantifier', 'tes_loisirs', 'ingenieur', 'dynamisant', 'parmi_celles', 'exposées', 'austin', 'yankee', 'avenues', 'cousez', 'pompom', 'considérait', 'procréation', '23ème', '3_ème', 'libérées', 'tarama', 'pays_étrangers', 'samantha', 'sterling', '£lle', '9_h', 'hors_normes', 'aucune_règle', 'durciront', 'son_capuchon', 'capuchon', 'accompagneront', 'bavardages', 'alter_eco', '1er_novembre', 'seizième', 'signifient', 'désodoriser', 'polluante', 'robinetterie', 'mites', 'argenterie', 'adéquates', 'harnais', 'grid', 'mutualiser', 'renommé', 'investissent', 'aimerait_pouvoir', \"n'_hésitaient\", 'sépara', \"s'_abstient\", 'ils_vendent', 'nets', 'fuschia', 'involontairement', 'intercooler', 'soupapes', 'clover', 'scrupuleux', 'renfermer', 'voyante', 'divinatoire', 'débite', 'morning', 'plongées', 'fréquemment_utilisé', 'crème_patissière', 'rattrapage', 'pate_brisée', 'donnai', 'conclusions', 'referencement', 'blazer', 'meurtrière', 'juges', 'condamnent', 'dommages-intérêts', 'civiles', 'poussiere', 'conditionnements', 'cléopâtre', 'novateur', 'bonifier', 'chie', 'nous_réservons', 'vous_demandons', 'interviewé', 'nous_reprenons', 'storm', 'astrid', 'consigné', 'petites_galettes', 'sanglier', 'norah', 'sexistes', 'was', 'perroquet', 'afrique_centrale', 'haut_débit', 'plainte', 'bandes_dessinées', 'opprimé', 'bot', 'péloponnèse', 'ginseng', 'kamikaze', 'chapitre_suivant', 'jr', 'arrange', 'dissimulée', 'prêté', 'lamartine', 'inculpation', 'comparution', 'gîtes', 'crypte', 'ils_parlent', 'insécurité', 'illicite', 'doublette', 'plomber', 'parvis', 'fracture_sociale', 'chuté', 'vols', 'rmi', 'constellation', 'saches', 'traversée', 'aucun_regret', 'réussisse', 'epargne', 'favoritisme', 'sorbets', '3ème_place', 'soupçonner', 'involontaires', 'inspirant', 'reference', 'chouchoute', 'icones', 'directives', 'nul_part', 'forte_odeur', 'donnais', 'déballer', 'tranquillou', 'chios', 'ariane', 'pingouins', 'provision', 'chacun_puisse', 'constitués', 'escapades', 'prevoir', 'sacoches', 'dragons', 'flasque', 'colissimo', 'paillasse', 'porté_volontaire', 'contribuable', 'fables', 'massivement', 'goji', 'commercialisée_sous', 'nombreuses_formes', 'gélule', 'mécanicien', 'gressins', '-150_g', 'lièvre', 'anglo-_saxons', 'maniable', '24e', 'titulaire', 'franck_ribéry', 'détonateur', 'titeuf', 'ferveur', 'hargne', 'premières_années', 'estomper', 'produit_céréalier', 'protéines_végétales', 'existons', 'tellement_contente', 'trimestre', 'salit', 'déroulée', 'émince', 'lambrusco', 'plien', 'engendrant', 'fissure', 'torréfiez', 'vas_-tu', 'noisettes_entières', 'pédestre', 'amerique', 'aurait_fallu', 'inaudible', 'archéologue', 'écartée', 'courbées', 'moustiquaire', 'mêmes_conditions', 'désirant', 'souligner', 'comprimer', 'divorces', 'étourdissement', 'bandit', 'vingt-six', 'vingt-quatre', 'commercy', 'j_aimerai', 'specialement', 'psa', 'je_cherchai', 'era', 'authentic', 'fesai', 'ravissante', '☆', 'sports_nautiques', 'centrales_nucléaires', 'alertes', 'détroit', 'ces_déclarations', 'réchauffera', 'mayenne', 'chaperon', 'barre_chocolatée', 'berlingot', 'metres', 'diversifier', 'prêté_serment', 'donjon', 'rm', '400.000', 'provienne', 'remixez', 'facettes', 'thompson', 'plastique_transparent', 'mouloud', 'sherley', 'uriner', 'motorisé', 'assimilé', 'enragés', 'facturer', '22_novembre', 'ses_concurrents', 'hérite', 'mensuels', 'réclament', 'frigo-', 'matérialiste', 'dautres', 'oublierez', 'avancés', 'roulait', \"s'_attarde\", 'blâme', 'dme', 'jte_souhaite', 'nos_gouvernants', 'nourrisse', 'cerné', 'presses', 'vantent', 'recettes_simples', '1600', 'défilement', 'applis', 'ostentation', 'qualitatifs', 'soumettant', 'référencement', 'thermostat_7-8', 'ernst', 'sectes', 'excessif', '2m', 'prostitution', 'pulvérisé', 'cosmo', 'inimitable', 'continuerez', 'dingues', 'lavait', 'tumbler', 'finlandaise', 'anomalie', 'rations', 'suffisantes', 'crispy', 'plairont', 'réparties', 'complétée', 'moindre_larme', 'compte-rendu', 'répandant', 'séparation_entre', 'miranda', 'origine_italienne', 'octobre_2008', 'evry', 'huit_mois', 'epreuve', 'annulation', 'outrage', '1965', 'réduirait', 'sartre', 'pose_problème', 'bidule', 'payées', 'trauma', 'cervicale', 'envahis', 'st_malo', 'intra', 'dame_nature', 'balsa', 'suspensions', 'changeront', 'fôret', 'détester', 'versets', 'capitale_mondiale', 'nash', 'courais', 'moins_chères', 'reçues', 'nulles', 'evian', 'effectuera', 'passage_obligé', 'périmés', 'toutes_circonstances', 'débrancher', 'substitution', 'conjonction', 'dirigeait_vers', 'nacrer', '[_ii', 'posséde', 'ancien_chef', 'trahi', 'barge', 'klaxons', 'résineux', 'sommités', 'fleuries', 'habillées', 'frugal', 'préparaient', 'parsemées', 'fameuse_pâtisserie', 'tousse', 'attrapez', 'retournement', 'large_éventail', 'yannick', 'meetic', 'instantanées', 'nous_faisions', 'sexes', 'posterais', 'concernée', 'enfumer', 'num', 'boiteux', 'gabriel', 'qqun', 'rajoutez_-y', 'formera', '17_mars', 'symphonie', 'réinvente', 'aux_aurores', 'abonnés', 'connectées', 'affaissement', 'crapaud', 'reportez', 'rupert', 'coca-cola_light', 'intervertir', 'croisées', 'stp_?', 'barres_tendres', 'elles_firent', 'a_confirmé', 'infranchissable', 'coquelicots', 'apprenaient', 'coula', 'limitées', 'ai_commencé', 'artillerie_lourde', 'candidates', 'juillet_2015', 'rossignol', 'ilfaut', 'ressortent', 'fumier', 'décomposé', 'arrosages', 'emmanuelle', 'bos', 'effacez', 'armagnac', 'formulaire_ci-dessous', 'intelligences', 'super_simpa', 'peta', 'debile', 'chronologie', 'transitions_entre', '18_mars', 'chandler', 'bing', 'habitacle', 'oublis', 'cyber', 'effervescent', 'édulcorants', 'confiseries', 'aromes', 'cent_mille', 'exécuter', 'heavy', 'ortie', 'oeufs_pochés', 'rongeur', 'loops', 'abrégé', 'het', 'o2', 'titane', 'kune', 'émeute', 'thibault', 'francois', 'dîtes', 'cratère', 'pompéi', 'maxwell', 'enchanteur', 'jardiner', 'mercury', 'remplir_ton', 'censuré', 'descendez', 'kebabs', 'mécanisme', 'actionné', 'ont_adopté', 'piston', 'tricolores', 'bascule', 'depuis_2004', 'sécurisée', 'incorporant_progressivement', 'basilic_ciselées', 'lard_fumé', 'oignon_émincés', 'tex-mex', 'disparaitre', 'compos', 'biche', 'toniques', 'vitamine_b', 'insistant_sur', 'nourrira', 'prétendait', 'pompeux', 'rétrograde', 'assimilés', 'révolu', 'platre', 'qqs', 'freedom', 'par-ci', 'par-là', 'crosses', 'aspen', 'faune', 'sans_conservateurs', 'donneraient', 'juteuses', '.sur', 'éprouvette', 'acide_sulfurique', \"s'_échauffer\", 'y_remédier', 'gofio', 'attribués', 'développements', 'comportementale', 'abusivement', 'zodiac', 'interressant', '11_millions', 'traditionel', 'minces', 'marquant', 'prolongée', 'baladeur', 'venez_découvrir', 'leurs_maris', \"s'_apprêtaient\", 'amandes_pilées', 'ancestrales', 'réparatrices', 'perdais', 'dax', 'tk', 'mongols', 'présences', 'invisibles', 'ses_cousins', 'rent', 'amoure', \"mam_'\", 'sa_détermination', 'hideux', 'imposent', 'avantageuses', 'se_spécialise', 'amicales', 'trente-deux', 'subvention', 'préjudice', 'rentes', 'vaccination', 'renseignements_personnels', 'recueillis', 'institut_national', 'infection', 'riders', 'diraient', 'péremption', 'citez', 'inès', 'tibétains', 'milkshakes', 'adaptable', 'retentir', '||', 'tranchants', 'mae', 'dailleurs', 'cacher_derrière', 'constitutionnelle', 'second_empire', 'autres_modifications', 'accroître', \"n'_acceptera\", 'mma', 'pla', 'turner', 'compte_rendu', 'expérimentés', 'treize_ans', 'iota', 'rabattu', 'scier', 'hydraulique', 'par_exemple.', 'aimiez', '10h00', 'vagabond', '7000', 'souffraient', 'déficit', 'proprio', 'alléchant', 'jongleurs', 'demandera', '3,6', 'bien_aéré', 'poèle', 'spécifiée', 'arrachés', 'éventré', 'presse_spécialisée', 'expulsions', '445', 'spontanés', 'vos_commandes', 'patientez', 'après-midis', 'rive_droite', 'bâtie', 'schistes', 'comblement', 'saturées', 'oscillant_entre', 'arménienne', 'depuis_1998', 'lorgne', '1988', '68', 'acclimatation', 'iodé', 'tramway', 'glaçages', 'aah', 'déglacé', 'magali', 'purger', 'détection', 'dévouée', 'stagiaire', 'plastron', 'guêtres', 'me_prive', 'rescue', 'varie_selon', 'colonne_vertébrale', 'gaufrette', 'azuki', 'swing', \"s'_exclame\", 'eye', 'hydrogène', 'lover', 'traffic', 'procedure', 'opportuniste', 'médiator', 'entendement', 'xxl', 'pétanque', 'fuient', 'tatiana', 'montreux', 'atomique', 'luxueux', 'épitaphe', 'gaffe_toi', 'sans_hésitation', 'postérieur', 'rajouterai', 'card', 'serait_tenté', 'erasmus', 'optimisme', 'accomplies', 'mettront', 'gaiement', 'cassait', 'époque_actuelle', 'tonifie', 'raffermissant', 'impliquait', 'vêtir', 'prescription', 'contraignante', 'énoncée', 'tnt', 'inquietez', 'sont_translucides', 'opérée', 'ev', 'brushing', 'arrosent', 'accrochent', 'engrais', 'infinies', 'pulpes', 'petit_marseillais', 'parti_politique', 'tongs', 'spécifier', 'parlées', 'refuges', 'fu', 'qualifiée', 'navigation', 'maîtrisent', 'html', 'été_déçu', 'epaisse', 'carrer', 'imaginez_-vous', 'féérique', 'référer', 'vous_déciderez', 'amour_immodéré', 'longue_chevelure', 'non_négligeables', 'convulsions', 'infarctus', 'intensifient', 'mollet', 'plait_beaucoup', 'nièces', 'piéger', 'tous_âges', 'main.', 'usuels', 'se_passionne', 'vittel', 'kind', 'best-seller', 'buvette', 'artistiquement', 'bénévole', 'naomie', '.oui', 'maltraitance', 'scratch', 'ribéry', 'généralisé', 'lobes', 'welcome', 'afghanistan', 'dirigent', 'biélorussie', 'prison_ferme', 'réveillons', 'boulots', 'tailleurs', 'masculins', 'je_lisais', 'acharné', 'délégué', 'ble', 'barbouillé', 'effectuent', 'traductrice', 'musique_classique', 'musique_électronique', 'bambi', 'st_nicolas', 'commodes', 'intellectuelle', 'handicap', 'borgne', 'libournais', 'aide_précieuse', 'duras', 'ils_allaient', 'déchaînement', 'présenteront', 'slash', '.vous_pouvez', 'devrez', \"j'_appelais\", 'trombones', 'education_nationale', 'intermarché', 'tribunaux', 'automatiques', 'mont-blanc', '8_mars', '1910', 'copenhague', 'socialistes', 'tapes', 'yellow', 'cab', 'empoisonne', 'inoffensif', 'ns_4', 'méprisant', 'mêlait', 'embarras', 'achevait', 'quelques_décennies', 'woody_allen', \"s'_extasier\", 'dédicaces', 'mesquine', 'valeurs_humaines', 'régisseur', 'nomination', 'informel', 'captive', 'prédominance', \"t'_enverrai\", 'barbare', 'morales', 'apostasie', 'grands_principes', 'humanistes', 'petites_madeleines', 'panthère', 'calva', 'eau_frémissante', '*parce', 'promenades', 'acquises', 'ebola', 'nourrice', 'amenait', 'cos', 'croisières', 'spirituelles', 'xs', 'accompagnateurs', 'énormement', 'athènes', 'récession', 'bien_agiter', 'irréel', 'vous_dégusterez', 'softs', 'écusson', 'clichy', 'questionné', 'soleil_brille', 'conditionnel', 'cuiseur', 'légale', 'tuyaux', 'terminator', 'salle_polyvalente', 'scolarité', 'loulous', 'désirable', 'avouez', 'bonnes_qualités', '8_novembre', 'promeneurs', 'host', 'alternatif', 'too', 'montagnes_russes', \"s'_opposent\", 'paris_sg', 'pleuve', 'ennuyeuses', 'exceptionnelles', 'avait_rapporté', 'iga', 'congés', 'beigne', 'sade', 'enfourna', 'proscrit', '6-3', 'lévitique', 'corps_humain', 'corinthiens', 'rejetant', 'automobile', 'carburants', 'reporters', 'regards_croisés', 'année_suivante', 'abandonnent', 'entendues', 'remplira', 'migratoire', 'audit', 'variée', 'samoussas', 'rtl', 'recevait', 'grosses_têtes', 'maltais', 'épilepsie', 'terreurs', 'entourés', 'paic_citron', 'titan', 'se_mobilisent', 'medias', 'hauts_responsables', 'julius', 'te_donnerai', 'votés', 'compteurs', 'commission_européenne', 'palestinienne', 'edmond', 'sera_reversée', 'unrwa', 'résultat_final', 'additionnées', 'journellement', 'administrateurs', 'recyclage', 'tricots', 'que_diriez', 'ramenez', 'raconterai', 'philippe_labro', \"m'_intrigue\", 'nouveaux_horizons', 'ocre', 'marty', 'nous_continuerons', 'hétérogénéité', 'bananes_écrasées', 'kim_kardashian', 'kanye_west', 'divertissant', 'bulots', 'kouign', 'dix_prochaines', '15000', 'd1', 'patriotes', 'refondation', 'osa', 'héhéhé', '.bref', 'huileux', 'prudemment', 'sécurisées', 'passagère', 'cookbook', 'lance_armstrong', 'lipides', 'ils_forment', 'oxygénation', 'gastrique', \"m'_aperçois\", 'ennivre', 'beaux_livres', 'était_engagée', 'choisissait', 'obéissance', 'fg', 'hugh', 'expliquent', 'ce_côté-là', 'pouvoir_consulter', '27_avril', '15h30', 'crédibilité', 'douillet', 'avides', 'consciencieusement', 'neutralise', 'concédé', 'enduro', 'qqn', 'exactes', 'forcent', 'poulpes', 'opaque', 'recettes_favorites', 'avants', 'definition', 'avançait', 'collectionneur', 'kamas', 'avaient_tenté', 'réciproquement', 'demeuraient', 'alouettes', 'tapotez', \"s'_imaginent\", 'rassasiés', 'minorité', 'incapacité', 'platon', 'dominent', 'échelon', 'six_cent', 'reste_fidèle', '27_septembre', 'niort', 'q1', 'q2', 'nous_mourrons', 'recyclé', 'complétées', 'homophobie', 'décent', 'commandent', 'monoprix', 'hangar', 'munition', 'blast', 'vous_placerez', 'byblos', 'roussin', 'faisoit', 'sat', 'bouillonne', 'choisissez_parmi', 'compatriote', 'development', 'éclatants', 'envoutant', 'enflammé', '25min', 'pendant_10min', 'renoncé', 'mordent', 'discount', 'dou', 'hlm', 'futé', 'lutté', 'heurté', 'pénible', 'round', 'az', 'litiges', 'auxerre', 'précuite', 'domino', 'tap', 'dell', 'sauvent', 'fourre', 'taques', 'chauffe-eau', 'hl', 'inimaginables', 'turques', 'saturer', 'généalogie', 'glaner', 'poivrons_entiers', '2-3_minutes', '160_millions', 'exploités', 'sont_apparus', '180_ºc', 'rédige', 'négociateurs', 'autoritaires', 'incités', 'détournées', 'peintes', 'représentative', 'feignasse', 'couvrez_-les', 'travaillez_-le', 'multipliant', 'hivernal', 'téléchargez', 'nos_efforts', 'choco_blanc', 'farine_fermentante', 'ôtez_-en', 'grenailles', 'abstraite', 'pulvériser', 'perlé_velours', 'pliage', '180/200°c', 'economique', 'émis', 'fluorescents', 'haute_tension', 'glu', 'forestier', 'boulangerie_déshydratée', 'touchez', 'toute_simplicité', 'excelle', 'taillées', 'cierges', 'tu_essaies', '0.3', 'toutes_prêtes', 'philippe_conticini', 'combinaisons', 'audacieuses', 'soupière', 'marocaines', 'dorures', 'sète', 'pâtisserie_recouverte', 'gouttière', 'bredele', 'messire', 'étoffe', 'arrosez_-la', 'avons_dégusté', 'pollo', 'téléchargement_sur', 'trish_deseine', 'rayés', 'cerise_noire', 'choc_thermique', 'repérez', 'adresse_url', 'coûte_environ', 'courte_période', 'noircie', 'faire_compoter', 'cèleri', 'recettes_cultes', 'semelle', '135g', '35°', 'mycryo', 'caramélise', 'glaçage_brillant', 'dulcey', 'jivara', 'proposais', 'séduisants', \"trompe-l'oeil\", 'bruges', 'fessiers', 'biceps', 'manchette', 'étiquetés', 'framboises_fraiches', 'effet_marbré', 'graissé', '1,5_l', 'saucière', 'apprécier_pleinement', 'cacahuètes_concassées', 'végétalienne', 'tam', 'dao', 'frémissant', 't_65', 'touillant', 'dégustez_tiède', 'navigué', 'identifiants', 'équipé_avec', 'tr', 'épluchez_-les', 'administrations', 'cuisinées', 'vacherin', 'surcroit', 'fournées', 'échalotes_coupées', 'coquelets', 'laquée', 'déglaçant', 'crystal', 'comme_appât', 'occasion_idéale', 'mars_2010', 'réfrigérateurs', 'lad_[', 'ite_]', 'assaisonnées', 'chorizo_coupé', 'montrée', 'impliquée', '61_%', '51_%', 'superposant', 'complètement_refroidir', 'vegane', 'me_basant', 'trie', 'marmites', 'orphelines', 'égouttoir', 'non_épluchées', 'endives_braisées', 'sublimer', 'note_gourmande', 'tessons', 'ouvrier', 'accablé', 'buttermilk', 'proportions_égales', 'sozopol', 'déjeûner', 'premières_lignes', '1867', 'registres', 'notaires', \"m'_intéresser\", 'imprimez', 'adresse_postale', 'ruptures', 'terre_rôties', 'vinaigrettes', 'courgettes_coupées', 'on_confectionne', 'pommes-de-terre', 'évidées', 'brasil', 'tip', 'biocoop', 'usage_domestique', 'scrupuleusement', 'moufle', '101', 'fumeur_proposées', '216', 'étages_équipées', 'lamy', 'hervé', 'cartouches', 'échalotes_ciselées', 'brousse', 'quatre-quarts', 'vous_comprendrez', 'brandade', 'enrouler_autour', 'spécifiant', 'graissez_légèrement', 'grenache_noir', 'douzième', 'démocratique', 'rasteau', 'appelation', '1959', 'désagrément', 'méritait', 'côtes-du-rhône', 'méli-mélo', 'pastille', 'mentholée', 'costaud', 'activités_sportives', 'bons_produits', 'farine_t80', 'cameline', 'expliqués', 'sophistiquées', 'défi_lancé', 'kombu', 'expédié', 'ravira_tous', 'papas', 'crinkles', 'laisse_présager', 'gustatifs', 'voulu_essayer', 'dosette', 'additifs', 'francesco', 'janvier_2010', 'réédité', 'epub', 'tamis_fin', 'prélevé', 'approximatif', 'transposer', 'puissance_maximale', 'provenance', 'carcasses', 'luisant', 'flour', 'dry', 'kasher', 'salt', 'honore', 'balzac', 'brest', 'satiété', 'hydrates', 'canson', 'son_homologue', 'sûreté', 'déployé', 'accord_met', 'michel_onfray', 'mélisse', 'cataplasmes', 'thorax', 'rhumes', 'collecteurs', 'traités', 'transportés', 'introduits', 'sas', 'clapet', 'pouvant_atteindre', 'préalable', 'développement_durable', 'vitelotte', 'payante', 'conversion', 'être_considérés', 'marché_européen', 'stabilisation_tartrique', 'agriculture_biologique', 'complétant', 'écoulées', 'antérieurement', 'appliquées', 'altèrent', 'groupements', 'rassemblant', 'positionnant', 'groupement', 'biologiques', 'structuration', 'produits_finis', 'qui_fleure', 'bruschettas', 'sans_glo', 'rallonge', 'allergies_alimentaires', 'bouillotte', 'premier_tome', 'vila', 'mos', 'auxiliaires', 'agréé', '158', '214', 'tutorial', 'inaugurer', 'dégustaient', '1ère_fois', 'embarqué', 'proteines', 'excédant', 'amigos', \"m'_apprêtais\", '“à', 'concile_vatican', 'amuse_bouche', 'zebra_cake', 'aigrelet', 'pentes', 'dépassait', 'petits_suisses', 'mobilisé', '103_chambres', 'curieusement', 'hélice', 'vous_verserez', 'additionnés', 'quarante', 'bains_fonctionnelles', 'cutanées', 'corrections', 'inciser', 'ébouillanter', 'panés', 'millefeuille', 'serrano', 'nacrée', 'pommes_sautées', 'différentes_applications', 'seconde_partie', 'caramélisation', 'epi', 'chef_nini', 'saveurs_sucrées', 'geneviève', 'détournez', 'créatifs', 'cocasse', 'macramé', 'reconstitution', 'moyen_âge', 'pouvait_-elle', 'xve_siècle', 'galons', 'trafiqué', 'te_plaira', 'transformées', 'embarquez', 'se_dissolve', 'conviendront', 'remplaceront', 'blanc-manger', 'semi-complet', 'cigale', 'delices', 'maghreb', \"s'_imprègne\", 'disposés', 'isabel', 'se_mariait', 'volatile', 'regretté', 'absence_totale', 'toute_tentative', 'jean-yves', 'assaisonne', 'salsifis', 'texturée', 'verdi', 'rouvert', 'tefal', 'persil_frit', 'giclée', 'égoutte', 'sommairement', 'déglace', 'lampée', 'ses_aptitudes', 'olfactives', 'vinicoles', 'aplomb', 'ravissement', 'bruxellois', 'minimaliste', 'sangiovese', 'primo', 'retenons', 'ils_pourraient', 'thérèse', 'cerisiers', '112', 'volcans', 'saq', 'succursales', 'stagnent', 'ontario', 'monopole', 'mûres_sauvages', '132_chambres', 'palets', 'palets_bretons', 'sont_conservées', 'trompés', 'ultra_doux', 'californien', '-25', 'homogene', '20mn_environ', '-du_chocolat', 'pourtours', '-60', 'marbrés', 'sillons', 'bien_aiguisé', 'mince_affaire', 'fouettés', 'th.4_)', 'copié-collé', \"farin_'\", 'pâtissières', 'patissiere', 'aparthotel_procure', 'pot-pourri', 'craignant', 'pont_aven', '262', 'œnologique', 'bolognese', 'facilitateur', 'webmarketing', 'touristiques', 'digitales', 'mélusine', 'bougeoir', 'chandelier', 'drastique', 'pretexte', 'encombrants', 'israélienne', '113', 'lobster', 'fan_inconditionnelle', 'brouillent', 'prétends', 'caché_sous', 'bâches', 'aparthotel_las', 'ashton', 'penseur', 'fructueuse', 'protectionnisme', 'coloniaux', 'aspirations', 'révolutionnaire', 'müesli', 'convenaient', 'relativement_simple', 'troquet', 'révolte', 'poivrez_légèrement', 'quinta', 'volatiles', 'brunissement', 'flat', 'condenser', 'féministe', 'condescendance', '14°', '16°', 'batons', '1h45', 'saumon_mariné', 'pignons_grillés', '½_heure', 'petites_doses', 'allongez', 'aloes', 'on_touille', 'binôme', '2h_avant', 'villas_costa', 'calpe_-', 'guest', 'vue_sensationnelle', 'gras_trans', 'grumeau', 'sunset_harbour', 'gascon', 'rétorque', 'noix_concassés', 'émoi', 'brisa', 'hôtel_cala', 'rééditer', 'significatifs', 'ancrées', 'imperfection', 'formulés', 'joyeuses', 'hors_norme', 'conjure', 'deux_parties', '425', 'grosse_poignée', 'noix_hachées', 'trognons', 'vendanger', 'intervalles', 'lardons_fumés', 'pate_feuilletée', 'grille_rouillée', 'ruisselle', 'impure', 'clear', 'quiberon', 'mandelieu', 'residence_disposent', 'perfectionnements', 'glacis', 'far_breton', 'dénomination', 'farz', 'incorporés', 'private', 'apartament', 'préparerai', 'courge_butternut', 'entailler', 'baies_rouges', 'rigatoni', 'drag_&', 'bologna', 'été_tentée', 'tagliatelle', 'domaine_viticole', 'suzanne', 'maîtres_chocolatiers', 'posterai', 'voiliers', 'leucate', 'touraine', 'airport', 'vanille1', 'woods', 'transmission', 'étroitement_liée', 'seitan', 'ail_pressé', 'écraser_grossièrement', 'alginate', 'déclenchée', 'extrusion', 'gélifié', 'assureur', 'tribunal_administratif', '350_000', 'samu', 'lumière_naturelle', 'choisissiez', 'laissez_confire', '220_°', 'mélangez_intimement', '1mm', 'surface_lisse', '21_octobre', 'calypso', 'etang', 'balinaise', 'disait_-il', 'voulût', 'cluster', 'céleri_rave', 'chou_romanesco', 'graines_germées', '1_bedroom', '4_persons', 'sainte_marie', 'presque_cuites', 'présure', 'aloès', 'sud-ouest', 'gaillac', 'légèrement_salée', 'chorba', 'vence', 'greek', 'légumes_crus', 'leurs_collègues', 'coulera', 'bellini', 'flotteurs', 'naufrage', '98', 'serez_-vous', 'sanctionnés', 'trendy', 'lavandou', 'studio_flat', 'farineux', '-15', 'oignons_blancs', 'dégorgement', 'passivité', 'crus_classés', 'élu_meilleur', 'syracuse', 'affectant', 'pivoter', 'toussaint', 'additions', 'domicilié', '1850', '1858', '1948', 'grove', 'primitives', 'pensions', 'jarres', 'poudrée', 'poutres', 'neutraliser', 'ciotat', 'feuillet', 'conforter', 'villageoise', 'férus', 'caricaturale', 'sont_emparés', 'panneaux_publicitaires', 'johan', 'jcdecaux', 'remboursement', 'permaculture', 'repiquer', 'chausson_aux', 'air_pulsé', 'consoude', 'scaroles', 'épargnés', 'bettes', 'scarole', 'mirador', '295', 'sahara', '73_chambres', 'haut-lieu', 'qualité_exceptionnelle', 'ravageur', 'édimbourg', 'congelez_-les', 'pause_déjeuner', 'spécialités_culinaires', 'cancoillotte', 'vanille_grattée', '0,8', '820', '560', 'entrouvert', 'rissolé', 'fût_-il', 'contextes', 'sao', 'situation_géographique', 'évoqués', 'levure_briochin', 'réjouira', 'tunisiennes', 'imprégnées', 'égrainer', 'humecter', 'referais', 'virtuellement', 'digéré', 'plongeur', 'repassez', 'ayant_soin', 'consistance_épaisse', 'ce_laps', 'expérimentation', 'châtaignes_grillées', 'trieste', 'azyme', 'majestic', 'belle_hélène', 'se_damner', 'aplati', 'véritable_tuerie', 'décorant', 'coupera', 'trop_compacte', 'petite_louche', 'chaland', 'st_martin', 'différentes_textures', 'chocolat-caramel', 'imbibée', '22cm', 'aux_projections', 'etape_4', 'côté_bombé', 'aperçoive', 'pourront_-ils', 'infléchir', 'empire_britannique', 'sont_retrouvés', 'auditif', 'légèrement_huilée', '1935', 'semblerait', 'productivité', 'cocoon', 'towers', 'napa', 'bains_attenante', '135_g', 'formez_-en', 'élément_incontournable', 'pompadour', 'juste_sorti', 'fiscalité', 'gélatine_ramollies', 'feuillantine', 'mélanger_intimement', 'mélanger_soigneusement', 'avoines', 'diverses_formes', 'relations_sociales', 'levure_chimique1/2', 'garnissant', 'nigéria', 'bénin', 'michèle', 'cires', 'bm', '1912', 'bas-fonds', 'chantée', 'albergue', 'tout_nappé', '8cl', 'huston', 'admettant', 'réélu', 'foules', 'déshydrater', 'zester', 'terre-mer', 'échalote_émincée', 'gallega', 'cochonne', 'rossa', 'alcalin', 'dolphin', 'téléphérique', 'trastevere', 'montera', 'soyons', \"j'_obtiens\", 'incrustée', 'bocal_hermétique', 'bufala', 'coulisse', 'aurait_mérité', 'morphologie', 'lhuile', 'délégation', 'retournés', 'tana', 'informations_générales', 'station_touristique', 'arôme_puissant', 'selpréparation', 'mojitos', 'hôtel_puerto', 'inventaires', 'rhétorique', 'depuis_2001', 'bygmalion', 'imaginables', 'tilt', 'révèlent', 'titiller', 'consistance_onctueuse', 'craqueler', 'tassant', '1/5ème', '7/8', 'croisillons', 'rhum_ambré', 'frémissements', 'impro', 'soulevée', 'vulnérable', 'rétablie', 'robustesse', 'solostar_4', 'cet_extracteur', 'jus_solostar', 'alliances', 'formidablement', 'koh', 'bedroom', 'parenté', 'sont_livrés', 'miches', 'attribuant', 'repères', 'chocolatier_belge', 'certifiés_bio', 'atlantic', 'rive-sud', 'améliorées', 'sous-marins', 'agata', 'aéroport_propose', 'tranche-sur-mer', 'texture_lisse', 'coquelet', 'pendant_30mn', '342', 'premier_roman', 'levure_alsacienne', 'provoquerait', 'plus_digestes', 'frey', 'intégration', 'mélangées', 'atelier_culinaire', 'troie', 'documentation', 'mestre', 'execution', 'produits_cosmétiques', 'reconnu_coupable', 'renaître', 'forains', 'visitant', 'swap', 'réformes_structurelles', 'certifiée', 'memories', 'ban', 'ses_coéquipiers', 'exagérée', 'other', 'dénoncé', 'pur_délice', 'réduise', 'quarante_minutes', 'sambre', '10cm', 'ouvrent_leurs', 'postérité', 'poivre_mignonnette', 'di_mare', 'luxury_suites', '169_chambres', 'inn_procure', 'somme_correspondante', 'fraudes', 'liberticide', 'argent_récolté', 'sacem', 'curiosités', 'fréquentent', 'trump', 'fortunes', 'mediterranea', 'ratios', 'cuil.à_soupe', 'effet_bénéfique', 'flavonoïdes', 'consommation_régulière', 'mouraria', 'appauvrir', 'plusieurs_types', 'intervenants', 'qui_désirent', 'directeur_artistique', 'nous_intervenons', 'olfactif', 'immobilité', 'roseau', 'amènera', 'juin_2011', 'apportes', 'vendanges', 'malaga', 'soyons_clairs', 'ostie', '1er_étage', 'maison_restée', 'amovibles', '303', 'compréhensible', 'expliquer_comment', 'chatelet', 'med', 'comment_procéder', 'associative', 'ai_choisi', 'progéniture', 'villa_agriturismo', 'nôtres', 'moindres_détails', 'frais_liés', 'fonction_grill', 'déshydrate', 'hermitage', 'courgettes_crues', 'angèle', 'ponte', '230_g', 'ravitaillement', 'cantonnement', 'choux_pommés', 'choux_raves', 'silo', 'bogues', 'mariées', 'sollicitant', 'incorporez_progressivement', 'ma_bibliothèque', 'oie', 'cambodge', 'lames', 'encore_chauds', 'confiture_artisanale', 'affirmé', 'ne_marchera', 'phénix', 'niches', 'osteria_dei', 'orient', 'stressante', 'h_30', 'équatorien', 'panama', '5gr', 'toastée', 'riva', 'actionner', 'cuire_45', '10_persons', 'maisonnette', 'paphos', 'fronces', 'minutieux', 'molly_cake', 'épargne', 'hasards', 'revendiqué', 'aérateur', 'bossent', 'primordiaux', 'différentes_étapes', 'principale_différence', 'agrumes_confits', 'belle_réussite', 'tanins_fins', 'carafer', 'volnay', '1er_cru', 'quilles', 'succède', 'idéal_serait', 'froisser', 'assemblages', 'gueuze', 'gamme_complète', 'discrets', 'buvable', 'organisateur', 'vini', 'coefficient', 'carignan', 'belle_fraîcheur', 'quille', 'brettanomyces', 'indigène', 'académiques', 'vauban', 'pattaya', 'gloutonnerie', 'gabegie', 'saugrenue', 'incertain', 'insu', 'succulents', 'se_chargeant', 'touche_sucrée', 'introduisez', 'réglable', 'déshydrateur', 'préalablement_recouverte', 'bûche_roulée', 'peuvent_utiliser', 'note_épicée', '2-3_jours', 'philadelphie', 'jolie_décoration', 'mélodique', 'modifiables', 'négocient', 'souscrire', 'marchés_internationaux', 'grenaille', 'george_clooney', 'dempsey', 'alfalfa', 'moniteur', 'bloquant', 'grosses_crevettes', 'coupelles', 'cire_émulsifiante', 'base_lavante', 'naturalis', 'olivem', 'mélange_refroidisse', 'irréductible', 'spontanément', 'consultés', 'complaisance', 'caste', 'opportunistes', 'piller', 'hook', 'package', 'godiva', 'retraçant', 'croûter', 'garnissage', 'quattro', 'allongement', 'embauchés', '54_chambres', 'conditionnement', 'but_recherché', 'luisa', 'accoudé', 'malvasia', 'palerme', 'précaires', 'empruntées', 'négligemment', 'douille_ronde', 'équeuter', 'digressions', 'réussies', 'cyrano', 'première_étape', 'pendentifs', 'baudruche', 'totalisant', 'ari', 'fourmi', 'coïncidence', 'hébreu', 'acronyme', '885', 'wagner', 'cohérent', 'février_dernier', 'vierge_marie', 'pin_sylvestre', 'moléculaires', 'recyclable', 'east', 'homogénéiser', 'volette', 'sucrée-salée', 'redéfinir', 'serait_-on', 'causse', 'vallon', 'agro', 'hébergements', 'milieu_rural', 'communale', 'rochefort', 'grog', 'diffusent', 'retranscrit', 'électricité_produite', 'tendance_actuelle', 'explique_-t-elle', 'oscille_entre', '3,5_milliards', 'nous_élaborons', 'domenico', 'électroniques', '3_bedrooms', 'castle', 'film_plastique', '1/2_cuiller', 'parfumant', 'fiera', 'chatains', 'palm', 'vous_privez', 'estimant_que', 'enfourne', 'josé', 'couleur_dorée', 'maîtrisé', 'certifiée_sans', 'faits_maison', 'nutritionniste', 'frisées', 'yogourt_nature', 'cuit_lentement', 'riz_sauvage', 'blend', 'moussaka', 'végé', 'lanzarote', 'peaux_mixtes', 'médiévales', 'judicieusement', 'chevalet', 'synthétisé', 'impropre', 'vapeur_douce', 'perméabilité', 'latino', 'blé_t80', 'okara', 'irréductibles', 'nous_prenions', 'envoyez_-nous', '23_juin', 'à-côté', 'rappelée', 'confrère', 'genovese', 'tradi', 'piments_séchés', 'bergerie', 'ciao', 'mir', 'pecan_pie', 'colorado', 'ray', 'lavages', 'ornement', 'réseau_social', 'attirés', 'astrologique', 'canadiennes', 'tu_prendras', 'brics', 'coordonnés', 'accroît', 'licenciement', 'décrets', 'régime_indemnitaire', 'secrétaire_général', 'tranchés', 'problématique', 'face_bombée', 'securité', 'illégaux', 'petits_objets', 'émaillés', 'différentes_formes', 'supposés', 'polir', 'noircir', 'infructueuses', 'marionnette', 'ferrer', 'ida', 'moment_privilégié', 'super-héros', 'truchement', 'actuels', 'photographe_professionnel', 'modulable', 'kouign-amann', 'décennies', 'maïzena_préalablement', 'vous_proposais', 'appropriation', 'chantilly_mascarpone', 'repas_copieux', 'sirop_atteint', 'pleine_vitesse', '186', 'rendement_énergétique', 'booking', 'residencial', 'sirupeuse', 'yves_camdeborde', 'garniture_aromatique', 'mirepoix', 'liaison', 'oignons_grelots', 'traduis', 'ça_ira', 'satisfaisante', 'poireaux_coupés', '1/3_restant', 'vacanza', 'tablées', 'coréennes', 'fantasy', 'captivante', 'tirer_profit', 'house_propose', 'lycéens', 'pagaille', 'moussante', 'contextuelle', 'camerounais', 'émaillé', 'par_ricochet', 'défavorables', 'marquées', 'linguistique', 'aspire', 'plan_national', 'sérums', 'janvier_2009', 'décidait', '19_septembre', 'mercredi_26', 'long_trajet', 'presse-purée', 'fait_baver', '1ml', 'comportera', 'assurera', 'indiens', 'érotiques', 'banalisation', 'dong', 'vii', 'well', 'préférences', 'dix_heures', 'autocar', 'dédiée', 'automatisé', 'relatifs', 'timbres_ou', 'orangerie', 'postal', 'expédiés', 'graveur', 'network', 'garantit', 'rancissement', 'bicarbonate_alimentaire', 'postés', 'déduit', 'addictif', 'chatouiller', 'inconvénients', 'lister', 'profiterai', 'livrets', 'multimédia', 'laguiole', 'dégustera', 'vins_rouges', 'marcillac', 'cruelles', 'siéger', 'présidé_par', 'provins', 'rallié', 'chancelant', 'sabres', 'abbaye', 'émaux', 'côteaux', 'meilleurs_crus', 'sancerre', 'munis', 'mirror', 'anticipation', 'infusée', 'laisser_frémir', 'quelques_pincées', 's.', 'rusé', 'rapunzel', 'isigny', 'sainte_mère', 'cocasses', 'trolls', 'coiffeurs', 'laisser_guider', 'bluff', 'queens', 'assimilée', '320g', '6_mm', 'appuyez', 'petites_gourmandises', 'ø', 'nuova', 'longitude', 'bienfaisance', 'terrible_two', 'mollusques', 'hâchées', 'verser_solidairement', '3500_euros', 'plessis', 'clamart', 'neutralisé', 'ses_intentions', 'consignés', 'éviterait', '67_ans', 'poseront', 'contribuables', 'aveyronnais', 'licites', 'élisabeth', 'caïus', 'ammonium', 'livraisons', 'testés', 'peu_onéreux', 'affligeante', 'reproduits', 'ersatz', 'bandelettes', 'eryn', 'doser_selon', 'suis_ravie', 'vae', 'millimètre', 'ambitieuse', 'mei', 'construisez_vous-même', 'peu_coûteuse', 'ramequins_individuels', 'mangerez', 'carbonnades', 'évitent', 'restituent', 'quelques_branches', 'nettoyées', 'pomme_coupée', 'punchs', 'rhum_agricole', 'ibériques', 'fibres_alimentaires', 'insuffisante', 'amandes_hachées', 'losanges', 'godet', 'grandes_quantités', '350*', 'crisp', 'ammoniaque', 'cordeau', 'brésiliennes', 'lait_condensé', 'moulées', 'halwa', 'manor', 'g7', 'tchernobyl', 'playlists', 'gilles_marchal', 'opportunément', 'encontre', 'eau_courante', 'nervures', 'réussite_totale', 'immergées', 'aromathérapie', 'raffinées', 'sexisme', 'vernissage', 'tirelire', 'mon_hamster', '20.000', 'venons', 'airbags', 'déguster_tièdes', 'ernest', 'vins_blancs', 'pinot', 'ingrédients_nécessaires', 'différentes_langues', 'téléchargé', 'lm', 'larve', 'attachez', 'armée_allemande', 'droiture', 'inox', 'jointure', 'endroit_tempéré', '15gr', 'anti-_stress', '94_%', 'pays_consommateur', 'arabesques', 'feuille_transfert', 'lourdeurs', 'napper_généreusement', '9_juillet', 'fiori', 'crédo', 'bernard_loiseau', 'glanées', 'être_remboursé', 'assez_proche', 'surnombre', 'proviendrait', 'bijouterie', 'bitcoin', 'ravage', 'sulfites_ajoutés', 'châtellerault', 'budgets', 'accessoires_indispensables', 'plantain', 'superbement', 'vignette', 'reposant_sur', 'scénarios', 'habitations', 'prisons', 'quen', 'choisissent', 'froidement', 'réserviste', 'colbert', 'pratique_courante', 'remplace_avantageusement', 'impureté', 'acuité', 'subtiliser', 'ndlr', 'prix_nobel', 'labos', 'dsi', 'sound', 'aac', 'carte_sd', 'dirigée', 'appartement_central', 'succès_commercial', '400_millions', 'army', 'culture_musicale', 'chargées', 'ordis', 'wright', 'brothers', 'creme_patissiere', 'enrobant', 'yaourtière', 'customiser', 'tonight', 'chou_frisé', 'digestes', \"s'_oxydent\", 'avide', 'cambrioleur', 'apportées_par', 'inquiets', 'économie_locale', 'encombrant', 'fades', 'vertiges', 'paralysé', 'grandes_marques', 'collectivement', 'rompant', 'démence', 'magouilles', 'poursuivis', 'quelque-chose', 'porte_vitrée', 'vitrerie', 'poulains', 'plongera', 'fayette', 'rassasiante', 'sucre_rapadura', 'se_régalant', '25gr', 'citron_meringuées', 'bleu_clair', 'produits_industriels', 'petites_astuces', 'idée_géniale', 'saumur', 'comptés', 'côtoyer', 'lg', 'certains_appareils', 'groupée', 'confrontations', 'discutant_avec', 'dédramatiser', 'oserais_-je', 'poserait', 'employez', 'jugés', 'inacceptables', 'sacres', 'verbes', 'grands-pères', 'bds', 'better', 'régionales', 'intégrées', 'assimilées', 'se_révèlera', 'enseigné', 'collégiens', 'martelé', 'porto-', 'récoltée', 'engrais_naturel', 'personnes_souffrant', 'personnes_handicapées', 'empilés', 'trop_lourde', 'imparfaite', 'dosée', 'appréciable', 'extrême-droite', 'écoliers', 'attribuer', 'nez_dévoile', 'plusieurs_utilisations', 'toujours_appréciés', 'poulet_mariné', 'infidélité', 'dentifrices', 'beauté_naturelle', 'confrontés', 'feriez', 'biométrique', 'verrouillage', 'metallique', 'defense', 'peach', 'perverses', 'balaye', 'disparaissent', \"j'_arriverai\", 'instituteur', \"kellogg_'\", 'moins_caloriques', 'reconnaissait', 'mes_camarades', 'trimballer', 'piges_piges', 'moussa', 'ribambelle', 'blogueur', 'perez', '720p', 'typée', 'a_précisé', 'lcd', 'cathodique', 'premier_set', 'disposait', 'faisant_tourner', 'second_plan', \"s'_avérait\", 'vous-mêmes', 'nrj12', '1.000', 'coiffage', 'dimanche_midi', 'boulimie', 'paradis_fiscaux', 'couleurs_choisies', 'divinement', 'désirés', 'démocratiques', 'influer_sur', 'visite_virtuelle', 'conf', 'lenteur', 'bombe_lacrymogène', 'main_basse', 'vous_passerez', 'tringle', 'tracteurs', 'exporter', 'francilienne', 'compatible_avec', 'sensibilités', 'révisions', 'manager', 'non_grasse', 'pénètre_rapidement', 'certain_âge', 'persan', 'courroux', 'percy', 'joueur_doit', 'affichez', 'construite_autour', 'approchée', 'japonaises', 'croûte_brune', 'emplit', 'tables_rondes', 'nous_utiliserons', 'nous_pouvions', 'ali_baba', 'rencontrant', 'tu_trouves', 'volupté', 'rétro-', 'fusées', 'petite_cuiller', 'boeing', '777', 'entrera', 'courrier_électronique', 'insomnies', 'réalisateurs', 'yahoo', 'entre_parenthèses', 'tunis', 'audimat', 'suscite', 'identités', 'facilitent', 'sujette', 'controverse', 'impur', 'empêchement', 'résolus', 'coïncide', 'régent', 'vous_payez', 'prive_pas', 'visiteuse', 'détectées', 'lampadaires', 'neymar', 'successives', 'blanchâtres', 'avorté', 'exaucer', 'ses_voeux', 'coppola', 'italo-', 'menues', 'leipzig', 'webradio', 'faire_évoluer', 'hospices', 'collaboré', 'ignare', 'courriel', 'prix_modique', 'débordée', 'poursuivent', 'audios', 'wade', '“si', 'nexus', 'commandés', 'patchs', 'image_positive', 'information_supplémentaire', 'repete', 'pipes', 'inhaler', 'inhalation', 'soluble', 'massive', 'précipitée', 'teddy', 'attractive', '102', 'claudette', 'claude_françois', 'par_chèque', 'libellé', 'destinations', 'trident', 'jugea', 'film_documentaire', 'inégalable', '365', 'endroit_parfait', \"s'_engouffre\", 'vais_essayer', 'sos', 'ciels', 'rassurez_-vous', 'cuire_doucement', 'pommes_duchesse', 'delayer', 'insérant', 'groove', 'sape', 'sensuel', 'profond_sommeil', 'tracés', 'itinéraire', 'jeune_génération', 'entraver', 'cloques', 'éduquer', 'chocolats_noirs', 'perruques', 'visite_guidée', 'target', 'prisonnière', 'croquez', 'pareils', 'dîné', 'warren', 'intensive', 'formater', 'arnold', 'potirons', 'regorge', 'extrémistes', 'environnements', 'remplaçante', 'pokédex', 'agacer', 'turbulent', 'éblouissant', 'chaleureusement', \"s'_allume\", 'connut', 'agrémentent', 'cinématographiques', '2_c.à', 'exclusives', 'évangéliste', 'nervure', 'algorithmes', '191', '264', 'châtier', 'inhibition', 'épanouissement', 'désistement', 'vous_tiendrai', 'goodies', 'je_préfèrerais', 'vous_suggérer', 'hydratées', 'relaxation', 'blanchissement', '9000', 'acquièrent', 'promettant', 'vergetures', 'flambeaux', 'exclusion', 'sont_équipés', 'anti-_adhésif', 'interactions', 'déterminant', 'nokia', 'constructeur', 'transporteurs', 'marketeurs', 'électrons', 'sa_maîtresse', 'réfugié', 'ronald', 'valorisant', 'particularités', 'cercle_vicieux', 'brandi', 'nettoyantes', 'nous_trouvions', 'sabot', 'confessionnal', 'spéculation', 'constipé', 'star_wars', 'prompts', 'caractérisation', 'page_web', 'tony_parker', 'bonnes_habitudes', '322', 'ambiante', 'dessinés', 'sévérité', 'anodin', 'mouvementée', 'cera', 'oxyde', 'sera_suivie', 'participation_financière', 'libérée', 'arbalète', 'magnétisme', \"paresse_t'\", 'ne_fonctionnait', 'enfermement', 'quune', 'forex', 'enzymatique', 'valenciennes', 'démarquer', 'cooler', 'menhir', 'multi-usage', 'jaunâtre', 'ridules', 'comédogène', 'peau_sèche', 'excellent_remède', 'règle_générale', 'revitalise', 'cassants', 'courte_durée', 'multiples_vertus', 'karité_pur', 'resserre', 'photosensibilisant', 'lui_donnèrent', 'limitent', 'roellinger', 'duhamel', 'jakarta', 'heurs', '--', 'documenter', 'internet_explorer', 'plug-in', 'tomme', 'audition', 'illumination', 'impot', 'geneve', 'suzuki', 'ânes', 'mantra', '8ans', 'cerceau', 'ils_seraient', 'aniversaire', 'hambourg', 'présenterai', 'éclipse', 'priez', 'rosaire', 'pages_web', 'servez_-les', 'parfumez', 'comptage', 'candidatures', 'notez', 'apprécie_particulièrement', 'juin_2007', '2cv', 'sangles', 'tourelle', 'trappes', 'endommagées', 'meta', 'dépistage', 'nous_engageons', 'trimestres', 'argumentation', 'enter', 'croiseur', 'cargo', 'recense', 'béarn', 'v1', 'radioactifs', 'candida_albicans', 'nouvelle_zélande', 'lancers', 'chirurgicale', 'érosion', '850', 'lutteur', 'étrangères', 'fillon', 'syriens', 'alep', 'uber', 'dégageant', 'honorer', 'benoît_xvi', 'éclaircissements', 'apportés_par', 'saint-siège', 'dialogue_entre', 'cet_accord', 'congrégation', 'indubitablement', 'justification', 'freeman', 'boulogne', 'recruté', 'parlée', 'pope', 'toute_circonstance', 'stephane', 'walk', 'graduation', 'arm', 'boot', 'guillotine', 'développent', 'gagnent', 'nudité', 'choquantes', 'nouveau_souffle', 'fastidieuses', 'décompte', 'accusée', 'traitez', 'pucerons', 'pulvérisations', 'mégots', 'réfrigérateur-congélateur', 'grande_envergure', 'souhaitant', 'idées_cadeaux', 'gels_douches', 'travaux_manuels', 'ont_précédé', 'ai_essayé', 'newman', 'constitueront', 'ne_manquez', 'gâteau_basque', 'jusques', 'première_gorgée', 'vaudou', 'gazette', 'attaqués', 'randonnées', 'beautés', 'interactifs', 'nomades', 'nous_travaillons', 'grappin', 'trônait', 'bel_effet', 'formelle', 'redoublement', 'musculaires', 'intermittents', 'éclectique', 'aspiration', 'cheminées', 'générateurs', 'irrite', 'cancers', 'hypertension', 'urinaires', 'sites_touristiques', 'janvier_2014', 'preneur', 'suze', 'robustes', 'inexorablement', 'cherchée', 'éloignant', 'se_résumait', 'xi', 'écoutés', 'carence', 'vinothérapie', 'fons', 'désinfecté', '1/10', 'douze_heures', 'absentes', 'culture_française', 'chènevis', 'zhang', 'rucher', 'consultent', 'ils_jouent', 'jeannot', 'mcdonald', 'envoyez_-moi', 'néophytes', 'éoliennes', 'risquez', 'mouvement_circulaire', 'optimales', 'paraison', 'turbulences', 'avalée', 'spi', 'départager', 'court_métrage', '27_août', 'rotations', 'mauvais_état', 'placarder', 'ma_belle-soeur', 'été_créé', 'loving', 'insurmontable', 'snowden', 'services_secrets', 'nourries', 'financées', 'pot_hermétique', 'assez_collante', 'plate_forme', 'dépassez', 'retrouvant', 'tu_aies', 'mondiaux', 'ha_ha', 'devinettes', '22_décembre', 'matthias', 'sabine', 'st_emilion', 'saint-emilion', 'mark_webber', 'churchill', 'avoue_avoir', 'percutant', 'benetton', 'riffs', 'tierce', 'agrémentés', 'animée_par', 'mhz', 'paralyser', 'relativement_faible', 'marquantes', 'réputation_internationale', 'grande_bretagne', 'londoniens', 'personelle', 'comprenons', 'hildegarde', 'mesurée', '1_milliard', 'comparables', 'impliquées', 'reviendront', 'accusation', '1923', 'ajourée', '1925', 'étrave', 'définies', '52_%', 'orienter_vers', 'belgrade', 'neuvième_place', '6e_place', 'son_équipier', '12e_place', 'ravit', 'fernando_alonso', 'sport_automobile', 'obtenant', 'prometteuse', 'comparés', 'lewis_hamilton', 'sévères', 'forets', 'lundis', 'stuart', 'agrippa', 'massant', 'frénétiquement', 'navais', 'societe', 'postuler', 'yogourts', 'spécialisation', 'argousier', 'défensive', 'sont_tenus', 'capucine', 'émettent', 'téléphones_portables', 'perspectives', 'plankton', 'emparée', 'accentuée_par', 'cystite', 'partirait', 'nachos', 'proteste', 'réservée_aux', 'formulaires', 'kyrielle', 'loto_foot', 'pronostics', 'empocher', 'maritime', 'patrimoine_mondial', 'eclipse', 'habituées', 'marchaient', 'allongeant', 'mangoustan', 'ton_estomac', 'spit', 'charente', 'apparents', '131', 'helen', 'ébouillanté', 'entreprise_familiale', 'cad', 'théâtral', 'verrons', 'reparer', 'très-haut', 'sis', 'nippon', 'absurdes', 'franciliens', 'prix_pratiqués', 'estimant', 'épidémies', 'patchouli', 'me_gène', 'blottir', 'assez_étrange', 'garde_précieusement', 'mollusque', 'paroisse', 'divorcer', 'fracture', 'leur_savoir-faire', 'déceler', 'valais', 'dévoilera', 'couche_supplémentaire', 'igname', 'bro', 'chiches', 'collait', 'lueurs', 'mauvaise_réputation', 'vaste_enquête', '54_%', 'combustion', '1000°c', 'éclairant', 'renfermé', 'inspection', \"s'_ajoutaient\", 'habitudes_alimentaires', 'contraignant', \"s'_imposait\", 'panasonic', 'relate', 'pluche', 'macèrent', '15_juin', 'modifiés', \"t'_invite\", 'mosquée', 'société_humaine', 'ubi_societas', 'ibi_jus', 'législateur', 'juridiques', 'transmissions', 'exaltation', 'rurale', 'oregon', 'nouvelle_corde', 'jp', 'renom', 'dédicacer', 'finaliser', 'tl', 'absenter', 'hiatus', 'h.', 'sauce_bolognaise', 'spike', 'mk', 'gravir', 'parties_solides', \"ti_'\", 'ressemble_beaucoup', 'hulk', 'redoutables', 'me_régale', 'w9', 'achètes', 'loupe', 'bouffent', 'cuilléres', 'ressemblera', 'munissez', 'pendaison', 'me_contenterai', 'jurent', 'ancestraux', 'te_tiendrai', '85_millions', 'fastoche', 'room_service', 'moules_frites', 'it_]', 'quasi_totalité', 'inventeurs', 'turc', 'personnes_atteintes', 'congolaise', 'transpirant', 'boucliers_humains', 'munit', '114', 'errant', 'monnaies', 'transactions', 'petites_entreprises', 'soporifique', 'lontemps', 'batter', 'cafetière_électrique', 'nombre_suffisant', 'articulé', 'durcisseur', 'orientés', 'samples', 'retrouvait', 'appareils_électroménager', 'sous_silence', 'approfondies', 'marque-page', 'rouages', 'horloges', 'vraie_tuerie', 'pâte_sableuse', '8min', 'délimiter', 'microphone', 'zappe', 'boissons_sucrées', 'crémage', '20kg', 'layton', 'élévé', 'défendit', 'massacrés', 'provoquées_par', 'kilos_superflus', 'principales_productions', 'jah', '12e', 'festival_international', 'trames', 'thématiques', 'intervenus', 'prudent', 'institutionnelle', 'souillé', 'rendu_célèbre', 'mondovino', 'jonathan_nossiter', 'je_jouerais', 'mieux_comprendre', 'incomplet', 'hydrocarbures', 'aldéhydes', 'gazole', 'corporations', 'socio', 'légé', 'couronnes', 'étuvé', 'trente_ans', 'petites_perles', 'christine_boutin', 'jéhovah', 'sécheresse', 'crèmes_brûlées', 'pralinées', 'bouleversée', 'dif', 'utilises', 'vineux', 'jocelyne', 'rajeunir', 'supérieures', 'catalan', 'rugueux', 'remisé', '440', 'hertz', 'confiné', 'porte_bagage', '12°c', 'coquetier', 'kingdom', 'safe', 'rassurent', 'laissées', 'quelques_précautions', 'agressives', 'associez', 'slovène', 'pasquet', 'tine', 'plusieurs_facteurs', 'parental', 'hyperactivité', 'autres_facteurs', 'malheureuses', 'doseuse', 'amla', 'abondent', 'gastro', 'assistés', 'herpès', 'abcès', 'vaginal', 'vulve', 'ordinairement', 'gober', '1932', 'lingette', 'suffire', 'fontes', 'niark', 'bonbons_durs', 'vere', '15_km', 'fatalité', 'écrous', 'évités', 'themes', 'code_promo', 'journée_complète', 'arbitres', 'bugnes', 'byrne', 'parkinson', 'nous_visons', 'panettone', 'coaguler', \"malaxer_jusqu'\", '25°', 'consentit', 'boissons_énergisantes', 'langues_étrangères', 'île_maurice', 'impuissant', 'saturés', 'possédé', '1860', 'substantielles', 'châssis', 'réservoirs', 'latéraux', 'psyché', 'toit_ouvrant', 'miles', 'tails', 'degats', 'intriguer', 'differents', 'recuperer', 'dock', 'jung', 'kennedy', 'flatulences', 'imperméable', 'coupe-vent', 'vous_constaterez', 'décoincer', 'redemande', 'sourates', 'options_avancées', 'adsense', 'google_adsense', 'limbes', 'dealers', 'voyou', 'continuons', 'profitons', '500.000_euros', '400.000_euros', 'réaliseront', 'survenus', 'soixantaine', 'galeries_photos', 'devenant_ainsi', 'âgées', 'occupées', 'give', 'dalaï-lama', 'tanguy', 'inégale', 'consignées', 'moucheté', 'cerises_confites', 'jetez_-y', 'logement_social', 'ext', 'fee', 'sauvegardé', 'wav', 'indirecte', 'reinettes', 'olive1', 'fendez', 'guignols', 'pétries', 'étalées', 'examiner', 'indifférente', 'poterne', 'nui', 'vu_evie', 'tracy_vole', \"s'_éleva\", 'eurovision', 'réchauffement', 'régulateurs', 'soulignés', 'top_secret', 'topic', 'élement', 'signe_distinctif', 'groenland', 'agar', 'bernie_ecclestone', 'fom', 'formula', 'management', 'auraient_dû', 'bahreïn', 'créneau', 'prolongement', 'si_nécéssaire', 'limonades', 'mobilisés', 'combles', 'observations', 'americaine', 'garderont', 'telle_manière', 'repliez', 'renfermant', 'convient_parfaitement', 'saint-honoré', 'smtp', 'réitérer', 'testeurs', 'absolution', 'fondées_sur', 'proscrire', '670', 'intoxication', 'survenir', 'infimes', 'infirmier', 'ecu', 'mémorial', 'instaurer', 'rédacteur', 'ayant_vécu', 'robe_noire', 'nous_verrons', 'glucides_complexes', 'bestiole', 'tiers-monde', 'obligées', 'greffés', 'fortunés', 'données_personnelles', 'savantes', 'déductions', 'cacheté', 'achille', 'majestueuse', 'fraude', 'mentors', 'avignon', 'je_rajouterais', 'championne', 'attaquants', 'chiliens', 'canular', 'brève_description', 'avengers', '700_millions', 'inactive', 'm²', 'conversions', 'coranique', 'enseignent', 'gencives', 'piqures', 'depense', 'yahourts', 'partiel', 'gould', 'etrangers', 'directs', 'tortures', 'innover', 'drapeau_rouge', 'tamponner', 'quelques_goûtes', 'silikomart', \"s'_habillent\", 'anticancer', 'pays_industrialisés', 'gironde', 'vignoble_bordelais', 'bordeaux_fête', 'anarchique', 'tonalités', 'thermostat_5/6', 'action_bénéfique', 'fréquences', 'médiums', 'puyricard', 'considéré', \"s'_aventurer\", 'association_nationale', 'nos_goûts', 'portugaises', 'don_juan', 'trempent', 'féerique', 'casinos', 'destructions', 'pâques_approche', 'boiras', 'flashy', 'inespéré', 'côtelette', 'sacrifie', 'apprêt', 'rotary', 'documents_pdf', 'cachets', 'breaks', 'lci', 'hommes_libres', 'meilleur_parti', 'phosphate', 'autorités_françaises', 'colonialisme', 'valois', 'denrée_rare', 'coûteuse', 'naïf', 'éclaircie', 'seule_solution', 'devenues', 'gressin', 'baucoup', 'djokovic', 'rg', 'flex', 'siffler', 'affable', 'étoit', 'merlans', 'visait', '7°', 'container', 'jovial', 'christian_dior', 'plombé', 'abreuvoir', 'mangeoire', '“les', 'reliefs', 'choses_sérieuses', 'fouine', 'adele', 'innocentes', 'deux_poignées', \"j'_arrivai\", 'cordoue', 'naples', 'édit', 'capitaines', 'castille', 'xii', 'pontife', 'ménagers', 'literie', 'déclenchent', 'minutes._>', 'traînée', 'soute', 'cidrerie', 'chapiteau', 'circulaires', 'revues', 'téléphoniques', 'confirmant', 'michigan', 'dave', 'pubis', 'préjudiciable', 'étiquetage', 'délivrées', 'taches_brunes', 'appliques', 'nouvelles_émissions', 'barricade', 'consent', 'aztèque', 'potentielle', 'heinrich', '18e_siècle', 'suisse_romande', 'lausanne', 'tessin', 'vaud', 'automatiser', 'neuchâtel', 'sa_renommée', 'inventa', 'capitales', 'plaçait', 'cylindre', 'triangulaire', 'patronyme', 'grands_consommateurs', '3,7', 'jouit', '000_tonnes', 'lino', 'rangers', 'dimension_spirituelle', 'humanisme', 'faveurs', 'reposent', 'fresque', 'légionnaire', 'figuier', 'bergers', 'cuisson_varie', ')_.5', 'on_épluche', 'couronne_briochée', 'aérosols', 'exportée', 'emménage', 'sois_disant', 'stéphanois', 'ecorchée_vive', 'allant_chercher', 'ecorchée', 'prouvée', 'soulèvent', 'stagne', 'non-_dits', 'tabous', 'raisonné', 'donald', 'notting_hill', 'inflation', 'scandaleux', 'devenir_riche', 'tombé_amoureux', 'wal-mart', 'patiner', '66', 'aveyron', 'troublante', 'grosse_dose', 'sochaux', 'autrichiens', 'roumains', 'sont_représentés', 'nazi', 'wagons', 'menée_par', 'apprendront', 'pourrais_-tu', 'petit_lutin', 'extraits_naturels', 'apportez_votre', 'sniper', 'retardataires', 'bougez', 'ne_parviens', 'ces_changements', 'latté', 'accidentelle', 'stats', 'lait3', 'délaye', 'incliner', 'son_apogée', 'sauvera', 'charnières', 'payable', 'paraffine', \"-d_'\", 'ternie', 'acquitté', 'délabrement', 'réquisitionné', 'bestiaux', 'floraux', 'oenologue', '4-5_minutes', 'souillés', 'petites_crêpes', 'cambridge', 'gameplay', 'aînés', 'apocalyptique', 'ecrin', 'tomb_raider', 'pénalités', 'dépassements', 'départ_dimanche', 'ricciardo', 'daniel_ricciardo', 'lance_stroll', 'daniil_kvyat', 'toro_rosso', 'monza', 'couturiers', 'dp', 'hunt', '2023', 'eliane', 'immense_joie', 'durables', 'très_prisé', 'texture_onctueuse', 'innée', 'guéri', '9h00', 'bonne_continuation', 'bâtit', 'petites_parcelles', '.versez', 'xx', 'tarte_amandine', 'antibes', 'vietnamiens', 'premier_league', 'oculaires', 'incite', 'cyborg', 'pilaf', 'pessimisme', 'alter_ego', 'main_courante', 'traîneau', 'colombes', '60€', '41_%', '9,5_%', 'plancton', 'valbuena', 'usurper', 'gays', 'bien_méritée', 'délavé', 'gard', '{_{', 'contrecarrer', 'lesbiennes', 'ombrage', 'tactiques', 'recharge', 'ballon_rond', 'amorti', 'affolé', 'laboratoire', 'maitrisée', '3éme', 'débrouillez', 'elliptique', 'faisiez', 'mecque', 'sur_lesquelle', \"d\\\\_'\", 'dévorant', 'occupants', 'démuni', 'despé', 'mortalité', 'crasse', 'aussi.', 'nous.', 'human', 'concernait', 'perplexe', \"s'_agitent\", 'processeur', 'imprimante', 'cartouche', 'buses', 'mulot', 'attaques_contre', 'arméniens', 'récite', 'prévention_contre', 'nettoyages', 'barques', 'menacent', 'introduisit', 'paul_ricard', 'anis_étoilé', 'pais', 'forge', 'affections', 'bleu-vert', 'qualité_constante', 'demeurée', 'entertainment', 'scores', 'parabole', 'nuisance', 'dh', 'ils_restent', 'fondations', 'démagogie', 'licite', 'piéces', 'remontage', 'terrifiants', 'servants', 'étaient_autrefois', 'parloir', 'fera_tenir', 'nominations', 'avalez', 'kitsch', 'subversion', 'analytique', 'esquisse', 'prévost', 'appréhensions', 'sélecteur', 'sample', 'acoustiques', 'envisageables', 'surfer_sur', 'te_souhaiter', 'expose', '13ans', 'manip', 'réputées', 'notés', 'dépourvue', 'remboursé', 'décoloration', 'peroxyde', 'editer', 'arrachées', 'crémerie', 'décidemment', '16_juillet', 'angostura', '31_mai', 'lapinou', 'mah', 'codée', 'mœurs', 'traduisait', 'dénature', 'mi-froide', 'vaut_-il', 'caractère_unique', 'frileux', 'service_client', 'meilleur_prix', 'apport_nutritionnel', 'article_précédent', 'restructurations', 'hervé_morin', 'huit_jours', 'primer', 'mad', 'boisson_nationale', 'mara', '11-', \"s'_affichent\", 'lidl', 'sélectionne', 'directement_auprès', 'gammes', 'organoleptiques', 'trimestriel', 'sena', 'res', 'malus', 'commentaire_]', 'raisonne', 'mascarade', 'guette', '•_lucile', 'méritée', 'se_poursuivra', 'appliquons', 'fringales', 'yakitori', 'donations', 'charitables', 'purgatoire', 'répétés', 'aviron', 'émincez_-les', '50m', 'appris_auprès', 'adjoint', 'petits-pois', 'aimeriez_-vous', 'squat', 'cordes_vocales', 'commettent', 'étouffement', 'briquets', 'noêl', 'modernisé', '1939', 'datée', '130_millions', 'clignos', 'carénage', 'perceptibles', 'avouent', 'academy', 'cour_intérieure', 'perpignan', 'fraises_entières', 'had', 'half', 'âge_adulte', 'bananes_mûres', 'stupéfiant', 'paparazzi', 'vinaigres', 'fish_&', 'vice_versa', 'mutuel', 'consenti', 'homard_rôti', 'pineau', 'mitonnée', 'champignons_sauvages', 'limousin', 'sarments', 'pays_charentais', 'cultivez', 'aelita', 'nombre_croissant', 'décompresser', 'lucarne', '7_personnes', 'superposé', 'couchages', 'clic_clac', 'imagina', 'robe_dorée', 'ses_promesses', 'préféra', 'lavazza', 'élit', 'abrité', 'boudoir', 'concurrent', 'mots_fléchés', 'carbu', 'conti', 'mécontent', 'larmichette', 'bolée', 'excusez_moi', 'l1', 'engagées', 'barak', 'vraiement', 'israel', 'indications_fournies', 'babycook', 'suarez', 'soupers', 'fait_saliver', 'spectateur', 'commençons', 'abritant', 'éolienne', 'ingratitude', 'bbc', 'cheveux_crépus', 'gand', 'sensiblerie', 'brisez', 'signez', 'ren', 'je_recevais', 'talbot', 'cigogne', 'dénouement', 'lassitude', 'parasite', 'alcoolisation', 'effet_immédiat', 'auschwitz', 'persuadés', 'visionnage', 'biscuiterie', 'épouses', 'industries', 'commerces', '223', 'portèrent', 'hauteurs', 'prompte', 'tire_bouchon', 'stèle', 'bizzare', 'loukoums', 'portées', 'acquéreurs', 'berlusconi', '200_000', 'hebdomadaires', 'égide', '911', 'prétendue', \"s'_interrogeait\", 'def', 'sudiste', 'totalement_différente', 'longues_distances', 'années_1930', 'étoffé', 'titre_olympique', '1936', 'carmel', 'partisane', 'idéologique', 'porte-parole', 'longue_période', 'imputer', 'explorateurs', 'ambroisie', 'ouï-dire', 'études_supérieures', 'frappait', 'vendant', 'charette', 'beaus', 'se_munir', '8_cl', 'philip_morris', 'timeline', 'ont_participé', 'contribué', 'émerveillement', '170°_c', 'pistaches_hachées', 'pokémons', 'insatiable', 'répandra', 'jeffrey', 'assurons', 'enfans', 'jospin', 'recrutés', 'activité_intellectuelle', 'beaux_moments', 'hypo', 'conduisent', 'recouvrement', 'là.', 'longue_journée', 'anne-marie', 'échafaud', 'montreal', 'quizz', 'ronce', 'surclassé', 'cintre', 'emprisonnés', 'nouvel_appareil', 'vinyles', 'moreau', 'violences_conjugales', 'gautier', 'peut_accéder', '22_février', 'arrosoir', 'son_prédécesseur', 'suggérées', 'saisonnier', 'marchande', 'mammon', 'i.e.', 'francs_cfa', '200.000', 'écoutée', 'identifiée', 'conseils_pratiques', 'fibre_optique', 'république_démocratique', 'exercent', 'traction', 'interférences', 'haute_fréquence', 'rééditions', 'enchantés', '-quand', 'poudre3', 'gendre', 'urgentes', 'ponctuels', 'pizzéria', 'pizzaiolo', 'gicler', 'y_méprendre', 'usées', 'pauvres_gens', 'totales', 'épiceries_fines', 'statuette', 'naturellement_riche', 'ses_confrères', 'comédiennes', 'œnologue', 'guide_hachette', 'rendements', 'ensoleillement', 'baies_sauvages', 'soulignent', 'technicité', 'inventées', 'rétrogradé', 'dernière_position', 'felipe_massa', 'lignes_droites', 'tâcher', 'salopette', 'louis_xiii', 'centrer', 'faire_pivoter', 'ambassadrice', 'sanctionné', 'a_écopé', 'check', '50e', 'camomille_romaine', 'sinus', 'perçoivent', 'propager', 'taïwan', 'source_proche', 'famille_royale', 'divulgué', 'républicain', 'santiago', 'hemingway', 'étiqueter', 'vous_souffrez', 'cors', 'humidificateur', 'essuyez_-les', 'exigeant', 'boisson_gazeuse', 'désaltérante', 'stocké', 'résignation', 'virages', 'dépérissement', 'facultatifs', 'routines', 'instinctive', 'assez_puissant', 'jamais_cessé', 'chancelier', 'obscurs', 'sb', 'établissant', 'fruits_mixés', 'officielles', 'coprah', 'préparatoires', 'économie_mondiale', 'système_bancaire', 'filiales', 'nous_mangions', 'nouméa', 'extermination', 'in_extremis', 'multi-fonctions', 'gimp', 'imité', 'éviterai', 'méandres', 'détrôner', 'interdictions', 'sans_autorisation', 'étaient_disposés', 'ravitaillements', 'racontés', 'crevaison', 'vigilant', 'proprement_dit', 'poteries', 'après_j.-c.', 'consommaient', 'usitée', 'identification', 'consommation_mondiale', 'disproportionnée', 'manière_générale', 'influent', 'importent', 'précités', 'braves', 'marque_déposée', '10.000', 'elevé', 'kindle', 'redevances', 'ils_risquent', 'nous_partageons', 'nous_croyons', 'fabienne', 'pulsation', 'rasoirs', 'loki', 'charpie', 'réglage', 'deux_cents', 'couleur_vive', 'chair_tendre', 'légèrement_acidulé', 'ukrainien', 'hybride_entre', 'angevine', 'double_distillation', 'parité', 'haute_résolution', '3,5_millions', 'formulations', 'incorporent', 'achetai', 'cerne', 'bluffer', 'mercredi_matin', 'flaque', 'tonte', 'paillis', 'unilatéral', 'pistils', 'trouver_facilement', 'filante', 'doit_-on', 'banquets', 'valerie', 'citerai', 'pôles', 'joncs', '12h00', 'andalousie', 'haineux', \"l\\\\_'\", 'jordi', 'optimisation', 'environnante', 'paraît_-il', 'spécialement_étudiée', 'plan_social', 'hotte_aspirante', 'mobil_home', 'erronée', 'ne_tardera', 'parlions', 'a_couté', 'entrée_gratuite', 'colisée', 'rentables', 'van_gogh', 'irréversible', 'début_février', 'lanternes', 'grandes_entreprises', 'vous_risquez', 'pneumonie', 'mois_suivants', 'years', 'beaux_paysages', 'se_prolonge', 'pièce_principale', 'décidez', 'saint-esprit', 'alinéa', '15_décembre', 'directeur_général', 'organisent', 'jacques_chirac', 'cm2', 'assidue', 'seront_tenus', 'papier_crépon', 'alain_ducasse', 'descriptif', 'icy', 'suaves', 'allégresse', 'pairs', 'féconde', 'masculine', 'chaleureuses', 'irrégularité', 'telle_sorte', 'tuilerie', 'dévoués', 'cdu', 'été_agréablement', 'august', 'lundi_prochain', 'fuji', 'immigré', 'principaux_ingrédients', 'maltodextrine', 'exhausteurs', 'graph', 'gonflable', 'buckingham', 'benco', 'maastricht', 'inclinée', 'seule_couche', 'cherbourg', 'incitent', 'enfin_prêtes', 'accéléré', 'paiements', 'laiteux', 'lancements', 'éponges', ')__.●', 'sabre_laser', 'puériculture', 'soignants', 'composées', 'neurone', 'prospects', 'conditions_optimales', '400_grammes', 'oenologues', 'câline', '1918', 'caps', 'destructeurs', 'tracter', 'petits_camarades', 'débutez', 'renfermait', '1802', 'xxème_siècle', '1920', \"s'_appliquait\", '16e', 'capitaliste', 'communisme', 'slide', 'parc_astérix', 'aves', 'recraché', 'nobles_causes', 'tâches_quotidiennes', 'classées', 'affirmations', 'montréalaise', 'septième_art', 'léopold', 'annexion', '0.2', 'assigner', 'mes_copains', 'étalons', 'solennellement', 'skier', 'entends_dire', 'solder', 'asn', 'alignées', 'préparations_culinaires', 'se_brisa', 'demi-pension', 'accédé', 'yack', 'chao', 'sonnent', 'racks', 'émanations', 'nombreuses_sauces', 'parois_intérieures', 'fraiser', 'croûte_dorée', 'mitonner', '90_°c', 'préparation_culinaire', 'truffes_hachées', 'bloqués', 'explosive', 'monégasque', '130_°c', 'ressentie', 'personne_concernée', 'ai_regardé', 'lundi_29', 'noisettes_décortiquées', 'préparationpréchauffer', 'thermostat_5-6', 'élements', 'simple_clic', 'fainéant', 'inspirez', 'détendez_-vous', 'recherchées', 'gîte', 'fabriquaient', 'retouche_photo', 'rampes', 'fantaisies', 'développeurs', 'maltesers', 'rhino', 'flamands', 'phases_techniques', 'demi-cuillère', 'teint_éclatant', 'impressionne', 'primeurs', 'lisieux', 'nos_positions', 'concluait', '325_°f', 'construites', 'je_repars', 'saladier_battez', 'frittata', 'cuisinons', 'landes', 'moultes', 'écartement', 'majeurs', 'quarante_jours', 'remplaçait', 'tryptophane', 'rajoutons', 'incertaine', 'productrice', 'surdose', 'nappe_blanche', 'se_chevauchent', 'florilège', 'troisième_étage', 'yvette', 'bénédictine', 'eaux-de-vie', 'cut', 'entretenue', '3-2', 'dinosaure', 'dde', 'enfouis', \"venues_s'\", '0,5_cl', 'slime', 'slips', 'jonction', '2càs', 'paneer', 'gingembre_pelé', '165°', 'cristalliser', 'rebords', 'se_solidifie', 'demi-sphères', 'ventilé', 'pendant_20mn', 'sire', 'jésuites', 'concilier', 'vos_salades', 'libre_court', 'azukis', 'révélée', 'saint-amour', 'afghan', 'reports', 'quatre_vingt', 'bérénice', '4_cylindres', 'factions', 'accusent', 'nymphe', 'banlieues', 'magma', 'auvergnats', 'fromage_rapé', 'batbouts', 'ca_faisait', 'immanquable', 'vitré', 'portage', 'mijoter_doucement', 'épépinés', 'moulinette', 'sans_additifs', 'gélatineux', 'recettes_originales', 'chef_simon', 'libanaises', 'ô_délices', 'marie-laure', 'évalue', 'citées_ci-dessus', 'abritait', 'saint-vincent', 'ogives', 'consulté', 'banh', 'gibelotte', 'surveillés', '240_g', 'très_satisfaite', 'pimenton', 'praliné_croustillant', 'biscuit_moelleux', 'cacao_tamisé', '“le', 'papier_guitare', 'huileuse', 'sorbet_fraise', 'minerva', 'superposez', 'seconde_couche', '600w', 'annuler', 'gondole', 'mouillant', 'buvons', 'séquences', 'nous_perdons', 'valeur_nutritive', 'trois-quarts', 'coûterait', '100_degrés', 'celsius', 'notre_cerveau', 'niche', 'belle_lurette', 'réitéré', 'montures', 'logés', 'byzantins', 'mandataires', 'spécifié', 'ménages', 'marchés_financiers', 'étroites', 'irrégularités', 'goût_délicat', 'glanée', 'tartes_sucrées', 'me_paraît', 'perfectible', 'pâteuse', 'consisterait', 'salamandre', 'exagérément', 'assiettes_chaudes', 'semez', 'servez_immédiatement', 'décoquiller', 'petites_portions', 'résidence_secondaire', 'rudes', 'pays_occidentaux', 'grands_espaces', 'dégagés', 'nettes', 'évasion_fiscale', 'fraude_fiscale', 'finalités', 'écologiques', 'allez_hop', '1/2_tablette', 'envoyées', 'pamplemousse_rose', 'conseil_constitutionnel', 'sise', 'succursale', 'destinataires', 'être_dégustée', 'faims', 'aristocratie', 'renommés', 'petites_bouchées', 'respirez', 'pratiquez', 'torréfiés', 'cacao_cru', 'couche_régulière', 'post-it', 'crush', '425°f', 'cannellonis', 'garder_précieusement', 'paiement_sécurisé', 'danemark', 'norvège', 'finlande', 'confidentielles', 'standards', 'sommellerie', 'quasi-totalité', 'culture_biologique', 'levures_indigènes', 'anti-_oxydant', 'sulfites', 'conciliant', 'déclassé', 'patrimonio', 'comptable', 'multiples_facettes', \"préparatifs_jusqu'\", 'tiédis', 'déglaçage', 'pointage', 'signifie_littéralement', 'chang', 'excède', 'désignation', 'député_ump', 'patronale', 'protection_sociale', 'tassant_bien', 'compacter', 'simplifie', 'logistique', 'végan', '9-10', 'artisans_locaux', 'conventionnelle', 'ours_brun', 'plus_brefs', 'débité', 'voili', 'symbolisent', 'républicains', 'outils_utilisés', 'marasme', 'intensification', 'volumineuse', 'ciselés', 'lester', 'cet_ingrédient', 'leurs_coquilles', 'diffuse', 'grelots', 'glühwein', 'légitimement', 'entreposage', 'récompensée_par', 'octroyé', 'porte-voix', 'architectural', '470', 'encadrer', 'est_apposé', 'rabelais', 'sponsorisé', 'opposable', '80_ml', 'sole_meunière', 'effervescents', 'méthode_traditionnelle', 'jubilation', 'emprisonne', 'adéquate', 'vineuse', 'superiore', 'docg', 'valdobbiadene', 'très_parfumé', 'trudeau', 'bercé', 'bande_sonore', 'saint-jean-de-luz', 'expérience_professionnelle', 'vie_active', 'leur_cv', 'haute_valeur', 'hotel_santa', 'émulsionnez', 'murielle', 'jouons', 'path', 'accumulation', 'occasion_spéciale', 'encore_tièdes', 'végétaliennes', 'pénalisés', 'convaincus', 'propane', 'dosées', 'poivré', 'hachette_cuisine', 'couleur_blonde', 'intégral', 'chauffent', 'préparation_obtenue', 'minutes.2', 'tofu_mariné', 'masquée_par', 'élargissant', 'dénoyautez', 'herboriste', 'maria_treben', 'mention_inutile', 'architectes', 'multiplié', 'nous_traversons', 'mougins', 'comporte_55', 'argus', 'resvératrol', 'exercice_physique', 'evènement', 'gloires', 'mardi_gras', 'fait_dorer', 'couvrez_-la', '“dans', 'inclinaison', 'poserez', 'emulsionner', 'lesdites', 'trad', '50€', 'laïque', 'femmes_africaines', 'cliniques', 'favoriserait', 'métaboliques', 'remplacera', 'juin_2016', 'belvédère', '360°', 'illuminé', 'bleu_outremer', 'illuminée', 'saint-quentin', 'hostellerie', 'maréchal', 'tronçon', '200_degré', '17€', 'quantitatif', 'appliquera', 'rétablit', 'troublé', \"s'_accommodent\", 'crû', 'hf', 'émollient', 'églantier', 'pads', 'avoir_touché', 'tourné_vers', 'régulateur', 'fiez_pas', 'mauvaise_expérience', 'crèmerie', 'puerto_rico', 'égards', 'ce_coup-ci', 'injonctions', 'rejetés', 'crab', 'limitations', 'alternatives', 'broc', 'foie-gras', 'blanc_zéphyr', 'équateur', '76_%', 'laissez_durcir', 'ix', 'munster', 'fiel', 'nausées', 'bouchers', 'culturellement', 'fractionné', 'frottements', 'additionnelles', 'imaginais', 'suffise', 'scellé', 'republique', 'existences', 'hausses', 'vacanceole_-', 'on_préchauffe', 'négociable', 'sous_surveillance', 'ascenseurs', 'spontanéité', 'féminité', '18e', 'cimetières', 'splendeurs', 'transmises', 'entouraient', 'recadrer', 'panier_vapeur', '100_grs', 'helsinki', 'king_size', 'baleines', 'écoutons', 'nouvel_extracteur', 'jus_kuvings', 'whole', 'certains_modèles', 'fibreux', 'équilibre_acido-', 'bon_centimètre', 'réhydratée', 'rehaussé', 'explorent', 'recettes_rapides', 'braisés', 'tomate_séchée', 'séduite_par', 'parasol', '3,2', '3,3', 'peggy', 'alcazar', 'rhum_arrangé', 'alcoolisée', 'transportée', 'écœurant', 'préparation_chocolatée', 'pénurie', '18,5', 'consistance_lisse', '&_cie', 'glycérine_végétale', 'manière_artisanale', 'lemongrass', 'lavandin', 'ne_craignait', 'invalides', 'miramar', 'tes_explications', 'différents_sites', 'boeufs', 'sauce_crémée', 'lecture_future', 'piquette', 'bv', 'phytostérols', 'testé_ta', 'connais_-tu', 'tresse_suisse', 'entraînée', 'toison', 'bienséance', 'atténuation', '000€', 'huis_clos', 'bruncher', 'verger', 'valencia', 'plut', 'punitions', \"viendraient_s'\", 'imperial', '3_dl', 'kgs', 'patchwork', 'obus', 'moutarde_forte', 'dacquoise_coco', '10-12_minutes', 'mixeur_plongeur', 'timbres', 'calculez', ')_multiplié', 'mentalités', 'nous_participons', 'raviole', 'écopé', 'aurais_-tu', 'empanadas', 'edelweiss', \"s'_étendant\", 'archéologues', 'laos', 'anne-sophie_pic', 'goujon', 'linguines', 'se_réfère', 'photographiques', 'ouvriront', 'fourches', 'revitalisation', 'malmené', 'satine', 'ultérieure', 'devancé', 'vaines', 'reproduisant', 'adapté_aux', 'max_havelaar', 'certaines_marques', 'ethiquable', 'recettes_proposées', 'saveurs_fruitées', 'concluant', 'masque_visage', 'réparatrice', 'greenpeace', '2_bedroom', 'condo', 'catane', 'femina', 'pertuis', 'courte_distance', 'omettez', 'charges_sociales', 'problématiques', 'audiovisuel', 'vinexpo', 'salon_mondial', 'hôtel_ona', 'tricotin', '1min30', 'vitaminée', 'poires_coupées', 'ultra_moelleux', 'petites_verrines', 'renouvelé', 'parsemés', 'café_bombée', 'puerto_del', 'levallois', 'acétique', 'teinter', 'quantités_égales', 'accédez', 'rente_viagère', 'versements', '500_francs', 'sociétaires', 'rappelleront', 'perdants', 'décontraction', 'répondant_aux', 'ugg', 'parvenus', 'arrhes', 'sc', 'maspalomas', 'impressionnantes', 'anonymat', 'traitement_médicamenteux', 'guide_michelin', 'jeune_chef', 'inventifs', 'frémissante', 'faine', 'jolie_coloration', 'thermo', '55°', 'marinades', 'anti_adhésive', 'éléments_solides', 'poivrées', 'nounous', 'ramassées', 'relaxantes', 'vidéo_ci-dessous', 'grande_ampleur', 'celliers', 'galettes_bretonnes', 'populations_civiles', 'serait_sympa', 'viennoise', 'server', 'recherchez', 'oum', 'activité_principale', 'précipite', 'ducasse', 'chers_lecteurs', 'abimée', 'contre-pouvoir', '.cette', '-cuire', 'gestion_collective', 'signifierait', 'jean-marc_ayrault', 'premier_ministre', 'lance_-t-il', 'toute_trace', 'contribuent', 'énumérées', 'consécutifs', 'imprègne', 'existe_plusieurs', 'consumé', 'plateau_tournant', 'multifonction', 'petites_barquettes', 'promettent', 'impropres', 'objectives', 'résumés', 'citadel', 'pain_béni', 'défavorable', 'grandes_fortunes', 'mondiales', 'entretenues', 'se_distinguent', 'population_française', 'mots-clés', 'détecteurs', 'ondes_électromagnétiques', 'défection', 'avalés', 'dernière_goutte', 'recueillies', 'laboratoires', 'équipés', 'rentrée_prochaine', 'plus_démunis', 'faible_taux', 'détention', 'confronter', 'compte_épargne', 'modèle_économique', '2,8_milliards', 'collaboratif', 'participative', 'différents_modèles', 'ai_testée', 'makanai', 'température_idéale', 'décomposer', 'surtout_respectez', 'être_dégusté', 'henri_iv', 'aristocrates', 'du_rhin', 'épautre', 'robot_mélangeur', 'équitablement', 'instauré', 'montant_annuel', '0,2_%', 'masse_salariale', 'poisson_fumé', 'privatif', 'jumeaux_supérieure', 'tait', 'gattaz', 'tiraille', 'saint-germain', 'petites_boites', 'bennes', 'gravats', 'produis', 'onglets', 'recettes_sucrées', 'phéniciens', 'trois_reprises', 'deux_manières', '1/2cc', 'assez_large', 'occasionnel', 'merano', 'bianco', 'recueille', 'vient_piocher', '-couper', 'poêle_huilée', 'galantine', 'végétation', 'livre_yakitori', 'dome', 'révolutionné', 'cheesecakes', 'mesurent', 'sablés_bretons', 'infidélités', 'campanile', 'réfléchissez', 'nine', 'alimentées', 'triphasé', 'déformation', 'éternellement', '2è', 'garibaldi', 'épicurienne', 'ps4', 'netflix', 'chemisé', 'cozy', 'hughes', 'flegme', 'haut-rhin', 'différents_cépages', 'alsaciens', 'passionnées', 'capiteux', 'opulent', 'demeter', 'traitant', 'rôle_majeur', 'assiette_plate', '/_mauve', 'via_paypal', 'plaque_perforée', '100m', 'peaufine', '76_chambres', 'localiser', 'peuplement', 'bénéficient', 'se_vautrer', 'pepper', 'cuivres', 'décongelées', 'teintées', 'appartement_convivial', 'torres', 'équitables', 'pays_producteurs', 'filtration', 'malté', 'visqueuse', 'se_dote', 'engouement', 'séville', 'lentilles_cuites', 'battez_énergiquement', 'oatmeal', 'transférée', 'veronica', 'antalya', 'fatwa', 'macérés', 'pano', 'candida', 'ptz', 'apport_personnel', 'origine_contrôlée', 'retirez_-la', 'tasca', 'capucines', 'plaids', 'aloé_véra', 'ylang-ylang', 'sont_révélés', 'triplé', 'crème_épaissit', 'centre_culturel', 'expliquons', 'inculquer', 'communiquez', 'monastère', 'débat_politique', 'aux_attentes', 'fournissait', 'raffermissantes', 'janvier_2005', 'nous_voudrions', \"côte-d_'\", 'énumération', 'plaza', 'infra', 'comportements_alimentaires', 'vont_devoir', 'véritable_régal', 'soupçonnée', 'establishment', 'ses_souffrances', 'plafonds', 'endroit_idéal', 'localement', 'endémique', 'salomon', 'îlots', 'progressive', 'brûlées', 'animales', 'chopin', 'dévaler', 'balisés', 'naguère', 'xviiième', 'joséphine', '1812', 'goret', 'diplomatiques', 'group', 'doutez', 'blanchit', 'gâteau_marbré', '25/30_minutes', 'mes_convives', 'tricote', \"n'_osa\", 'v6', 'gaine', 'sont_proposés', 'manalas', 'sicilia', 'breveté', 'devin', 'magistrat', 'monnaie_courante', 'magistrats', 'promptement', 'aggraver', 'vos_pères', 'ordures', 'rocca', 'alphabets', 'homemade', 'toscana', \"s'_éteigne\", 'propension', 'poussiéreuse', 'démoulez_délicatement', 'maitre_marabout', 'affectif', 'grand_marabout', 'océanie', 'ancestral', 'roi_salomon', 'multiplicateur', 'salomon_-', 'footballeurs', 'maconnerie', 'mystiques', 'franc-maçon', 'mysticisme', 'maçon', 'faire_apparaitre', 'colibris', '8_étages', 'caleta', 'camperdown', 'regretterez_pas', 'tourage', 'maïzena®', 'carthage', 'christ_lui-même', 'hotel_garni', 'catalina', 'instructeurs', 'monologue', 'gospel', 'réactif', '2ème_couche', 'ivoiriennes', 'san_giovanni', 'samossas', 'diode', 'associatif', 'food_and', 'sencha', 'apéritive', 'amuses_bouches', 'crier_gare', 'usent', 'identifiés', 'police_judiciaire', 'pourrissent', 'pénale', 'confiez', \"j'_adooore\", 'montagnes_équipées', 'hortensias', 'méthodiquement', 'renoncement', 'critique_littéraire', 'entre-deux-guerres', 'avait_coutume', 'bouquinistes', 'hulot', 'fins_commerciales', 'faust', 'gasthof', 'acharnement', 'ajoute_-t-il', 'substantif', 'bibine', 'asperges_vertes', 'dernière_louche', 'reposer_5', 'aliments_chauds', 'imposés', 'puéril', 'cavalerie', 'malsaine', 'précisées', 'accès_libre', 'trajan', 'tribun', 'euros_mensuels', 'accueillent', 'produit_noble', 'terreau', 'expérimental', 'stew', 'luzerne', 'connectez_-vous', 'toute_transparence', 'minier', 'paysannerie', 'prolétariat', 'facilitera', 'implantation', 'débitants', 'déroulant', 'freddy', 'hashtags', 'familiale_standard', 'animations_autour', 'relations_professionnelles', 'chase', 'lead', 'idée_originale', 'douze_ans', 'danube', 'bien_huilée', 'ponta', 'tournez_-vous', 'cerveceria', 'gallo', 'ariel', 'peut_sembler', '185', 'vivacité', 'picturales', 'érotisme', 'homards', 'pâtes_feuilletées', 'san_martin', 'grandes_souffrances', 'interrompt', 'seoul', 'séoul', 'température_inférieure', 'oenotouristique', 'multimédias', 'permettaient', 'excursions', 'créance', 'penzion', 'éclairées', 'dijonnaise', 'peniscola', 'riad', 'testerai', '165g', 'concasser_grossièrement', 'moitié_inférieure', 'assiettes_gourmandes', 'gouteux', 'dortoir_mixte', 'mediterranee', 'viandes_blanches', 'aucun_scrupule', 'skateboard', 't_holiday', 'homes_-', 'motel_offre', 'attirantes_équipées', 'shinjuku', 'triples', 'apartment_budapest', 'cartonné', 'cuisine_mexicaine', 'beef', 'tōkyō', 'hannover', 'tirette', 'ânesse', 'compatibilité', 'metropolitan', 'cuisine_spacieuse', 'pepe', 'décor_italien', 'rebondis', 'bouffées', 'alto', 'apartment_rio', '88_chambres', 'taco', 'university', 'moscow', 'lit_queen-size', 'deutsche', 'delicious', 'lit_king-size', 'suite_exécutive', 'salzburg', 'irriguer', 'drainage', 'stylisées', 'pavel', 'structurelle', 'apt', 'vitrées', 'palermo', 'exactitude', 'grille_perforée', 'cancun', 'beach_house', 'code_saq', 'cépages_utilisés', 'aubry', 'belle_acidité', 'se_déposent', 'distribuaient', 'lex', 'serviced', 'fritz', 'petits-suisses', 'cerises_dénoyautées', 'mélange_lait-crème', 'petites_crèmes', 'cyclo', 'joël', 'jean-marie', 'forteresse', 'maigret', 'époque_victorienne', 'karma', 'bangkok', 'odessa', 'all_inclusive', 'omni', 'cannon', 'apartment_hotel', 'wan', 'ossau_iraty', 'mini-tartelettes', 'petit-déjeuner_continental', 'wm', 'hoop', 'george_v', 'santa_maria', 'shiny', 'pegasus', 'dubaï', 'backpackers', 'apartment_disposent', 'spicy', 'choco-_story', 'comporte_28', 'courbevoie', 'elegance', 'échanger_autour', 'rosiers', 'blt', 'sriracha', 'on_troque', 'cadeau_original', 'beyrouth', 'laisser_brunir', 'home_cinéma', 'station_balnéaire', 'cohabitent', \"s'_étire\", 'apartment_odessa', 'suite_penthouse', 'martinez', 'colonial', 'chambres_compactes', 'tsar', 'saint_petersburg', 'united_states', 'advance', 'honduras', 'apartment_buenos', 'apartment_paris', 'rénové_propose', 'ajusté', 'proust', 'gascogne', 'cabillaud_cuit', 'ratafia', 'moûts', 'vieillies', 'interface_graphique', 'suites_by', 'trois_dimensions', '204', 'gm', 'souk', 'fountain', 'dubai', '323', 'douche_handicapé', 'old_town', 'hospitalisation', '1958', 'sao_paulo', 'unir', '318', 'accommodation', '235', 'jumeaux_exécutive', 'hôtel_el', 'houses', 'procure_11', 'bucarest', 'comporte_13', 'voilier', 'cracovie', 'terrasse_accueille', 'remarquent', '116_chambres', 'housses', 'typologie', 'breloque', 'cervantes', 'appartement_duplex', 'anormale', 'luxembourgeoise', 'nikon', 'theo', '690', 'apartments_-', 'house_apartment', 'hood', 'décor_standard', 'natura', 'socialisme', 'légèrement_boisé', 'ylang_ylang', 'notes_fruitées', 'fraîchement_moulue', 'bricolages', 'délicieuses_recettes', 'lavable', 'sherlock_holmes', 'pertinents', '149_chambres', 'petit_bémol', 'fixateur', 'arras', 'châteauroux', 'sémillant', 'pic_saint', 'anthropologie', 'pisa', 'corsair', 'ad_hoc', 'focaliser_sur', 'homme_politique', 'démesurés', 'entraînent', 'jorge', 'aéroport_offrant', 'gâché', 'babette', 'prestigieux', '-_calpe', 'midtown', 'canto', 'remontés', 'désavantage', 'learning', 'réussites', 'bouleverse', 'brien', 'irish_pub', 'cartoon', 'contributeurs', 'bruts', 'lynch', 'insère', 'elbe', 'hêtre', 'monument_historique', 'activiste', 'parapente', 'enrichissent', 'divisez', '230_°c', 'crépine', 'software', 'epouse', '1.0', 'querelle', 'communiquant', 'open_bar', 'édité', 'sels', 'bouillettes', 'pop-up', 'fisc', 'ronan', 'eleonora', 'comfort', 'tandoor', 'servez_accompagné', 'expérimentale', 'chou_rouge', 'abricot_sec', 'homes', 'helios', 'truelle', 'excitantes', 'voluptueux', 'rialto', 'interprétés', 'maté', 'huit_millions', 'elie', 'perchées', 'valentino', 'décathlon', 'infusés', 'hypermarchés', 'c-à_café', 'rédigeant', 'optimise', 'endormissement', 'citrate', 'inconcevable', 'sournoisement', 'basmati', 'bran', 'pâtes_complètes', 'alcalins', 'qui_luttent', 'conseillant', 'travail_préparatoire', 'lieues', 'représentée_par', 'bordé', 'particulièrement_efficace', 'prononcez', 'comparative', 'existe_-t-il', 'robot_cuiseur', 'tous_types', 'mijotage', 'réchauffage', '250_000', 'cellulite', 'notes_fraîches', 'perdurent', '155_chambres', 'très_curieuse', 'ventres', 'popsicles', 'hans', 'mariez', 'orwell', 'rassurante', '89', 'supra', 'fleurettes', 'gomasio', 'dorent', 'dragées_amande', 'bande_originale', 'aménagées', 'fourmille', 'mules', '-10_%', 'ferienwohnung', 'apartment_saint', 'ferait_mieux', '1_cuiller', 'cabinets', 'extrayez', 'darne', 'mêlez', 'n°_1', 'correspondaient', 'longues_soirées', 'samovar', 'accepterait', 'cold', 'primo-', 'lamentations', '“a', 'comédie_romantique', 'adresses_mails', 'distribués', 'corrects', 'dignement', 'retraite_complémentaire', 'arrco', 'agirc', 'excédents', 'régime_général', 'hublot', 'code_pénal', 'nous_permettons', 'demandez_-lui', 'tempérage', 'délicieux_parfum', 'glace_royale', 'usage_professionnel', 'décanter', 'accroissement', 'récipient_creux', 'aspect_brillant', 'tabler', 'envisagés', 'conditionnées', 'nutritionnels', 'ration_ménagère', 'finirent_par', 'physalis', 'lombard', 'deux_compères', 'barème', '300°c', 'naans', 'eyguebelle', 'antibiotique', 'prolifération', 'âcre', 'mucus', 'intitulé_«', 'so_british', 'procédez', 'réfrigérez', 'août_2011', 'réalité_virtuelle', 'génétiques', 'futur_proche', 'opprimer', '20-30_min', 'note_salée', 'salez_légèrement', 'windows_movie', 'maker', 'narcissique', 'embauché', 'pâtir', 'nouveaux_modules', 'lecteur_multimédia', 'codecs', 'lisible', 'guard', 'liman', 'désodorisant', 'bougie_parfumée', ')_.6', ')_.7', 'puis_démoulez', 'guidée', 'dépêches', 'sont_considérées', 'adressées', 'consul', 'catégoriser', 'ritz', 'angoulême', 'téléchargée', 'vallee', 'nous_réaliserons', 'leurs_efforts', 'ses_compatriotes', 'sergent', 'chief', 'réglementaires', 'solis', 'serait_génial', 'usagé', 'subliment', 'phillips', 'assumée', 'gangue', 'océan_pacifique', 'roulants', 'blindées', 'combawa', 'abonnée', 'alfama', 'reconduire', 'silom', 'darius', '250_millions', 'atome', 'molécule', 'nyc', 'académies', 'marc_jacobs', 'noël_arrive', 'log', 'nos_sociétés', 'érudits', 'idiots_utiles', 'talmud', 'goyim', 'approuver', 'enclencher', 'lacté', 'rechargement', 'inclinable', 'abandonnées', 'futures_mamans', 'poivrez_généreusement', 'th_5/6', 'nous_boirons', 'minorités', 'pakistan', 'suédoise', 'verrouiller', 'fortes_chances', 'ses_responsabilités', '500_mètres', 'aubert', 'centiares', 'closerie', 'exploitée', 'occupée_par', 'hectare', 'nous_ignorons', 'bâtis', 'modélisation', 'aucun_signe', 'doris', 'pareilles', 'opposait', 'accaparer', 'coupe-pâte', 'apps', 'paper', 'chaise_longue', 'atomiseur', 'fury', 'refont', 'polymères', 'analogues', 'tient_compte', 'transistor', 'échelle_planétaire', 'faisceau', 'personne_humaine', 'coïncidences', 'golan', 'ancien_testament', 'nouveau_testament', 'voyous_\"', 'goûta', 'différentes_saveurs', 'réchauffée', 'garnissez_-les', 'résultat_obtenu', 'sarbacane', 'lésé', 'explicative', 'vectoriel', 'fourreau', 'anal', 'd3', 'censurer', 'armures', 'anodins', 'perfectionnée', 'toute_évidence', 'tres_gourmande', 'minimalistes', 'grand_méchant', 'bourde', 'éditrice', 'frelaté', 'accompagnements', 'version_pdf', 'capoter', 'soulagé', 'crin', 'affrontements', 'détruits', 'reproduisent', 'importait', 'latins', 'bolloré', 'déplorent', 'autisme', 'parti_socialiste', 'institutionnel', 'revendications', 'moins_avoué', 'néolibérale', 'bora_bora', '½_sachet', 'brewery', 'barbier', 'sellier', 'havane', 'pecan', 'utilisa', 'points_forts', 'brumes', 'brossard', 'renégociation', 'témoigné', '1765', 'électriquement', 'port_usb', 'e-liquide', 'colorants_naturels', 'synthétiques', 'troll', 'vilebrequin', 'monobloc', 'coussinets', 'traitement_thermique', 'pamphlet', 'cuivrée', 'saveur_douce', 'microbe', 'pare-soleil', '1er_essai', 'crampes', 'réfute', 'chambéry', 'fruis', 'ovni', 'regroupés', 'margarines', 'nos_attentes', 'croît', 'entraîneurs', 'anse', 'coin_extérieur', 'biologistes', 'pourrait_provoquer', 'chambord', 'habitue', 'embêtant', 'prédéfinis', 'trop_insister', 'double_champion', 'déclarait', 'romain_grosjean', '32_ans', \"s'_articule\", 'rapports_entre', 'coupes_pleines', 'irina', 'vidées', \"-l_'\", 'pétrolier', 'compartiment_moteur', 'épouvantable', 'ressortez', 'forme_rectangulaire', 'recommencé', 'apporteront', 'municipale', '352', '458', 'midnight', 'maniabilité', 'soupirail', 'méchamment', 'mana', 'autonomie', 'bistrots', 'purifié', 'ailier', 'finalisée', 'besognes', 'paninis', 'péruvien', 'kawasaki', 'républicaine', 'splendides', 'sont_conçus', 'must-have', 'rechange', 'coccinelles', 'excentriques', 'ils_pensent', 'ikea', 'résultent', 'réinventent', 'porcelet', 'omelette_espagnole', 'ibérique', 'prestataire', 'nuptial', 'rhodes', 'emportaient', '24_novembre', 'ressentiment', 'accueillons', 'confiante', 'œuvrant', 'incluses', 'candidose', 'vous_rencontrez', '26_ans', 'duomo', 'hooks', 'foster', 'archer', 'spielberg', 'poivrons_verts', 'silicium', \"s'_acquitter\", '600_€', 'pharmacien', 'sauvegardez', 'scarabée', 'skull', 'co²', 'bouillants', 'affichages', 'c.', 'serait_utile', 'redescende', 'shogun', 'ultramoderne', 'opel', 'câblage', 'août_2016', 'mumu', 'roubles', 'resultats', 'bon_déroulement', 'picasa', '36_000', 'hystérie', 'certains_cancers', 'aromatisant', 'pschitt', 'venice', 'dulse', 'diurétique', 'déficits', 'carlton', 'ramollissez', 'dessaler', 'ne_boira', 'subaru', 'introduite', 'b9', 'communauté_française', 'nouveau-né', 'seo', 'trahit', 'gager', 'attester', 'engendrés_par', 'donation', 'nettoient', 'groupes_industriels', 'ciel_ouvert', 'autorités_sanitaires', 'imperium', 'grandisse', 'frappuccino', 'points_positifs', 'oenologique', 'inao', 'décanteurs', 'livraison_gratuite', 'a_rassemblé', 'tchécoslovaquie', 'anatomie', '250_°', 'pendant_5mn', 'indigeste', 'fariner_légèrement', 'bèze', 'débâcle', 'autorités_britanniques', 'courtiers', 'formulée', 'opéras', 'toxicomanes', 'revendeurs', 'minuteur', 'répertoires', 'contrôleur', 'justifié', 'indemnités_complémentaires', 'indemnités_journalières', 'sécurité_sociale', 'janvier_dernier', 'vomissements', 'bribes', 'prône', 'recto', 'bombe_atomique', 'traduisant', 'première_phase', 'dernière_phase', 'expresse', 'détermine', 'phyto', 'merci_hervé', 'savoir_calculer', 'saupoudrez_-la', 'quelques_scènes', 'ressusciter', 'manipule', 'munissant', 'douzaines', \"s'_élèvent\", '132', 'annuités', 'versera', '1917', 'vert_foncé', 'broker', 'nouvelles_recrues', '300_millions', 'secteur_privé', 'pointent', 'str', 'vilnius', 'incompétent', 'fréquentes', 'ravir', 'souhaitaient', 'incursion', 'faussé', 'signet', 'éthanol', '25.000_euros', 'licra', 'sos_racisme', 'culte_musulman', 'meurthe-et-moselle', 'mini-bar', 'corporate', 'encadrée', 'sont_censées', 'avionneur', 'réactivité', 'tenir_compagnie', 'notait', 'minitel', 'récolté', 'cathy_cassidy', 'rejetée', 'confesseur', '18_h', 'mobylette', 'trafics', 'fagot', 'tolèrent', 'quêtes', 'doléances', 'perfide', 'digitale', 'événementiel', 'ric', '3,4', 'désirées', 'jubilatoire', 'perversion', 'dérobé', 'shérif', 'vraiment_adorable', 'incertaines', 'moratoire', 'abstraites', 'jerome', 'curseur', 'tsonga', 'clef_usb', 'club_sandwich', 'natalie', 'intemporelle', 'incarcéré', 'aymeric', 'omnivore', 'ags', 'étends', 'principauté', 'vous_disposerez', 'mots_clés', 'hilarant', 'detox_water', 'training', 'ventilo', 'parker', 'frappante', 'merci_infiniment', 'davidson', 'encombré', 'évaluez', 'démodé', 'copropriétaire', 'intendance', 'gallon', 'aumônes', 'concernent', 'journalières', 'produits_issus', 'asthme', 'l.', 'pax', 'aveuglément', 'il_conviendrait', 'constatent', 'situation_professionnelle', 'présidence', 'capital_financier', 'biens_immobiliers', 'medecins', 'menue', 'al-qaïda', 'groupes_terroristes', 'administration_américaine', 'transition_entre', 'intranet', 'tomates_anciennes', 'crème_végétale', 'focaccia', 'uvres', 'philip', 'se_déroulent', 'allumeur', 'corrosion', 'chocolates', 'périmée', 'remanié', 'incendiaires', 'chuter', 'dépassera', 'valeurs_sûres', '11_juin', 'vibrante', 'fist', 'accord_parfait', 'fascisme', 'proclame', 'raisonnables', 'bienfaisante', 'vigoureuse', 'prolifique', 'serpillière', 'se_mariant', 'couvrer', 'ci-joint', 'bull', 'tcp', 'paris_condamne', 'cdr', 'cassation', '11_juillet', 'arbitrage', 'verser_285', 'bernard_tapie', 'emparé', 'cela_implique', 'manière_aléatoire', 'télécharge', 'ogres', 'platinum', 'climax', 'divisée', 'four_ventilé', 'frémit', 'fonte_totale', 'a_-t-on', 'sous_couvert', 'touriste', 'afp', 'nageurs', 'shampooings', 'cheveux_normaux', 'aidons', 'adaptables', 'se_révèlent', 'inefficaces', 'cet_inconvénient', 'bouchon_vide', 'abime', 'endommagée', 'élans', 'habiletés', 'ingrat', 'jalousies', '8_go', 'ponctuelles', 'ses_objectifs', 'ses_bienfaits', 'bière_active', 'glutathion', 'calmant', 'gommant', 'resoudre', 'rétrécir', 'destine', '22_juin', 'clivages', 'écoulés', 'élie', 'spirituels', 'transfiguration', 'dilater', 'boite_mail', 'énoncer', 'grand_amateur', 'sega', 'vendôme', 'coquette_somme', 'saison_prochaine', 'on_notera', 'exploitées', 'anticorps', 'occasionnée', '<_head', 'distinct', 'leurs_concitoyens', 'écrans_lcd', 'clientèles', 'insistez', 'bentley', 'dictateur', 'miser_sur', '28_août', 'parti_démocrate', 'sont_interdits', 'fonctionnaire', 'jolies_petites', 'photophores', 'burton', 'affront', 'desservi', 'desservies', 'récriminations', 'démoli', 'four_chemisée', 'thon_émietté', 'nomade', 'congelateur', 'noircissent', 'disposez_-y', 'forme_carrée', \"s'_unir\", 'hurom', 'rotation_lente', 'alternent', 'se_rapportant', '40_000', 'bl', 'pourriture_noble', 'rattachés', 'contestation', 'valeurs_nutritionnelles', 'malles', 'majesté', 'dégagement', 'gmail', 'mcqueen', 'talons_hauts', 'indicative', 'fmi', 'banque_mondiale', 'organisation_mondiale', 'astérisque', '°_c', 'décollage', 'decor', 'montante', 'souhaitais', 'durite', 'conduira', '3/5', 'nuoc-mâm', \"s'_obstinent\", 'guere', 'reconstitué', 'montaigne', 'plombes', 'mille_merci', 'zacharie', 'marilyn_monroe', 'farine40g', 'sont_apparues', 'sauce_vinaigrette', 'distraire', 'veuillent', 'écartées', 'cinq_places', 'grandes_catégories', 'commandait', 'diktat', 'sera_ravi', 'vestige', 'île-de-france', 'caméscope', 'débarrassée', 'intouchables', 'perfections', 'tu_verses', 'remplissaient', 'libérant', 'radiophonique', 'porter_plainte', 'ayant_refusé', 'courus', 'chapelier', 'condamnait', 'arches', 'demi-heure_environ', 'privilégiez', '18_juin', 'sont_dotés', 'acéré', \"s'_enivrer\", 'relevait', 'pst', '242', 'seigneur_jésus', 'évangiles', 'battent', 'bolets', 'calibrer', 'gracieux', 'préventives', 'géorgiens', 'visés', 'irakien', 'bon_trêve', 'facéties', 'archaïque', 'considérations', 'ravisseurs', 'ossétie', 'partiels', 'passion_commune', 'schmitt', 'étendus', 'très_performants', 'leroy', 'transfère', 'parviendront', 'ultra-rapide', '0,20', 'chiffrés', '30s', 'instigation', 'distincte', 'quotidien_allemand', 'dignitaire', 'affecté', 'pléiade', 'identifiable', 'ils_feraient', 'impressionné_par', 'follow', 'exorciser', 'intel', 'frifri', 'tisonnier', 'tarification', 'renseignez_-vous', 'connectez', 'rejoignez', 'rabattue', 'disjoncte', 'dévorés', 'lucius', 'remplacés', 'productions_locales', '2,5_milliards', 'webinaire', 'additionnelle', 'fallacieuse', 'formule_suivante', 'démocratiser', 'prix_abordable', 'reconduit', 'alençon', 'cathédrales', '302', 'essen', 'anpe', 'canaries', '23h59', 'électrochoc', 'repoussoir', 'lustrer', 'absorbent', 'fêtent', '26_août', 'homosexuel', 'gribouille', 'contractuelle', 'défaillance', 'motogp', 'suzy', 'nombreux_exemples', 'icon', '22_juillet', 'lingots', '3_suisses', 'collaboratrice', 'naïvement', 'suscitées_par', 'fomenter', 'souscription', 'doit_comporter', 'esprit_critique', 'on_assaisonne', 'ava', 'clouer', 'nadège', 'canot', 'rosette', 'rex', 'traversées', 'orateur', 'durée_indéterminée', 'renvoyant', 'tesla', 'concourt', 'america', 'distant', 'appellée', 'rome_antique', 'éther', 'videz', 'obtenez', 'minimiser', 'nous_serions', 'buvez_beaucoup', 'tortellinis', 'lave_vaiselle', 'lave_linge', 'mmmmm', 'facade', 'utilisaient', 'conduisez', 'christmas', 'pea', 'til', 'lorelei', 'a_clôturé', 'keywords', 'métadonnées', 'islamophobie', 'broyeuse', 'trek', 'unesco', 'fibres_végétales', '16ème_siècle', 'réf', 'ont_débuté', 'eau_tiéde', 'corporel', 'évoquez', 'coffret_cadeau', 'delorme', 'saint_germain', 'localisation', 'boon', 'nescafé', 'grande_instance', 'nationalistes', 'dénoncent', 'dogmatique', 'marxisme', 'xixème', 'coalition', 'exploiteurs', 'joug', 'tyrannie', 'union_soviétique', 'bureaucratie', 'réactionnaire', 'nationaux', 'unissant', 'citadine', 'gouvernements', 'séduisantes', 'aux_dires', '-_marie-christine', 'expliciter', 'exploitent', 'innovations', 'éclatement', 'c.s', '2,5_dl', '2ème_partie', '1dl', 'intégrante', 'bohème', 'rives', 'qqch', 'wash', 'tiédir_avant', 'pauillac', 'attenante', 'bonnefoy', 'autoradio', 'périphérique', 'morris', 'première_mi-temps', 'cyrille', 'aiguë', 'joli_teint', 'perversité', 'mon_étagère', 'courber', 'se_pencher', 'sut', 'boissons_fortes', 'boisson_forte', 'tumultueuse', 'timothée', 'enivrez', 'éphésiens', 'quatorze_ans', 'précise_-t-il', 'installez_-vous', 'risquait', 'precise', 'médecine_traditionnelle', 'cdd', 'eau_contenue', 'bien_fonctionné', 'impots', 'élo', 'bicolores', 'nad', 'orientation_sexuelle', 'se_régalait', 'omniprésents', 'normes', 'fortement_conseillé', 'manière_optimale', 'pressoirs', 'double_vis', 'sont_conseillés', 'ils_produisent', 'centrifugeuses', 'pérégrinations', 'itinérante', 'matéria', 'genesis', 'repaire', 'level', 'kenny', '90€', 'droit_sorti', 'tacler', 'onze_ans', 'eh_hop', 'ignorée', 'claudine', 'gaie', 'insignifiante', 'répressive', '-50_%', 'bouillette', 'pellets', 'concoction', 'déodorants', 'col_roulé', 'recouvrez_-les', 'nous_organisons', 'municipal', 'signifié', 'potentialités', 'wallonie', 'wallon', 'retombent', 'piocher_chez', 'cirer', 'bidouille', 'jean_marc', 'sacrifiés', 'superflue', 'fauché', 'qand', 'poisson_cru', 'petites_friandises', 'petites_trouvailles', 'etat_devra', 'saint-denis', 'consister', 'distillés', 'consommation_totale', 'vdqs', 'font_rouler', 'redistribué', 'versement', 'difference_entre', 'escoffier', 'fins_publicitaires', 'restrictive', 'requises', '109', 'distingués', 'diligence', 'constatée', 'règlements', 'wonderful', 'négligence', 'mauvaises_surprises', 'fâche', 'raymond', 'embarquent', 'menu_démarrer', 'gd', 'plombe', 'combustibles', 'centraliser', 'rosberg', '3e_place', 'inexistante', 'collectent', 'bannières_publicitaires', 'ciblées', 'pop_up', 'casse-croûte', 'chaudement', 'nourrisson', 'télescope', 'kyoto', 'forestiers', 'contrôlées', 'irakiennes', 'estimées', '110_milliards', 'barils', 'j_aurais', 'sonnait', 'catalans', 'financent', 'trousseau', 'orques', 'french_manucure', 'échange_entre', 'cutanée', 'scellés', 'ils_sauront', 'mv', 'cyanure', 'lio', 'se_garer', 'polémique', 'effectuait', 'epic', 'copy', 'barnum', 'qualifs', 'nos_partenaires', 'pérennité', 'caraïbe', 'pitance', 'certaine_mesure', 'accède', 'dualité', 'assurant_ainsi', 'unifié', 'mds', 'poséidon', 'successeur', 'minecraft', 'mods', 'accouché', 'décodage', 'avouons', 'serions', 'redit', 'promotionnel', 'ail_entières', 'écrasante', '25.000', 'murales', 'termites', 'kentucky', 'promenez', '31_octobre', 'paysannes', '16_heures', 'dépensent', '17_février', 'penchés_sur', 'études_menées', '46_%', 'effet_protecteur', 'bunker', 'désillusion', 'intercepter', 'michaël', 'nous_entrons', 'déclenchement', 'disjoncteurs', 'fourgon', 'preference', 'entrée_principale', 'palais_présidentiel', \"s'_empressait\", 'parkour', 'cuisez_-les', 'serpentins', 'soudure', 'exigeante', 'rejouer', 'commente', 'catastrophisme', 'entrainements', 'rente', 'faute_lourde', 'battez_-les', 'bodin', 'shops', 'fruits_pressés', 'démarrera', 'peuple_palestinien', 'palestiniens', 'jeudi_matin', 'demanderons', 'ly', 'pistolets', 'injustifiée', 'presse_agrumes', 'four_encastrable', 'cuiseur_vapeur', 'amandes_enrobées', 'démêlés', 'fps', 'médecines', 'minardi', 'condamnées', 'porte-clé', 'déclenche', 'surcoût', 'différends', 'construis', 'essayes', 'charrier', 'souhaitons', 'cygnes', 'codifiée', 'analogue', 'œuvres_caritatives', 'matérielle', 'escarpin', 'coin_inférieur', 'localité', 'étancher', 'fluffy', 'sense', 'ecstasy', 'jamais_entendu', 'avait_refusé', 'abû', 'invoquant', 'prophétiques', 'évoquées', 'dénué', 'scythes', 'pourrait_qualifier', 'occitane', '19_janvier', 'four_months', 'on_perçoit', 'rattaché', 'communément_appelé', 'groupées', 'coopératives', 'explorateur', 'aucune_transformation', 'eu_tendance', 'boisson_énergisante', 'albi', 'cure-dents', 'mai_2010', 'devait_initialement', 'janvier_2011', 'outres_neuves', 'yuan', 'robinson', 'uefa', 'granges', 'tca', 'cérébral', 'bancaire', 'engageant', 'édités', 'incompatible_avec', 'mongolie', 'jaquette', 'poussait', 'transformez', 'temporel', 'antipathique', 'mars_2013', 'débouché', 'ramoli', 'supposition', 'aloe-vera', 'sont_élaborés', 'aloe_barbadensis', 'lui_offrait', 'égaler', 'calques', 'traçage', 'aérographe', 'vendangeurs', 'fairy', 'reseau', 'auckland', \"s'_éteignent\", '13h00', 'rasage', 'prospecter', 'papeterie', 'notaire', 'définitifs', 'confettis', 'lainage', 'nacré', 'mijotés', 'pénombre', 'inconfort', 'affilié', 'nanterre', 'holland', 'nous_assistons', 'pailletée', 'linge_sale', 'barcelonais', 'friands', 'mangera', 'propagation', 'purifiée', 'soutenue_par', 'dégel', 'bouddhistes', 'tonifier', 'sionistes', 'brandissant', 'frénétique', 'imagerie', 'nautilus', 'décrété', 'communiqué_publié', 'consolateur', 'garantis_sans', 'arôme_artificiel', 'élabore', '87_%', 'rationnement', 'vanté', 'manière_ludique', 'puisé', 'pacs', '13_octobre', 'livebox', 'sommation', 'faites_tiédir', 'délayez_-y', '220_°c', 'regrettable', 'transforment', '@+', 'pare-balles', 'saint_patrick', 'étude_publiée', 'anti-_oxydante', 'épicatéchine', 'in_vivo', 'in_vitro', 'inhibe', 'biodisponibilité', 'propriétés_anti-', 'oxydantes', 'potentielles', 'tahoma', 'baquet', 'maltitol', 'indirectement', 'stimulation', 'être_consommé', 'préoccupés_par', 'toboggan', 'peau_grasse', 'formateur', 'penchez', 'expérience_unique', 'supportera', 'subira', 'qu´il', 'aquariums', 'servirent', 'citadins', 'avise', 'innovations_technologiques', 'conçoit', 'sait_pertinemment', 'rochers_coco', 'essoufflement', 'respiratoire', 'membres_actifs', 'verser_annuellement', 'code-barre', 'cicatrisant', 'antibactérien', 'astringent', 'admirez', 'k1', 'pp.', 'quantite', 'palestiniennes', 'signalons', 'probables', 'trafiquants', 'conseillons', 'convoitise', 'emincé', 'mann', 'catapulte', 'mauvaise_nouvelle', '444', 'applaudir', 'raciale', 'fédération_internationale', 'initialement_prévu', 'vane', 'npa', 'haute_montagne', 'bonifie', 'arides', 'passes_décisives', 'habitante', 'poulet_fermier', 'nuit_entière', 'petites_rues', ']________*dans', 'pains_pita', 'irresponsable', 'moralement', 'éprouvant', 'notre-dame', 'certaines_préparations', 'tombée_amoureuse', 'ecrit_par', 'barrichello', 'schumi', 'engrange', 'écope', 'spider-man', 'papes', 'boycott', '20ml', 'grosses_lamelles', 'ristretto', 'migros', 'démunis', 'poésies', 'infidèles', 'patin', 'legrand', 'meilleurs_joueurs', 'bonne_hygiène', 'dentaire', 'etape_5', 'hautes_performances', 'se_targue', 'plaidé', 'déléguée', 'légitime_défense', 'interrogation', 'vraiment_top', 'giga', \"va-t_'\", 'connaissiez', 'périmées', 'télévisées', 'pathétiques', 'pap', 'crillon', 'lundi_soir', 'cueilli', 'cocotier', 'jardinage', '19,5', 'licencié', 'étalez_-y', 'recuire', 'vignettes', 'app_store', 'ses_serviteurs', 'boudin_noir', 'versatile', 'symptôme', 'veillée', 'bioéthanol', 'non-_alcoolisées', 'rond-point', 'autres_cochonneries', 'sa_compagne', 'produit_ménager', 'goût_désagréable', 'côté_hydratation', 'finalisé', 'nouvel_outil', 'envoyons', 'démêlage', 'soûler', 'quatuor', 'germains', '11_février', 'arcachon', 'provinciaux', 'incassable', 'spécialités_régionales', 'chartreux', 'sioniste', 'occupent', 'collaborer', 'crème_aigre', 'termineront', 'yves_saint', 'florentin', 'correspond_parfaitement', 'brûlants', 'différents_moyens', 'insurrection', 'fut_servi', 'insecticides', 'dépliant', 'oublions', 'magicienne', 'infidèle', 'aero', 'dégâts_matériels', 'localités', '25-30', 'rayonnant', 'gravures', 'infernale', 'crachant', 'premières_semaines', 'caricatural', 'matériaux_pouvant', 'nous_comprenons', 'orange_industriel', 'sri_lanka', 'esquimaux', 'redouter', 'call', 'kouik', 'john_pemberton', '1886', 'rainure', 'tinto', 'd2', 'chaussées', 'centre_hospitalier', 'licenciements', 'cause_réelle', 'demandeurs', 'rapprochant', 'jj', 'finaliste', 'orientant', 'i_ya', 'taquet', 'persister', 'inventivité', 'piétonne', 'implorer', 'curés', 'quittèrent', 'faites_étuver', 'remettez_-le', '16_mars', '3ième', 'mondialement_connu', 'grouper', 'suicidé', 'tris', 'mentent', 'tissé', 'mandela', 'cce', 'cavaliere', 'pique-niquer', 'pedigree', 'premier_opus', 'précurseurs', 'médiocres', 'tirer_parti', 'possibilités_offertes', 'bouchées_doubles', 'filon', 'armement', 'aaa', 'ouaih', 'généralités', 'pneumatique', 'toupie', 'baked_beans', 'abstrait', 'pharaons', 'développeront', 'tertre', 'vils', 'tolérer', '1835', 'cigales', 'plus-value', 'place_vendôme', 'grosseurs', 'aucune_goutte', 'nostalgiques', 'renouvelée', 'équestres', 'retombée', 'homosexuelle', 'solidement', 'retiennent', 'smoky', 'évidentes', 'améliorés', 'contredisent', 'celtes', 'supplanter', 'relégué', '18ème', 'déclassement', 'toyota', 'se_frayer', 'dennis', 'monoplace', 'nis', 'onzième', 'hier_matin', 'aligné', 'aurons', 'routine_santé', 'cotons', 'livreurs', \"s'_efforcent\", 'informateurs', 'virtual', 'précarité', 'inventive', '23_septembre', 'pommes_vertes', 'réussissent', 'vosgienne', '16_h', 'racontez', 'adoptés', 'entrepreneur', 'legs', 'trompeur', 'mythologiques', 'lasserre', 'bali', 'monde_arabe', 'orsay', 'georges_pompidou', 'moyen-age', 'excluant', 'satirique', 'villiers', 'malaises', 'épicer', 'baignent', 'assistances', 'nom_collectif', 'infirmiers', 'mon_beau-frère', 'épousé', 'épris', 'rothschild', 'commercialement', 'porteuse', 'vous_souhaiteriez', '10ème', 'décrochant', 'baignée', 'norvégienne', 'film_hydrolipidique', 'agressifs', 'porté_plainte', 'différentes_méthodes', 'caddies', 'définissant', 'lavabos', 'mijotées', 'fondatrice', 'prouvés', 'ont_étés', 'chauffées', 'uranium', 'enrichissement', 'ménagé', 'cyano', 'virginité', 'prématurément', 'bombes_atomiques', 'abat', '10l', 'larzac', 'pharma', 'mueslis', 'gnocchi', 'cartonne', 'ibrahim', 'lacune', 'sap', 'ils_croient', 'occasionné', 'suis_sûre', 'début_novembre', 'maître_chocolatier', 'bonnat', 'rodez', 'feinte', 'chez_carrefour', 'succéder', 'distrait', 'sa_filmographie', 'mondains', 'partielles', 'fontenay', 'publierai', 'téléphone_cellulaire', 'illégale', 'pare_brise', 'moyeux', '//', 'nonchalamment', 'alimentation_vivante', 'aliments_crus', 'sans_colorants', 'giron', 'suscitent', 'lipstick', 'messagerie_instantanée', 'maltraités', 'vantée', 'télévisé', 'incompréhensions', 'interactives', 'gentilhomme', 'joueront', 'pondu', 'limoges', '1857', 'regroupé', '200€', 'ca_dépend', 'perchés', 'dordogne', 'import', 'abriter', 'van_der', 'colères', 'piton', 'révolue', 'insuffisant', 'ayurvédique', 'étales', 'nouvellement', 'interfaces', 'éveil_musical', 'ai_rajouté', 'interceptions', 'montreuil', 'en_décochant', '36e', 'lan', 'adsl', 'bouygues_telecom', 'bel_endroit', 'géraniums', 'sécurité_intérieure', 'dictateurs', 'suspects', 'prétentions', 'légèrement_colorés', \"n'_hésitant\", 'moules_individuels', 'excréments', 'distinctif', 'exploitant', 'maakouda', '20ème_siècle', 'mouron', 'maes', 'savourent', 'oignons_commencent', 'huiler_légèrement', 'libye', 'bosnie', 'kosovo', 'devrions_-nous', 'angela_merkel', 'notes_acidulées', 'texture_moelleuse', 'ap', 'clarifier', 'qui_allie', 'régalera', '360g', 'craquelée', 'minois', 'quelques_centaines', 'djibouti', 'm._macron', 'licences', 'ressortis', 'revêtement', 'évocateurs', 'arbres_fruitiers', 'cyprès', 'salade_grecque', 'tzatziki', 'antinomique', 'on_obtenait', 'petites_mousses', 'loufoques', 'seront_mises', '3m', 'psycho-', 'jeûnes', 'nature_humaine', \"s'_apparenter\", 'gaules', 'avoir_partagé', 'variation', 'poireaux_émincés', 'frais.', '50/50', 'recouvrir_entièrement', 'glaçage_crémeux', 'extrait_naturel', 'aïoli', 'ail1', 'riz_thaï', 'gardez_-le', 'décongelez', 'colloques', 'jus_crémé', 'formaté', 'restaurant_gastronomique', 'large_palette', 'fondeur', 'recette_ancestrale', 'mitterrand', 'cake_recouvert', 'levain_naturel', 'fermentescible', 'scrupuleusement_suivi', 'grossièrement_haché', 'cerises_séchées', 'douaniers', 'excessifs', 'perforé', 'préconiser', 'flambant_neuf', 'cet_entremet', '308', 'clôturé', 'brutalité', 'concombre_râpé', 'déchetterie', '1789', 'consommera', 'sortirez', 'achèterai', 'revendu', 'correspondrait', 'pellicules', 'robuchon', 'oursins', 'quenelle', 'langoustine', 'shiso', 'litanie', 'obscures', 'hal', 'plats_traditionnels', 'grand_marnier®', 'nostra', 'belle-maman', 'correcteurs', 'maturation', 'fongicide', 'purin', 'contestée', 'physiologie', 'fleischmann', 'levée_rapide', 'crèmeux', 'c´est', 'façonne', 'd´un', 'n´est', 'l´huile', 'lesieur', 'persans', 'pillage', 'captifs', 'misérablement', 'vous_réaliserez', 'petite_tuerie', 'petites_tartelettes', 'percolateur', 'perpétuant', 'revêtue', 'cap_corse', 'bastia', 'asperges_sauvages', '2dl', 'autocollant', 'corresponde', '16,5', '90_x', '190_cm', 'lit_gigogne', 'ajaccio', 'briochées', 'habitation_principale', 'exploitants', 'apiculture', 'poulailler', 'grives', 'clape', 'cerfeuil_haché', 'bibelots', 'chaux_vive', 'fascistes', 'grévistes', 'csp', 'certains_endroits', 'sport_and', 'appétits', 'prototypes', 'vif_succès', 'montebourg', 'identitaires', 'divisés', 'javelot', 'nous_recevons', 'citoyennes', 'rabbin', 'impatiemment', 'plastique_fou', 'sèchent', 'bien_dosé', 'marque_carrefour', 'chocolatées', 'actionnaire_principal', 'sauce_hollandaise', 'sauce_béarnaise', 'viandes_grillées', 'cannois', 'tarte_beurré', '220°_pendant', 'livarot', 'aux_cèpes', 'échalote_ciselée', 'hamburgers_maison', 'nikita', 'assez_lourd', 'presse-papier', 'complémentarité', 'abominations', 'situation_économique', 'injonction', 'médico-', 'funchal', 'sursauts', 'complète_absorption', 'pois_gourmands', 'seconde_moitié', 'cashback', 'moindre_détail', 'nouvel_ingrédient', '165_g', 'rassemblées', 'sinaï', 'donbass', 'kiev', 'pen', 'benoist', 'intégriste', 'procureurs', 'manifestants', 'déploré', 'zad', 'puisent', 'légales', 'affectées', 'fouilles', 'forages', 'étayer', 'nécessite_aucun', 'ça_mijote', 'youtubeuse', 'terrasse_extérieure', 'débloqué', 'telle_somme', 'ciboulette_hachée', 'haggis', 'sticky', 'diamètres', 'pendant_1/4', 'remaniée', 'ca_tombe', 'eût_été', 'considérez', 'séduira', 'vantant', 'gavage', 'kenya', 'pain_toasté', 'calmars', 'shooters', 'législations', 'éditée', 'février_2013', 'savez_peut-être', 'schneider', 'chars', '114_chambres', 'familiarité', 'élire', 'succès_fou', 'citron_caviar', 'remplacent', 'revisités', 'casa_rural', '250_degrés', 'arômes_naturels', 'rancho', 'début_juillet', 'somme_considérable', 'xviie', 'xviiie_siècles', 'monumentales', 'otages', 'armelle', 'embarquement', 'fatidique', 'sollicités', 'patrick_roger', 'brouillade', 'avoisine', 'temps_écoulé', 'constants', 'millionnaire', 'vertus_hydratantes', 'pavillons', 'artiste_peintre', 'bunkers', 'bûcher', 'médicales', 'nombreuses_recherches', 'hasardeuses', 'curatives', 'placements', 'alassane', 'expressive', 'vieillie', 'accolade', 'candy_melts', 'récipient_contenant', 'repartez', 'cocooning', 'redirigé_vers', 'aux_oubliettes', 'residence_cgh', 'passerelle_entre', 'incisifs', 'anticipe', 'allaiter', 'diabolisé', 'ananas_victoria', 'toute_sécurité', 'hôtel_apartament', 'rappée', 'rabbi', 'sans_équivoque', 'détournement', 'justifications', 'nos_disponibilités', 'cubique', 'prolétarien', 'prolétaires', 'cursus', 'très_correct', 'pyrénées', 'google_maps', 'ne_manqueront', 'choux_frisé', 'poires_pochées', 'enfournez_15', 'docilement', 'conduits', 'économistes', 'intrinsèquement', 'répréhensible', 'conclue', 'heights', 'veillera', 'xviii', 'farineuses', 'brillant_avenir', 'fn', 'marxiste', 'état-nation_fait', 'quelconque_nationalisme', 'containers', 'margoulins', 'déboursé', 'vulgarisation', 'sensibilisation', 'décideurs', 'œnotourisme', 'meilleurs_accords', 'nouveau_défi', 'hérissons', 'cookéo', 'diagramme', 'seront_parfaites', 'puissance_divine', 'fouettez_vivement', 'feuilletine', 'rouge_rubis', 'nous_tombons', 'équinoxe', 'chinoiser', 'inaya', 'tafia', 'muscadelle', 'réhabilitation', 'pate_lisse', 'pièces_jointes', 'non_toxique', '4843', 'armor', 'masking_tape', 'patientes', 'ursula', 'chapati', 'suffiraient', 'magazine_saveurs', 'légumes_surgelés', 'finement_ciselées', 'crème_mousseuse', 'méditerranéenne', 'déposez_-la', 'piroulie', 'impeccablement', 'citronner', 'il_haïra', 'transformateur', 'working', 'xe', 'sous_windows', 'coupé_grossièrement', 'aère', 'creuset', \"s'_agira\", 'crémé', 'compensation', 'wifi', 'bourgeoises', 'substitue', 'étranglement', 'régression', 'dernier_recours', 'flagrant', 'loukoum', 'malbec', 'reserva', 'felder', 'marcellin', 'tiger', 'crumble_salé', 'sablonneuse', 'décadente', 'laissez_gonfler', 'cave_coopérative', 'collines_rhodaniennes', 'glissez_-les', 'seule_modification', 'belle-famille', 'moyen-orient', 'découpez_-les', 'régularité', 'mug_cookie', 'nota_bene', 'sprays', 'copinaute', 'erin', 'fenetres', 'pays_arabes', 'tea_tree', 'procuré', 'rolls', 'panache', 'empoisonnée', '3-5', 'grand_rectangle', 'petrissage', 'délicieux_pancakes', 'textures_différentes', 'achetaient', 'alpage', 'ozone', 'liens_fonctionnent', ':_stephane@recettes.de', 'jury_commence', 'choisir._)', 'pouvoir_figurer', 'chaleur_ventilée', 'produits_gourmands', 'oreillons', 'damas', 'cela_dépendra', 'epiphanie', 'imbibage', 'version_individuelle', 'aplatir_légèrement', 'cannelés_bordelais', 'être_consommée', 'hyper_pratique', 'plutôt_copieux', 'accueil_chaleureux', 'repas_gastronomique', 'continental', 'réceptionniste', 'portier', 'paraiso', 'alta', 'rotin', 'exalter', 'inspirés_par', 'matériellement', 'agrément', 'y_retournerai', 'lemonde.fr', 'débarrassées', 'interprofession', 'régressif', 'zaatar', 'théâtrale', 'encastrer', 'dmc', 'classe_dominante', 'soustraction', 'france_inter', 'défiant_toute', 'baule', 'émet', 'rougaille', 'consulting', 'co-_auteur', 'aux_editions', 'étude_américaine', 'administré', 'harvard', 'ayant_participé', 'pernod_ricard', \"n'_exclut\", 'acquisitions', \"s'_agissant\", 'reconquête', 'viticulteurs_français', 'mondialisation', 'dramatiquement', 'décoder', 'marché_mondial', 'exportait', 'viticulteurs', 'faire_vieillir', 'vins_aoc', '159', '111', 'depuis_1999', 'nous_produisons', 'fischer', '2,1', 'par_habitant', 'appréciant', 'beverage', 'french_paradox', 'études_scientifiques', 'penguin', 'précoces', 'bouleversement', 'réchauffement_climatique', 'interprofessions', 'différentes_catégories', 'impliqués', 'exploitables', 'historien', 'parlementaires', 'acheminer', 'animait', 'taliban', 'etat_islamique', 'anciens_combattants', 'culte_divin', 'renouvelés', 'défense_nationale', 'aux_demandeurs', 'nationalité_française', 'exigeaient', 'verser_1,1', '900_000', 'rafael', 'imprégnée', 'bia', 'moules_marinières', 'fondue_savoyarde', 'impeccables', 'séjourné', 'excellente_idée', 'pluridisciplinaire', 'print', 'typographie', 'démontrée', 'nomment', 'olives_dénoyautées', 'façonnée', 'pdj', 'colli', '16€', 'imbuvables', 'io', 'offre_92', 'désuet', 'europe_centrale', 'fricassée', 'décongelés', 'acceptables', 'manifestes', 'désarmer', 'exorbitant', '1784', 'ads', 'panées', 'reglage', '60°', 'pratiquants', 'spécifiquement', 'fantassins', 'aparthotel_disposent', 'prix_raisonnable', 'pédagogiques', 'hisse', 'reflexion', '/_pers', 'concis', 'monoi', 'se_répande', 'cafe_and', 'petites_attentions', 'jean-françois_piège', 'snacké', 'poulet_marinées', 'mezze', '8,50_euros', 'stratégiquement', 'rougail', 'roscoff', 'encornet', 'truffés', 'printanières', 'morille', 'tétragone', 'eric_fréchon', '160_°', 'distribuant', 'petit_déjeûner', 'leur_disponibilité', 'incohérences', 'logiques', 'saint_jean', 'opa', 'décor_méditerranéen', 'aboutit', 'linguistiques', 'avenant', 'pane', 'acheminé', 'enlèvent', 'degré_alcoolique', 'géographique', 'a.o.c.', 'resort_and', '232', 'rénovée', 'champenoise', 'précisés', 'accès_payant', 'villégiature', 'petit-dej', 'se_conjuguent', 'tutti_quanti', 'agréablement_surpris', 'vieille_ville', 'anticiper', 'tordus', 'radisson_blu', 'satay', 'paternité', 'perturbant', 'ne_marchait', 'vendaient', 'ornent', 'saint_honoré', 'réunis_autour', 'mauvaise_qualité', 'inadaptée', 'minh-ville', 'soufflerie', 'espace_détente', 'tensions_entre', 'ai_commandé', 'corrigés', 'contraception', 'causés_par', 'congélateurs', 'facturation', 'michelet', 'éditoriaux', 'système_capitaliste', 'contractant', 'seine-saint-denis', \"‘_'\", 'salad', 'rénovées', 'denrées_périssables', 'colorants_artificiels', 'aberrant', 'chaufferie', 'insuffisamment', 'passable', 'vétuste', 'faïence', 'inhabituel', 'endroit_précis', 'rétrospectivement', 'purs_jus', 'nautiques', 'arrestations', 'devoir_payer', 'correspondant_au', 'cécile_duflot', 'marcoule', 'fuite_radioactive', 'beurre_rance', 'morteau', 'montbéliard', 'raz_el', 'hanout', 'point_négatif', 'suite.', 'facultatif_)', 'rempart_contre', 'liberticides', 'libertés_individuelles', 'visionnaire', 'indre-et-loire', 'démission', 'check-in', 'ajouterez', 'spécialement_conçue', 'baguette_fraîche', 'whiskies', 'inadmissible', 'boissons_rafraîchissantes', 'petite_suggestion', 'boheme', 'décevant', 'buddha', 'protéines_animales', 'on_ajoutera', 'aléatoires', 'certaines_régions', 'très_répandue', 'apothicaires', 'scorbut', 'incomparables', 'amalfi', 'michel_cluizel', 'imaginée_par', '57_%', 'ecocert', 'ingrédients_naturels', 'scande', '11€', 'déplorer', 'étroits', 'incluait', 'halal', 'crêpes_marocaines', 'commentée', 'vigneronne', 'octobre_2014', 'frankstein', 'maturité_optimale', 'bactéries_acétiques', 'nouvelle_vague', 'nettement_moins', 'equipements', 'dupont', 'handicaps', 'air_conditionné', 'aucun_souci', 'départ_matinal', 'écaillé', 'a_souligné', 'surclassement', 'boutique_hotel', 'cet_accessoire', 'adaptateur', 'particulièrement_apprécié', 'réfrigérée', 'standardisée', 'vitis_vinifera', 'praticable', 'laisser_fermenter', 'incisif', 'redonné', 'démonstratif', 'fondra', 'dernier_étage', 'presentes', 'payants', 'multifonctions', 'abonnements', 'facturé', 'n_etait', 'décongelé', 'balancier', 'petites_surprises', 'fasciste', 'villeurbanne', 'été_condamnés', 'partie_civile', 'faux_dieux', 'nutritionnelle', 'diversifié', 'hôtellerie', 'plats_chauds', 'relaxer', 'bratislava', 'redemandent', 'mercure', 'exagéré', 'flamenco', '360', 'plats_salés', 'draguignan', '129', 'rabais', 'resorts_disposent', 'exquises', 'hotel_odalys', 'prado', 'liber', 'totalement_libre', 'ottawa', 'ergonomique', 'conçues', 'sont_fabriquées', 'alcaline', 'insuffisants', 'citadines', 'jas', 'compensé', 'ce_désagrément', 'fausse_note', '203', 'ljubljana', 'hôtel_sun', 'nappes', 'vue_fantastique', 'prises_électriques', 'hôtel_splendide', 'obernai', '14e', 'moderniser', 'savoy', 'pays_producteur', 'frs', 'café_nespresso', 'tignes', 'restauracja', \"fouquet_'\", 'lit_double', 'juxtaposition', 'lits_simples', 'services_proposés', 'fonctionnant', 'bonne_tenue', 'masquant', 'chemine', 'facilement_accessible', 'bénéficieront', 'vinothèque', 'benchmark', 'préoccuper', 'excepter', 'hiroshima', 'residence_maeva', 'batignolles', 'soleil_couchant', 'énoncés', 'trois_etoiles', 'decoration', 'très_serviable', 'asado', 'meat', 'piger', 'privative', 'estate', 'connection', 'années_1950', 'plats_proposés', 'leaf', 'russell', 'heritage', 'rajoutés', 'piètre_qualité', 'recherchera', 'morbihan', 'residence_inn', '154', 'qualité_médiocre', 'boulogne-billancourt', 'nombreux_restaurants', '9€', '30€', 'bonne_surprise', 'seul_reproche', '1.50€', 'frans', 'escroquerie', 'grands_axes', 'wine_&', 'vista', 'fruits_concentrés', '1,80', 'greenwich_village', '-_adults', 'excellent_rapport', 'très_accueillant', 'bric', 'brac', '183', 'qatar', 'catastrophiques', 'caractérisé_par', 'proximité_immédiate', '7j_/', 'cafetières', 'bosco', 'beans', 'rassis', 'picarde', 'fruits_artisanaux', 'nous_souhaiterions', 'bruyants', 'dépots', '.petit', 'vers_18h', '1866', 'minimal', 'insonorisation', 'vancouver', 'gascons', 'qualité_gustative', 'elements', 'comfort_inn', 'salvador', 'été_accueillis', 'roissy', 'dénivelé', '179', 'deplacement', 'conseille_vivement', 'park_and', 'défaillante', 'juice_bar', 'demi_pension', 'alpe', 'zur', '-_bali', 'adjacent', 'encaissées', 'dinan', 'niveau_européen', '1150', 'bella_italia', 'amuse-bouches', 'beau_geste', 'proximite', 'usagés', 'usd', 'days_inn', 'conference', 'villa_casa', 'désastreux', 'doublons', 'sql', 'métrique', 'reposait_sur', 'hybridation', 'accueil_personnalisé', 'encaissement', 'compétitifs', 'cle', 'reservation', 'santorin', 'naïfs', 'windsor', 'jetable', 'remplacées', 'mash', 'sera_facturé', 'rénovations', 'instable', 'se_plie', 'louisiane', 'procure_33', 'possibilite', '257', 'vétusté', 'information_préalable', 'chaises_longues', 'fleuron', 'miami_beach', '121', 'tapeo', 'breeze', 'inn_&', 'lancaster', 'adorés', '540', 'farine_intégrale', 'hydrosolubles', 'acide_phytique', 'carences', 'aberration', 'réfuter', 'dénigrement', 'inadapté', '108_chambres', 'darwin', '24€', 'orangers', '133', 'accolé', '14€', 'flamingo', 'algerienne', 'amasser', 'pacific', 'oyster', 'mahé', 'facturés', 'grimaud', 'eaux_plates', 'pension_complète', 'tachés', 'entièrement_équipé', 'gazeux', 'partie_prenante', 'imposée', 'militairement', 'politiquement', 'adossée', 'impunité', 'autoritarisme', 'annick', 'lanterne', 'incluse', 'reading', 'recommanderai', 'stylé', '147_chambres', 'chf', 'somptueux', 'parking_privé', 'montélimar', '113_chambres', 'mortadelle', 'haye', 'masala', 'fourmilière', 'petite_remarque', 'centre_pompidou', 'armani', 'daiquiri', 'mètre_carré', 'disponibilite', 'tel-aviv', 'hôtel_charmant', 'fromages_locaux', 'navrant', 'décidaient', 'inégalités', '250€', 'sitges', 'dharma', 'environnant', 'yum', 'dominicain', 'bachelor', 'saf', 'contourne', 'fiables', 'lecteur_mp3', 'isle', 'intimiste', 'tenerife', '197', 'auberges', 'lay', 'hunter', 'jalapeno', 'seul_inconvénient', 'être_prudent', 'yogi', 'dammann', 'tchèques', '1km', 'inclue', 'falafel', 'austro-', 'blanca', 'row', 'salière', 'accès_difficile', 'serait_souhaitable', '55€', 'art_déco', '140.000', 'wons', 'condos', 'longue_conservation', 'chauvin', 'intarissable', 'success', 'vehicule', 'portland', 'esplanade', 'abrégée', 'vos_tweets', 'window', 'décrié', 'signalement', 'hub', 'indonésienne', 'alessandro', 'nopal', 'réjouissant', 'sarl', 'attention_particulière', 'déplore', 'lorient', 'cocoa', 'correspond_exactement', 'largement_suffisant', 'savions', 'parkings', 'beer', 'ducs', 'montant_total', 'gagnerait', 'communiquées', 'alain_milliat', 'géométrie', 'ghana', 'praliné_noisette', 'régressive', 'pochage', 'écrins', 'poudreux', 'morin', 'hanoi', 'pintxos', 'petitesse', 'louée', 'coulissante', 'contrastant', 'justifiés', 'faubourg', 'convertible', 'unlimited', 'marcello', '1913', 'route_66', 'gino', 'petits_écoliers', '317', '704', 'panoramic', 'connexion_wi-fi', 'bagno', 'couques', 'delhi', 'rib', 'détritus', 'discovery', 'vitrail', 'samedi_26', 'bourvil', 'coché', 'rfi', 'samba', 'étoilés', 'se_limitait', 'rhin', 'happy_hour', 'réchauffés', 'spin', '222', 'mesh', 'cosmopolitan', 'ram', 'petits-déjeuners', 'validité', 'fausses_notes', 'sainte-maxime', 'akbar', '178', 'ocean_view', 'saint_vincent', 'connexion_internet', 'millas', 'premiers_mots', 'font_-ils', 'burin', 'décodeur', 'gaspé', 'self-service', 'dirigée_par', 'novices', 'froideur', 'quality', 'clovis', 'verser_1500', 'ancien_employeur', 'article_700', 'déjà_existant', 'embrasement', 'lake_view', 'karachi', 'dédommagement', 'lit_supplémentaire', 'rudimentaire', 'rajeunissement', 'nuisances_sonores', '565', 'eclairage', 'hippodrome', 'minimales', 'canuts', 'certains_types', 'défectueux', 'souhaitable', 'servitudes', 'hôtel_los', 'stockés', 'abimé', 'ayurvédiques', 'vue_imprenable', 'fréquentation', 'annulée', '35_degrés', 'inexistants', '22h00', 'little_italy', 'conseillerais', 'simona', 'dine', 'orienté_vers', 'idéalement_situé', 'dubrovnik', 'accueil_sympathique', 'rs', 'italiana', 'pullman', 'dirhams', 'spécialités_locales', 'baladez_-vous', 'indemniser', 'conseillers', 'délégués', 'zests', 'automatisation', 'export', 'csv', 'giuseppe', 'transatlantique', 'scop', 'verrier', 'uva', 'anxiogène', 'aries', 'prédécesseurs', 'trompant', 'impérialisme_américain', 'albanais', 'bormio', 'sw', 'vaisselle_jetable', 'probiotiques', 'congelo', 'bozcaada', 'doha', 'consciencieux', 'linguiste', 'incompatibles', 'josef', '808', 'plaque_induction', 'federal', '1907', 'bienheureuse', 'dirait_-on', 'intacts', 'avril_2014', 'théâtres', 'rechute', 'alignement', 'extrême_droite', 'nazisme', 'présidentiel', 'a5', '1/8', 'gingembre_confit', 'sous-préfecture', '5.5', 'détenait', 'obtenue_grâce', '0,5_l', '15ème_siècle', 'nous_restons', 'refonte', 'contester', 'constitutions', 'parvienne', 'rédigée', 'surgelée', '188', 'lyophilisée', 'toy', 'crucifères', 'horizontales', 'expéditeurs', 'appartenaient', 'vila_nova', 'exportations', 'sont_lancés', 'grosses_chaleurs', 'entrepôts', '24_juin', 'saint_patron', 'ordonnant', 'zigzag', 'zagreb', 'volta', 'disiez', \"s'_expriment\", 'fûts_neufs', 'amande_grillée', 'surmûris', 'bouche_savoureuse', 'édifier', 'microscopique', 'aromatise', 'parvenant', 'sagan', 'aux_noces', 'emballées', '265', 'recettes_gourmandes', 'acidulées', '11_cm', 'petit_bijou', 'meilleur_ouvrier', 'échanson', \"s'_impliquer\", 'rata', 'détiennent', 'mons', 'euro-', 'polytechnique', 'fortifiée', 'wines', 'zakopane', 'tgi', 'grandes_causes', 'bière_locale', 'santos', 'adélaïde', 'cours_européennes', 'ramos', 'florida', 'douteuses', 'application_mobile', 'déjà_existantes', 'nouvel_opus', 'psychanalytique', 'bnp', 'corners', 'tannat', 'chablispremier_cru', 'fruitssecs', 'premier_cru', 'hétérogène', 'satisfaits', 'millésime_2012', 'belle_vivacité', 'très_prometteur', 'belle_minéralité', 'belle_structure', 'nuances_aromatiques', 'couleur_soutenue', 'aux_connotations', 'rissolés', 'acomptes', 'rachat', 'nb', '3500', 'quà', '385', 'préjudices', '2.000_euros', 'fois_créée', 'case_attacher', 'case_appropriée', 'toujours_empêcher', 'attacher_votre', 'nous_attendions', 'exorbitants', '16g', 't°c', '14°c', 'développement_économique', 'bénéficiaires', 'vous_éviterez', 'périlleux', 'grands_gourmands', '350_ml', 'je_tenterai', 'forces_armées', 'dégoûte', 'barons', '2-3_cuillères', 'haddock', 'fiche_produit', 'etsy', 'pattern', 'inclusions', 'amendement', 'fluor', 'azote', 'guano', 'fil_rss', 'concernées', 'expertise_technique', '212', 'cratères', 'mélange_noisettes-amandes', 'coques_restantes', 'irving', 'comportements_individuels', 'permettraient', 'tocqueville', 'curriculum_vitae', '0,0', 'onéreuse', 'accueillantes', 'fondamentalistes', 'enquêtes', 'torrevieja', 'ruraux', 'quatre_tours', 'pisco', 'pisco_sour', 'merlots', 'private_apartment', 'brahim', 'computer', 'lacanau', 'sur-mesure', 'tarte_précuit', 'pollens', 'grandes_qualités', 'optimum', 'contactez_-nous', 'aliments_fabriqués', 'mélange_pétri', 'viande_séchée', 'abaissée', 'elles_cuisent', 'elles_finissent', 'mésopotamie', 'baluchon', 'maestro', 'écuelle', 'précisée', 'crozets', 'savoyards', 'cervelles', 'emprisonnées', 'demi-glace', 'baraques', '1854', 'plat_mijoté', 'spécifie', 'almanach', '1807', 'instructive', 'lacto-_fermenté', 'se_rapprochent', 'exempte', 'pline', 'garum', 'lui-aussi', 'italique', 'hydrolyse', 'apparenté', 'maghrébine', 'pré-cuisson', 'sponsors', 'zèle', 'surenchère', 'bohême', 'plus_vulnérables', 'plèbe', 'ronflant', 'sacrément', 'faramineux', 'frégates', 'estampillés', 'dust', 'appartementhaus', 'complèteront', 'superbe_gateau', 'skyfall', 'environnemental', 'changements_climatiques', 'revenus_publicitaires', 'rectifiant', 'défaillants', 'sont_contentés', 'arbitraire', 'pris_connaissance', 'diagnostics', 'incitation', 'nationales', 'renchérissement', 'renouvelables', 'orthodoxie', 'imposées_par', 'fonds_monétaire', 'macro-', 'encourageants', 'choice', 'stuttgart', 'robinets', 'carbon', 'barton', 'armoise', 'prenante', 'officines', 'secrétaire_générale', 'reculées', 'épargné', 'succédé', 'lui_apportait', 'murumuru', 'forte_concentration', 'chocolat_alprose', 'middle', 'attack', 'utiliserais', 'inchangé', 'hermine', 'catherine_piette', 'février_2014', 'agricola', 'minimun', 'rythmer', 'nos_capacités', 'tandem', 'concitoyens', 'caractère_personnel', 'sa_sainteté', 'jouissent', 'solennité', 'citronelle', \"s'_estompe\", '375_ml', 'mea', 'adossés', 'battues', 'pao', 'mallorca_island', 'rouge_profond', 'assèche', 'frisottis', 'hanse', \"s'_associent\", 'recueillent', 'craquelés', 'mésaventures', 'concourir', 'performance_sportive', 'digest', 'bergame', 'rallumer', 'profiter_pleinement', 'appliquez_-la', 'lettonie', 'vladimir_poutine', 'résistants', 'risée', 'brunswick', '1741', 'sauriez', 'dhal', 'texture_mousseuse', 'pur_régal', 'saucisson_vaudois', 'charcutiers', 'vaudois', 'requièrent', 'dextérité', '10_gouttes', 'particulièrement_adaptée', 'chez_ikea', 'barde', 'productive', 'exécutée', 'demandez_-leur', 'tarifs_préférentiels', 'y_retrouverez', 'atos', 'parentale', 'gelée_royale', 'éducatives', 'bernardo', 'affaiblie', 'hyatt', 'plumier', 'stefano', 'firmes', '2017/2018', 'slaves', 'muette', 'bien_dosée', 'camaraderie', 'virile', 'agréable_sensation', 'dilatation', 'w_/', 'préposés', 'attentions', 'martial', 'birmingham', 'aucune_indication', 'alarmant', 'anglo-_saxonne', 'rv', 'partance', 'être_servie', 'onduler', 'initiée_par', 'bocuse', 'atteste', 'doit_impérativement', 'rénover', 'dédiée_aux', 'prérequis', 'gordon', 'lillet', 'guéant', 'pèsera', 'vernon', 'conseils_avisés', 'rigoureuse', 'advenir', 'trésorier', 'sofitel', 'non_traités', 'conservaient', 'netteté', 'prometteur', \"s'_entraider\", 'ion', 'prodiguer', 'habiles', 'militant', 'tourbe', 'saignée', 'belle_rondeur', 'meilleurs_vins', 'cornas', 'improbables', 'sont_inscrits', 'surpasse', 'tamara', 'tutoriel_vidéo', 'contournement', 'travail_effectué', 'bobine', 'endort', 'warning', 'perfusion', 'wall_street', 'dénués', 'voilure', 'irruption', 'reserve', 'bavures', 'immeubles', 'sucrée_salée', 'herbes_séchées', 'magazine_régal', 'novembre_2013', 'richement', 'enrichies', 'christine_ferber', 'cruciale', 'kung', 'demandèrent', 'certain_seuil', 'escadron', 'franchisé', 'cadeau_gourmand', 'hostilité', 'tentures', 'rpc', 'vide_dressing', 'moraux', 'intérêts_particuliers', 'eastwood', 'bazin', '21_mai', 'spécialement_conçu', 'réactifs', 'articuler', 'contourner', 'référencés', 'pme', 'adhérente', 'craignait', 'répugnance', '2007-2008', 'saint_bernard', \"récup_'\", 'chatbox', 'ordre_croissant', 'sans_alourdir', 'œuvrent', 'psoriasis', 'ont_noté', 'roast', 'cigarettes_russes', 'aléas', 'box-office', '800_millions', '620', 'persuasion', 'abondement', 'gratifiant', 'consommatrices', 'mes_espérances', 'jeunes_vignes', 'poussées', 'se_masturber', 'marcelo', 'vibrant', 'relecture', '___acheter', '___revendre', 'stagnation', '___commencer', 'haltères', 'masque_capillaire', 'regler', 'converter', 'épilations', 'apn', 'parure', 'sillicone', 'détartrage', 'regrettent', 'code_ci-dessous', 'redevable', 'affichera', 'amplitude', 'certains_composants', 'autorisez', 'rayonnements', 'nocifs', 'appareils_électriques', 'triché', '1940', '1900', 'son_compatriote', 'marcos', 'détenus', 'mu', 'baronne', 'nouvelle-orléans', 'toppings', 'géométrique', 'mélodrame', 'mangerait', 'immaculée', 'deux_paires', 'pruneaux_dénoyautés', 'burlesque', 'matures', 'roulades', 'moyeu', 'etienne', 'conique', 'eût_pu', 'furieusement', 'très_apprécié', 'débouchés', 'malaxé', 'deux_sexes', 'licencier', 'baptisée', 'repliés', 'cette_fonctionnalité', 'écran_tactile', 'tractions', 'proposes', 'mêmes_valeurs', 'quadragénaire', 'cheminots', 'partner', 'roots', 'offensif', 'milie', 'mollement', 'tous_crussent', 'options_supplémentaires', 'produise', 'répètent', 'infligé', 'émouvoir', 'acapulco', 'embarrassé', 'sont_enivrés', 'sa_prostitution', 'stylisé', 'berline', 'avril_2016', 'polluantes', 'emporta', 'maîs', 'fruits_séchés', 'pure_origine', 'république_dominicaine', 'messie', 'préliminaire', 'dimension_humaine', 'monbazillac', 'interruption', 'chapitre_vii', 'non-_respect', 'défectueuse', 'planchers', 'cuire_30min', 'steiner', 'revitalisante', 'pages_statiques', 'coordinateur', 'fières', 'décédés', 'lubrification', 'infecté', 'siana', 'téléthon', 'afm', 'jetez_-les', 'colas', 'inquiétantes', 'prévisible', 'facts', 'ahmed', 'abidjan', 'graduations', 'toutous', '1769', 'exaltant', 'd‘un', 'ruth', 'bonification', 'éditez', 'fichier_/', 'etc_/', 'apt_/', 'sources.list', 'jouées', 'effets_bénéfiques', '6_semaines', 'service_militaire', 'blockbuster', '23e', 'subvenir_aux', 'jugées', 'étoffes', 'soyeuses', 'osées', 'brochure', 'signalétique', 'graphiques', \"s'_adaptent\", 'notifications', 'euphémisme', 'reproduire_cette', 'convalescence', 'engranger', 'grand_buveur', 'trace_écrite', 'litige', 'années_2000', 'abandonnez', 'dac', 'foultitude', 'farfelues', 'massachusetts', 'ralph', '1969', 'englobe', 'faire_pénétrer', 'vos_données', 'socialisation', 'ito', 'rhône', 'eau_déminéralisée', 'site_marmiton', 'flottants', 'assez_onéreux', 'endoctrinement', 'toute_légalité', 'delacroix', 'donniez', 'sagas', 'fabian', 'demie-heure', '4.5', 'marc-aurèle', 'alibaba', 'cantonné', 'archétype', 'demonstration', 'favorisez', 'verrues', 'verrue', 'service_civique', 'relâcher', 'méditerranéennes', 'échappaient', 'atomes', 'muret', 'fabio', \"s'_unissent\", '(_1-0', '18ème_siècle', 'invalide', '5m', 'shell', 'tableur', 'capteur', 'renforcée', 'contraste_entre', 'long_couloir', 'préfets', 'brugnon', 'ups', 'se_référant', 'blenders', '180-200°c', 'wesley', 'cultivant', 'pesées', '50_degrés', 'professions', 'matière_vivante', 'microns', 'mordante', 'vela', 'révoltés', 'légèrement_sucrée', 'page_dédiée', 'ancré', 'marginale', 'nous_parlerons', 'nations_ont', 'son_impudicité', 'impudicité', 'sont_enrichis', 'découvrait', 'deuxièmes', 'anima', 'votre_séjour', 'clés_usb', 'leurs_noms', 'lançaient', 'résumant', 'sont_prêtes', 'toute_tranquillité', 'apparaîtront', 'petit-lait', '1_c.s.', 'div', 'oslo', 'reuters', 'rayonnement_solaire', 'ingénierie', 'climatique', 'géo-', 'donateurs', 'arizona', 'absorbera', 'refléter', 'ralentissant', 'leurs_compétences', 'moquerie', 'steel', 'professeure', 'pâtisserie_française', 'goyaves', 'glanés', 'paleron', 'payantes', '6.5', 'maps', 'aux_exigences', 'violation', 'journalistique', 'enrichit', 'voyantes', 'piquets', 'hygiénistes', 'reproduites', '3jours', 'embarcation', 'percute', 'charmée', 'israélien', 'anglo-', 'iranien', 'revigorer', 'énonce', 'organisation_internationale', 'marginaux', 'esthétiques', 'incarnation', 'salah', 'surfeur', 'incha_allah', 'susciter', 'dénonçant', 'fin_gourmet', 'embraser', 'péruviens', 'coll', 'procureur', 'arachide_naturel', 'mojo', 'depannage', 'enfants_aiment', 'échappement', 'aileron', 'arracher_son', 'review', 'leitmotiv', 'the_big', 'souffrait', 'ufc', 'hazard', 'me_baladant', 'moutardée', 'glaciaire', 'népal', 'distribuait', '27juin', 'j_etais', 'devers', 'arrondissements', 'caséine', 'grandioses', 'müller', 'côte_ouest', 'arrogante', 'frustré', 'aux_pays-bas', 'ont_contribué', 'généraliste', 'murphy', 'muller', 'incompétence', 'immergée', 'vantait', 'delphes', 'parnasse', 'st_michel', 'andorre', 'propriétés_astringentes', 'rafraîchissantes', 'femmes_enceintes', 'calophylle', 'rasade', 'leurs_desseins', 'fruits_dilués', '*elle', 'hôpital_psychiatrique', 'daily', 'limitez', 'pasquier', 'cotisations', 'détonante', 'cyclone', 'succès_auprès', 'souillées', 'sacro-_sainte', 'engendrer', 'juin_2012', 'fouad', 'distorsion', 'transcription', 'ne_manquerait', 'appendice', 'driver', 'peintres', 'convivialité_autour', 'dia', '◇', 'par-delà', 'préparatoire', 'habilités', 'cortana', 'sixième_place', 'école_maternelle', 'prévenus_devront', '450_000', 'martèle', 'projecteur', 'claie', 'brouillés', 'équations', 'rationalité', 'rapports_sexuels', 'marbrures', 'implanter', 'informations_recueillies', '5,7', 'carrosserie', 'km_/', \"s'_ouvrira\", 'énoncées', 'gérez', 'charniere', 'mi_parcours', 'retenues', 'ambiance_conviviale', 'doigté', 'bât', 'haïssent', 'ordonnées', 'ordonnée', 'taupes', 'échaudé', 'chirurgiens', 'clercs', 'assurées', 'laisse_imaginer', 'carbo', 'prévoient', 'ils_continuent', 'fantaisistes', 'réalisait', 'sdk', 'frigos', 'se_nourrissent', 'ruban_adhésif', 'conquérant', 'marigot', '1887', 'grogne', 'pratiqués', 'ne_manquerai', 'éminemment', 'compet', 'grandes_enseignes', 'tobi', 'charbon_actif', 'cadmium', 'autres_usages', 'conservez_-les', 'qc', 'égare', 'fax', 'd8', 'aurez_besoin', 'acier_inoxydable', 'mars_dernier', 'délinquants', 'menacés', '.après_avoir', 'minute_maid', 'fluidifier', 'login', 'privilégie', '200c', '124', 'rc', \"s'_expose\", 'dynastie', 'paris_match', 'poitou-charentes', 'avoir_diffusé', 'février_2016', 'échéances', 'numéros_restant', 'faisant_office', 'aide-mémoire', 'se_réservent', 'si_toiaussi', 'borné', 'méfiant', 'réceptions', 'airways', 'parmi_celles-ci', 'lourdeur', 'compétents', 'triturer', 'déconseillée', 'goût_inaltérable', 'miel_purifié', 'scream', 'affranchis', 'orfèvres', 'lagon', 'partageaient', 'magazine_people', 'entamés', 'formalité', 'forçant', 'siège_auto', 'échangées', 'nont', 'désastreuse', 'séparatistes', 'paradigme', 'effectuez', 'quittée', 'retombé', 'septembre_2009', '215', 'mémoriser', 'butoir', 'notre_page', 'faire_naître', 'roch', 'credit', 'jbl', 'règnent', 'soumettent', 'loueur', 'fessier', '29_juillet', 'tahitienne', 'flambée', 'libertin', 'plastifié', 'courantes', 'mask', 'par_mégarde', 'reconnaissants', 'palourde', 'passerelle_vers', 'recette_éprouvée', 'athena', 'itunes', 'déboires', '75_millions', '0,3', 'ethniques', 'hymnes', 'magistère', 'sommes_colossales', 'évaluées', 'encourir', 'exalté', 'consultable', 'immortels', 'appartienne', 'édificateur', 'tehnicien_serruriers', 'accredite', 'experiences', 'fief', 'bancale', 'éminent', 'subrogation', '200ºc', 'esc', 'trust', 'arcades', 'kerry', 'révélées', 'révélés', 'messagers', 'être_conservés', 'hebdo', 'bonne_franquette', 'elles-memes', 'californiennes', 'germé', 'condamna', 'inintéressant', 'exigés', 'icelle', 'hasardeux', 'vous_solutionnez', 'remaniement', 'serrements', 'inéluctable', 'braqué', 'isolées', 'bouillonnement', 'chatière', 'fermetures', 'coopérations', 'branchage', 'chanceuses', 'ramon', 'cézigue', 'bravement', 'tehnicien', 'serrurier_accredite', 'icelles', 'homologue', 'façon_égale', 'delais', 'iceux', 'excellent_moyen', 'fastueux', 'incomparablement', 'faudra_songer', 'commodité', 'clenche', 'connaiseur', 'requinquage', 'exécutant_serrurier', 'death_metal', 'vous_élucidez', 'misé', 'présenterons', 'rétractation', 'cettes_dernières', 'diligent', 'retentissement', 'embrasures', 'n_attendez', 'détourné', 'vous_déchiffrez', 'cylindrique', 'ce_lieu-là', 'barillet', 'vous_entraînez', 'vous_résiliez', 'exist', 'sézigue', 'accordoir', 'persévérant', 'developpement', 'rafistolage', 'tout_uniment', 'vous_suggére', 'ferrure', 'ferrement', 'échappatoires', 'bureaus', 'ela', 'fonderie', 'scabreux', 'apprêté', 'l_acier', 'imprudent', 'ouvrières', 'aiguillage', 'hasardé', 'vous_déterminez', 'discerner', 'lui-meme', 'énergiques', 'targette', 'continuation', 'sur_lesquel', 'annapolis', 'depannage_serrurier', 'attesté', 'elle-meme', 'fournisseur_serrurier', 'édificateur_serrurier', 'subvenir', 'onduleux', 'incidence', 'ferronneries', 'ouvrier_serrurier', 'minables', 'ças', 'serrurier_tarif', 'changement_serrure', 'intrinsèques', 'ressemelage', 'ferronnerie', 'tubulaire', 'adonc', 'tout_bravement', 'goûtu', 'façonnier', 'ingenieur_serrurier', 'divergent', 'caroubles', \"c'_est-à\", 'specialistes', 'continûment', 'apprenons', 'vous_analysez', 'uniment', 'influencent', 'métamorphoser', 'coincement', 'implantations', 'lies', 'requérir', 'rapidite', 'n_demandez', 'bénéficiez', 'familièrement', 'bonnement', 'portières', 'métallier', 'barder', 'connaiseurs', 'ejusdem_farinae', 'construisent', 'qualifies', 'tehnicien_serrurier', 'décomposez', 'qu_elles', 'pâture', 'modelées', 'vous_résolvez', 'dépannages', 'replâtrage', 'subsides', 'commodément', 'cloué', 'dumont', 'tornade', 'dispersant', 'ex_aequo', 'affectation', 'banalités', 'rossignols', 'efforcé', 'sollicitez', 'tézigue', 'tarif_horaire', 'instaurant', 'accordoirs', 'accredite_métallier', 'accomplit', \"t'_appartiennent\", 'ploc', 'police_municipale', 'acquit', 'terminait', 'nonchalance', '♥lui', 'landau', 'courbé', 'indéfinissable', 'districts', 'replie', 'pf', 'improvisations', 'scotcher', 'miséricordieux', 'se_lèvent', 'réunissait', 'démarcation', 'groupe_britannique', 'confondues', 'kn', 'doigts_pleins', 'h_45', 'marquisette', 'danièle', 'ma_chere', 'sidi', 'slimane', 'koucha', 'auriez_besoin', 'héritière', 'se_situait', 'rr', 'ressentez', 'perte_totale', 'affirmée', 'pectoraux', 'favorablement', 'calculant', 'qualificatifs', 'sont_multipliées', '-_-qui', 'râteau', 'razzia', 'patrice', 'minerai', 'remportée', 'terry', 'objection', 'coups_durs', 'ficeler', 'minutes.3', 'mug_cake', 'bf', 'nec_plus', 'ua', 'climatiques', 'rafraichissement', 'aller_planter', 'arrondir', 'formaient', 'nous_connaissions', 'thérapeutes', 'égyptien', 'érigée', 'auditive', 'noirceur', 'métaphysique', 'prétendus', 'ressortant', 'demi-banane', 'oufs', 'posez_dessus', 'série_limitée', 'price', 'assurant', '-120g', 'dispersez', 'cryptographie', 'chiffré', '<_3mon', 'éperons', 'pleine_crise', 'sac_poubelle', 'suppléant', 'apéritif_dinatoire', 'contagieuse', 'cosses', 'appreniez', 'race_humaine', 'airbus', 'formation_initiale', 'régénérer', 'jurançon', 'corpulence', 'lancez', 'réunira', 'allumées', 'oignons_épluchés', 'denier', 'saveur_acidulée', 'éléments_clés', 'delay', 'conjoncture', 'foulé', 'puisée', 'pensera', 'défunts', 'patriarche', 'sans_limitation', 'virtuosité', 'tu_keaf', 'slovaquie', 'famille_arette', 'rémunérations', 'sicle', 'migrer', 'ce2', 'anéantie', 'cinglant', 'loisible', 'dénommée', 'volontariat', 'astres', 'esprit_saint', 'rappellera', 'transgression', 'mourant', 'bosquets', 'penchent', 'ingérée', 'neuville', 'bétons', 'modifs', 'modeles', '2e_ligne', 'bloody_mary', 'début_octobre', 'bobigny', 'but_ultime', 'milanais', 'ses_banquettes', 'agréable_odeur', 'grands_projets', 'plaisance', 'lendemains', 'menstruel', 'dominical', 'conseils_généraux', '3mm', 'résorbez', 'déloyal', 'indiscernable', 'commutation', 'torches', 'plaquée', 'laiton', 'prudents', 'chiffons', 'carcan', 'féminines', '8,7', 'jamais_essayé', 'domaine_public', 'transpirent', 'babin', 'bouquiner', 'redoubler', 'implicitement', 'salaire_net', 'meilleur_rendement', 'nommait', 'prévôt', 'passation', 'nous_disions', 'pionniers', 'equateur', 'longues_périodes', 'nous_trouverons', 'muffin_anglais', 'grille_coulissante', 'bao', 'médicalement', 'commandée', 'enjoint', 'quantification', 'témoignant', 'péremptoire', 'fondées', 'serrurier_agréé', 'laura_todd', 'label_ab', 'datent', 'proposez_-lui', 'aliments_solides', 'armada', 'enchaîner', 'culminant', 'expédient', 'professionnel_serrurier', 'agencement', 'reliure', 'archipel', 'complètement_dingue', 'doyen', 'déléguer', 'haiti', 'bash', 'glucide', 'franchiseur', 'méprise', 'construisant', 'héra', 'étincelante', 'carrot', 'provoquée', 'robotique', 'imbibez_-le', 'religion_catholique', 'stollen', '}_}', 'auxquelles_viendront', 'faire_perdurer', 'électro-', 'nous_repartons', 'maison-blanche', 'popularisé', 'prendre_possession', 'sud-est', 'playmobil', 'arrêtées', 'confrontées', 'armateur', 'aller_grignoter', 'franprix', 'sont_perdues', 'péri', '306', 'càd', 'mentions_légales', 'canonical', 'personnes_concernées', 'sauterne', 'chênes', 'réservera', 'blockchain', 'déniche', 'déclare_-t-il', 'dani_pedrosa', 'impensable', 'remorque', 'gaza', 'crucial', 'annabel', 'rivaliser', 'colonisation', 'apportaient', 'grand_festin', 'convié', '·emma', 'prononcent', 'conditionneur', 'ils_gardent', 'expliquant_comment', 'tau', 'ressources_nécessaires', '1,75', 'scripts', 'origine_chinoise', \"s'_alignent\", 'tordue', 'carrefours', 'brevets', 'yes_we', 'expos', 'luttes', 'enclume', 'pré-cuire', 'balkanisation', '1,50', 'ancêtres', 'tss', 'pépinière', 'réglages', 'certaines_matières', 'chargeurs', 'configurez', 'cuisson_terminée', 'croisic', 'aideront', 'écolier', 'viral', 'naturalité', 'ossements', 'bluetooth', 'cabarets', 'hectolitres', 'diffamation', '305', 'bottom', 'combinaison_gagnante', 'gaieté', 'accumulées', 'figurez_-vous', 'se_terminera', 'hd', 'terrifiante', 'proposerons', 'réduisait', '63_ans', 'devenaient', '1976', 'inclinés', 'harmonique', 'conventionnelles', 'louanges', 'nicaragua', 'rédactrice', 'derechef', 'automatisés', 'intentionnellement', 'zx', 'cinémas', 'petites_têtes', 'demonter', 'reservoir', 'nl', 'disjonction', 'lait_demi-écrémé', 'mai_2009', 'fait_fureur', 'porter_atteinte', 'l_église', 'pelles', 'convois', 'renvoyée', 'verser_1,2', 'bâche', 'sacrificiel', 'vikings', 'jolie_déco', 'autorisations', 'importées', 'proceder', 'libourne', 'illustrés', 'relèvent', 'décisions_prises', 'rad', 'nourrissons', '16cm', 'leigh', 'bouler', 'vaccins', 'évent', 'saignements', 'pratiquée', 'allemandes', 'colonisateurs', 'comité_consultatif', 'longchamp', 'nous_découvrons', 'cheese-cake', 'assureront', 'proclamation', 'butler', 'lilloise', 'avril_dernier', 'lasers', 'postérieures', 'insidieuse', 'hermann', 'prélude', '1894', 'afro', 'paul_mccartney', 'épineux', 'leu', 'internement', 'évidé', 'deuxième_astuce', 'affaires_sociales', 'nous_offrons', 'disette', 'ingurgité', 'agi', 'feuillus', 'commun_accord', 'comparse', 'représentez', 'tomates_mondées', 'nuisibles', 'cover', 'ont_misé', 'centième', 'red_velvet', 'métallisé', 'fignoler', 'drain', 'couleur_unie', 'absorber_toute', 'carnassiers', 'leurres', 'float', '70.000', '1590', 'tchétchénie', 'bonne_excuse', 'declaration', 'bingo', 'gaze', 'médiocrité', 'coopérer', 'build', 'lotion_tonique', 'tonifiantes', 'yan', 'se_basant', 'lv', 'gg', 'stations-service', 'suédoises', 'contrôlés', 'cholestérol_sanguin', 'journalière', 'roumaine', 'autistes', 'lui_permit', 'gallimard', 'nevada', 'communauté_internationale', 'illégitime', 'khartoum', 'casques_bleus', 'génocide', 'non-_intervention', '1797', 'bonaparte', 'république_française', 'convoque', 'pénal', 'nouvelle-calédonie', 'médiateur_entre', 'valve', 'mêmes_ingrédients', 'imams', 'prédicateurs', 'anémie', 'pointé', \"j'_adoooore\", 'aurions', 'cochenille', 'demi-pamplemousse', 'étaient_destinés', 'doctor', 'allusions', '1-1', 'remettrait', 'contracter', 'fiches_techniques', 'ménagée', 'roubaix', 'studios_disney', 'pixar', 'sa_globalité', 'services_sociaux', 'recharges', 'custom', 'travaux_pratiques', 'espérez', 'dragonne', 'misent', 'wiimote', 'connecteur', 'quelle_colonne', 'soudez', 'chez_picard', 'ménagement', 'dépeint', 'start', 'carotène', 'seat', 'consommation_excessive', 'alimentation_quotidienne', 'joël_robuchon', 'envoit', 'australia', 'gc', 'prot', 'clavecin', 'récipient_hermétique', 'automatisme', 'cargaison', 'greffé', 'enlèvement', 'bris', 'rhodanien', 'portillon', 'dispense', 'fassiez', 'rembourse', 'plats_principaux', 'tumulte', 'terre_battue', '120.000', 'revendeur', 'devez_être', 'péage', 'internationalement', 'concurrencé_par', 'perfectionnement', 'finalement_opté', 'alpin', 'teneur_élevée', 'fleuristes', 'clonage', 'atteindra', 'raidir', \"s'_improvise\", 'paula', 'étendard', 'urls', 'tableau_excel', 'déshonore', 'beta', 'très_abordable', 'boissons_fraiches', 'mi_cuit', 'patienter_quelques', 'grand-marnier', 'fondez', 'officinale', 'aller-retour', 'st_hubert', 'finement_coupé', 'goban', 'tracée', '19_lignes', 'verticales', 'qui_déterminent', 'johnny_hallyday', 'diderot', 'sont_nées', 'impitoyablement', 'adresse_ip', 'mythologie_grecque', 'ambiguïtés', 'donnez_-leur', 'leurs_ancêtres', 'duplication', 'balises_meta', 'offertes_par', 'dernière_bouchée', 'profitera', 'estrade', 'contraignent', 'équilibrées', 'valeureux', 'trente-six', 'evergreen', 'mouvoir', 'mes_levres', 'aérodynamique', 'nous_possédons', 'abréviations', 'oas', 'brulures', 'c3', 'ancien_joueur', 'problème_rencontré', 'bretonnes', 'octave', 'vicieuse', 'buté', 'devrait_-on', 'différents_niveaux', 'se_terminent', 'loustics', 'fondamentales', 'abattement', 'wendel', 'aient_eu', 'aveu', 'pécheur', 'se_leurrer', 'rallume', 'confidentielle', 'inversés', 'discutée', 'dernières_tendances', 'micros', 'évacue', 'endroit_calme', 'seigneurie', 'meillleur_plus', 'unifier', 'faubourgs', 'congés_payés', 'hélices', 'marie-claude', 'belote', 'atmosphérique', 'peuplent', 'salutaire', 'cumulus', 'sa_scolarité', 'étoffer', 'laissé_entendre', 'grande_boucle', 'suspicions', 'hyper_facile', 'corporelle', '3_cuillérées', 'internationalisation', 'traînant', 'émigrés', 'kiosques', 'oxyder', 'feint', 'fantastic_four', 'cet_édifice', 'réutilisée', 'précisait', 'stationner', '22_septembre', 'gopro', 'généré', 'indiscrets', 'constatations', 'priés', 'allers', 'spider', 'doutons', 'ebook', '®', 'avons_profité', 'fera_découvrir', 'se_substituer', 'rassemblements', 'lundi_22', 'ulcères', 'intestinales', '29-', 'calvitie', 'pilée', 'localisé', '40-', 'semences', 'férule', 'planes', 'traduite', 'obstinément', 'se_souviennent', '18g', 'texan', '500_grs', 'trompait', 'salariée', 'éventualité', 'sbires', \"n'_hésiteront\", 'haute_gastronomie', 'trente-cinq', 'argentins', 'cent_quarante', 'corrèze', 'bière_artisanale', 'terrifiée', 'ambassadeurs', 'notre_ère', 'asie_centrale', 'dégustateurs', 'œnologues', 'international_wine', 'petits_commerçants', '1,60', 'sociologique', 'capital_social', 'wine_advocate', 'robert_parker', '300.000', 'chiisme', 'fort_probable', 'ils_apprennent', 'nous_menons', 'microplane', 'vanille_bourbon', 'faites_glisser', 'toastés', 'mouvement_révolutionnaire', 'ses_ambitions', 'carrière_militaire', 'maladroites', 'cardin', 'boulangerie_française', 'francfort', 'etranger', '700_euros', 'valorisation', 'nutritionnel', 'désorganisation', 'normalité', 'buter', 'ready', 'aliens', 'bonnes_intentions', 'podcast', 'spray_éclaircissant', 'nous_prendrons', 'bleu_roi', 'lgbt', 'the_gang', 'prêtait', 'gag', 'disgrâce', 'instance', 'freinée', 'bousculée', 'fruits_tropicaux', 'bermuda', 'durcit_après', 'irrégulières', 'solidifié', 'décoller_délicatement', 'mariani', 'famille_nombreuse', 'braun', 'atomiques', 'sasu', 'pays_anglo-', 'saxons', '1,5_dl', 'texture_souhaitée', 'ciseler_finement', '30-40_minutes', '66_%', 'soufflé_glacé', 'automnales', 'poêlez_-les', 'goûts_différents', 'rapportant', 'embouteillé', 'prix_indiqués', 'vous_présentais', 'livrée_avec', 'huîtres_chaudes', 'cerclage', 'rallonger', 'equivalent', '227', 'lait_ribot', 'achetée_chez', 'léguée', 'parquets', '29_janvier', 'rêveurs', 'american_cakes', 'clauses', 'vide_poche', 'légume_vert', 'rapido', 'juillet_2013', 'cards', 'comfort_food', 'prétendaient', 'noyées', 'années_1900', 'composite', '-1_càs', 'ces_délicieuses', 'micheline', 'poilâne', 'meilleurs_restaurants', 'karel', 'prolongation', 'hachurée', 'desséché', '5mm', 'coutumier', 'évoluera', 'demi-mesure', 'soit_absorbé', 'égouttez_-le', 'cookeo', 'manquante', 'couteau_planté', 'entreposez', 'embouteillage', 'non-_blanchie', 'emmenée_par', 'sultane', 'gélifie', 'quinte', 'canard_laqué', 'persistants', 'layon', 'dauphiné', 'espérais', 'indice_glycémique', 'poix', 'empiler', 'xviième_siècle', 'bocage', 'astucieuse', 'cuisine_az', 'baromètre', 'déséquilibré', 'langer', 'jouxte', 'covoiturage', 'suffrage', 'arômatique', 'recommande_chaudement', 'adresse_complète', 'dips', 'popsicle', \"s'_endormirent\", 'centrales', 'gaudes', 'cabri', 'préparerez', 'connie', 'bilans', 'assemblée_générale', 'giraud', 'téfal', 'mixité_sociale', 'saluée', 'encouragée', 'producteur_local', '606', 'criminelles', 'goldman', 'quelle_quantité', 'moutardes', 'huilerie', 'séverine', 'fromager', 'usage_externe', 'façon_suivante', 'découpent', 'décorent', 'fret', 'crèmes_solaires', 'antirides', 'road_trip', 'courgettes_rondes', \"m'_interroge\", 'ingrédients_solides', 'réquisitions', 'houle', 'noix_caramélisées', 'antipasti', 'tilapia', 'ni_additifs', 'première_pression', 'espuma', 'effiloché', 'gros_dés', 'réhydratées', '110_degrés', 'foccacia', '8-10', 'lancez_-vous', 'ai_récupéré', 'fait-tout', 'approximation', 'tal', 'occupation_israélienne', 'déclinés', 'panacotta', 'infirmières', 'retournant_régulièrement', 'convergent', 'sculpteurs', 'brode', 'badigeonnez_-le', 'becs_sucrés', 'noix_vertes', '13°', 'gainer', 'répétons', \"s'_approvisionner\", '35_cl', '120_°c', 'vous_régalerez', 'ne_ratez', 'cabosse', 'cabosses', 'criollo', 'localisés', 'vendange_tardive', 'vraie_merveille', 'investit', 'vietnamiennes', '58_%', 'mole', '30_octobre', 'pastry', 'novembre_2012', 'péruvienne', '45°c', 'chocolatier_suisse', 'guidé', 'tremblotant', 'christian_constant', 'devanture', 'street_art', 'pleines_mains', 'laissaient', 'nous_proposerons', 'institue', 'rendront', 'faisabilité', 'archiver', 'traditions_locales', 'voûtée', 'législative', 'ecologie', 'écologistes', 'fins_politiques', 'subversif', 'traduit_par', 'scorpions', '1911', 'limoux', 'mauzac', '1.200', 'vinifie', '250.000', 'aisne', 'doivent_obligatoirement', 'grève_générale', 'saint_augustin', 'valeurs_républicaines', 'aigris', 'serbe', 'ternes', 'clochers', 'valaisan', 'lac_léman', 'fendant', 'cordier', 'soutiré', 'fermentaire', 'petites_boutiques', 'redessiner', 'accomoder', 'parfaitement_dosée', '.bien', ')_.vérifiez', 'optionnelle', 'condensation', 'chaï', 'cannelloni', 'fonctionne_correctement', 'compulsif', 'signalisation', 'stout', 'quantité_désirée', 'préconisez', 'on_saupoudre', 'certains_établissements', 'tablée', '0,50', 'procurera', 'rafles', 'terminologie', 'daterait', 'premières_traces', 'glossaire', 'extirper', 'mon_humble', 'condamné_mercredi', 'maitresses', 'patinée', 'polymère', 'berlingots', 'esbroufe', 'norvégien', 'classicisme', 'déclinées', 'tiramisù', 'pissaladière', 'combinées', 'certaines_pratiques', 'baux', 'vinifications', 'bactérie', 'sucres_simples', 'eau_filtrée', 'trentenaire', 'répétait', 'dessins_originaux', 'bien_ficelé', 'manière_régulière', 'leurs_familles', \"s'_affrontent\", 'création_artistique', 'leurs_croyances', '1859', 'redynamiser', 'lifestyle', '“mais', 'torsadés', 'ponctuellement', 'artois', 'demi-lune', '1min_/', '/_varoma', 'faites_couler', 'acide_oxalique', 'potimarrons', 'quel_régal', 'ambulances', \"m'_empresser\", 'bayeux', 'passerez', 'orienté', 'garante', 'représentante', 'détournés', 'latitudes', 'fruits*', 'conjectures', 'tendreté', 'rocard', 'mobiliers', 'périgueux', 'diagnostic', 'timbales', 'effroyable', 'apache', 'peine_sortis', 'vous_couperez', 'code_civil', 'neem', 'réorienter', 'osso_bucco', 'naturopathes', 'epp', 'klamath', 'hadîth', 'cécité', 'attachent', 'brevetés', 'appelées_«', 'alpilles', 'parfaitement_adapté', 'tubercule', 'attendus', 'blé_t65', 'poolish', 'pains_spéciaux', 'farine_complete', 'torchon_propre', 'cive', 'pate_homogene', 'corossol', 'second_ange', 'a_abreuvé', 'sera_tourmenté', \"s'_affaissent\", 'uploader', '€uros', 'assassinats', 'point_lumineux', 'brutales', 'vous_suggérons', 'centralisation', 'urbanisme', 'environnementaux', '45_ml', 'cremes', 'cremeux', 'reconnaissez', 'on_décore', 'devienne_lisse', 'diagnostique', 'polygone', 'installeur', 'carrosseries', 'connaissons', 'butée', 'activités_culturelles', 'commerçante', 'déclinent', 'découdre', '289', 'porcelaine_froide', '27_février', 'imprimer_directement', '231', 'nouvel_ouvrage', 'nombreuses_animations', 'identifient', 'martiniquais', 'fortuné', 'théoriques', 'tracées', 'dominé', '-faire_fondre', 'xiii', 'mousquetaire', 'mitonné', 'vous_constatez', 'amenaient', 'bière_brune', 'relatifs_aux', 'valides', 'variable_selon', 'process', 'demi-finale', 'yannis', 'linkedin', 'prospect', '14-18', 'gisement', 'urnes', 'leurs_aînés', 'feuilles_vertes', 'granuleux', 'pendant_5min', 'terreux', 'prescriptions', 'pessah', 'douves', 'certaines_parties', 'languedoc-roussillon', 'montepulciano', 'exilée', 'fascinée', 'lui_confie', 'vieux_moulin', 'constante_évolution', 'exigeantes', 'bon_ménage', 'sveti_vlas', 'bois_flotté', 'mots-croisés', 'rémoulade', 'saper', 'expérimentée', 'récepteur', 'jean-louis', 'nombre_restreint', 'maitrisé', 'réaliser_soi-même', 'cohésion_sociale', 'antiracisme', 'mosquées', 'appli', 'accusées', 'hétéroclite', 'grisaille', 'moules_décortiquées', 'garderez', 'hydraté', 'doivent_impérativement', 'pétrit', 'code_général', 'attributions', 'douanière', 'tunisiens', 'pourboire', 'nous_réalisons', '299', '20€', 'dilapider', 'vrais_problèmes', 'odeur_agréable', 'libéralisme', 'valls', 'réaffirmer', 'démantèlement', 'enneigés', 'se_tiendra', 'pédagogie', 'unisson', 'terroirs_viticoles', 'patrimoine_culturel', 'paysager', 'emmanuel_macron', 'info-', 'thau', 'foy', '10,00€', 'garam', 'berthe', 'tarragona', 'unifrance', '300_m', '369', 'm_$', '1,8_million', 'nord-américain', 'malaisiens', 'adoucissants', 'kératine', 'bangladesh', 'haut-parleurs', '298', 'pâte_persillée', 'aucune_inquiétude', 'conseil_départemental', 'tarn-et-garonne', 'lieu-dit', 'ramassage', 'oeufs_mimosa', 'insert_crémeux', '2ème_étage', 'blindée', 'sa_biographie', 'ses_préceptes', '21ème_siècle', 'petites_tartes', 'gratine', 'manutention', 'beurre.', 'tilleuls', 'drapé', 'venteuse', 'esquive', 'spatiaux', 'banyuls', 'offre_68', 'plats_mijotés', 'ras_el', 'laisse_macérer', 'recuit', 'au-devant', 'dessinateurs', 'empirique', 'dramaturgie', 'actualisation', 'vaste_choix', 'regorgeant', 'research', 'désactivée', 'dernières_semaines', 'louis_xvi', 'batavia', 'trévise', 'vos_réceptions', 'arômes_fruités', 'gros_manseng', 'texture_souple', 'nous_ayons', 'faites_roussir', 'psyllium', 'tonnelier', 'accès_direct', 'objective', 'gardiennage', 'érigé', 'mauvaises_herbes', 'moldave', 'moldavie', 'amiante', 'défi_culinaire', 'hachez_-les', 'ingrédients2', 'festivaliers', 'report', 'qualitativement', 'cuvaison', 'jours_ouvrés', 'plutonium', '239', 'xénon', 'phase_finale', 'procédures', 'appareils_électroniques', 'fricassé', 'plats_préparés', 'nombreuses_spécialités', 'flammekueche', 'plats_savoureux', 'personnes_allergiques', 'atténuée', 'cœur_joie', 'réclamations', 'vpn', 'dinde_farcie', 'décoration_intérieure', 'nuremberg', 'symboliser', 'quatre_générations', 'places_assises', 'pathos', 'dénonçait', 'déversées', 'emmenthal', 'mars_2017', 'convention_aeras', 'actualisée', 'assurance_emprunteur', 'pathologies', 'emprunteur', 'grands_chefs', 'jalousement_gardée', 'conjuguer', 'je_conçois', 'reparlerai', 'giro', 'merlan', 'cet_instrument', 'peine_capitale', 'lyonnaises', 'cesare', 'conquise_par', 'syrienne', 'passionnantes', 'publiait', 'arménien', 'gigondas', 'alimente', 'aciers', 'orifices', 'dégradée', 'calcination', 'intermittente', 'huis', 'desservent', 'barres_métalliques', 'coudées', 'production_industrielle', 'amont', 'force_motrice', 'rincon', 'indésirables', 'produits_artisanaux', 'cadeaux_gourmands', 'consommation_humaine', 'nous_élevons', 'aquaculture', 'propriétés_antioxydantes', 'rôle_bénéfique', 'interférer', 'scrutin', 'détaillants', 'solution_temporaire', 'aliments_froids', 'dysfonctionnement', 'utilise_principalement', 'gaspillage_alimentaire', 'atteler', 'meilleurs_extracteurs', 'force_centrifuge', 'très_renommé', 'toscan', 'peak', 'motricité_fine', 'semi_complète', 'arrow_root', 'mariniers', 'niçoise', 'déployés', 'agaçant', 'directeur_adjoint', 'consistaient', 'retranchements', 'algériens', 'irez', 'produits_allégés', 'frenchie', 'height', 'pardonnera', 'vaucluse', 'saint-sébastien', 'features', '1897', 'élément_chauffant', 'isolante', 'céramiste', 'restreignant', 'hautes_températures', 'réfractaires', 'médias_sociaux', 'intact', 'refusés', 'savoir-faire_artisanal', 'arrestation', 'qualifiait', 'comité_interprofessionnel', 'residhotel', 'panneaux_solaires', 'métaux_lourds', 'polluants', 'sentiers_battus', 'sensas', 'grué', 'spatule_métallique', 'notoire', 'ai_concocté', 'lectorat', 'déterminisme', 'baccalauréat', '.htaccess', '301', 'shiitakés', 'renversez', 'restitue', '3_cuillers', 'primeur', 'catalanes', 'ôté', 'souverainement', 'chers_visiteurs', \"s'_imposent\", 'dunas', 'certaine_quantité', 'weleda', 'ondulations', 'porcine', 'membrane', 'redon', 'béta', 'saisies', 'outil_utile', '150€', 'différenciation', '8-', 'masquée', '22€', 'années_suivantes', 'élargit', 'viande_bovine', 'nominés', 'oscars', 'délivrant', '245', 'pico', 'sauternais', 'écumez', 'infrastructures', 'cadre_juridique', 'bonne_gouvernance', 'redistribution', 'impact_économique', 'unedic', 'aggravé', 'auxquels_devraient', 'contexte_économique', 'calomnies', 'verseur', 'humoristiques', 'ambivalence', 'estepona', 'premier_paragraphe', 'phylloxera', 'bray', 'concurrentiel', 'php', 'mysql', 'accessibilité', 'extrême-gauche', 'percutantes', 'rack', 'islamistes', 'yémen', 'rattes', '68_%', 'sophistiqués', 'hadopi', 'majors', 'apaisant', 'bactérienne', 'acide_malique', 'acide_lactique', 'biochimique', 'enzyme', 'gaz_carbonique', 'bella_napoli', 'fabrica', 'cae', 'infatigable', 'réputations', 'soudent', 'promise', 'confesseurs', 'inclination', 'densifier', 'beni', 'alma', 'cet_automne', 'carabas', 'kit_contient', 'manique', '56_%', 'orienter', 'slow_cosmétique', 'cannelée', 'trois_mesures', 'géranium_rosat', 'trop_agressif', 'figues_séchées', 'daudet', 'inhérent', 'coupler', 'andrée', 'vice-président', 'vice-présidente', 'juillet_2017', 'ruralité', 'rassasiée', 'supplices', 'agritur', 'santo', 'méconnue', 'tôles', 'teurgoule', 'caquelon', 'aérations', 'jamon', 'pergola', 'décor_attirant', 'soutenus_par', 'alevins', 'noeud_papillon', 'mélangez_soigneusement', 'grumeleux', '32_000', 'arroser_régulièrement', 'bonne_chère', 'guet', 'fleurit', 'blâmer', 'luy', 'hoquet', 'bancal', 'contée', 'débourser', 'nostre', 'faict', 'connaîtra', 'estre', 'trépas', 'fatigues', 'celuy', 'eaue', 'vault', 'calices', 'ruinent', 'besogne', 'estat', 'cinq_cent', 'cy', 'advient', 'aultre', 'acquerir', 'tousjours', 'ils_portent', 'estoit', '1h10', 'salers', 'gondoles', 'vous_détenez', 'touchés', '19_mars', 'devrait_normalement', 'bamboo', 'verses', 'anglo-_saxon', 'cart', 'eggs', 'mes_lectures', '152', '500_$', 'conjointement', 'opercule', 'râbles', 'manichéenne', 'agressé', 'duplicité', 'apl', '244', 'essor', 'marquants', 'rétrospective', 'produits_sucrés', '8°', 'livrez', 'focalisation', 'analogique', 'facturée', 'salaisons', 'seigneur_jésus-christ', 'hôteliers', 'végétarisme', 'acier_galvanisé', 'agresseurs', '190_°', '15e', 'vaccin_contre', 'louant', 'cène', 'carburateur', 'très_minces', 'paré', 'fanions', 'imprimantes_3d', 'innovantes', 'renvoient', 'avril_2012', 'déjà_réalisés', 'tavernier', 'janvier_2016', '5.000_euros', 'oak', 'infériorité', 'plaidoirie', 'dédale', 'macos', 'titre_préventif', 'irisés', 'manchettes', 'sécrétions', 'lire_attentivement', 'gouache', 'colossale', 'arithmétique', 'carte_mère', 'viennoises', 'afghans', 'réinstallation', 'déductible', 'quiet', '14_h', 'bourgueil', 'soirée_festive', 'rester_raisonnable', 'communicants', 'revisitant', 'cacao_barry', 'dénichés', 'gta', '32_go', 'approximatives', 'pietra', 'compatibles', 'inaltérable', 'prisma', 'winter', '1820', 'nos_adhérents', 'sommé', 'nauséabonde', 'luisants', 'tasmanie', 'patagonie', 'défendait', 'chez_aroma-zone', '18€', 'cité_internationale', 'étrangeté', 'épithète', 'démographiques', 'aux_craintes', 'discutable', 'mariner_pendant', 'réducteurs', 'stéréotypes', 'évidée', 'dolmen', 'belgian', 'sciences_sociales', 'cet_engouement', 'circulent', 'songerait', 'saint-gervais-les-bains', 'scoops', 'interface_utilisateur', 'oxygen', 'bulletins', 'sign', 'autocollantes', 'oriente', 'coûté', 'non_inclus', 'cassure', 'avoir_violé', 'alcatel-lucent', 'équipementier', 'restaurant_principal', 'arrachée', 'fouetté', 'one_pot', 'laurent_fabius', 'opposa', 'us_open', 'ferienhaus', 'ravira_vos', \"s'_intensifie\", 'opportunisme', 'finançant', '202', 'postées', 'vitrage', 'restoran_jevrem', 'rajeunissant', 'grosse_cuillerée', 'ses_agissements', 'violoniste', 'mount', 'menetou-salon', 'réutilisation', 'seule_bouchée', 'conseil_général', 'cire_végétale', 'photophore', 'examine', 'accés', 'nait', 'particulièrement_intéressant', \"n'_hésitait\", '2-3_min', 'juvéniles', 'crème_chiboust', 'dix-sept', 'marianna', '290', 'pessac-léognan', 'saint-martin', 'cru_classé', 'grille_idéologique', 'jean-paul_hévin', 'appelons', 'sub', 'individualité', 'se_destine', 'réorganisation', 'omc', 'calculés', 'alter', 'stratégiques', 'war', 'transmetteur', 'mince_couche', 'adventure', 'citronnées', 'garnissez_-en', 'financée_par', 'aboutissant', 'herbes_sauvages', 'congestion', \"s'_étonna\", 'recommandons', 'différents_critères', 'promotionnelle', 'proposerait', 'somme_globale', 'nuées', 'émaillées', 'syndical', 'utopia', 'envisageait', 'amorcé', 'customisable', 'coulures', 'ratte', 'malentendu', 'berg', 'répétitions', 'git', 'instituteurs', 'ouvrirait', 'tournevis', \"s'_adaptera\", 'piémontaise', 'restaurants_étoilés', 'médicamenteux', 'plaque_vitrocéramique', 'terrestres', 'stigmates', 'smic', 'incessantes', 'gasoil', 'pdg', 'intéressement', 'variant_entre', 'pino', 'hospitalier', 'nrj_12', 'troisième_édition', 'comédie-française', 'autres_alcools', 'flopée', 'interdisant', 'nd', 'bbcode', 'souvenez_-vous', 'prodigieux', 'chou_farci', 'brouillards', 'matinaux', 'soutirage', 'élément_indispensable', 'nappez_-le', '28_janvier', 'inconditionnelle', 'hostilités', 'persécutés', 'economie', 'amenés', 'surbrillance', 'devinez_quoi', 'medical', 'sacrifiant', 'niçois', 'saint_laurent', 'petit_boulé', 'birmanie', 'votre_réservation', 'th.7/8', 'pionnière', 'exigeait', 'vous_entrerez', 'ressuscité', 'léman', 'rissoles', 'labellisation', 'tentaient', 'réducteur', 'désiraient', 'saint-just', 'totem', 'oct', '340', 'être_consommées', 'pio', 'utilité_publique', 'bifteck', 'reversé', 'award', 'stabilisée', '209', 'desséchée', 'hypertension_artérielle', 'sécrétion', 'aappma', 'collaboratifs', 'orientée_vers', 'différents_groupes', 'communales', 'tablette_tactile', 'aron', 'informant', 'proto', 'quadrature', 'ses_facultés', 'montorgueil', 'restaure', 'assouplissement', 'statiques', 'réhabiliter', 'goûtent', 'subis', 'discrimination_syndicale', 'crédit_agricole', 'fallait_-il', 'plein_sud', 'baccarat', 'ligne_horizontale', 'gazeuses', 'combinatoire', 'évaluation_formative', 'personnalisez', 'modifient', 'fabriquez', 'électricien', '16_décembre', 'rituelles', 'personnes_possédant', 'rapportées', 'lagarde', \"“j_'\", 'système_judiciaire', 'déformant', 'festins', 'peninsula', 'pleine_puissance', 'on_dévalise', '28_mai', 'act', 'coupes_glacées', 'cinq_numéros', 'slider', 'mentions_obligatoires', 'cnil', 'désabonnement', 'case_prévue', 'enseigna', 'cire_orientale', 'site_wordpress', 'orpheline', 'vin.', 'puddings', 'cours_mondiaux', 'diplômés', 'justifient', 'menu_complet', 'écarlate', 'interlocuteurs', 'élus_locaux', 'hémorragie', 'accrues', 'étend', 'ont_-ils', 'tite-live', 'se_fend', 'magny', 'cents_ans', 'déserts', 'certaines_zones', 'nacional', 'gallois', 'cotisation_annuelle', 'répétant', 'faire_disparaitre', 'déchirure', 'bonnes_relations', 'mus', 'marlon_brando', 'consentant', 'enflammée', 'éclabousser', 'niché', 'infusées', 'koch', 'nigeria', 'hummmm', 'bougeant', 'détournements', 'opèrent', 'rédemption', 'élément_essentiel', 'enlumineur', 'unité_centrale', 'nous_entendons', 'antivols', 'pierres_apparentes', 'sola', 'icons', 'valeurs_nutritives', 'principale_source', 'vos_visites', 'connexion_wifi', 'vincenzo', 'aviva', 'méritoire', 'intérêt_collectif', 'démoulée', 'légèrement_torréfiées', '237', 'devrions', 'conclura', 'tricheurs', 'couennes', 'parcourus', 'personnes_intéressées', 'putréfaction', '2009-2010', 'ferdinand', 'étroite_collaboration', 'perforer', 'ciblant', 'acheteurs_potentiels', 'luxembourgeois', 'ténors', 'allor', 'complètement_raté', 'expulsé', 'pierre_richard', 'jalons', 'louchée', 'ses_prédécesseurs', 'grands_domaines', 'zola', 'jeu_concours', 'eric_zemmour', 'rooftop', 'bannis', 'indique_-t-il', 'écrivez_-moi', 'seul_souci', 'éloignées', 'bailleur', 'avec_compartiment', 'hall_of', 'matière_grise', 'vous_acceptez', 'croissance_économique', 'devenue_culte', 'expérimentaux', 'faites_-lui', 'incessante', 'diego', 'penchée', 'reléguer', 'saupoudrez_-le', 'provenances', 'escape', \"s'_allient\", 'avait_ordonné', 'freiner', 'virales', 'produits_pharmaceutiques', 'impuretés', 'maité', 'téléphone_fixe', \"s'_immiscer\", 'voir_apparaitre', 'missionnaire', 'babel', 'beau-fils', '7_cl', 'oraison', 'méditations', 'propagé', 'gangsters', 'postérieurs', 'substances_chimiques', 'dévorées', 'juda', 'citons', '500_mg', 'michel_barnier', 'négociée', 'autorisait', 'coupage', 'allègre', 'antimatière', 'maïs_grillé', 'rapatrier', 'lipo', 'diversification', 'hexagonal', 'par_satellite', 'période_hivernale', 'tmc', 'tnt_gratuite', 'rachetée', 'lanoline', '1864', 'situation_financière', 'copé', 'goa', 'ghost', 'ne_manquerons', 'pique-niques', 'djihadistes', 'salafistes', '15°', 'electriques', 'cubains', '1892', 'diacre', '1893', 'amandes_mondées', 'retardé', 'notes_personnelles', 'évidez', 'révolutionnaires', 'désinvolture', 'perdrez', 'identifiez', 'renseignez', 'peaux_mortes', '½_litre', 'valéry', 'première_épreuve', 'brunello', '14_juin', 'charcutière', 'lbs', 'contre_plaqué', 'être_considérée', 'einstein', 'excellente_alternative', 'opératoire', 'acerola', '•●_si', 'contentieux', 'règlent', 'recrutent', 'vous_bénéficierez', \"j'_allaite\", 'organisant', 'substances_actives', 'se_rattache', 'mèneront', 'soyez_résolus', 'cherchons', 'enracinée', 'préféreraient', 'mithridate', 'tyrans', 'wagon', 'papier_hygiénique', 'brocciu', 'hindou', 'redécouvert', 'autour_duquel', 'pérignon', 'se_révolter', 'vernir', 'baliser', 'encensé', 'nordiste', 'chevronnés', 'plongez_-y', 'boîtier', 'processeurs', 'tournera', 'dernière_cène', 'flammarion', 'narrative', 'ossature', 'pay', 'pressaient', 'exfolie', 'exfoliantes', 'communaux', 'flux_sanguin', 'assouplit', 'champ_approprié', 'lyriques', 'réconcilié', 'étaient_utilisés', 'référencé', 'céréaliers', 'régénératrices', 'coliseum', 'piètre', 'mono-', 'varicelle', 'consentir', 'généraliser', 'web_2.0', 'triées', 'scénaristique', 'dysfonctionnements', 'polynésie', 'paradis_fiscal', 'digestives', 'blondie', 'taie', 'présentaient', 'craignent', 's2', '4_feux', 'enferment', 'mamadou', 'oralement', 'continueraient', 'rencontrera', 'personnages_secondaires', 'miliciens', 'dissimulation', 'jonc', 'autodidacte', 'forçait', 'jurassiens', 'crises_cardiaques', 'zurichois', 'valaisans', 'fractions', 'coquet', 'arboré', 'rte', 'analogie', 'opulence', 'xvème', 'attaques_terroristes', 'indo-', '20-25', 'ess', 'acl', 'soudanais', 'amsler', 'localisée', 'inimitié', 'ses_excuses', 'carte_microsd', '64_go', 'trois_niveaux', 'crèmes_glacées', 'prioris', 'docks', '3cl', 'teresa', 'homicides', 'rencontrait', 'fioul', 'morne', 'art_culinaire', 'ecrevisses', 'complication', 'échafaudages', 'conduites', '145°', 'chauffants', 'se_rassurent', 'décaler', 'écluses', 'jusqu‘à', 'grandes_régions', 'pomerol', 'étendues', 'ne_concernent', 'éperdument', 'ascendance', 'dépréciation', 'prétendant', 'rose_poudré', '2,5_cl', 'lydie', 'succès_populaire', 'aux_normes', 'nomenclature', 'produit_sucrant', 'réglementations', 'besoins_quotidiens', 'antioxydantes', 'mg_/', '0,6', 'pression_artérielle', 'système_cardiovasculaire', 'phosphore', 'mauvais_cholestérol', 'athérosclérose', 'contre-indications', 'déballage', 'paule', 'kakis', 'vous_trouviez', 'perpétuellement', 'légumes_farcis', 'seule_préoccupation', 'décap_four', 'fermeil_a', 'lymphe', 'physiologique', 'txt', 'ambiguë', 'décore', 'acras', '21_janvier', 'relique', 'échauffe', 'huffington_post', 'reconnaissable', 'puisqu', 'culpabiliser', 'banda_ses', 'pizzas_cuites', 'plain-pied', 'frigo-_congélateur', 'canapé_convertible', 'jean-philippe', 'réticent', 'entraînés', 'reddition', 'impérieux', 'solitaires', 'émergeant', 'vésicule_biliaire', '1809', 'avait_confié', 'peu_coûteux', 'conséquentes', 'identifie', 'silvio_berlusconi', 'réticents', 'cadets', 'taxés', 'pédophilie', 'blaye', 'souhaite_vendre', '☺', 'avec_toi☺', 'ensemble☺', 'emménager', 'pierrade', 'speech', 'délayez_-la', 'ciboulette_finement', 'verre_mesureur', 'collera', 'journaliers', 'crucifixion', 'grand_reporter', 'constantin', 'abstenu', 'faure', 'plaidoyer', 'patriotique', 'joachim', 'étudiés', 'enlevait', 'délimité', 'juillet_2009', 'lavez_-les', 'quantités_importantes', '17e_siècle', 'auvent', 'mi-saison', 'préoccupe', 'comptabilise', 'paquebot', 'se_répandait', 'is_nothing', 'historico-', 'dommages_collatéraux', '1er_septembre', '300_euros', 'saura_satisfaire', 'podcasts', 'administre', 'plaisir_gustatif', 'condom', 'plaques_vitro-', 'déguisées', 'gravitent', 'malhonnêteté', 'procurez', 'autorité_parentale', 'ses_voisins', 'nous_étudierons', 'magnétoscope', 'faucher', 'vacanciers', 'prédateur', 'chiffre_auquel', 'hébergés', 'décoration_murale', 'moulures', 'tabel', '45°', 'plaques_vitro', 'clisson', 'esxi', 'remarquons', 'institué', 'sana', 'vieille_ferme', 'pleine_campagne', \"s'_étonne\", 'bénévolement', 'spinoza', 'perçues', 'ses_griffes', 'compères', 'savoyardes', 'avril_2017', 'nissan', 'molettes', '43_ans', 'debray', 'chio', 'demontage', '750_euros', 'cabillauds', 'préparer_vous-même', 'perturbateur', '34°c', 'ammoniac', 'charrues', 'recteur', 'after_eight', '30sec', '1,2_%', 'échalotes_finement', 'mecanique', 'voyagent', 'rassemblé', 'gaumont', 'ces_incidents', 'sommelière', 'mûrit', 'rejoints', 'primitifs', 'mime', 'vertigineuse', 'insensés', 'soigneux', 'rassemblait', 'bougeoirs', 'envisageable', 'amassé', 'ethiopie', 'introduisent', 'économiste', 'art_contemporain', 'réactionnaires', 'roosevelt', 'brodeuse', 'choux_garnis', 'jacobins', 'organigramme', 'dépenser_beaucoup', 'frolic', 'garagiste', 'incrédule', 'femmes_aiment', 'brassard', 'cohérente', 'inapte', 'vn', 'magnifie', 'proposerai', 'verges', 'association_caritative', 'poreux', '23_janvier', 'monop', 'vieux_métiers', 'gabare', 'sociologues', 'rappelons_-le', 'pays_développés', 'fao', 'bailleurs', 'lesquel', 'programmations', 'ferrements', 'valets', 'gouverneur', 'nigérian', 'cio', 'unix', '~_/', 'élément_important', 'mirettes', 'lavande_vraie', 'propolis', 'ceste', 'digérés', 'flamby', 'mee', 'festif', 'impuissants', 'rivalités', '§_1', '§_2', 'bien-aimée', 'investis', 'phénicie', 'samarie', 'judée', 'mer_morte', 'rotary_club', 'pochée', 'alsaciennes', 'grande_fresque', 'haute_volée', 'nt1', 'reporté', 'tenanciers', 'nuisances', 'stockée', 'salubrité', 'comité_national', 'ral', 'activité_humaine', 'variabilité', 'chènevis_moulu', 'livres_sterling', 'entièrement_consacrée', 'argot', 'répand', 'cacao*', 'coco*', 'intermédiaires_entre', 'eliminez', 'lemonade', 'rhabillage', 'cubase', 'anne-laure', 'assouline', 'nombreux_rangements', 'loggia', 'soulagements', 'brutaux', 'traiteurs', 'remportés', 'je_partirais', 'instinctivement', 'mounir', 'quatrième_place', 'cela_signifiant', 'porte_blindée', 'accréditation', 'idée_reçue', 'fruits_entiers', 'désignait', 'rapportés', 'massage_relaxant', '1851', 'recouvrent', 'fécule_délayée', 'laisser_évaporer', 'communiqués', 'spéculer', 'bouilleur', 'napa_valley', 'brèche', 'font_profession', 'chi', 'boisson_énergétique', 'sens_strict', 'anathème', 'se_prévaloir', 'codes_promo', 'tactiles', 'natal', 'inflammatoire', 'karité_biologique', 'nandy', 'sup', 'rémunérées', 'servile', 'secrétariat', 'donneuse', 'tenancier', 'canne*', 'eau_additionnée', 'longue_hésitation', 'logicielle', 'embarquée', 'dernière_génération', 'géographiquement', '640', '261', 'cheat', 'lobbys', 'réintroduction', 'carnée', 'winery', '24_septembre', 'buttons', 'incentives', '1,25', 'remporta', 'prioritairement', 'hop_hop', 'coordonnée', 'biscuits_apéritifs', 'riz_fermenté', 'adéquats', 'amulette', 'tolérant', 'infinitif', 'félicités', '332', '700_000', 'crêpes_sucrées', 'charlemagne', 'vos_réactions', 'monte-carlo', 'quotas', '-avec', 'territoires_palestiniens', 'méridionale', 'tyr', 'jordanie', 'enlèvements', 'abordant', 'vesou', 'façon_artisanale', 'deux_étages', 'roulade', 'précipitations', 'impartial', 'carrossier', 'soupe_bombée', 'possédés', 'disait_-elle', 'ça_ressemblait', 'parcontre', 'tenants', 'protection_supplémentaire', 'miser', 'slot', 'concoctez', 'adour', 'ils_burent', 'deux_mondes', 'forme_circulaire', 'airain', 'rachid', '2021', 'vadrouille', 'contaminer', 'ça_changera', 'metteur', 'renforcera', 'définie_par', 'erik', 'concurrencer', 'recette_unitaire', 'boursière', 'tor', 'top_coat', 'affectionne', 'verrouillé', 'parions', 'accédant', 'çi', '415', 'haut_degré', 'latence', 'attirée', 'groom', 'clic-clac', 'domiciles', 'nantaise', 'arques', 'soupçonné', 'champ_magnétique', 'coloration_dorée', 'poissons_grillés', 'vivifiant', 'salon_international', 'aspic', 'braisière', 'mouillement', 'avec_parcimonie', 'liquidité', 'meunière', 'musique_pop', 'contraster', 'accomplis', 'inchangée_depuis', 'offrez_-vous', 'escarcelle', 'empreinte_digitale', 'bières_belges', 'avril_2010', 'délimitation', 'organisations_terroristes', 'contrôlent', 'note_acidulée', 'aux_dépens', 'empressez', 'forte_valeur', 'rejetées', 'nos_experts', 'joignables_du', 'conditions_idéales', 'novembre_dernier', 'convenue', 'convocation', '29_mars', 'appréciaient', 'prêcher', '“vous', 'ferrailles', 'cpa', 'dérives', 'lefèvre', 'atténué', 'étanches', 'hédoniste', 'ses_troupes', 'hédonisme', 'synchroniser', 'http', 'regale', 'spatules', 'soignez', 'eussent', 'proportionné', 'fff', 'stature', 'réussissait', 'engrenages', 'inverseur', 'compteront', 'sont_transformées', 'juin_2005', 'baklawa', 'ismaël', '67_%', 'permettez_moi', 'nourrir_exclusivement', 'eps', 'malhonnête', \"s'_oppose\", 'époustouflante', 'receveur', 'cubain', 'mai_dernier', 'visitée', 'infuser_pendant', 'insurgés', 'résistante', 'fixées', 'apéro_dinatoire', 'lotions', 'natalité', 'irish', 'mastiquer', 'interagir', 'inquiétants', 'y_souscrire', 'montlouis', 'boirez', '502', 'np', 'nègre', 'annuelles', 'soixante-dix_ans', 'marrons_grillés', 'pacifistes', 'chenevis', 'badigeonnées', 'lactosérum', 'hydrogénée', '18_mai', 'dites_-vous', 'haute_définition', 'joignant', 'imprimable', 'amplifié', 'diverses_raisons', 'montrerai', 'organes_génitaux', ']_r', '4,2', 'négligeant', 'vermeille', 'conscrits', 'facétieux', 'planifie', 'chef-lieu', 'écrans_tactiles', 'ébranlé', 'sg', 'muté', 'oncle_sam', 'vertus_nutritionnelles', 'acide_oléique', 'réglementation_européenne', '525', 'déconseiller', 'inhérents', 'fioles', 'opérées', '21_mars', 'christophines', 'certains_responsables', 'ultrasons', 'plaques_induction', 'gradins', 'compétitif', 'programmées', 'due_forme', 'récurrentes', 'glaciers', 'frères_musulmans', 'physiciens', 'produirait', 'conclut_-il', 'desmond', 'controversé', 'presse-citron', 'eure', 'étaient_venues', '201', 'analysée', 'extincteurs', 'gens_préfèrent', 'blizzard', 'agenais', 'fossés', 'mccain', 'irrité', 'tariquet', 'déblayer', 'occupaient', 'recouvrez_-la', 'conjoncture_économique', 'sous-marine', '2_louches', 'se_décompose', 'autorités_compétentes', 'batteur_éléctrique', 'poulet_basquaise', 'magnesium', 'féministes', 'conceptuelle', 'ordonnés', 'circonscription', 'resine', 'ufs', 'formellement_interdit', 'ses_obligations', 'roi_arthur', 'tapisseries', 'meublée', 'cuisson_vitro-', 'terrasse_couverte', 'disgracieuses', 'redistribuer', 'palmarès_déjà', 'rachèterai', 'birchbox', 'startup', 'production_viticole', 'oenotourisme', 'compte_instagram', 'soixante_ans', 'tuniques', 'duero', '1/2_dl', 'chair_blanche', 'extra_vierge', 'printemps_dernier', 'nageant', 'baignés', 'tm5', 'lambda', 'nov', 'oignon_épluché', 'polenta_crémeuse', \"j'_hésitais\", 'comptez_environ', 'je_suivais', 'vinicole', 'superlatifs', 'seront_servis', 'lui_conférant', 'meilleur_allié', 'on_émince', 'encrage', 'changement_climatique', '2025', 'déportés', 'commémoration', 'non-_juifs', 'parfum_délicat', 'grecques', 'thali', 'sanctifier', '1962', 'michel_rocard', 'parties_égales', 'béton_armé', 'condition_sine', 'yeux_bandés', 'abattage', 'qui_précèdent', 'centraux', 'alun', 'aid_el', 'graisser_légèrement', 'pousseront', 'îlot', 'appliqués', 'carambar®', 'découpez_-le', 'surpopulation', 'matière_organique', 't6', 'faites_rissoler', 'ne_cessant', 'rip', 'commentait', 'ingénieux', 'pompée', 'agent_immobilier', '25-30_minutes', 'teneurs', 'diminuent', 'vous_souhaitiez', 'versez_par-dessus', 'nombre_illimité', 'google_play', 'laisser_confire', 'dumas', 'baignait', 'imprimées', 'andouilles', 'cordialement', 'anxieux', 'guichets', 'black_angus', 'détrempé', 'crèmes_desserts', 'hawaï', 'consistance_pommade', 'réchauffant', '500w', 'chauffera', 'bel_aspect', 'astuce_consiste', 'gagnait', \"s'_entassent\", 'poulardes', 'jetaient', 'vasques', 'trouverait', 'baies_vitrées', 'jus_nutrijus', 'deuxième_essai', 'endogène', 'parlement_européen', 'graisses_végétales', 'smoothie_vert', 'cassante', 'pois-chiche', 'cantonner', 'agro-', '20°c', 'nappant', 'boule_homogène', 'remuant_régulièrement', 'beaux-arts', 'mouvements_circulaires', 'abaisses', 'vissé', 'écumant', 'combinez', 'pièces_montées', 'raisins_rouges', 'pressurage_direct', 'bourbes', 'débourbage', 'soient_totalement', 'assaisonnant', 'pata_negra', 'bellota', '140_°c', 'prédéfinies', 'revigorante', 'conforté', 'matignon', 'médiane', 'testée_hier', 'profil_aromatique', 'herve', 'melt', 'grand-messe', '4_cuillers', '-vous_surprendre', 'jacques_dupont', 'vidanges', 'sauce_bbq', 'suggérée', 'wap', 'termes_techniques', 'apc', 'lisière', 'échoppes', 'méridional', 'occitan', 'produits_régionaux', 'biscuit_breton', 'production_locale', 'génétiquement_modifiés', 'plasticité', 'répulsion', 'substrats', 'correctes', 'biscuit_macaron', 'prochaines_élections', 'quinquennat', 'différentes_options', 'orge_mondé', 'ig_bas', 'intitulée_«', 'tomates-mozza', 'températures_élevées', 'manuels_scolaires', 'éducateurs', 'décupler', 'nougat_glacé', \"s'_invitent\", 'clairvoyance', 'futuriste', 'occase', 'parfait_état', 'yamaha', 'côtier', 'cabaretiers', 'définition_légale', 'frontignan', 'contraventions', '27_juillet', 'exerçant', '28_juillet', 'sans-abri', 'rôle_protecteur', 'exploitation_agricole', 'embouteiller', 'stallone', 'cantines_scolaires', 'enclins', 'feuilles_fraîches', 'variétés_anciennes', 'vous_bénéficiez', 'notifier', 'dater', 'omission', 'échanges_entre', 'ludiques', 'pois-chiches', 'plusieurs_options', 'début_septembre', 'autoportrait', 'hoffmann', 'vilamoura', 'radioactif', 'eau_radioactive', 'encourageons', 'emprunteur_doit', 'services_fiscaux', 'fiscal', 'nécessiterait', 'aspects_pratiques', 'omnivores', 'végans', 'devient_translucide', 'gardons', 'littérale', 'liturgiques', 'serveur_web', 'code_html', 'chou_vert', 'farine_panifiable', 'personnes_intolérantes', 'réagissent', 'lèvent', 'dixièmes', 'nous_laissons', 'mariage_frères', 'petits_producteurs', 'urticaire', 'ligues', 'anciennes_versions', 'complètement_évaporé', 'wishlist', 'produits_similaires', 'ils_souhaitent', 'banqueroute', 'haute_provence', 'consortium', 'framboises_mixées', 'plusieurs_endroits', 'consistance_légère', 'granny_smith', 'fragiliser', 'pierre-andré', 'ramollit', 'bb_crème', 'vous_cherchiez', 'spatial', '180_degrès', 'administration_pénitentiaire', 'fine_fleur', 'islamisme', 'samar', 'loisirs_créatifs', 'papier_mâché', 'durcissement', 'salmon', 'creative', 'grandissent', 'émigré', '190c', 'c.à.c', 'xixe', 'résidentielle', 'proue', 'depuis_2009', 'gourmands_pourront', 'différentes_façons', 'explosent', 'éprouvait', 'numériser', 'case_destinée', 'brodamaryllis@gmail.com_si', 'autres_précisions', 'vanoise', 'théoriquement', 'chaire_unesco', 'vendangé', 'figues_fraîches', 'mi-juillet', 'hélichryse', 'dorez_-les', 'travaux_publics', 'inspecteurs', 'dépenses_résultant', 'elevage', 'micro-_oxygénation', 'carafage', 'sur_lies', 'fermentation_malolactique', 'fermentation_lente', 'guy_degrenne', 'étoiles_michelin', 'parrainé', 'grenobloise', 'voûté', 'nymphes', 'séveux', 'délicatement_parfumé', 'couleur_intense', 'solaris', 'poulet_pané', 'diminuera', 'mélanger_brièvement', 'sauce_nuoc', 'bamako', '5/6', 'soit_sirupeux', 'imperméabiliser', 'brûleur', 'hydrogénées', 'trans', 'véridique', 'foncées', 'déclinables', 'moscatel', 'musqué', 'différents_paramètres', 'moralisateur', 'conteur', 'intervenant', 'hk', 'couturière', 'croustiller', 'petits_budgets', 'mousse_bavaroise', 'mauvaise_surprise', 'qua_non', 'exhaustives', 'réalisa', 'très_appréciées', 'visser', 'pellicule_plastique', '(_fig.', 'partagez_cette', 'régule', 'fibre_capillaire', 'bouclier_fiscal', 'palette_aromatique', 'janvier_2017', '6€', 'salvador_dali', 'réalisable_sans', 'par_à-coups', 'ancien_moulin', 'tetra', 'nutriments_essentiels', 'affaires_étrangères', 'patrimonial', 'thérapeute', 'masqués', 'consolations', 'durées', 'desservant', 'rétention', 'relâche', 'déshydratation', 'inhibiteurs', 'migrations', '1927', '304', 'accompagnateur', \"“c_'\", 'quantité_recommandée', '110_°c', 'émetteur', 'poitou', 'maladies_cardiovasculaires', 'certaines_espèces', 'épuisette', 'aggravent', 'liste_exhaustive', 'mémorisation', 'sachets_individuels', 'san_agustin', 'schär', 'joli_dessin', 'moissons', 'cent_soixante', 'vidaient', 'avril_2013', 'frozen', 'morbier', 'gracieuse', 'sablées', 'apprirent', \"s'_implanter\", 'créeront', 'operations', 'très_flexible', 'chamois', 'recommandant', 'entièreté', 'ô_miam', 'super_moelleuse', '4g', 'perdrait', 'estragon_haché', 'bouton_editer', 'ont_adoré', 'peltier', 'weiss', 'laverie', 'costa_rica', 'guatemala', 'bolivie', 'montalcino', 'aloé', 'précieux_conseils', 'antillaise', 'retirerez', 'theory', 'entière_discrétion', 'présentes_conditions', 'sans_préavis', 'biogaz', 'organisait', 'provençaux', 'apéritives', 'malade_»', 'régressifs', 'montant_égal', 'majorée', 'smic_horaire', 'desquelles', 'visionnez', 'trop_friable', 'royer', 'théophile', 'powerpoint', 'pcc', 'déformé', '19_février', 'parisot', 'pouchkine', 'manuels', 'vivendi', 'lui_conférer', 'récoltées', 'financé', 'ai_remplacé', 'xix', 'cnn', 'radiation', 'load', '/_usr', '12.000', 'origine_protégée', '1_gramme', '160°_c', 'craquelures', 'howard', 'euler', 'apporteur', 'saccharomyces_cerevisiae', 'naturellement_présent', 'contrôlant', 'cela_suppose', 'codifié', '2-_tu', '1/1000', 'points_correspondant', 'tes_visiteurs', 'été_conçues', 'interministériel', 'chocolate_chip', 'rassurants', 'sensationnalisme', 'microgrammes', 'vitamine_b12', 'ben_ali', 'jamet', 'mural', 'coder', '256', 'centre_historique', 'repartirez', 'polyvalente', 'chermoula', 'moule_marguerite', 'débordent', 'béarnaise', 'jean_carmet', 'co-_fondateur', 'se_conservera', 'marie-claire', 'lèche-frites', '17g', 'scs', 'triée', 'puissance_max', 'méthane', 'recherchés', '1,8', 'factuel', 'deviendraient', 'carcassonne', 'tofu_fumé', 'read_more', 'ribs', 'inévitables', 'douleurs_musculaires', 'temporels', 'formule_choisie', 'matériel_nécessaire', 'emportés', 'team_building', 'béziers', 'malversations', '11_avril', 'recourant', 'suggérait', 'accablante', 'petites_brioches', 'rehaussées', 'traçabilité', 'gastehaus', 'rebut', 'mastodonte', 'repêcher', 'douleurs_articulaires', 'postures', 'mauvais_esprits', '1839', 'zlabia', 'seine-maritime', '4000_euros', 'routage', 'implications', 'déjà_existants', 'gérés_par', 'activistes', '3,50', 'filiale', 'vénération', 'onction', 'insoupçonnés', 'inhumain', 'décharges', 'bapteme', 'cqfd', 'chapons', 'drainer', 'excellentissime', 'amandes_entières', 'presbytère', 'patrimoine_naturel', 'expérience_personnelle', 'ajustant', 'spatio-', 'vigo', 'au_rez-de-chaussée', 'évolué_depuis', 'arbitrairement', 'fissent', 'trépied', 'repentance', 'débat_public', 'populisme', 'titrage', 'alliées', 'grande_capacité', 'scénographie', 'd´une', 'récupérées', 'nous_discutons', 'belles_notes', 'trois_générations', 'délivrera', 'drh', 'touchées', 'talc', 'bon_équilibre', 'traditions_culinaires', 'sanchez', 'el_louz', 'incompatible', 'irrigation', 'lobos', 'convection_naturelle', 'forme_plate', 'recouvrez_-le', 'polyphème', 'accrochant', 'rétribution', 'maistre', 'lingettes', 'lavables', 'restaurée', 'négoce', 'corsées', 'taxé', 'contrebas', 'scandinaves', 'envisagées', 'amendements', 'cépage_unique', 'sulfite', 'astronomique', 'défendeurs', 'carte_sim', 'axée_sur', 'obstruer', 'clermont-ferrand', 'projetant', 'fontainebleau', 'super-aliment', 'fine_brunoise', 'saint_etienne', 'saint-etienne', 'migration', 'valaient', 'définissent', 'sachons', 'administrative', 'indicatif', 'martel', 'canazei', 'andalo', 'rurales', 'tribord', 'thaïlandais', 'szeged', 'del_carmen', 'samira', 'ir', 'gravity', 'apts', 'lagrange_vacances', '26_novembre', 'api', 'disneyland_paris', '189', 'ortisei', 'ramsau', 'marina_di', 'hague', 'matelot', 'incontinent', \"s'_enivre\", 'détruites', 'keller', '429', 'bollywood', 'crema', 'faverges', 'saint-quentin-fallavier', 'harmony', 'considérée', 'chisinau', 'jerez', 'cadix', 'photocopies', 'carte_vitale', 'apartment_in', 'tui', 'schladming', 'pula', 'santana', 'alm', 'interactions_entre', 'aix-les-bains', 'neustift_im', 'toques', 'mayer', 'quittance', 'daniele', 'montes', 'grandes_écoles', 'immobiliers', 'san_josé', 'oca', 'fügen', 'tallinn', 'larnaca', '251', 'flachau', 'renseignant', 'sieurs', 'wine_and', 'heidelberg', 'limone', 'marceau', \"s'_interroger\", 'alghero', 'hameaux', 'coupe_faim', 'tourelles', 'tartes_flambées', 'cantons', 'ventoux', 'killarney', 'creative_commons', 'lucullus', 'nous_prétendons', 'coachs', 'bettel', 'valentina', 'intrant', 'simulateur', 'bonifié', 'vacuum_wine', 'stéréotype', 'bassins', 'nordiques', 'mortiers', 'ambassades', 'francophonie', 'arabica', 'gall', 'explique_patrick', '1792', 'amorino', '288', 'geoffroy', 'ixe', 'non_alcoolisées', 'vape', 'superstition', 'pastorale', 'saas', 'bpa', 'yeux_ébahis', 'fer-blanc', 'avola', 'andalouse', 'jolly', 'calp', 'dacia', 'marquet', 'ath', 'saint-malo', 'scale', 'alt', '1836', 'cecina', 'isotherme', 'bourbons', 'udi', 'lr', 'aux_élections', 'nord-pas-de-calais', 'surcouf', 'bt', 'calgary', 'bertin', 'luberon', '103', '2300', 'b3', 'b6', 'new_age', '149', 'complément_indemnitaire', 'engagement_professionnel', 'brio', 'passiflore', 'hysope', 'destins', 'guibert', 'récupérable', 'carbus', 'rillons', \"s'_écoulent\", 'histoire_récente', 'supposées', 'pourrions_-nous', 'permettez_-moi', '2.4', 'appareils_ménagers', 'black_swan', 'focalise', 'perfectionnisme', 'ratage', 'conjointe', 'foulera', 'ardente_colère', 'ci-après', 'demeurera', 'ocres', 'nogent', 'seule_ambition', 'logiciel_libre', 'copyleft', 'résilience', 'ena', 'sensationnelle', 'cg', 'édith', 'avidité', 'meilleurs_artisans', 'evoquer', 'comparateur', 'ce_tutoriel', 'leone', 'widgets_personnalisés', 'paraîtrait', 'imposées', 'médiatisée', 'ses_détracteurs', 'apaisé', 'spécial_confiture', 'interprétative', 'ses_interlocuteurs', 'visuelles', 'monde_occidental', 'émergente', 'a2', 'pensée_unique', 'grande_facilité', 'dévoile_sa', 'émulsionnée', 'absorbante', 'vivement_recommandé', 'chipotle', 'galak', 'gainage', 'lait_infantile', '1/2_cuillerée', 'pêches_jaunes', '2ème_âge', 'lait_maternel', '25ml', 'gestionnaires', 'conscription', 'thirty', 'charpentée', 'racée', 'raccourcis', 'pédagogue', 'poi', 'encadrés', 'décollé', 'bestiaire', 'liaison_entre', 'ankara', 'dérivées', 'réglementaire', 'ecoles', 'daenerys', 'sont_engagés', 'achard', 'alberti', 'explicatives', 'prétextes', 'filant', 'vincennes', 'amazonie', 'chambertin', 'passer_commande', 'sudo', 'ligne_suivante', 'fichier_~', 'ssh', 'security', 'souhaités', 'wc_séparé', 'plus_spécifiquement', 'comptes_bancaires', 'sont_restés', 'infiltrés', 'thil', 'tirages', 'dofollow', 'gaulle', 'incessamment', 'hexagonale', 'rotonde', 'bordée', 'vous_noterez', 'ne_déroge', 'biscuit_financier', 'me_tentait', 'occasionnels', 'fraisiers', '226', 'différentes_associations', 'prix_affichés', 'traditionnellement_utilisé', 'voies_urinaires', 'placebo', 'examiné', 'infections_urinaires', '1.2', '1.4', 'diarrhées', 'patients_atteints', 'interaction_entre', 'plausible', 'qui_inhibent', 'similitude', 'notablement', 'citron_kaffir', 'oignon_pelé', 'stérilisés', 'yam', 'nuoc', 'gazpacho', 'impressionné', 'spéciale_dédicace', 'ceviche', 'soient_cuites', 'élections_législatives', 'philosophies', 'accès_wifi', 'sorrente', 'coût_supplémentaire', 'drains', 'olympus', 'subterfuge', 'books', 'réservées_aux', '25_000', 'distanciation', 'véhiculé', 'carbonate', 'pressenti', 'gageons_que', 'ashoka', 'relations_sexuelles', 'amateurs_avertis', 'caves_coopératives', 'vignerons_indépendants', 'bordent', 'sentimentalisme', 'médias_traditionnels', 'rosenberg', 'dominait', 'huet', 'bianchi', 'mesurez', 'arômes_artificiels', 'sardines_grillées', 'différentes_versions', 'sont_-elles', 'lanceurs', 'clique_dessus', 'tu_proposes', 'cliff', 'white_spirit', 'weathering', 'hérétiques', 'sous-traitant', 'fuentes', 'casher', 'naval', 'alourdit', 'automatismes', 'fêtera', 'prestataires', 'honneur_offert', 'repas_convivial', 'goûtue', 'avocat_coupé', 'badigeonné', 'je_recherchais', 'légumes_grillés', 'ail_pelées', 'take_away', 'ajustée', 'ces_cas-là', 'nuts', 'elvira', 'cachaça', 'fraises_séchées', 'non_salées', 'faites_flamber', 'brassées', 'invariablement', 'expérience_sensorielle', 'flexibles', 'osso-_buco', 'public_cible', 'levage', 'prostate', 'vendeuses', 'cynique', 'concurrente', 'petites_annonces', 'match_→', 'ancienne_église', 'hypoglycémie', '241', 'définitions', '600_000', 'plats_simples', 'qui_émoustille', 'épicuriens', 'under', '5+', 'odette', 'cliquent', 'étaient_tenus', 'coraux', 'piquantes', '1861', 'constitutionnel', 'boni', 'eucalyptus_radié', 'problème.', 'charentaise', 'dévolu', 'montréalais', 'contribueront', 'rencontraient', 'belle_fraicheur', 'gallia', 'nathanaël', 'posez_-le', 'protection_civile', 'effacés', 'natasha', 'francisco', 'insaisissable', 'chateaubriand', 'dg', 'rupture_abusive', '1.000_euros', 'smoothie_banane', 'silos', 'leurs_obligations', 'latte_macchiato', 'boissons_gourmandes', 'alfa', 'municipales', 'délocalisations', 'hifi', 'hirondelles', 'concarneau', 'saint-germain-en-laye', 'vers_sara', 'amenée', 'préposé', 'gonflement', 'villette', 'commercialisent', 'décantation', 'nous_créons', 'perdurer', 'liste_verte', 'upgrader', 'recyclée', 'modulation', '5000_euros', 'ménard', 'étaient_constituées', 'bernard-henri_lévy', 'suze-la-rousse', 'prééminence', 'tempes', 'scato', 'préjuger', 'non_conforme', 'dépasse_largement', 'plusieurs_raisons', 'adonne', 'fervent', 'fasciné', 'suscité', 'orvieto', 'nationale_aggir', 'gir', 'grille_aggir', 'indépendant_)', 'garam_masala', 'neurosciences', '254', 'intestinaux', 'pizza_hut', 'patriotiques', 'ésotérisme', 'pertinent', 'rh', '14_mai', 'sword', 'rebondissements', 'vingt-deux', 'empêchée', 'led', 'doyle', 'gauguin', 'andrei', 'parfument', 'actualiser', 'farandole', 'dauphine', 'prix_varient', '-40_%', 'languedocienne', 'temps_opportun', 'haute-corse', 'configuré', 'dinard', 'bordant', 'peignant', 'pirogues', 'ressaisir', 'ces_phénomènes', 'gouvernail', 'référencement_naturel', 'pénaliser', 'gargarisme', 'allumait', 'sanaa', 'confiées', 'étaient_réunis', '110_litres', 'précisera', 'pièce_maîtresse', 'rompt', 'entraînerait', '12,5', 'vous_resterez', 'drainant', 'contre-courant', 'avantageuse', 'préparation_blanchisse', 'fertilisants', 'rudolf', 'mordue', 'lâchés', 'ergonomiques', 'sauf_autorisation', 'lettre_ouverte', 'grandes_puissances', 'dépendants', 'protectionnistes', 'redorer', 'blason', 'ils_découvrent', 'souscripteur', 'instincts', 'marie-antoinette', 'prédominant', 'aucun_danger', '1843', 'remportée_par', 'kimi_räikkönen', 'végétariennes', 'leader_mondial', 'contrôle_technique', 'compressée', 'ardents', 'informateur', 'enfreindre', 'honorables', 'esthète', 'dix-sept_ans', 'contact_permanent', 'récoltant', 'fécules', 'malaxée', 'réside_principalement', 'presse-agrumes', 'maladresses', '(_bas-rhin', 'barr', 'ribeauville', 'bergheim', '17_août', '24_août', 'octobre_2012', 'saint_estèphe', 'thés_glacés', 'luttant_contre', 'tong', 'conséquents', 'regime_citron', 'taubira', 'cartilage', 'servons', 'rivale', 'tentaculaire', 'boulons', 'parti-pris', 'woocommerce', 'poindre', 'échantillonnage', 'gâteaux_préférés', 'di_maria', 'plaisanté', 'meet', 'monticule', 'aumônière', 'trader', 'produits_financiers', 'marisol_touraine', 'gq', 'ses_distances', 'universels', 'petits_malins', 'risottos', 'pâtes_fraiches', 'germées', 'façon_ludique', 'étalonner', 'étalonnage', 'récalcitrant', 'bienheureux', 'triés', 'jörg', 'conteneurs', 'décapitation', 'réaménagement', 'sa_célébrité', 'prescription_médicale', 'augmentés', 'troubles_digestifs', 'intestinale', '2,25', 'se_placent', 'calibrage', 'se_souvint', 'éléments_décoratifs', 'avs', 'ognons', 'ma_bella', 'méduse', '177', 'non_boisé', 'nez_ouvert', 'pleine_expansion', '1,5_milliards', 'parcourez', 'filigranes', 'fichiers_vidéo', 'performantes', 'prévisualisation', 'souverains', 'finalistes', 'région_viticole', 'flaveurs', 'brisant', \"s'_exerce\", 'dignité_humaine', 'se_positionne', 'too_much', 'supposément', 'siméon', 'correspondances', 'bombarder', 'codex', '0,10', 'singez', 'pho', 'writer', 'demandées', 'couchez', 'petits_carreaux', 'peu_fade', 'demi-oignon', 'basquaise', 'liquidation_judiciaire', 'directoire', '229', 'médiation_entre', '990', '3,8', 'examinés', 'adonnés', 'gain_déshonnête', 'sacrificateur', '1_timothée', 'adonné_au', 'ni_violent', 'raisins_macérés', 'bondir', 'émérite', 'poleman', 'webber', 'p6', 'se_battront', '31°c', 'atmosphériques', 'numéraire', 'imprimerie', 'préalablement_mélangés', 'roupies', 'tâtons', 'cessait', 'adorer_dieu', 'abside', 'potentiellement_dangereux', 'dieu_tout-puissant', 'dénoncée', 'analysés', 'tomberont', 'réverbère', 'cafetiere', 'message_personnalisé', 'maintenait', 'évolués', 'technos', 'évoluant', 'verre_remplis', 'arbre_généalogique', 'mondain', 'antéchrist', 'superposée', 'remboursements', 'anesthésiste', 'echos', 'scrupule', 'répondrait', 'abrasif', 'darty', 'indolore', 'ramassez', 'fermentation_malo-', 'montgolfière', 'votre_caddie', 'masson', 'plan_nutritionnel', 'acrobatiques', 'imaginons', 'préventif', 'nous_refusons', 'pornographie', 'proxénétisme', 'bigarade', 'verdoyantes', 'rivalisent', 'concoctées', 'soulignée', 'contreforts', 'jeunes_garçons', 'calebasse', 'réécrire', 'employa', 'avérée', 'agréablement_surprise', 'autochtone', 'double_tranchant', 'inertie', 'jean_girault', 'qualifient', 'buller', 'argile_rose', 'architecturale', 'magnificence', 'avalent', 'faiseurs', 'population_mondiale', '1929', 'athéisme', 'impies', 'niveau_inférieur', 'brahma', 'alimenté_par', 'époustouflant', 'surprendre_vos', 'régie', 'gouvernants', 'diplômée', 'qui_agissent', 'manque_cruellement', 'vous_désiriez', 'racket', \"s'_engagea\", 'plutarque', 'superviser', 'deuxième_manche', 'alléchants', 'jouissait', 'licenciement_abusif', 'mentionnant', 'meilleure_efficacité', 'vous_recommandons', 'origine_animale', 'origine_végétale', 'omégas_3', 'digestibilité', 'être_consommés', 'quelques_encablures', 'paître', 'saté', 'agencé', 'prix_modérés', 'restauration_collective', 'taverniers', 'arnaud_larher', 'parfumeur', 'top_blogs', 'questions_liées', 'employeur_doit', 'indemnité_compensatrice', 'tapées', 'atypiques', 'crédibles', 'loyers', 'douloureuses', 'plafonnement', 'eva_yr', 'gunnarsdottir', 'islandaise_arrivée', 'lemon_iceland', 'fruits_islandais', '2e_arrondissement', 'pulled_pork', 'crousti', 'tinder', 'pratiquées', 'ayrault', 'prix_imbattable', '–_40g', 'tuyauterie', 'légume_cru', 'compète', 'seule_discrétion', 'conditions_générales', 'claude_guéant', 'pourtant_bénéficié', 'canard_enchaîné', 'olivier_thienot', 'meilleures_bouteilles', 'vivino', '23_millions', 'domaines_viticoles', 'bernard_magrez', 'relaient', 'contactée', 'pôle_emploi', 'indemnité_légale', 'reliquat', 'thalys', 'jéroboam', 'guidera', 'prix_raisonnables', 'drastiques', 'tradition_française', 'avoisinent', 'kitchendiet', '7.500_euros', '1.500_euros', 'son_concurrent', 'sfr', 'véritable_identité', 'bnf', 'raffinerie', 'quantité_importante', 'nouveaux_contenus', 'courageuses', 'expositions_temporaires', 'stark', 'inégalée', 'platanes', 'arabie_saoudite', 'curieuses', '42_%', 'célèbrent', 'labellisés', 'beaux_villages', 'street_food', 'baud', 'euromillions', 'my_million', 'vacances_scolaires', 'serait_préférable', 'mozzarella_di', 'aubergines_grillées', 'loi_macron', 'arcelormittal', 'florange', 'se_gargariser', '50_salariés', 'prime_obligatoire', 'leurs_salariés', 'chômeurs', 'miraval', 'odile', 'recettes_vues', 'été', 'moins_égale', 'fiscalement', 'ancien_directeur', 'dominantes', 'altéré', 'picsou', 'fussent', 'numericable-sfr_a', 'recourir_partiellement', 'ses_actionnaires', 'nouvelles_secousses', 'indices_chauffés', 'idée_développée', 'benoit_hamon', 'revenu_universel', 'lui_confèrent', '1_c.c.', 'scission', '700_mhz', \"prud'\", 'mmmm_!', 'nous_terminons', 'absolument_délicieuse', 'petit-déjeuner_gourmand', 'objets_pouvant', 'lingot', 'yquem', 'champagne_rosé', 'vins_rosés', 'foulés', 'menées', 'résiliation', \"ecomouv_'\", '957,58_millions', 'fiasco', 'ségolène_royal', 'portiques', 'écotaxe', 'notre_questionnaire', 'caudalie', 'avoir_avalé', 'noisettes_torréfiées', 'voûtes', 'site_marchand', 'm._berlusconi', 'schulz', 'papier_kraft', \"s'_affolent\", 'ancien_salarié', 'smartphones', 'amiable', 'monogramme', 'demi-livre', 'œillets', 'vos_spams', 'surélever', 'centre_pénitentiaire', 'réactives', 'verser_mensuellement', 'boulier', 'verticaux', 'raffoler', 'tomates_vertes', 'addictives', 'agefiph', \"s'_articulent\", 'plats_légers', 'nouveaux_entrants', 'oignons_frits', 'prélèvera', 'couque', 'maitrank', 'lavera', 'adoucissantes', 'apaisantes', 'hamamélis', 'entreprises_devront', 'référentiel', 'pluriel', 'plurielle', 'climat_tropical', 'chêne_américain', 'légumes_rôtis', 'gamay', 'importateur', 'personnes_interrogées', 'modernisation', 'académie_française', 'cagoulés', 'vtc', 'heurts', 'stockez', 'icloud', 'chef_sommelier', 'zapping', 'spécial_investigation', 'cyril_hanouna', 'canal+', 'lager', 'exposition_universelle', 'comptabilisés', 'quote-part', 'crc', 'volkswagen_va', 'verser_5000', 'truqué', 'autorités_américaines', 'paraître_jeudi', 'beauce', 'différé', 'cautionnement', 'concessionnaire', 'notifié', 'locatives', 'réglées', 'viabilité', '1869', 'voirie', 'saint-germain-des-prés', \"s'_opère\", 'bombardements', 'difficultés_techniques', 'disposera', 'affectés', 'fortifications', 'millésime_2015', 'fougue', 'livrées', 'raccordé', 'médiévaux', 'pâtisson', 'sépultures', 'inhumation', 'maçonnerie', '36_ans', 'obligation_légale', 'pénalité_financière', 'bourdin', 'rmc', 'bfm_tv', 'arpents', 'tradition_viticole', 'château-chalon', 'répandus', 'tissot', 'unicité', 'clavelin', 'nadine_morano', 'patrick_buisson', 'amis_déçus', 'rigueur_budgétaire', 'créanciers', 'a_démissionné', 'repositionnement', 'forte_croissance', 'résultat_opérationnel', '3,6_milliards', 'lionel_jospin', '600.000_euros', '2d', 'post-production', 'raisins_blancs', 'slovénie', 'redressement_judiciaire', '500m', 'surmontées', 'twelix', 'avais_proposé', 'revenaient', 'kraft_foods', 'pourvoyeur', 'produits_phares', 'goûts_personnels', '38_%', 'chaises_hautes', 'azote_liquide', 'morceaux_grossiers', 'nacrées', 'dialoguant', 'craquant_praliné', 'risqués', 'privatisation', 'deutsche_telekom', 'baisses', 'paris_by', 'réparties_entre', 'souscrites', 'hours', 'copropriété', 'rémunérée', 'chef_akrame', 'benallal_dévoile', 'salade_niçoise', 'tartares', 'ancien_patron', 'chef_jean-françois', 'piège_nous', '12000', 'bicicleta', 'région_lorraine', 'meuse', 'andra', 'afférentes', 'taxe_foncière', 'éviction', 'allergène', 'dgccrf', 'direction_générale', 'mentionnée', 'géographiques', 'lui_adjoindre', 'saône-et-loire', 'comités', 'tanique', 'paquet_entier', 'production_mondiale', 'premier_producteur', 'étude_réalisée', 'office_national', 'lestac', 'ordonnances', 'mai_2014', 'unissent', 'vous_guideront', 'retiendra', 'enclenche', 'infligée', 'ingrédients_principaux', 'espaces_publics', 'allégations', 'nutritionnelles', 'relatives_aux', 'marie_chioca', 'portfolio', 'fédération_nationale', 'proche-orient', 'lannister', 'a_dévoilé', 'couenne', 'veggies', 'immoralité', 'duval', 'incubateur', 'e-shop', 'valeurs_américaines', \"s'_interrogeant\", 'nous_obtenons', 'informations_complémentaires', 'somme_forfaitaire', 'seigneurial', 'fromagère', 'junk_food', 'version_vegan', 'blé_t55', 'osm', 'additionnant', 'aberrations', 'gouvernance', 'qui_promeuvent', 'manille', 'illégalement', 'géolocalisation', 'catastrophe_nucléaire', 'axés_sur', 'quinquagénaire', 'inhabituels', 'mobilise', 'collectivités_territoriales', 'trentaine_avancée', 'cuisine_méditerranéenne', 'moodle', 'pare-feu', 'outil_pédagogique', 'ni_conservateurs', 'greenma', 'thés_noirs', 'maté_vert', 'enchantera', 'earl_grey', 'délicatement_parfumée', 'origine_biologique', 'elaborée', 'feuilles_entières', 'google_adwords', 'e-commerçant', 'prix_imbattables', 'tbilissi', 'lfp', 'verser_200.000', 'forte_notoriété', 'annonce_mardi', 'écurie_malaisienne', 'caterham', 'nouvel_effectif', 'citent', 'consommées', 'sondés', 'aplats', 'être_parent', 'réponse_préfabriquée', 'interdisciplinaire', 'assurance_chômage', 'assurance-chômage', 'chômeur', 'naturopathe', 'déculpabiliser', 'précise_-t-elle', 'retranscription', 'regrettant', 'pouilly-fumé', 'futs', 'jeune_poireau', 'personal', 'organoleptique', 'site_vitrine', 'embaumer', 'boulanger-pâtissier', 'propriétés_nutritionnelles', 'mythes', 'ses_concitoyens', 'court_terme', \"s'_insère\", 'raisin_fermenté', '4.000', 'couleur_grenat', 'airs_réalistes', 'retransmission', 'demandeur', 'france_info', 'sept_candidats', 'oignons_caramélisés', 'santenay', 'affirmés', 'costières', 'notes_épicées', 'lorsque_ecofi', 'investissements_agit', 'être_amenés', 'rémunérations_ou', 'intermédiaires_financiers', 'apporteurs', 'placeurs_ou', 'distributeurs_lors', 'instruments_financiers', 'émission_télévisée', 'expliquent_comment', 'google_analytics', 'tracking', 'couleur_sombre', 'étudiants_doivent', 'redondance', 'prodigieuse', 'nuxe', 'lillois', 'mots-clefs', 'analytics', 'pages_vues', 'papayes', '25_août', 'lagune', '[_read', 'harira', 'référenceur', 'garantissent', 'sécurité_alimentaire', 'exporté', 'comparatif', 'rice_cooker', 'caisse_nationale', 'urssaf', 'panier_pique-nique', 'tourisme_durable', 'durabilité', 'organisations_internationales', 'parties_prenantes', 'souhaitiez', 'ciblage', 'touche_exotique', 'édité_par', 'recipes', 'refermentation', 'advanced', 'champs_personnalisés', 'environ_250', '000_visiteurs', '700_exposants', 'etc._quelle', 'foire_?', 'euros._\"', 'giesbert', 'diffusées', 'epn', 'optimisé', 'rajoutez_-le', 'obs', 'épices_tandoori', 'yuans_(', '3,50_euros', 'livrons', 'aux_meilleurs', 'uniformité', 'installera', 'cuisinera', 'ethernet', '75009', 'chroma', 'vous_essayiez', 'trifle', 'contrebalance', 'rancio', 'wagyu', 'expérience_utilisateur', 'nous_mesurons', 'sucrant', 'ail_pressée', 'canard_poêlé', 'gérés', 'belle_complexité', 'vinosité', 'tanniques', 'serps', 'duxelles', 'braisage', 'demi-sphère', 'grenadins', 'projettent', 'identité_visuelle', 'lignes_suivantes', 'certifications', 'dûment', 'justificatifs', 'imprimeur', 'syriza', 'sémiotique', '5_numéros', 'evaluation', 'oenologiques', 'fromagers', 'masque_purifiant', 'antennes', 'orientées', 'consommables', '625', 'apis', 'séparateurs', 'rebuts', 'illustrent', 'produit_localement', 'parts_individuelles', 'grands_moulins', 'pomme_reinette', 'abonde', 'dévoilons', 'très_goûteux', 'dévoilent', 'élaborent', 'incontournable_défilé', 'sologne', 'café_torréfié', 'vos_réalisations', 'ont_atteints', 'pleine_maturité', 'mercerie', 'interactivité', 'managériale', 'hybrid', 'business_plan', 'télégramme', 'parfums_classiques', 'mba', 'trois_axes', 'se_spécialiser', 'largement_contribué', 'groupe_castel', 'bordelaises', 'paraisse', 'absolument_parfaite', 'alternatifs', 'tel_aviv', '96_%', 'cela_représente', \"s'_imprégner\", 'saveurs_originales', 'gaz_naturel', 'polluer', 'assaisonnez_-le', 'différents_projets', 'mensualités', 'élargissement', 'crimes_contre', 'gloutons', 'surveillant_régulièrement', 'être_attentif', 'vinatis', 'palpable', 'non_fan', 'énergie_renouvelable', 'chroniqueurs', '374', 'agro-_alimentaire', 'figues_rôties', 'cacao_mycryo', 'couteau-scie', 'terrienne', 'légère_acidité', 'mareuil', 'raisins_issus', 'style_graphique', 'globalisation', 'viticulture_biologique', 'bresaola', 'décryptage', 'outil_innovant', 'concertation', 'leurs_positions', 'imaginent', 'optimisée', 'paris_sportifs', 'restent_moelleux', 'démocraties', 'seiches', 'mauvaise_gestion', 'rotterdam', 'dunkerque', 'form', 'dégénérescence', 'numérisation', 'paierez', 'brasier', 'plaques_vitrocéramique', 'morgon', 'restauration_rapide', 'y-a_-t-il', 'se_bonifier', 'universalité', 'mercantile', 'psd', 'classes_moyennes', 'urbaines', 'certains_restaurants', 'expulsion', 'sociétale', 'étudiée', 'surpression', 'induite_par', 'certaines_catégories', 'citernes', 'substances_toxiques', 'inflammables', 'tuyauteries', 'liquéfié', 'longue_durée', 'maximal', 'subordonnée', 'ministériel', 'générés_par', 'gpl', 'décote', 'annexée', 'devriez', 'rafraîchis', 'rafraîchi', 'scoop.it', 'plannings', 'systémique', 'grossiste', 'interagir_avec', 'numérotées', '3000€', 'pennes', 'se_rétracte', 'vinaigrée', 'propoints', 'champignons_égouttés', 'binaires', 'soustrait', 'maca', 'iban', 'couplage', 'apprenants', 'croûte_croustillante', 'mie_filante', 'konjac', 'déchirent', 'sept_mois', 'on_soutire', 'intuitive', 'drivers', 'se_félicite', '3100', 'graphistes', 'agriculteur', 'macvin', 'onedrive', 'menu_contextuel', 'sculptée', 'fdj', 'agglomérations', 'zones_rurales', 'hdmi', 'dieudonné', 'aux_ayants', 'branding', 'exportateurs', 'goût_immodéré', 'saumur-champigny', 'travail_accompli', 'code_source', 'juin_2017', 'droit_fondamental', 'indigence', 'recettesde_desserts', 'flyer', 'pelliculage', 'arômes_puissants', 'très_recherchés', 'déterminera', 'relancez', 'arômes_complexes', 'estimez', 'comtoise', '3-_versez', 'matière_sèche', 'inclusion', 'consolidation', 'inquisition', 'attendri', 'caravanes_devaient', 'articles_publiés', 'sans_nécessairement', 'refléter_exactement', 'ont_paru', 'aux_débats', '12°', 'pause_gourmande', 'pcf', 'mouvement_ouvrier', 'réformistes', 'lurton', 'brane', '1855', 'avez_besoin', 'échelle_mondiale', 'premier_opérateur', 'notamment_colas', 'alimentaire_naturel', 'phylloxéra', 'eric_frechon', 'philanthropie', 'bataille_food', 'graphe', 'flaubert', 'saisonnalité', 'france_ô', 'juillet_dernier', 'financement_participatif', 'rupture_conventionnelle', 'centrifugation', 'explorez', 'qualitatives', 'écrasement', 'farine_bise', 'omnicuiseur_vitalité', 'filmées', 'brassin', 'conseil_spécialisé', 'franceagrimer', 'mhl', 'sans_sorbetière', 'outils_numériques', 'supplanté', 'sans_vergogne', 'sécurise', 'adéquation', 'nos_pages', 'amateurs_éclairés', 'moules_souples', 'beurres_végétaux', 'savonnier', '1500_euros', 'différents_aspects', 'brief', 'mensualité', 'sont_calculés', 'affiliées', 'dupuis', 'ficher', '37,5', 'boulanger_fraiche', 'gérée_par', 'ergonomie', 'archéologiques', 'mètres_carrés', 'save_the', 'numérotés', 'crème_vanillée', 'agréés', 'semble_évident', 'mère_poulard', 'espaçant_bien', 'entreprise_spécialisée', 'lirac', 'qualité', 'pullulent', 'idées_originales', 'sa_responsabilité', 'archives_départementales', 'relaté', 'nominal', '1838', 'saint-pourçain', 'porteuses', 'offset', 'intelligence_collective', 'comportez', 'recevrez', 'demande_concerne', 'demi-journée', 'auto-_diagnostic', 'recyclables', 'toner', 'ppm', 'personnalisez_votre', 'téléphone_mobile', 'entre-deux-mers', 'warner_bros', 'hauteur_souhaitée', 'pot_mason', 'être_alerté', 'açores', 'note_finale', 'babka', 'héritages', 'soles', 'astucieusement', 'minoterie', 'robot_multifonction', 'stocke', 'adaptabilité', 'indexation', 'fiches_produits', 'samsung_galaxy', 'qui_souhaiteraient', 'rappels', 'emailing', 'modernise', 'pâte_fermentée', 'distinctions', 'vermeil', 'vécues', 'pouvoir_hydratant', 'déjections', 'onéreux', 'spécialement_conçus', 'bande-annonce', 'autonomes', 'microcosme', 'faisant_fi', 'banaliser', 'franche-comté', 'mgr', 'nouvelles_dispositions', 'secteur_public', 'nouvelles_normes', 'invalidité', 'libreoffice', '•_réalisez', 'culasse', 'étapes_simples', 'saisonniers', 'signalements', 'communautarisme', 'récurrents', 'keno', 'sensorielle', 'indiquera', 'vous_deviez', 'jaguar', 'insectes_comestibles', 'alimentation_animale', 'xiiie', 'aubergines_farcies', 'ligurie', 'forfaitaires', 'beau-frère', 'thé', 'validées', 'tenaces', 'mastercard', 'cuit-vapeur', 'meudon', 'touche_déco', 'vinovalie', 'événementielle', 'négrette', 'médaillés', 'grandes_familles', 'médaillé', 'concours_international', 'cépage_local', 'médication', 'fructueux', 'bag_in', 'vigneron_doit', 'droits_sociaux', 'sonorisation', 'cérémonie_laïque', 'lamala', 'politique_monétaire', 'assujettis', 'votre_itinéraire', 'renouvelant', 'marché_immobilier', 'tertiaire', 'eco-', 'sélective', '10.000_euros', 'indexée', 'leur_fréquence', 'tarots', 'gie', 'protection_juridique', 'région_bordelaise', 'bois_massif', 'bardage', 'permettrons', 'envoûtantes', 'séminaires', 'rissolées', 'commerce_extérieur', 'substrat', 'auréoles', 'annuels', 'photothèque', 'spécifiées', 'affaires_annuel', 'glisser-déposer', 'classiquement', '1905', 'interopérabilité', 'responsive_design', 'leurs_attentes', 'généralistes', 'prix_dérisoire', 'surfe_sur', 'pourvoyeurs', 'caractérisent', 'aériennes', 'délicieux_cookies', 'manuel_valls', 'requérant', 'facultatives', 'langue_vivante', 'approfondissement', 'exception_faite', 'informations_fournies', 'définitives', '2.1', 'polypropylène', 'dégustée', 'restitué', 'recette_☞', 'visiterez', 'immobilière', 'acheteur_doit', 'vitriol', 'mhr', 'vous_dénicherez', 'vos_menus', 'office_365', 'vos_observations', 'https', 'contributeur', 'radicaux', 'aliments_protéinés', 'loyer_annuel', 'enchères', 'corsés', 'gamaret', 'garanoir', 'mairies', 'mars_2014', 'templates', '72_heures', 'options_suivantes', 'notre_cabinet', 'meilleurs_conditions', 'contraignantes', '25_kg', 'policières', 'déjà_existante', 'tarte_flambée', 'cuiront', 'pain_azyme', 'drapés', 'agrandie', 'connectés', 'rsi', 'futurs_mariés', 'cadeau_personnalisé', '730', 'deutsche_bank', '170_millions', 'plaignants', 'dégradant', 'syndic', 'quelles_conditions', 'biblique', 'navarin', 'vidéosurveillance', 'infographie', 'dynamiquement', 'recensés', 'aiguiller', 'reproductible', 'grande_pureté', 'non_commerciales', 'informations_données', 'importez', 'fichiers_audio', 'spotify', 'lessive_liquide', 'éditoriale', 'votre_smartphone', 'protéinée', 'listé', 'clarifié', 'baignées', 'non_fermenté', 'toutes_nationalités', 'échangent', 'simplifiant', 'winefunding', 'equity', 'crowdfunding', 'revêtement_intérieur', 'informations_collectées', 'importateurs', 'informations_détaillées', 'protégez', 'depuis_2010', 'dédiées', 'vinum', 'itinérant', 'stylée', 'huguette', 'peut_accueillir', 'informatif', 'sollicitation', 'serveur_dns', 'crédit_immobilier', 'renouvelable', 'rémunérés', 'surfant_sur', 'program', 'oeuvrer', 'hiérarchisation', 'indésirable', 'bouton_ci-dessous', 'numérologie', 'testez_cette', 'extra_moelleux', 'pluralisme', 'libérale', 'socca', 'bellet', 'besoins_spécifiques', 'pragmatisme', 'comparateurs', 'recèlent', 'industrie_agro-', 'consultez_notre', 'biotechnologies', 'plus_performantes', 'récuse', 'dogmatisme', 'turbines', 'granulométrie', 'recueillement', 'nombreux_types', 'format_carré', 'boissons_fraîches', 'régions_françaises', 'biscuits_salés', 'intérêt_public', 'emails', 'échauffés_par', 'accord_exprès', 'titrant', 'encastrable', 'presse_agrume', 'volatilité', 'v_and', 'a_réorganisé', 'son_référencement', 'rédacteurs', 'nous_recueillons', 'meilleure_expérience', 'perpétuel', 'youtubeur', 'jumelé', 'montfort', 'cuisine_aménagée', 'fonctions_supplémentaires', \"s'_oxyde\", 'justice_sociale', 'bosch', 'tassimo', 'montant_minimum', 'livres_numériques', 'partants', 'compétences_techniques', 'github', 'amf', 'hdr', 'torréfacteur', 'mutuelles', 'réel_plaisir', 'constatation', 'aboutisse', 'leurs_contributions', 'rarement_vu', 'dictaphone', 'oxyde_nitrique', 'salissures', '31_ans', 'nativement', 'macérations', 'touche_minérale', '5,5_%', 'centralisé', 'xml', 'caches', 'cron', 'ubuntu', 'vous_louez', 'partagez_vos', 'mesures_nécessaires', 'objections', 'surprenez_vos', 'salaires_minima', 'coefficients', 'accompagnement_personnalisé', 'ne_parvenez', 'fichier_.htaccess', 'finaux', 'meilleurs_spécialistes', 'bancaires', 'fermeture_éclair', 'fabrication_industrielle', 'saisonnières', 'france_métropolitaine', 'biens_communs', 'financé_par', 'économie_réelle', 'passeurs', 'acidifier', 'ayant_travaillé', 'disparaîtra', 'infusez', 'reparation', 'séculaires', 'catalyse', 'service_impeccable', 'attractives', 'élancée', 'dpi', 'millésime_2009', 'depuis_2007', 'avisés', 'établissements_scolaires', 'irrationnel', 'cadre_chaleureux', 'large_sélection', 'accompagnez_-la', 'septentrionale', 'livèche', 'elles-même', 'nord-américaine', 'saint-georges', 'distillateurs', 'patentes', 'liqueurs_fortes', 'judicieuse', 'appauvrissement', 'surcoûts', 'opex', 'gâteau_nantais', 'jeannette', 'polarité', 'diverses_façons', 'équivaudrait', 'consultants', 'inc.', 'ges', 'loi_1901', 'faire_résonner', \"s'_attachent\", 'transmettant', 'viandes_grasses', 'panification', 'comparez', 'californiens', 'proscrite', 'hot-dogs', 'à_partir', 'persuade', 'caramel_coulant', 'incarnent', 'répondent_aux', '(_christelle.traynard@wanadoo.fr', 'isf', 'orfèvre', 'foies_gras', 'novembre_2016', 'cci', 'agroalimentaire', 'tartinades', 'marmelades', 'chr', 'connexes', 'clayettes', 'altérer_leurs', 'qualités_organoleptiques', 'architectures', 'responsive', 'big_data', 'utiliseront', 'recrutements', 'référés', 'contractuelles', 'indexé', 'libor', 'sous_astreinte', 'sa_condamnation', 'restitution', 'procédure_civile', 'mijotent', 'strictement_réservé', 'fixera', 'jean-paul_belmondo', '400_euros', 'calage', 'produits_agricoles', 'commercialisée', 'garantissant', 'dimanche_prochain', 'stratégie_marketing', 'coûts_liés', 'accoutumé', 'forte_raison', 'convertit', 'emploient', 'french_touch', '393', 'eux_seuls', 'soulignons', 'se_chargent', 'maitrisez', 'toute_sérénité', 'réunissent', 'agencer', 'temoin', 'qualités_nutritives', 'programmable', 'formeront', 'quoi_cuisiner', 'tabloïd', 'ancrer', 'imac', 'dropbox', 'remote', 'bols_individuels', 'rangez_-les', 'oignons_pelés', 'textuel', 'différentiel', 'accusait', 'imbibe', 'notre_civilisation', 'viable', 'backoffice', 'grandes_difficultés', 'minions', 'embryon', 'open_source', 'impératrice', 'vos_prospects', 'vous_informons', 'prêt-à-porter', 'hollywoodiens', 'jus_carbel', 'goulotte', 'sans_bisphénol', 'considérées', 'angélisme', 'défiance', 'se_mariera', 'nombreux_ouvrages', 'fédéral', 'multi-usages', 'réinitialiser', 'paramétrage', 'bouches-du-rhône', 'attila', 'fines_couches', 'kilogramme', 'traditions_ancestrales', 'expriment', 'perp', 'épargne_retraite', 'conserverie', 'cafetière_nespresso', 'pouilly-fuissé', 'porte-clés', 'yourself', 'vous_utilisiez', 'unity', 'cpu', 'gpu', 'éléments_graphiques', 'insuffisantes', 'envisagée', 'novateurs', 'saveurs_douces', 'paritaire', 'recruteurs', 'entrants', 'référents', 'maltées', 'anticipées', 'données_collectées', 'apm', 'présentation_générale', 'cet_arsenal', 'mot-clés', 'concurrentiels', 'animent', 'année_2016', 'languedocien', 'autonomisation', 'ambitieuses', 'babassu', '/_etc', 'effusion', 'canistrelli', 'indianapolis', 'transistors', 'optimal', 'ravigote', 'marchés_européens', 'relativisme', 'href=_\"', 'moyens_financiers', 'ayez_besoin', 'nos_techniciens', 'or-argent.eu_est', 'site_informatif', 'reproduit_principalement', 'analyses_économiques', 'actualité_financière', 'rendu_visite', 'découvrent_ses', 'katz', 'muséum', 'histoire_naturelle', 'teams', 'ma_compagne', 'garde-fou', 'pécan_hachées', '(_11g', 'régénératrice', 'rideau_métallique', 'écosystèmes', 'nous_vendons', 'hollandaise', 'glögg', 'ifv', 'différentes_régions', 'expérimentales', '32_%', 'offres_présentées', 'objets_déco', 'implantée', 'xiie_siècle', 'signataires', 'hypothèse_où', 'être_amené', 'excéder', 'reuilly', 'parfaitement_adaptée', 'chromés', 'convoi', 'mulets', 'enregistreur', 'implémentation', 'traou_mad', 'préoccupation', '12_avril', '1941', 'boissons_alcooliques', '438', 'romanée-conti', 'nuancier', \"s'_oxyder\", 'savante', 'exigeants', 'teriyaki', 'climatiseurs', 'pouvoir_antioxydant', 'sans_additif', 'flavanols', 'ministre_britannique', 'kéfir', 'nc', 'web_radio', 'rutacées', 'lamproie', 'munir', 'quadruple', 'remèdes_naturels', 'vieux_rhum', 'jamaïcain', \"s'_harmonisent\", 'meilleure_visibilité', '1915', 'faciliteront', 'personnel_qualifié', 'acquitter', 'ministères', 'lisibilité', 'tout-terrain', 'nous_sélectionnons', 'aronia', 'ses_filiales', 'lesaffre', 'barigoule', 'tentante', 'reporting', 'ajax', 'simulations', 'déclencheurs', 'géopolitiques', 'lobbies', 'landais', 'référé', 'blogging', '±', 'noirci', 'gagnerez', 'env._)', 'supply_chain', 'haute_performance', 'éprouvée', 'boulogne-sur-mer', 'exemple_concret', '418', 'déchiffrement', 'cession', 'notice_explicative', 'plasticiens', 'bardane', 'recevoir_gratuitement', 'relançant', 'automation', 'oem', '22_h', 'dombes', 'annonceur', 'eu_tort', 'moindre_centime', 'ftp', 'disséminés', 'géologique', 'conglomérats', 'marnes', 'ils_décident', 'été_invitée', 'argan_bio', 'transversales', 'producteur_mondial', 'macération_carbonique', 'spumante', '0,3_%', 'install', 'libraires', 'haut-de-gamme', 'paprika_fumé', 'évaluer_cette', 'burrata', 'herbicides', 'écosystème', 'encart', 'open-source', 'intrants', 'prescripteurs', 'conviviaux', 'perses', 'crohn', '37_ans', 'algériennes', 'marché_international', 'prospective', 'entrepreneuriale', 'meilleure_compréhension', 'locatifs', 'employait', 'donnerez', 'nombreuses_façons', 'abordent', 'modernisme', 'véritable_institution', 'totalitarisme', 'hay', 'grip', 'candy_melt', 'naked_cake', 'tronches', 'lauréats', 'connecté_pour', 'seul_clic', 'e0', 'nous_développons', 'intérimaires', 'grille_responsive', 'audacieuse', 'plusieurs_niveaux', 'loi_taubira', 'oms', 'déconstruction', 'série_télévisée', 'droits_réservés', 'code_css', 'diffusant', 'smoothies_verts', 'saupiquet', \"j'_habitais\", 'garden_party', 'binder', 'chaudières', 'b.d.', 'répondront', 'hochet', 'accessoiriser', 'formatage', 'pinacle', 'seul_cépage', 'artisanat', 'énumérés', 'fap', 'ligne_éditoriale', 'véritable_révolution', 'territoriales', 'consignation', 'développement_personnel', 'auto-_évaluation', 'saisine', 'méthodologique', 'frais_réels', 'déductibles', 'renseigne', 'démontable', 'intuitif', 'moment_convivial', 'étape_importante', 'télécommunications', 'immense_majorité', 'agents_immobiliers', 'représentatives', 'instantanés', 'débauches', 'duché', 'restreinte', 'meilleure_connaissance', 'buyer', 'polyuréthane', 'nombreuses_pâtisseries', 'lacto-_fermentation', 'rumsteck', 'poire_pochée', '1-_cliquez', 'doux-amer', 'détoxifiante', 'dombrés', 'somme_égale', 'cœur_fondant', 'tiramisu_spéculoos', 'songez', '139', 'résidence_principale', 'santé_canada', 'complexifier', 'planteur', 'forfaitaire', 'plusieurs_décennies', 'valaisanne', 'saillants', 'anthocyanes', 'savoir-faire_ancestral', 'relation_directe', 'michel_bettane', 'thierry_desseauve', 'tasting', 'confidentialité', 'oméga-3', 'républiques', 'visées', 'prothèse', 'imprimante_3d', 'analyse_sensorielle', 'nous_ouvrons', 'dauphinois', 'repérées', 'laiterie', 'upload', 'saoudiens', 'convertisseur', 'google_chrome', 'braucol', 'notre_cuvée', 'version_gratuite', 'gamay_noir', 'tonicité', 'quelques_kilomètres', 'bérengère', 'alliant_finesse', 'barriques_neuves', 'saveur_unique', 'encastré', 'tanins_fondus', 'saumonée', 'robe_or', 'plaisir_immédiat', 'exportées', 'dominateur', 'conductrice', 'recevrait', 'correctif', 'opprobre', 'paralysés', 'canaille', 'payeur', '3_succursales', 'répéteur', \"s'_essouffle\", 'personne_âgée', 'suffira_simplement', 'authentiquement', 'jumelage', 'maraîcher', 'pourrait_imaginer', 'indéniables', 'tombouctou', 'longue_distance', 'accords_met', 'novatrice', \"s'_adressent\", 'urbanisation', 'croissantes', 'ravintsara', 'convenus', 'formatés', 'belles_tables', 'cairanne', 'vdn', 'intrinsèque', 'oraux', 'royans', 'nombreuses_familles', 'marché_local', 'nourrie', 'chasselas', 'déroute', 'mondeuse', 'marselan', 'facteur_important', 'décomplexée', 'côt', 'millésime_2013', 'isère', 'tradition_ancestrale', 'réorganiser', 'basculement', 'grille_cristalline', 'mots_clefs', 'femme_nympho', 'plaisir_coquin', 'hommes_bienvenus', 'trés_coquin', 'merveilleuse_belle', 'lecher_aussi', 'régime_paléo', 'citrons_confits', 'légèrement_tiédi', 'nectars', 'frimas', 'nous_effectuons', 'vendangés', 'vinifiés', 'sont_basées', 'bootstrap', 'aucune_incidence', 'prisé', '8-9', 'année.', 'épuré', 'méthode_ancestrale', 'author', '&_gt', 'drupal', 'sass', 'magnétiques', 'participera', 'nez_délicat', 'prestashop', 'courtage', 'messageries', 'fruits_defendus', 'iodée', 'salinité', 'benne', 'individualisation', 'grande_densité', 'chefs_étoilés', 'souscrit', 'enflammées', 'niveau_national', 'exportés', 'produit_culturel', 'ont_constaté', 'profiteront', 'assureurs', 'nasal', 'inflammation', 'muqueuses', 'dimension_supplémentaire', 'principales_fonctions', 'compte_membre', 'configurations', 'informations_relatives', 'votre_biblio', 'moulinex', 'programmés', 'connect', \"s'_apparentent\", 'boisson_fermentée', 'sont_destinées', 'copie_privée', 'mauvaises_odeurs', 'acidifiants', 'vertigineux', 'nombreuses_espèces', 'bricoleurs', 'contributions_volontaires', '000_hectares', '45_millions', 'vins_effervescents', 'défensifs', 'messages_personnalisés', 'cacaos', 'nous_fournissons', 'feuillets', 'nos_suggestions', 'personnalisées_complémentaires', 'destination_avant', 'tracer_votre', 'partenaires_sociaux', 'gommette', 'gras_saturés', 'référentiels', 'nous_construisons', 'psychiatrie', 'santé_mentale', 'truffes_noires', 'epernay', 'champenois', 'vendanges_manuelles', 'caractère_fruité', 'schiste', 'kilométrage', 'itération', 'release', 'dernière_version', 'lancera', 'entremetteur', 'mitonne', 'faux-filet', 'très_coquine', 'me_delecter', 'très_joueuse', 'ambiance_musicale', 'colocataires', 'forte_personnalité', 'nouvelles_opportunités', 'émergent', 'bibliothécaire', '[_34', 'jurisprudence', 'chiffrée', 'documentalistes', 'opacité', 'pressurer', 'inpi', 'figurent_parmi', 'wallonne', 'endettement', 'prévus_par', 'dix-huitième', 'brabant', 'navarre', 'sublimera', 'injera', 'pumpkin', 'rebute', 'hivernaux', 'stockées', 'roulement', 'offres_promotionnelles', 'senior', '7,5_%', 'lui_sucer', \"bite_jusqu'\", 'vm', 'seront_envoyés', 'affiches_bien', 'schnitzel', 'voir_defiler', 'soient_defoncés', 'bouche_goute', 'gommage_corporel', 'rassoul', 'usagées', 'désherbage', 'expertises', 'découlant', 'atmo', 'endommagés', 'révocation', 'arrière-pays', 'bienfaisantes', 'allocations_chômage', 'auto-_entrepreneur', 'libératoire', 'professions_libérales', 'cesu', 'déchargement', 'stream', 'conservateur_naturel', 'récurer', 'adresses_ip', 'internautes_pourront', 'sous-domaine', 'altérité', 'hégémonie', 'interprétées', 'saint-exupéry_(', 'kefir', 'ginger_beer', 'plantes_fraîches', 'opaques', 'spa-francorchamps', 'activité_commerciale', 'objet_décoratif', 'impériales', 'distribuée', 'conférer', 'seconde_fermentation', 'formant_ainsi', 'épargnants', 'open_data', 'krill', 'method', 'épingler', 'maison_rurale', 'gypse', 'meunerie', 'raviront', 'brasse', 'réjouiront', 'était_incompatible', 'principes_moraux', 'formidable_outil', 'sponsorisés', '−', 'mécano', 'usinage', 'environnementale', 'expertes', 'numériquement', 'arduino', 'nombreux_atouts', 'folklorique', 'maintiennent', 'google_webmaster', 'difficultés_financières', '1a', 'probants', 'infligées', 'unitaires', 'reconnaissables', 'desservie', \"s'_armer\", 'tee-shirt_préféré', 'tapenades', 'poudrage', 'polymérisation', 'croûton', 'alpinisme', 'cruels', 'taffetas', 'pilleurs', 'drapeau_tricolore', 'mallet', 'paratonnerre', 'particulier_employeur', 'kwh', 'au_prorata', 'exécutions', 'assad', 'démystifier', 'fibaro', 'trigger', 'fs', 'ccp', 'produits_transformés', 'proprement_parlé', 'institutionnels', 'canopée', 'ex-président', 'erp', 'cir', '23_milliards', '1,5_%', 'intérieur_brut', 'budgétaires', 'auvergnate', 'espaces_publicitaires', 'replay', 'ponctuelle', 'tangzhong', 'bachelier', 'énorme_avantage', 'paysan_breton', 'développement_commercial', 'procès-verbal', 'éco-_responsable', 'whirlpool', 'révélera', 'goût_unique', 'a1', 'fonctionnels', 'prédictions', 'prélèvements', 'rémunération_brute', 'échéancier', 'outlook', 'nouveaux_contrats', 'vins_locaux', 'limonène', 'cnrs', 'anev', 'commercialisait', 'imposait', 'divertissements', 'temporalité', 'replis', 'enfonçant_légèrement', 'lamelles_fines', 'tenez_-vous', 'usez', \"n'_hésitez-pas\", 'textiles', 'chromatique', 'contribution_financière', 'écueils', 'ib', 'échelons', 'allient', 'défient', 'horlogerie', 'tableau_ci-dessous', 'nouveaux_modèles', 'mai_2012', 'vendons', 'dématérialisée', 'vieux_millésimes', 'ciabatta', 'aventure_humaine', 'encenser', 'kite', '/_gagnez', 'jus.2_/', 'indicateurs_nécessaires', '17_vidéos', 'atouts_santé', 'vie_transformée', 'moindre_doute', 'brutalités', 'dites_-nous', 'obsèques', 'tonnellerie', 'rivesaltes', 'dépaysement', 'siège_social', 'rechargeable', 'alimentée', 'ste_anne', 'régaleront', 'valorise', 'crédité', 'dissuasive', '82_%', 'concessionnaires', 'meilleur_taux', 'appui_long', 'défiscalisation', '246', '2050', 'étalement', 'constamment_mis', 'afrique_sub-saharienne', 'concertée', 'aqueuse', 'saponifié', 'combos', 'herbier', 'minutie', 'nombreux_thèmes', 'guirlande_lumineuse', 'gommage_doux', 'abaissant', 'antioxydants_naturels', 'modène', 'vinaigrier', 'réglementé', 'certifier', 'salaire_annuel', 'synergies', 'doubs', 'licenciés', 'décrivez', 'castalie', 'réduire_considérablement', 'impact_environnemental', 'différentes_tailles', 'abstention', 'assurance_auto', 'bruxelloise', 'octroi', 'prêt_immobilier', 'garanties_supplémentaires', '16_janvier', 'débouté', 'triumph', 'vont_permettre', 'ipv6', 'œnophiles', 'optimisées', 'polyvalentes', 'vous_rêvez', 'pragmatique', 'louis_pasteur', 'nombreux_domaines', 'illustrées', 'drôme_provençale', 'ciblés', 'troisième_jeudi', 'cartes_bancaires', 'penchants', 'jumelée', 'hautvillers', 'poiré', 'albumine', 'moules_farcies', 'techniques_culinaires', 'déferlement', '39_ans', 'défibrillateur', 'coordonnées_gps', 'spf', 'crêpes_roulées', 'humoristes', 'bureautique', 'trottinette', 'sous_android', 'code_promotionnel', 'commanditaires', 'contribuez', 'agence_nationale', '15ml', 'centres_commerciaux', 'manière_autonome', 'captation', 'esb', 'exhaustivité', 'exilés', 'dominants', 'francilien', 'intenté', 'jeudi_1er', 'cédric_klapisch', 'inspirateur', 'bayer', 'quinzième', 'effluents', 'épiphanie', 'pays_africains', 'niger', 'hotspots', 'choco-_vanille', 'changeantes', 'charlevoix', 'terroir_argilo-', 'tb', 'plug-ins', 'svg', 'sauvegardée', 'watermark', 'creator', 'numéroter', 'sécuritaires', 'unies', 'facilement_adaptable', 'relations_internationales', 'settings', 'sous-menu', 'node', 'étanchéité', 'txakoli', 'décrits', 'gastronomes', 'massimo', 'meilleures_façons', 'truffes_blanches', 'veau_croustillant', 'alain_passard', 'omble_chevalier', 'wp', '404', '1840', 'entreposés', 'édification', 'déduction', 'médicinales', 'fichier_csv', 'gâteau_renversé', 'droit_administratif', 'honoraire', '19_mai', 'acteur_majeur', 'dépense_publique', '1,6', 'être_absorbée', 'sous-traitance', 'haïtien', 'véronique', 'nos_frontières', 'deuxième_nez', 'yukon', 'petit_manseng', 'collaborative', 'formalités', 'pâte_lève', 'pathologique', 'territoire_français', 'mi-mai', 'tamanu', 'saint-maur', 'acteurs_locaux', 'leurs_preuves', 'fils_rss', 'stanislas', 'petit_ballon', 'pays._»', 'sécurisés', 'décuvage', 'émise_par', '17_mai', 'odeillo', 'charentes_poitou', 'transcender', 'marcs', 'nombreux_critères', 'procèdent', 'back_office', 'smoking', 'conséquemment', '22_€', 'karethic', 'hydrate*', 'xxième_siècle', 'objets_publicitaires', 'résidence_permanente', '15h00', 'reiki', 'longue_carrière', 'freelance', 'loi_exige', 'fin_avril', 'reach', 'monétiser', 'viti-vinicoles', 'printemps_prochain', 'région_vinicole', 'distillateur', 'réalité_augmentée', 'joomla', 'montant_global', 'précédée', 'passionnent', 'concevant', 'données_recueillies', 'cyclisme', 'scans', 'promotionnels', 'bookmarklet', 'services_inclus', 'présente_licence', 'cet_adage', 'nos_convives', \"s'_approprie\", 'louis_xv', 'scepticisme', 'nous_efforçons', '80€', 'anti-_virus', 'connivence', 'pérenniser', 'météorologie', 'qualité-prix', 'citroën', 'givry', '1876', 'tanins_soyeux', 'constructeurs_automobiles', 'klarstein', 'olfaction', 'polynésien', 'plongeurs', 'allons_-nous', 'polyester', 'adresse_courriel', 'explicites', 'crèches', '10kg', 'pâte_miso', 'influenceurs', 'gatineau', 'spoilers', 'liberty_media', 'gildas', 'tangible', 'firewall', 'hardware', 'backlinks', 'pourtour_méditerranéen', 'médiathèque', 'carte-cadeau', 'ses_déclarations', 'ratio', 'cloisons', 'retravaillé', 'libertins', 'charpentier', 'formation_continue', 'design_moderne', 'carrousel', 'guillon', 'véhiculent', 'ode', 'ambigu', 'testing', 'imprimantes', 'printemps_2017', 'argumentaire', 'réévaluer', 'courroie', 'laitières', 'cognitives', 'cas_concrets', 'françois_1er', 'collectivités_publiques', 'unilatéralement', 'patronat', 'vincent_bolloré', 'cessant', 'matériel_spécifique', 'amortissement', 'indemnité_journalière', '800_euros', 'dinatoire', 'mixologie', 'artisanalement', 'cnc', 'ccn', 'rediriger', 'projet_pédagogique', 'intérêts_personnels', 'règlementation', 'nos_contrées', 'locateur', 'janvier_2015', 'charlie_hebdo', 'plus_défavorisés', 'physiologiques', 'ajouter_iphonesoft.fr', 'votre_bloqueur', 'enrôlés', 'pierre_marcolini', 'diététicienne', 'subventionnée', 'bûchettes', 'routeur', 'blois', 'illustres', 'kystes', 'rénovés', 'ratp', 'pampelune', 'starter', 'sécurité_supplémentaire', 'engagements_pris', 'territoire_national', 'impositions', 'flickr', 'piquillos', '4500', 'affinés', 'notes_intenses', '1,5_milliard', 'ici_2020', 'nouvelle_procédure', 'gw', 'éolien', 'coûte_cher', 'cohabitation', 'cre', 'deuxième_phase', '2,2', 'franches', 'homard_breton', 'stracciatella', 'énorme_quantité', 'dévoilés', 'attractivité', 'obtiendra', 'glitter', '.”', 'vérandas', 'supportés', 'dts', 'fiduciaire', 'collectés', 'nous_occupons', 'réassurance', 'retraits', 'audits', 'décentralisation', 'diminuerait', '20000', 'aucune_obligation', 'chocolat_menier', 'oxygéner', 'implant', 'offrirez', 'in_extenso', 'faire-parts', 'apérol', 'solution_idéale', 'ferme_intention', 'informations_nécessaires', 'épinglé', 'lexiques', 'ils_planteront', 'ils_boiront', 'exercées', 'vous_refusez', 'fort_sympathique', 'prix_cassés', 'diagnostiquer', 'maillage_interne', 'foncières', 'expérience_client', '16e_siècle', 'torchis', 'dépositaires', 'yougoslavie', 'implosion', '6000_euros', 'jeunes_entrepreneurs', 'station-service', 'incitations', 'back-office', 'donald_trump', 'personnes_transgenres', 'déversant', 'françois_fillon', 'arômes_typiques', 'saint-émilion', 'laxatifs', 'institutions_culturelles', 'scrapbook', 'arrière-plans', 'annotation', 'rx', 'ici-là', 'gh', 'prêteur', 'fonds_récoltés', 'nous_souhaitions', 'cde', 'basés', 'neff', 'décroissance', 'esturgeon', 'fleurs_séchées', 'lamenter', 'œil_nu', 'bluffante', 'régi_par', 'relayé', 'océan_atlantique', 'circuit_fermé', 'émanation', 'saison_hivernale', 'kgb', 'expérience_gustative', 'andes', 'modéliser', '6,4', 'revenus_imposables', 'stratégie_commerciale', 'marginales', 'masculines', 'approvisionnent', 'lucrative', 'mercurey', 'élément_supplémentaire', 'lozère', 'exprimées', 'giec', 'barre_hyperprotéinée', 'vimeo', 'impertinence', 'alignée', 'laqué', 'fenêtres_ouvertes', 'gear', 'vidéo_youtube', 'informaticiens', 'code_informatique', 'sainte-anne', 'elaboré', 'config', 'solutions_innovantes', 'locatif', 'attaque_douce', 'moyennement_corsé', 'élaboré_selon', 'grands_plaisirs', 'existence_—', '—_seul', 'dernier_nécessite', 'aide_extérieure.', '»_jim', 'harrison', 'mes_aventures', 'kermit_lynch', '1811', 'ingrédients_imposés', 'pistole', 'nombreuses_activités', 'outil_informatique', 'faciès', 'bouzy', 'entre_70', 'vivace', 'légèrement_amer', 'subtilités', 'divx', 'déterminées', 'etats_membres', 'lotte_braisée', 'ratings', '45€', 'était_urgent', 'meilleure_manière', 'optimisant', '•_jeunes', 'pentax', 'châteauneuf', 'capital_humain', 'sols_argilo-', 'cet_indicateur', 'régulières_sur', 'bienveillante', 'venezuela', 'augurer', 'tubes_ondulés', 'compromis_entre', 'lames_pleines', 'symbolisant', 'dodues', 'hec', 'm³', 'epoxy', 'enviable', 'compensation_financière', 'p.ex', 'bots', 'se_moquant', 'steele', 'repoussent', 'beau_potentiel', 'charmé_par', 'agencements', 'rudement', 'grand_banditisme', 'période_donnée', 'cueillis', '17_juillet', 'se_heurtent', 'magento', 'jquery', 'plusieurs_variantes', 'puni', 'déséquilibrer', 'injecteur', 'suivant_scrupuleusement', 'adjudication', 'vignes_plantées', 'souches', 'lactés', 'produisez', 'trimestriels', 'sergueï', 'bachar_al-assad', 'reliées_par', 'trois_parties', 'complétés_par', 'paroisses', 'avoisinantes', 'filament', '85°c', 'partie_adverse', 'raccourcis_vers', 'déjà_présentes', 'floraison', 'se_délectent', 'sublimée_par', 'bière_vivante', 'bouillabaisse', 'optiques', 'se_réjouissent', 'polémiques', 'ampérage', 'campagne_publicitaire', 'renvoyant_vers', 'expliqueront', 'retarde', 'caractéristiques_techniques', 'transporteur_aérien', 'e-boutique', 'fournissez', 'isbn', 'clarification', 'plus_digeste', 'aller_piocher', 'affilier', 'référenceurs', 'corrélations', 'empiriques', 'schizophrénie', 'béat', 'alerté', '36_%', 'confréries', 'raisonnée', 'cliquez_ensuite', 'clause_pénale', 'contrevenant', 'épuration', 'chef_étoilée', 'jean-louis_nomicos', 'manifestations_alléchantes', 'semaine_parisienne', 'fooding', 'recette_inavouable', 'chef_masqué', 'telegraph', 'prince_william', 'abattements', 'annulations', 'prématurée', 'échéance', '1,4_milliard', \"s'_élevait\", 'ces_considérations', 'nouveaux_médicaments', 'désamorcer', 'troc', 'non_pasteurisés', 'oeufs_parfumées', 'alexia_janny', 'chivoret', 'chilienne', 'climat_froid', 'rémunéré', 'alourdi', 'comptes_rendus', 'cardiaques', 'vice-champion', 'express_styles', 'michel_rostang', 'christelle_huet-gomez', 'brasserie_thoumieux', 'opca', 'perco', '21_000', 'graisseuse', 'réhaussé', 'reflétant', 'manne', 'première_dame', 'carla_bruni-sarkozy', '270.000_euros', 'obligerait', 'uber_france', 'journal_télévisé', 'franco-_allemande', 'agence_française', 'dédommagements', 'afférents', 'différents_systèmes', 'incidents', 'signalés', 'source_policière', 'majoration', 'nouveaux_visages', 'booking.com', 'applicables', 'manquement', '55_ans', 'contraintes_budgétaires', 'élections_régionales', 'cantonales', 'feutrée', 'super-aliments', 'cure_détox', 'nutritionnistes', 'idéals', 'timing', 'contraintes_techniques', 'juil', 'cpf', 'rémunérer', 'appris_mardi', 'mémos', 'lvmh', 'prôner', 'racisme_anti-', 'abdallah', 'lobbying', 'remportez', 'flottante', 'alimentant', 'street_fighter', 'hiérarchique', 'pierre_gagnaire', 'second_tour', 'frontiste', 'sociétales', 'multiculturalisme', 'électorat', 'épargne_salariale', 'société_spécialisée', 'gvt', 'chirac', 'identité_nationale', 'divisent', 'science_fiction', 'rassasient', 'inspections', 'indemnités_légales', 'indemnité_forfaitaire', 'premiers_rayons', 'intervention_humaine', 'alain_juppé', 'perçoit', 'uvre', 'nationalisme', '2,50', 'meuniers_français', 'soupçonnés', 'eva_joly', 'écologiste', 'olivier_bernard', 'tarifaires', 'cosse', 'eiffage', 'interface_web', 'raspberry', 'raspberry_pi', 'terminaux', 'régime_fiscal', 'libéralité', 'impair', 'se_répartissent', 'domaine_familial', 'renversante', 'signataire', 'assurance_vie', 'washington_-', 'oussama_ben', 'laden', 'gigots', 'dix-huit_mois', 'requalifier', 'plaisirs_simples', 'croissance_mondiale', 'constructeur_allemand', 'pouilly', 'où_prédominent', 'robe_rubis', 'pruneau_confit', 'wish_list', 'jean-charles', 'redémarrage', 'indemnisations', 'anjou-saumur', 'genêt', 'fraîcheur_aromatique', 'petits_rendements', 'aux_taninsfermes', \"“l_'\", 'couleurrubis', 'fruits_surmûris', 'bouquet_subtil', 'robepourpre', 'depuis_1880', 'belle_roberubis', 'lalande-de-pomerol', 'bouche_parfumée', 'notes_persistantes', 'cassis_mûr', 'chevreau', 'bouche_charnue', 'thermorégulées', 'notes_subtiles', 'jolie_complexité', 'panée', 'subtils_arômes', 'bouche_vive', 'acidités', 'hl_/', 'non_filtré', 'cuves_inox', 'pêche_blanche', 'vraiment_remarquable', 'mets_épicés', 'agneau_rôti', 'persistance_aromatique', 'côtes-de-provence', 'nez_persistant', 'corbières_rouge', 'caillouteux', 'boutenac', 'belle_charpente', 'allie_finesse', 'cistes', 'emplit_bien', 'igp_pays', 'idyllique', 'légèrement_poivré', 'perdreaux', 'nez_puissant', '37_%', 'bourboulenc', 'surélevé', 'pech', '62_%', 'boisés', 'saint-chinian', 'beaujolais-villages', 'brouilly', 'vinification_traditionnelle', 'alliant_souplesse', 'chiroubles', 'roberubis_intense', 'taninsronds', 'intensité_aromatique', 'structurés', 'alsace_grand', 'millésime_2010', 'se_décèlent', 'mousse_crémeuse', 'champagnebrut', 'cuvée_prestige', '36_mois', 'aÿ', 'pinot_meunier', 'cuvée', 'homard_grillé', 'microsd', 'miellée', 'propriétés_nourrissantes', 'bernard_pivot', 'délibérations', 'pièces_justificatives', 'mark_zuckerberg', 'nos_correspondants', '9,5_millions', 'imposable', 'borloo', 'banque_américaine', 'jpmorgan_chase', 'montant_record', 'prêts_immobiliers', 'sources_proches', 'capital_restant', 'sprinteurs', 'lien_url=', '\"_http://www.lexpress.fr', '\"_cible=', '\"__blank', 'fines_bulles', 'son_autobiographie', 'toitures', 'ultraviolets', 'assurance-vie', 'certaines_applications', 'alexis_tsipras', 'mugcake', 'décembre_2016', 'sont_réunies', 'chiffrage', 'formaliser', 'dollars_canadiens', 'revenus_fonciers', 'couverture_sociale', 'ancien_pdg', 'lassée', 'concurrence_déloyale', 'sanctionnée', 'objectivité', 'diversement', 'précepte', 'bail_commercial', 'principal_avantage', 'somme_importante', 'moteurs_diesel', 'truqués', 'cessation', '1,70', 'compensations', 'déflation', 'outils_informatiques', 'sommer', 'seniors', 'entretien_accordé', 'vente_directe', 'cfdt', 'populariser', '0,9_%', 'chiffrées', 'déshydratés', 'jus_vitaminés', 'sélectif', 'appels_téléphoniques', 'maladies_cardiaques', 'accidents_vasculaires', 'cérébraux', 'mauvaises_graisses', 'refilé', 'aguerris', 'vinho_verde', 'gap', 'pennsylvanie', 'récemment_condamné', 'enfants_autistes', 'frais_médicaux', 'ubuesque', 'productives', 'gouvernementales', 'banque_française', 'avoir_enfreint', 'embargo', 'grands_châteaux', 'juridiquement', 'groupe_lvmh', 'tribunal_arbitral', 'telluriques', 'secteur_automobile', 'vie_professionnelle', 'manière_permanente', 'holding', 'offshore', 'augmenterait', 'jean-marc_morandini', 'condamné_mardi', 'ukrainiens', 'congé_maternité', 'cheffe', '100.000_euros', 'recruteur', 'monitor', 'applications_mobiles', 'ifop', 'startups', 'bouchages', 'agréée', 'lavinia', 'négociés', 'tanins_puissants', 'robe_sombre', 'jeunes_talents', 'évitement', 'frontal', 'retombées', 'ancrage', 'stendhal', 'site_communautaire', 'primaire_socialiste', 'nos_démocraties', 'gaël_monfils', 'intox', 'sancerre_rouge', 'fixin', 'cabernetfranc', 'sélection_parcellaire', 'saint-estèphe', 'structure_dense', 'où', 'bâtonnage', '3,5_%', \"chefs-d_'\", 'chablis_premier', 'class=_\"', '\"_target=', 'cuverie', 'alternée', 'bouquet_complexe', 'alliant_charpente', 'pommard', 'surmûrie', 'parfaitement_équilibré', 'vosne-romanée', 'vougeot', 'vénétie', 'hanouna', 'tpmp', 'chaîne_cryptée', 'groupe_audiovisuel', 'sélectifs', 'alexandrie', 'equipé', 'bulles_fines', 'couleurpourpre', 'clémente', 'chinon_rouge', '1931', 'puligny-montrachet', 'miellé', 'veau_rôti', 'sauce_périgueux', 'nuits-saint-georges', 'associe_couleur', 'procédure_judiciaire', 'déposé_plainte', 'devra_payer', '666', 'soutenus', 'thermo-', 'renouvelées', 'tanins_riches', 'bouche_flatteuse', 'grains_nobles', 'opulente', 'bouche_ronde', 'expression_aromatique', 'rieslinggrand_cru', 'pfersigberg', 'ne_lésine', 'cosmétique_bio', 'challenge_international', 'brut_rosé', 'sociétaux', 'richesse_aromatique', 'limoneux', 'blaye_côtes', 'exhale', 'extra_brut', 'mambourg', 'boosté', 'petits_croûtons', 'pourpier', 'ananas_rôti', 'récompensée', 'shea', 'grandes_appellations', 'drainantes', 'élégamment', 'dominées', 'syndicaux', 'optionnelles', 'condamné_jeudi', '4.000_euros', 'dominique_strauss-kahn', 'balme', 'touche_épicée', 'chardonnays', 'rouge_orangé', 'moulin-à-vent', 'viager', 'débirentier', 'facétie', '/_ha', 'prélèvements_sociaux', '15,5_%', 'sucres_rapides', 'kessler', 'limons', 'or_pâle', 'larose', 'calife', 'toujours_attiré', 'baron_philippe', 'anjou_rouge', 'cairanne_rouge', 'assez_similaire', 'monomaniaque', 'abaissement', '2,4_milliards', \"s'_appliquera\", 'quotidien_économique', 'justice_américaine', 'bouche_corsée', 'bœuf_bourguignon', 'gibiers', 'accompagne_parfaitement', 'gevrey-chambertin', 'prieur', 'sera_commercialisé', '8,50_€', 'vignes_âgées', 'arômes_délicats', 'expérience_acquise', 'chêne_neufs', 'notes_grillées', 'andouillette', 'minière', 'finale_persistante', 'climatologie', 'réglissée', 'canard_grillé', 'veau_poêlé', 'violacés', 'administrés', 'joubert', '“pour', 'légumes', 'caneton', 'côte_chalonnaise', 'libre-échange', 'continuerait', 'article_publié', '18_août', '13_août', '2,4_millions', 'hépatite_b', 'complétée_par', 'légèrement_épicée', 'condrieu', 'réservent', 'texture_différente', 'jolie_étiquette', '38_ans', '53_ans', 'commercialisé_sous', 'hypothétique', 'représentatifs', 'ses_successeurs', 'taittinger', 'laisser_vieillir', 'allègement', 'chassagne-montrachet', '44_ans', 'texture_soyeuse', 'fronsac', 'symbolisait', 'notes_toastées', 'kastelberg', 'gcc', 'renoncent', 'saint-aubin', 'haut_médoc', 'certifié_bio', 'cice', 'prohibé', 'pee', 'millésime_2007', 'tout-à-fait', 'cépage_pinot', 'dominés_par', '21e_siècle', 'saveurs_gourmandes', 'moussefine', 'pomelo', '120_000', 'entreprise_française', 'évaluée', 'banque_populaire', 'rose_fuchsia', 'arborescence', 'long-courrier', 'a350', 'interview_accordée', 'épanoui', 'foulage', 'votre_wishlist', 'comparu', 'ugni_blanc', 'touraine_rouge', 'procurez_-vous', 'vénitienne', 'arômes_intenses', 'garant', 'saumur_blanc', 'prix_défiant', 'robe_pâle', '7,50_€', 'reflets_verts', 'languedoc_rosé', 'lunel', 'maillon', 'sécurité_nationale', 'nsa', '“nous_sommes', 'lalande', 'muenchberg', 'sélection_rigoureuse', 'mahomet', 'fiefs', 'vendéens', 'unsa', '215_millions', 'bataille_judiciaire', 'se_livrent', 'naturellement_présents', 'glucose-fructose', 'gravelle', 'solidarité_active', 'minima_sociaux', 'immobilières', 'abattue', 'personnes_désireuses', 'finale_longue', '35_heures', 'semifreddo', 'ail_pelé', 'émondées', 'dorayaki', 'modica', 'carnassier', 'hatschbourg', 'garbure', 'jeune_créateur', 'dégustées', 'snobisme', 'vinsobres', 'notifiée', '20.000_euros', 'harcèlement_sexuel', 'millésime_2014', 'counoise', 'robe_pourpre', 'empressés', 'étrilles', 'a_plaidé', '22_milliards', 'abonder', 'fabien_galthié', 'soutenues_par', 'grandes_banques', 'aggir', 'documentations', 'visite_médicale', 'philippine', 'mouton-rothschild', 'sa_filiale', 'concours_mondial', 'avait_condamné', 'exercice_2015', 'exercice_2016', 'veuve_clicquot', '19_juillet', 'penfolds', '1951', 'dollars_australiens', '1844', 'wine_spectator', 'fiphfp', 'renonciation', '13,5', 'colosse', 'versants', 'bce', '4,7', 'afro-', 'umih', 'neo', 'affaires_économiques', 'prêteurs', 'standardisé', 'gaulliste', 'veil', 'salaire_brut', 'desserts_lactés', 'écoulage', 'sulfitage', 'cours_desquelles', 'vins_issus', 'consommable', 'renforcées', 'entêtes', 'ses_créanciers', 'zone_euro', 'concluante', 'claude_bartolone', 'roulez_-le', 'lieux_publics', 'ubisoft', 'blockbusters', 'parez_-les', 'sainte-croix-du-mont', 'canard_fumé', 'macération_pelliculaire', 'harmonisation', 'leurs_actionnaires', 'scrutins', 'fixées_par', 'euro_millions', 'passeports', 'activites', 'tierces', 'euros_annuels', 'cantonnée', 'david_cameron', 'stricts', '6,3_millions', 'sans_déconner', 'albanie', 'matuidi', 'décembre_2015', 'dissidents', 'maillage', 'bein_sports', 'agriculture_raisonnée', 'inflammatoires', 'enrayer', 'trinquant', 'long-métrage', 'poires_caramélisées', 'cinq_continents', 'demi-bouteilles', 'brands', 'start_up', '10-vins', 'cofondateur', 'livré_avec', 'granola_maison', '360_000', 'taxe_carbone', 'automatisée', 'psa_peugeot', 'tournures', 'cuve_inox', 'petites_baies', 'pigeage', 'successifs', 'ils_cherchent', 'franchisés', 'attrayants', 'telle_variété', 'carte_micro', '128_go', 'reflux', 'mobilisations', '(_hauts-de-seine', 'climats', 'expérimentant', 'boisset', '74_ans', 'sous-traitants', 'dimension_sociale', 's®', 'sainte-croix', 'alcatel', 'ccc', 'difficultés_rencontrées', 'eads', 'hémicycle', 'michel_sapin', 'chef_étoilé', 'salariales', 'dites_-leur', 'desseauve', '10-12°c', 'pekin_-', 'conjuguant', 'rituellement', 'britannique_lewis', 'sebastian_vettel', 'ajustées', 'salaire_minimum', 'interprofessionnel', 'apple_watch', 'machines_destinées', 'alexandre_dumas', 'jean-noël', 'assène', 'fort_heureusement', 'libérateur', 'qui_enchantera', 'tavel', 'façon_élégante', 'différentes_techniques', 'unitaire', 'adéquation_avec', '230_000', 'taux_normal', 'allégements', 'motorisation', 'clivant', 'nombreuses_options', 'démissionner', 'estimaient', 'visaient', 'violacé', 'hippocrate', '11°c', 'opérationnels', 'fluvial', '1873', 'galvaudée_par', 'plus_rentables', 'exportent', 'température_corporelle', 'affranchissement', 'fastes', 'souscripteurs', 'dupes', 'cotisé', 'assistanat', 'syndicaliste', 'délégué_syndical', 'ratification', 'groupon', 'télécom', 'actionnaire_majoritaire', 'désertion', 'contre-modèle', 'constructeur_automobile', 'voit_attribuer', 'ultérieurs', 'lettre_recommandée', '2,7', '1,1_milliard', 'entamées', 'nous_analysons', 'nihiliste', 'approvisionnements', 'grands_magasins', 'se_souviendront', 'avait_déclenché', 'guidées', 'acquittement', '[_ndlr', 'savon_surgras', 'premier_semestre', 'provinciale', 'estime_-t-il', '1.7', 'recette_astrale', 'telle_réussite', 'prompt', 'percevra', 'soulte', '13_milliards', 'quatorzième', 'rang_mondial', 'patronales', 'envisagent', 'recapitaliser', '49_questions', 'rythmes_scolaires', 'annoncé_jeudi', 'octroyée', 'alstom', 'fisc_français', \"s'_interrogent\", 'intangible', 'accord_collectif', '900_euros', 'abonnement_annuel', 'économie_américaine', 'calculées', 'rafraîchit', 'sensibles_avril', 'nourrit_intensément', 'agressions_extérieures', 'texture_douce', 'cheveux_abîmés', 'mangue_sauvage', 'inflexible', 'plébiscité', 'déclarées', 'télévisée', 'aspérités', 'mclaren-honda', '71_ans', 'recrudescence', '(_cdr', 'crédit_lyonnais', 'énumère', 'allocataires', 'accepteront', 'croissance_externe', 'cumulée', 'préconisations', 'patrimoniale', 'déclinant', 'vingt-trois', 'creusés', 'visites_guidées', 'teaser', 'boisson_rafraîchissante', 'estampillées', 'jours_ouvrables', 'application_gratuite', 'condamné_vendredi', 'editeur', 'aire_géographique', 'cristallin', 'palaces', 'alliance_parfaite', 'aggravation', 'août_dernier', 'cadres_supérieurs', 'traité_budgétaire', 'jugement_rendu', 'jauger', 'légumes_marinés', 'allemand_volkswagen', '4,3_milliards', 'rapports_sociaux', 'pot-de-vin', 'ordures_ménagères', 'centrifugé', 'contestations', 'formalisme', 'vanuatu', 'français_romain', 'grosjean', 'tuffeau', 'législateurs', 'contentez', 'consommation_locale', 'osons', 'klorane', 'moduler', '2,50_euros', 'opérations_promotionnelles', 'cfe', 'taxe_professionnelle', 'hebdomadaire_vsd', 'valérie_trierweiler', 'avoir_publié', 'industrie_automobile', 'payables', 'dangerosité', 'glyphosate', '19_novembre', 'objets_connectés', 'horizon_2020', 'estimations', 'michel_platini', 'fait_valoir', 'ne_tolère', 'commerce_mondial', '16_milliards', '(_oiv', 'échangés', 'oiv', 'superficies', 'agrégés', 'manufacturière', 'romancière', 'plaignante', 'entrecoupé', 'ciboules', 'diversifiées', 'coaching', 'conseil_interprofessionnel', 'civb', 'plus-values', 'madelin', 'leur_obole', 'gallo-_romaine', 'laïques', 'loi_fondamentale', 'politico-', 'charia', '48_ans', '3000_euros', 'falsification', 'mégawatts', 'contrebandiers', '50.000', 'collectes', 'décuplé', '310_millions', 'civc', '80.000_euros', '30.000_euros', 'additifs_alimentaires', 'assure_-t-il', 'alvéolée', 'défendus', 'ex-ministre', 'légèrement_relevé', 'étayé', 'cdc', 'induits', 'théoricien', 'mrap', 'products', 'xiie', 'guinguettes', 'depuis_1995', 'appellation_margaux', 'aile_gauche', 'homogènes', 'apports_nutritionnels', 'lagardère', 'inféodé', 'quarteron', 'brexit', 'allègements', 'indirects', '560_millions', 'benedetti', 'crise_financière', 'aga', '11,6', 'pole_emploi', '90_milliards', 'presse_britannique', 'antivirales', 'sénateurs', 'préconisent', 'figurera', 'savoir-faire_traditionnel', 'gerhard', '70.000_euros', 'verser_5.000', 'indiqué_jeudi', 'huit_milliards', 'patriarcat', 'sncm', 'ses_homologues', 'the_voice', 'femmes_voilées', 'innovateurs', 'agrégateur', 'forbes', 'bienveillants', 'temps_record', 'air_france-klm', 'solution_consiste', 'inhérentes', 'titre_personnel', 'campagne_présidentielle', 'renégocier', 'bénéficiait', 'emprunteurs', 'omnibus', 'dégagées', 'visse', '15.000_euros', 'imposables', 'usufruit', 'conjoint_survivant', 'allouées', 'jérôme_kerviel', 'présumés', 'tacle', 'débordements', 'octobre_2015', 'immobilisé', 'dépendantes', 'certains_secteurs', 'candidat_ps', 'vendit', '1,45', 'annoncé_mardi', 'jean-claude_camus', 'chroniqueuse', 'ne_transige', 'analyste', 'matériel_informatique', 'isl', 'percevez', 'assedic', '334', 'préjudice_financier', 'mars_2012', 'paillé', 'marché_américain', '000_bouteilles', 'hydrique', 'se_doter', 'cattier', 'préférera', 'société_américaine', 'pétrolière', '290_millions', 'intérêts_provisionnels', 'pourvus', 'forte_baisse', 'déficit_public', 'dow_jones', 'nasdaq', 'signée_françois', 'pasteau', 'antoine_arena', \"s'_arrachent\", 'différents_domaines', '130_000', 'mox', '8,8', 'm_eur', 'locomotives', 'instauration', '1.500', 'c8', 'soy', 'pse', 'sécurisation', 'cotta', 'consulat', 'fromage_végétal', 'hormonal', 'vitrification', 'proportionnée', 'dévastateur', 'exemptés', 'exonération', 'éventuels_frais', '4,2_millions', '2,2_millions', 'cour_européenne', '320_millions', 'contrats_aidés', 'a320', 'viadeo', 'ils_espèrent', 'manière_significative', 'praticien', 'ministère_public', 'se_déclinent', 'jacques_genin', 'sereinement', 'bruno_doucet', 'guy_savoy', 'sévices', 'féminisme', 'antisémites', 'avérés', 'sans_bpa', 'biochef_atlas', 'biochef', 'déconvenue', '1,30_euro', 'titre_exceptionnel', 'détenues', 'cette_année-là', 'présenté_lundi', 'public_franceagrimer', 'ligne_dédiée', 'collez_-le', 'repreneur', 'sortant_mark', 'rutte', 'messages_haineux', 'hauts-de-seine', '15_centimes', 'sa_méconnaissance', 'nos_élus', 'arbitraires', 'proportionnel', 'suspectés', 'gérard_bertrand', 'aunis', 'rosat', 'voués', '34_ans', 'vin_géorgien', '1,9_milliard', 'wikileaks', 'voir_encadré', 'tangibles', '117', 'nfc', 'ferrand', 'grille_chromée', 'spectres', 'environnement_économique', 'élection_présidentielle', 'pharaoniques', 'yonne', 'insuffisances', 'gouvernement_actuel', 'malmenée', 'substitutions', 'asp', 'anne_hidalgo', 'crimée', 'oligarques', '1,4', 'koweït', 'irakienne', 'armements', 'tempère', 'nouvel_eldorado', 'sera_libéré', 'ballonnement', 'prime_exceptionnelle', 'conseil_national', '8,5_millions', 'rééquilibrer', 'commerce_électronique', 'ostensiblement', 'scpi', 'diffusera', 'qatari', 'disparités', 'commentateur', 'différentes_stratégies', 'adblock', 'liste_blanche', 'sommes_versées', 'taxation', 'indemnités_kilométriques', 'coprésident', 'arbitrages', '714', 'verser_3000', 'agneau_confit', 'sa_monoplace', 'septembre_prochain', 'frondeuse', 'verser_10.000', 'préfecture', 'grand_rival', '15e_place', 'lancé_mardi', '11_octobre', 'aux_évêques', 'validant', 'lettre_adressée', 'âpre_bataille', 'classement_mondial', 'exonérée', 'lubie', 'chrysler', 'airlines', 'été_construit', 'dominicale', 'dira_-t-on', 'jugement_consulté', 'centuple', 'mi-octobre', 'prestations_familiales', 'éligibles', 'soldats_américains', 'démocrates', 'soupçonnent', 'payaient', 'état_actuel', 'exonérer', 'assureur_américain', '2,6_milliards', 'mars_2016', 'bergson', 'infligés', 'alimentés_par', 'six_nations', 'interpellés', 'ancien_premier', '22_avril', 'sujettes', 'ancien_dirigeant', 'intérêts_stratégiques', 'saoudien', 'saoudienne', 'maya_barakat-nuq', 'bioéthique', 'dépens', 'listant', 'radio_france', 'arguant', 'portage_salarial', 'entrepreneuriat', 'strauss-kahn', 'licenciée', 'ancienne_employée', 'zuckerberg', 'prévisionnel', 'esteban_ocon', 'gérard_depardieu', 'dernier_numéro', 'publié_mercredi', 'indiqué_mercredi', 'simplistes', 'établissent', 'nasser', 'cosmopolite', '6,5_%', 'géant_pétrolier', 'itélé', 'ces_initiatives', 'provoqués_par', 'indice_majoré', 'appris_mercredi', 'source_judiciaire', 'intenter', 'attestations', 'production_française', 'ancien_régime', 'ne_préfériez', 'inauguré_lundi', '1,6_milliard', 'limpides', 'verser_1,4', 'sotchi', 'allemand_sebastian', 'appris_vendredi', 'scuderia', 'exercice_2013', 'joaillerie', 'novatrices', 'patrick_poivre', 'arvor', 'dénigré', 'groupe_agroalimentaire', 'obsessionnel', 'astreinte', 'vraisemblance', 'vulnérabilité', 'iot', 'aux_héritiers', 'écrivain_britannique', 'arthur_conan', 'verser_50.000', 'certifiées', 'renoir', 'boissons_spiritueuses', 'figuraient', 'lice', 'sempiternelle', 'succédant', 'certains_paramètres', 'allan_sichel', 'cardinale', 'phytonutriments', 'enfouissement', 'collectée', 'ingénieuse', 'droits_humains', '76_ans', 'allemand_nico', 'estampillé', 'label_\"', 'cartes_sim', 'cavissima', 'cdiscount', 'iraniennes', 'charolais', 'nourrices', 'voies_ferrées', 'connectique', 'prise_jack', 'température_minimale', 'exhortant', 'baptêmes', 'aborigènes', 'libérales', 'interprofessionnelle', 'sont_calculées', 'kobo', 'histamine', 'découler', '7-5', 'robert_laffont', 'jean-pierre_clément', 'chez_fauchon', 'redressé', '35h', '902', 'misez_sur', 'imposants', '150.000_euros', 'ancien_conseiller', 'indemnité_égale', 'garantira', 'crédit_mutuel', 'hypothèques', '11_candidats', 'travailleurs_indépendants', 'contractuels', 'statines', 'persillée', 'somalie', 'tél.', 'coordonnées_bancaires', 'courte_vidéo', 'bucolique', 'euros_bruts', 'trésor_public', 'whatsapp', 'compagnonnage', 'mémoire_vive', 'claude_lelouch', 'débiteur', 'émulsionné', 'molleton', 'glissière', 'hamon', '36_milliards', 'américano-', 'contouring', 'couverture_médiatique', 'rebelles_syriens', 'armes_chimiques', 'landaise', 'pensions_alimentaires', 'administratives', 'anticipé', 'anticipée', 'exclusions', 'orecchiette', 'verbale', 'iniquité', 'constatées', 'tableau_récapitulatif', 'traditionnelles_visites', 'désormais_concurrencées', '\"_wineries', 'complexes_dédiés', 'salarié_licencié', 'préventive', 'dirigeants_européens', 'réfléchissent', 'candidat_socialiste', 'pacte_européen', 'discipline_budgétaire', 'spécialiste_français', 'cessions', 'sommet_européen', 'nuit_tombée', 'intérêts_politiques', 'système_éducatif', 'capitaliser', 'enraciné', 'nationalités', 'autre_atout', 'oméga_3', 'ont_écopé', 'grands_patrons', 'nos_impôts', 'améliorations_ou', \"s'_abstenant\", 'déloyale', 'delphine_ernotte', '8000_euros', 'disputée', 'raffolez', 'mohamed_merah', '33_ans', 'allégées', 'salé-sucré', 'praticité', 'extorquer', 'teasing', 'réinterprété', 'scrupules', 'placée_sous', 'jihad', 'agression_contre', 'emballage_cadeau', 'transporte_directement', 'nabilla', 'novembre_2014', 'sentence_arbitrale', 'dossier_adidas', 'apport_calorique', 'trouvables', 'australien_daniel', '103_enfants', 'chargeront', 'amender', 'mémoire_interne', 'airbnb', 'septembre_2013', 'saul', 'sera_remplacée', 'wta', 'stylisée', 'morandini', 'nouveaux_consommateurs', 'crozes-hermitage', 'tchadien', 'condamné_lundi', 'dirigeants_africains', 'agitées', 'alcool_éthylique', 'acide_acétique', 'conjuguée', 'démarrez', 'nombreux_minéraux', 'charges_fiscales', \"s'_acquitte\", 'législatif', 'détoxifiant', 'contre-indication', 'naturopathie', 'géant_américain', '611', 'encours', 'internet_illimité', 'commenceront', 'crémants', 'vins_tranquilles', 'intégrité_physique', 'anah', 'baptisées', 'ententes', 'holocauste', 'idéologies', 'raciales', 'nazies', 'aux_plaignants', 'cancéreuses', 'thérapeutiques', 'thyroïde', 'mélanome', 'benoît_hamon', 'titré', 'pensionnaire', 'irritants', 'ses_plaies', 'prêche', 'maximales', 'hélène_darroze', 'salariés_travaillant', 'aciérie', 'détenue', 'mittal', '0,05_%', 'légère_hausse', 'superflus', 'superaliments', 'manuscrites', 'marckrain', 'kirchberg', 'recourent', 'psychanalyste', 'pierre-yves', 'piédestal', 'decanter', 'tavernost', 'plébiscitées', 'dimension_ludique', 'mickey_mouse', 'troisième_trimestre', 'remportant', 'truculent', '920', 'andy_murray', 'securities', 'local_commercial', 'a_commenté', 'président_élu', 'applications_tierces', 'juste_arrosés', 'verrines_tricolore', 'repas_festif', 'comité_central', 'saint-péray', 'laurent_jeannin', 'éditions_solar', '39€', 'epicure', 'créations_originales', 'papilles_gustatives', '2022', 'dignitaires', 'cochon_ibérique', 'morilles_fraîches', 'cromesquis', 'accélérée', 'pénibilité', 'empreint', 'doit_correspondre', 'rationnellement', '75€', 'rhodaniens', 'friulano', 'typo', '<_br', 'brunello_di', 'nous_choisissons', 'linguine', 'tentées', 'nu3', 'engine', 'rayons_solaires', 'irréprochables', 'véritable_invitation', 'délai_supplémentaire', 'outil_industriel', 'salon_vinexpo', 'belge_pierre', 'marcolini', 'primitif', 'marmelade_orange-pamplemousse', 'ravir_vos', 'cures_détox', 'aroma_zone', 'chancelière_angela', 'merkel', 'président_obama', 'amiens-nord', 'redressement_productif', 'arnaud_montebourg', '1,5_cl', 'dépensant', 'banque_centrale', 'refinancement', 'banques_centrales', 'diurétiques', 'émonctoires', 'lymphatique', 'condition_toutefois', 'sans_conservateur', 'intervalles_réguliers', 'marvel', 'islamabad', 'facto', 'talibans', 'filiale_française', 'alphabétique', 'cent_cinquante', 'novak_djokovic', 'vaudrait', 'bfmtv', 'ont_mené', 'perquisition', 'document_boursier', 'publié_mardi', 'chypriotes', 'annoncé_lundi', 'fonds_nécessaires', '6.000', 'chef_triplement', 'cne', 'prévisionnelle', 'soyons_honnêtes', 'hygge', 'bavoir', 'ramènera', 'jules_bianchi', '9e_place', 'haute_lutte', 'forte_hausse', 'région_poitou-charentes', 'raffarin', 'selfie', 'milliardaire_américain', 'publiquement_engagé', 'suez_environnement', 'quelconque_dédommagement', 'labourer', 'itele', 'désenchantement', 'chacun_correspondant', 'tiré_5', 'édouard', 'début_mars', 'revenu_imposable', 'exploitations', 'hong-kong', 'taches_tenaces', 'selon_rtl', 'jean-christophe_mitterrand', '38_112', 'acteur_roger', 'hanin', 'royaliste', 'udf', 'ils_achètent', 'ils_prétendent', 'dim_sum', 'vivendi_universal', '140_millions', 'amarone', 'fonds_spéculatifs', 'sac_capital', 'riedel', 'janeiro_-', 'semestre', 'forfaitairement', 'geisberg', 'osterberg', 'rebaptisée', 'maîtrisés', 'plainte_auprès', 'etats_européens', 'fausser', 'key_lime', 'moins_3h', 'new_yorkais', 'via_google', 'vrai_cheesecake', 'j_‘ai', 'portion_individuelle', 'trop_élevée', 'regardées', 'primé', 'gros_plant', '8°c', 'entre_12°', 'véhicules_électriques', 'soupçonnant', '1763', 'jaune_paille', 'adoucira', 'abordées', 'cahuzac', 'ramassée', 'opposent', 'rencontrerait', 'source_diplomatique', 'bailly', '11,3', 'conglomérat', '43_%', 'maltraité', 'quatrième_génération', 'instrumentaliser', 'charlatans', 'piratage', 'ahmadinejad', 'sanctions_contre', 'arme_atomique', 'francs-maçons', 'éliminent', 'stephan', 'giscours', 'johannesburg_-', 'btp', 'doux_exotisme', 'alcalinisant', 'ancien_secrétaire', 'fournier', 'navale', 'rosier_muscat', 'polémiste', 'interpellation', 'ses_paysages', 'cocontractant', 'veuillez_cliquer', '57_ans', 'nouvel_observateur', 'a_enquêté', 'interrogée_sur', 'pores_dilatés', 'être_exhaustif', 'plats_indiens', 'mediapart', 'nuancé', 'ses_prévisions', '515', 'accompagnement_social', 'dette_souveraine', 'mattel', '&_poor', '\"_subprime', 'artcurial', 'durée_déterminée', 'directeur_financier', 'carmes', 'haut-brion', 'ex-salariés', 'environ_800', 'chef_assaf', 'balagan', 'titanesque', 'entreprises_distribuant', 'signée_philippe', 'parfum_masculin', 'galaxy_note', 'recevable', 'luc_besson', 'europacorp', '700.000_euros', 'appris_lundi', 'france_télécom', 'axa', 'accor', 'dernier_trimestre', 'tolérable', 'baratin', 'chiites', 'saddam_hussein', '156', 'son_petit-fils', 'qui_gérait', 'demi-million', 'justice_française', 'cache-misère', '14h00_locales', 'flanquée', 'fossiles', 'retailler', 'jean-jacques', 've_république', 'revinrent', 'ténacité', 'réclamaient', 'quadruple_champion', '42_000', 'condamné_solidairement', '6.000_euros', 'alain_minc', 'armes_nucléaires', 'vieillira', 'couteux', 'gasquet', '40.000_euros', 'akp', 'manuka', 'gênante', 'inaction', 'son_accrochage', '62e', 'siglé', 'apposé', 'polyvalents', 'côlon', 'éliminez', 'coulis_gélifié', 'nicolas_cloiseau', 'mof', 'chef_philippe', 'azerbaïdjan', 'rogner', 'haas', '11e_place', '4,2_milliards', '5,2_milliards', 'fesf', 'errements', 'tous_azimuts', 'ménageant', '5,5_millions', 'chimpanzés', 'philippe_martinez', 'prévient_-il', 'familiale_signée', 'luana_belmondo', '8.000', '2.500_euros', 'jean-luc_mélenchon', 'échanges_commerciaux', 'prochaine_tranche', 'coûteront', 'aux_confins', 'synagogue', 'disait_-on', 'drug_administration', 'ayant_accepté', 'réglant', 'confient', 'conquêtes_sans', 'redoutent', 'jean_paul', 'gaultier', 'déstockage', 'compagnies_aériennes', 'mondial-2014', 'faits_similaires', 'coopérateurs', 'clairet', 'touche_chic', '8_numéros', 'principaux_acteurs', 'a_réaffirmé', '5,9', 'sionisme', 'rusticité', 'caroténoïdes', 'cycliste', 'uci', 'parcours_professionnels', 'dépenses_publiques', 'tolérée_par', 'prédictif', 'deiss', '1957', 'hamas', 'chemin_parcouru', 'pleurote', 'fanfare', 'nouvelle_technologie', 'gouvernement_espagnol', 'eta', 'électrisée_par', 'rungis', 'jacques_attali', 'république.', 'pernod-ricard', 'nielsen', 'prédicateur', 'militantes', 'néo-_zélandais', 'rigoureuses', 'burkinabè', 'embauches', 'boursières', 'charente-maritime', 'rpr', 'empilez', 'boîte_cadeau', 'aériens', 'cigarettes_neutre', 'starck', 'critique_gastronomique', 'contrôle_judiciaire', 'contrevenants', 'pierre_moscovici', 'malvoisie', 'maldonado', 'adjacente', 'gaullisme', 'projet_européen', '50_milliards', '11_milliards', 'onctions', 'eau_distillée', 'bernard_arnault', 'discutables', 'discutées', 'restituée', 'harcèlement_moral', 'italique_>', 'politique_intérieure', 'benghazi', 'ex-chef', 'chancelière_allemande', 'était_engagé', 'appel_lancé', 'retranchés', 'carla_bruni', 'bombe_nucléaire', 'mitt_romney', 'deuxième_exportateur', 'entretenait', 'sous-préfet', 'sarthe', 'takieddine', 'verbaliser', 'privatisations', 'ambition_personnelle', 'verser_20.000', 'autorités_judiciaires', 'verser_30.000', 'pétrus', '3e_ligne', 'analystes', 'beurre_bordier', 'aux_novices', 'plaide', 'fâcheuse', 'kaboul', 'ajoute_-t-elle', 'se_préoccuper', 'mentionnons', 'ive', 'sartène', 'parcours_professionnel', 'wimbledon', 'débloqués', 'audiovisuels', 'puissances_occidentales', 'bio-_huile', '7e_place', 'présenté_mercredi', 'cohortes', 'hébergé', 'libyenne', '17/20', 'léognan', 'altérée', 'récente_étude', 'pâtissier_pierre', 'hermé', 'créé_six', 'grandes_sociétés', 'prestigieuse_maison', 'aplatissez_-les', 'traité_européen', 'équeutez', 'alloué', 'eric_woerth', 'méticuleusement', 'échanges_culturels', 'dollars_supplémentaires', 'émules', 'ios', 'apprêtez', 'shazam', 'persécuté', 'résistent', 'nipponne', 'saddam', 'tirera', 'activités_physiques', '1er_février', '300_mètres', '29_décembre', 'd-vine', 'répercussion', 'rolls-royce', 'sino-', 'code_postal', '75_000', 'préjudice_matériel', 'sa_réélection', 'agence_officielle', 'stigmatisation', 'charentais', 'dialectique', 'essayiste', 'fédérations', 'sinistres', 'prélèvements_obligatoires', 'inclassable', 'conceptuel', 'imprégnés', 'interview_loto', 'patrimoine_immobilier', 'democratie', 'penseurs', 'g20', 'explique_m.', 'employées', 'florian_philippot', 'attali', 'avertissements', 'en-tête', 'talleyrand', 'pyongyang', 'epr', 'certains_propriétaires', 'cantenac', 'calibré', 'préventivement', 'déjà_effectués', 'xxi', 'inanité', 'avocat_spécialisé', 'immédiates', 'fomc', 'pkk', 'kurde', 'grassement', 'meublés', 'csg', 'unt', 'prérogative', '0,60_euro', '0,80_euro', 'exercice_précédent', 'lifting', '450_euros', 'bouygues', 'verser_6.000', 'téléchargées', 'sommes_collectées', 'part_variable', 'subprimes', \"moody_'\", '300.000_euros', 'téléphonie', 'g8', 'magnétoscope_numérique', 'tabagisme', 'figure_parmi', 'leonard', 'dote', 'framboises_écrasées', 'souveraines', 'suscitant', 'obédience', 'margerie', 'aiguillon', 'mme_taubira', 'ambitions_personnelles', 'prusse', 'diacétyle', 'dommages_graves', 'ou_irréversibles', 'certitude_scientifique', 'mesures_effectives', 'cumuls', 'galopante', 'saint_esprit', \"s'_apercevra\", 'cadrer', 'gaubert', 'morice', 'rétrocommissions', 'diagnostiqué', 'tartinez_-les', 'produits_importés', '1,3_%', 'rattachement', 'contingent', 'intérêt_commun', 'assaisonnez_-les', 'sectaires', 'certaines_contraintes', 'vincent_peillon', 'thèses', 'etat_grec', '13_avril', 'martine_aubry', 'ormeaux', 'mlp', 'françois_mitterrand', 'estaing', 'concoctent', 'xénophobe', 'périgourdine', 'françois_bayrou', 'financement_public', 'burqa', 'dissimulant', 'putsch', 'efficience', 'bayrou', 'nuancer', 'réformé', 'affiliés', 'traditionnelle_bûche', 'serait_judicieux', 'franco-_allemand', 'approfondi', 'best-sellers', 'spéculateurs', 'jean-louis_borloo', 'transactions_financières', 'betterave_crue', '80_°c', 'rétrécissement', 'contagion', 'bijoutier', 'soldats_français', 'compagnie_pétrolière', '731', 'pension_mensuelle', 'somme_totale', '650_millions', 'inapproprié', 'débutera', 'république_tchèque', 'entreposez_au', \"n'_apparaissant\", 'décrochage', 'ouganda', 'politique_agricole', 'correctionnelle', 'dépositaire', 'hussein', 'délation', 'mailing', 'voulions', 'indiqué_m.', 'communauté_juive', 'jack_lang', 'providentiel', 'déstabilisation', 'enquête_antidumping', 'front_populaire', 'centristes', 'commentateurs', 'intervention_militaire', 'mouvance', 'pays._\"', '22e', 'monseigneur', 'présider', 'immobilisme', 'indexer', 'rançons', 'nos_compatriotes', 'redonnant', 'illusoire', 'député_socialiste', 'mer_noire', 'varenne', 'électorales', 'elections', 'islamisation', 'eurodéputé', 'bâtisseurs', 'appellation_contrôlée', 'antisarkozysme', '100000', 'étique', 'mensonger', 'oxydants', 'incas', 'califat', 'discrimination_raciale', 'xive_siècle', 'structure_publique', 'seafrance', 'chef_antonin', 'note_vanillée', 'psychiatriques', 'cope', 'secouent', 'fin_connaisseur', 'sarkozysme', 'spams', 'antivirus', 'niveau_local', 'leadership', 'ukrainiennes', '46_000', 'droitisation', 'convoquée', 'évalués', 'anciens_dirigeants', 'cacophonie', 'subventionné', 'hagiographie', 'pape_françois', 'influencé_par', 'démographique', 'émigration', 'tête._\"', '813', '1780', 'auraient_-ils', 'depardieu', 'méprisables', 'kerviel', 'son_ex-compagne', 'yvan_colonna', 'qataris', 'pourvoi', 'unions', 'tutelle', 'pression_supplémentaire', 'compétentes', 'dsk', 'agroalimentaires', 'hors_taxe', 'exploitable', 'signalent', 'marchepied', 'très_éloigné', 'boucs_émissaires', 'sont_attaqués', 'htc', 'motorola', 'lenovo', 'pharmaceutiques', 'perte_nette', '1,2_milliard', 'brevetées', 'huawei', 'gouvernemental', '120_millions', 'cash_flow', 'stabilisant', 'ses_brevets', 'dividende_exceptionnel', 'windows_phone', 'amd', 'régime_végétarien', 'dommages_causés', 'chevrolet', 'at_&', 'commissaire_européen', 'free_mobile', 'non_conformes', '69_euros', 'dépouillement', 'richard_branson', '1,4_million', 'effet_3d', '16_go', 'signature_électronique', 'dreyfus', 'supervision', 'stabilité_financière', 'multiples_usages', 'arctique', 'fonds_européen', 'asphyxie', 'réformer', 'madoff', 'purge', 'ponzi', '1,3_milliard', 'bettencourt', 'poursuites_judiciaires', 'cnt', 'sarkosy', 'rassemblent', 'caustique', 'cisjordanie', 'groupe_parlementaire', 'nathalie_kosciusko-', 'morizet', 'inefficacité', 'oniam', 'soulignait', 'étatiques', 'disques_durs', 'didier_deschamps', 'compromise', 'représentativité', 'me_choque', 'niches_fiscales', 'youssef', 'confédérations', 'cgpme', 'upa', 'économie_française', 'agrémentera', 'déviances', 'tokyo_electric', 'industrie_agroalimentaire', 'pepsico', '750_millions', 'mondadori', 'murdoch', 'contaminées', 'accident_nucléaire', 'directrice_générale', 'adjointe', 'eric_besson', 'successions', 'argumenté', 'gbagbo', 'maints', 'ouattara', 'au_crible', 'indignité', 'lockerbie', 'torturés', 'cour_pénale', 'cpi', 'gouvernement_grec', 'm._sarkozy', 'entreprenariat', 'ripoux', 'victorieuse', 'monnaie_unique', 'laxisme', 'glenn', 'triptyque', 'sud-africaine', 'woerth', 'dégringolade', 'prestigieux_magazine', 'résistera', 'judiciairement', '200.000_euros', 'laïcs', 'institutions_européennes', 'abjects', 'significatives', '27_janvier', 'prônée', 'septembre_2011', 'sarcelles', 'renié', 'laque_noire', '6,5_millions', 'frais_judiciaires', \"main-d_'\", 'aides_sociales', 'dette_publique', 'valérie_pécresse', 'futiles', '1916', 'pénales', 'jean_françois', 'information_judiciaire', 'ancien_maire', 'subis_par', 'hors_compétition', 'prospérer', 'sphère_privée', 'forme_hebdomadaire', 'arsène', 'complaisante', 'sélectionneur', 'éblouir', 'bovin', 'chouchouter', 'vous_vendez', 'aplatie', 'gaines', 'mr_sarkozy', 'wildenstein', 'conformer', 'sursis', 'discriminatoire', 'univoque', 'années_consacrées', 'sandrine_bonnaire', 'pièce_artistique', 'fustigé', 'créations_enfantines', 'sans_concession', 'm._copé', 'humaniste', 'égayé', 'pourfendeur', 'bachique', 'jean-claude_juncker', 'seule_goutte', 'deçà', 'homard_bleu', 'piocher_8', 'showroom', 'organisations_caritatives', 'metteurs', 'peuple_juif', 'ancien_cadre', '\"_parachutes', 'contestait', 'décision_intervient', 'pourrait_contraindre', 'années_quatre-vingt', 'résout', 'compotées', 'friction', 'diffamation_envers', 'ancien_procureur', 'respectivement_8000', 'cordons_bleus', 'imprécis', '15°c', 'gondole_sont', 'boissons_lactées', 'fédérateur', 'investigation', 'juliette_michaud', 'ont_manifesté', 'summa_injuria', 'greffier', 'déflagration', 'température_normale', 'geyser', 'sûreté_nucléaire', 'poursuivies', 'étymologiquement', '21e_salon', '&_châteaux', 'volonté_politique', 'biographe', 'gouvernement_socialiste', 'poulie', 'réquisitoire', '2,6', 'pasqua', 'kurdes', 'indécent', 'binaire', 'enivrés', '0,7', 'grasset', 'édile', 'yahvé', 'incendié', 'low-cost', 'exode', 'courbet', 'fins_personnels', 'prosélytisme', 'citoyens_français', 'gauches', 'glaciales', 'première_instance', 'litigieux', 'trierweiler', 'réacteurs_endommagés', 'janvier_2012', 'rétorsion', 'pipeline', 'insertion_professionnelle', 'financements', 'mécènes', 'laurent_ruquier', 'zemmour', '1952', 'aux_abois', 'haro', 'ukrainienne', 'recettes_fiscales', 'franchouillarde', 'eau_contaminée', 'fukushima_daiichi', 'affectés_par', 'situation_irrégulière', 'plat_végétarien', 'annuellement', 'ignorés', 'roquettes', '2800', '7_numéros', 'rechignent', 'insistait', 'lexpress.fr', 'version_anglaise', 'figurants', 'caution_morale', 'technocratique', '11-septembre', 'emballement', 'répétitive', 'compressé', 'islamophobes', 'insulaire', 'val-de-marne', 'son_successeur', 'emplois_fictifs', \"s'_encanailler\", 'carole_bouquet', 'pacherenc', 'mains_calleuses', 'laurent_gbagbo', 'sobriquet', 'honorent', 'célébrant', 'phénoménale', 'légèrement_amère', 'cristallisées', 'art_moderne', 'bréviaire', 'bologne', 'balkany', 'viande_grillée', '42_millions', 'daimler', '2,3_milliards', 'subies', 'redémarré', 'biomasse', 'causent', 'superhéros', 'ratifié', 'baroques', 'mondialistes', 'agréger', 'combattu', 'faire_fructifier', 'inégalité', 'symétriques', 'ultron', 'tracas', 'gagnées', 'blade_runner', 'désordres', 'christian_passard', 'polars', '1,3_million', 'enquête_préliminaire', 'logements_sociaux', 'thomas_sotto', 'attarder', 'insigne', 'jim_harrison', 'pouzilhac', 'havas', 'abîmes', 'doit_demeurer', 'fut_créée', 'fabius', 'confrontée', 'cargaisons', 'sunnites', 'voiture_piégée', 'stif', 'nature_morte', 'cupidité', 'lubies', 'vasque', 'consentent', 'mai_2013', 'inspection_générale', 'igas', 'accablant', 'servier', 'antisémitisme', 'administration_obama', 'rachida_dati', 'aux_sirènes', 'fait_valser', 'livra', 'fronde', 'pillages', 'excipients', 'leurs_rangs', 'translation', 'romanciers', 'résistances', 'fonds_publics', 'jérôme_cahuzac', 'faire_élire', 'reconquérir', 'milite', 'saynètes', '135_millions', 'm._tapie', '7500_euros', 'bertolucci', 'planifiée', 'actrice_maria', 'religion_juive', 'prétendre_appartenir', 'museler', 'affaiblit', 'questions_posées', 'se_réfèrent', 'étaient_engagés', 'nacelle', 'ériger', 'tf_1', 'julie_gayet', 'poursuit_-il', 'assauts', 'vaincue', 'instruction_publique', 'écoles_primaires', 'privatisé', 'frais_généraux', '1.3', 'colossales', 'finances_publiques', 'achemine', 'incarnant', '3400', 'circonscriptions', 'entreprises_françaises', '2,3_millions', 'jeudi_prévoir', 'marge_opérationnelle', 'trésorerie_disponible', 'ssii_propose', '0,50_euro', 'dix_mots', 'déchargé', 'rts', 'banques_françaises', 'tiédeur', 'tournent_vers', 'descartes', 'administration_fiscale', 'ministre_chargé', 'indifférents', 'autoproclamé', 'allocution', 'situation_similaire', 'gallica', 'codicille', 'imaginées', 'produits_pétroliers', 'viktor', 'lieux_communs', 'salafisme', 'albert_uderzo', 'mi-février', 'irréaliste', 'bank_of', 'arrière-garde', '19,6_%', 'accise', '/_hl', 'acception', 'alignements', 'menhirs', 'aubagne', 'presse_locale', 'juridiction', 'outre-atlantique', '900_millions', 'hugo_chavez', 'manifestant', 'unité_nationale', 'cébettes', 'masterchef', 'laboratoires_servier', 'stock-options', 'massy', 'françois_baroin', 'eelv', 'ex-directeur', 'exaspération', 'famille_rentrant', 'loiret', 'israélite', 'réacteurs_nucléaires', 'scène_internationale', 'préconisation', 'laisse_couler', '“on', 'long_drink', 'métallurgie', 'mocktail', 'éclipser', \"churros_'\", 'turenne', 'entreprennent', 'favelas', 'productrices', 'adoptées', 'câblée', 'machiste', 'amériques', 'politique_extérieure', 'betteraves_crues', 'baser', 'glnf', 'bonbon_anglais', 'double_nationalité', 'halogène', 'évoluées', 'mercato', 'véhémence', 'structurels', 'pompage', 'aqmi', 'nml', 'aurelius', 'physicien', 'ils_prenaient', 'éduquer_leurs', 'juives', 'lacouture', 'future_banque', 'réindustrialisation', 'deloitte', 'rémy_pflimlin', 'exclamé', 'résorber', 'ses_convictions', 'olp', 'debré', 'prélevée', 'égyptiens', 'caracas', 'iraniens', 'libyen', 'stifani', 'défendue_par', 'affirme_-t-elle', 'dont_bénéficient', 'goncourt', 'évoquera', 'confortablement_installé', 'freud', 'hauts_fonctionnaires', 'cour_administrative', 'djihad', '110_000', 'droit_civil', 'flagrante', 'laboratoires_pharmaceutiques', 'aurel_bgc', 'petits_mouchoirs', 'emirats_arabes', 'centriste', 'médias_occidentaux', '460_millions', 'cuisez_-le', 'septembre_2003', 'haut_fonctionnaire', 'avoir_perçu', 'robert_ménard', 'telle_situation', 'distinguant', 'ministre_délégué', 'dérapages', 'constatés', 'outrages', 'gouvernent', 'ouvrière', 'sarde', 'scanné', 'partisanes', 'économie_sociale', 'quercy', 'carlos_ghosn', 'statuant', 'occasion_rêvée', 'engagement_politique', '41_ans', 'recettes_publicitaires', '34_000', 'impôts_locaux', 'bassesses', 'financial_times', 'gisements', 'certificat_médical', 'ocde', 'grief', 'robert_linxe', '89_ans', 'tradition_chocolatière', 'manger_sainement', 'ancienne_ministre', 'christine_lagarde', 'attirait', 'comité_exécutif', 'délétère', 'biographique', 'antécédents', 'sixième_tranche', 'anciens_salariés', 'roue_libre', 'moscovici', 'expatriation', 'produits_toxiques', 'protestants', 'réformiste', 'bourgognes', 'seront_offerts', 'claude_chabrol', 'chilien', 'achat_frauduleux', 'psychothérapie', 'hezbollah', '27_mai', '17e_chambre', 'manière_similaire', 'embarcations', 'soupçonnées', 'shabbat', 'rabbins', 'indulgence', 'prothèses', 'islamiste', 'baltimore', 'washington_post', 'savant_dosage', 'pieuse', 'sanctification', 'visite_privée', 'réjoui', 'malka', 'souveraineté_nationale', 'impro_?', 'civilement_responsable', 'modérés', 'motrice', 'malnutrition', 'sommaires', 'device', 'crise_politique', 'fondatrices', 'noir_vêtue', 'musique_baroque', 'perçois', 'hcr', 'juridiction_privée', 'affaires_285', 'andalou', 'prohibition', 'contrepoint', 'porochenko', 'and_co', 'contre-partie', 'sylviane', 'protester_contre', 'diabolisation', 'glaces_artisanales', 'clearstream', 'm._hollande', 'spéculative', 'pénuries', 'roboratif', 'détournent', 'haïtienne', 'populace', 'massée', 'sous_tutelle', 'impayées', 'présumée', 'armée_japonaise', 'réacteur_n°3', 'laborieuse', 'certaines_formes', 'écarté', 'xive', 'grimaldi', 'saint-vincent-de-paul', 'francis_ford', 'attaque_vive', 'méticuleux', 'perquisitions', 'adhèrent', 'se_bonifient', 'saisissent', 'sont_sensés', 'indépendantistes', 'insulaires', 'silicon_valley', 'ignominie', 'restaurées', 'mécénat', 'forces_militaires', 'hosni_moubarak', 'ne_prétends', 'michel_drucker', 'brandir', 'géopolitique', 'cuisine_thaïe', 'sauce_nuoc-mâm', 'testaments', 'compère', 'romney', 'courtisans', 'réserve_parlementaire', 'jean-yves_bordier', 'rayonnages', 'ldh', 'qui_recherchent', 'joaillier', 'feutré', 'honni', '1871', 'maçonniques', 'maçonnique', 'vivrez', '26_juin', 'jerusalem', 'gomes', 'astringents', 'vraie_réussite', 'ironisé', 'crossover', 'diaspora', 'cartographie', 'souligne_m.', 'jullien', 'borges', '285_millions', 'droit_international', 'uoif', 'seront_parfaits', 'richardson', 'emphase', 'émeut', 'electronique', 'électeur', 'occasionne', 'origine_espagnole', 'contrefaits', 'serbes', 'croates', 'carte_grise', 'assurance-maladie', 'insee', 'construction_européenne', 'initiées', 'liquidateur', 'kahn', 'propos_tenus', 'médiamétrie', 'catastrophe_écologique', 'indécision_chronique', 'confectionnant', 'gewürztraminer', 'lignac', 'forêt-noire', 'xxie_siècle', '\"_vautours', '28_février', 'attablé', 'aïeul', 'microsoft_devra', 'verser_1,52', 'thoumieux', 'appliqueront', 'irresponsables', 'verraient', 'son_électorat', 'bicoque', 'américain_robert', 'raconte_-t-il', 'manière_différente', 'manjari', 'nous_apprécions', 'décadence', 'pernicieuse', 'salvatrice', 'possédée', 'mains_libres', 'art_populaire', 'camarde_fait', 'louable', 'induire', 'acquittée', 'graisses_saturées', 'insaturées', '2500_euros', 'allez_courage', 'forte_augmentation', 'dassault', 'plan_financier', 'mai_2011', 'regroupements', 'gl', 'persécutions', 'contesté', 'exactions', 'marée_noire', 'psychiatrique', 'enchaînés', 'réactions_chimiques', 'pots-de-vin', 'gouvernementale', 'exacerber', '38_000', 'avoir_refusé', '1906', 'résidant', 'fatiguent', 'intervenue', 'itinérance', 'networks', 'sont_friands', 'agence_américaine', 'célébrités_portant', 'déroulé_lors', 'droite-gauche', 'informent', 'mi-janvier', 'groupe_pharmaceutique', 'vrais_amateurs', 'consonnes', 'vocable', 'ralentis', 'marque_américaine', 'février_2017', '950_millions', 'poursuites_liées', 'fda', 'prix_serrés', 'idées_larges', 'mêle_esprit', 'audace_gastronomique', 'délégué_général', 'nobel', 'ironise', 'inavouables', 'journal_of', 'flavonols', 'émise', 'du_queensland', 'porté_atteinte', 'ministérielle', 'sans_sourciller', 'plébiscitent', 'islamiques', 'fln', 'arafat', 'bourgi', 'gontran', 'ayatollah', 'exercice_normal', 'profession_ayant', 'chomeurs', 'prescrire', 'nuancée', 'rescapés', 'm._obama', 'chabrol', 'élections_locales', 'engendrée', 'deuxième_mandat', 'secteur_bancaire', 'sont_ajoutées', 'peer', 'bernard_cazeneuve', '5,3_milliards', 'cadac', 'human_rights', 'enfouies', 'indûment', 'pierre_perret', 'valeurs_actuelles', 'doj', 'novembre_2011', 'être_comprise', 'antiquaires', 'amazones', 'cessez-le-feu', 'cryptage', 'courriels', 'memphis', 'législature', 'devraient_-ils', 'praticiens', 'catholicisme', 'homère', 'toulousains', 'plaza_athénée', 'marchés_publics', 'bru', 'différences_entre', 'jean-pierre_raffarin', 'commanditaire', 'cotyle', 'ignorants', 'edouard_balladur', 'psychotropes', 'certifie', 'engendrent', 'activité_lucrative', 'moubarak', 'paléolithique', 'fatalisme', 'pelletier', '1924', 'petits-fours', 'inchangée', 'iconographie', 'jeudi_21', 'construisez', 'volonté_divine', \"palmer_'\", 'nonobstant', 'randonneur', 'syndicat_national', 'aboli', 'celles_utilisées', 'gouvernement_israélien', 'autorité_palestinienne', 'pétrolières', 'manoeuvres', 'aiguës', 'sénior', 'suggérez', 'épaississants', 'hôtel_parisien', 'cortex', '5-4', 'symposium', 'aig', 'jobs', '22e_salon', '21e_édition', 'cette_surdouée', 'analysent', 'chastel', 'julliard', 'fléché', 'condition_physique', '110_millions', 'feuille_guitare', 'callebaut', 'polycarbonate', '20°', 'ne_blanchit', 'ensemencement', 'potentiomètre', '3,2_milliards', 'intérimaire', 'égyptiennes', 'désendettement', 'ebitda', 'monarchie', 'afghane', 'billetterie', 'régimes_spéciaux', 'clientélisme', 'exemplarité', 'ouest-france', 'fortiori', 'quatre-vingt-dix', '812', 'laxatives', 'départementales', 'nommez', 'directeur_commercial', 'ibm', 'sentinelle', 'clivage', 'gauche-droite', 'mondelez', 'récurrente', 'mondialisée', 'président_hollande', 'pragmatiques', 'secteur_agricole', 'pessimistes', 'outre_condamné', 'hamid', 'karzaï', 'objectifs_politiques', 'syndicales', 'bac+5', 'système_actuel', 'détenues_par', 'inouïe', 'reprochent', 'relances', 'publicis', '750_000', 'contrefait', '40.000', 'jus_soli', 'mme_merkel', 'consistence', 'vos_placards', 'évacuées', 'sont_installées', 'elles_apportent', 'se_métamorphoser', 'ancienne_usine', 'continent_africain', 'trafiqués', 'mafias', 'cisco', 'actuel_président', 'façon_milky', 'lui_reprochent', 'scénique', 'orphée', 'algérie_française', 'radicalisation', 'vétérans', 'réticence', 'burrito', 'me_permettrais', 'perpétrés', '90_000', 'indiscrétion', 'scolarisation', 'chuao', 'association_française', 'saveurs_épicées', 'législation_européenne', 'réglemente', 'exhausteur', 'cmu', 'revoyez', 'renoué_avec', 'chaîne_publique', \"n'_excluent\", 'travail_pédagogique', '8_avril', 'saada', 'eurazeo', 'centrales_électriques', 'norvégiens', '2,65', 'arty', 'vil_prix', 'reçoive', '9e_art', 'décomplexé', 'relations_commerciales', 'éditorialiste', 'diffusions', 'enrichissant', 'instrumentalisation', 'défendez', 'glaive', 'boursoufle', 'bachelot', 'tapis_précieux', 'laisse_apparaître', 'prévert', 'histoire_littéraire', 'admirait', 'caïpirinha', 'thème_wordpress', 'native', 'méconnaissance', 'camille_lesecq', 'télévisuel', 'efficace_contre', 'pressants', 'effrénée', 'cronut', 'champagne_brut', 'cfcm', 'avait_évoqué', 'articulée', 'bigard', 'vin_bouchonné', 'ringard', 'jpmorgan', 'merah', '35-40', 'intimement_lié', 'eu_égard', 'subsidiaire', 'magnifié', 'syriennes', 'seul_centime', 'politologue', 'liliane_bettencourt', '1793', 'partenaires_européens', 'expropriation', 'compiègne', 'montravel', 'lassés', 'sicav', 'clair-obscur', 'allocation_personnalisée', 'prédestiné', 'cadrans', 'intérêts_financiers', 'rainures', 'risques_potentiels', 'deniers_publics', 'spatiales', 'métropoles', 'dodu', 'impayés', 'grande_popularité', 'carré_magique', 'terrasse_ombragée', 'coqueluche', 'ex-trader', 'environment', 'frôlant', 'court-circuit', 'turban', 'malhonnêtes', 'copinage', 'argent_dépensé', 'grands_maîtres', 'avantages_sociaux', 'patelin', 'demande_tendant', 'ses_conclusions', 'justice_administrative', 'puissance_publique', 'fausses_informations', 'juppé', 'tracts', 'cavani', 'viole', 'sidérurgie', 'nanti', 'inondations', 'principes_fondamentaux', 'vigneronnes', 'tuner', 'étoilées', 'ancienne_capitale', 'chronologique', \"s'_effondre\", 'conditionnés', 'sanctionner', 'labour', 'belles_images', 'essaim', 'festoyer', '35€', 'el_khomri', 'prétendument', 'réclamés', 'nous_constatons', '192_millions', 'irréparable', 'charrue', 'objectif_principal', 'nos_fournisseurs', 'accentuation', 'se_méfie', 'ordre_chronologique', 'théâtrales', 'dénombre', 'production_audiovisuelle', 'légumes_oubliés', 'cpam', 'lourd_tribut', '6,1', 'votées', 'étriers', '175°_c', 'charcuterie_corse', 'mode_grill', 'dalloyau', 'viols', 'chez_monoprix', 'antioche', 'entretenus', 'nègres', 'nouvelle_norme', 'tubéreuse', 'bien-fondé', 'chimiothérapie', '19_août', 'dernier-né', 'uruguay', 'monoxyde', 'brûleurs', 'vice-ministre', 'lien_juridique', 'passard_lundi', 'constant_vendredi', 'prometteuses', 'techniques_innovantes', 'irrévocable', 'placés_sous', 'mario_draghi', 'bracelet_électronique', 'aiguiser', 'menées_par', 'transportait', 'vies_humaines', 'pudiquement', 'extravagance', 'traduction_française', '800_watts', 'état_sauvage', 'dégraissez_-le', 'compagnie_américaine', 'dépouilles', 'classe_politique', 'défavorisées', 'recourt', 'air_comprimé', 'école_privée', 'eau_vinaigrée', 'phishing', 'virements', 'infiltre', 'pénitentiaire', 'retournements', 'assurance_habitation', 'unifiée', 'affranchi', 'exceptionnelle_longévité', 'avérées', 'shekels', 'israéliennes', '1250', 'cerises_acides', 'bassin_méditerranéen', '550_millions', 'déjà_réalisées', 'premier_trimestre', 'bénéfice_net', 'déchirées', 'appartenu', 'légiférer', 'préfèrera', 'inventives', 'paris_brest', 'structurant', 'emmaüs', 'je_défends', 'directeur_délégué', 'dubitative', 'dynasties', 'balladur', 'veto', 'rémunérations_annuelles', 'théologiens', 'verser_3.000', 'inhérente', 'démarchage', 'mes_compatriotes', 'compensations_financières', 'monastique', 'abstinence', 'anachronisme', 'principales_activités', \"côtes-d_'\", '62_ans', 'grimpent', 'primates', 'paludisme', 'françois_pinault', 'kering', 'fait_bondir', 'plein_essor', 'méthode_champenoise', 'admettent', 'nos_politiciens', 'ultramodernes', 'activée', 'co-_création', 'rachetant', 'revendue', 'pâtissier-chocolatier', 'jacques_servier', 'personnes_morales', 'placées_sous', 'conviviales', 'nécessite_toutefois', 'délocaliser', 'caramélisez', 'risquaient', 'attiser', 'autoproclamés', 'taillevent', 'filiation', 'déliquescence', 'mouammar_kadhafi', 'condamnée_vendredi', 'cedh', 'examinée', 'cohérents', 'revendiquent', 'respectueusement', '325', 'gao', 'comprendrait', '7,2', '6,7', 'délétères', 'amérindiens', 'générées_par', '419', 'député_européen', 'baranger', 'caillebotte', 'concassez_-les', 'ésotériques', 'occulter', 'innovation_sociale', 'reconstituée', '2030', 'naturistes', 'volaille_fermière', 'moud', 'demi-cuillerée', 'floch', 'saleh', 'tesco', 'unanime', 'âpreté', 'notes_sucrées', 'sous-entend', 'fonds_collectés', 'stratagèmes', 'ils_estiment', '000_f', 'drs', 'engendrées', '531', 'mât', 'bartoli', 'monténégro', 'aux_antipodes', 'légèrement_acidulée', 'rafraîchie', 'burgundy', 'pulvérisée', 'feuilletage_pur', 'hiérarchiser', 'hugo_&', 'mazet', 'pâquerette', '1100', 'mouvements_sociaux', 'régalent', '1,20', 'intraitable', 'embeurrée', 'assoupli', 'présomptions', 'lybie', 'pot_commun', 'pmi', 'truffade', 'cop21', 'manifestée', 'goguette', 'disent_-ils', 'volcaniques', 'patronymes', 'étiqueté', 'uranium_enrichi', 'bricoler', 'proposaient', 'documenté', \"s'_accordant\", 'souligne_-t-il', '000_francs', 'cicéron', 'ensemble.', 'maîtres_mots', 'parfait_équilibre', 'déstructuré', 'champs-elysées', 'chenin_blanc', 'majestueuses', 'terreuse', 'brûlot', 'dérèglements', 'magistrature', 'tués_samedi', 'feurs', 'vraisemblablement_provoquée', 'incandescent', 'chauvinisme', 'ouvreur', 'derniers_matches', 'tie', 'balayé', 'dû_recommencer', 'représentera', 'sauveteurs', 'groupe_canal+', 'groupe_pétrolier', 'punitifs', '4mm', 'industriellement', 'ppp', 'canne_liquide', 'glissez_-le', 'cautions', 'laboratoire_pharmaceutique', 'hachémite', 'mique', 'adoptant', 'république_islamique', 'puis_refermez', 'code-barres', 'pécan_caramélisées', 'dallage', 'oeufs_pralinés', '4,50', 'eglises', 'spéculatives', '1,7_milliard', 'rémission', '1791', 'sociabilité', 'maison-mère', 'gérée', 'votant', 'ireland', 'corrigées', 'depuis_1996', 'ivg', 'obédiences', 'herbert', 'escort', 'véhiculés_par', 'crêpes_aromatisées', 'coordonnateur', 'centre_national', 'bas-rhin', 'se_profiler', 'ille-et-vilaine', 'carrelet', 'saint-michel', 'abnégation', 'poivrades', 'vin_moldave', 'profitaient', 'rationnels', 'indonésiens', 'pays_musulman', 'poirés', 'xperia', 'compacts', 'echiré', 'paramétré', 'complaisant', 'dernière_trouvaille', 'rondement', 'cuisiné_cette', 'xie_siècle', 'juvénile', 'atteignait', 'jouxtant', 'état_palestinien', 'pavillon_rouge', 'agrégation', 'antigone', 'sao_tomé', 'vaste_gamme', 'debord', 'haene', 'devance', 'incongru', 'nouvelle_candidature', 'devenir_député', 'deuxième_circonscription', 'affaire_bettencourt-woerth', 'plusieurs_contre-feux', 'fictives', 'livrait', 'contes_bleus', 'gérard_oberlé', 'anéantissement', 'meilleurs_terroirs', 'foncière', 'statut_particulier', 'prélats', 'blindés', 'recep_tayyip', 'réseau_mondial', 'éligibilité', 'indépendantiste', 'aides_publiques', 'magnétron', 'confiscation', 'avril_2011', '17_décembre', 'ou_prou', 'islamisme_radical', 'centrée_sur', 'delaunay', 'baissera', 'josé_mourinho', 'liait', 'anciens_présidents', 'comptent_parmi', 'provisoires', 'vraiment_visible', 'cinq_générations', 'travail.', 'grands_moments', 'instrumentalisée', 'nonne', 'contaminations', 'alpes-maritimes', '000_emplois', 'dépréciations', 'décalées', 'cultivait', 'acteurs_économiques', 'déshonneur', 'compagnie_ferroviaire', 'burano', 'prélat', 'empruntent', 'aol', 'fois_refroidies', 'érudit', 'syphon', 'évangélique', 'mécanisation', 'betterave_cuite', 'insérés', 'versaient', 'succombe', 'pointant_vers', 'iiie_reich', 'illégalité', 'certaines_pages', 'bagdad', 'cru_devoir', 'nous_risquons', 'bakélite', 'approvisionner', 'procès-verbaux', 'imprévues', 'thales', 'chanson_française', 'yann_couvreur', 'plaisanteries', 'engin_explosif', 'pas-à-pas', 'nazca', '9,90', 'expatriés', '1,90', 'amandier', 'adhésions', 'classes_populaires', 'haïtiens', '3.000', 'exilé', 'déportation', 'émission_culinaire', 'chef_michalak', 'gazettes', 'gloses', 'censeurs', 'garnier_ultra', 'mandataire', 'nucléaire_iranien', 'ovh', 'boiront', 'caricaturaux', 'investissant', 'confronte', 'signal_sonore', 'score_pourrait', 'ambitions_futures', 'capitulation', 'aspirent', 'baissent', 'embouchure', 'buvettes', 'touchées_par', 'ricochet', 'alterner_prises', 'parole_musclées', 't.', 'extorsion', 'raids', 'gmt_)', 'rafah', 'verser_400.000', '17_avril', 'caisses_noires', 'humaniser', 'imputable', 'etonnant', 'leconte', 'dépouillée', 'recherchait', 'tenons', '296', 'garantie_financière', 'etat_accordée', '79_euros', 'avoir_diffamé', '8_janvier', 'disculper', 'responsabilité_civile', 'pandémie', 'ff', 'dissocier', 'peut_parfoi', '31e', 'ioukos', 'cantique', 'groupe_allemand', 'leurs_profits', 'renflouement', 'péréquation', 'equitable', 'ce_cas-là', 'auteur_dramatique', 'emissaire', 'euro_2016', 'févettes', 'best-sellers_dont', 'incriminé', 'lpm', 'wang', 'routières', 'michel_rolland', 'stevia', 'cessons', 'agro-_alimentaires', 'acquis_sociaux', 'balnéaire', 'saint-exupéry', 'engins_explosifs', 'draine', 'ti-punch', 'sauront_ravir', 'chocolat_testés', 'ganache_noire', 'sensationnel', 'malentendus', 'transition_vers', 'communauté_nationale', 'existentielle', 'extrémisme', 'pons', 'loy', 'manière_surprenante', \"s'_épanouissent\", '23_mars', 'uf', 'traînées', 'tempéraments', 'chapoutier', 'verser_500.000', 'zeste_cuisinons', 'schmidt', 'patois', 'transférez_-la', 'bouche-à-oreille', 'établissement_bancaire', 'meubler', 'interdiction_faite', 'pétain', 'troïka', 'créait', 'déficit_budgétaire', 'dive_bouteille', 'astier', 'polytechnicien', 'savennières', 'appris_jeudi', 'suprématie', 'hsbc', 'merchandising', 'boîte_contenant', 'sa_dignité', 'officient', 'mégapixels', '1ers', 'lactalis', 'jus_gentium', 'nouveau_look', 'limé', 'cameras', 'obligations_européennes', 'évocateur', 'pictogramme', 'second_mandat', 'tv5', 'crépinette', 'infailliblement', 'suffrage_universel', 'tracasseries', 'propulsé', 'six_mille', 'ningxia', 'aplatit', 'succès_garanti', 'portefeuilles', 'compulsion', 'anatole', 'lancé_jeudi', 'sanofi', 'bordier', 'aide_juridictionnelle', 'juridictions', 'radioactives', 'ayant_perdu', 'cajun', 'servez_-le', 'vile', '460', 'gms', 'persistent', 'collecté', 'adjuvants', 'compterait', 'tsahal', 'fouilles_archéologiques', 'prudente', 'sous-lieutenant', 'kim_jong-un', 'idoines', 'corrigez', 'exercice_2011', 'demi-gousse', 'composez_votre', 'affronté', 'véreux', 'apremont', 'ethique', 'chypriote', 'manne_financière', 'électoraux', 'impact_social', 'théologien', 'locative', 'fins_militaires', 'communautés_religieuses', 'communauté_éducative', 'remplacée', 'parlements', 'retranché', 'charal', 'groupe_fininvest', 'santons', 'réinstaller', 'mazout', 'reversent', 'instrumentalisent', 'commentées', 'diatribe', 'mi-décembre', 'gérées', 'obstétricien', '590', '194', 'didactiques', 'dictées_par', 'baudouin', 'mêlent', 'labours', 'bibliothèque_nationale', 'grattées', 'belfort', 'vieilles_outres', 'se_rompent', 'nikola_karabatic', 'the_guardian', 'éliminée', 'vergne', 'jeunes_pilotes', 'lichtenstein', 'dirigés', 'divergence', 'prônent', 'saint-gobain', 'arômes_floraux', '4e_place', 'enrobages', 'biscuit_croustillant', 'sollicitée', '19_h', 'atmosphères', '12,5_%', 'ambiance_cosy', 'se_concentrent', 'nouvelles_miscellanées', 'joyeux_fourre-tout', 'râs_el-hânout', 'capitaine_nemo', '19e_siècle', 'fernandel', 'certains_chercheurs', 'moyens_nécessaires', '2,2_milliards', 'gouvernement_allemand', 'indexés', 'procédure_pénale', 'lenoir', 'soigneusement_sélectionnés', 'croustades', 'millésimés', 'pascal_caffet', 'déficits_publics', 'décelé', 'lopin', 'surréalistes', 'ce_niveau-là', 'pillards', 'péages', 'rouget_barbet', 'pesos', 'farc', 'être_résolue', 'dispositif_permettant', 'jaurès', 'faillir', 'sont_incapables', 'discipliné', 'sud-coréens', 'recapitalisation', 'compensées', 'mahmoud_abbas', 'depuis_1967', 'henri_ii', 'groupés', 'hidden', 'hospice', 'meccano', 'as_monaco', 'assureurs_ont', 'contant', 'dictatures', 'eurogroupe', 'chercherait', 'apposée', 'sources_concordantes', 'dépassées', 'leurs_faces', 'tiendront', 'amatrices', 'pasteurs', 'astreint', 'disséminées', 'protestant', 'sally', 'instrumentalisé', 'ufc-que_choisir', 'amnistie', '0,2', 'autres_sociétés', 'bûche_glacée', 'bitcoins', 'djihadiste', 'compensée_par', 'xvie', 'réglette', 'certains_fromages', 'disciplinaire', 'mesures_fiscales', 'postérieure', 'admissibles', 'poule_moelleuse', 'pique-nique_amélioré', 'écrivit', 'optent', 'proces', 'achevées', 'prestation_compensatoire', 'affermir', 'informations_pertinentes', 'insatisfaction', 'expedia', 'fiducie', 'basse_saison', 'drachme', 'flore_intestinale', 'organisme_vivant', 'revivifiable', 'ensemencer', 'bonnes_bactéries', 'vitamine_b6', 'riboflavine', 'niacine', 'b8', 'biotine', 'acide_folique', 'étaient_venus', 'diocésain', 'évasé', '10e_place', 'to-_do', 'porte-avions', 'démentie', 'participait', 'pierre_bergé', 'anarchistes', 'edouard_vii', 'caractérisée_par', 'ministère_français', 'colonie_israélienne', \"s'_empilent\", 'salariés_concernés', 'rodage', 'wein', 'arya', 'cersei', '3,1_milliards', 'être_remboursés', 'enrobez_-les', 'raviolis_maison', '2,30_euros', 'frais_pressés', 'somme_record', 'ton_post', 'amateurisme', 'professionnalisation', 'ils_précisent', 'fausseté', 'grands_chocolatiers', 'bourguignons', 'école_hôtelière', 'effectives', 'parsemez_-les', '1909', '2,7_millions', 'transportées', 'concernaient', 'cnaoc', 'trempez_-les', 'convoqué', 'euros_ttc', 'audois', 'stipulant', '3.500_euros', 'abritent', 'synchronisé', 'xavier_bertrand', 'bongo', 'impriment', 'royaume_uni', 'structurées', 'abaissé', 'sureau_noir', 'nautique', 'concédant', 'tacite', 'conservation_optimale', 'william_ledeuil', 'doctorat', 'jacquet', 'valeur_nutritionnelle', 'clerc', 'octobre_2011', \"christie_'\", '4,3', 'givre', 'bonnes_vieilles', 'basalte', 'volutes', 'méritant', 'produits_bios', 'nutriment', 'entonner', 'thiers', 'critiquée', 'delmas', 'démontrées', 'échalas', 'haute_vitesse', 'garam_massala', 'soutien_financier', 'verser_300.000', 'numérisés', 'martinière', 'zélés', 'immoral', '1.800', 'matières_fécales', 'broyez', 'rana_plaza', 'apparentes', '33_millions', 'moscovite', '000_mètres', 'meurette', 'challans', 'clôt', 'quarante-huit_heures', '6,25', 'dacquoise_noisette', 'prête-nom', 'traducteurs', 'inc', 'cane', 'mamelles', '1,7_million', 'cet_amendement', '26e', 'infructueux', 'sarkozystes', 'néron', 'chair_humaine', '2-3_cm', 'obéi', 'démesurées', 'administration_proposera', 'exercice_écoulé', '1,10', 'frauduleux', 'personnes_déplacées', 'décision_prise', 'barèmes', 'taux_horaire', 'quotidien_turc', 'xxe', 'sans_chichi', 'politiques_publiques', 'cartilages', '0,1_%', 'investisseurs_étrangers', 'règlementaire', '4,5_millions', 'greenspan', 'laminé', '1904', 'terres_agricoles', 'caucase', 'processions', 'circulé', 'vieux_continent', 'renoncerait', 'ophélie_neiman', 'mannele', 'galice', 'gordon_ramsay', 'août_2015', 'ez', 'calamités', '13_mars', '4.1', 'premiers_signes', 'cotisations_annuelles', 'trublion', 'échalote_finement', 'rémunération_annuelle', '236', 'entre-deux', 'anticipant', 'alémanique', '210_millions', 'ausone', 'premier_exportateur', 'hâtifs', 'rvf', 'vinificateur', 'verser_1.000', 'chardon', 'intérêt_national', 'tropisme', 'hospitaliers', '211', 'ayants_droit', 'municipaux', 'roland-garros', 'mascottes', 'droits_fondamentaux', 'conçoivent', 'associatifs', 'émissaire', 'pétroliers', '240_millions', 'préalables', 'se_superposent', 'monde_musulman', 'raoul', 'exportateur_mondial', 'titre_informatif', 'belcolade', 'journalier', 'ipsos', 'fictive', 'mutualité', \"s'_écrie\", 'résistait', 'addictions', 'baptisés', 'éminents', 'besogneux', 'pigeon_rôti', 'sa_propension', 'sont_vinifiés', 'mono-_cépage', 'pressoir_pneumatique', 'consentis', 'pratiquaient', 'vingt-huit', 'duos', 'bande-son', 'bibliothèque_musicale', 'carné', 'aloyau', 'réprobation', 'maintenez_-les', '1942', 'confrères', 'quelques_pluches', 'nous_lisons', 'cuisinent', 'dispersé', 'marxistes', 'flamandes', 'low_cost', 'restées', 'remboursée', 'démonstrateur', 'vod', 'abusifs', '0,5_%', 'volaille_rôtie', 'cintré', 'ensérune', 'impériaux', 'chaque_maillon', 'adorateurs', 'lombardie', 'pilori', 'alaouites', 'agités', 'indemnités_versées', 'différend', 'malaxe', 'caton', 'noyau_dur', 'organisation_terroriste', 'frise_chronologique', 'place_beauvau', 'fortement_augmenté', 'valeurs_suivies', '2,9_%', '3.331,29_points', 'menaces_militaires', 'nord_étant', 'fortes_inquiétudes', 'confiner', 'huit_cents', 'stipulent', 'hauts_dirigeants', 'humiliés', 'aux_piétons', 'héraut', 'anhydride_sulfureux', 'eglise_catholique', 'défaillir', 'nous_profitons', 'beneficier', 'conges', 'dégressive', 'embellie', 'confluence', 'présentée_avec', 'mets_raffinés', 'nos_kits', 'perplexité', 'william_chan', 'tat_chuen', 'jean-paul_rocher', 'éd._)', 'rédhibitoire', 'analyste_chez', 'acharnés', 'parachever', 'rehaussés', 'réinterprétation', 'conflit_israélo-', 'rabats', 'general_motors', 'marie-josée', 'compte_bloqué', '610', 'spéculatifs', 'impérialistes', 'artisan_boulanger', 'érigées', 'claret', '430', 'chassés', 'caporal', 'mutualisation', 'fausse_route', 'fatah', 'tsipras', 'salpicon', 'détérioration', '4,5_milliards', 'prérogatives', 'interministérielle', 'nouvelles_responsabilités', 'multinationale', 'brevetée', 'contextualiser', 'agrégé', 'conséquence_directe', 'dgse', 'louis-philippe', 'bosnie-herzégovine', 'pizzas_surgelées', 'septembre_2015', 'imbroglio', 'intérêts_économiques', '512', 'effet_secondaire', 'crif', 'scandinavie', 'couve', 'fondements', 'leroux', 'marcelin', 'tassement', 'grands_producteurs', 'avarie', 'moindres_frais', 'autres_secteurs', 'puy-de-dôme', '98_%', 'reprise_économique', 'communiqué_final', 'résines', \"s'_efforcer\", 'thomson', 'serait_-elle', 'bouleversements', 'cinq_mille', '@outlook.fr_au', ':_jacquesbesselievre', 'mail_complet', 'trentenaires', 'ritournelle', 'généreux_donateurs', 'feijoada', 'généralisation', 'multipliée_par', 'but_lucratif', 'lésée', '28_avril', 'authentifier', 'recommencent', 'état-major', 'stratèges', 'aiea', 'tradition_culinaire', 'hébergeurs', 'parti_radical', 'délivrés', 'google_books', 'se_rebiffe', 'maraîchers', 'fragilisée', 'tonnelet', 'sera_versée', 'ben_bernanke', 'dernière_nouveauté', 'xavier_niel', 'finnois', 'siège_kilomètre', '(_rsko', 'hors_change', 'courgettes_farcies', 'verser_1,3', 'entregent', 'entachées', 'revendiquée', 'lâcheté', 'extrêmement_difficile', 'chatoyante', 'protestantisme', 'enterrée', 'exhibent', 'requalification', 'chevron', 'exogène', 'lacan', 'seychelles', 'glacez_-les', 'convaincants', 'noir_mat', 'rupert_murdoch', 'nécessités', 'radiations', 'ratifier', 'court-métrage', 'entraves', 'petites_gorgées', 'épaves', 'petro_porochenko', 'apôtre_paul', 'production_agricole', 'laiteries', \"s'_accordera\", 'vie_humaine', 'envoyé_spécial', '3.000_euros', 'guingamp', 'imposture', 'conservatisme', 'cellules_souches', 'quatre-vingts', 'chez_lidl', 'fondations_douteuses', 'chez_leclerc', 'président_russe', 'cet_élan', 'bécane', 'gouvernement_américain', 'interviewés', 'néolibéralisme', 'bva', 'coutumiers', '1888', 'europe.', 'assignée', 'fichage', 'reconduite', 'sous-vide', 'enfler', '+3', 'claudie', 'beaumont', 'consigner', 'tiraillements', 'contiendrait', 'mentionnent', 'force_india', 'verstappen', 'complétera', 'accordés_par', 'patriciens', 'apicius', 'paons', 'pain_trempé', 'syndicale', 'soins_médicaux', 'milieu_hospitalier', '1896', 'a_renchéri', 'sa_fiancée', 'goldman_sachs', 'a_exhorté', 'aide_promise', 'notre_contributeur', 'angoissant', 'biens_sociaux', 'toute_impunité', 'ars', 'émergentes', 'pcb', 'réchauffées', 'géologie', 'identifiables', 'trois_phases', 'intendant', 'guéret', 'attribuent', 'cerdon', 'trente_dernières', 'oursin', 'effet_inverse', '150.000', 'journaliste_charles', 'enderlin', 'vénézuélien', 'démarrant_par', '3,3_millions', 'mainstream', 'abrogation', 'audaces', 'coutent', 'non_contents', 'seconde_édition', 'verriers', 'puissions_-nous', 'texture_fluide', 'énergie_atomique', 'islamo-', 'personnes_physiques', 'langue_anglaise', 'continent_européen', 'amboise', '1878', 'reconnaissance_vocale', 'cépage_chardonnay', 'patrimoine_national', '3-4_min', 'progressent', 'démocratiquement', 'matelots', 'bues', 'zone_industrielle', 'société_éditrice', 'siné', 'télévisuelle', 'aux_manettes', 'boulangerie-pâtisserie', 'honnête_homme', 'mondialisé', 'laïc', 'progressistes', 'brassez', 'poivrade', 'riens', 'épousant', 'rigidité', 'interlude', '-elle_applicable', 'vénézuéliens', 'président_sortant', 'crème_budwig', 'assujettie', 'commandos', 'sont_confrontés', 'ryanair', 'organismes_sociaux', '143', 'crds', 'licence_restaurant', 'barclays', 'planent', 'office_international', 'condamnés_solidairement', 'johnson_&', 'aéronautiques', 'fraudeurs', '1908', 'vacuité', 'cazenave', 'ses_ancêtres', 'rougui_dia', 'guy_martin', 'chacun_exécute', 'frictions', 'hypothécaire', '0,7_%', 'raccourcir', 'recadrage', 'discrédit', 'jean-vincent_placé', 'financée', 'étudiant_doit', 'reversées', 'octroyer', 'rotatives', 'pernod', '75°', 'capa', 'ltd', 'orchestrée_par', 'partial', 'graffiti', '21_avril', 'monceaux', 'circonstances_actuelles', 'bollinger', '4,5_%', 'confitures_artisanales', 'jeunes_consommateurs', 'cobayes_humains', 'actionnez', 'troisième_millénaire', 'sky_news', 'bruce_toussaint', 'afd', 'tribuns', 'pinardiers', 'médicinale', 'kalachnikov', 'demi-pomme', 'confidentiels', 'aliénation', 'docte', 'bas-reliefs', 'committee', 'grands_pâtissiers', 'pyrénées-atlantiques', 'aurélie_filippetti', 'état_islamique', 'décentes', 'caractérisant', 'adjoints', \"m'_bala\", 'échiquier', 'pays_voisins', 'infiltrations', 'mêmes_effets', 'ministre_socialiste', 'crosnes', 'ambiance_festive', 'militent', 'bricolé', 'prestations_sociales', 'trombone', 'dernier_virage', 'projetés', 'déployées', 'grenadiers', 'nouveaux_maîtres', 'insistent', 'anisé', 'pécuniaires', 'impressionnés_par', 'escortée', 'yannick_alléno', 'rachats', 'soucieuses', 'bémols', 'charles_ii', 'idéalisme', 'm._fillon', 'libé', 'chancellerie', 'disposaient', 'évaluant', 'grimpé', 'factices', 'griefs', 'volontés', 'corollaire', 'bureau_national', 'sinueux', 'potiers', 'crémation', 'coopératifs', 'accoler', 'basse-cour', 'résumée', 'events', 'étude_menée', 'préfectures', 'universalisme', '38e', 'iconiques', '75.000', 'rebaptisé', 'plaisirs_gourmands', 'merrill_lynch', 'toqués', 'armateurs', 'bmc', 'bourget', 'malaisienne', 'avons_rajouté', 'pfizer', 'amora', 'lanvin', 'ardéchoise', 'fin_juin', 'assignation', 'rhone', '5-3', 'activisme', 'laptop', 'passe-passe', 'magret_fumé', 'volet_croissance', 'hachette_pratique', 'jdd', 'nous_subissons', 'se_bornent', 'simplissimes', 'dérivatif', 'allocation_chômage', 'pratiques_commerciales', 'ainsi_obtenues', 'chalosse', 'émulation', 'acidification', 'acidifiant', 'finesse_aromatique', 'vice-premier_ministre', 'bloc-notes', 'rougeole', 'hypothécaires', 'héroïsme', 'ligue_internationale', 'renversement', 'herbes_ciselées', 'goût_exquis', 'comptabilisé', 'plaque_tournante', 'infectée', 'dubitatif', 'populistes', 'infamie', 'cartels', 'aménagés', 'hérités', 'intérêts_nationaux', 'issa', 'résultats_obtenus', 'matza', 'indécents', 'curie', 'toupargel', 'paprika_doux', 'minutesingrédients', 'divisées', 'mi-avril', 'engagement_social', 'marqueur_social', 'consensuelle', '45.000', 'ferroviaires', '2,8_millions', '600.000', '1885', 'latines', 'cidre_fermier', 'trou_normand', 'ovins', 'mot_grec', 'vache_folle', 'déformée', 'malfaiteur', 'convertissent', 'marc_sibard', 'apartheid', 'hectolitre', 'réfrigérées', 'avait_affirmé', 'pablo', 'soral', 'champs_électromagnétiques', 'grandes_tablées', 'phytothérapie', 'menu_spécial', 'indication_géographique', 'recherche_agronomique', 'législatifs', 'cet_agrume', 'kerdrel', 'économie_européenne', 'fromages_affinés', 'avoine_biologique', 'vol-au-vent', 'pétrochimie', 'marks', 'terroirs_français', 'ressortira', 'guérini', 'legere', 'dubois', 'strasbourgeois', 'verser_15.000', 'saint-étienne', 'non-_conformité', '0,45', 'sortants', 'maisondu_même', 'certains_ajoutent', 'bouchez', 'poursuivent_leur', 'édifiant', 'aux_gendarmes', 'synthèses', 'contractuel', 'couscous_royal', 'coauteur', '73_%', 'creusant', 'presse_américaine', 'hc', 'territoriaux', 'confirmées', 'perfidie', 'juin_2014', 'tiaré', 'crêpe_dentelle', '18ème_salon', 'très_prisée', 'allégorie', 'wedding_cake', 'opérateur_free', 'csa_compte', 'télévision_connectée', 'filatures', 'fine_pellicule', 'dahl', 'ressources_numériques', 'distillée', 'produit_suivant', 'pressing', 'formidable_opportunité', 'action_gouvernementale', 'g.', 'shield', 'adouci_par', 'strate', 'product', 'intérêts_privés', 'baronnies', 'communication_politique', 'flandres', 'excèdent', 'associations_parties', 'primat', 'dossier_prouvant', 'assassiné_alors', 'il_collaborait', 'pressez_-le', 'inhabituelles', 'mesurera', 'verser_80.000', 'religion_musulmane', 'réinventé', 'dernier_opus', 'michel_guérard', 'cazeneuve', 'violences_contre', 'faux_oeil', 'salariés_licenciés', 'réinjecter', '60.000_euros', 'petits_pâtés', 'jouyet', 'javier', 'vont_adorer', 'candidat_républicain', 'zone_géographique', 'petite_arvine', 'travail_temporaire', 'adecco', 'manpower', 'entente_illégale', 'mixité', 'graduée', 'tourin', 'faire_chabrot', 'amnesty_international', 'raisonnements', 'maillard', '12g', 'version_officielle', 'apparues', 'combustible_usé', 'prédisposition', 'rafting', 'track', '4×4', '5,50', 'remettait', 'armoricaine', 'mécanisme_européen', 'roussi', 'confiserie_industrielle', 'jury_composé', 'succombez', 'colonnata', 'activite', 'déjà_acquises', 'kurdistan', '44_%', 'mesurées', 'jean-pierre_coffe', 'mattei', 'expertiser', 'collatéral', 'stéréotypé', 'rivages', 'déraisonnable', 'nous_estimons', 'encouragements', 'toulonnais', 'décence', '54_ans', 'affine', 'mû', 'portuaires', 'tarte_bourdaloue', 'rôtit', 'accepteraient', 'haute-garonne', 'abou_dhabi', 'celles_existantes', 'bâties', 'socles', 'assure_-t-elle', 'chancelière', 'joinville', 'mécaniciens', 'hémorroïdes', 'limande', 'leurs_responsabilités', 'anchoïade', 'montauban', 'vox', 'structurent', '297', 'réutilise', 'action_consistant', 'godiveau', 'plaignantes', 'davies', 'contre-productive', 'bataille_juridique', 'été_élu', 'pulse', 'monbana', 'suresnes', 'rutabagas', 'exécutoire', 'ferries', 'paraphraser', 'aviser', 'focale', 'marginalisation', 'sunnite', 'thierry_marx', 'initiateur', 'vous_semblez', 'parsemez_-en', '130_milliards', 'dette_grecque', 'générée', 'productifs', 'radicalité', 'je_maintiens', 'storytelling', 'estimatif', '6-4', 'tommettes', 'château_pape', 'allait_devoir', 'sans_omettre', 'saint_thomas', 'wakamé', 'recette_réconfortante', 'repensée', 'américain_john', 'positionnées', 'touche_glamour', 'consommation_quotidienne', 'cardiovasculaire', 'chômage_partiel', 'enveloppante', '1,6_million', 'gdf', 'body_shop', 'basf', 'burger_végétarien', 'posologie', 'ive_siècle', 'ère_chrétienne', 'botrytis', 'rechigne', 'remodeler', 'grille_géométrique', 'équipant', '1_berlingot', 'ramenées', 'créancier', 'avant_j.-c.', 'barattage', 'engageante', 'interrogée', '578', 'ontologique', 'perret', 'énarque', 'eurozone', 'brève_présentation', 'chaîne_qatarie', 'leurs_pères', 'non_alcoolisée', 'éminence', 'premiers_ministres', 'succédané', 'lipig', 'décanté', 'cèpe', 'faire_reculer', 'déchets_végétaux', 'argent_comptant', 'clinquant', 'hautes_études', 'bananes_caramélisées', 'viandes_hachées', '1926', 'nombreuses_distinctions', 'simultanée', \"s'_émanciper\", 'régies', 'rapatriés', 'irresponsabilité', 'enseignants-chercheurs', 'correspondra', 'falerne', 'propulsion', 'abat-jour', 'déconnexion', 'guérin', 'finesses', 'saveur_fruitée', 'tanger', 'tonne_kilomètre', '(_rtko', 'mollo', '26_mars', 'mourut', 'troisième_rang', 'apprendrez', 'hautes-pyrénées', 'subalternes', 'spéculations', 'téléphones_mobiles', 'originellement', 'débiteurs', 'beaujeu', 'non_pasteurisé', '740', 'constats', 'ils_appartiennent', '1,50_euro', '11_janvier', 'evernote', 'acheminés', 'sont_confectionnés', 'cacaotées', 'découvreur', 'profanes', 'brestois', 'amérique_centrale', 'cochonnailles', 'saccage', 'pondérée', 'fractionnement', 'repas_halal', 'petrobras', 'instruit', 'pharmacopée', 'nonchalant', 'pistage', 'démenti', 'raconte_-t-elle', 'compiler', 'ils_essaient', 'netanyahu', 'studies', 'molécules_présentes', 'multipliées', 'dalat', 'mogettes', 'baratter', 'on_obtiendrait', 'comparaisons', 'célébrait', 'début_décembre', '88_%', 'se_tiendront', 'dumping', 'irfm', 'senna', 'hygrométrie', 'coenzyme_q10', 'dictés', 'kaolin', 'desserts_sucrés', 'recomposer', 'tenebrio_molitor', 'succincte', 'qualifiant', 'hebdomadaire_marianne', 'grand_dam', 'température_constante', 'orientée', 'bon_vieillissement', 'grandes_caves', '⇒', 'sont_soumises', 'aoc-aop', 'homologué', 'choisissez_-le', 'gageure', 'best_seller', 'açai', 'bidouillage', '1,40_euro', 'gouvernement_fédéral', 't2', 'ptolémée', 'exposent', 'se_retrouvaient', 'été_contacté', 'msi', 'quatrième_trimestre', '3,3_%', 'intelligible', 'moyens_humains', 'noisetier', 'synchronisation', 'régulé', 'complexe_militaro-', 'cambrai', '2.500', 'morgan_stanley', 'journaliste_spécialiste', 'oeuf_poché', 'étaient_parfaites', 'légalisation', 'logicielles', 'compétitives', 'mi-septembre', 'passeraient', 'frontaliers', 'mentales', 'terminaison', 'choucroute_crue', 'nkm', 'griffin', 'allégement', 'lit_-on', 'base_légale', 'décembre_2012', 'biscuit_croquant', 'bûche_composée', 'sens_commun', 'lao', 'radio_classique', 'salade_croquante', 'radiodiffusion', 'sodome', 'cicatrisantes', 'condamnés_mardi', 'dating', 'bauges', 'hure', 'amincissant', 'pneumatiques', '1660', 'alambics', 'fédérales', 'culture_populaire', 'parés', 'virginal', 'cécilia_sarkozy', 'libre_concurrence', 'nationalisation', 'sherlock', 'adoucissent', 'lot-et-garonne', 'transposable', 'sont_rassemblés', 'millésimée', 'décanteur', 'soyons_sérieux', 'taux_zéro', 'ferments_lactiques', 'hachez_-la', 'blé*', 'deutz', 'viande_halal', 'boisson_vitaminée', 'ni_conservateur', '7500', 'islam_ignore', 'saint-cyr', 'adouci', 'marque_repère', 'promis_juré', 'foisonnement', 'remplissez_-en', 'nommément', 'mi-août', 'dividende_stable', 'bombés', 'police_brésilienne', 'monstruosité', 'yéménite', 'rhône-alpes', 'coin_interne', 'leonidas', 'grands_événements', 'distilleries', 'mason_jar', 'montignac', 'simulée', '95°', 'mutage', 'titrer', 'morosité', 'ne_manqua', 'schengen', 'statutaires', 'cémoi', 'plongée_depuis', 'quartiers_populaires', 'séparatiste', 'calvi', 'dietrich', 'faisant_couler', 'bas_coûts', 'planifiez', 'surtaxe', 'fonds_propres', 'restructurer', 'frauduleusement', 'conseil_supérieur', 'budget_général', 'hasardeuse', 'nouvel_iphone', 'voip', 'est-ouest', 'profilés', 'ridiculement', 'aux_liquidateurs', 'christiane_taubira', 'sauf_erreur', 'grimoires', 'adjugée', 'wizzgo', 'interparfums', 'homologuée', 'chocolate_bar', 'théine', 'groupé', 'ce_prix-là', 'ils_refusent', 'secrétaire_national', 'banderoles', 'assistée', 'chômage_technique', 'loi_prévoit', 'conventions_collectives', 'attique', 'dérangeant', 'dissuasif', 'augmenter_progressivement', 'parc_social', 'missionnaires', 'omelette_norvégienne', 'cézanne', 'easyjet', 'casernes', 'lovastatine', 'modulaires', 'news_of', 'promptitude', 'grotesques', 'fendus', 'auxquels_venaient', 'nouveaux_albums', 'sainte-menehould', 'querelleur', 'étaient_censés', 'statu_quo', 'nocivité', 'hydratation_optimale', 'tribunal_fédéral', 'poulet_frit', 'finirez', 'réinvestir', 'qui_explore', 'tressées', 'transportaient', 'recette_bistrotière', 'signée_franck', 'ghislain', 'cacahuètes_nature', 'détachement', 'boko_haram', '219', '\"_label', 'quatre_siècles', 'agacement', '10°c', 'supervise', 'entonné', 'barry_callebaut', 'léonidas', 'petite_minorité', 'reconduction', 'surproduction', 'impacter', 'révélatrice', 'isolation_thermique', 'dialogue_social', 'organisations_patronales', 'br_/', 'antagonisme', 'faire_émerger', 'ils_prendront', 'informations_confidentielles', 'yao', 'paca', 'communication_efficace', 'isidore', '60_mètres', \"s'_insurge\", 'précité', 'manichéisme', 'vautré', 'président_françois', 'chromée', 'dernières_élections', 'doublées', 'meilleure_performance', 'enjoignant', 'pavée', 'dévaluation', 'donetsk', 'visegrad', 'société_chargée', 'décembre_2014', 'développeurs_ont', 'bayern_munich', 'celles_prévues', 'verser_40.000', 'arrêt_rendu', 'saint-mont', 'marciac', 'saveurs_exotiques', 'notes_boisées', 'secteur_financier', 'transparence_totale', 'menacées', 'empire_romain', 'ubs', 'sucres_naturels', 'légumineuse', 'saxophoniste', 'était_élue', 'mossoul', 'éducatifs', 'travail_dissimulé', 'arrêt_consulté', 'alternateur', 'circulant', 'magistralement', 'actifs_hydratants', 'défendues', 'chargeait', 'chai_latte', '26_février', 'convenues', 'fractionner', 'créteil', 'nt', 'raciaux', 'réactive', 'officieux', 'préservée', 'redorer_son', 'utilisatrice', 'humainement', 'future_réforme', 'exercice_2010', 'instruits', 'insiste_-t-il', '0,25', 'conduisaient', 'armée_syrienne', 'décembre_2010', 'multiples_façons', 'touttes', 'ingère', 'renouvellent', 'lithium', 'dynamo', 'pécuniaire', 'personne_physique', 'présenté_officiellement', 'parrainages', 'parrainages_\"', 'adroitement', '258', 'haineuses', 'pollutions', '405', 'valéria', 'se_distrayant', 'martyrisant', 'pseudos_spectacles', 'barbarie_inouïe.iquenous', 'fassions_partis', 'chaine_alimentaire', 'fait_indéniable', 'gégétariens', 'multiple_raisons', 'maitenant_je', 'ne_blâme', 'être_carnivore', 'guère_aisé', 'changerje_vous', 'hublots', 'majorer', 'droit_commun', 'rapporteurs', 'leurs_réflexions', 'gaec', 'fulda', 'démanteler', 'trop-plein', 'formulées', 'individualisée', 'incarcérés', 'systèmes_judiciaires', 'chiffrement', 'généralité', 'émouvants', 'travaillera', 'plot', 'se_concrétise', 'très_chaleureusement', '1822', 'coloniales', 'dimanche_après-midi', 'chantres', 'recherches_scientifiques', 'aïd', 'cantine_scolaire', 'accueillait', 'enfants._»', 'anti-_inflammatoires', 'ces_allégations', 'schématique', 'etat_palestinien', 'argué', 'assimilable', 'windows_8', 'mousquetaires', 'requérants', 'hôtel-dieu', 'encaissés', 'stanford', 'fusillés', 'définissez', 'inapplicable', 'bourses_européennes', 'repris_mardi', 'carruades', 'djinn', '1à_2', 'erroné', 'certains_médicaments', 'agricultrice', 'autorités_chinoises', 'cakes_salés', 'vous_craquerez', 'dérèglement', 'cumulés', 'cftc', 'huppés', 'basile', 'bouteilles_consignées', 'astronomiques', 'météorologiques', 'beau_fixe', 'fragilisé', 'avait_disparu', 'serfs', 'semi-complète', 'micronutriments', 'céréalières', 'fournissaient', 'cardes', 'études_cliniques', 'rotules', 'graissage', 'typologies', 'ceo', 'goji_bio', 'magazine_fou', 'boisées', 'prochain_numéro', 'investisseur_ne', 'percevra_pas', 'welsh', 'attaquez', 'grand_rabbin', 'importants_changements', 'tu_achètes', 'muter', 'bactéries_lactiques', 'impopularité', 'vous_arriverez', 'herzog', 'maillet', 'catéchisme', 'chefs_cuisiniers', 'enseignantes', '39_%', '61_ans', 'dégustation_attentive', 'préférentielle', 'redondant', 'ultra_efficace', 'plébiscitée_par', '316', 'périphériques', 'plus_subtils', '5,2', 'jean_jaurès', 'tarte_sablée', 'meringués', 'personne_désignée', '1862', 'insérée', 'prolongent', 'barbue', 'très_appétissante', '.pdf', 'gouvernement_britannique', 'tarir', 'kasha', 'émulsion_coco', 'pavlovas', 'passette', 'constituerait', 'havana_club', 'doivent_-ils', '32_millions', '17ème_siècle', 'désengagement', '000_soldats', 'rayonnent', '950.000_euros', 'consécutivement', 'condamnée_lundi', 'commentés', 'maladies_infectieuses', 'grilles_tarifaires', 'garants', 'figuratif', 'éclaircissante', 'bière_revivifiable', 'jus_cogens', 'nié', 'supplétifs', 'vos_posts', 'formels', 'masters_of', 'mondialement_connue', 'par_procuration', 'glissera', 'blocages', 'espace_consacré', 'immense_succès', 'organisera', 'cheptel', 'vieillards', 'suinte', 'modérées', 'gauchiste', 'belles_journées', 'observés', 'hygiène_alimentaire', 'transition_énergétique', 'urée', 'ante', 'oxydes', 'chartrons', 'chimérique', 'vioxx', 'déballez', 'astreintes', 'écot', 'pagination', 'ne_manqueraient', 'explicable', 'second_semestre', 'aller_au-delà', 'seul_avis', 'fins_utiles', 'auspices', 'résulter', 'taux_directeurs', 'métrage', 'omar_khayyam', 'donc_favorisé', 'fixations', 'générations_futures', 'journalistes_spécialisés', 'lhomme', 'testent', 'façon_significative', 'bordeaux_alain', 'fonctions_publiques', 'maladie_cardiaque', 'fast-foods', '9°', 'reconnaissance_faciale', 'mouvante', 'certaine_dextérité', 'enregistrant', 'spécification', 'étaient_présents', 'banques_américaines', 'travail_xavier', 'serait_votée', 'caracas_-', 'actes_terroristes', 'dosez', 'moins_4h', 'fruitier', 'panier_virtuel', 'caissons', 'jean-claude_pirotte', 'cultivaient', 'dédit', 'exigibles', 'tartinées', 'constantes', 'frises', 'parlons_maintenant', 'grand_veneur', '1872', 'faïences', 'démarqués', 'énergie_solaire', 'bonbonnières', '1636', 'papier_découpé', 'couplées', 'affûté', 'tyrell', 'décapante', 'dufour', '|_0', 'appareillage', 'juillet_2011', 'frauduleuses', 'louis_xviii', 'protestation', 'sauce_réduite', 'discorde', 'légumes_primeurs', 'reclus', 'escouade', 'fabricant_mondial', 'kidnappés', 'ont_justifié', 'diffamation_systématique', 'impôt_foncier', 'orientez', 'echelle', 'médian', 'tutorat', 'télécommunication', 'visioconférence', 'neuronale', 'glow', 'détecté', 'ile_rousse', 'controverses', 'simulé', 'seules_certaines', 'mieux_cibler', '520', 'dédommagement_moral', 'bibliques', 'produits_raffinés', 'verser_8.000', '7.000_euros', 'encombrement', 'grolleau', 'servez_-la', '18_octobre', 'patrimoines', 'intérêts_communs', 'inhérent_aux', 'idéologues', 'nord-coréens', 'récupérons', 'cyclique', 'lepaon', 'contaminée', 'revêtements', 'loués', 'tyrion', 'support_publicitaire', 'bas_coût', 'métayers', 'salaire_horaire', 'éventuel_nouveau', \"n'_interviendront\", 'indiqué_lundi', 'jeroen_dijsselbloem', 'autorités_grecques', 'paradoxe_français', 'régime_crétois', '7_nov', 'présidentielle_américaine', 'lavement', 'chartres', 'disparaîtront', 'qui_existaient', 'milieu_scolaire', '-_eplucher', 'caramélisent', 'serge_renaud', 'déroulent', '52_millions', 'drapeau_français', 'cardons', 'barre_latérale', 'rétorqué', 'sociaux-démocrates', 'social-démocratie', 'saint-nazaire', '300.000_dollars', 'grande_mosquée', 'communauté_musulmane', 'postes_supplémentaires', 'progressif', 'étatique', 'expiration', 'soin_apporté', 'bénédictins', 'photobooth', 'crurent', 'anticommuniste', 'agréments', 'affects', 'food_truck', 'saint-sacrement', 'aurier', 'da_silva', 'entreprises_publiques', 'verser_2.500', 'services_administratifs', 'se_démocratise', 'roya', 'calibre_moyen', 'poudrés', 'cabillaud_blanchi', 'pigeonneau_rôtie', 'trois_prouesses', 'marines_prodigieuses', 'assiette_carnée', 'croquant_terreux', 'ping-pong_entre', 'velours_aigrelet', 'brocoli_sauvage', 'réinterpréation_brillante', 'enfants_italiens', 'bouillon_fumé', 'délicate_gelée', 'olivier_souhaite', 'arwen', 'aventure_décoiffante', 'beau_comptoir', 'décor_sépia', 'lustres_art', 'parquets_bruts', 'murs_décapés', 'ignacio_mattos', 'redoutable_chef', 'uruguayen', 'tartines_explosives', 'flesh', 'blague_auquel', '29_novembre', 'décembre_2013', 'drian', '338', 'agneau_pascal', 'mobilier_urbain', '3,9_milliards', 'briguer', 'courtisanes', 'constitutif', 'jongler_entre', 'hédonistes', 'risques_naturels', '43_millions', 'position_dominante', '50.000_euros', 'codolet', 'inondation', 'destitution', 'chevauchement', 'patentés', '5-10', 'solvabilité', 'plats_régionaux', 'biosphère', 'assisterez', 'ôtez_-les', 'cd-rom', 'vous_gagnerez', 'boutiques_spécialisées', '7,8', 'printemps_arabe', 'guerre_économique', 'eux-aussi', 'tricherie', 'recensées', 'marchés_émergents', 'brioche_perdue', 'marcheurs', 'organisations_syndicales', 'engendrée_par', 'varois', 'agrémentant', 'poudrez_-les', '248', 'peut-être_pourriez', 'peins', 'ernst_&', '«_fantastik', 'carott_cake', 'pratique_quotidienne', 'nitrate', 'poitevine', 'merck', 'hébraïque', 'organisme_collecteur', 'octa', 'cent_vingt', 'thym_émietté', 'réaffirme', 'cellules_cancéreuses', 'gaming', 'croustillent', 'irrigue', 'successeurs', 'dispositions_législatives', 'leurs_passions', 'jérôme_despey', 'plats_industriels', 'enregistrent', 'dirigées', 'aux_cyclistes', 'annoncé_mercredi', 'après_vérification', 'cet_éventail', '800.000_euros', 'syndiqués', 'transition_écologique', 'frontale', 'contrôlez', 'déséquilibres', 'encarts', 'assentiment', 'lucratifs', 'xiaomi', 'anarchiste', 'pittoresques', 'pressez_-la', '1.700', 'néolithique', 'alistair', 'réserve_fédérale', 'laisse_entendre', 'système_financier', 'cet_écart', 'caractérisé', 'retransmis', 'contentez_-vous', 'majoré', 'prélevées', 'sémantiques', 'l´eau', 'appareils_mobiles', 'mandatés', 'convention_collective', 'sonoma', 'ademe', 'degrés_celsius', 'indiqué_vendredi', 'coût_total', 'induites_par', 'eurostar', 'anticancéreux', 'forage', 'crèmes_dessert', 'disjoncteur', 'mossad', '1799', 'messagerie_électronique', 'comité_international', 'dégagements', 'parentalité', 'cœur_coulant', 'imperméables', 'tradition_chrétienne', 'prêtrise', 'orangés', 'ses_aïeux', 'planteurs', 'françois_villard', 'terre_fondantes', 'seconder', 'moindre_goutte', 'galettes_fines', 'déclasser', 'cens', 'tursan', 'idées_préconçues', 'crypté', 'gauby', 'francfort_-', 'moteurs_truqués', '2014-2015', 'réhabilité', '1,9_%', '12.000_euros', 'anormales', 'raffineries', 'déficitaire', 'compensant', 'jimmy_choo', '4,4_%', 'montagny', 'citigroup', 'philippe_karsenty', 'décision_rendue', 'toys', 'siemens', 'journée_mondiale', 'gmt', 'aspirateurs', 'indique_donc', 'centrées_sur', 'diversifie', 'sont_priés', 'pays_émergents', 'spammeurs', 'search', '5,4', '18°', 'verser_1,33', 'nos_épinards', 'observée_depuis', 'élections_départementales', 'ont_violé', 'concourant', 'rendue_publique', 'holdings', 'club_med', 'jeunes_créateurs', 'leboncoin', 'latour', '90.000', 'certaines_villes', 'telecom', 'déjà_supprimés', 'désastres', 'parachutistes', 'rectorat', 'exchange', 'déchets_faiblement', 'quatre_blessés', 'indiqué_mardi', 'pib_américain', 'fsu', 'notent', 'contestable', 'tronquée', 'villefranche-sur-saône', 'éthiopien', 'chapiteaux', 'tipis', 'acétone', 'contrition', 'verser_1.500', '331', '09h00', 'normes_internationales', 'bénéficiera', 'se_conformer', 'banques_européennes', 'dommage_moral', 'quotient_familial', 'équipementiers', 'dissolvez', 'réaffirmant', 'bonbonnes', 'leurs_préoccupations', '57.000_euros', 'acquittés', 'abs', 'esp', 'frauduleuse', 'lisier', 'fonctionneront', '7.000', 'réutilisable', 'montant_exact', 'oncologie', 'balance_commerciale', 'vingt-sept', 'sécurité_informatique', 'nocives', 'millièmes', 'voilées', 'simultanés', 'schneider_electric', 'macintosh', 'normaliser', 'septembre_2007', 'fragilisées', 'parc_disneyland', 'singulièrement', 'profaner', 'basées', 'segmentation', 'val-de-loire', 'cordova', 'intégration_économique', '20_smic', 'emploi_supprimé', 'perçues_lors', 'raisins_récoltés', '1880', 'erdf', 'formelles', 'affirmées', 'conseil_fédéral', 'accéder_directement', 'toute_espèce', 'nantissement', 'vassaux', 'déduite', 'colombard', 'alain_soral', '11.000', 'valeur_refuge', 'opus_one', 'prescrite', 'tire-bouchons', 'sectionner', 'essuie-glaces', 'déchets_nucléaires', 'quels_outils', 'guidage', 'rbc', 'arthrite', '69_ans', 'avertisseur', 'media_center', 'drm', 'windows_media', 'cherté', 'apprête', 'incommensurable', 'lafite', 'exploitations_viticoles', 'qualités_nutritionnelles', 'déclaration_commune', 'réaumur', 'géorgienne', 'question_posée', 'tube_digestif', 'dextrose', 'levures_mortes', 'organiques', 'rotative', 'réglementation_française', 'viniflhor', 'cee', '710', 'pèlerin', 'atout_majeur', 'valorisée', 'sans_discontinuer', 'totalise', 'entreprise_américaine', 'anthracite', 'cafetier', 'version_mobile', 'aucune_contrepartie', '800.000', 'prêt_consenti', 'pénalise', 'juin_2015', 'condamnée_jeudi', 'traitement_médical', 'significativement', 'bureaucratiques', 'matériel_roulant', '708', 'google_earth', 'engie', 'instituant', '4,3_%', 'décombres', 'câblé', 'resserré', 'patrimoniaux', 'durée_minimale', 'coffrage', 'antiquités', 'consommateur_mondial', 'danao', 'hackers', '1.400', 'impérative', 'délégations', 'label_igp', 'notre_épicerie', 'protéique', 'of_scotland', 'institut_français', 'bloomberg', '930', 'cdt', 'pacte_budgétaire', 'statué', 'proclament', 'privatiser', '1.600', 'sommes_importantes', 'sujet_délicat', 'libre_circulation', 'polyéthylène', 'bag-in-box', 'cornue', 'largeurs', 'magimix', 'boursiers', 'tokaj', 'améliorent', 'izmir', 'plate-formes', 'x86', 'clarins', 'gdf_suez', 'charleville', 'délivré_par', 'clarence', 'gazprom', 'petites_surfaces', 'algues_vertes', 'niçoises', 'gouleyante', 'impurs', 'mont-saint-michel', 'gôche', '0,4_%', 'montant_initial', 'nombreux_voyages', 'relation_client', 'différents_formats', '2100', 'huiles_minérales', 'calculateurs', 'alcôves', 'auge', 'couteuse', 'voilée', 'vitaux', 'classées_par', 'fera_sensation', 'bill_clinton', 'ficelez', 'biscuits_croustillants', 'moussent', '1.200_euros', 'beurre_mou150g', 'aneth_ciselé', 'xiième_siècle', '93_%', 'chimiquement', 'pulmonaires', 'risque_grave', 'malaxage', 'gamme_aromatique', 'chavignol', 'epa', 'jihadistes', '1881', 'conflits_armés', 'jugera', 'magazine_féminin', 'hautes-alpes_par', 'parents_profs', 'caractère_exigeant', 'shake_baby', 'voilà_nopeg', 'cocon_bio', 'sonder', 'absolus', 'fruitières', 'meneau', 'cet_élixir', 'flacon_pompe', 'ex-aequo', 'être_réutilisés', 'employeurs_doivent', 'bourbonnaise', 'barrière_cutanée', 'sandale', 'comparaître', 'écran_lcd', 'pouvant_contenir', 'courbée', 'fidéliser', '60.000', 'pnc', 'asie-pacifique', '7,2_milliards', 'plus_marquante', '22.000', 'financés', 'technology', '242,4_millions', 'guide_pratique', 'atom', 'modifiera', 'oïdium', 'plus_prisés', 'janet_yellen', 'produits_végétaux', 'exercice_2014', 'surchauffer', 'a_gratifié', 'apostrophes', '137_millions', 'violée_par', 'winewoo', 'abusives', 'zirconium', 'juillet_2014', 'changement_radical', 'laroche', 'francs_suisses', 'nouvel_élément', 'fonds_destiné', 'principaux_producteurs', 'réjouissez', 'instaurée', 'observées', 'défectueuses', 'pip', 'certificateur', 'tüv', 'réseau_local', '3200', 'taux_fixe', 'a_bondi', 'jadot', 'hülkenberg', 'hrt', '8.000_euros', 'business_model', '2.800', 'valeur_totale', '35.000', 'applicant', 'endosser', 'divulgation', 'boisson_aromatisée', '311', 'bnvca', 'ama', 'caisse_primaire', \"s'_appuient\", '19_000', 'vhs', 'bases_solides', '80.000', 'montrons', 'manufacturiers', 'se_substituera', 'institution_financière', '287', 'burundi', 'augmentées', 'cédés', '141', 'ininterrompue', 'scannant', 'restaurations', 'dérobée', 'personnes_désirant', 'recyclées', 'petites_structures', 'levure_ajoutée', 'rda', 'premiers_résultats', 'en-dehors', 'après_déduction', 'valdonne', '46_millions', 'effort_supplémentaire', \"sotheby_'\", 'art_guy', 'avoir_soustrait', '711', 'pulvérisation', 'fonctionnalités_supplémentaires', 'lafarge', 'surplombe', 'serrage', 'kangoo', 'chocs_thermiques', 'approvisionne', 'orateurs', 'euros_dus', 'phosphates', 'se_transmettra', 'jal', 'exemption', '307', 'artus', '0,75', 'plat_typique', 'deuxième_trimestre', 'tendues', 'dégradées', 'amorçage', 'fonciere', '2010-2011', 'dernières_décennies', 'réservistes', 'personne_morale', 'emblèmes', 'prix_inférieur', 'défrayer', 'obligataire', 'satisfaites', 'substantiels', 'lufthansa', 'diffamatoire', 'sydney_-', 'a380', 'motors', 'système_informatique', 'mountain_view', 'percepteur', 'époque_romaine', 'températures_extrêmes', 'tokaji', 'superviseur', 'attendront', '5,8_%', 'honest', 'carillon', '747', '580', 'agriculture_française', 'consolidé', 'monopoles', 'remboursable', 'déconvenues', 'caoutchouteuse', '598', 'amp', 'mi-mars', 'pixma', '648_millions', 'sanglantes', 'niveau_mondial', 'laminoir', 'arômes_boisés', 'freinage', '17_janvier', 'institutions_publiques', 'rutilant', 'saint-louis', '1928', 'soft_drinks', 'chargent', 'chauffez_doucement', 'vieilles_pierres', 'fonds_alimenté', 'hegel', 'numéroté', 'adaptateurs', 'principaux_cépages', 'anthropologique', 'immense_talent', 'génome', 'brillamment', '1801', 'avant-dernier', 'ancien_pilote', 'sera_imprimée', 'assombrir', 'vanves', 'revenu_net', 'bredouille', 'argenteuil', 'ascq', 'articulation', 'microclimat', 'connaissances_acquises', 'détentrice', 'différentes_possibilités', 'volatils', 'nombreux_attraits', 'piloté_par', 'blog_torchons', 'succès_international', 'nutritionnellement', 'botaniques', 'activité_économique', 'bétonné', 'berlinoise', 'prestigieux_concours', 'revient_communément', 'réparent', 'harkis', 'affranchie', '35.000_euros', 'leurs_compatriotes', 'validées_par', 'preneurs', 'décadents', 'hydro-', 'subjectifs', 'mai_prochain', 'gigue', 'apa', 'présomptueux', 'éléments_essentiels', 'cérébrales', 'ad_vitam', 'accises', 'quelques_ajustements', 'faire_chuter', 'auréolé', 'seul_ingrédient', '15-20', 'contradiction_entre', '84_%', 'cette_modification', 'classifications', 'réponses_a', 'aides_financières', 'investisseurs_privés', 'hébergée', 'nombreuses_régions', 'sont_infinies', 'haute-loire', 'plutôt_satisfaisant', 'civilisation_occidentale', 'colonisés', 'effacement', 'restrictives', 'verser_765', 'institutions_financières', 'fiscalité_locale', '71_%', 'pays_hors', 'sans-gluten', 'exécutants', 'cs3', 'nous_poursuivons', 'blu-ray', 'respectueuses', 'lutte_antiterroriste', 'conservatrices', 'avariée', '283', 'branche_professionnelle', 'désignent', 'surnom_donné', 'préemption', 'réserve_opérationnelle', 'ajouteront', 'volume_total', 'cet_aspect-là', 'pampryl', 'nvidia', '535', 'rendre_obligatoire', 'ddos', 'albanaise', 'immatriculée', 'molex', 'personnes_appelées', 'se_forger', 'questions-réponses', 'estonie', 'indemnitaire', 'swarovski', 'syndicat_professionnel', 'nie_avoir', 'plaisantes', '25_hectares', '2,4', '81_%', 'vulnérables', 'qq_chose', 'patenté', 'wilton', 'prévaut', 'bergeries', 'hibernation', 'vieille_tradition', '760', 'dévaluée', \"s'_inscrivant\", 'fournisseur_officiel', 'quintaux', 'saint-andré', 'atp', 'home-cinéma', 'tribales', 'amincissante', 'assiettes_jetables', 'microsoft_word', 'zones_géographiques', 'marché_domestique', 'novembre_2008', 'chutneys', 'pilez_-les', 'psychiatres', 'filtrez_-le', 'olive_restante', 'émetteurs', 'pathogènes', 'innové', 'classement_général', 'pâtissons', 'rognon', 'cuissot', '120€', 'vrai_faux', 'suscitée_par', 'intérêts_étrangers', 'adjacents', 'jambes_lourdes', 'retournez_-la', 'nard', 'rendement_moyen', 'devenir_propriétaire', 'bécasses', 'réalisons', 'hospitalière', 'faire_redescendre', 'déroulées', \"s'_imprègnent\", 'goût_caramélisé', 'insignes', 'répartissez_-les', 'pression_exercée', 'enchantent', 'non_verbaux', 'atteignez', 'côtes_catalanes', 'étaient_destinées', 'acariens', 'aeration', 'délicieuses_gourmandises', 'véganisme', 'cochée', 'tout_bêtement', '250_calories', 'acidose', 'ils_constituent', 'd.', 'meilleures_années', 'comblera', 'baratté', 'blanchard', 'chocolatier_confiseur', 'torta', 'pecorino_romano', 'ouzbékistan', 'chercheurs_français', 'frangipanier', 'éprouvées', 'recommandables', 'sauce_gribiche', 'grande_régularité', 'calisson', 'cerises_amarena', 'feux_arrière', 'modelages', 'arts_culinaires', 'patronage', 'redmond', 'clcv', 'chameaux', 'architecturales', 'hottes', 'deux-tiers', 'société_canadienne', 'farine_périmée', 'acétate', 'sous-produit', 'affliction', 'vêtus', 'ouvrage_intitulé', '253', 'sig', 'édifié', 'crédits_immobiliers', 'sont_fixés', 'non-_concurrence', 'delacre', 'f.', 'commandeur', 'ina', 'sophrologie', 'concluez', '575', 'cultivateurs', 'réfugiés_syriens', 'jean-claude_mas', 'appliquait', 'soulagés', 'avoir_enregistré', 'banque_nationale', 'sommes_dues', 'transport_aérien', 'duper', 'longeant', 'frais_annexes', 'pérez', 'ariège', 'canne_fermenté', 'mobilisées', 'entraînera', 'feuilleton_judiciaire', 'occasionnelle', 'commentaires_précédents', 'assurance_vieillesse', 'rcs', 'incarnée_par', 'yak', 'diocèses', 'durcissant', '8,6', 's.a.', 'expulsés', 'position_géographique', 'american_airlines', 'qualités_gustatives', 'neurologiques', 'conciergerie', '0,35', 'année_écoulée', 'organisations_non-', 'packages', 'rfid', 'première_fournée', 'jours_précédents', 'documentés', 'couleur_jaunâtre', 'mixez_finement', 'enrôler', 'menace_terroriste', 'moto2', 'argument_commercial', '24_cartons', 'quatrième_fois', '›', 'groupe_jihadiste', 'moto3', '18°c', 'bethléem', 'inspirez_-vous', 'terriblement_gourmande', 'slalom', 'appétence', 'côté_acidulé', 'supporteurs', 'offensives', 'humidifiez', 'eduardo', 'bouquet_aromatique', 'saltimbocca', 'acidité_volatile', 'ducati', 'gilles_jacob', 'clarifiez', 'excavation', 'représenterait', 'ambrées', 'bouchage', 'vegemite', 'assyriens', 'cédrats', 'oxydé', 'sfp', 'partenaires_commerciaux', 'tamisage', 'glissez_-la', 'faisant_retomber', 'ouvrant_rapidement', 'rester_vigilant', 'aimee_bender', 'singulière_tristesse', 'hdl', 'on_citera', 'contre-indiqué', 'hypercholestérolémie', 'rafael_nadal', 'liner', 'excellent_complément', 'nouvelle_extension', 'nouilles_sautées', 'beaux_verres', 'infrarouges', '900_watts', 'modèles_économiques', 'émigrer', 'renseignements_obtenus', 'ces_balises', 'strictement_anonymes', 'par_virement', 'contrepartie_financière', '181', 'immobilisations', 'indigents', 'impression_3d', 'pel', 'soient_translucides', 'méthodes_traditionnelles', 'spécialités_gastronomiques', 'arrêtaient', 'héroïques', 'muids', 'contrat_aidé', 'concurrentielle', 'industries_alimentaires', 'préjudice_causé', 'valentino_rossi', 'y_ajoutaient', 'déserteurs', 'avortée', '6,3', 'souscrivant', 'conditions_nécessaires', 'possessions', 'concéder', 'hôtelière', 'silverstone', 'infaisable', 'nouveau_barème', 'régimes_autoritaires', 'technologies_avancées', 'standardisation', 'jardins_botaniques', 'hockenheim', 'espaces_naturels', 'parlait_encore', 'caritative', 'oculus', '“comment', '36_heures', 'rss', 'navigateur_web', 'carlin', 'réais_(', 'cagette', 'sont_parvenus', 'compétences_acquises', 'american_express', 'choux-fleur', 'délai_prévu', 'force_majeure', 'appellation_côtes', 'alain_brumont', 'résiduels', 'bouscassé', 'matière_dense', 'tyre', 'grande_intensité', 'reconnaissable_entre', 'dalva', 'couleur_rubis', '0,6_%', 'classant', 'ventozelo', 'haut-bailly', 'région_productrice', 'loupiac', 'porto_dalva', 'mout', 'pulpeux', 'porto_vintage', 'yves_lambert', 'gruaud-larose', 'monocépage', 'château_haut-brion', 'vin_fortifié', 'fortification', 'rieussec', 'température_comprise', 'badine', 'domaine_lafage', '50_hectolitres', 'appellation_coteaux', 'plongent', 'saint-emilion_grand', 'garantissant_ainsi', 'appellation_pauillac', 'cantemerle', 'derniers_millésimes', 'château_lafite', 'jolies_notes', 'légères_notes', 'grande_proportion', 'start-up_française', 'minna_vineyard', 'beauregard', 'grands_critiques', 'coteaux_champenois', 'mesurés', 'certain_art', 'amendée', 'vacqueyras', 'excellents_vins', 'mas_amiel', 'autodéfense', 'rétracter', 'millésime_2011', 'evêque', 'salines', 'château_lagrange', 'abruzzes', 'carafer_ce', 'conseil_européen', 'hexagones', 'distinguent', 'seconds_vins', 'belle_brillance', 'fera_merveille', 'mission_haut-brion', 'croissance_organique', 'anisés', 'attaque_puissante', 'château_marquis', 'janasse', 'camensac', 'trame_aromatique', 'septentrional', 'lynch-bages', 'moins_sept', '1688', 'différentes_sélections', 'pêches_blanches', 'fera_craquer', 'ribeauvillé', 'parcelles_situées', 'royal_navy', 'vingtième_siècle', 'langes', 'vendéen', 'allemagne_selon', 'principalement_composé', 'fraises_écrasées', 'achevant', 'domaine_bott-geyl', 'méridionales', 'bel_éclat', 'escarpés', 'xiv', 'dupré', 'arômes_tertiaires', '1834', 'équilibre_subtil', 'particulièrement_adapté', 'durée_légale', \"n'_excède\", 'fermentations_alcooliques', 'réel_avantage', '349', 'note_fruitée', 'nuits_saint', 'aidants', 'incroyable_potentiel', 'forestières', 'issan', 'touche_chaleureuse', 'pape_clément', 'sont_conservés', 'crousti-fondant', 'parc_centenaire', 'robert_mondavi', 'ségur', 'château_jean', 'pomme_râpée', 'bundt_cake', 'continuelle', 'dominance', 'recherche_permanente', 'douces_saveurs', 'couleurs_pastel', 'tirants', 'ressources_propres', 'alesi', 'sont_exposés', 'rocheux', 'composés_phénoliques', 'elle_acceptait', 'exceptionnellement_riche', 'décortiquée', '1756', 'réglages_testés', 'essence_embarquée', 'grandement_varier', 'sont_chaussées', 'picpoul', 'vanillées', '13°c', '1754', 'juste_poêlées', 'rotatif', 'apothicaire', 'plats_raffinés', 'découragée', 'oratoire', 'rosé_sec', 'thomas_jefferson', 'capital_décès', 'consuls', 'chasse-spleen', 'constitutifs', 'falsifier', 'gardée_secrète', 'raffinements', 'sociétés_commerciales', 'découpez_-la', 'lesbos', '-20g', 'subordination', 'foch', 'pomme-poire', 'ºc', '000_hectolitres', 'carte_graphique', 'anc', 'finement_hachée', 'rct', 'bottas', 'entrerait', 'assidûment', 'aurait_généré', 'reais', 'fois_refroidis', 'poivrons_grillés', 'enfermez', 'audio-', 'transition_démocratique', 'étrier', 'islamophobe', 'positivisme', \"j'_oserai\", 'sénèque', 'progrès_social', 'biliaire', 'penseront', 'agrumes_électriques', 'croûté', 'chair_fondante', 'avantage_comparatif', 'octroie', 'garde-fous', 'fers', 'incontrôlables', 'gastéropodes', 'verif_ne', 'offrant_jamais', 'pots-de_vin', 'rôtissage', 'demi-centimètre', 'faîtes_dorer', 'sauce_aigre-douce', 'exerçaient', 'sucrine', 'jean_lenoir', 'cadeau_idéal', 'guinguet', 'nourriture_saine', 'florentine', 'pop_cakes', 'connaîtront', 'état_solide', 'certaines_études', 'huguenots', 'proviseure', 'windows_10', 'mentionnait', 'choco_togo', 'pédalier', 'différentes_sources', 'différents_endroits', 'consommateurs_chinois', 'se_dégonfle', 'insurance', 'hétérogènes', 'ignorées', 'familières', 'subside', 'chianti_classico', 'ports_usb', 'favorisée', 'annonçaient', 'catégorie_professionnelle', 'diapason', '357', 'nombre_limité', 'windows_7', 'dispensés', 'résiné', 'couperose', 'vicomte', '259', 'marmande', 'arrangés', 'pigments_naturels', 'sous-estimé', 'orales', 'monde_vinicole', 'numérisée', 'infectés', 'montant_maximal', 'commutateur', 'déploiements', 'copropriétaires', 'reste_inchangée', 'microscope', 'agents_publics', 'présumées', 'éparses', 'orale', 'établissements_publics', 'rachetés', 'afer', 'wide', 'moët_hennessy', '31_oct', '790', 'calculs_rénaux', 'redevables', 'itou', 'concurrencée', 'tremblay-en-france', 'impromptue', 'fitzgerald', 'fratrie', 'simples_mélanges', 'retransmissions', 'présélection', 'affectations', '243', 'palliatif', 'nord-américains', 'galactica', 'seul_chiffre', 'libellés', 'conjugué', 'éradication', 'sollicitent', 'roadster', 'boissons_énergétiques', 'économico-', '«_diplomatie', 'questionnaires', 'dénonciations', 'se_muer', 'monin', 'améliorants', 'génomique', '437', 'débridée', 'générés', 'complètement_différente', 'matrices', 'allégation', 'lhc', 'rameurs', 'coulissant', 'appstore', 'connecteurs', 'informations_contenues', 'plats_typiques', 'raisins_sains', 'jamal', '5e_place', 'smyrne', 'agi_seul', '725', 'rotor', 'acte_notarié', 'votreargent', 'usage_abusif', 'dérogation', 'gulden', 'indéfinie', 'parcs_aquatiques', 'anémique', 'œuf_poché', 'actionnant', 'privation', '25e', 'éditions_hachette', '516', 'collectivité_territoriale', 'amidons', 'invasive', '1833', 'râpez_-le', 'toute_franchise', 'nubio', 'tremblotante', '8mn', 'souiller', 'livraient', 'nubio_sont', 'poire-orange_(', 'comptez_6-7', 'environ_2€', 'rhizomes', 'exempts', 'fibres_insolubles', 'véritables_concentrés', 'assimilables', 'hpp', 'orouni', 'batteur_masqué', 'mistery_man', 'milk_&', 'fruit_juice', 'peaux_sensibles', 'teint_minéral', 'prenant_appui', 'soignée_où', 'nicaraguayenne', 'véritable_partenaire', 'fruité_infusé', 'mme_choi', 'tartine_gourmande', 'bio_pressé', 'dès_9h30', 'provenance_dudit', 'placard_ikéa', 'boulangerie_traditionnelle', 'charentes-poitou', 'fermage', 'certification_bio', 'axiomes', 'facilitant_ainsi', 'top_14', 'liens_directs', 'limitera', 'brunet', 'canonique', 'forces_spéciales', 'vitis', 'farcissez', 'ramallah', 'préhistorique', '70e', 'trente-quatre', 'anti-_uv', 'faites_frémir', 'augmentant_progressivement', '240°_c', 'tôle_allant', 'développement_rural', 'fraîchement_moulu', 'classent', 'superpositions', 'réfrigérés', 'être_réutilisé', 'jointures', 'encyclopédique', 'tokay', 'pinceau_trempé', 'dégustateurs_professionnels', 'familiariser', 'coïncider', 'carbonade', 'red_star', 'skieur', 'effets_négatifs', 'videz_-les', 'beaux-parents', 'réductrice', 'fiadone', 'alimentation_normale', 'géologiques', 'verser_250.000', 'boostant', 'affluer', 'in_solidum', 'plus_réputées', 'dynamise', 'somme_versée', 'client_devra', 'médée', '1898', 'agisse', 'graines_oléagineuses', 'examinons', 'assez_molle', 'stéréo', 'scelle', 'couchées', 'linge_imbibé', 'manitoba', 'griottines', 'vanille_fendues', 'réhydratez', 'informations_personnelles', 'version_mini', 'signalant', 'kirby', 'euros_ht', 'opportune', 'exigible', 'croquembouche', 'jorge_lorenzo', 'amatriciana', 'sont_équivalents', 'proportionnelles', 'occurrences', 'effets_visuels', 'palmyre', 'vos_séances', 'assaisonnez_-la', 'prisée', 'relevons', 'uzès', 'suzuka', 'défensives', 'mercedes-amg', '0,90', 'prieuré', 'chez_ig', 'outil_idéal', 'tierce_personne', 'progrès_technique', 'volumes_échangés', 'données_économiques', 'apanage', 'marc_marquez', 'sont_évidents', 'dégraisse', 'beychevelle', 'hypothèque', 'wtcc', 'réglementer', 'ubb', 'conditions_météo', 'sud-américain', 'compensatoires', 'archives_nationales', 'marchés_long-courrier', 'triple_champion', 'antithèse', '23_août', 'frais_bancaires', 'décéder', 'pas_excéder', 'aiguière', 'haussière', 'après-match', 'tyrannique', 'nichée', '359', 'petit_poucet', 'inclinant', 'reculée', 'rouage', 'décembre_prochain', '0,80', 'échappements', 'efficacité_énergétique', 'précipitent', 'abîment', 'goliath', 'bloc_moteur', 'site_e-commerce', 'ait_atteint', 'impayé', 'nigel', 'fins_connaisseurs', 'odes', 'aubergistes', 'esthètes', 'avant-match', 'accélérations', 'rossini', 'mémoire_collective', '675', 'documents_administratifs', 'retirent', 'résultats_montrent', 'routine_beauté', 'puissance_ennemie', 'numérotation', 'sharapova', 'praires', 'spéculatif', 'tatins', 'désobéissance', 'gonzalo', 'cognitive', 'coloriste', 'grimpé_par-dessus', 'quatre_cent', 'féret', 'article_475-1', 'constantinople', 'légumes_découpés', 'recette_ultra-simple', 'aliments_acides', '1852', 'pathologiques', 'plastique_souple', 'voyagez', 'curriculum', 'strophe', 'pâtes_sèches', '0,5_litre', 'orge_grillée', 'desserts_gourmands', 'demi-homard', 'coriace', 'pierreries', 'éloignent', 'intellect', 'désignera', 'équilibrant', 'deuxième_séance', 'différentes_périodes', 'huiles_naturelles', 'dénaturé', 'jos', 'aspergeant', 'prêle', 'moyennes_entreprises', 'infortuné', 'etat_juif', 'redevance_annuelle', 'lutter_efficacement', 'raw_food', 'astreindre', 'doux_naturels', 'durait', 'claies', 'réformateurs', 'peinture_noire', 'anti-_moustique', 'problèmes_économiques', 'agglomérer', 'berlioz', 'chocolats_fourrés', 'toge', 'lauréate', 'acre', 'révolution_islamique', 'cylindriques', 'kvevri', 'hacher_menu', 'soufflez', 'drachmes', 'de-ci', 'maltée', 'xxiii', 'latium', 'ffr', 'baratte_demi-sel', 'village_voisin', 'prism', 'nacelles', 'anciens_élèves', 'mouvantes', 'palissade', 'laurent_david', 'couleurs_neutres', 'mastication', 'fins_gourmets', 'panis', 'granny', 'partir_duquel', 'bouées', 'télécommandes', 'tétines', 'mystérieuses', 'honorés', 'baltique', 'assemblée_constituante', 'spiritueux_ait', '0,90_euro', 'égouttage', 'ck', 'valençay', '21ème', 'camerounaise', 'sancho', 'fait-maison', 'gramme_près', 'contravention', 'varient_selon', 'agriculture_familiale', 'temps_imparti', 'projet_avait', 'façon_thaï', 'moldaves', 'peptides', 'chauffantes', 'préhension', 'celles_parfumées', 'khamr', 'connaître_soi-même', 'texturé', 'légèrement_tiédie', 'toponyme', 'saveurs_subtiles', 'primée', 'couches_supplémentaires', 'exhortation', 'droit_venue', 'consensuel', 'zébulon', 'géographe', 'redémarre', 'mistelle', 'enchère', 'régime_détox', 'climatisée', 'protection_anti-', 'harmonies', 'postulat', 'lcr', 'démarreur', 'marshall', 'locutions', 'amendé', 'saint-pétersbourg', 'adaptative', 'déformations', 'snacking', 'passible', 'ceint', 'intermittent', 'agents_chimiques', 'exhorter', '1826', 'exécutent', 'iraq', 'astronomes', 'être_commercialisé', 'épices_indiennes', 'fortifiés', 'exacerbé', 'terre_bouillies', 'simultané', 'tournés_vers', 'châtelet', 'manière_anonyme', 'grandes_années', 'sarcophage', 'dessert_gourmand', 'papaye_verte', 'caftan', 'juillet_2016', 'vagabonds', 'grande_polyvalence', 'postaux', 'botaniste', 'repliée', 'datées', 'fuseau', 'g1', \"s'_élancent\", 'phrase_suivante', 'camara', 'avenants', 'pfennigs', 'accentuée', 'poulsard', 'déjà_mentionné', 'paroissiale', 'auteur_reprend', 'conviction_commune', 'espéranto', 'opc', 'ciguë', 'ton_profil', 'délictuelle', 'excellemment', 'acide_tartrique', 'graphie', 'dresseurs', 'title', 'bundle', 'appréciables', 'troisième_degré', 'échauffé_par', '2400', 'cessionnaire', 'tanneur', 'chaîne_hiérarchique', 'diff', 'lien_hypertexte', 'master_2', '(_ihev', 'msc', 'renseignés', 'ingrédient_phare', 'shampoing_sec', 'mycose', 'ghassoul', 'mêmes_propriétés', 'shampooing_sec', 'favarger', 'parez', 'location_longue', 'persécution', 'consommation_journalière', 'aliments_contenant', 'perçage', 'kitchen_trotter', 'bilan_écologique', 'idiomes', 'support_pédagogique', 'wechat', 'seltz', 'rouget_grondin', 'laissent_entrevoir', 'marie-hélène', '1,4_milliards', 'employeur_continue', 'mujer', 'marécageux', 'surconsommation', 'saint_antoine', 'quatre_décennies', \"s'_entendaient\", 'manufactures', 'déployant', 'qui_louent', 'testeur', 'desséchés', '«_vinho', \"s'_inspira\", 'pécharmant', 'leurs_convictions', 'se_confond', 'vitaminés', 'verre_teinté', 'rafraichissantes', 'doit_ressembler', 'jean-rené', 'nous_réconcilie', 'listés', 'métier_consiste', 'poissons_gras', 'plusieurs_façons', 'entremets_composé', 'abdominale', 'hérodote', 'nos_collections', '20e_salon', 'élogieux', '64_bits', 'lmr', 'tolérés', 'bovetti', 'certaines_variétés', 'biodynamiques', 'nettoyants', 'biochimie', 'libéralisation', 'oxydée', 'agissait', 'messianique', 'cutané', 'parées', 'grandes_chaleurs', 'préparation_épaississe', 'utilisation_quotidienne', 'sent_délicieusement', 'dispersée', 'juicing', 'monographie', 'tourne-broche', 'forçage', 'sociologiques', '130_ans', 'anti-_oxydantes', 'stéphane_girard', 'liqueur_alcoolique', 'vieux_littré', 'légèrement_caramélisée', 'montessori', 'faisceaux', 'prémunir', 'éventuel_futur', 'développement_humain', 'resteraient', 'buggy', 'dengue', 'sont_récupérés', 'irouleguy', 'menthe_glaciale', 'polarisation', 'fonds_national', 'cognitif', 'réconfortantes', 'éruptions', 'melchisédech', 'sacramentelle', 'genevoise', 'raphia', '7,5_euros', 'marlette', 'publicite', 'différents_virus', 'sans_paraben', 'grands_blocs', 'tikka', 'fraîchement_préparés', 'chez_frédéric', 'colorants_alimentaires', 'km2', 'reformuler', 'compétence_professionnelle', 'publipostage', 'directory', 'asie_mineure', 'ci-devant', 'renouvellement_cellulaire', 'problèmes_digestifs', 'mojitoingrédients_:', 'sirop_teisseire', 'mojito_étant', 'pailles_pourraient', 'puis_frappez', 'violemment_contre', 'remplacez_-le', 'ornez', 'puis_souriez', 'diaphragme', 'informatisée', 'cottet', 'menu_gourmet', 'intelligibilité', 'activités_commerciales', 'anti-_gaspillage', 'cannoli', 'liposoluble', 'fécule_diluée', 'civp', 'insinue', 'hélico', 'ker_cadélac', 'installation_électrique', 'miam-ô-fruit', 'france_guillain', 'se_digèrent', 'lévis', 'hors_quota', 'assistante_maternelle', 'eût_-il', 'pistons', 'slides', 'collaborent', 'explicatifs', 'langues_officielles', 'récapitulative', 'vie_nocturne', 'mirabeau', 'fjords', 'souks', 'col_claudine', 'société_organisatrice', 'béni_soit', 'frein_moteur', 'mutualiste', 'facebook_live', 'fouillée', 'raccord', 'exsangues', 'spip', 'éleva', 'moabi', 'droit_pénal', 'charte_graphique', 'watercooling', 'cintrée', 'ève', 'cases_vides', 'partir_desquels', 'molitors', 'bardés', '291', 'étape_1préchauffez', 'décisions_politiques', 'volt', 'dividende_global', 'en_éditant', 'saint_denis', 'imprimant', 'manié', 'refuseront', \"s'_affichera\", 'expériences_passées', 'qui_émerveillera', 'remorques', 'baptise', 'jolies_couleurs', 'analytiques', 'son_cachet', 'connectivité', 'se_dévouer', 'ultra_hd', 'appels_vocaux', 'intérêts_commerciaux', '2200', 'alumine', 'm._françois', 'pigmentation', 'contiennent_aucun', 'importance_capitale', 'parfum_naturel', 'taux_élevé', 'certains_gérants', 'amplification', 'délicieuses_galettes', 'ouvrables', 'par_vicky', 'wine_|', 'sébastien_bouillet', 'caribou', 'vinique', 'niepoort', 'fermentant', 'nœud_papillon', 'rafraîchissez', 'coco-_curry', 'ne_rechigne', 'observables', 'cirrhose', 'enverront', '1841', 'boissons_aromatisées', 'démontrés', 'environ_280', 'bande_passante', 'dépouillées', 'protection_solaire', 'demi-sachet', 'basilic_émincées', 'formule_enrichie', 'information_complémentaire', 'précéder', 'réflexive', 'vingt_mille', 'résultats_escomptés', 'ils_ressemblent', 'cette_patine', 'twistée', 'escalope_milanaise', 'exécutées', 'criard', 'accessoires_tels', 'charnel', 'capturées', \"'_toilettage\", \"portefeuilles_'\", 'étant_tentés', 'application_dédiée', 'électrodes', 'village_traditionnel', 'vanilline', 'ne_négligez', 'réductible', 'ocm', 'folder', 'copieux_brunch', 'oenothèque', 'bigaradier', 'stylistique', 'droit_fiscal', 'se_substitue', 'antibactériennes', 'green_star', 'serum', 'appareil_digestif', 'rééquilibre', 'abricot_bio', 'recouvrira', 'vertus_anti-', 'assouplissante', 'ignace', 'huille', 'fév', 'autres_joyeusetés', 'diapositives', 'sidebar', 'autres_blogueurs', 'gouttelettes', 'réglages_>', 'réseautage', 'tracker', 'cliquables', 'référencée', '–_150g', 'bagages_supplémentaires', 'quantité_totale', 'combiner_plusieurs', 'avons_vu', 'accueillants', 'annoter', 'google_map', 'microfibre', 'bariloche', 'yvorne', 'vin_nommé', 'différents_contenus', 'détachable', 'se_prêtent', 'reconnus_ajoutez', 'levure_nutritionnelle', 'ultra-simple', '–_200g', '–_125g', 'coco_fondue', 'mast_brothers', 'raye', 'boutique_online', 'panasonicacheterachat', 'ligneoù', 'acheteren_stock', '/_content', '/_dam', '/_panasonic', '/_ec-icon', '/_icn-stock-in.pngen', 'stockmomentanément_indisponible', '/_icn-stock-out.pngmomentanément', 'indisponiblemoemntanément_indisponible', '/_icn-stock-soon.pngmoemntanément', 'indisponiblepanasonicfalsefalsevous_devez', 'paniervous_devez', 'paniervisiter', 'ligne_panasonic', '/_consumer', 'cœur_balance', 'façon_cyril', 'conférencier', 'explications_claires', 'ils_rajoutent', 'vins_aromatisés', 'tinymce', 'hr', 'fichier_functions.php', 'chèque-cadeau', 'lignes_directrices', 'gyozas', 'modularité', 'façonnées', 'exceller', '«_add', 'découvrons', 'labellisée', 'emojis', 'page_fb', 'explorant', 'add_to', 'reprogrammer', 'esta', 'fameux_cookies', 'lévi', 'tsadok', \"s'_approcheront\", 'victime_expiatoire', 'bromont', 'sucres_libres', 'métabolique', 'balise_meta', 'annexe_i', 'liens_hypertextes', 'plats_végétariens', 'congelez', 'dérailleur', 'fichiers_pdf', 'non_comprises', 'us_$', 'version_initiale', 'autonettoyant', 'sciences_humaines', 'bières_pressions', 'organdi', 'commandez_votre', 'pâturage', 'instituée', 'théologiques', '«_économiser', 'expédition_diminueront', 'mioum', 'casseaux', 'prototypage', 'volets_roulants', 'camping_4', 'shape_of', 'left', 'from_the', '7_nuits', 'fichiers_joints', 'bref_aperçu', 'thasos', 'contingents', 'grande_pyramide', 'mémoires_secrets', 'page_interview', 'ivrognerie', '26_juillet', 'véritable_loterie', 'crédits_alors', 'mammon_»', 'vous_convenez', 'bivouac', 'première_rangée', 'gavottes_émiettées', '1816', 'macédoniens', 'compagnie_coloniale', 'namibie', 'judéo-', 'usuelle', 'bugs_mots', 'fléchés_ne', 'cases_trop', 'zoom_aléatoire', 'malgré_parfois', 'case_impossible', 'avant.cdt', 'soulignant_combien', 'sa_missive', 'conseils_ciselés', 'numismatique_vous', 'a_intéressé', ':_contact@multicollec.net', 'restaurés', 'votre_agrégateur', '1794', 'sommelier_professionnel', 'brevet_fédéral', 'cours_romands', 'changins', 'ecole_hôtelière', 'sentences', 'hellocoton', 'khôl', 'dénichée_ici', 'pilastres', 'fr._)', 'brookies', '173', 'customisation', 'finissez_-le', 'satyre', 'ref', 'magnésie', 'présente_convention', 'comète', 'attestée', 'caius', 'comportera_3', 'paul_vetter', 'assyrie', 'justinien', 'assista', 'crétois', 'ier_siècle', 'xxv', 'sauvegardes', 'goulots', 'ablutions', 'clairement_conçu', \"s'_enivra\", 'couchons', 'nous_conservions', 'faisons_-lui', 'du_04/09/2017', 'bêtes_féroces', 'germée', 'naturalistes', 'thésée', 'aurait_caché', 'soit_absenté', 'short_taché', 'flight-report', 'ecclésiastiques', 'constitutionnelles', 'idolâtrie', 'dieu_revêt', 'sera_jetée', 'vous_vêtira', 'gamepad', 'solde_;', 'graisse_animale', 'narratives', 'renaissance_italienne', 'toscane_abrite', 'gilgamesh', 'œuvre_littéraire', 'réglables', 'extrayant', 'aspect_écologique', 'topographie', 'prosterner_devant', 'nos_péchés', 'convertisseurs', 'sdi', 'atem', 'tes_ennemis', 'dual', 'blackmagic', 'mets_succulents', 'lycopène', 'tes_fréquentes', 'indispositions', 'répétitives', 'langue_officielle', 'liqueur_enivrante', 'esprit-saint', 'journée_entière', 'esprit_boudoir', 'méridienne', 'lit_bateau', 'bruno_lui-même', 'accommodant_-', 'approvisionnés', 'quel_accès', 'dieu_vivant', 'copte', 'ulémas', 'france_2010-2015', 'divers_aspects', '5_cuc', '/_edition', 'poudre_écrémé', 'construction_anker', '/_microoonde', 'blés_anciens', 'delcious', 'faisselles', 'callosités', 'presse-agrume', 'routine_quotidienne', 'utilisateur_reconnaît', '1778', 'gamme_bijouterie', 'onguents', '1883', 'désarmement', 'exécutable', 'patisserie_philippe', 'brito', 'gigogne', 'thrace', 'jean-robert_pitte', 'précédés', 'digne_successeur', 'thériaque', '293', 'paraboles', 'lc', 'pharisiens', 'histoire_ecclésiastique', 'généralement_composé', 'surmonte', '/_revendeurs.htmlfalsehttp://shop.panasonic.fr', 'époque_hellénistique', 'étrusque', 'insérées', 'inspirante', 'articulation_entre', 'confirmez', 'algues_marines', 'végétal_naturel', 'complément_idéal', 'sermons', 'version_électronique', '8,50€', 'tag_archives', 'desdits', 'glose', 'courroies', 'couleurs_primaires', 'pontifes', 'parmi_ceux-ci', 'horizontaux', '“nous_avons', 'vin_miellé', 'charbons', 'trois_cyathes', 'deux_cyathes', 'cyathe', 'trois_setiers', 'hémine', 'topique', 'integrisme_est', 'bases_incontournables', 'politiques_guerrières', 'siecles_;', 'clarifiant', 'mathématiciens', 'torsion', 'estoient', 'guérissent', 'trois_oboles', 'setiers', 'cyathes', 'ache', 'végétaliser', 'biens_culturels', 'états_parties', 'contribution_volontaire', 'carthagène', 'israélites', '1846', 'gouttières', 'gargarismes', 'échauffé', 'dysenterie', 'cinq_cuillerées', 'ers', 'conge', 'xxii', 'deux_onces', 'restitutions', 'setier', 'ivraie', 'nitre', 'eut_goûté', 'fit_apporter', 'nebucadnetsar_avait', 'ses_concubines', 'servissent', 'faux_sièges', 'sphinx', 'mauvaise_haleine', 'vésicule', '0_litr.', 'samos', 'quarte', 'lightroom', 'inaperçue', 'enseveli', 'hydratants', 'faire_accroire', 'boisseau', 'carbonique', 'mélilot', 'plage_arrière', 'corrompre', 'fusilli', 'etats_parties', 'influencée_par', 'silène', 'glitch', 'superstitions', 'abram', 'était_sacrificateur', 'dieu_très-haut', 'épistémologique', 'hérode', 'albe', 'impiété', 'voulurent', 'matcha_latte', 'recettes_chouchou', 'toujours_réussie', 'explorations', 'jeunes_taureaux', 'apprêtés', 'risques_liés', 'méthodologiques', 'pria', 'plantes_infusées', 'impétuosité', 'trois_dixièmes', 'demi-hin', 'deux_dixièmes', 'leurs_libations', 'pécheurs', 'ne_craignez', 'glucides_simples', 'premier-né', 'filles_mangeaient', 'cilicie', 'achaïe', 'fïnley', 'chaume', '1922', 'super_hydratant', 'oranger_minimise', 'vieillissement_induits', 'faso', 'rösti', 'sweet_table', 'se_hâtent', 'vin_mixtionné', 'se_répartisse', '8_propoints', '7_propoints', '1_propoint', 'sacrificateurs', 'psaumes', 'développez', 'rod', '1.1', 'bénichon', 'ta_servante', 'peuple_romain', 'tables_nécessaires', 'présente_directive', '«_déconnexion', 'chili_sin', 'aussi_goûtu', 'vaut_6', '4_propoints', 'smartpoints', '9_propoints', 'cornichons_coupés', 'agents_conservateurs', 'convaincues', 'mets_délicats', 'tes_concubines', 'ne_mangeai', 'paisibles', 'ail_pressées', 'ressemblent_vraiment', '5000_ans', 'autorité_compétente', 'papet', 'p._ex.', 'haché1', 'mon_indignation', 'bâbord', 'triangulation', 'soussigné', 'satisfasse', 'désignées', 'fr.', '¹', 'astuce_beauté', 'plus_approfondi', 'ne_boirez', 'non_adonné', 'topographiques', 'éclaircissement', 'aqueduc', 'chaldéens', 'déplie', 'pôle_nord', 'nestlé®', 'environ_5cm', 'mozzarella_râpée', 'environ_1min', 'mélange_frémit', 'grosse_douille', 'boulanger_émiettée', 'plaques_superposées', '16min', 'belle_collerette', 'orthèses', 'énergétiquement', '2min_/', 'démontée', 'milka®', 'mozzarella_coupée', 'filmique', 'ouvrez_-la', 'se_liquéfie', 'ai_refaite', 'dégustez_-la', 'vertus_dépuratives', '25cm', 'aplaties', '3min_/', 'personnalisations', 'préfériez', 'rôle_fondamental', 'ipa', 'engels', 'laisser_décongeler', 'fermentation_haute', 'caractéristiques_essentielles', '10sec_/', '«_commander', 'stimulus', 'j.ai', 'bjorg', 'petite_ampoule', 'franciscains', 'pendant_1mn', 'peaux_normales', 'températures_annoncées', 'caractéristiques_principales', 'fonctionnement_hydraulique', 'systèmes_aquifères', 'gestion_rationnelle', 'jouissances', 'webmestres', 'distillées', 'conductivité', 'comptes_twitter', 'span', 'faible_pourcentage', 'ma_wishlist', \"péssa_'\", 'nous_apprendrons', 'recettes_variées', 'energy_balls', 'photosensible', 'air_délicieuse', 'quatre_cavaliers', 'embouteilleur', '2015/2016', 'gràce', 'comédie_française', 'dorez_-le', 'macros', 'soma', 'oblation', 'monde”', 'own', 'ressemblances', '20s', 'physionomie', 'aucune_réserve', 'mot-clef', 'haricots_azuki', 'thoughts_on', 'soufflage', 'ait_doublé', 'super_découverte', 'archaïques', 'ses_flancs', 'me_convienne', 'hexadécimal', 'wysiwyg', 'wikis', 'intérêts_partisans', 'carnauba', 'propriétés_antibactériennes', 'bactérien', 'responsabilité_sociale', 'calomnier', 'démesure', 'sçavans', '“de', \"j'_ay\", 'moy', 'quoy', 'peult', 'estant', 'autoévaluation', 'conférenciers', 'triglycérides', 'occasions_spéciales', 'utilisais', 'assèchement', 'jus_omega', '8226', 'floppée', 'habiteront', 'abattis', 'ressorte_sèche', 'laisser_bouillonner', 'croûtons_frits', 'on_garnit', 'gros_poivre', 'restaurant_“l', \"'_estaminet”\", 'jean-claude_plazzotta', 'restaurant_“le', 'pois_gourmand”', 'démêlez', 'courchamps', 'amolli', 'papier_beurré', 'masquez', 'roux_blond', 'coupés_finement', 'pomme_fondante', 'bardes', 'lapereaux', 'œuf_mollet', 'apprêts', 'maniez', 'spécial_pâtisserie', '1808', 'fricandeau', 'décilitre', '-possibilité', 'kidouch', 'chabbat', 'basse_temperature', 'etait_cuit', 'viande_etait', 'échalotes_hachés', 'pain_trempée', 'farinez_-les', 'fins_particulières', 'fig.', 'populo', 'comices', 'acides_organiques', 'astreints', 'boisseaux', 'citoyens_romains', 'italiques', '2s', 'alembert', '280_gr', 'côté_croquant', 'flânant_sur', 'duxelle', 'shift', 'cèdent', 'fibres_naturelles', 'conçois', 'conditionnent', 'sont_sollicités', 'est-à-dire', 'explorés', 'traduites', 'parcimonie', 'stères', 'sagacité', 'entrevues', 'déversés', 'dictionnaire_collaboratif', '800°c', '25_cases', 'dieucéclair_!', 'tâchez', 'étant_enregistré', 'assomption', 'méthylène', 'synode', 'articles_relatifs', 'écoles_viennent', 'formations_publiques', 'touches_mortes', 'aliments_acidifiants', 'mac_os', 'programmeur', 'layout', 'pastorale_sacramentelle', 'liturgique_diocèse', 'sainte-anne-de-la-pocatière_février', '2008_célébration', 'semés', 'portait_l', 'sainte_cène', 'vous_jugerez', '1101_international', 'credential_assessment', 'service_of', 'canada_service', 'documents_scolaires', 'internationaux_demande', '1010_international', 'christi', 'registre_permanent', 'l_ontario', 'veuillez_remplir', 'psaume', '(_mt', 'responsabilité_personnelle', 'logo_0', 'commune_proces-verbal', 'archives_communales', 'décembre_96', 'portant_règlement', '.._arrondissement', 'bure', 'bibliographique', 'st_thomas', 'recettes_diverses', 'pastoral', 'bordereau', 'l_assemblée', '/_p', 'archivage', 'l_instruction', 'dr_marianne', 'engelberg', 'bases_militaires', ':_montecatini', 'd_asti', 'asti_spumante', 'conditions_prévues', 'soubassement', 'sollicitude', 'concile', 'admissions', 'l_onglet', 'puis_enregistrez', 'son_ex-conjoint', 'l_icône', 'fiche_pratique', 'lieu_press', 'être_confondue', 'triade', 'classification_professionnelle', 'masque_réparateur', 'hyperlien', 'téléchargeant', 'fenêtre_principale', 'al.', 'fichiers_utilisés', 'natives', 'aubergiste', 'marraines', 'agence_web', 'liste_déroulante', 'diapositive', 'webmail', 'sous-catégories', 'barre_verticale', 'google_search', 'nouvel_onglet', 'ldap', 'placez_-vous', 'pré-requis', 'img', 'deuxième_alinéa', 'logement_opposable', 'descriptives', 'version_antérieure', 'quantitatifs', 'champs_supplémentaires', 'on_baisait', 're-sortie', 'naviguez', 'presse_nationale', 'sont_pourvues', 'approuvées_par', 'épiscopal', 'laisse_sécher', 'name=', 'og', 'précitée', 'captcha', '3.4', 'recettes_associées', 'enseignement_secondaire', 'inscrivent', 'avant-cour', 'programme_officiel', 'prédication', 'hâtons_-nous', 'persuada', 'faciente', 'ledit_sieur', 'pont-levis', 'bouchard', 'vus_depuis', 'chaque_lépreux', 'demi-franchard', 'louis_xi', 'rodemack', 'ni_cervoise', 'eust', 'fust', 'ung', 'aulx', 'muid', 'ieme', 'pont-neuf', 'tél_:', 'imaginable', 'greimas', 'figurative', 'ledict', 'gmail.com', 'visio', '3206', 'servirez', '1779', 'houille', 'accorda', 'charcutaille', 'taxonomie', 'ordonnent', 'branchement', 'modalité', 'accessoires_puma', 'nos_célèbres', 't-shirts_puma', 'notre_félin', 'survêtement_t7', 'retrancher_»', 'mouillez_-la', 'maniques', 'diminuée', 'roulements', 'scroll', 'évaluation_proposée', 'stabilisateurs', 'compilé', 'productions_audiovisuelles', 'demeura', 'débridé', 'raccords', 'brochures', 'socioculturelles', 'mandrin', 'sont_hors-concours', '–le', 'énonciation', 'jimdo', 'différentielle', 'coordonné', '1764', 'aucun_conservateur', 'diagonales', 'transcendant', '1138', 'ballast', '-_hellboy', 'pacific_rim', 'crimson_peak', 'plaisait_tant', 'approximations', 'tableau_croisé', 'antagoniste', 'affordance', 'huile_démaquillante', 'soins_naturels', 'cm3', 'tx', 'révisionnisme', 'locuteur', 'matérialité', 'ic', 'descriptifs', 'reverb', 'approche_pragmatique', 'équivalences', 'beauté_idéal', 'baume_fondant', 'nourrir_intensément', 'après_rasage', 'oméga_6', 'karité_nourrit', 'leica', 'bouleau_bio', 'karité*', 'surchauffé', 'ai_posté', 'laisser_figer', 'auray', 'leurs_apports', 'notre_sauveur', 'évangéliques', 'louer_dieu', '4.2', 'croyons', 'se_préoccupent', 'tsiba', 'gentilshommes', 'cérémonies_religieuses', '1_corinthiens', 'rendre_grâces', 'prêché', 'imitateurs', 'josué', 'melchisédec', 'deutéronome', 'saül', 'ni_adonné', 'sablant', 'ésaïe', 'gel_parfumé', 'offris', 'apocalypse_14', 'sans_abimer', 'supplémentation', 'quelle_proportion', 'pain_rompu', 'aucune_connaissance', 'fondront', 'te_nourrissais', 'achillée_millefeuille', 'apocalypse_17', 'aux_lévites', 'lévites', 'jamais_malodorante', 'lui_plairont', 'matthieu_20', 'offrande_fut', 'cent_trente', 'sicles', 'dix_sicles', 'sont_retournés', 'jonadab', 'récab', 'mes_serviteurs', 'amendez_vos', 'fornication', 'jar', 'commentaires_positifs', 'ne_boiras', 'édulcorant_naturel', 'méprisable', 'esprits_administrateurs', 'grain_rôti', 'ses_commandements', 'tolérez', '2000_litres', '1_samuel', 'buvez_-en', 'rattacher', 'idoles_vers', 'cieux_son', '1_thessaloniciens', \"détourne_aujourd'\", 'crible', 'sources_chaudes', 'karanja', 'voz', 'batteuse', 'pussent', 'prussiens', 'extrêmement_riche', 'autels', 'gras-double', 'proconsul', 'aïeux', 'détachées', 's.v.', '2a', 'langlet', 'rémois', 'lacédémoniens', 'godart', 'jalon', 'hanap', '1817', 'pourrai_-je', '1750', 'béliers', 'axiome', 'reer', 'modalités_définies', 'encyclique', 'nisan', 'avaient_coutume', 'kitchenette_dotée', 'rétroaction', 'implémenter', 'fureurs', 'épître', '[_sic', 'soirée_plateau', 'colmatage', 'répondrons', 'cucurbitacées', 'terme_désigne', 'dixième_partie', 'épîtres', 'saint_paul', 'différents_usages', 'péché_mortel', 'deux_agneaux', 'sonne_creux', 'alimentée_par', 'pression_sanguine', 'proanthocyanidines', 'vitamines_b1', \"s'_émiette\", \"m'_intriguait\", 'treuil', 'découpait', 'bons_nutriments', 'charles_vii', 'sans_répéter', '339', \"j'_apprendrai\", 'sirotez', 'cet_itinéraire', 'encodage', 'sent_divinement', 'rechargée', 'médicinal', 'piastres', 'menu_principal', 'zhang_changfeng', 'réaumur_;', 'tendrons', 'blanchissant', 'oxydante', 'oxydant', 'pied_terreux', 'rééquilibrage_alimentaire', 'chachon', '170_°', 'beignets_indiens', 'véganes', 'avait_apprise', 'préalablement_dilué', 'myrtilles_fraiches', 'ingrédient_miracle', 'absolument_magique', 'sauce_salsa', 'accompagnement_parfait', 'légèrement_humide', 'étuvées', 'éprouvés', 'glycémique', 'arômes_alimentaires', 'nofollow', 'confetti', 'fossier', 'guerrières', '4_mailles', 'whey', '1729', 'travestissement', 'devenu_compliqué', 'épeautre_complète', 'yoast', 'embrochez', 'vendu_séparément', 'poivre_timut', 'netanyahou', 'électroniquement', 'editor', 'sven', 'guérir_grand', 'too_faced', 'acido-_basique', 'sauce_alfredo', 'températures_allant', '-60°c', '120_x', 'notez_cette', 'tea-tree', 'applicative', 'produits_fermentés', 'maria_montessori', 'pédagogie_montessori', 'lien_ci-dessous', 'analogies', 'monodiète', 'ylang', 'stalinienne', 'fortifient', 'hydrolyse_enzymatique', 'tournesol_bio', 'cartes_mentales', '180°_c.', 'avoine_complète', 'redonner_force', '400ml', 'étape_précédente', 'modeler_maison', 'absorbantes', 'puis_ramassez', 'saha', 'no_poo', 'creamy', 'me_conseillez', 'juste_diminué', 'svp_?', 'vase_plein', 'aliments_complets', 'reconnoissance', 'seroit', 'vostre', 'tourment', 'pourroit', 'invoquent_tous', 'pouvoit', 'procédera', 'divine_majesté', 'mesme', 'nostre_seigneur', 'prescrites', 'nebath', 'femme_jézabel', 'sidoniens', 'syméon', 'apportèrent', 'job_mangeaient', 'limpidité', 'notre-seigneur', 'différentes_espèces', 'offertoire', 'absolument_divin', 'soixante-dix_sicles', 'offrande_;', 'y_joindrez', 'holocaustes', 'achaïe.8', 'a_retenti', 'prophétique', 'sont_évalués', 'excellentes_vignes', 'ils_rebâtiront', 'villes_dévastées', 'ils_établiront', 'eut_sevré', 'fit_monter', 'trois_taureaux', 'dieux_étrangers', 'corporelles', 'assertions', 'endurcissement', 'fut_divisée', 'nations_tombèrent', 'cinnamome', 'sainte_messe', 'participation_active', 'assujettir', 'nul_serviteur', 'se_dilate', 'étaient_ravis', 'te_diront', 'récabites', 'envoyés_dès', 'revenez_chacun', 'mauvaise_voie', 'occupez', 'édifiantes', 'ils_chancellent', 'sont_absorbés', 'aux_affligés', 'esprit_abattu', 'térébinthes', 'ramsès', 'disions', 'tu_presseras', 'rédempteur', 'sainte_église', 'consacra', 'avaient_reçu', 'sainte_écriture', 'privations', 'dict', 'costé', 'avoient', 'dudict', 'ladicte', 'lesquelz', 'dedens', 'quy', 'sainct', 'ilz', 'parmy', 'demy', \"j'_avois\", 'esté', 'révérend', 'borel', 'dentifrice_maison', 'christ_jésus', 'nous_tâchons', 'passivement', 'défaut_corporel', 'on_enseignerait', 'leur_assigna', 'bout_desquelles', 'se_souiller', 'roi_buvait', 'eunuques', 'apportés_devant', 'êtes_servis', 'styrax', 'ibid.', 'amour-propre', 'envers_dieu', 'inclinations', '1842', 'contact_alimentaire', 'enivrants', 'lâme', 'fioriture', 'english_muffins', 'suppléer', 'onguent', 'enregistrement_4k', 'forme_ovale', 'raffermissante', 'faîtes_chauffer', 'lucarnes', 'assiduité', 'flotteur', 'petites_mailles', 'remettez_-la', 'p_>', 'doctrinale', 'burettes', '/_vit3', 'balustrade', 'jéhova', 'conserveront', 'œuvré', 'saurions', 'desséchées', 'léger_parfum', 'soufflets', 'blasphème', 'repassés', 'échauffer', '1178', 'nous_écrivons', 'délayer_progressivement', 'chabert', 'sont_épuisées', 'deux_divers', 'sous-couche', 'ptfe', 'qui_pullulaient', 'chargez', 'impudence', 'synagogues', 'super-aliments_comme', 'four_invisible', 'mêlez_-y', 'messages_:', '3330localisation_:', 'avec_dumbydate', ':_07/02/2015', 'polyphénol', 'convoquant_aussi', 'cepdivin', 'xivème_siècle', 'œuf_cocotte', 'rentabilisé', 'marchés_locaux', 'dx', 'zestes_confits', 'flétrir', 'poire-chocolat', 'phytosun_aroms', 'blaise_pascal', 'mégalomanie', 'aidez_-vous', 'excentrique_totalement', 'certain_bob', 'cilman', 'fruits_fripés', 'film_science-fiction', 'attiré_près', '70.000_belges', '€640.756', 'ajouter_harrods', 'veilleuses', 'ni_déroger', '“nous', 'relooking', 'défricher', 'lightbox', 'impôt_incomplète', 'conférence_subventionnée', 'emploi_familial', 'placard_doré', 'anti-_bactérien', 'macérer_pendant', '15e_siècle', '2036', 'blé_désignait', 'toute_plante', 'cultivée_donnant', 'graines_pouvant', 'farine_utilisable', 'préjudiciables', 'article_actuellement', 'fumiers', 'façon_automatique', 'me_semble-t', 'lassi', 'textuelle', 'mode_manuel', 'solutions_possibles', 'sur_cdiscount', 'carafes_verre', '<_u', 'u_>', 'désignait_ainsi', 'coupez_-en', 'refroidisseur', 'l‘eau', 'domestication', 'ultra_nourrissante', 'hydratation_intense', 'taille_souhaitée', 'assainissante', 'consommons', 'prix_discount', 'chez_cdiscount', '(_cant', 'rendre_culte', 'convoitises', 'vont_hériter', 'lamazuna', 'récurage', '1_cor', 'futailles', 'chicorées', 'aspersion', 'dépouillés', 'convenant', 'quatre_cuillerées', 'côte_rôtie', 'kari', 'châteaumeillant', 'glorifier_dieu', 'vin_aroud', 'véritable_aliment', 'fourrages', 'pays_cathare', 'diorama', 'mille_francs', 'crémaillère', 'sa_fornication', 'nazaréen', 'chanoines', 'sauce_épaississe', 'cookies_vegan', 'je_consommais', 'deux_liards', 'enfilez', 'joignez_-y', 'jaunir', 'liez_-la', 'brouter', 'nettoiera', 'brunch.fr', 'omnicuiseur', 'manière_uniforme', 'alkali', 'conditions_particulières', 'mignonnette', 'rénale', '1832', 'afssa', 'status', 'successive', 'crufiture', 'irréversibles', 'vitamine_b5', 'sel1_zeste', 'valves', 'eune', 'chauffes', 'cire_restante', 'assainit', 'abatis', 'écrémeuse', 'funs', 'setup', 'encastrés', 'jugé_nécessaire', 'taux_légal', 'antibrouillards', 'nouvelles_classes', 'scénaristes_ont', 'vitamine_b1', 'être', 'antibactérienne', 'demi-setier', 'trois_quarterons', 'compresse', 'été_payée', 'club_français', 'premiers_essais', 'décocher', 'date_donnée', 'rendez-vous_amical', 'vins_exquis', 'nous_sillonnons', 'saponifiés', 'physique_nucléaire', 'raviront_vos', 'coloniser', 'juste_au-dessous', 'informelle', 'reminéralisant', 'substances_nutritives', 'liège_naturel', 'lycée_viticole', 'montage_vidéo', 'sites_majeurs', 'élément_constitutif', 'barthes', 'panifiable', 'relations_directes', 'vully', 'stimuli', 'époxy', 'encrasser', 'éphorie', 'murets', 'thunderbird', 'diamètre_intérieur', '1751', 'pithoi', 'qui_éblouira', 'atelier_parisien', 'datation', 'ombre_portée', 'désodorisée', 'tu_conseilles', 'argileuse', 'jolies_fraises', 'bureaucratique', 'maupertuis', 'bachaumont_(', 'pidansat', 'mairobert_(', 'mathieu-françois_)', 'mouffle', 'angerville_(', 'barthélemy-françois-joseph_)', 'depuis_1762', '36_vol.', '1777-1789_[', '1728_(', 'lalande_]', 'tanche', '[_onsieu', 'bragelongne', '642', 'mil_sept', 'clairaut', '[_it', 'lesd_[', 'its_]', 'm._clairaut', 'pelletot', 'deposés', 'greffe_criminel', 'lieutenant_criminel', 'maximes', 'infime_minorité', 'chèque_cadeau', 'association_action', '3361', 'vocaux', 'gnu_/', 'ordre_n', 'légumes_fermentés', 'haché_végétal', 'végétalisée', 'menu_vg', 'robbe', 'éléments_liquides', 'environ_15mn', 'sepa', 'tambours', 'complétés', 'prédéfinie', 'crème_catalane', 'asus', 'gtx', 'kusmi_tea', 'conjurés', 'narbonnaise', '2_c.s.', '2_c.c.', 'se_solidifier', 'mets_sucrés', '½_c.c.', 'fines_particules', 'riz_frit', 'mauricienne', 'râpure', 'se_déforme', 'hashtag', 'organismes_internationaux', 'leur_blancheur', 'probiotique', 'choux_fourrés', 'crème_corporelle', 'photoshooting', 'régime_méditerranéen', 'palais_vif', 'amollir', 'reminéralisante', 'autre_moitie', 'étape_3préchauffez', 'carbonnade', 'étape_1faites', 'noël_pointe', 'noël_inoubliable', 'étape_2faites', 'étape_1pour', 'noël_féérique', '1607', 'chair_délicate', 'équipe_cuisineaz', 'fondue_vigneronne', 'étape_1dans', 'étape_3versez', 'étape_4faites', 'lardez', '1810', 'êtres_adaptées', 'testez_-la', 'étape_4dans', 'jaclyne_www.cuisineetgourmandise.fr', 'étape_2dans', 'chambrer', 'version_végétarienne', 'grosses_rondelles', 'millassou', 'bigarades', 'étape_3dans', 'activités_pédagogiques', 'étape_3faites', 'diverses_préparations', 'volumique', 'étape_3ajoutez', 'min.5', '=_0pp', 'exaltante', 'demi-rondelles', 'fête_inoubliable', 'rénaux', 'fête_féérique', '1h30_environ', 'poêler_rapidement', 'grille_articulée', 'matsa', 'mouillez_-les', 'couleurs_naturelles', 'assiettes_individuelles', 'crépinettes', 'déclinez', 'étape_2ajoutez', 'défenses_naturelles', 'légumes_variés', 'tu_remues', 'dorades', 'terres_cuites', 'crêpes_gavottes', 'déconseillés', 'msemens', 'déterminait', 'réel_délice', 'diffus', 'baveuse', 'rognes', 'nombreuses_préparations', 'fauteurs', 'crême_fraîche', 'garnissez_-la', '358', '10_mg', 'bhikkhu', 'évitée', 'saṃgha', '5_propoints', 'mâchefers', 'protein', '3_propoints', 'pomme-cannelle', 'bowlcake', 'pancakes_healthy', 'renvoie_vers', 'estomac_vide', 'myprotein', 'porridge_salé', 'lettre_circulaire', 'respect_absolu', 'enrichir_selon', 'insaturés', 'vos_toppings', 'accord_mets-vins', 'âcreté', 'sautez_-les', 'poissonnière', 'lard_râpé', 'saucez', 'très_substantielle', 'tabatière', 'bridez', 'dégraissez_-la', 'laitances', 'ouïes', 'supprimez_-en', 'mouillez_-le', 'vos_cailles', 'espagnole_réduite', 'saucez_-les', 'arrangez', 'servez_chaudement', 'liez_-le', 'ayez_soin', 'dressez_-la', 'enveloppez_-la', 'faites_-leur', 'liez_-les', 'champignons_tournés', 'permissions', 'dressez_-le', 'inclinez', 'y_joignant', 'suffisante_quantité', 'levez_-en', 'pelle_rouge', 'calibrée', 'panez_-les', 'quatre_onces', 'castelli_romani', 'tanches', 'quantité_voulue', 'voix-off', 'finissez_-les', 'égouttez_-la', 'tremper_entièrement', 'plusieurs_épaisseurs', 'frottez_-le', 'françois_ier', 'intermède', 'tourneur', 'goujons', 'champagne_mousseux', 'crut_devoir', 'mantes', 'vos_destinataires', 'codices', 'xvie_s.', 'rejoignit_bâle', 'apparemment_dû', 'concentrez_-vous', '4k', 'principes_généraux', 'mulberries', 'survenance', 'headband', 'empoisonnés', 'hydroxyde', 'malassezia', 'bière_inactive', 'plurielles', 'sécheresses', 'présentoir_plastifié', 'sont_préservées', 'libèrent_tous', 'sudoku_vierge', 'trouvent_naturellement', 'sudologiq_comporte', 'dix-huit_questions', 'peu_reportés', 'grille_sudologiq', 'spray_anti-', 'antifongique', 'apéritif_dînatoire', 'panoramiques', 'détoxifiantes', 'souvent_traité', 'légionnaires', 'frascati', 'semi-liquide', 'dévier', 'répondants', 'votre_panier.', 'intensifie', 'remorquage', 'préparations_salées', 'est_faisable', 'texture_désirée', 'green_smoothie', 'nasales', 'nos_agents', 'saveur_neutre', 'soudures', 'abbeville_-', 'conseils_judicieux', 'chassie', 'pellet', 'cimier', 'teinturiers', '20e_siècle', 'traversins', 'ips', 'thread', 'acier_laqué', 'escamotable', 'pinata', 'firmin', 'low_carb', 'plätzchen', 'crudessence', 'reminéraliser', 'predator', 'compte_fnac', 'listées', 'tahitian_noni', 'fortifiants', 'écopes', 'plusieurs_bagages', 'tellement_plu', 'boissons_importées', 'boissons_incluses', 'transferts_•', 'nouveau_calque', 'nouveaux_règlements', 'tcr', 'switcher', 'lien_menant', 'motorsport', 'chevy', 'concussion', 'carte_géologique', 'vrais_merveilles', 'jus_kuving', '60_tours', 'rotule', 'même_acte', 'ssp_prévoit', 'plusieurs_inscriptions', 'ajouter_4,45', '(_récépissé', 'acte_ssp', '+_1,61', 'ustensiles_nécessaires', 'ajouter_1,48', 'dormeuses', 'gex', 'lavements', 'hangout', 'propriétés_réparatrices', 'textes_bibliques', 'détrompez_-vous', 'ithq', 'lolf', 'siméo', 'peinture_gonflante', 'doctorants', 'rôle_déterminant', 'adhésive', 'marques_différentes', 'left_to', 'plusieurs_cordes', 'nationale_mentionnée', 'certains_traitements', 'assurance_décès', 'capital_garanti', 'jus_vertical', 'pj552', 'maladies_coronariennes', 'vous_apercevez', 'pci', 'trémie', 'retardateur', 'aliment_complet', 'journées_dcp', 'grenoble_–', 'côté_nano', 'travaillent_autour', '«_nanotechnologie', '«_nanosciences', 'groupe_thématique', 'dcp', 'gerson', '1798', 'catéchines', 'quercétine', 'paul_vi', 'nanoparticules', 'troque', 'vieillissement_prématuré', 'lecture_initiale', 'allié_minceur', 'alliages', '1540', 'bactériennes', 'serious', 'rechercher_ses', 'irvine', 'effets_protecteurs', 'coulthard', 'aux_nectarines', '1.8', 'thermomix_tm5', 'tm31', 'par_adminbonjour', 'jouable', 'transformeront', 'formule_apéro', 'couche_croustillante', 'nourriture_éventuels', 'préconisée', 'négociations_étant', 'évaluation_complète', 'non_acta', 'se_conformera', 'barres_protéinées', 'page_wikipédia', 'tenu_responsable', 'icone_\"', 'symétrique', 'national_geographic', 'commande_ultérieure', 'bloguer', 'pavé_numérique', 'élément_décoratif', 'votre_bambin', 'cet_exposé', \"qu\\\\_'\", '–_140g', 'huiles_raffinées', 'champignon_unicellulaire', 'vermifuge', 'kinshasa', 'aphtes', 'jean_trogneux', 'peau_normale', 'céramique_brillante', 'escales', 'rhizome', '110°c_pendant', 'détartrant', '–_120g', 'concours_internationaux', 'fourniront', 'fraîchement_sorti', 'détoxifie', 'appliquez_-le', 'sans_plv', 'portatifs', 'merci_mumu', 'doublon', 'stries', '/__i', 'candy_bar', '‘hamets', 'évaluateurs', 'coffrets_cadeaux', 'lovechock', 'lins', 'association_végétarienne', 'galette_bretonne', 'statut_juridique', 'utilisation_ultérieure', 'sauce_tamari', 'recuisson', 'sous_chacunes', 'patouiller', 'journaliste_professionnel', 'longtemps_travaillé', 'médias_valaisans', '€_ht', 'tourie', 'oxygéné', 'so2_total', '1707', 'aymes', 'st_lambert', 'inhiber', 'versant_délicatement', 'bentonite', 'certaines_bactéries', 'caniveaux', 'aoc_bordeaux', 'suivre_plusieurs', 'textes_prévus', 'meilleur_guide', 'terroirs_contribue', 'arômes_primaires', '2007.guide', 'milieu_oxydatif', 'dry_gin', 'raisin_spécialement', '2005.guide', 'alain_buzzighin', ')_.superficie', 'aoc-aop.terroir', 'appellation_reconnue', 'inao_date', 'altenberg', 'vin-vigne.com_a', 'appellation_muscat', 'vin_alsace', 'renvoyer_vers', 'être_confondu', 'excellent_point', 'tendances_moyennes', 'examen_gustatif', 'tuilé', 'provence-corse', 'dénominations_viticoles', 'paragraphe_ci-dessous', 'tendances_annuelles', 'moyennes_classées', 'obtenu_exclusivement', 'hernies_discales', 'savoie-bugey', 'demeurera_toujours', 'dégustation_analytique', 'être_maintenue', 'entre_13°c', 'on_immerge', 'vieillissement_doit', 'humidité_doit', 'agent_commercial', 'formateur-animateur', 'laisser_mûrir', 'conservées_couchées', 'caoutchouc_anti-', 'vibration_sous', '8°c_après', 'entre_14°', 'riesling_b', 'aucune_enchère', 'froehn', 'cheminée_resserrée', 'verre_i.n.a.o.', '8°c_ou', 'pinot_g', 'tardives_pinot', 'cru_altenberg', 'générations_futur', 'puissent_lire', 'alors_recouvrez', 'rappelons_quelques', 'règles_fondamentales', 'hygrométrie_doit', 'cela_dégradera', 'gewurztraminer_rs', 'tardives_gewurztraminer', 'maximum_autorisé', 'tardives_riesling', 'nombreuses_références', 'tardives_muscat', 'gloeckelberg', 'on_remplira', 'millésimes_connus', 'madérisation', 'obturer', 'couche_extérieure', 'maladies_chroniques', 'nobles_pinot', 'wolxheim', 'maie', 'être_réglée', 'température_stable', 'fustentum', 'bergbieten', 'conservation_moyenne', \"s'_affine\", 'moenchberg', 'eichberg', 'nobles_gewurztraminer', 'kitterle', \"florimont_n'\", 'nobles_muscat', 'goldert', 'hengst', '1743', 'nobles_riesling', 'cru_kanzlerberg', 'kanzlerberg', 'cru_muenchberg', 'bruderthal', 'quantité_modérée', 'kaefferkopf', 'beaumes', 'mandelberg', 'vin-vigne_a', 'pfingstberg', 'oc_gris', 'raisins_surmûris', 'oc_rosé', 'haute_vallée', 'oc_blanc', 'cardiovasculaires', 'irrécusables', 'bonnes_proportions', 'sous-menus', 'variole', 'sous_mac', 'os_x', 'reboot', '758', 'bienfaits_naturels', 'obturation', 'eucaryotes', 'nombreuses_propriétés', 'programmeurs', 'common', 'face_coupée', 'levure_saccharomyces', 'sacré_effort', 'bananes_noircir', '-des_paupiettes', 'sauvé_ma', 'pistes_audio', 'assez_conséquente', 'ravito', '-du_poulet', 'w3c', 'meilleure_sélection', 'green_bombs', '21h_(', 'redécouvrez', 'framework', '<_p', 'pédaler', 'bonne_compréhension', 'melfor', 'goji_séchées', 'tirailleurs', 'rose_pastel', 'antigaspi', 'défendeur', 'chia_pudding', 'carambars_fondus', 'consistance_veloutée', 'déshabillé', 'ratage_vient', 'desdites', 'nous_garantissons', 'autofocus', 'bioflavonoïdes', 'signes_visibles', 'équilibrage', 'rca', ':_324', 'lavande_fine', 'nouvel_utilisateur', 'aliments_fermentés', 'déclamation', '3dl', 'dunlop', 'bien_rythmé', 'sublimer_vos', 'quantité_équivalente', 'ensuite_roulées', 'paris_15e', 'méridien', 'parabolique', 'sequins', '10-', 'dix_kilos', 'pastis_landais', 'contient_énormément', 'formule_comprend', 'été_conçus', 'contigus', 'selon_nono', 'balises_html', '|_regarder', '|_fêter', 'bouturer', 'hyperliens', 'pare_choc', 'ténébrions', 'iframe', 'gaufres_salées', 'finder', '(_62,5', 'glaise', 'cacahuètes_crunchy', 'cookies_cups', 'tartiner_spéculoos', 'grossièrement_concassé', 'produits_bretons', 'céleri-rave_soit', 'sens_normal', 'vit.6', 'byzance', 'courge_grillée', 'parler_espagnol', 'plus_condamnable', 'être_lue', 'petits_sapins', 'cuire_10min', '5sec_/', 'vit5', 'vit4', 'mélanger_30sec', '/_vit2', 'fidei', 'l214', '«_reflet', 'reportez_-vous', 'opter', 'pression_atmosphérique', 'titre_alcoométrique', '165_°c', 'petits_artichauts', 'remarketing', 'abroger', 'réapparition', 'initialiser', 'moulinet', 'création_musicale', 'rémunérations_minimales', 'logiciels_libres', 'engrais_liquide', 'mouliner', 'tu_publies', 'blé', 'usuelles', 'plutôt_neutre', 'mousse_nettoyante', 'facilement_transportable', 'insert_praliné', 'goûte_plusieurs', 'couche_protectrice', 'plugin_wordpress', 'fichier_style.css', 'thème_enfant', 'thème_parent', 'functions.php', 'props', 'catégorisation', 'veuillez_noter', 'anti-_acné', 'limite_nécessaire', 'propriétés_hydratantes', 'effet_recherché', 'pin_it', 'restreints', 'soient_transférées', 'fichier_excel', 'rembourser_toute', 'délai_moyen', 'saponifiées', 'déduits', 'façon_décisive', 'soin_nourrissant', 'réinitialisez_ou', 'molette_\"', 'lego®_duplo®', 'adoreront', 'nouveaux_chefs-d', 'batterie_externe', 'briques_décorées', 'lombaires', 'shortcode', 'phpmyadmin', '\"_theme', '{_\"', '\"_nr_dest', '\"_dest_type', '\"_dest_id', ':_224', 'dest_id_\"', 'dest_type_\"', 'nr_dest_\"', '\"_balades', 'randonn\\\\u00e9e_\"', '\"_v\\\\u00e9lo', ':_319', ':_221', '\"_s\\\\u00e9jour', '8765', '\"_p\\\\u00eache', 'monuments_anciens', 'bien-\\\\u00eatre_\"', '4520', '\"_for\\\\u00eat', '4376', '\"_march\\\\u00e9s', 'bi\\\\u00e8re_\"', '\"_plong\\\\u00e9e', '2359', '2103', ':_336', '\"_escapades', '1713', '1704', '\"_arch\\\\u00e9ologie', '1684', '1577', '1542', '1453', '1127', '1111', ':_1045', ':_992', '978', '897', ':_888', '879', ':_312', '866', '729', 'ski_hors', '696', '589', '586', '477', ':_434', ':_347', ':_328', '329', '327', '351', 'vérificateur', 'clôturera', 'précommande', 'quantitatives', 'acheteur_demande', 'garantie_commerciale', 'consentie_lors', 'état_couverte', 'demarrage', 'câble_usb', 'cinéphile', 'baby_shower', 'alcalines', 'savon_naturel', 'colruyt', 'particulièrement_efficaces', 'coque_unique', 'téléphone_personnalisées', 'revitalisantes', 'date_prévisionnelle', 'ldl', 'alim', 'piscicultures', 'faibles_risques', 'poissons_sauvages', 'pièce_constituait', 'nocciolata', 'contenu_multimédia', 'cardamome_entière', 'vue_globale', 'primordiales', 'évolution_légale', 'jurisprudentielle', 'informelles', \"s'_habituent\", 'réseau_wifi', 'dates_auxquelles', 'polenta_gratinée', 'vacherin_glacé', 'jus_versapers', 'versapers', 'perles_colorées', '/_sèche-linge', 'bouton_poussoir', 'historique_exceptionnel', 'décoration_assortis', 'cadres_photos', 'tapis_moelleux', 'être_studieux', 'remercie_infiniment', 'desserts_glacés', 'apple_pay', 'sites_leader', 'raisins_tocai', 'principalement_argilo-', 'faure_2009', 'boisé_élégamment', 'piano_lab', 'michel_labord', '+_invitation', 'voyage_sonore', 'relayée_sur', 'place_vip', 't-shirt_officiel', 'ingrédients3', 'menus_gourmand', 'varices', 'calculs_biliaires', 'cellules_mortes', 'masser_doucement', 'délicieuse_marinade', 'graisses_saines', 'emmanuel_carrère', 'son_reportage', '6mois.ce_compagnonnage', 'copieuses', 'colonne_demandée', 'interface_principale', 'décalés_afin', 'rallonges', 'ail_épluchée', 'petit-à-petit', 'inexécution', 'déshydrateurs', 'néhémie', 'aggée', ':_musk', 'adoucissez_vos', 'soin_délicatement', 'peau_nourrie', '1.24', 'enregistré_votre', '1.9', 'feutre_lavable', 'personnages_disney', 'juicero', 'cara_crakine', 'bonjour_chef', 'elle-même_posée', 'pinceau_pâtissier', 'lactée_caramel', 'chocolat_alunga', 'bonsoir_chef', 'emprisonnements', 'dosette_fournie', '28°c', 'bonjourje', 'cuisson_silpat', 'je_réalisais', \"bonjourj_'\", '175_degrés', 'taille_désirée', 'arrière-gout', 'executer', 'jus_horizontal', 'extracteur_vertical', 'achats_personnels', 'panierveuillez_sélectionner', 'backup', 'priméal', 'sunbox_250', 'cuiseur_solaire', 'quatre_boulangerie', 'critères_précis', 'spécialité_goûté', 'régionale_imposée', 'préfou_vendéen', 'pains_espagnols', 'amatxi_(', 'poire_caramélisée', 'jesuite_(', 'jamais_déçue', 'magazine_odelices', 'feu_doux.4', 'odelices', 'valérie_cupillard', 'connections', 'sucres_colorés', 'appareil_mobile', 'buttermilk_sous', 'balayage_classique', 'tee-shirt_vintage', 'livraison_exclusive', 'articulant', 'veuillez_personnaliser', 'article_ci-dessous', 'chargement_terminé', 'veuillez_patienteraprès', 'votre_personnalisation', 'enrichissantes', 'glucosinolates', 'cet_index', 'sainte_trinité', 'retweet', 'ampères', 'préparateur', 'vos_sélections', 'ontologie', 'analyse_scientifique', 'chaussette_contient', 'levure_candida', 'stsci', 'chauffent_fort', 'extérieur_dépasse', 'bâtiment_tellement', 'serveurs_dégagent', 'globules_blancs', 'disparité', 'eljj_:', 'telles_quelles', 'décimales', 'nouveau_quiz', 'leaf_juice', 'kernel', 'freebox', 'mb', 'évolutifs', 'fermoirs', 'était_immatriculé', ':_quitus', 'fiscal_délivré', 'solution_buvable', 'transverse', 'verrouille', 'objets_nouvellement', 'bain-marie_glacé', 'ne_chauffera', 'caramélisation_du', 'lipidique', 'nous_souviendrons', '20€_/', 'événements_spéciaux', 'ingrédients_durcis', 'sont_incluses', 'été_réactivées', 'pétrisseur', 'architecture_alpine', 'westwing', 'décret_n°', 'euros_•••', '•••', 'son_aec', 'devenir_huissier-audiencier', 'graines_moulues', 'ghribia', 'ad_bellum', 'in_bello', 'chou-fleur_!', 'sambal_oelek', 'coin_externe', 'histoire_visuelle', 'caraïbos', 'brasserie_outland', 'droit_romain', 'post_bellum', 'ordre_juridique', 'figs', 'billets_discount', 'chouchoute_vos', '29€', 'activité_créative', 'gommettes', 'alpro', 'brioche_gourmande', 'cerf_divin', 'lapine_en', 'longeron', '_________________dieu_est', 'jesus_change', 'plénum', 'autre_gabarit', '(_polymorphisme', 'uniquement_naturels', '4388age_:', '51localisation_:', 'milliput', 'bras_oscillant', 'mastique', 'dégrossir', 'miliput', 'tamiya', 'page_html', 'e.zichef®', 'toise', 'rééducateur_)', 'émission_libre', 'conséquence_logique', 'situations_proposées', 'consignes_variées', 'énoncés_adéquats', 'éléments_précis', 'éclaboussure', 'rendement_maximal', 'beau_calendrier', 'certaines_périodes', 'clichés_habituels', 'médias_dominantsle', 'discours_dominants', 'imagier', 'e.zichef_vitamin', 'accessoirisation_vous', 'jus_multi-vitaminés', 'nettoyage_rapide', 'décals', '“ajouter', 'parmesan_végétal', 'msa', 'carrossage', 'bienfaits_nutritionnels', 'irrépressible', ']_tuto', ']_cher', 'symptomes', 'recherche_manuelle', 'ventilos', '12_v', 'bielle', 'capot_moteur', 'écrou', 'ta_zx', 'demarreur', 'silure', 'feeder', 'anguilles_séchées', 'disposition_2015', 'chiffres_2016', '35_bureaux', 'étranger_dédiés', 'enamel', 'redirection', 'essence_f', 'nutri_&', 'usage_exclusivement', 'façon_apparente', 'décalques', 'stellaire', 'recherches_utilisées', 'contacteur', 'couleur_bleue', 'poinçon', 'modèle_inclut', 'délices_bigoudens', 'pâtissier_travaille', 'instant_passionné', 'startpage', 'slice', '_________________________comme', 'disait_antoine', 'st_exupery', '\"_adishats', 'tom_-', '>_https://www.facebook.com/ukulelelandes/', 'smiley_sucks', ':_nsftw', 'houblonnées', 'mini_tablettes', 'ajouter_www.papergeek.fr', 'adblock_ou', 'tailles_supérieurs', 'chaque_taille', 'longueur_1', 'autres_tailles', '+1_cm', '+4cm_pour', 'entreposées', 'ocre_jaune', 'iae', 'traxxas', 'accus', 'motricité', 'durites', 'kokum', 'google_drive', 'hasbro', 'entretoise', 'chapitre_précédent', 'nakd', 'cardan', 'acide_stérique', 'usage_banal', 'sont_nuisibles', 'techniques_marketing', 'grandes_industries', 'addiction_dès', 'sites_bloqués', 'différents_accessoires', 'légèrement_fumées', 'surélévation', 'mailchimp', 'johann_zarco', 'ou_annulez', 'petits_ballotins', 'inclusive', 'installe_-toi', 'mai_68', 'employes', 'paiement_total', 'marchandises_livrées', 'retard_égale', 'intérêt_légal', 'antisionisme', 'brahmi', 'coloration_ultra-tendance', 'adresses_e-mail', 'corps_gourmand', 'vernis_semi-permanent', 'beauté_complète', 'peines_complémentaires', 'echappement', 'aes', 'boulon', '_________________alpine_turbo', 'bleu_83', 'restauré_alpine', 'turbo_grise', 'alpine_coupe', '76veritable_sinpar', '72_vitesse', 'au_tdb', 'gordini_turbo', 'sovra_coupe', 'qui_mûrit', ')_lecar', 'van_heuliez', '80et_quelques', 'épaves_(', 'non_moin', 'bmw_320', 'cab_e30', '325ix_e30', '325tds_plus', \"490000kmsc_'\", 'mep', 'regulateur', 'neiman', 'xt', 'mieux_assimiler', 'chlorelle', 'stator', 'gt3', 'leads', 'ohms', 'ferrage', 'choix_éducatifs', 'associatives', 'vidanger', 'physico-_chimiques', 'jumelés', 'cajous', 'motrices', 'clignotants', 'favicon', 'fofo', 'ldr', 'béa_johnson', 'cerceau_lumineux', 'raffa', 'brèmes', 'roaster', 'revêtement_permettant', 'parfaitement_saine', 'inox_poêle', 'fonte_brute', 'aucun_revêtement', 'émaille_poêle', 'naturelement_anti-', 'fois_culottée', 'produits_skeppshult', 'sont_labélisés', 'bio_eco', 'controled_diamètre', 'hauteur_intérieur', ':_skeppshult', 'controled_diam', 'garantis_25', 'ans_fabricant', 'enroulement', 'gotham', 'redirections', 'assez_récente', 'pleiiiiin', 'yaz', 'calorstat', 'biscuits_industriels', 'coaster', 'dénomme', '14_cuisiniers', '17_goûteurs', 'exca', 'occurrence_plusieurs', 'tailliz_(', 'coupe_circuit', 'comptes_gmail', 'plastique_dingue', 'débranche', 'return', '―', 'espaces_vides', 'en-têtes', 'elaboration', 'vous_parliez', 'produits_concernés', '5_problèmes', 'courants_quand', 'guide_gratuitement', 'marque-places', 'contenu_clair', 'vouloir_désactiver', 'prezi', 'snakebite', 'aliments_sains', '0_personnes', 'matières_sèches', 'macérât_huileux', 'goku', 'très_détoxifiant', 'domotique', '65°', 'appareil_possède', 'quatre_ports', 'antenne_satellite', 'prise_usb', '1000_go', 'plus_sous-évalués', 'maitriser_puisque', 'irritée', '2.2', 'aliments_alcalins', 'simple_glisser-déposer', 'compte_icloud', 'alcalinisante', 'court_circuit', 'sucettes_glacées', 'riposte_laïque', 'tuile40g', 'beurre_fondu40g', 'semooule40g', 'biscuit_ciron10g', 'ctron95g', 'sucre150g', 'amande150g', 'œuf4g', 'citron_vert60g', 'tapez_donc', 'ws', '532localisation_:', 'repas_peuvent-être', 'boite_auto', 'appret', 'edu', 'feedly', 'gir_1', 'entièrement_responsable', 'désire_sincèrement', 'drybrush', 'lichouzic', '469age_:', '40localisation_:', 'agrafe', 'excellents_résultats', 'zig', 'nouveaux_dessins', 'coloriages_seront', 'ajoutés_régulièrement', 'surveiller_notre', 'allume_cigare', 'bsi', 'se_marrie', 'aliment_santé', 'élucubrations', 'réactions_possibles', 'peinture_époxy', 'peu_onéreuse', 'bingen', '350_deg', 'biscuits_refroidis', 'déc', 'fairtrade', 'imap', 'boîtiers', '20a', 'lions_club', 'autonomie_gérontologie', 'groupes_iso-', 'openstreetmap', 'injecteurs', 'ventirad', 'élec', 'acheteur_devra', 'courbés', 'photodécoupe', 'decap_four', 'transfo', 'mazda', 'vernis_mat', 'ombragé', 'ancres', 'brossages', 'bières_fortes', 'origines_culturelles', 'solex', 'tubulures', 'vraie_révolution', 'plus_interactive', 'fréquenteurs', 'médiations_numériques', 'père_zago', 'aloe_arborescens', 'bloquées_devant', 'renseignent', 'rrraw', 'marche_effective', 'contemplation_sont', 'autonomie_gérontologique', 'diag', 'balai_intestinal', 'chez_abc', 'jeûne_intermittent', 'accu', 'bruitage', 'servo', 'rivet', 'quinton', 'alimentation_physiologique', 'minimisant', 'détoxination', 'surrénales', 'servos', '-t-il_jeté', 'raviolis_japonais', 'mes_lectrices', 'sbk', 'plastique_biodégradable', 'meilleure_assimilation', 'blanche_laquée', 'keimling', 'lecture_→', 'site_mattycollector', 'véritable_pluie', 'figurines_mattel', 'univers_classics', 'ghosbusters', 'dc_univers', 'comic_m.a.s.k', 'chez_idw', '(_v.o', 'annual_dessiné', 'andrew_griffith', 'butter_chicken', 'dioramas', 'silent', 'ni_médecin', 'nous_parvenons', 'objo', '<_ul', '<_li', 'utp_stg', 'déflecteur', 'multimètre', 'voltmètre', 'maintenable', 'horribles_codes', '<_div', 'header_col-xs-12', 'col-sm-6_col-sm-push-6', 'text-right-sm_bg-info', 'restant_maître', 'ces_maquettes', 'html_pourront', 'site_stand-alone', 'fonctionnant_sans', 'serveur_http', 'documentations_jsdoc', 'sites_e-commerce', 'mentalité_entrepreneuriale', 'super_prestation', 'interculturel', 'open_food', '/_accueil', 'clips_vidéo', 'amaigrissement', 'debian', 'commentaires_ci-dessous', 'menstruations', 'hypotoxique', 'jeûn', 'tu_utiliseras', 'pasteurisés', 'code_suivant', 'teint_rosé', 'découvrons_ensemble', 'contenu_existant', 'alpro_soya', 'patrick_robinet', 'découvrez_ci-dessous', 'utilisation_normale', 'checkbox', 'fichier_css', 'velcro', 'cartes-cadeaux', 'contacts_joomeo', 'importer_plusieurs', 'reconnaissons', 'links', 'meilleurs_offres', 'maisons_anciennes', 'finement_broyées', 'lucuma', 'sont_idéals', 'body_>', 'breuss', 'siri', 'chaï_latte', 'cacahuète_nu3', 'montant_dédié', 'noix_tigrée', 'content_marketing', 'hbbtv', 'détourage', 'canne_brut', 'feed', 'islam_radical', 'charme_vintage', 'bois_laqué', 'fauteuils_assortis', 'blog_wordpress', 'senteurs_exquises', 'hayon', 'épilation_100', '%_naturelle', 'élégants_tons', 'institut_orchys', 'feedburner', 'sublimez_vos', 'anniversaire_personnalisé', '2,5mm²', 'différents_appareils', '12_volts', 'abcd', 'moteur_tourne', 'voltage', 'coupe-circuit', 'commodo', 'vario', 'piste_audio', 'attractant', 'ne_demarre', '[_résolu', 'leurre_souple', 'ton_amorce', 'jan_2009', 'bouillettes_jeu', '01_jan', 'tu_poses', 'hivernage', 'robin_red', 'hépatique', 'esters', 'crudivorisme', 'départager_deux', 'applet', 'cup_cake', 'oxalates', 'recette_alcaline', 'indice_pral', '–_tamisez', 'fp', 'grille_critériée', 'carro', 'plus_pointues', 'loqueteau', 'maître_ouvrier', 'serrurier_metallier', 'tendeur', 'filetage', 'bactéricides', 'parfums_seront', 'première_infusion', 'utiliser_0,5', 'prolongeant_petit', 'action_drainante', 'thé._?', 'frontend', 'savourez_donc', 'vaginale', 'par_agnès', 'mignonac', 'diététicienne-nutritionniste', 'épandage', 'désodorisé', 'balisage', 'agence_immobilière', 'recherche_mathématique', 'fichier_audio', 'vitamine_b9', 'cet_émulateur', 'ppa_:', 'random-stuff_/', 'ppa', 'jpcsp_:', 'émulateur_développé', 'ppsspp', 'blackliste', 'nomment_ctparental', 'catégorie_adult', 'dangerous_material', 'gambling', 'hacking', 'malware', 'marketingware', 'mixed_adult', 'redirector', 'sect', 'strict_redirector', 'strong_redirector', 'usr_/', '/_ctparental', '/_iptables', 'possède_certaines', 'sont_commentées', 'commande_ctparental', '-_ipton', 'données_explicites', 'filtre_principal', 'owncloud', '/_bin', 'coco_rappée', 'se_ramollira', 'ctrl_x', 'echap_permet', 'default_/', 'grub_ajoutez', 'rcs_ajoutez', 'disques_automatiquement', 'grub', '«_logo.nologo', 'ligne_grub_cmdline_linux_default', '/_modprobe.d', 'modprobe.d_/', 'minimum_vital', 'échange_utilisable', 'système_ubuntu', 'fstab', 'radiotray_démarre', 'ouvrez_application', 'démarrage_cliquer', 'radiotray_\"', '/_radiotray', 'fichier_bookmarks.xml', '.local_/', 'share_/', 'radiotray', 'radios_françaises', '(_màj', '07/04/2013_)', 'trucs_cool', 'vlc', 'hébergement_web', 'dhcp', 'oblitération', 'café_matinal', 'md€', 'se_détoxiquer', 'vitamines_nécessaires', 'aliments_courants', 'plusieurs_extracteurs', 'me_conseillent', 'robustesse_mais', 'résidus_/', 'soient_efficaces', 'vous_consulterez', 'même_apposer', '/_filters', 'for_photos', '15_filtres', 'macphun', 'informations_régulières', 'marque_filte', 'rue_jean-pierre', 'timbaud_)', 'jeunes_toqués', 'sont_essayés', 'pâtissier_adoré', 'identité_numérique', 'filters_for', 'site_sélectionne', 'appstore_peu', 'outils_supplémentaires', 'open_cellar', 'détaillée_toutes', 'mac_phun', 'condensateurs', 'roccat', \"'_oeuvre\", 'écran_animé', 'itunes_veut', 'supprimés_vu', 'bibliothèque_itunes', 'supprimé_quoi', 'rel', 'destroyer', 'lite', 'contrôle_parental', 'surimpression', 'download', 'fouées', 'émulateur', 'surtout_arranger', 'empiècement_large', 'head_>', 'call_to', 'call-to-_action', 'normative', '2ème_étape', 'ambiance_oppressante', 'martes_bathori', 'plus_dantesque', 'coffre_volant', 'présentiel', 'méga-bowl', 'corné', 'plante_detox', 'bruyère_connues', 'recharge_uniquement', 'bio_aidera', 'apaiser_grâce', 'oranger_bigaradier', 'savon_relax', 'beurre_partiellement', 'tournesol*', 'plantes_mama', 'relax*', 'ricin_saponifiée*', 'bigarade_*', 'lavandin*', 'cueillette_biologique', 'cactus_blanc', 'vos_pois-chiches', 'peu_visqueux', 'petites_flèches', 'parfaitement_honnête', 'nouvelles_fresques', 'pourtour_vaughan', 'mountain_rd', 'parfois_retapées', 'messerschmidt_(', 'parfum_granola', 'adroit', 'coussins_destinés', \"turner_'\", 's_christmas', 'rassemblait_près', '300_vendeurs', 'aliments_oubliés', \"s'_expédie\", 'attendront_bien', 'sagement_notre', 'devienne_intéressant', 'dieppe_propose', 'place_1604', 'concert_gratuit', 'braséros', 'y_croiserez', 'nos_cagoules', 'moncton_met', 'disposition_skis', 'raquettes_gratuitement', 'mapleton_tous', 'crosses_quand', 'gratin_face', 'coupée_vers', 'joyeux_drilles', 'piérides', 'compilation_fonctionne', 'postes_windows', 'bas_débit', 'ou_zulu', 'visual_c++', '2005/2008/2010/2012/2013/2015', '.net_framework', '3.5/4_ou', 'épinette', 'pour_cinécomça', 'klir', 'conservateur_type', 'epp_si', 'utiliserez_longtemps', 'sera_accentué', 'col_large', 'reader', 'by_considering', 'the_terms', 'fibonacci_sequence', 'whose_values', 'do_not', 'exceed_four', 'find_the', 'sum_of', 'the_even-valued', 'terms', 'option_duo', 'moineaux_surtout', 'produits_pré-portionnés', 'ne_jettes', 'tes_fiches', 'timing_estimé', 'indiquée_+', 'pelléas', 'nouvel_item', 'sa_discographie', 'éponge_humide', 'plomb_palette', 'hameçons', 'ster', 'patches', 'pont_arrière', 'bannissez', 'glas', 'open-sankoré', 'poulies', 'inquisiteur', '«_collectionner', 'ton_passeport', 'être_broyé', 'paramétrez', 'vous_refuseriez', 'références_bien-être', 'greenma_:', 'canneberge-goji_(', 'infusion_mama', 'detox_nouvelle', 'maison_dépuratives', 'téléphone_intelligent', '12_colonnes', 'ateliers_&', 'concombre-melon_mystea', 'disulfites', 'lysozyme', 'impérialisme_français', 'version_imprimée', 'plusieurs_coloris', 'sep', 'gicleurs', 'rois_végane', 'condensateur', 'menu_personnalisé', 'link_juice', 'netlinking', 'éditeur_visuel', 'durée_maximale', 'butées', '[_img', '/_img', 'parechocs', 'dpp', '-on_disposé', 'ailettes', 'sarmine®', 'farine_micronisée', 'kénavo_yvandré', 'portfolios', 'cerfrance_alliance', 'aquariophilie', 'supports_print', 'leaflet_ou', 'plv_ou', 'vernis_brillant', \"réfrigérez_jusqu'\", 'panel_lines', 'recouvert_ma', 'bonnes_idéees', 'blanc_ey', 'assez_light', 'nos_tutoriels', 'eau_osmosée', 'kh', 'sachet_refermable', ':_https://www.facebook.com/pages/avenir-vsp/367872949977696', 'www.avenir-vsp.comtuto_pour', 'ici_cher', 'initiative_socialement', 'grille_prédéfinie', 'palud', 'arce', 'relativement_rigide', 'secundo', 'papoter_autour', 'ahooga', 'labels_bio', 'nouveautés_parmi', 'cadeau_anniversaire', 'poèmes_courts', 'bombance_densément', 'saveren_poussant', 'bouchon_hermétique', 'photoen_dernier', 'canadian_tire', 'formulation_non', 'anti_taches', 'favorisera', 'froments', 'vue_nutritionnel', 'gros_intestin', 'essayer_diverses', 'microbrasseries_ou', 'vins_harmonies', 'réputé_sommelier', 'françois_chartier', 'grand_touski', 'sec_français', 'épicé_noir', 'même_consulter', 'concomitante', '⁃', 'fongibles', 'juge_administratif', 'cjce', 'santé_lyon', 'droit_sécurité', 'droit_securite', 'auto_entrepreneur', 'avocat_droit', '-_juriste', '-_master', 'securite_sociale', 'jus_naturalisme', 'holographique', 'p.d.g.', 'demanderesse', 'jus_utendi', 'nu-propriétaire', 'usufruitier', 'normes_impératives', 'invoquée', 'équivoque', '180_°c.2', 'min.3', 'poivrez.3', 'rationaliste', 'cij', 'chaud.3', 'réfrigérateur.3', 'jambon_braisée', 'bon_rôti', 'être_torturé', 'savon_gommant', '-_les.2', 'savonnerie', 'feng_shui', '≈', 'nos_horaires', 'skis_sont', '40_pouces', 'écartement_normal', 'modèle_b-tx', 'basses_altitudes', 'moteur_genesis', 'turbocompressé', 'ef1000is_produit', 'courant_dépourvu', 'articles_équipés', 'motomarine_possède', 'système_antidémarrage', '/_limiteur', 'puissance_low', 'rpm_mode', 'limiteur', 'motomarine', 'wc_supplémentaire', 'notre_plombier', 'modèles_adéquats', 'besoin_sanitaires', 'évènement_gratuitement', 'garde-boue', 'trial', 'format_a6', '(_105mm', 'x_148mm', 'production_professionnels', 'défilant', 'électrolyse', 'intoxications', 'branchez', 'certains_fabricants', 'résultat_optimal', 'style_css', 'aux_ablutions', 'aliments_végétaux', 'hdi', 'percarbonate', 'mise-à-jour', '\"_albus', 'dumbledoresur_pottermore', ':_acciolumos208', 'petite_potion', 'minuscules_nouilles', 'bezoars', 'champ_mignons', 'ananas_préparé', 'molly_jr', 'dérivation', 'ppcr', 'moteur_chauffe', 'exif', '20_ampères', 'sera_transportable', 'tarifs_négociés', 'thevenin', 'couteaux_guy', 'degrenne_:', 'couteaux_service', 'effet_bizarre', '(_0.10', 'pinte_heinekein', '*cette_promotion', '(_6cl', 'signaler_toute', 'qui_étendra', 'code_javascript', 'son_commandmenu', '/_prefetch', 'nouvel_événement', 'outils_proposés', 'ssl', 'play_store', 'évaluation_qualitative', 'moisture', 'judo_?', 'accord_instaure', 'mensuels_conventionnels', 'sur_jukebox', 'discographie_complète', 'montants_revalorisés', 'salaires_mensuels', 'cet_avenant', 'avenant_relatif', 'montant_revalorisé', 'coefficient_hiérarchique', 'emploi_occupé', 'salaires_minimums', 'annuels_conventionnels', 'multiples_bienfaits', 'télescopique', 'cqp', 'somfy', 'architecture_obsolète', '(_forms', 'application_3', 'tiers_java', '(_websphère', 'auparavant_gérées', 'bases_access', 'grille_récapitulative', 'fep', 'cuivres_éclatants', 'chanteur_biberonné', 'mélodies_entêtantes', 'recette_skankaya', 'ensemble_harmonieux', 'fichier_wp-config.php', 'flottaison', 'eft', 'doigts_eft', 'compostage', 'bouture', 'tamarins', 'cookies_choco-', '✩_200', '✩', 'nestle_emballage', 'zig-zags_avec', 'vos_coulées', \"buttercream_c'\", 'niveau_ginette', \"✩✩c_'\", 'blog_iowa', 'fonce_non', '>_egoutter', 'contribuera_notamment', 'cupcake_violet', '170_degrès', '>_essorer', 'aubergines_cuites', 'écrit_450g', 'dit_heu', 'fuck_?', '«_hot-dog', 'te_mettrais', 'oups_bis', 'pancakes_troooop', 'placer_1h', 'push_pops', 'pushpop', 'milles_morceaux', 'avant_redessinée', 'nouveaux_pare', 'chocs_avants', 'sogbossi', 'ces_flûtes', 'verrines_régalez', 'vous_chocolatmagiquement', 'planifiés', 'procédure_dite', 'puis_tassez', 'maladies_graves', 'boutures', 'auditionnait_a', 'conclusions_émises', 'société_apaisée', 'fracture_identitaire', 'imposée_contre', 'submersion_migratoire', 'endroit_extrêmement', 'vivre_semble', 'constituer_aussi', 'rend_sacré', 'islâm_soit', 'al-âmân_(', 'rendu_licite', 'mécréance', 'nommé_mécréant', 'sont_licites', 'teinture_mère', 'kit_main', 'micro_entrepreneur', 'qui_représentera', 'pain_paléo', 'polysaccharides', 'fichier_index.html', 'fichier_piratebox.html', 'dossier_nod1', 'liens_externes', 'maison_connectée', 'openstructures.net_:', 'openstructures_est', 'construction_modulaire', '\"_everyone', 'designs_for', 'everyone_\"', 'tire-fort', 'matériel_lourd', 'xhtml', 'herboristerie_traditionnelle', 'décisions_importantes', 'étincelants', 'bonjour_thierry', 'jus_greenstar', 'h.e', 'sites_préférés', 'soin_hydratant', 'norman_walker', 'chauffe-biberon', '2t', 'perfection_soit', 'infection_urinaire', 'ma_sbs', 'belle_sœur', 'clipper_infusion', 'petits_bavouillis', 'smoothie_accompagné', 'entrée_salée', 'journée_devenait', 'fameux_jouets', 'soient_actuellement', 'réédités_par', 'donc_trouvables', 'enseignes_spécialisées', 'recherche_ebay', 'essuyez_vos', 'coule_=', 'donc_troqué', 'beurre_vegetal', 'produit_réside', 'taux_hydro', 'bretagne_spécialisés', 'plantes_grasses', 'acier_inox', 'crawler', 'différentiels', '2,4_kg', 'img_]', '–_160g', 'préampli', 'boitiers', 'épargne_libre', 'utilisateurs_autorisés', '$_us', 'maison_plamondon', 'automne_passé', 'ultra-résistant', 'élina', 'timer', 'blendeur', 'superbike', 'supersport', 'desserts_crus', 'valorisés', 'série_spéciale', 'pare-chocs_avant', 'dernière_elise', 'cup_250', 'propriétaire_accepte', 'non_hydrogénée', 'the_post', 'appeared_first', 'sauge_sclarée', '-225g', 'quête_préférée', 'médimnes', 'suite_›', 'lilibox', 'délicieuses_tapas', 'façon_sushi', 'uip', 'arpège_)', 'épinards_rencontre', 'mélange_subtile', 'quel_apéritif', 'boudin_revisité', 'métro_comparable', 'chaleur_m', 'tuee_!', 'courrier_indésirable', 'lonely_planet', '1500_€', 'pourront_opter', 'instrumentistes', 'enflammés', 'puissance_restituée', 'voie_orale', 'trois_spots', 'meilleures_salades', 'minutes_chrono', 'régiments', 'dha', 'twitter_@art21history', 'contrainte_initialement', 'gagner_davantage', 'veulent_ériger', 'écritures_applicatives', 'groupe_auquel', 'appartient_xxxxx', 'partenariat_conclus', 'loi_espagnol', 'sont_transférées', 'façon_pseudo-', 'thèses_préétablies', 'curry_accompagne', 'votre_passeport', 'canadien_valide', 'citoyen_canadien', 'gloriette', 'jacques_faussat', 'critique_concernant', 'smart_videohub', 'videohub', 'wc_séparés', 'sécheuse', 'soyez_prêt', '1_pt', 'décoration_moderne', 'télévision_écran-plat', 'échansons', 'accordons', 'swing_by', 'the_saq', 'dongle', 'village_médiéval', 'pimper', 'retweets', 'on_automatise', 'tâches_cognitives', 'on_délègue', 'principales_plateformes', 'pqr', 'immédiatement_atteindre', 'inciterait_probablement', 'quelconque_future', 'ou_médiaplasmes', 'ou_médiaplasies', 'médias_classiques', 'palliatif_aux', 'carences_desdits', 'inégales', 'carénages', 'nos_profils', 'apprendre_davantage', 'vous_expédier', 'fonctionalités', 'macron_semble', 'nouvelles_ministres', '10litres', '707', 'pâtisseries_anglaises', 'décendrage', 'adjacentes', 'plinthe', 'eucalyptus_citronné', 'chez_alter', 'consistance_voulue.', 'éléments_susceptibles', 'cousseran', 'commenter_votre', 'contribua', 'demande_bien-sûr', 'suite_réutiliser', 'jacquettes_(', 'miraculeuses', 'complétées_par', 'tahiti_chantilly', 'madelon', '¶', 'prévenance', 'phusis', 'sixt', 'ont_perpétré', 'hölderlin', 'trouvez_ici', '170c', '(_aon', '&_edc', 'barbeau', 'aide_accordée', 'ésaïe_61', ':_3pour', 'apocalypse_18', ':_10il', 'où_fermente', 'terre_sucent', 'jérémie_25', '15car_ainsi', 'darby', '5et', 'liturgies', ':_28c', ':_8et', 'louis_segond', '6._)', '6et', '14et', 'restaurants_indiens', 'apocalypse_16', ':_19et', 'hemina', 'cliques_dessus', 'entré_tes', 'te_redirigera', 'genre_carambar', 'bruges_?', 'bouchement', 'porridges', 'revisite_nos', 'patisseries_préférées', 'allié_parfait', 'céréales_jordan', 'noisette_réduite', 'version_healthy', 'barre_carrot', 'brownies_étant', 'mes_patisseries', 'pouvoir_racler', 'browniesbøwls_déclinés', 'grosse_c.c', 'code_porridgelab', 'comptez_plutôt', 'mes_porridges', 'feuillage_vert', 'installateur', 'corses_face', 'meilleure_nutrition', 'meilleur_aménagement', 'etc._retrouvez', 'astuces_santé', 'ingrédient_vedette', 'photo_issues', 'monique_mourgues', 'catherine_madani', 'laurent_rouvrais', 'biocoops', 'gorge_irritée', 'beige_rosé', \"s'_apparentait\", 'vos_courriels', 'piratebox', 'carto', 'huiles_précieuses', 'actionneur', 'olive*', 'ricin*', 'format_numérique', 'questions_traitées', 'cookeo_cuisses', 'fongiques', 'présentés_manqueront', 'information_olfactive', 'aura_réveillé', 'induisant', 'réelle_illusion', 'perceptive_!', 'levothyrox', 'touches_personnelles', 'égrène', 'bustier_sur', 'rouille_chaude', 'régulant', 'séance_engagement', 'mes_couples', 'dès_réservation', 'invités_attendent', 'fonction_paginate_comments_links', 'soyer_rassuré', 'alger_débutera', 'croisure', 'replets', 'alimentation_crue', 'retapage', '>_dif', 'utilisé_majoritairement', 'smart_lav', 'røde', 'micro_cravate', 'vieux_kit', 'tellement_malin', 'lotion_solaire', 'calmant_piqûres', 'courbatures_dont', 'lactofermenté', 'gastrite', '50gde_farine', 'air_canada', 'playa_bonita', 'inscrit_reconnaît', 'fc2_refuse', 'tous_dommages-intérêts', 'utilisateur_accédant', 'utilisateur_subisse', 'fc2', 'prise_murale', 'gommage_corps', 'panier_modifiez', '\"_recalculer', 'programme_foot', 'apparence_>', 'dix_étapes', 'sylvain_levey', 'shortcodes', 'borax', 'fée_flo', 'banderole_lors', 'onduleur', 'mar_2007', 'agropolis_international', 'acteurs_scientifiques', 'biosourcée', 'éco_responsable', 'pornichet', 'vitis_valorem', 'narcissisme_«', 'dsm', 'chalmers', 'grille_multi-combustible', '&_hellip', 'lunetoiles', 'brûle_graisses', 'gateaux_algeriens', 'gateau_algerien', 'lben', 'compte_iban', 'redimensionnement', 'massala', 'ramadan_2017', 'rgb', 'frain', 'nitrites', 'puéricultrices', 'abats_frais', 'tout_mijoté', 'barf', 'perforatrice', 'batrie', 'fort_appréciée', 'mal_considéré', 'biotta®', 'civam', 'commandes_passées', '/_themes', 'quotidiennement_confrontés', 'espace_multifonctionnel', 'espaces_différents', 'logs', 'rendre_uniques', 'styles_traditionnels', 'oléine', 'aloès_bio', 'milieux_islamistes', 'radicalisés_partagent', 'même_vivier', 'armes_envoyées', 'formation_terroriste', 'qui_sévissent', 'vaisselle_restreinte', 'seules_prises', 'mal_positionnées', 'flacons_brevetés', 'wit_offrent', '10cl_soit', 'bonjour_julien', 'ménopause', ':_emulsifiant', 'émulsifiants_permettent', '•_visionnez', 'voyez_quelles', 'tradi_ballotin', 'instits_ou', 'si_bee', 'lentilles_germées', 'barre_substitut', 'espresso_sucré', 'pensée_sauvage', 'jeux_libres', 'sous-catégorie', '220v', 'omniblend', 'utilisable_«', 'fondée_elle', 'médical_»', '0,29', 'célèbre_fast', 'engorgement', 'plusieurs_antioxydants', 'sous-répertoire', 'cli', 'merges', 'inauguration_officielle', 'débits_admissibles', 'préconisés_peuvent', 'derniers_coupons', 'véronique_illustre', 'domaine_entras', 'solelh_est', 'fait_cligner', 'véronique_joffre', 'four_workplace', 'traps_for', 'working_women', 'and_how', 'to_avoid', 'them_\"', 'quatre_pièges', 'magazine_working', 'plastique_rigide', '18è_siècle', 'chocolateries_ont', 'ouvert_boutique', 'tel_placard', '4_succursales', 'ouvrage_fameux', ':_10h30-13h30', 'sapinières', 'commissionnaires', 'tube_creux', 'articles_verriers', 'par_creationsite.ch', 'site_webune', 'vos_e-mails', 'au_réfrigérateur.4', 'min.2', 'min.4', 'au_frais.2', 'au_frais.3', 'toutes_essayées', 'boutique_associés', 'inspiration_japonaise', 'pâtissier_240g', 'mentionnant_explicitement', 'concombre-menthe', 'daube_provençale', 'add-ons', 'abord_enduite', 'ensuite_enfumée', 'modeste_installation', '/_vit7', 'robots.txt', 'ventouse_comme', 'launcher', 'vignoble_bourguignon', 'input', 'pagerank', 'ma_blog-roll', 'ses_doudous', 'rendre_active', 'moins_désemparée', 'repas_froids', 'h.e.', 'montant_forfaitaire', 'taque', 'blender-mixer_-', 'ré-interpréter', 'apple_music', 'clic_gauche', 'parlent_espagnole', 'espère_perfectionner', 'biscuits_sucrés', 'forms', 'widget_texte', 'liens_internes', 'osb', 'certains_publics', 'denis_dubois', 'constante_innovation', '(_anti-boue', 'anti-_tartre', 'multifonctionnelle', 'plexiglas', 'machine_virtuelle', 'clic-droit', 'pyramidal_pur', 'émulsifier', 'champagne_rémoise', 'etat_bénéficiaire', 'impôt_levé', 'banque_portugaise', 'valeur_quotidienne', '%_vq', 'utilise_habituellement', 'tartinade_choco-', 'vivre_pleinement', 'incorporer_graduellement', 'groupe_iso-', 'builder', 'visionné_son', 'ondes_cosmo-', 'pas_détectables', 'quantifiables_par', 'mesure_existants', 'géobiologue_comme', 'radiesthésiste', 'détection_simples', 'sourcier_«', 'equipements_standards', 'gîte_3', 'épistable', 'cuissonautocuiseurpetit_électroménager', 'basechaise_haute', 'demandefer', 'repasserlave-vaisselle', '4_personnesfour', 'micro-_ondesréfrigérateur', 'congélateurlave-linge_privatiftv', 'couleurdeux_wc', 'nos_emails', 'no-_reply@fiscalite-automobile.fr', 'gîte_4', 'écran_platdeux', 'master_international', 'fois_résolu', 'sur_editer', 'bref_récapitulatif', 'hackintosh', 'pcs', 'chameleon', '\"_homecine', 'filtre_antispam', 'andreas_larsson', 'saisissez_votre', 'offre_consultée', 'touristes_américaines', 'amoureux_boivent', 'serveurs_vont', 'sauvegardées', 'jalbum', 'espace_adhérent', 'pleine_phase', 'kit_complet', 'graisse_végétales', 'veau_parée', 'sac_spécial', 'cuisson_sous-vide', 'andouillettes_aaaaa', 'ombré', 'spaetzle', 'tourrage', 'replaçant_sur', 'atteindre_29°', 'nouvelles_sections', 'peau_fatiguée', 'ferais_quoi', '/_spoiler', 'cholestérol_total', 'ko_]', 'sarcany', 'torve', 'précédent_post', 'citro-_recette', 'i7', 'illustratrice_a', 'passata', 'gigabyte', 'douanes_)', 'coton_biologique', 'greffons', 'ma_naturopathe', 'hospitalité_club', 'level_incluant', 'secteur_club', 'level_-', 'stade_2h30', 'flanelle', 'tribune_premium', 'south_stand', 'hospitalité_legends', 'lounge_incluant', 'soft_drink', 'irrésistible_envie', 'main_stand', 'hospitalité_anfield', 'cash-bar', 'régime_minceur', 'verrines_avocat', 'saint-valentin_voir', 'cœur_mêlant', 'onctueux_glaçage', 'tartelettes_chèvre-épinard', 'noisettes_croquantes', 'burgers_fraîcheur', 'parfois_grasse', 'ici_remplacée', 'canapés_jambon-fromage', 'mauricien', 'minis_burgers', 'photos_gourmandes', 'légitime_gourmandise', 'kebab_revisité', 'tribune_latérale', 'wembley_incluant', 'minis_tourtes', 'carottes_apportent', 'madeleines_vanille', 'façon_nath', 'confiture_poire', 'peau_fragile', 'muffin_salé', 'praliné_feuilletine', 'apportait_goût', 'vanille_adoucissait', 'puis_chinoisez', 'assez_destructurées', 'créations_uniques', 'seul_fantastik', \"165°c_jusqu'\", 'trinqué', 'investissement_québec', 'volume_nominal', 'ton_inventaire', 'voyons_maintenant', 'dieux_égyptiens', 'géographie_française', 'véritable_plongée', 'lrem', 'personnalisant', 'bouzouki', 'finalistes_inclus', 'leurs_pseudonymes', 'publicitaires_ayant', 'imagetous', 'ham_cheddar', 'vita_coco', 'monascus_purpureus', 'c.a.s_huile', 'bulgur', 'c.a.c_graines', 'ressentir_immédiatement', 'fibreuse', 'palissage', 'opercule_carton', 'enchanteresse', 'sont_sublimées', 'accompagnera_délicieusement', 'sollers', 'seront_sublimées', 'sansa', 'mkv', 'dvd_vierge', 'dvdfab', 'sous-titres_externes', 'aspect_ratio', 'nouveau_périphérique', 'accessoires_incluent', 'kuvings', 'florian_rémont', 'juillet_août', 'ready_for', 'david_lebovitz', 'nokia_lumia', 'vous_commencerez', 'google_calendar', 'chocolats_intégrant', 'convaincus_renoncent', '150_paquets', 'automobile-club', 'appareil_ios', 'planche_arrachée', 'halle_devrait', 'lisant_renan', 'avaient_suscité', 'être_intégrées', 'commits', 'divers_gestes', 'écologiques_déjà', 'compilateur', 'personnes_heureuses', 'redirige', 'compte_github', 'manuel_peyrondet', 'revendiquons_crûment', 'voie_interne', 'projet_professionnel', '«_yoghourt', '•_20g', '•_30g', '82_000', 'mouvement_hlm', 'parc_hlm', 'magnésium_marin', 'minutestemps', 'lampion', 'wordq', 'nesquik®', 'collectionner_»', '/_gadget', 'cadeau_pendaison', 'crémaillère_/', 'accueil_/', 'nos_gadgets', 'outdoor_adresse', 'facture_ht', 'colis_seront', '(_tyva', 'blindees', 'depanneur_serrurier', 'acronymes', 'fonction_en-tête', 'onglet_insertion', 'hélichryse_italienne', 'box_domotique', 'domoticz', '/_dev', 'introduis', 'notre_figurons', 'candidement', 'chambrelan', 'serruriers_accredite', 'immortalisez', 'premiers_moments', 'récolterez', 'premières_gelées', 'bon_paillage', 'tige_principale', 'choux_brocolis', 'poche_ticket', 'se_télescopent', 'landing_pages', 'lune_rousse', 'autres_protections', 'ndd', 'ukulele', '10a', 'nûment', 'ligne_moncarnetpaleo.com', 'chaussettes_shebeest', 'cacahuètes_go', 'team_go', 'nuts_prépare', 'rencontre_merveilleuse', 'entièrement_doublé', 'blocs_optiques', 'barre_chimpanzee', 'chimpanzee_goût', 'masonry', 'hotte_intégrée', 'sujettes_aux', 'l.o.c.', '1080p', 'modules_complémentaires', 'va_apaiser', 'herbamare', 'semi-permanente_ou', 'jardinerie', 'différentes_collections', 'pixel_art', 'cactus_francophone', 'véritable_savon', 'wallet', 'cbd', 'appâts_très', 'redonne_souplesse', 'greffon', 'lait_éclaircissant', 'drm4_au', 'e_exfolie', 'elle_débarrasse', 'dernières_impuretés', 'purifiantes_du', 'fruit_aident', 'luxe_concentré', 'dépigmentant_intense', 'bijou_contenant', 'jus_chypré', 'formule_hydratante', 'jojoba_protège', 'texture_hydratante', 'karité_deviendra', 'suivra_partout', 'mine_pointue', 'jojoba_maintient', 'résultat_mat', 'fiches_questions', 'insalubrité', 'lotion_corporelle', 'cmsévolutif', '<_strong', 'strong_>', 'icône_présent', 'custom_post', 'mathy_by', 'accessoires_complémentaires', 'sélection_initiale', 'dinsic', 'plaques_perforées', 'csst', 'montants_versés', 'association_équilibrée', '(_isolat', 'créatine', 'laquelle_iron', 'claire_nature', 'cattier_contient', 'ou_tisanière', 'monacoline_k', 'grandes_plantations', '-_vissez', 'second_couvercle', 'faible_indice', '9g', 'vertus_nourrissantes', 'thé_lov', 'donnent_aucun', 'traitement_anti', 'anti_bactériens', 'bien-êtretraitement_anti', 'traitement_greenfirst', 'eucalyptusbiologique_douceur', '(_coutil', 'contact_exceptionnelle', 'redirection_301', 'dashboard', 'marque_berghoff', 'réserve_expressément', 'nginx', '1_0€', 'opération_parrainage', 'instructions_afin', 'nobodinoz', 'fonctionnalités_utiles', '«_cosgard', 'toxines_grâce', 'grande_ortie', 'bruyère_notamment', 'savon_detox', 'detox*', 'litsée_citronnée*', 'orange_douce*', 'citronnelle*', 'verveine_exotique*', 'fiches_recettes', 'je_suivrais', 'bergerac_permet', 'masseries_rouge', 'côte-ouest', 'montbazillac_riche', 'anytrans', 'appareils_ios', 'pranarôm', 'propriétés_particulières', 'veuillez_activer', 'ixquick', 'forêt_merveilleuse', 'qui_regorgeait', 'fruits_somptueux', 'jus_fabulosa', 'cases_colorées', 'correctement_recouvertes', 'joomla_3.8', 'utilisent_désormaient', 'classes_existants', 'version_3.3', 'renseignements_recueillis', 'compilés_ici', 'simplement_destinés', 'design_élégant', '220_v', 'glitter_glue', 'vins.”', 'dose_maximale', 'amélioration_progressive', 'élément_<', 'ou_saint-julien', 'savons_naturels', 'savon_extra-doux', 'karitébrut', 'feng-shui', 'mariage_mémorable', 'animations_événementielles', 'cabines_photo', 'ou_photobooth', 'enveloppe-filtre™_-', '1_bouchon-doseur', 'eau_pure2', 'enveloppe-filtre™3_-', 'enveloppe-filtre™', 'enveloppe-filtre™_avant', 'plotch', 'nous_faisonsnotre', 'manomètre', 'colonnes_abaissées', 'décors_sucrés', 'plutôt_réfléchir', 'explorateurs_nés', 'parfois_inimaginables', 'altitude_moyenne', 'variables_météorologiques', 'temps_divise', 'équations_mathématiques', 'aoc_muscadet', 'biscuitier_+', 'gsx12', 'yû', 'yakko', 'contenus_existants', 'classe_css', '://www.nouveautes-conso.fr_/', 'wp-content_/', 'uploads_/', 'super-fruits_tels', 'frais_kilométriques', 'commentaires_reflètent', 'commentaires_vulgaires', 'offensant_ou', 'sarazin', 'cheville_ouvrière', 'cholexcess', '1/2_portion', 'contient_1/3', 'desmodium', 'monacolines', 'baies_séchées', 'curcumine', 'moins_attrayante', '0,4', '5,00€', 'intérêts_pertinents', 'chauffages', 'alcaliniser', 'thumbnail', 'sitew', 'colza*', 'montpellier_supagro', 'aura_hâte', 'beaux_cahiers', 'laissera_entrevoir', 'côté_sociable', 'outil_spécifique', 'nettoyez_régulièrement', 'stef_forty', 'mimine', 'sans-façon', 'coincements', 'moteur_stock', 'sérum_anti-', 'technologies_numériques', 'texte_alternatif', 'h.l.m.', 'affilés_ou', 'rhum_dedans', 'contracteur', 'délibérez', 'pièce-jointe', 'poternes', 'thérapie_brève', 'latte_machiatto', 'tm_31', 'tm_5', 'sur_enza40@hotmail.fr', 'avina', 'porte_claquée', 'subséquent', 'intervention_serrurier', 'grille_powerframe®', 'démarrage_inégalée', 'performance_fiable', 'métal_étiré', 'auto_décharge', 'metaux', '95_degrés', '29°', 'kif-kif', 'bâtisseur', 'comprimé_neutre', 'vos_aisselles', 'priorite', '4_coupons', 'seul_coupon', 'landing_page', 'blob_ses', 'popup', 'hostname', 'jeedom', 'z-wave', 'évolutivité', 'document_pdf', 'serrurier_rue', 'poutrelles', '6mm²', 'mots_cachés', 'dragee', 'cdn', '32a', 'monophasé', 'disjoncteur_20a', 'circuit_dédié', '6²', 'disjoncteur_32a', 'interrupteur_différentiel', '63a', 'disjoncteur_différentiel', '2,5²', 'disjoncteur_20', 'grosse_perceuse', '40a', '230v', 'télérupteur', '2,5_mm²', '30ma', '6_mm2', '380v', '2,5_mm2', '24_volts', 'ᚗ', 'cchst', 'société', 'vous_resolvez', 'etsi', 'diffuse_car', 'ëlodie', '/_grub', 'haricots_borletti', 'champignons_spécifiques', 'menuhebdo', 'usage_interne', 'blé_fluide', 'garantie_ant-grumeaux', 'consulter_ci-dessous', '\"_giustificazione', 'père_salvini', 'xviiie_siècle-pour', 'aux_génois', 'festoyé', 'fromages_sardes', 'grille_d.e.s.s.', 'communication_visuel', 'passation_rapide', 'particulièrement_recommandée', 'mixe_grossièrement', 'gradient', 'directours_algérie', 'rêve_réalisé', 'badigeon', 'subséquemment', 'jolis_motifs', ':_antiacidité', 'miam-ô-fruit_après', 'vus_lors', 'jazz_max', 'autres_rêvent', 'quatre_diapos', 'consigne_donnée', 'n_patientez', 'aliments_industriels', 'chocolat_préemballés', 'rainbow_restaurant', '«_superlatif', 'trop_enthousiaste', '«_superlaxatif', 'ou_chapatis', '«_dal', 'autres_varient', 'special_thali', 'genre_vermicelles', 'goa_seulement', '«_banoffee', 'caramel_toffee', 'jus_hurom', 'jus_verticaux', '43_tours', 'sana_808', 'marque_omega', 'comparatif_extracteur', 'b9400', 'ultem', 'aicok', '80_tours', '8224', 'solostar_3', 'tribest', 'omega_8226', 'extracteur_omega', 'yden', 'b9000', 'jus_sana', 'sana_707', 'omega_8224', 'greenstar_elite', 'z_star', 'omega_vsj', 'juicepresso', 'tribest_slowstar', 'kuvings_b9000', 'mulet_ou', 'fraises_enrobées', 'enocean', '/_semez', 'pluxml', 'slideshow', 'agent_chimique', 'adresse_mac', 'users', '/_default', 'virtualbox', 'sip', 'fichiers_mp3', '145°c_pendant', 'montage1_-', 'd.i.y.', 'ou_moitié-moitié', 'déclarée_sous', 'code_naf', 'chocolatier_industriel', 'confiseur_industriel', 'élevé_caution', 'traineaux_ensuite', 'faire_prudemment', 'targettes', 'constructeur_serrurier', 'ecole_hors', 'school_beyond', 'the_walls', 'méa', 'or_actuellement', 'série-phile', 'caramel_fait-maison', 'plein_déni', 'espace-recette', 'mixe_5sec', 'vit7', '/_vit1', 'terre_braisées', \"goûtant_jusqu'\", '/_vit5', 'pommes_sauvages', '/_vit4', 'mixer_3sec', 'mélanger_20sec', 'tomates_semi-séchées', 'capsules_huileuses', \"comphyto_'\", 'sels_alimentaires', 'extraits_aqueux', 'inhalateurs', 'mesures_correspondent', 'dimension_standard', 'habituel_dédain', 'simple_épouvantail', 'grand-guignolesque_:', 'mengele_permet', 'jerry_stahl', 'miroir_déformant', 'autoritarisme_ataviques', 'zvonimir_novak', 'aspect_rarement', 'formations_gaullistes', '800_images', 'ainsi_réunies', 'corpus_prolifique', 'gadgets_divers', 'beauté_désenchantée', 'ouvrage_traversé', 'pajak', 'tels_historiens', 'nappage_neutre', 'soja_égouttées', 'bercé_mon', 'ifttt', 'ne_commenciez', 'papoter_pendant', 'opération_camembert', '3,5g', 'autres_super-aliments', 'pandalette_ne', ':_hobawee', '16_jan', 'champ_calculé', 'fichier_compressé', 'instinctif', 'néologismes', 'h_koenig', 'énoncés_adaptés', 'patidou', 'accords_mets-vin', 'représente_fièrement', 'xmpp', 'avh', 'utilisateurs_enregistrés', 'louanges_sur', 'offre_domotique', 'complémentaire_permet', 'moyen-doux', 'donnent_accès', 'servo-_moteur', 'clavier_analogique', 'playlist_existante', 'mug_cookies', 'mosfet', 'serp', 'aboutissants', 'abus_créer', 'nouvelle_discussion', 'ni_aromatisants', 'vraie_fouine', 'déco_pointue', 'sa_checklist', 'sont_parsemées', 'racers', '6,50€', 'feutrer', 'affichées_ci-dessous', 'visibles_directement', 'pièce_adaptée', 'pilates', 'fluide_glacial', 'fosse_septique', 'soigneusement_dessiné', 'supplément_personne', 'voyageant_seule', 'prévisions_locales', 'dernier_savon-shampooing', 'plastique_ondulé', 'chers_colorants', 'tkb', 'chaque_slide', 'remplit_donc', 'mal_montpellier', 'vendangé_deux', 'mezzes', 'aweber', 'lexen', 'merci_julien', 'billet_magic', 'your_way', 'boissons_mélangées', 'comment_configurer', 'pages_numérotées', '<p>pour_ajouter', 'documents,_ne', 'votre_biblioboîte', 'marche.</p>', '<p><strong>22</strong>_copiez', 'dossier_/opt/piratebox/www', 'votre_mr3020.', 'contenu_:</p>', 'son_contenu.', 'scp_/chemin/de/votre/fichier.txt', 'root@192.168.1.1:/opt/piratebox/www_<em>note', 'utiliser_winscp', \"n'oubliez_pas\", \"d'indiquer\", 'passe_renseigné', '<p><strong>31</strong>_ensuite,', 'répertoire_shared', \"(l'espace\", 'piratebox)', 'fichier_header.txt', \"l'en-tête\", 'readme.txt', 'page.</p>', 'votre_piratebox', 'os_fugu.', 'port_22,', 'nombre_clé', 'naissance_+', 'cristine', 'min_chrono', 'brisbane_-', 'youtubeuse_gaming', 'plein_expansion', '❃', '▽', 'vos_personnalisations', 'fichiers_styleplus.css', 'mobstyle.css', 'news_humoristiques', 'standard_européen', 'gifs_animés', 'woippy', 'procédés_hautement', 'application_visée', 'désargentés', '42cm', 'cspm', '(_m.beregovoy', 'koweït_va', 'centre_nucléaire', 'beloïarsk_a', '800_mw', \"alloj_c'\", '425_°f', 'goûter_préféré', 'sur_www.fondant-au-chocolat.biz', 'proposé_exclusivement', 'type_maui', 'imovie', 'tétra_citron', 'funeste_talent', 'secte_maudite', 'princes_mêmes', 'devait_souffrir', 'tournure_religieuse', 'a.3', 'obj.2._)', 'suarez_considère', 'cajetan_(', 'tourtière_végétalienne', 'vraiment_détoxifiants', 'bananes_végétalien', 'végétal_style', 'arachides_naturel', 'effets_détoxifiants', 'ébulltion', 'illustratif', 'glissière_+', 'gospel_nord', 'version_adaptée', 'notre_city', 'raid_challenge', \"n'_adhéra\", 'fraises_trempez', 'jolies_rayures', 'jolies_fines', 'charmante_compagnie', 'programmes_personnalisables', 'listes_déroulantes', 'week-end_►', 'oreo_concassés', 'sandra_mahut', 'maïte_and', 'qui_déboîte', 'peu_funky', 'petit_dégradé', 'miens_maintenant', 'recette_md5', 'vitamine_u', 'kg.attention_:', 'emplacement_nano-', 'nous_étoffons', 'premier_favori', 'comparer_côte', 'évaluation_extrêmement', 'appareil_testée', 'colissimo_suivis', 'portail_netpublic', 'origine_franco-', 'expérience_télévisuelle', 'leur_set-top-box', 'tunner_tnt', 'thermomix_préparée', '____________________________________________________________________________________________________aveyronnais', 'chocolatines_industrielles', 'veingte_que', 'quatre-vingt_(', \"octante_c'\", ')_.avis', 'au_mp', 'databases', 'topics_fait', 'partie_forum', 'partie_database', 'effet_attractif', 'panier_doublé', 'format_100g', 'savon_assorti', 'provence_figue', 'format_250ml', 'pitlane', 'inconscience_auxquels', 'fgao_a', 'trop_redondant', 'forcément_ennuyeux', 'être_décomposés', 'chips_→', 'plamplemousse_:', 'tuerie_absolue', 'écrasées_grossièrement', 'plonge_immédiatement', 'parenthèse_épicurienne', 'ail_confite', 'secrets_essentiels', 'rapportez_-vous', 'épaississe_trop', 'cette_accalmie', 'couches_croquantes', 'oenologue_eléonore', 'loynes', 'blog_parlez', 'seront_étonnés', 'seconde_gousse', 'véritable_pancake', 'hachez_maintenant', 'brocciu_corse', 'coppa_italienne', 'brocciu_frais', 'également_réalisable', 'brousse_disponible', 'riccota_mélangée', 'mme_loïc', 'semaine_pluvieux', 'pièces_consommables', 'usure_:', 'effacement_ou', 'pré-magnétisation', 'blocs_laser', 'plaques_catalytiques', 'sur_quiestouvert.com', 'banque_royale', 'zone_ravitaillement', 'source_convenant', 'sony_xperia', 'premiers_témoins', 'tension_grandissante', 'greenfirst', 'système_endocrinien', '14_savons', 'naturijo_+', 'métal_gris', 'couvercle_décorée', 'sharingbox_permet', 'touche_véritablement', 'piano_roll', 'encourage_vivement', 'nouvelles_astuces', 'communication_reprise', 'filigrane_sfhg', 'initiale_proposait', 'taches_difficiles', '295_€', 'maisons_séparées', 'tabloïds_soucieux', 'enfants_détruits', 'font_détruire', 'joyeux_jeu', 'massacre_musical', 'classic_tt', 'elles_nécessitent', 'tweet_voilà', 'rafraîchissante_sortie', 'format_nnnn', 'jj_/', '/_aaaa', 'hh.mm', 'nnnn_représentant', 'hh.mm_représentant', 'tt_représentant', 'pointages_vers', 'format_txt', 'uwp', 'équipe_plonge', ':_2,60', 'caldeira', '•_spectacle', 'vous_rapporterez', 'olives_marinées', 'maïs_cuisinée', 'monolithos', 'embona', 'village_immaculé', 'lindos', 'son_acropole', 'soirée_crétoise', 'arolithos_(', 'laouto', 'fromagerie_artisanale', 'artisan_viticulteur', '70_€*', 'panne_technique', 'photos_dumug', 'vos_testeurs', 'échanger_autant', 'elle_adorera', 'salut_muriel', 'par_mais+patate+millet', 'chez_schaar', 'preparant_mon', 'étant_habituée', 'me_certifie', 'brownie_piochée', 'goûter_en5', 'instrument_acoustique', 'vidéos_ajoutées', 'eedomus', 'google_tag', 'avis_négatifs', 'gobelet_pré', 'solution_inédite', 'collaboration_étroite', 'gobelets_pré', 'produits_couramment', 'guide_préparation', 'plaisir_instantané', 'quelconque_décision', 'verres_verrines', 'améliore_ta', 'mini_pana', 'mugs_passent', '120°en_chaleur', 'type_muscadet', 'herbes_lavées', 'encore_sautée', '«_grenaillades', 'ayez_choisi', 'sardines_marinées', 'nous_gâtent', 'vainde', 'maryse_haute', 'alternant_hors', 'atteigne_55°', 'atteint_31°', 'chef_frédéric', 'hors_prestations', 'abv', 'vénézuéla', 'c_99', '1970_code', 'vin_w111.026.12.002324', 'coopérative_agricole', 'dînatoire', 'véron', 'n°_235', 'suspension_arrière', 'importateur_exclusif', 'paterne', 'pourquoi_diable', 'more_]', 'bailliages_devaient', 'circonscripions', 'nombreuses_paroisses', 'bailliages_différents', 'elles_dépendaient', 'hellofresh', 'luminarc', 'allrecipes_france', 'aucune_distorsion', 'spinner_?', '(_2.50€', 'delia_smith', '200°c.servez_aussitôt', 'daube_provencale', 'vinaigre_aigre-doux', 'cévenole_)', 'champignons_rigolos', 'purcari', 'bugnes_gourmandes', 'mille-feuilles_pommes', 'bloqueur', 'exquisit', 'plappeville', 'vue_géographique', 'nous_concluons', 'article_l761-1', 'boutargue_(', 'thon_séché', 'boutique_koskas', 'raphaële_aime', 'percho', '❖', 'irrigations', 'wondershare', 'donné_ici', 'rhum_charrette', 'pichets_élégants', 'simple_mécanisme', 'sendinblue', '13016', 'désengorgement', 'votre_sollicitation', 'système_digéstif', 'cholestérol_réduit', 'facilement_ajoutée', 'chocolat_iswari', 'crunch_unique', 'nous_utlisons', 'adoucit_agréablement', 'quinoa_activées*', 'essentielles_biologique', 'terra_incognita', 'version_gaufres', '«_chuck', 'e_cheese', 'look_so', 'eshop_!', '0.6mm', 'porte_laminée', 'finition_époxy', \"mixologie_c'\", 'vrais_cocktails', 'li_>', 'ul_>', 'plantes_abc', 'allbranded', 'pc_zombies', 'formules_enrichissantes', 'charnières_latérales', 'boutons_tournent', 'évier_amovible', 'être_céramiste', 'finit_parfaitement', 'dragees', 'boule_transparente', 'boutique_dropshipping', 'orange*', 'actuellement_0', 'jérémie_35', 'enavres-chan_:', 'guachepetitpanda2_:', 'entremets_exotique', 'foot_composé', 'extensibilité', '⁃_je', 'hermitage_»', 'toujours_inciter', 'fernand_cousteaux', 'augustin_barruel', 'choisissez_celles', 'super_gaufrier', 'empreintes_gaufres', 'flexipat_demarle', 'accumulé_quelques', 'sandra_g', 'bavarois_passion-citron', 'laurence_soulie', '[_sicles', '70_sicles', 'seotons', \"'_admin\", 'ordre_intrinsèque', 'boîte_email', 'couverture_classique', 'ces_microbilles', 'cm_garantis', 'intuition_..', 'yess_:', 'troqué_ta', 'déguisement_réussi', 'primotexto', 'évolutions_indépendamment', 'danette_trouvée', 'rincé_mon', 'danette_menthe', 'piperade_..', 'dépenses_communes', '1546', 'simple_ctrl+d', 'busybox', 'du_rootdelay', 'ouvrez_[', ':_application_demarrage|application', 'démarrage_]', 'fichier_**bookmarks.xml**', '**~_/', 'radiotray**_vous', '**liste', 'radios_françaises**', 'deviennent_permanents', 'sysctl.conf', ':_comment_modifier_un_fichier|ouvrant', ':_sudo|droits', 'fichier_**', '/_grub**', '/_fstab**', 'activer._<', 'générer_notre', 'images_|', 'in_for', 'mations_régulières', 'ache_:', 'té_?', ':_angry', 's_ais', 'autre_bibliot', '/_hèque', 'là_surtou', 'ache_;', 'implodearryc_on', 'hexels', 'possibilités_|', 'acheter_hexel', 'implo_d', 'earryconcat', 'partie_privative', 'toute_stipulation', 'paragraphe_73', 'occupation_provisoire', 'solde_intégral', 'pas_conformé', 'emballage_doré', 'branche_boissons', 'agrial', 'marque_breizh', 'marque_danao', 'privilégié_mes', 'vouloir_expérimenter', 'nouvelles_directions', 'risques_graphiques', 'noircissait', 'pudding_chocolat-banane', 'apporte_150g', '2_shakers', 'protéine_manquants', '20h00comprenant', 'rinnegan', 'fraiseuse_conventionnelle', 'mon_juicer', '2h30_selon', 't.i.l_productions', 'lutece_création', 'mecanismes_musicaux', 'impression_quadri', 'pelliculée_brillant', 'suite_adobe', 'patrons_psd', 'influence_sauf', 'quarre', 'ventilateur_sous', 'pépé_louis', 'commander_immédiatement', 'sainte_hildegarde', 'vidéo_demandée', '◗', 'broder_gratuites', '7,50€', 'comprimés_effervescents', 'déverrouillage_personnalisé', 'chiffres_consécutifs', 'ccp_17-567921-8', 'conflits.ch', 'canule_creuse', 'menu_vertical', 'cartes_nano', 'pichet_microcook', 'produits_simultanément', 'acompte_demandé', 'étudiant-e', 'vézelay_où', 'guide_pédestre', 'colonies_américaines', 'vigneron_désireux', 'acheter._(', 'e-monsite', '17_candidats', 'trois_communistes', 'gauche_soutenus', 'subissent_parfois', 'profondes_modifications', 'catalogue2', 'caecilia', 'anti-_cerne', 'pages_prépubliées', 'planches_publiées', 'ou_artpress', 'catherine_millet', 'gardenia_tahitensis', 'bouquet_épicé', 'fois_terreuses', 'essuies-mains', 'brillance_longue', 'medusa_juice', 'pratiques_animés', 'certaines_croisières', 'thermolaquage_par', 'plastification_haute', 'par_poudrage', 'électrostatique_au', '120_microns', 'polymérisation_par', 'finition_mat', 'ou_fiji', 'polyestère_sans', 'tgic_(', 'par_grenaille', 'métallisation_(', 'polyester_sans', '200°c.ral_standard', 'usage_combiné', 'fleurs_choisies', '<h3>', 'vin_</h3>', 'détail_approximative', 'hape', 'option_xl', 'seulement_19,90€', 'diffusionstélévisées', 'même_diffuseur', 'accessoiriser_mille', 'enfant_déglutit', 'gélule_passe', 'trachée_(', 'suspension_buvable', 'lalandusse_-', 'annonce_70489', '@ccvue', 'troupes_terrestres', 'aux_corsaires', 'barberousse', 'kapudan_pacha', 'flotte_ottomane', '1535_quasiment', 'cartier_sort', 'sainte_mondane', 'annonce_1583', 'bugue_-', 'annonce_70737', 'disparait_lors', 'effervescence_fut', 'mariéepréparatifs', \"moul_'\", '/_/product-images.metro.ca', 'fabrication_traditionnelles', 'home_deco', 'home_déco', 'mmv_702', 'mmv702', 'vsj843', 'vsj', '/_2017/03', 'lait_harrys', 'automatiquement_reconduit', 'croquette_reste', 'peuvent_dégradrer', 'croquettes_directement', 'affinage_souhaité', '1/2_affiné', '3/4_affiné', 'aucune_soudure', 'pack_led', 'porte-bagages_avant', 'accessoires_souhaités', 'nouvel_indispensable', 'poussette_nacelle', 'landau_ou', '2,2_euros', 'personnalisez_-les', 'mixer_contenant', '8,00_€', 'crête_≤', 'pleine_échelle', '500_v', 'diminuant_linéairement', 'crête_<', '000_v.3', 'signaux_non', 'sinusoïdaux', \"crête_jusqu'\", 'tension_maximale', '107_v-hz', '02_40', 'key_>', 'frisure', '26_gr', 'imail', 'lecture_code-barres', '0_mg', 'lot_prend', 'environ_6h', 'mdmp', '6,00€', '7,00€', '8,00€', 'orange_2,50', '250g_1,60', '1kg_1,60', '0,70_€', '5,00_€', '9,00€', '7,00_€', '6,00_€', '9,00_€', 'cuisson_4,00', '-_clif', 'huiles_pressées', 'châssis_permettent', 'clearomiseur', 'kanger', 'rincer_directement', 'ravissant_petit', 'légèrement_dégorger', 'premiers_lavages', 'vidéo_paru', 'sertir', 'recette_usuelle', 'club_humanitaire', 'bennet_four', 'sirop_vital', 'madal_bal', 'esther_marelly', 'hatsaha_amicalement', 'abricots_mariés', 'moelleuses_galettes', 'petit-déjeuner_salé', 'chez_@swissoja', 'aux_azukis', 'officiellement_arrivé', 'esprit_hivernal', 'superaliments_secs', 'je_bifurque', 'mélange_truffé', 'jus_pomme-céleri']\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "If you’re finished training a model (i.e. no more updates, only querying), you can switch to the KeyedVectors instance:\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "gbdjeIUlhUvD"
-      },
-      "id": "gbdjeIUlhUvD"
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "word_vectors = model.wv\n",
-        "del model"
-      ],
-      "metadata": {
-        "id": "foTRPTM9TSWc"
-      },
-      "id": "foTRPTM9TSWc",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 8. Other algorithms\n",
-        "\n",
-        "Not enough time, but note that you can also build embeddings using FastText algorithm with Gensim. Doc2vec is also available.\n",
-        "\n",
-        "https://radimrehurek.com/gensim/apiref.html\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "mQDB2hnXxP4Z"
-      },
-      "id": "mQDB2hnXxP4Z"
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "gGBmIQsMlhEQ"
-      },
-      "id": "gGBmIQsMlhEQ",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "gYLDfcG-lhGl"
-      },
-      "id": "gYLDfcG-lhGl",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "uVoMkscjlhIa"
-      },
-      "id": "uVoMkscjlhIa",
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "YmP_-kl_j316"
-      },
-      "source": [
-        "## Exercise from tutorial: CBOW\n",
-        "\n",
-        "https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html\n",
-        "Solution: https://github.com/FraLotito/pytorch-continuous-bag-of-words/blob/master/cbow.py"
-      ],
-      "id": "YmP_-kl_j316"
-    },
-    {
-      "cell_type": "code",
-      "metadata": {
-        "id": "TEJ_mLMLj4Hn",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "0d42ec7c-eba2-409a-a203-1ae6cc467e79"
-      },
-      "source": [
-        "CONTEXT_SIZE = 2  # 2 words to the left, 2 to the right\n",
-        "raw_text = \"\"\"We are about to study the idea of a computational process.\n",
-        "Computational processes are abstract beings that inhabit computers.\n",
-        "As they evolve, processes manipulate other abstract things called data.\n",
-        "The evolution of a process is directed by a pattern of rules\n",
-        "called a program. People create programs to direct processes. In effect,\n",
-        "we conjure the spirits of the computer with our spells.\"\"\".split()\n",
-        "\n",
-        "# By deriving a set from `raw_text`, we deduplicate the array\n",
-        "vocab = set(raw_text)\n",
-        "vocab_size = len(vocab)\n",
-        "\n",
-        "word_to_ix = {word: i for i, word in enumerate(vocab)}\n",
-        "ix_to_word = {ix:word for ix, word in enumerate(vocab)}\n",
-        "\n",
-        "data = []\n",
-        "for i in range(CONTEXT_SIZE, len(raw_text) - CONTEXT_SIZE):\n",
-        "    context = (\n",
-        "        [raw_text[i - j - 1] for j in range(CONTEXT_SIZE)]\n",
-        "        + [raw_text[i + j + 1] for j in range(CONTEXT_SIZE)]\n",
-        "    )\n",
-        "    target = raw_text[i]\n",
-        "    data.append((context, target))\n",
-        "print(data[:5])\n",
-        "\n",
-        "\n",
-        "# Create your model and train. Here are some functions to help you make\n",
-        "# the data ready for use by your module.\n",
-        "CONTEXT_SIZE = 2  # 2 words to the left, 2 to the right\n",
-        "EMDEDDING_DIM = 100\n",
-        "\n",
-        "def make_context_vector(context, word_to_ix):\n",
-        "    idxs = [word_to_ix[w] for w in context]\n",
-        "    return torch.tensor(idxs, dtype=torch.long)\n",
-        "\n",
-        "\n",
-        "class CBOW(nn.Module):\n",
-        "\n",
-        "    def __init__(self, vocab_size, embedding_dim):\n",
-        "        super(CBOW, self).__init__()\n",
-        "\n",
-        "        #out: 1 x emdedding_dim\n",
-        "        self.embeddings = nn.Embedding(vocab_size, embedding_dim)\n",
-        "        self.linear1 = nn.Linear(embedding_dim, 128)\n",
-        "        self.activation_function1 = nn.ReLU()\n",
-        "        \n",
-        "        #out: 1 x vocab_size\n",
-        "        self.linear2 = nn.Linear(128, vocab_size)\n",
-        "        self.activation_function2 = nn.LogSoftmax(dim = -1)\n",
-        "        \n",
-        "\n",
-        "    def forward(self, inputs):\n",
-        "        embeds = sum(self.embeddings(inputs)).view(1,-1)\n",
-        "        out = self.linear1(embeds)\n",
-        "        out = self.activation_function1(out)\n",
-        "        out = self.linear2(out)\n",
-        "        out = self.activation_function2(out)\n",
-        "        return out\n",
-        "\n",
-        "    def get_word_emdedding(self, word):\n",
-        "        word = torch.tensor([word_to_ix[word]])\n",
-        "        return self.embeddings(word).view(1,-1)\n",
-        "\n",
-        "\n",
-        "model = CBOW(vocab_size, EMDEDDING_DIM)\n",
-        "\n",
-        "loss_function = nn.NLLLoss()\n",
-        "optimizer = torch.optim.SGD(model.parameters(), lr=0.001)\n",
-        "\n",
-        "#TRAINING\n",
-        "for epoch in range(50):\n",
-        "    total_loss = 0\n",
-        "\n",
-        "    for context, target in data:\n",
-        "        context_vector = make_context_vector(context, word_to_ix)  \n",
-        "\n",
-        "        log_probs = model(context_vector)\n",
-        "\n",
-        "        total_loss += loss_function(log_probs, torch.tensor([word_to_ix[target]]))\n",
-        "\n",
-        "    #optimize at the end of each epoch\n",
-        "    optimizer.zero_grad()\n",
-        "    total_loss.backward()\n",
-        "    optimizer.step()\n",
-        "\n",
-        "#TESTING\n",
-        "context = ['People','create','to', 'direct']\n",
-        "context_vector = make_context_vector(context, word_to_ix)\n",
-        "a = model(context_vector)\n",
-        "\n",
-        "#Print result\n",
-        "print(f'Raw text: {\" \".join(raw_text)}\\n')\n",
-        "print(f'Context: {context}\\n')\n",
-        "print(f'Prediction: {ix_to_word[torch.argmax(a[0]).item()]}')\n",
-        "\n"
-      ],
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "[(['are', 'We', 'to', 'study'], 'about'), (['about', 'are', 'study', 'the'], 'to'), (['to', 'about', 'the', 'idea'], 'study'), (['study', 'to', 'idea', 'of'], 'the'), (['the', 'study', 'of', 'a'], 'idea')]\n",
-            "Raw text: We are about to study the idea of a computational process. Computational processes are abstract beings that inhabit computers. As they evolve, processes manipulate other abstract things called data. The evolution of a process is directed by a pattern of rules called a program. People create programs to direct processes. In effect, we conjure the spirits of the computer with our spells.\n",
-            "\n",
-            "Context: ['People', 'create', 'to', 'direct']\n",
-            "\n",
-            "Prediction: programs\n"
-          ]
-        }
-      ],
-      "id": "TEJ_mLMLj4Hn"
-    }
-  ],
-  "metadata": {
-    "kernelspec": {
-      "display_name": "Python 3",
-      "language": "python",
-      "name": "python3"
-    },
-    "language_info": {
-      "codemirror_mode": {
-        "name": "ipython",
-        "version": 3
-      },
-      "file_extension": ".py",
-      "mimetype": "text/x-python",
-      "name": "python",
-      "nbconvert_exporter": "python",
-      "pygments_lexer": "ipython3",
-      "version": "3.7.9"
-    },
-    "colab": {
-      "provenance": [],
-      "collapsed_sections": [
-        "satellite-colombia"
-      ]
-    }
-  },
-  "nbformat": 4,
-  "nbformat_minor": 5
-}
\ No newline at end of file
diff --git a/notebooks/TP4_M2LiTL_learningWithNN_2223.ipynb b/notebooks/TP4_M2LiTL_learningWithNN_2223.ipynb
deleted file mode 100644
index 6993d40b790b51f9087910ac4401e7113a4a4424..0000000000000000000000000000000000000000
--- a/notebooks/TP4_M2LiTL_learningWithNN_2223.ipynb
+++ /dev/null
@@ -1,728 +0,0 @@
-{
-  "nbformat": 4,
-  "nbformat_minor": 0,
-  "metadata": {
-    "colab": {
-      "provenance": []
-    },
-    "kernelspec": {
-      "name": "python3",
-      "display_name": "Python 3"
-    },
-    "language_info": {
-      "name": "python"
-    },
-    "accelerator": "GPU"
-  },
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# TP 4 : machine learning using neural network for text data\n",
-        "\n",
-        "In this practical session, we are going to build simple neural models able to classify reviews as positive or negative. The dataset used comes from AlloCine.\n",
-        "The goals are to understand how to use pretrained embeddings, and to correctly tune a neural model.\n",
-        "\n",
-        "you need to load:\n",
-        "- Allocine: Train, dev and test sets\n",
-        "- Embeddings: cc.fr.300.10000.vec (10,000 first lines of the original file)\n",
-        "\n",
-        "## Part 1- Pre-trained word embeddings \n",
-        "Define a neural network that takes as input pre-trained word embeddings (here FastText embeddings). Words are represented by real-valued vectors from FastText. A review is represented by a vector that is the average or the sum of the word vectors.\n",
-        "\n",
-        "So instead of having an input vector of size 5000, we now have an input vector of size e.g. 300, that represents the ‘average’, combined meaning of all the words in the document taken together. \n",
-        "\n",
-        "## Part 2- Tuning report\n",
-        "Tune the model built on pre-trained word embeddings by testing several values for the different hyper-parameters, and by testing the addition on an hidden layer. \n",
-        "\n",
-        "Describe the performance obtained by reporting the scores for each setting on the development set, printing the loss function against the hyper-parameter values, and reporting the score of the best model on the test set. \n",
-        "\n",
-        "-------------------------------------"
-      ],
-      "metadata": {
-        "id": "jShhTl5Mftkw"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## Useful imports\n",
-        "\n",
-        "Here we also:\n",
-        "* Look at the availability of a GPU. Reminder: in Collab, you have to go to Edit/Notebook settings to set the use of a GPU\n",
-        "* Setting a seed, for reproducibility: https://pytorch.org/docs/stable/notes/randomness.html\n"
-      ],
-      "metadata": {
-        "id": "mT2uF3G6HXko"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "import time\n",
-        "import pandas as pd\n",
-        "import numpy as np\n",
-        "# torch and torch modules to deal with text data\n",
-        "import torch \n",
-        "import torch.nn as nn\n",
-        "from torchtext.data.utils import get_tokenizer\n",
-        "from torchtext.vocab import build_vocab_from_iterator\n",
-        "from torch.utils.data import DataLoader\n",
-        "# you can use scikit to print scores\n",
-        "from sklearn.metrics import classification_report\n",
-        "\n",
-        "# For reproducibility, set a seed\n",
-        "torch.manual_seed(0) \n",
-        "\n",
-        "# Check for GPU\n",
-        "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
-        "print(device)"
-      ],
-      "metadata": {
-        "id": "nB_k89m8xAOt"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Paths to data:"
-      ],
-      "metadata": {
-        "id": "taGY9N-PJvWS"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Data files\n",
-        "train_file = \"allocine_train.tsv\"\n",
-        "dev_file = \"allocine_dev.tsv\"\n",
-        "test_file = \"allocine_test.tsv\"\n",
-        "# embeddings\n",
-        "embed_file='cc.fr.300.10000.vec'"
-      ],
-      "metadata": {
-        "id": "kGty4hWCJurB"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## Part 0: Read and load the data\n",
-        "\n",
-        "Reminder from TP1, the simplest solution is to use the DataLoader from PyTorch:    \n",
-        "* the doc here https://pytorch.org/docs/stable/data.html and here https://pytorch.org/tutorials/beginner/basics/data_tutorial.html\n",
-        "* an example of use, with numpy array: https://www.kaggle.com/arunmohan003/sentiment-analysis-using-lstm-pytorch\n",
-        "\n",
-        "Here, we are going to define our own Dataset class instead of using numpy arrays. It allows for a a finer definition of the behavior of our dataset, and it's easy to reuse.\n",
-        "* Dataset is an abstract class in PyTorch, meaning it can't be used as is, it has to be redefined using inheritance https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset\n",
-        "  * you must at least overwrite the ```__getitem__()``` method, supporting fetching a data sample for a given key.\n",
-        "  * in practice, you also overwrite the ```__init__()``` to explain how to initialize the dataset, and the ```__len__``` to return the right size for the dataset\n",
-        "\n",
-        "You can also find many datasets for text ready to load in pytorch on: https://pytorch.org/text/stable/datasets.html"
-      ],
-      "metadata": {
-        "id": "Wv6H41YoFycw"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 0.1 Load data (code given)\n",
-        "\n",
-        "Read the code below that allows to load the data, note that:\n",
-        "- we tokenize the text (here a simple tokenization based on spaces)\n",
-        "- we build the vocabulary corresponding to the training data:\n",
-        "  - the vocabulary corresponds to the set of unique tokens\n",
-        "  - only tokens in the training data are known by the system\n",
-        "  - the vocabulary here is a Torch specific object, more details in section 0.4 below\n",
-        "\n",
-        "▶▶ **Question:** why do we use only tokens in the training set to build the vocabulary? What do we do with the dev and test sets?"
-      ],
-      "metadata": {
-        "id": "04vEei9QHPou"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Here we create a custom Dataset class that inherits from the Dataset class in PyTorch\n",
-        "# A custom Dataset class must implement three functions: __init__, __len__, and __getitem__\n",
-        " \n",
-        "\n",
-        "class Dataset(torch.utils.data.Dataset):\n",
-        "  \n",
-        "    def __init__(self, tsv_file, vocab=None ):\n",
-        "      \"\"\" (REQUIRED) Here we save the location of our input file,\n",
-        "        load the data, i.e. retrieve the list of texts and associated labels,\n",
-        "        build the vocabulary if none is given,\n",
-        "        and define the pipelines used to prepare the data \"\"\"\n",
-        "      self.tsv_file = tsv_file\n",
-        "      self.data, self.label_list = self.load_data( )\n",
-        "      # splits the string sentence by space, can t make the fr tokenzer work\n",
-        "      self.tokenizer = get_tokenizer( None )\n",
-        "      self.vocab = vocab\n",
-        "      if not vocab:\n",
-        "        self.build_vocab()\n",
-        "      # pipelines for text and label\n",
-        "      self.text_pipeline = lambda x: self.vocab(self.tokenizer(x)) #return a list of indices from a text\n",
-        "      self.label_pipeline = lambda x: int(x) #simple mapping to self \n",
-        "        \n",
-        "    def load_data( self ):\n",
-        "      \"\"\" Read a tsv file and return the list of texts and associated labels\"\"\"\n",
-        "      data = pd.read_csv( self.tsv_file, header=0, delimiter=\"\\t\", quoting=3)\n",
-        "      instances = []\n",
-        "      label_list = []\n",
-        "      for i in data.index:\n",
-        "        label_list.append( data[\"sentiment\"][i] )\n",
-        "        instances.append( data[\"review\"][i] )\n",
-        "      return instances, label_list \n",
-        "\n",
-        "    def build_vocab(self):\n",
-        "      \"\"\" Build the vocabulary, i.e. retrieve the list of unique tokens\n",
-        "      appearing in the corpus (= training set). Se also add a specific index \n",
-        "      corresponding to unknown words.  \"\"\"\n",
-        "      self.vocab = build_vocab_from_iterator(self.yield_tokens(), specials=[\"<unk>\"])\n",
-        "      self.vocab.set_default_index(self.vocab[\"<unk>\"])\n",
-        "    \n",
-        "    def yield_tokens(self):\n",
-        "      \"\"\" Iterator on tokens \"\"\"\n",
-        "      for text in self.data:\n",
-        "        yield self.tokenizer(text)\n",
-        "    \n",
-        "    def __len__(self):\n",
-        "      \"\"\" (REQUIRED) Return the len of the data, \n",
-        "      i.e. the total number of instances \"\"\"\n",
-        "      return len(self.data)\n",
-        "    \n",
-        "    def __getitem__(self, index):\n",
-        "      \"\"\" (REQUIRED) Return a specific instance in a format that can be \n",
-        "      processed by Pytorch, i.e. torch tensors \"\"\"\n",
-        "      return (\n",
-        "            tuple( [torch.tensor(self.text_pipeline( self.data[index] ), dtype=torch.int64),\n",
-        "                    torch.tensor( self.label_pipeline( self.label_list[index] ), dtype=torch.int64) ] ) \n",
-        "        )"
-      ],
-      "metadata": {
-        "id": "GdK1WAmcFYHS"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 0.2 Generate data batches and iterator (code given)\n",
-        "\n",
-        "Then, we use *torch.utils.data.DataLoader* with a Dataset object as built by the code above. DataLoader has an argument to set the size of the batches, but since we have variable-size input sequences, we need to specify how to build the batches. This is done by redefining the function *collate_fn* used by *DataLoader*.\n",
-        "\n",
-        "```\n",
-        "dataloader = DataLoader(dataset, batch_size=8, shuffle=False, collate_fn=collate_fn)\n",
-        "```\n",
-        "\n",
-        "Below: \n",
-        "* the text entries in the original data batch input are packed into a list and concatenated as a single tensor. \n",
-        "* the offset is a tensor of delimiters to represent the beginning index of the individual sequence in the text tensor\n",
-        "* Label is a tensor saving the labels of individual text entries.\n",
-        "\n",
-        "The offsets are used to retrieve the individual sequences in each batch (the sequences are concatenated)."
-      ],
-      "metadata": {
-        "id": "bG3T9LQFTD73"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# This function explains how we process data to make batches of instances\n",
-        "# - The list of texts / reviews that is returned is similar to a list of list: \n",
-        "# each element is a batch, ie. a ensemble of BATCH_SIZE texts. But instead of \n",
-        "# creating sublists, PyTorch concatenates all the tensors corresponding to\n",
-        "# each text sequence into one tensor.\n",
-        "# - The list of labels is the list of list of labels for each batch\n",
-        "# - The offsets are used to save the position of each individual instance\n",
-        "# within the big tensor \n",
-        "def collate_fn(batch):\n",
-        "    label_list, text_list, offsets = [], [], [0]\n",
-        "    for ( _text, _label) in batch:\n",
-        "         text_list.append( _text )\n",
-        "         label_list.append( _label )\n",
-        "         offsets.append(_text.size(0))\n",
-        "    label = torch.tensor(label_list, dtype=torch.int64) #tensor of labels for a batch\n",
-        "    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0) #tensor of offset indices for a batch\n",
-        "    text_list = torch.cat(text_list) # <--- here we concatenate the reviews in the batch\n",
-        "    return text_list.to(device), label.to(device), offsets.to(device) #move the data to GPU"
-      ],
-      "metadata": {
-        "id": "oG0ZEYvYccBr"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 0.3 Exercise: Load the data\n",
-        "\n",
-        "* Use the code above to load the training and dev data with a batch size of 2:\n",
-        "  * First create an instance of the Dataset class\n",
-        "  * Then use this instance to create an instance of the DataLoader class with a batch size of 2, with NO shuffling of the samples, and using the *collate_fn* function defined above. Recall that the DataLoader class has the following parameters: \n",
-        "  ```\n",
-        "  torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, collate_fn=None)\n",
-        "  ```\n",
-        "* Print the first two elements in the Dataset object built on the train set, and the first element in the DataLoader object built on the train. Print also the associated labels. Does it seem coherent?\n",
-        "\n",
-        "Once you checked that is seems ok, reload the data but this time, shuffle the data during loading."
-      ],
-      "metadata": {
-        "id": "U0ueXxdpZcqx"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load the training and development data\n"
-      ],
-      "metadata": {
-        "id": "81k7Iaroayx0"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 0.4 Exercise: understand the Vocab object\n",
-        "\n",
-        "Here the **vocabulary** is a specific object in Pytorch: https://pytorch.org/text/stable/vocab.html\n",
-        "\n",
-        "For example, the vocabulary directly converts a list of tokens into integers, see below.\n",
-        "\n",
-        "Now try to:\n",
-        "* Retrieve the indices of a specific word, e.g. 'mauvais'\n",
-        "* Retrieve a word from its index, e.g. 368\n",
-        "* You can also directly convert a sentence to a list of indices, using the *text_pipeline* defined in the *Dataset* class, try with:\n",
-        "  * 'Avant cette série, je ne connaissais que Urgence'\n",
-        "  * 'Avant cette gibberish, je ne connaissais que Urgence'\n",
-        "  * what happened when you use a word that is unknown?"
-      ],
-      "metadata": {
-        "id": "Tus9Kedas5dq"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Hints: look at these functions\n",
-        "* lookup_indices(tokens: List[str]) → List[int]\n",
-        "* lookup_token(index: int) → str"
-      ],
-      "metadata": {
-        "id": "BR-hQMJlUfPR"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "train.vocab(['Avant', 'cette', 'série', ','])"
-      ],
-      "metadata": {
-        "id": "tb6TYA9Is5v6"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "D5stQTekbC8p"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "5t6R_WeZbC_7"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "UfPGcBdZbDCz"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "pUFUmVS2bDFu"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## Part 1- Using pretrained embeddings\n",
-        "\n",
-        "The first option would be to use randomly initialized word embeddings.\n",
-        "It allows the use of dense, real-valued input, that could be updated during training.\n",
-        "However, we probably don't have enough data to build good representations for our problem during training. \n",
-        "One solution is to use pre-trained word embeddings, built over very big corpora with the aim of building good generic representations of the meaning of words.\n",
-        "\n",
-        "Upload the file *cc.fr.300.10000.vec': first 10,000 lines of the FastText embeddings for French, https://fasttext.cc/docs/en/crawl-vectors.html.\n",
-        "\n",
-        "* **Each word is associated to a real-valued and low-dimensional vector** (e.g. 300 dimensions). Crucially,  the  neural  network  will  also  learn / update the  embeddings  during  training (if not freezed):  the  embeddings  of  the network are also parameters that are optimized according to the loss function, allowing the model to learn a better representation of the words.\n",
-        "\n",
-        "* And **each review is represented by a vector** that should represent all the words it contains. One way to do that is to use **the average of the word vectors** (another typical option is to sum them). Instead of a bag-of-words representation of thousands of dimensions (the size of the vocabulary), we will thus end with an input vector of size e.g. 300, that represents the ‘average’, combined meaning of all the words in the document taken together. "
-      ],
-      "metadata": {
-        "id": "UDlM7OZq56HO"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1 Load the vectors (code given)\n",
-        "\n",
-        "The function below loads the pre-trained embeddings, returning a dictionary mapping a word to its vector, as defined in the fasttext file. \n",
-        "\n",
-        "Note that the first line of the file gives the number of unique tokens (in the original file, here we only have 9,999 tokens) and the size of the embeddings.\n",
-        "\n",
-        "At the end, we print the vocabulary and the vector for a specific token."
-      ],
-      "metadata": {
-        "id": "RX2DkAqws1gU"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "import io\n",
-        "\n",
-        "def load_vectors(fname):\n",
-        "    fin = io.open(fname, 'r', encoding='utf-8', newline='\\n', errors='ignore')\n",
-        "    n, d = map(int, fin.readline().split())\n",
-        "    print(\"Originally we have: \", n, 'tokens, and vectors of',d, 'dimensions') #here in fact only 10000 words\n",
-        "    data = {}\n",
-        "    for line in fin:\n",
-        "        tokens = line.rstrip().split(' ')\n",
-        "        data[tokens[0]] = [float(t) for t in tokens[1:]]\n",
-        "    return data\n",
-        "\n",
-        "vectors = load_vectors( embed_file )\n",
-        "print( 'Version with', len( vectors), 'tokens')\n",
-        "print(vectors.keys() )\n",
-        "print( vectors['de'] )"
-      ],
-      "metadata": {
-        "id": "yd2EEjECv4vk"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.2 Build the weight matrix \n",
-        "\n",
-        "We have a list of words associated to vector.\n",
-        "Now we need to specifically retrieve the vectors for the words present in our data, there is no need to keep vectors for all the words.\n",
-        "We thus build a matrix over the dataset associating each word present in the dataset to its vector. \n",
-        "For each word in dataset’s vocabulary, we check if it is in FastText’s vocabulary:\n",
-        "* if yes: load its pre-trained word vector. \n",
-        "* else: we initialize a random vector.\n",
-        "\n",
-        "\n",
-        "**Question:**  Examine the coverage, i.e.: \n",
-        "* print the number of tokens from FastText found in the training set \n",
-        "* and the number of unknown words."
-      ],
-      "metadata": {
-        "id": "GTA0vXeevSuO"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load the weight matrix: modify the code below to check the coverage of the \n",
-        "# pre-trained embeddings\n",
-        "emb_dim = 300\n",
-        "matrix_len = len(train.vocab)\n",
-        "weights_matrix = np.zeros((matrix_len, emb_dim))\n",
-        "\n",
-        "for i in range(0, len(train.vocab)):\n",
-        "    word = train.vocab.lookup_token(i)\n",
-        "    try: \n",
-        "        weights_matrix[i] = vectors[word]\n",
-        "    except KeyError:\n",
-        "        weights_matrix[i] = np.random.normal(scale=0.6, size=(emb_dim, ))\n",
-        "weights_matrix = torch.from_numpy(weights_matrix).to( torch.float32) \n",
-        "\n",
-        "print(weights_matrix)"
-      ],
-      "metadata": {
-        "id": "4XXFTaRxvRNk"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3 Exercise: Model definition\n",
-        "\n",
-        "#### a/ Define the embedding layer:\n",
-        "Now modify your model to add this embedding layer in the __init__() function below: \n",
-        "\n",
-        "* Define *self.embedding_bag*: a layer combining the word embeddings for the words. Here we just give the definition of the layer, i.e.:\n",
-        "  * we use pre initialized weights\n",
-        "  * we want to combine the embeddings by doing the average\n",
-        "See ```nn.EmbeddingBeg.from_pretrained( ..)```, https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html\n",
-        "* Retrieve the *embedding dimensions* to be used as parameter for the first linear function (look at the *EnbeddingBag* class definition).\n",
-        "\n",
-        "#### b/ Use the embedding layer\n",
-        "Now you need to tell the model when to use this embedding layer, thus you need to modify the *forward()* function to say that it needs to first *embed* the input before going through the linear and non linear layers.\n",
-        "\n",
-        "Look at the example in the doc: https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html\n",
-        "Note that this embedding layer needs the information about the offset, to retrieve the sequences / individual documents in the batch.\n",
-        "\n",
-        " "
-      ],
-      "metadata": {
-        "id": "VcLWQgu877rQ"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class FeedforwardNeuralNetModel(nn.Module):\n",
-        "    def __init__(self, hidden_dim, output_dim, weights_matrix):\n",
-        "        # calls the init function of nn.Module.  Dont get confused by syntax,\n",
-        "        # just always do it in an nn.Module\n",
-        "        super(FeedforwardNeuralNetModel, self).__init__()\n",
-        "\n",
-        "        # Embedding layer\n",
-        "        # ....\n",
-        "\n",
-        "        # Linear function\n",
-        "        self.fc1 = nn.Linear(embed_dim, hidden_dim)\n",
-        "\n",
-        "        # Non-linearity\n",
-        "        self.sigmoid = nn.Sigmoid()\n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)  \n",
-        "\n",
-        "    def forward(self, text, offsets):\n",
-        "        # Embedding layer\n",
-        "        # ....\n",
-        "\n",
-        "        # Linear function  \n",
-        "        out = self.fc1(embedded)\n",
-        "\n",
-        "        # Non-linearity  \n",
-        "        out = self.sigmoid(out) \n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        out = self.fc2(out)\n",
-        "        return out"
-      ],
-      "metadata": {
-        "id": "fXOPuCv_vZrr"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.4 Exercise: Train and evaluation functions (code given)\n",
-        "\n",
-        "Look at the code below that performs the training and evaluation of your model.\n",
-        "Note that:\n",
-        "* one epoch is one ieration over the entire training set\n",
-        "* each *input* is here a batch of several documents (here 2)\n",
-        "* the model computes a loss after making a prediction for each input / batch. We accumulate this loss, and compute a score after seing each batch\n",
-        "* at the end of each round / epoch, we print the accumulated loss and accuracy:\n",
-        "  * A good indicator that your model is doing what is supposed to, is the loss: it should decrease during training. At the same time, the accuracy on the training set should increase.\n",
-        "* in the evaluation procedure, we have to compute score for batched of data, that's why we have slight modifications in the code (use of *extend* tp have a set of predictions)\n",
-        "\n",
-        "Note: here we need to take into account the offsets in the training and evaluation procedures."
-      ],
-      "metadata": {
-        "id": "UsXmIGqApbxj"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "def training(model, train_loader, optimizer, num_epochs=5 ):\n",
-        "    for epoch in range(num_epochs):\n",
-        "        train_loss, total_acc, total_count = 0, 0, 0\n",
-        "        for input, label, offsets in train_loader:\n",
-        "            # Step1. Clearing the accumulated gradients\n",
-        "            optimizer.zero_grad()\n",
-        "            # Step 2. Forward pass to get output/logits\n",
-        "            outputs = model( input, offsets ) # <---- argument offsets en plus\n",
-        "            # Step 3. Compute the loss, gradients, and update the parameters by\n",
-        "            # calling optimizer.step()\n",
-        "            # - Calculate Loss: softmax --> cross entropy loss\n",
-        "            loss = criterion(outputs, label)\n",
-        "            # - Getting gradients w.r.t. parameters\n",
-        "            loss.backward()\n",
-        "            # - Updating parameters\n",
-        "            optimizer.step()\n",
-        "            # Accumulating the loss over time\n",
-        "            train_loss += loss.item()\n",
-        "            total_acc += (outputs.argmax(1) == label).sum().item()\n",
-        "            total_count += label.size(0)\n",
-        "        # Compute accuracy on train set at each epoch\n",
-        "        print('Epoch: {}. Loss: {}. ACC {} '.format(epoch, train_loss/len(train), total_acc/len(train)))\n",
-        "        total_acc, total_count = 0, 0\n",
-        "        train_loss = 0\n",
-        "\n",
-        "def evaluate( model, dev_loader ):\n",
-        "    predictions = []\n",
-        "    gold = []\n",
-        "    with torch.no_grad():\n",
-        "        for input, label, offsets in dev_loader:\n",
-        "            probs = model(input, offsets) # <---- fct forward with offsets\n",
-        "            # -- to deal with batches\n",
-        "            predictions.extend( torch.argmax(probs, dim=1).cpu().numpy() ) \n",
-        "            gold.extend([int(l) for l in label])\n",
-        "    print(classification_report(gold, predictions))\n",
-        "    return gold, predictions"
-      ],
-      "metadata": {
-        "id": "US_0JmN5phqs"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3 Exercise: run experiments \n",
-        "\n",
-        "Look at the code below, it allows to run experiments with the following values for the hyper-parameters:\n",
-        "  * batch size = 2 \n",
-        "  * hidden dimension = 4\n",
-        "  * learning rate = 0.1\n",
-        "  * number of epochs = 5\n",
-        "  * using the Cross Entropy loss function\n",
-        "  * using SGD as the optimizer algorithm\n",
-        "\n",
-        "Questions:\n",
-        "  * What is the input dimension?\n",
-        "  * What is the output dimension? \n",
-        "  * What are the hyper-parameters that could be tuned? Propose a set of values to be tested for each one of them.\n",
-        "  * Run the code: what is the behaviour of the loss and accuracy?\n",
-        "  * What do you think about the performance of this model?"
-      ],
-      "metadata": {
-        "id": "NC2VtTmv-Q_c"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Set the values of the hyperparameters\n",
-        "hidden_dim = 4\n",
-        "learning_rate = 0.1\n",
-        "num_epochs = 5\n",
-        "criterion = nn.CrossEntropyLoss()\n",
-        "output_dim = 2"
-      ],
-      "metadata": {
-        "id": "Jod8FnWPs_Vi"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=5 )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "id": "1Xug7ygbpAhS"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "**Note:** that we don't use here a SoftMax over the output of the final layer to obtain class probability: this is because this SoftMax application is done in the loss function chosen (*nn.CrossEntropyLoss()*). Be careful, it's not the case of all the loss functions available in PyTorch."
-      ],
-      "metadata": {
-        "id": "OBqQaAf6mxEI"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## Part 2 - Exercise: Tuning your model\n",
-        "\n",
-        "The model comes with a variety of hyper-parameters. To find the best model, we need to test different values for these free parameters.\n",
-        "\n",
-        "Be careful: \n",
-        "* you always optimize / fine-tune your model on the **development set**. \n",
-        "* Then you compare the results obtained with the different settings on the dev set to choose the best setting\n",
-        "* finally you report the results of the best model on the test set\n",
-        "* you always keep a track of your experimentation, for reproducibility purpose: report the values tested for each hyper-parameters and the values used by your best model. \n",
-        "\n",
-        "In this part, you have to test different values for the following hyper-parameters:\n",
-        "1. Batch size \n",
-        "2. Max number of epochs (with best batch size)\n",
-        "3. Size of the hidden layer\n",
-        "4. Activation function\n",
-        "5. Optimizer\n",
-        "6. Learning rate\n",
-        "\n",
-        "Inspect your model to give some hypothesis on the influence of these parameters on the model by inspecting how they affect the loss during training and the performance of the model. \n",
-        "\n",
-        "Once done, modify your model to test a variation on the architecture. Here you don't have to tune all your model again, just try for example when keeping the best values found previously for the hyper-parameters: \n",
-        "\n",
-        "7. Try with 1 additional hidden layer\n",
-        "\n",
-        "**Note:** Here you are trying to make a report on the performance of a model. try to organise your code to keep track of what you're doing:\n",
-        "* give a different name to each model, to be able to run them again\n",
-        "* save the results in a dictionnary of a file, to be able to use them later:  \n",
-        "  * think that you should be able to provide e.g. plots of your results (for example, plotting the accuracy for different value of a specific hyper-parameter), or analysis of your results (e.g. by inspecting the predictions of your model) so you need to be able to access the results."
-      ],
-      "metadata": {
-        "id": "1HmIthzRumir"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "HNaP18nEZNTu"
-      },
-      "execution_count": null,
-      "outputs": []
-    }
-  ]
-}
\ No newline at end of file
diff --git a/notebooks/TP4_M2LiTL_learningWithNN_CORRECT_2223_v1.ipynb b/notebooks/TP4_M2LiTL_learningWithNN_CORRECT_2223_v1.ipynb
deleted file mode 100644
index 5e6db33046d71fc0ba56a30d4d561984c3b0db33..0000000000000000000000000000000000000000
--- a/notebooks/TP4_M2LiTL_learningWithNN_CORRECT_2223_v1.ipynb
+++ /dev/null
@@ -1,3454 +0,0 @@
-{
-  "nbformat": 4,
-  "nbformat_minor": 0,
-  "metadata": {
-    "colab": {
-      "provenance": []
-    },
-    "kernelspec": {
-      "name": "python3",
-      "display_name": "Python 3"
-    },
-    "language_info": {
-      "name": "python"
-    },
-    "accelerator": "GPU"
-  },
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# TP 4 : machine learning using neural network for text data\n",
-        "\n",
-        "In this practical session, we are going to build simple neural models able to classify reviews as positive or negative. The dataset used comes from AlloCine.\n",
-        "The goals are to understand how to use pretrained embeddings, and to correctly tune a neural model.\n",
-        "\n",
-        "you need to load:\n",
-        "- Allocine: Train, dev and test sets\n",
-        "- Embeddings: cc.fr.300.10000.vec (10,000 first lines of the original file)\n",
-        "\n",
-        "## Part 1- Pre-trained word embeddings \n",
-        "Define a neural network that takes as input pre-trained word embeddings (here FastText embeddings). Words are represented by real-valued vectors from FastText. A review is represented by a vector that is the average or the sum of the word vectors.\n",
-        "\n",
-        "So instead of having an input vector of size 5000, we now have an input vector of size e.g. 300, that represents the ‘average’, combined meaning of all the words in the document taken together. \n",
-        "\n",
-        "## Part 2- Tuning report\n",
-        "Tune the model built on pre-trained word embeddings by testing several values for the different hyper-parameters, and by testing the addition on an hidden layer. \n",
-        "\n",
-        "Describe the performance obtained by reporting the scores for each setting on the development set, printing the loss function against the hyper-parameter values, and reporting the score of the best model on the test set. \n",
-        "\n",
-        "-------------------------------------"
-      ],
-      "metadata": {
-        "id": "jShhTl5Mftkw"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## Useful imports\n",
-        "\n",
-        "Here we also:\n",
-        "* Look at the availability of a GPU. Reminder: in Collab, you have to go to Edit/Notebook settings to set the use of a GPU\n",
-        "* Setting a seed, for reproducibility: https://pytorch.org/docs/stable/notes/randomness.html\n"
-      ],
-      "metadata": {
-        "id": "mT2uF3G6HXko"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "import time\n",
-        "import pandas as pd\n",
-        "import numpy as np\n",
-        "# torch and torch modules to deal with text data\n",
-        "import torch \n",
-        "import torch.nn as nn\n",
-        "from torchtext.data.utils import get_tokenizer\n",
-        "from torchtext.vocab import build_vocab_from_iterator\n",
-        "from torch.utils.data import DataLoader\n",
-        "# you can use scikit to print scores\n",
-        "from sklearn.metrics import classification_report\n",
-        "\n",
-        "# For reproducibility, set a seed\n",
-        "torch.manual_seed(0) \n",
-        "\n",
-        "# Check for GPU\n",
-        "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
-        "print(device)"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "nB_k89m8xAOt",
-        "outputId": "8569528a-ad2c-4e86-820f-af9b4361c3f0"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "cuda\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Paths to data:"
-      ],
-      "metadata": {
-        "id": "taGY9N-PJvWS"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Data files\n",
-        "train_file = \"allocine_train.tsv\"\n",
-        "dev_file = \"allocine_dev.tsv\"\n",
-        "test_file = \"allocine_test.tsv\"\n",
-        "# embeddings\n",
-        "embed_file='cc.fr.300.10000.vec'"
-      ],
-      "metadata": {
-        "id": "kGty4hWCJurB"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## Part 0: Read and load the data\n",
-        "\n",
-        "Reminder from TP1, the simplest solution is to use the DataLoader from PyTorch:    \n",
-        "* the doc here https://pytorch.org/docs/stable/data.html and here https://pytorch.org/tutorials/beginner/basics/data_tutorial.html\n",
-        "* an example of use, with numpy array: https://www.kaggle.com/arunmohan003/sentiment-analysis-using-lstm-pytorch\n",
-        "\n",
-        "Here, we are going to define our own Dataset class instead of using numpy arrays. It allows for a a finer definition of the behavior of our dataset, and it's easy to reuse.\n",
-        "* Dataset is an abstract class in PyTorch, meaning it can't be used as is, it has to be redefined using inheritance https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset\n",
-        "  * you must at least overwrite the ```__getitem__()``` method, supporting fetching a data sample for a given key.\n",
-        "  * in practice, you also overwrite the ```__init__()``` to explain how to initialize the dataset, and the ```__len__``` to return the right size for the dataset\n",
-        "\n",
-        "You can also find many datasets for text ready to load in pytorch on: https://pytorch.org/text/stable/datasets.html"
-      ],
-      "metadata": {
-        "id": "Wv6H41YoFycw"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 0.1 Load data (code given)\n",
-        "\n",
-        "Read the code below that allows to load the data, note that:\n",
-        "- we tokenize the text (here a simple tokenization based on spaces)\n",
-        "- we build the vocabulary corresponding to the training data:\n",
-        "  - the vocabulary corresponds to the set of unique tokens\n",
-        "  - only tokens in the training data are known by the system\n",
-        "  - the vocabulary here is a Torch specific object, more details in section 0.4 below\n",
-        "\n",
-        "▶▶ **Question:** why do we use only tokens in the training set to build the vocabulary? What do we do with the dev and test sets?"
-      ],
-      "metadata": {
-        "id": "04vEei9QHPou"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Here we create a custom Dataset class that inherits from the Dataset class in PyTorch\n",
-        "# A custom Dataset class must implement three functions: __init__, __len__, and __getitem__\n",
-        " \n",
-        "\n",
-        "class Dataset(torch.utils.data.Dataset):\n",
-        "  \n",
-        "    def __init__(self, tsv_file, vocab=None ):\n",
-        "      \"\"\" (REQUIRED) Here we save the location of our input file,\n",
-        "        load the data, i.e. retrieve the list of texts and associated labels,\n",
-        "        build the vocabulary if none is given,\n",
-        "        and define the pipelines used to prepare the data \"\"\"\n",
-        "      self.tsv_file = tsv_file\n",
-        "      self.data, self.label_list = self.load_data( )\n",
-        "      # splits the string sentence by space, can t make the fr tokenzer work\n",
-        "      self.tokenizer = get_tokenizer( None )\n",
-        "      self.vocab = vocab\n",
-        "      if not vocab:\n",
-        "        self.build_vocab()\n",
-        "      # pipelines for text and label\n",
-        "      self.text_pipeline = lambda x: self.vocab(self.tokenizer(x)) #return a list of indices from a text\n",
-        "      self.label_pipeline = lambda x: int(x) #simple mapping to self \n",
-        "        \n",
-        "    def load_data( self ):\n",
-        "      \"\"\" Read a tsv file and return the list of texts and associated labels\"\"\"\n",
-        "      data = pd.read_csv( self.tsv_file, header=0, delimiter=\"\\t\", quoting=3)\n",
-        "      instances = []\n",
-        "      label_list = []\n",
-        "      for i in data.index:\n",
-        "        label_list.append( data[\"sentiment\"][i] )\n",
-        "        instances.append( data[\"review\"][i] )\n",
-        "      return instances, label_list \n",
-        "\n",
-        "    def build_vocab(self):\n",
-        "      \"\"\" Build the vocabulary, i.e. retrieve the list of unique tokens\n",
-        "      appearing in the corpus (= training set). Se also add a specific index \n",
-        "      corresponding to unknown words.  \"\"\"\n",
-        "      self.vocab = build_vocab_from_iterator(self.yield_tokens(), specials=[\"<unk>\"])\n",
-        "      self.vocab.set_default_index(self.vocab[\"<unk>\"])\n",
-        "    \n",
-        "    def yield_tokens(self):\n",
-        "      \"\"\" Iterator on tokens \"\"\"\n",
-        "      for text in self.data:\n",
-        "        yield self.tokenizer(text)\n",
-        "    \n",
-        "    def __len__(self):\n",
-        "      \"\"\" (REQUIRED) Return the len of the data, \n",
-        "      i.e. the total number of instances \"\"\"\n",
-        "      return len(self.data)\n",
-        "    \n",
-        "    def __getitem__(self, index):\n",
-        "      \"\"\" (REQUIRED) Return a specific instance in a format that can be \n",
-        "      processed by Pytorch, i.e. torch tensors \"\"\"\n",
-        "      return (\n",
-        "            tuple( [torch.tensor(self.text_pipeline( self.data[index] ), dtype=torch.int64),\n",
-        "                    torch.tensor( self.label_pipeline( self.label_list[index] ), dtype=torch.int64) ] ) \n",
-        "        )"
-      ],
-      "metadata": {
-        "id": "GdK1WAmcFYHS"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 0.2 Generate data batches and iterator (code given)\n",
-        "\n",
-        "Then, we use *torch.utils.data.DataLoader* with a Dataset object as built by the code above. DataLoader has an argument to set the size of the batches, but since we have variable-size input sequences, we need to specify how to build the batches. This is done by redefining the function *collate_fn* used by *DataLoader*.\n",
-        "\n",
-        "```\n",
-        "dataloader = DataLoader(dataset, batch_size=8, shuffle=False, collate_fn=collate_fn)\n",
-        "```\n",
-        "\n",
-        "Below: \n",
-        "* the text entries in the original data batch input are packed into a list and concatenated as a single tensor. \n",
-        "* the offset is a tensor of delimiters to represent the beginning index of the individual sequence in the text tensor\n",
-        "* Label is a tensor saving the labels of individual text entries.\n",
-        "\n",
-        "The offsets are used to retrieve the individual sequences in each batch (the sequences are concatenated)."
-      ],
-      "metadata": {
-        "id": "bG3T9LQFTD73"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# This function explains how we process data to make batches of instances\n",
-        "# - The list of texts / reviews that is returned is similar to a list of list: \n",
-        "# each element is a batch, ie. a ensemble of BATCH_SIZE texts. But instead of \n",
-        "# creating sublists, PyTorch concatenates all the tensors corresponding to\n",
-        "# each text sequence into one tensor.\n",
-        "# - The list of labels is the list of list of labels for each batch\n",
-        "# - The offsets are used to save the position of each individual instance\n",
-        "# within the big tensor \n",
-        "def collate_fn(batch):\n",
-        "    label_list, text_list, offsets = [], [], [0]\n",
-        "    for ( _text, _label) in batch:\n",
-        "         text_list.append( _text )\n",
-        "         label_list.append( _label )\n",
-        "         offsets.append(_text.size(0))\n",
-        "    label = torch.tensor(label_list, dtype=torch.int64) #tensor of labels for a batch\n",
-        "    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0) #tensor of offset indices for a batch\n",
-        "    text_list = torch.cat(text_list) # <--- here we concatenate the reviews in the batch\n",
-        "    return text_list.to(device), label.to(device), offsets.to(device) #move the data to GPU"
-      ],
-      "metadata": {
-        "id": "oG0ZEYvYccBr"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 0.3 Exercise: Load the data\n",
-        "\n",
-        "* Use the code above to load the training and dev data with a batch size of 2:\n",
-        "  * First create an instance of the Dataset class\n",
-        "  * Then use this instance to create an instance of the DataLoader class with a batch size of 2, with NO shuffling of the samples, and using the *collate_fn* function defined above. Recall that the DataLoader class has the following parameters: \n",
-        "  ```\n",
-        "  torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, collate_fn=None)\n",
-        "  ```\n",
-        "* Print the first two elements in the Dataset object built on the train set, and the first element in the DataLoader object built on the train. Print also the associated labels. Does it seem coherent?\n",
-        "\n",
-        "Once you checked that is seems ok, reload the data but this time, shuffle the data during loading."
-      ],
-      "metadata": {
-        "id": "U0ueXxdpZcqx"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load the training and development data\n"
-      ],
-      "metadata": {
-        "id": "hmNi9Zmla6CJ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-----------------------------------------------\n",
-        "SOLUTION"
-      ],
-      "metadata": {
-        "id": "GJFYwcRza7_M"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load the training and development data\n",
-        "train = Dataset( train_file )\n",
-        "dev = Dataset( dev_file, vocab=train.vocab )\n",
-        "\n",
-        "train_loader = DataLoader(train, batch_size=2, shuffle=False, collate_fn=collate_fn) #<-- use shuffle = True instead\n",
-        "dev_loader = DataLoader(dev, batch_size=2, shuffle=False, collate_fn=collate_fn)\n",
-        "\n",
-        "\n",
-        "print(train[0])\n",
-        "print(train[1])\n",
-        "for input, label, offset in train_loader:\n",
-        "    print( input, label, input.size(), offset ) \n",
-        "    break"
-      ],
-      "metadata": {
-        "id": "sGAiiL2rY7hD",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "4c0ef9b6-aaa5-4d9e-f793-89b112afea11"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "(tensor([ 2281,  2675,   374,    28, 13940,    15, 11282,    18,  3936,   203,\n",
-            "            1,  7998,     4,   307,  1114,  9134,  4495,     1,    92,  8752,\n",
-            "           24,   104,    28,   117,    53,   638,     8,   418,    23, 23816,\n",
-            "          904,  1378,     1,   126,     8,     1,    86,   108,    46,  4622,\n",
-            "           34,  2719,    91,   203,    49,   121,     2,    49,  1179,   113,\n",
-            "          111,    50,   136,    70,  3190,    19, 11708,     5, 12735,    91,\n",
-            "            7,    47,   431,  1498,   177,     4,  2738,     4,   550,     2,\n",
-            "            4,    46,  7858,    49,  1244,     5,  6791,  1220,     2,     6,\n",
-            "          376,    34,   345,     9,   593,  1158,   233,  2191, 31216, 33258,\n",
-            "         2822,  1486,    23,   219,     1,     3,     7,  2187,   112,    17,\n",
-            "          129, 37130,     1,  2845,    93,    95,  8111]), tensor(0))\n",
-            "(tensor([18487,    54,     7,     5,  8463,   159,  6042,     2, 12809,    12,\n",
-            "           30,  1385,   107,    14,   397,  8726,     1,  4654,     1,  6883,\n",
-            "            1, 12997,    43,   333,    22,    37,   149,    33,   532,    25,\n",
-            "          134,  4031,    31,    13,   283,  2584,    19,  4850,    12,  5501,\n",
-            "          270,    14,  6159,     5,     3,   121,     1,     3,    48,  2651]), tensor(1))\n",
-            "tensor([ 2281,  2675,   374,    28, 13940,    15, 11282,    18,  3936,   203,\n",
-            "            1,  7998,     4,   307,  1114,  9134,  4495,     1,    92,  8752,\n",
-            "           24,   104,    28,   117,    53,   638,     8,   418,    23, 23816,\n",
-            "          904,  1378,     1,   126,     8,     1,    86,   108,    46,  4622,\n",
-            "           34,  2719,    91,   203,    49,   121,     2,    49,  1179,   113,\n",
-            "          111,    50,   136,    70,  3190,    19, 11708,     5, 12735,    91,\n",
-            "            7,    47,   431,  1498,   177,     4,  2738,     4,   550,     2,\n",
-            "            4,    46,  7858,    49,  1244,     5,  6791,  1220,     2,     6,\n",
-            "          376,    34,   345,     9,   593,  1158,   233,  2191, 31216, 33258,\n",
-            "         2822,  1486,    23,   219,     1,     3,     7,  2187,   112,    17,\n",
-            "          129, 37130,     1,  2845,    93,    95,  8111, 18487,    54,     7,\n",
-            "            5,  8463,   159,  6042,     2, 12809,    12,    30,  1385,   107,\n",
-            "           14,   397,  8726,     1,  4654,     1,  6883,     1, 12997,    43,\n",
-            "          333,    22,    37,   149,    33,   532,    25,   134,  4031,    31,\n",
-            "           13,   283,  2584,    19,  4850,    12,  5501,   270,    14,  6159,\n",
-            "            5,     3,   121,     1,     3,    48,  2651], device='cuda:0') tensor([0, 1], device='cuda:0') torch.Size([157]) tensor([  0, 107], device='cuda:0')\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 0.4 Exercise: understand the Vocab object\n",
-        "\n",
-        "Here the **vocabulary** is a specific object in Pytorch: https://pytorch.org/text/stable/vocab.html\n",
-        "\n",
-        "For example, the vocabulary directly converts a list of tokens into integers, see below.\n",
-        "\n",
-        "Now try to:\n",
-        "* Retrieve the indices of a specific word, e.g. 'mauvais'\n",
-        "* Retrieve a word from its index, e.g. 368\n",
-        "* You can also directly convert a sentence to a list of indices, using the *text_pipeline* defined in the *Dataset* class, try with:\n",
-        "  * 'Avant cette série, je ne connaissais que Urgence'\n",
-        "  * 'Avant cette gibberish, je ne connaissais que Urgence'\n",
-        "  * what happened when you use a word that is unknown?"
-      ],
-      "metadata": {
-        "id": "Tus9Kedas5dq"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Hints: look at these functions\n",
-        "* lookup_indices(tokens: List[str]) → List[int]\n",
-        "* lookup_token(index: int) → str"
-      ],
-      "metadata": {
-        "id": "BR-hQMJlUfPR"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "train.vocab(['Avant', 'cette', 'série', ','])"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "tb6TYA9Is5v6",
-        "outputId": "611e3721-5756-428a-ab67-af3dd99f6b09"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[2910, 18, 7, 144]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 7
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "------------------------------------\n",
-        "SOLUTION\n",
-        "\n",
-        "You can use it to retrieve the indice of a specific word, e.g. 'mauvais'. "
-      ],
-      "metadata": {
-        "id": "3aAwvzFavjIY"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "print( train.vocab.lookup_indices( ['mauvais'] ))"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "k9cKqyj3vjT8",
-        "outputId": "8309230d-321c-48dc-9327-ee36957eaf17"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "[246]\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "print( train.vocab.lookup_token( 368 ) )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "ATxVspC0bBO1",
-        "outputId": "a8d4d4af-d8d2-470b-9a68-87833eede747"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "pas,\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "train.text_pipeline('Avant cette série, je ne connaissais que Urgence')"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "6i4C4sdmbN7N",
-        "outputId": "88853b12-1537-453d-db99-088b23ab4015"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[2910, 18, 89, 16, 17, 6120, 8, 10529]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 10
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "train.text_pipeline('Avant cette gibberish, je ne connaissais que Urgence')"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "8x32L7mVbN8p",
-        "outputId": "c6341f2c-f0ac-46a4-f9af-7b0c5f8b927b"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[2910, 18, 0, 16, 17, 6120, 8, 10529]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 11
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## Part 1- Using pretrained embeddings\n",
-        "\n",
-        "The first option would be to use randomly initialized word embeddings.\n",
-        "It allows the use of dense, real-valued input, that could be updated during training.\n",
-        "However, we probably don't have enough data to build good representations for our problem during training. \n",
-        "One solution is to use pre-trained word embeddings, built over very big corpora with the aim of building good generic representations of the meaning of words.\n",
-        "\n",
-        "Upload the file *cc.fr.300.10000.vec': first 10,000 lines of the FastText embeddings for French, https://fasttext.cc/docs/en/crawl-vectors.html.\n",
-        "\n",
-        "* **Each word is associated to a real-valued and low-dimensional vector** (e.g. 300 dimensions). Crucially,  the  neural  network  will  also  learn / update the  embeddings  during  training (if not freezed):  the  embeddings  of  the network are also parameters that are optimized according to the loss function, allowing the model to learn a better representation of the words.\n",
-        "\n",
-        "* And **each review is represented by a vector** that should represent all the words it contains. One way to do that is to use **the average of the word vectors** (another typical option is to sum them). Instead of a bag-of-words representation of thousands of dimensions (the size of the vocabulary), we will thus end with an input vector of size e.g. 300, that represents the ‘average’, combined meaning of all the words in the document taken together. "
-      ],
-      "metadata": {
-        "id": "UDlM7OZq56HO"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1 Load the vectors (code given)\n",
-        "\n",
-        "The function below loads the pre-trained embeddings, returning a dictionary mapping a word to its vector, as defined in the fasttext file. \n",
-        "\n",
-        "Note that the first line of the file gives the number of unique tokens (in the original file, here we only have 9,999 tokens) and the size of the embeddings.\n",
-        "\n",
-        "At the end, we print the vocabulary and the vector for a specific token."
-      ],
-      "metadata": {
-        "id": "RX2DkAqws1gU"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "import io\n",
-        "\n",
-        "def load_vectors(fname):\n",
-        "    fin = io.open(fname, 'r', encoding='utf-8', newline='\\n', errors='ignore')\n",
-        "    n, d = map(int, fin.readline().split())\n",
-        "    print(\"Originally we have: \", n, 'tokens, and vectors of',d, 'dimensions') #here in fact only 10000 words\n",
-        "    data = {}\n",
-        "    for line in fin:\n",
-        "        tokens = line.rstrip().split(' ')\n",
-        "        data[tokens[0]] = [float(t) for t in tokens[1:]]\n",
-        "    return data\n",
-        "\n",
-        "vectors = load_vectors( embed_file )\n",
-        "print( 'Version with', len( vectors), 'tokens')\n",
-        "print(vectors.keys() )\n",
-        "print( vectors['de'] )"
-      ],
-      "metadata": {
-        "id": "yd2EEjECv4vk",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "59519100-e6e1-4688-fd0e-c551decc0cd8"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Originally we have:  2000000 tokens, and vectors of 300 dimensions\n",
-            "Version with 9999 tokens\n",
-            "dict_keys([',', 'de', '.', '</s>', 'la', 'et', ':', 'à', 'le', '\"', 'en', '’', 'les', 'des', ')', '(', 'du', 'est', 'un', \"l'\", \"d'\", 'une', 'pour', '/', '|', 'dans', 'sur', 'que', 'par', 'au', 'a', 'l', 'qui', '-', 'd', 'il', 'pas', '!', 'avec', '_', 'plus', \"'\", 'Le', 'ce', 'ou', 'La', 'ne', 'se', '»', '...', '?', 'vous', 'sont', 'son', '«', 'je', 'Les', 'Il', 'aux', '1', ';', 'mais', \"qu'\", 'on', \"n'\", 'comme', '2', 'sa', 'cette', 'y', 'nous', 'été', 'tout', 'fait', 'En', \"s'\", 'bien', 'ses', 'très', 'ont', 's', 'être', 'votre', 'ai', 'elle', 'n', '3', 'même', \"L'\", 'deux', 'faire', \"c'\", 'aussi', '>', 'leur', '%', 'si', 'entre', 'qu', '€', '&', '4', 'sans', 'Je', \"j'\", 'était', '10', 'autres', 'tous', 'peut', 'France', 'ces', '…', '5', 'lui', 'me', ']', '[', 'où', 'ans', '6', '#', 'après', '+', 'ils', 'dont', 'Pour', '°', '–', 'temps', '*', 'sous', 'Un', 'avoir', 'L', 'A', '}', 'site', 'peu', 'mon', 'encore', '12', 'depuis', '0', 'ça', 'fois', '2017', 'ainsi', 'alors', 'donc', 'notre', 'Ce', '20', '11', 'autre', 'monde', 'non', 'Paris', 'avant', 'Une', 'Elle', '15', 'également', 'Re', 'contre', 'Vous', 'c', 'moins', 'tu', 'suis', '7', 'ville', 'avait', 'vos', 'vers', 'premier', 'vie', 'Et', '2016', '2014', 'jour', '00', '2013', 'leurs', 'Dans', 'soit', '2012', 'toutes', 'nom', '2015', '14', 'De', 'On', '8', 'prix', '18', \"C'\", 'Mais', 'partie', '•', 'nos', 'voir', 'article', '16', 'Plus', '13', 'of', 'chez', 'inscription', 'première', 'quelques', 'toujours', '17', 'Nous', 'plusieurs', 'mai', 'place', 'français', '2011', 'cas', 'puis', 'Cette', 'année', 'ma', 'toute', '2010', 'the', '30', 'suite', 'pays', 'The', 'années', 'lors', 'fin', 'bon', '19', 'À', '21', 'dit', 'trois', 'grand', 'quand', 'partir', 'car', 'sera', '22', 'cet', 'jours', 'C', '2009', 'petit', '=', \"J'\", 'Si', 'maison', 'fut', 'ligne', 'faut', '9', 'nouveau', 'moi', 'lieu', 'mois', '23', 'cours', 'personnes', 'va', 'déjà', 'cela', '2008', 'beaucoup', 'juin', 'groupe', 'mars', 'travail', 'nouvelle', 'compte', '24', 'page', 'messages', '25', 'and', 'janvier', 'hui', 'film', 'commune', 'j', 'grande', 'ici', 'Au', 'avril', \"m'\", 'histoire', '2007', 'détail', 'famille', 'savoir', 'doit', 'avis', 'chaque', 'trop', 'enfants', 'eau', 'm', 'part', \"jusqu'\", 'septembre', 'mes', 'homme', 'rien', 'avons', 'octobre', 'décembre', 'forum', 'jeu', 'produits', 'trouve', 'juillet', 'produit', 'équipe', 'CEST', 'politique', 'là', 'novembre', 'permet', 'in', 'titre', 'pendant', 'notamment', 'recherche', 'nombre', '·', 'dire', 'http', 'service', 'pouvez', 'février', 'point', 'dernier', '05', 'moment', 'selon', 'mort', 'droit', '2006', 'DE', 'afin', 'jamais', 'effet', 'mise', 'Des', '—', '26', 'région', 'projet', '\\\\', 'saison', 'août', 'niveau', '28', 'reste', 'bonne', 'ensemble', '27', 'peuvent', 'exemple', 'Voir', '01', 'série', 'souvent', 'centre', 'Après', 'écrit', 'pouvoir', '--', 'mettre', 'km', 'général', 'Page', 'forme', 'début', '09', 'ceux', 'personne', 'eu', 'française', 'vraiment', 'services', 'demande', '29', 'question', 'Par', 'près', 'Merci', 'celui', 'qualité', 'vue', 'tant', 'petite', 'système', '©', 'Ils', 'ailleurs', 'Europe', 'avez', 'mieux', 'société', '^', 'informations', 'données', 'prendre', 'elles', 'guerre', 'surtout', 'to', 'Jean', 'né', 'CET', '08', 'certains', '06', 'village', 'membres', 'rapport', 'an', 'face', 'étaient', 'mot', 'femme', 'possible', '50', 'seul', '@', 'Prix', '04', 'rue', '07', 'te', 'celle', 'mal', 'articles', 'aide', 'nombreux', 'base', 'ayant', '<', '03', '2005', 'entreprise', 'Catégorie', '..', 'ni', 'liste', '02', 'livre', 'passe', 'https', 'mis', 'seulement', 'côté', 'public', 'utilisation', 'ton', 'développement', '31', 'vu', '100', 'D', 'chose', 'dès', 'quatre', 'situé', 'Ces', 'devant', 'photos', 'hommes', 'trouver', 'Son', 'image', '\\xad', 'fr', 'plan', 'étant', 'type', 'tour', '$', 'grâce', 'cadre', 'juste', 'musique', 'président', 'version', 'aime', 'points', 'simple', 'Avec', 'formation', 'jeune', 'assez', 'quoi', 'offre', 'origine', 'sens', 'serait', 'gratuit', 'Pierre', 'heures', 'Nombre', 'corps', 'salle', 'tête', 'sujet', 'adresse', 'carte', 'minutes', 'date', 'font', 'fils', 'création', 'donne', 'e', 'choix', 'album', 'dernière', 'agit', 'loi', 'passé', 'propre', 'coup', 'propose', 'environ', 'chambre', 'accès', 'devient', '....', \"D'\", 'semaine', 'sécurité', 'parce', 'vidéo', 'ensuite', 'porte', 'h', 'lien', 'haut', 'comment', 'femmes', 'façon', 'nationale', 'état', 'présente', 'long', 'nouvelles', 'tard', 'besoin', 'raison', 'club', 'gouvernement', 'retour', 'genre', 'problème', 'x', 'ancien', 'époque', 'séjour', 'Sur', 'Forum', 'passer', 'information', '40', 'auteur', 'belle', '�', 'autour', 'eux', 'rôle', 'bois', '2004', 'meilleur', 'jeux', 'marché', 'deuxième', 'population', 'État', 'manière', 'santé', 'photo', 'J', 'particulier', 'semble', 'pense', 'merci', 'proche', 'N', 'air', 'Tous', 'aurait', 'fonction', 'Tout', 'différents', 'Mar', 'entreprises', 'statistiques', 'plutôt', 'nuit', 'accueil', 'située', 'ordre', 'aller', '--Les', 'êtes', 'école', 'père', 'droits', 'as', 'petits', 'utiliser', 'édition', \"aujourd'\", 'occasion', 'maintenant', 'États-Unis', 'période', 'Grand', 'Saint', 'donner', 'fille', 'Lire', 'jeunes', 'millions', 'activités', 'sommes', 'aucun', 'enfant', 'seule', 'production', '000', 'autant', 'M.', 'II', 'anglais', 'hôtel', 'œuvre', 'habitants', 'espace', '“', 'art', 'nouveaux', 'Ajouter', 'réseau', 'gestion', 'modèle', 'but', 'prend', '2000', 'parfois', 'I', 'département', 'national', 'marque', 'New', 'veut', 'activité', 'quelque', 'église', 'avais', 'propos', '”', 'gauche', 'cause', 'texte', 'idée', 'pris', 'nombreuses', 'chef', 'existe', 'mots', 'main', 'scène', 'grands', 'route', 'gens', 'style', 'sites', 'durant', 'programme', 'pu', 'études', 'mesure', 'calme', 'Comment', 'conditions', 'ministre', 'seront', 'terme', 'laquelle', 'vient', 'mode', 'or', 'Comme', 'jardin', 'www.insee.fr', 'situation', 'travaux', 'vacances', 'journée', 'vrai', 'membre', 'plein', 'code', 'sein', 'web', 'rencontre', 'lire', 'mer', 'Du', 'numéro', 'pages', 'action', 'euros', 'Mai', 'loin', 'lorsque', 'sais', 'agréable', 'domaine', '2003', 'pourrait', 'nature', 'travers', 'Conseil', 'disponible', 'expérience', 'fond', 'François', 'roi', 'siècle', 'oui', 'sud', 'etc.', 'choses', 'heure', 'LA', 'Accueil', 'milieu', 'cuisine', 'pratique', 'terre', 'grandes', 'blog', 'américain', '~', 'questions', 'vente', 'construction', 'pourquoi', 'peux', 'différentes', 'toi', 'répondre', 'jusqu', 'Mon', 'emploi', 'abord', 'sortie', 'intérieur', 'droite', 'bas', 'cinq', 'Louis', 'aucune', 'plaisir', 'premiers', 'message', 'pièces', 'suivant', 'donné', 'enfin', 'proximité', 'logement', 'Alors', 'prise', 'voiture', 'objet', 'Nord', 'accord', 'section', 'âge', 'gros', 'nord', 'découvrir', 'technique', 'présent', 'République', 'soir', 'Depuis', 'créer', 'S', 'concernant', 'jouer', 'Paul', 'important', '2002', '1er', 'succès', 'appartement', 'Jeu', 'chambres', 'met', 'campagne', 'discuter', 'peut-être', 'territoire', 'Bonjour', 'certaines', 'argent', 'langue', 'rapide', 'parmi', 'geo', 'Internet', 'John', 'vais', 'Charles', 'résultats', 'Dieu', 'direction', 'moyen', '²', 'Français', 'Canada', 'couleur', 'Jeux', 'rendre', 'poste', 'fort', 'Sa', 'auprès', 'départ', 'armée', 'Michel', 'Centre', 'entrée', 'valeur', '2001', 'avaient', 'charge', 'zone', 'min', 'cœur', 'mère', 'match', 'taille', 'Allemagne', 'amour', 'noir', \"t'\", 'Sud', 'clients', 'aura', 'naissance', 'annonce', 'quartier', 'Québec', 'économique', 'frais', 'Afrique', 'mm', 'voyage', 'Pas', 'Selon', 'réponse', 'pied', 'Maison', 'international', 'culture', 'troisième', 'Mer', 'beau', 'connu', 'affaires', 'blanc', 'voix', 'doivent', 'directement', 'plupart', 'rouge', 'compris', 'amis', 'conseil', 'classe', 'Université', 'sujets', 't', 'Jacques', 'presse', 'protection', 'parti', 'arrivée', '35', 'rapidement', 'obtenir', 'application', 'parler', 'p.', 'association', 'doute', 'Sujets', 'mondiale', 'château', 'communauté', 'appel', 'images', 'panier', 'lequel', 'projets', 'étude', 'football', '60', 'générale', 'vite', 'libre', 'commentaire', 'arrive', 'Cet', 'ta', 'matière', 'aider', 'contrôle', 'risque', 'cm', 'commande', 'trouvé', '45', 'quel', 'unique', 'politiques', 'voit', 'Quand', 'intérêt', 'source', 'communes', 'contenu', 'internet', '1999', 'organisation', 'Date', 'utilisé', 'Robert', 'secteur', 'for', 'présence', 'B', 'mouvement', 'référence', 'is', 'villes', 'double', 'catégorie', 'techniques', 'force', 'lettres', 'ancienne', 'simplement', 'yeux', 'éléments', 'île', 'carrière', 'Coupe', 'vont', 'joueur', 'livres', 'passage', 'ET', 'historique', 'commence', 'petites', 'Italie', 'Cela', 'presque', 'Sam', 'sociale', 'parle', '32', 'moyenne', 'épisode', 'réalisé', 'particulièrement', 'problèmes', 'environnement', 'terrain', 'taux', 'films', 'tel', 'roman', 'David', 'chacun', '80', 'Bien', 'téléphone', 'pièce', 'Messages', 'actuellement', 'Tu', 'divers', 'super', 'dernières', 'Recherche', 'Histoire', 'similaires', 'second', 'couleurs', 'publié', 'parc', 'esprit', 'Votre', '33', 'derniers', 'énergie', 'publique', 'créé', 'cinéma', 'Union', 'lit', 'moteur', 'seconde', 'York', 'aujourd', 'disponibles', 'Philippe', 'sûr', 'US', 'Posté', 'TV', 'es', 'Non', 'facile', 'social', 'large', 'Google', 'siège', 'Lun', 'longtemps', 'communication', 'nécessaire', 'bord', 'Site', 'Ainsi', 'permis', 'liens', 'matin', 'directeur', 'mètres', 'Belgique', 'durée', 'vivre', 'Oui', 'Dim', 'table', 'Que', 'principal', 'solution', 'joue', 'devrait', 'idées', 'suivre', 'dimanche', 'personnel', 'ouverture', 'total', 'sait', 'envie', 'meilleure', 'six', 'fais', 'fil', 'collection', 'Liste', 'Marie', 'premières', 'semaines', 'groupes', 'désormais', 'parents', 'malgré', 'hôtels', '1998', 'Espagne', 'Guerre', 'Tour', '1990', 'ami', 'manque', 'lettre', 'position', 'hors', 'finale', 'via', 'cependant', 'nommé', 'conseils', 'haute', 'laisser', 'Notre', 'lieux', 'professionnels', 'difficile', 'militaire', 'venir', 'celles', 'bout', 'visite', 'Ven', 'évolution', 'coeur', 'internationale', 'veux', 'comprendre', 'université', 'voie', 'Rechercher', 'permettant', 'contrat', 'LE', 'Société', 'cher', 'Club', 'économie', 'soleil', 'partager', 'professionnel', 'chemin', 'devenir', 'permettre', 'Chine', 'bar', 'commentaires', 'établissement', 'traitement', 'réalité', 'utilise', 'retrouve', 'sélection', 'train', 'élèves', 'usage', 'port', 'tels', 'Bon', 'Etat', 'tes', 'européenne', 'Wikipédia', 'objectif', 'espèce', '{', 'faisant', 'concours', 'feu', 'lecture', 'location', 'suivi', 'certain', 'ca', '200', 'joueurs', 'vendredi', 'mariage', 'écran', 'propriété', '36', 'endroit', 'résultat', 'possède', 'samedi', 'disposition', 'décision', 'Facebook', 'analyse', 'mission', 'Très', 'etc', 'marche', '1997', 'from', '│', 'Lyon', 'Toutes', '34', 'soient', 'bâtiment', 'DU', 'moyens', 'province', 'Art', 'suivante', 'compagnie', 'longue', 'Fichier', 'américaine', 'puisque', 'inscrit', 'sorti', 'at', 'lundi', 'publics', 'pourtant', 'éviter', 'Suisse', 'finalement', 'Cependant', 'achat', 'personnage', 'parcours', 'Nouveau', 'enseignement', 'Commentaires', 'reçu', 'animaux', 'meilleurs', 'complet', 'parties', 'sources', '1996', '70', 'musée', 'chanson', 'Article', 'montre', 'Nos', 'Image', 'devez', 'importe', 'contact', 'officiel', 'outils', '1995', 'lui-même', 'DES', 'actions', 'peine', 'Juin', 'allemand', 'note', 'affaire', 'Église', 'bureau', 'processus', 'sol', 'matériel', 'Qui', 'changer', 'ait', '38', 'Nicolas', 'pratiques', 'importante', 'ouvrage', 'Pays', 'document', 'San', 'comprend', 'parfait', 'bain', 'furent', 'attention', 'liberté', 'possibilité', 'uniquement', 'Jan', 'M', 'by', 'X', 'sort', 'théâtre', 'frère', 'équipes', 'Ses', 'championnat', 'relation', 'police', 'mémoire', 'est-ce', \"S'\", 'Enfin', 'salon', 'Musée', 'laisse', 'commerce', 'armes', '44', 'personnages', '48', 'Henri', 'soutien', 'client', 'quelle', 'vitesse', 'Articles', 'lumière', 'extérieur', 'utilisateur', 'victoire', 'hôtes', 'Lors', 'course', '42', 'réaliser', 'choisir', 'objets', 'III', 'administration', 'véritable', 'bons', 'éducation', 'ouest', 'derrière', 'Ligue', 'tandis', 'généralement', 'Deux', 'annonces', 'peuple', 'acheter', 'règles', 'titres', '39', 'besoins', 'gamme', 'combat', 'huile', 'Wish', 'sociaux', 'honneur', 'critique', 'sorte', 'gare', 'continue', 'crise', 'papier', 'hiver', 'bataille', 'piscine', 'réseaux', 'sport', 'Japon', 'commun', 'retrouver', '41', '1994', 'permettent', 'puissance', 'modèles', 'thème', 'sciences', '37', 'mêmes', 'appelle', 'moderne', 'Ne', 'with', 'responsable', 'exposition', 'neuf', 'anciens', 'ajouter', 'court', 'classique', 'Petit', 'principe', 'ouvert', 'ouvre', 'forte', 'crois', 'précédent', 'sauf', 'stock', 'Publié', 'principale', '43', 'professeur', 'dispose', 'navigation', 'Londres', 'Amérique', 'régime', 'forces', '55', '90', 'garde', 'rend', 'buts', 'Elles', 'vol', 'appelé', '500', 'couple', 'livraison', 'celui-ci', 'Association', 'demander', 'avance', 'Accessoires', 'électrique', 'mains', '1992', 'connaître', 'transport', 'telle', 'connaissance', 'ressources', '--Le', 'changement', 'peau', 'dix', 'filles', 'i', 'offres', 'Chambre', 'Informations', 'Institut', 'Noël', 'impression', 'Voici', 'Angleterre', 'étape', 'magnifique', 'physique', '1980', 'vois', 'textes', 'cookies', 'numérique', 'présentation', 'utilisateurs', 'œuvres', 'Signaler', 'documents', 'majorité', 'fer', 'télévision', 'étudiants', 'artistes', 'recevoir', '52', 'relations', 'étais', 'élections', 'professionnelle', 'Russie', 'Festival', 'bande', 'poids', 'privée', 'principalement', 'St', 'émission', 'bonnes', '1993', 'familles', 'Ma', 'britannique', 'lignes', 'caractère', 'assurer', 'Thomas', 'participe', 'découverte', 'E', 'proposer', 'cartes', 'souhaite', 'Or', 'Salle', 'recherches', 'partenaires', 'chance', 'maire', 'peur', 'rivière', 'vignette', 'Ville', 'acteur', 'explique', 'univers', 'direct', '49', 'surface', 'soirée', 'confiance', 'journal', 'facilement', 'Windows', 'bientôt', 'Est', 'dessus', 'Mes', 'arrière', 'lac', 'Présentation', 'nouvel', 'Montréal', 'logiciel', 'abus', 'Répondre', 'devenu', 'installation', 'courant', 'faible', 'travailler', 'Service', 'Rome', 'profiter', 'langues', 'capacité', 'André', 'systèmes', 'auteurs', 'maisons', 'née', 'attaque', 'accessoires', 'Martin', 'actuelle', 'soins', 'Hotel', 'capitale', 'tableau', '1991', 'pieds', 'artiste', 'fête', 'fonds', 'concerne', 'est-à-dire', '46', 'classement', 'hauteur', 'plage', 'original', 'sept', 'mesures', 'coin', 'centrale', 'diverses', 'faite', 'dossier', 'cité', 'Pourquoi', 'ci-dessous', 'marques', 'EN', 'justice', 'Bernard', 'gratuitement', 'types', 'station', 'Sans', 'formes', 'célèbre', 'Joseph', 'éditions', 'fonctions', 'adore', 'dis', 'jeudi', 'paix', 'limite', 'sortir', 'LES', 'vote', 'Web', 'pleine', 'Championnat', 'mercredi', 'acteurs', 'principaux', 'plans', 'exploitation', 'épouse', 'supérieur', 'James', 'Georges', 'Parti', 'médias', 'confort', 'Claude', 'cherche', 'format', 'signe', 'propres', 'composé', 'R', 'mardi', 'V', '47', 'communale', 'naturel', 'FC', 'faites', 'di', 'lutte', '51', 'entièrement', 'peinture', 'actuel', 'écrire', 'structure', 'vieux', 'Premier', 'Vue', 'situe', 'pose', 'Monde', 'quotidien', 'espère', '´', 'Avr', 'espèces', '1970', 'risques', 'o', '59', 'populaire', 'prochain', 'infos', 'distance', 'étoiles', 'proches', 'latitude', 'moitié', 'détails', 'termes', 'Richard', 'immédiatement', 'solutions', 'contraire', 'sociales', 'importance', 'idéal', 'effets', 'représente', 'parfaitement', '¤', '56', 'Alain', 'locaux', 'entretien', '54', 'partout', 'penser', '1989', 'chaîne', 'top', 'pierre', 'patrimoine', 'voire', '57', 'choisi', 'réponses', 'g', 'rester', 'informatique', 'maladie', 'totalement', 'e-mail', 'Michael', 'discussion', 'complète', 'Guide', 'studio', 'pourra', 'Location', 'saint', 'Avis', 'défense', 'Carte', 'vidéos', 'réalisation', 'scientifique', 'Plan', 'Grande', 'rendez-vous', 'erreur', 'pourrez', 'Contact', 'décidé', 'gaz', 'opération', 'industrie', 'raisons', 'générales', 'H', 'Sujet', 'longitude', 'assurance', 'contacter', 'privé', 'améliorer', 'align', 'Hôtel', 'belles', 'valeurs', 'enquête', 'atteint', 'croissance', 'perdu', 'avenir', 'traduction', 'suffit', 'bébé', 'faits', 'participation', 'russe', 'régulièrement', 'zones', 'Président', 'appareil', 'goût', 'Groupe', 'El', 'terrasse', 'p', 'maximum', 'tellement', 'formé', 'Lycée', 'local', 'fonctionnement', 'Terre', 'dos', 'remporte', 'portes', '53', 'canton', 'ordinateur', 'gratuite', 'restaurant', 'machine', 'sexe', 'utilisant', 'fichier', 'construit', 'cour', 'division', 'mobile', 'approche', 'Bruxelles', 'recette', 'F', 'absence', 'écoles', 'vis', 'pouvait', \"lorsqu'\", 'unité', 'dû', 'sert', 'voyageurs', 'actualité', 'Rue', 'noms', 'volonté', 'existence', 'expression', 'ministère', 'méthode', 'italien', 'propriétaire', 'sociétés', 'Code', 'partage', 'cheveux', 'tient', 'décide', 'Marseille', '1988', 'International', 'Nov', 'bleu', 'consommation', 'entraide', 'élu', 'Autres', 'matchs', 'confortable', 'revient', 'européen', 'mondial', 'National', 'électronique', 'participer', 'régions', 'identité', 'Daniel', 'DH', 'Pendant', 'PC', 'minimum', 'Fév', 'faisait', 'ventes', 'quant', 'trouverez', 'apos', 'revue', 'probablement', 'Donc', 'apparaît', 'Oct', 'Chaque', 'fenêtre', 'voici', 'Aucun', 'demandes', 'recommande', 'ferme', 'outre', 'futur', 'morts', 'pression', 'maître', 'événements', 'réserve', 'attendre', '58', 'équipements', 'William', 'acte', 'viens', 'L.', 'regard', 'vert', 'publication', 'belge', 'différence', 'magasin', 'vent', 'kilomètres', 'étranger', 'reçoit', 'A.', 'manger', 'présenter', 'champ', '→', 'contexte', 'suivants', 'déjeuner', '300', 'École', 'chien', 'compétition', 'Services', 'Première', 'outil', 'commencé', 'porter', 'P', 'coupe', 'Bordeaux', 'statut', 'George', '́', 'montagne', 'chercher', 'responsabilité', 'Santé', 'description', 'Même', 'écriture', 'Empire', \"Aujourd'\", 'Partager', '1986', 'signifie', 'repas', 'immobilier', 'gagner', 'conception', 'travaille', 'bras', 'Bretagne', 'Avant', 'Dès', 'visage', 'fera', 'guide', 'efficace', 'rendu', 'puisse', 'id', 'épisodes', 'créée', '1987', 'hier', 'longueur', '†', 'Livraison', 'revenir', 'sinon', 'Titre', 'écrivain', 'correspond', 'élection', 'obtient', '1960', 'emplacement', 'design', 'celle-ci', 'tendance', 'Laurent', \"quelqu'\", 'voilà', 'Sciences', 'développer', 'réduction', 'domicile', 'applications', 'décès', '--La', 'jeunesse', 'réel', 'fit', '1982', 'retraite', 'contient', 'places', 'devait', 'radio', 'peintre', 'littérature', 'Déc', 'mises', 'Moi', 'forêt', 'figure', 'toutefois', 'beauté', 'clair', 'Commission', 'prochaine', 'Contenu', 'largement', '1984', 'cul', 'change', 'constitue', 'Sep', 'économiques', 'entier', 'ouverte', 'respect', 'disque', 'payer', 'Lorsque', 'vin', 'Connexion', '1985', 'Toulouse', 'café', 'milliards', 'bonheur', 'rejoint', 'programmes', 'vaut', 'médecin', 'oeuvre', 'pont', 'représentant', 'del', 'intérêts', 'Sélectionner', 'visiter', 'Entre', 'ciel', 'Retour', 'pétrole', 'verre', 'plantes', 'véhicule', 'preuve', 'chargé', 'suivantes', 'Patrick', 'Marc', 'joué', 'Homme', 'anniversaire', 'modifier', 'conseiller', 'Aoû', 'fruits', 'discours', 'débat', 'atteindre', 'altitude', 'phase', 'instant', 'historiques', 'Bonne', 'prévu', 'b', 'agence', '‘', 'vit', 'passant', 'Juil', 'regarder', 'Culture', 'final', 'certaine', 'Loire', 'inscrire', 'architecture', 'Nom', 'atelier', 'J.', 'critères', 'Maroc', 'issue', 'Disponible', 'vision', 'fleurs', 'spectacle', 'évaluation', 'huit', 'basse', 'prêt', 'complètement', 'louer', 'centres', 'volume', 'utilisés', 'sympa', 'Air', 'essayer', 'température', 'opérations', 'collaboration', 'fiche', 'souhaitez', '75', 'offrir', 'Ouest', 'demandé', 'Puis', 'dollars', 'distribution', 'Cliquez', 'tres', 'DVD', 'lu', 'supérieure', 'liés', 'montant', 'intervention', 'boutique', 'influence', 'Monsieur', 'diffusion', 'Conditions', 'troupes', 'sang', 'nécessaires', 'utilisée', 'Éditions', 'rejoindre', 'tenu', 'lance', 'véhicules', 'compter', 'objectifs', 'arrêt', 'Découvrez', 'Assemblée', 'construire', 'apprendre', \"N'\", 'présenté', 'Super', 'élevé', 'Mme', 'Certains', 'scolaire', 'publiques', 'compétences', 'éditeur', 'connecté', 'cliquez', 'Anne', 'excellent', 'écoute', 'budget', 'françaises', 'opposition', 'concept', 'étage', '150', 'équipé', 'événement', 'Tags', '1983', 'test', 'niveaux', 'commencer', 'avion', 'échange', 'caractéristiques', 'servir', 'envoyer', 'T', 'voulez', 'Château', 'tenue', 'fichiers', 'City', 'Sport', 'côtés', 'totale', 'poser', 'stade', 'eaux', 'entendu', 'Théâtre', 'conscience', 'humain', 'vallée', 'militaires', 'Christian', 'no', 'réussi', 'humaine', 'coordonnées', 'mauvais', 'touche', 'riche', 'Musique', 'associations', 'Twitter', 'suit', 'protéger', 'Top', 'Quelques', 'ouvrages', 'mari', 'portant', '×', 'remise', 'soi', 'candidat', 'Guillaume', 'Age', 'comte', 'utile', 'dur', 'aéroport', 'meilleures', 'IV', 'stratégie', 'hésitez', 'Algérie', 'promotion', 'Afficher', 'Créer', 'vide', '1975', 'autorités', 'Vie', '1981', 'telles', 'you', 'préparation', 'élève', 'technologie', 'théorie', 'Total', 'arrêté', '1978', 'Peter', 'paiement', 'journaliste', 'prises', 'tente', 'indique', 'locale', 'ouvrir', 'principales', 'Ben', 'traité', 'festival', 'espaces', 'von', 'loisirs', 'naturelle', 'défaut', 'support', 'baisse', 'Israël', 'phpBB', 'rencontres', 'O', 'Cour', '1968', 'Résultats', 'découvert', 'comptes', 'plat', 'Antoine', 'jolie', 'crée', 'Modèle', 'annoncé', 'victimes', 'avions', 'recettes', 'installer', 'lait', 'dehors', 'biens', 'légales', 'impossible', 'croire', 'email', 'Alexandre', 'municipalité', 'établissements', 'Asie', 'domaines', 'tombe', 'week-end', 'intéressant', 'noire', 'arts', 'conférence', 'Car', 'considéré', 'allez', 'champion', 'magazine', 'clubs', 'Olivier', 'coups', 'Parc', 'arriver', 'Parmi', 'commercial', 'pouvant', 'World', 'post', 'Disney', 'Académie', 'salles', 'fortement', 'résidence', 'artistique', 'champs', 'tourisme', 'proposé', 'In', 'CD', 'davantage', 'lancer', 'conflit', 'aventure', 'séries', 'serveur', 'rêve', 'civile', 'faveur', 'enregistrer', 'connue', '1979', 'Ça', 'tenir', 'japonais', 'perte', 'fonctionne', 'Albert', 'mairie', 'termine', 'espagnol', 'lesquels', 'garder', 'Jouer', 'allemande', 'précise', 'montrer', 'déclaré', 'exercice', 'quatrième', 'vérité', 'basée', 'scientifiques', 'trouvent', 'importants', 'right', 'capable', 'prison', 'villages', 'catégories', 'Maurice', 'soin', 'actes', 'aurais', 'métier', 'C.', 'veulent', 'foi', 'quantité', 'chinois', 'masse', 'expédition', 'récemment', 'charme', 'revanche', 'stage', 'concert', 'complexe', 'milliers', 'was', 'accéder', 'tôt', 'van', 'pop', 'pensée', '1976', 'Comité', 'secrétaire', 'der', 'superbe', 'clé', 'particuliers', 'fini', 'printemps', 'demain', 'commission', 'originale', 'camp', 'Permalien', 'dessin', 'marchés', 'envers', 'réception', 'lois', 'Dr', 'religion', 'chansons', 'lycée', 'ambiance', 'Mars', 'Quel', 'dois', 'vivant', 'engagement', '›', 'juridique', 'mur', 'noter', 'ski', 'consulter', 'central', 'option', '1977', 'juge', 'Sous', 'absolument', 'entrer', 'viennent', 'meme', 'Type', 'jaune', 'élément', 'r', 'chaleureux', 'catholique', 'Note', 'vendre', 'invite', 'menu', 'rose', 'essentiel', '1950', 'tarifs', 'couverture', 'Archives', 'Saison', 'Se', 'évêque', 'Pologne', 'Livre', 'Berlin', 'difficultés', 'blanche', '400', 'chapelle', 'olympiques', 'organisé', '1972', 'procédure', 'présents', 'frères', 'performance', 'perdre', '1973', 'Message', 'notes', 'génération', 'Journal', 'voitures', 'au-dessus', 'médecine', 'bâtiments', 'condition', '®', 'Photo', '1974', 'rappelle', 'importantes', 'glace', 'cheval', 'durable', 'connaît', 'effectuer', 'quitte', 'contenant', 'pro', 'continuer', 'tradition', 'candidats', 'beaux', 'lancé', 'automobile', 'Trois', 'Malgré', 'coût', 'réunion', 'Ca', 'primaire', 'réduire', 'chat', 'obtenu', 'définition', 'Produits', 'résumé', 'chasse', 'apporter', 'Jésus', 'sucre', 'Espace', 'Général', 'Vincent', 'laissé', 'vérifier', 'lendemain', 'député', 'Salon', 'traduit', 'froid', 'actrice', 'clés', 'terres', 'reprises', 'reprise', 'chiffres', 'résistance', 'publiée', 'surprise', 'chocolat', 'alimentation', 'Nuit', 'Nouvelle', 'échelle', 'autorité', 'ceci', 'Fiche', 'capital', 'Etats-Unis', 'chaud', 'comité', 'Plusieurs', 'M2', 'licence', 'échanges', 'interne', 'épreuve', 'collège', 'joli', 'liées', 'âme', 'tiers', 'critiques', 'enfance', 'vélo', 'Arts', 'télévisée', 'envoyé', 'pourraient', 'côte', 'Royaume-Uni', 'murs', '65', 'bus', 'fabrication', 'Black', 'réalisateur', 'demeure', 'prince', 'piste', 'conduit', 'soldats', 'lecteur', 'États', 'hôte', 'Fédération', 'douche', 'batterie', 'salariés', 'cadeau', 'Gestion', 'aspect', 'home', 'sommet', 'connaissances', 'Alpes', 'Projet', 'essentiellement', 'oublier', 'Politique', 'philosophie', 'René', 'seuls', 'district', 'Grâce', 'religieux', 'sac', 'IP', 'occupe', 'Nantes', 'locales', 'duc', 'documentaire', 'Toutefois', 'chute', 'méthodes', 'scénario', 'planète', 'parking', 'sympathique', 'héros', '2007Sujet', 'garantie', 'label', 'pêche', 'comportement', 'renseignements', 'cycle', 'humaines', 'crédit', 'mélange', 'consiste', 'précédente', 'accueille', 'logiciels', 'ajouté', 'Me', '.....', 'visiteurs', 'boîte', 'forcément', 'Van', 'grave', 'Australie', 'tournée', 'exception', 'multiples', 'chiffre', 'Film', 'connexion', 'logique', 'restauration', 'somme', '64', 'préparer', 'mail', 'comté', 'équipée', '1962', 'eut', 'édité', 'moindre', 'réflexion', 'portail', 'accessible', 'Actualités', 'vraie', 'anciennes', 'proposition', 'Mise', 'Inde', 'technologies', 'Leur', '1940', 'Bienvenue', 'financement', 'mouvements', 'modification', 'royaume', 'évidemment', 'acceptez', 'spécialiste', 'crème', 'Seconde', '1945', 'Voilà', 'File', 'etre', 'gérer', 'îles', 'découvre', 'affiche', 'Formation', 'équipement', 'Vos', '1967', 'augmentation', 'banque', 'règle', 'feuilles', 'agriculture', 'langage', 'Los', 'automatiquement', '3D', 'secret', 'simples', 'impact', 'Star', 'Ou', 'Description', 'till', 'certainement', 'régional', 'citer', 'info', 'rapports', 'portée', 'démarche', \"Qu'\", 'arrondissement', 'profil', 'hôpital', '1971', 'accueillir', 'suisse', 'expliquer', 'officielle', 'appareils', 'révolution', 'restaurants', 'violence', 'secondes', 'a-t-il', 'Durant', 'néanmoins', 'voulu', 'Pro', 'Brésil', 'veille', 'normal', 'animation', 'connais', 'Frédéric', \"--L'\", 'Roger', 'comporte', 'danse', '1969', 'inclus', 'Marine', 'apparition', 'bibliothèque', 'record', 'G', 'décrit', 'Strasbourg', 'score', 'Catherine', 'Bref', 'indépendance', 'archives', 'Henry', 'destination', 'Auteur', 'Genève', 'this', 'humains', 'composée', 'revenu', 'clairement', 'moments', 'f', 'VF', 'Dominique', 'faux', 'apprentissage', 'Aide', 'donnée', 'passion', 'achats', 'mauvaise', 'Attention', 'devoir', 'Royal', 'pilote', 'tome', 'Femme', 'chapitre', 'chaleur', 'faudra', 'permettra', 'USA', 'fournir', 'féminin', 'assure', 'reprend', 'thèmes', 'Radio', 'superficie', 'élus', 'séance', 'PS', 'investissement', 'commerces', 'producteur', 'citoyens', 'financière', 'Direction', 'indiqué', 'connecter', 'exactement', '1944', 'architecte', 'capitaine', 'Appartement', 'fondée', 'pire', 'publie', 'effectivement', 'science', 'meurt', 'heureux', 'initiative', 'météo', 'Maria', 'Révolution', 'conforme', 'entendre', 'arrivé', 'réforme', 'saisons', 'actif', 'accident', 'réalisée', 'matières', 'dessous', 'adultes', 'placé', 'rock', 'guitare', 'faudrait', 'truc', 'Place', 'text', 'Nice', 'bouche', 'nucléaire', 'réalise', 'hommage', 'acheté', 'essai', 'aimé', 'urgence', 'présidentielle', 'cuir', 'utiles', 'Collection', 'Var', 'reprendre', 'appartient', 'voyages', 'fondé', 'partenaire', 'tournoi', 'appelée', 'grosse', 'Banque', '1000', 'culturel', 'chômage', 'délai', 'principes', 'Quelle', 'pâte', 'eacute', 'piano', 'Sécurité', 'tours', 'décoration', '2008Sujet', 'WP', 'Y', 'frontière', 'difficulté', 'développé', 'étrangers', 'catalogue', 'faute', 'matériaux', 'spécial', 'missions', 'arabe', 'Anglais', 'circuit', 'four', 'Victor', 'permanent', 'réservation', 'étrangères', 'yoga', 'douce', 'auraient', 'Christophe', 'Jack', 'avantage', 'palais', 'responsables', 'Médecine', 'kg', 'classé', 'Park', 'pointe', 'supplémentaires', '\\ufeff', 'rares', 'bassin', 'Lille', 'Cours', 'sexy', 'avocat', 'pain', 'prennent', 'vêtements', '120', 'victime', 'pouvons', 'précis', 'One', 'Christ', 'profit', 'vouloir', 'disponibilité', 'parole', 'Eric', 'sent', 'marketing', 'arrêter', 'légèrement', 'signé', 'hausse', 'participé', 'Aux', 'robe', 'aurez', 'neige', 'Source', 'Catégories', 'Gérard', 'dynamique', 'transports', 'composition', 'classes', 'Guy', 'Générale', 'lesquelles', 'essais', 'produire', 'reconnaissance', 'devenue', 'propriétaires', 'visites', 'net', 'références', 'bains', 'vaste', 'spécifique', '1965', 'auquel', 'américains', 'conséquences', 'légende', 'convient', 'marine', 'elle-même', 'attend', 'restent', 'abbaye', 'Côte', 'empereur', '1966', '™', 'adapté', 'dessins', 'Max', 'Jules', 'efficacité', 'very', 'Pascal', 'entraîneur', 'environs', '250', 'institutions', 'parfaite', 'bref', 'décret', 'déclaration', 'conduite', 'Agence', 'machines', 'Sinon', '1964', 'rubrique', 'monuments', 'seraient', 'performances', 'single', 'au-delà', 'mandat', 'italienne', 'indépendant', 'You', 'partenariat', 'offert', 'portable', 'R.', 'souvenir', 'rédaction', 'Ceci', 'siècles', 'spécifiques', 'changements', 'porté', 'center', 'relativement', 'Simon', 'extension', 'organisations', 'électricité', 'limites', 'Microsoft', '1930', 'Manuel', 'Vidéo', 'collectif', 'Toute', 'représentation', 'plateau', 'possibles', 'réduit', 'recours', 'participants', 'centaines', 'dispositions', 'finir', 'Adresse', 'majeur', 'populations', 'agent', 'habitude', 'géographique', 'automatique', 'Ah', 'graphique', 'animal', 'sportif', 'Tourisme', 'emplois', 'Parlement', 'arbre', 'chefs', 'donnant', 'Tom', 'revenus', 'opinion', 'S.', 'fondateur', 'bilan', 'unités', 'Madame', 'estime', 'axe', 'Grèce', 'formule', 'littéraire', 'dépend', 'collections', 'dispositif', 'venu', 'bénéficier', 'fixe', 'phénomène', 'bouton', 'Blog', 'pape', 'rencontrer', 'rythme', 'préféré', 'notion', 'amoureux', 'répond', 'chant', 'dite', 'rare', 'gris', 'P.', 'remplacer', 'réellement', 'Accès', 'basé', 'fêtes', 'formations', 'und', 'usine', 'Ordre', 'bases', 'adaptation', 'financiers', 're', 'expériences', 'oiseaux', 'européens', 'pouvoirs', 'Marcel', 'procès', 'Est-ce', 'agents', 'apporte', 'étapes', 'Mentions', 'toile', 'rang', 'voies', 'ajoute', 'consacré', 'donnent', 'moto', 'tenter', 'finit', 'chacune', 'Région', 'longues', 'arbres', 'vues', 'versions', 'su', 'règne', 'Quant', 'liésPortail', 'copie', 'reconnu', '─', 'ex', 'actifs', 'Docteur', 'clip', 'circulation', 'remettre', 'iPhone', 'intitulé', 'fallait', 'Cuisine', 'courte', 'est-il', 'rues', 'dirigeants', 'métiers', 'Ensuite', 'climat', 'particulière', 'chiens', 'efforts', 'officiellement', 'récit', 'supprimer', 'bel', 'standard', 'experts', 'automne', 'courage', 'relative', '1963', 'attente', 'Pays-Bas', 'internautes', 'monter', 'Pièces', 'marqué', '1958', 'publicité', 'changé', 'partis', 'Stade', 'Jean-Pierre', 'Al', 'extrêmement', 'croix', 'Photos', 'bruit', 'Envoyer', 'tomber', 'conçu', 'Portail', 'commandes', 'latin', 'sable', '72', 'minute', 'left', 'former', 'télécharger', 'Thierry', 'enregistré', 'perd', 'Chambres', 'options', 'transfert', 'Palais', 'bateau', 'internationales', 'Bureau', 'justement', 'Blanc', 'pluie', 'territoires', 'titulaire', 'avancée', 'Office', 'obligatoire', 'angle', 'réservés', 'Love', 'horaires', 'structures', '1961', 'Petite', 'Afin', 'oublié', 'spécialisé', 'ci-dessus', 'examen', 'Divers', 'Galerie', 'pourront', 'personnelle', 'chanteur', \"puisqu'\", 'contenus', 'correspondant', 'Création', 'compositeur', 'interdit', 'histoires', 'sœur', 'Hollande', 'municipal', 'Communauté', 'Livres', 'sérieux', 'réussite', 'lecteurs', 'agricole', 'Bois', 'normes', 'mille', 'FAQ', 'Julien', 'quitter', 'avantages', 'Directeur', 'phrase', 'F.', 'augmenter', 'lorsqu', 'Rien', 'upright', '1920', 'logements', 'Washington', 'José', 'cabinet', 'enregistrement', 'Loi', 'B.', 'acier', 'Discussion', 'installé', 'précision', 'représentants', 'Dernière', 'Roi', 'intéresse', 'Bruno', 'classiques', 'exécution', 'listes', 'aménagement', 'œil', 'soumis', 'My', 'définir', 'billet', 'Lien', 'organisme', 'vigueur', 'logo', 'espoir', 'Autriche', 'raconte', 'utilisent', 'danger', 'v', 'prestations', 'Évaluation', 'paroles', 'Champion', 'Tunisie', 'Portugal', 'associé', 'attendant', 'avenue', 'allant', 'combien', 'Encore', 'organiser', 'Emmanuel', 'Faire', 'destiné', 'rayon', 'Vienne', 'Yves', 'vendu', 'démocratie', 'Chez', '♥', 'plastique', 'patients', 'impose', 'réaction', 'bronze', 'Âge', 'spéciale', 'extrait', 'potentiel', 'Montpellier', 'Apple', 'anglaise', 'vainqueur', 'constitué', 'allait', 'Ici', 'Table', 'canal', 'sel', 'midi', '1954', '95', 'Revue', 'Aucune', 'interprétation', 'doux', 'seigneur', 'limitée', 'camping', 'Système', 'TTC', 'dédié', 'chevaux', 'surveillance', 'intégration', 'maladies', 'appartements', 'pierres', 'issus', 'lancement', '85', 'session', 'légumes', 'hockey', 'supplémentaire', 'personnelles', 'Bibliothèque', 'Parce', 'musicale', 'individus', '1936', 'différent', 'organise', 'financier', 'ateliers', 'Affaires', 'Nationale', 'Nations', 'Jardin', 'Moscou', 'quels', 'Noir', 'montage', 'construite', 'rouges', 'numéros', 'Où', 'défaite', 'front', 'Père', 'culturelle', 'auront', 'armées', 'auto', 'commerciale', 'POUR', '1956', '1946', '1959', 'humour', 'postes', 'accepte', 'reine', 'autorisation', 'métro', 'remplacé', 'charges', 'Cannes', 'No', 'agir', 'métal', 'arme', 'Droit', 'règlement', 'poète', 'Entreprises', 'sports', 'Suite', 'Gilles', 'Pourtant', 'innovation', 'barre', 'vise', 'sorties', 'débuts', '62', 'Android', 'exemplaires', 'identifier', 'Big', 'Mr', 'alimentaire', 'garçon', 'hébergement', 'Normandie', 'rire', '600', 'employés', 'dates', 'Travaux', 'établir', 'écrits', 'vivement', 'pistes', 'flux', 'Série', 'socialiste', 'secondaire', 'Protection', 'apprend', 'dimension', 'égard', 'poissons', 'présentes', 'solo', 'don', 'tirer', 'vols', 'mécanique', 'poursuit', 'tourne', 'amélioration', 'annuaire', 'gagne', 'ceinture', 'électriques', 'Rennes', 'Californie', 'équilibre', 'secteurs', 'nuits', 'allons', 'nécessité', 'Infos', 'chercheurs', 'Belle', 'paysage', 'active', 'blancs', 'médaille', 'concurrence', 'Durée', 'Aller', 'erreurs', 'bac', 'joie', 'USB', 'ben', 'repris', 'travailleurs', 'préfère', 'royale', 'invités', 'respecter', 'Madrid', 'Demande', 'appeler', '1939', '2006Sujet', 'indispensable', '\\u200b', 'suppression', 'orchestre', 'Réponse', 'émissions', 'morceaux', 'luxe', 'précisément', 'trafic', 'léger', 'alentours', 'prénom', 'tué', 'Fondation', 'tennis', 'solaire', 'Denis', 'voulait', 'travaillé', 'Sports', 'cadeaux', 'Partagez', 'intention', 'naturelles', 'Famille', 'considère', 'Red', 'modernes', 'favoris', 'engage', 'hasard', 'vécu', 'sentiment', 'courses', 'Arthur', 'poursuivant', 'cesse', 'auparavant', 'Z', 'Vers', 'grec', 'Détails', 'urbaine', 'extrême', 'voulais', 'bio', 'live', 'rupture', 'soutenir', 'Programme', 'humanité', 'photographie', 'calcul', 'modifications', 'visant', 'faciliter', 'Santa', 'signature', 'plages', 'maintenir', 'déco', 'tissu', 'amie', 'affirme', 'Retrouvez', 'title', 'universitaire', 'Angeles', 'cathédrale', 'vingt', 'demi', '78', 'mettant', 'familiale', '77', 'Produit', 'personnalité', 'Offres', 'menace', 'mention', 'Mode', 'apprécié', 'Salut', 'scolaires', 'U', 'aimerais', 'écrite', 'quartiers', 'Sarkozy', 'calendrier', 'thé', 'rayons', 'News', 'All', 'exemples', 'conserver', 'échec', 'libres', 'vieille', 'SUR', '1957', 'décisions', 'plaque', 'dure', 'tribunal', 'alt', 'organisée', 'Qu', 'Constitution', 'conséquence', 'personnalités', 'Hôtels', 'Organisation', 'li', 'Emploi', 'semblent', 'fondation', 'maîtrise', 'essence', 'w', '68', 'leader', 'amateurs', 'magasins', 'bureaux', 'désigne', 'boite', 'coopération', 'retourner', 'propositions', 'Information', 'Music', 'issu', 'défendre', 'populaires', 'prévue', 'rugby', 'mettent', 'lié', 'installations', 'coté', 'King', 'maman', 'bonjour', 'Introduction', 'monument', 'ombre', 'Stéphane', 'Frais', 'remporté', 'journalistes', 'vins', 'D.', 'Moyen', 'Haute', 'it', 'civil', 'révèle', 'couples', 'fins', '1942', 'albums', 'souvenirs', 'Mark', 'transformation', 'tests', 'tourner', 'profondeur', 'Suède', 'ingénieur', 'fans', 'regarde', 'poésie', 'Q', 'touristique', 'terrains', '1955', 'HD', 'dialogue', 'nationales', 'scènes', 'Soins', 'dommage', 'Bourgogne', 'branche', 'après-midi', 'tir', 'ci', 'Seigneur', 'attaques', 'refuse', 'déroule', 'étudiant', 'profession', 'video', 'aimez', '800', 'régionale', 'autonomie', 'navigateur', 'G.', '66', '1943', 'éd.', 'plateforme', 'Veuillez', 'Provence', 'Milan', 'Turquie', 'Edition', 'Irlande', 'chaussures', 'empêcher', 'démocratique', 'HT', '1948', 'effort', 'instruments', 'façade', 'effectué', 'prévention', 'uns', 'Questions', 'rencontré', 'connus', 'accompagné', 'montagnes', 'canadien', 'Compagnie', 'jardins', 'sommes-nous', 'English', 'cent', 'commandant', 'Football', 'débute', 'source1', 'chemins', '1914', 'viande', 'enjeux', 'beurre', 'paraît', 'ul', 'servi', 'européennes', 'spécialisée', 'Mexique', 'WC', 'moteurs', 'intérieure', 'Isabelle', 'Télécharger', 'cinquième', 'utilisées', 'situations', 'Francis', 'devraient', 'Macron', 'Frank', 'capacités', 'personnels', 'visible', 'combats', 'devra', 'fan', 'Jeanne', 'K', 'invité', 'retard', 'réservé', 'galerie', 'Syrie', 'évolue', 'tester', 'acquis', '67', 'Concours', 'footballeur', 'légère', 'Avril', 'successeur', 'interface', 'serez', 'industriel', 'enceinte', 'accepter', 'contemporain', 'Annonce', 'entière', 'Développement', 'réelle', 'parlé', 'associés', 'Version', 'obligation', 'nul', 'déchets', 'appui', 'étudier', 'résolution', 'décédé', 'villa', 'envoie', 'comprenant', '1947', 'banques', 'poisson', 'députés', 'directe', 'excellente', 'établi', 'entend', '84', 'massif', 'suffisamment', 'Aujourd', 'u', 'sauver', 'silence', 'Chris', 'organismes', 'traditionnelle', '69', 'ordres', 'Raymond', 'déclare', 'cliquant', 'billets', 'enseignants', 'routes', 'malheureusement', 'EUR', 'concerts', 'Studio', 'possibilités', 'égalité', 'audio', 'Go', 'Home', 'we', 'stockage', 'assemblée', 'Division', 'prenant', 'mérite', 'effectue', 'thermique', 'énorme', 'Smith', 'propriétés', 'tuer', 'alimentaires', 'judiciaire', 'dimensions', 'devint', 'décor', 'Aussi', 'puissant', 'appartenant', 'récupérer', 'Point', 'Fin', 'naturels', 'sourire', 'couche', 'terminé', 'Lee', 'thèse', 'romans', 'paru', 'Haut', 'ennemi', 'secours', 'installe', 'accueilli', 'fermeture', 'nez', 'désigner', 'tarif', 'intermédiaire', 'Barcelone', 'assistance', 'dossiers', 'Autre', 'Maître', 'rappeler', 'Villa', 'oeil', 'cancer', 'arrête', 'Matériel', 'progrès', 'Records', 'poursuivre', 'Sainte', '1953', 'United', 'Master', 'cache', 'appliquer', 'morceau', 'aspects', 'entraînement', 'océan', 'Rose', 'fou', 'Informatique', 'navire', 'chauffage', 'développe', 'industrielle', '1952', 'confirme', 'fleuve', 'cuisson', 'remis', 'gouverneur', 'meteo', 'douze', 'aimer', '63', 'poche', 'are', 'Congrès', 'constituent', 'exprimer', 'Française', '1941', 'fusion', 'Là', 'Vente', 'Open', 'E.', 'peuples', 'Val', 'plante', 'Croix', 'musulmans', 'Live', 'votes', 'comprends', 'cellules', 'soviétique', 'internationaux', 'disparu', 'tableaux', 'étoile', 'Orange', 'audience', 'globale', 'médecins', 'lits', 'coûts', 'souci', 'transmission', 'Janvier', 'appris', 'orientation', 'ressemble', 'cimetière', 'rentrée', 'synthèse', 'gratuits', 'pensé', 'discussions', 'origines', 'docteur', 'Caroline', 'indépendante', 'recensement', 'cérémonie', 'Eglise', 'passée', 'Luxembourg', 'législatives', 'col', 'Cinéma', 'détachées', 'certes', 'do', 'ère', 'Dernier', 'proposons', 'relève', 'communautés', 'immense', 'Actualité', 'diplôme', 'acquisition', 'We', 'American', 'manifestations', 'chantier', 'déterminer', 'chers', 'télé', '--Autres', 'contribution', 'culte', 'convention', 'voisins', 'Notre-Dame', 'victoires', 'patron', 'montré', 'Alsace', 'tension', 'Ministère', 'définitivement', '1949', 'diversité', 'Man', 'troubles', 'm2', 'endroits', 'adresses', 'Ancien', '61', 'rive', 'Corée', 'mener', 'lol', 'riches', 'Atelier', 'consommateurs', 'montée', 'facteurs', 'adulte', 'UN', 'navires', '↑', 'mobilité', 'originaire', 'majeure', '76', 'formulaire', 'autonome', 'conduire', 'inverse', 'dépenses', 'touristiques', '1938', 'house', 'Tome', 'House', 'plats', 'symbole', 'sportive', 'Design', 'liée', 'privés', 'mathématiques', 'Championnats', 'déplacement', 'Sophie', 'intégrer', 'vol.', 'da', 'immeuble', '1951', 'kmEntre', '00ZNous', 'incendie', 'Serge', 'devis', 'relatives', 'religieuse', 'évidence', 'désir', 'aiment', 'Chicago', 'conséquent', 'regroupe', 'officier', 'fr.wikipedia.org', '99', 'Rock', 'Don', 'union', 'agricoles', 'Armée', 'disent', '74', 'color', 'repos', 'autrement', 'Grenoble', 'créations', 'traiter', 'frontières', 'poudre', 'énergétique', 'aluminium', 'Harry', 'généraux', 'introduction', 'musical', 'cercle', 'accompagner', 'Street', 'liquide', 'voile', 'Iran', 'essayé', 'index.php', 'envoi', 'parvient', 'BD', 'caractères', 'industriels', 'Gîte', 'portrait', 'cultures', 'orange', 'Maintenant', 'comptait', 'empêche', 'débit', 'écouter', 'Copyright', 'administrative', 'nommée', 'Rouge', 'régiment', 'contrats', 'traces', 'soucis', 'gagné', 'Gare', 'gîte', 'Mont', 'maintien', 'XV', 'mène', 'talent', 'Chapitre', 'courrier', 'nourriture', 'pauvres', 'vivent', 'office', 'guerres', 'comédie', 'laissant', 'expositions', 'équivalent', 'perspective', 'dessinée', 'biais', 'communiqué', 'conférences', 'provient', 'assuré', 'traditionnel', 'Fort', 'portent', 'paroisse', 'Beaucoup', 'Ministre', 'intégré', 'diffusée', 'tiens', 'occupation', 'représentent', 'différente', 'H.', 'degré', 'Ecole', 'chanteuse', 'temple', 'journaux', 'retrait', 'contrairement', 'remplir', 'infanterie', 'alcool', 'qualités', 'monte', 'Lettres', 'administrateur', 'modifié', 'AU', 'Education', 'University', 'dizaine', 'Juan', 'Pièce', 'Mot', 'inspiré', '1937', 'limité', 'amitié', 'adapter', 'optique', 'étend', 'Nancy', 'Couleur', 'remplacement', 'jus', 'fédéral', 'Commander', 'motif', 'diffusé', 'morale', 'Laisser', 'modes', 'nationaux', 'max', 'remarque', 'Léon', 'Nature', 'Florence', 'présentent', 'commandement', 'mets', 'Front', 'Antonio', 'Pont', 'individu', 'sentir', 'Action', 'Conseils', 'Presse', 'élevage', 'retrouvé', 'répondu', 'solidarité', 'progressivement', 'enseigne', '2ème', 'paramètres', '1ère', 'Mario', 'coton', 'Team', 'West', 'collectivités', '--Vos', '92', 'toucher', 'Inscription', 'conseillers', 'Hugo', 'Menu', 'Loisirs', 'codes', 'Seine', 'Alex', 'Communication', 'Porte', 'paysages', 'sud-ouest', 'Prince', 'collective', 'accompagnement', 'tentative', 'stations', 'posé', 'parallèle', 'démarches', 'déposé', 'million', 'Demandé', 'privées', 'verte', 'Base', 'Joe', 'réparation', 'publications', 'Force', 'médicaments', 'garantir', 'laboratoire', 'extérieure', 'dirigé', 'proposés', 'candidature', 'consultation', 'consulté', 'conseille', '83', 'race', 'monnaie', 'destruction', 'spécialistes', 'cible', 'astuces', 'administratif', 'bien-être', 'venue', 'Égypte', '1931', 'Miss', 'reproduction', 'compose', 'intelligence', 'Outils', 'deviennent', '93', 'TVA', 'Toujours', 'Octobre', 'signes', 'randonnée', 'dangereux', 'fruit', '2009Sujet', 'boulot', 'Corse', 'Savoie', 'libération', 'édifice', 'numériques', 'spécialement', 'Of', 'offrent', 'contemporaine', 'informatiques', 'occuper', 'manifestation', 'disparition', 'revoir', 'gras', 'communiste', 'Mac', 'défi', 'renforcer', 'conservation', 'informer', 'Travail', 'patient', 'mini', 'motifs', 'com', 'pseudo', 'romaine', 'wiki', 'liaison', 'avoue', '1935', '71', 'Mots', 'provenant', 'ceux-ci', 'venus', 'nécessite', 'envies', 'relais', 'Françoise', 'densité', '1918', 'Juillet', 'maintenance', 'repose', 'voter', 'débats', 'recueil', 'pommes', 'Express', 'Lorraine', 'solide', 'Peu', 'disant', 'profite', '180', 'dépôt', 'attentes', '79', 'imposer', 'fameux', 'Monaco', 'nettoyage', 'Wi-Fi', 'sols', 'Mike', 'Rio', 'attitude', 'fasse', 'retirer', 'éclairage', 'Réunion', 'Fils', 'PDF', 'nomme', 'dédiée', 'mesurer', '82', 'circonscription', 'jugement', 'sud-est', 'It', 'Meilleur', 'fonctionnalités', 'configuration', 'Scott', 'musiciens', 'Production', 'parcs', 'nord-est', 'souris', 'historien', 'colis', 'art.', 'dizaines', 'destinée', 'oreilles', 'Rapport', '00ZTrès', 'Celui-ci', 'voudrais', 'conflits', 'secondaires', '1933', 'toit', 'Classement', 'passent', 'venant', '73', 'Membre', 'béton', 'norme', '81', 'Partie', 'Francisco', 'programmation', 'cru', 'Village', 'annuel', '2018', 'duo', 'doigts', 'épreuves', 'Permission', 'euro', 'magique', 'dents', 'applique', 'oiseau', 'Juifs', 'respectivement', 'quotidienne', 'Temps', 'disques', 'constitution', 'feuille', 'championnats', 'This', 'correctement', 'condamné', 'rentrer', 'Enfant', 'Museum', 'Septembre', 'mourir', 'Versailles', 'Adam', '1934', '140', 'Napoléon', 'Soleil', 'Qualité', 'ministres', 'Commande', 'diamètre', 'Caractéristiques', 'variété', 'interview', 'librairie', 'Certaines', 'aient', 'Département', 'volumes', 'contributions', 'préalable', 'rarement', 'virus', 'considérée', 'retourne', 'Vacances', 'Chef', 'con', 'Port', 'Mary', 'dirige', 'afficher', 'Argentine', 'aventures', 'Défense', 'savent', '1900', 'baie', 'eux-mêmes', 'japonaise', 'VI', 'ajoutant', 'Lettre', 'instrument', 'idéale', 'mobiles', 'abbé', 'génie', 'tablette', 'UE', '88', 'cerveau', 'inconnu', 'reconnaître', 'Bill', 'expédié', 'W', 'lumineux', 'ennemis', 'déplacer', 'Vêtements', 'savez', '......', 'Didier', 'physiques', 'Province', 'rénovation', 'appelés', 'Situé', 'Achat', 'be', 'constructeur', 'compatible', 'linge', 'masculin', '1932', 'stratégique', 'fournisseurs', 'exercices', 'détente', 'bancaire', 'Renault', 'forêts', 'producteurs', '2e', 'exigences', 'lot', 'normale', 'évènements', 'Justice', 'réalisés', 'richesse', 'GPS', 'vas', 'prêts', 'situés', 'olympique', 'dites', 'queue', 'Press', 'blessés', 'Tokyo', 'publier', 'élevée', 'exclusivement', 'Anna', 'polonais', 'chrétiens', 'médical', 'contraintes', 'existent', 'transition', 'roues', 'placer', 'Cité', 'fleur', 'amateur', 'Gabriel', 'relatif', 'tenant', 'us', 'Awards', 'secrets', 'spéciales', 'Vendredi', 'tâches', 'financières', \"O'\", 'centre-ville', 'sportifs', 'chaude', 'éventuellement', 'reçuesAnnonce', 'récente', 'Commerce', 'champions', 'atmosphère', 'présidence', 'accompagne', 'messagerie', 'Novembre', 'Tableau', 'positions', 'urbain', 'Référence', 'bienvenue', 'intègre', 'Gouvernement', '--Divers', 'Épisode', 'sièges', 'Faites', 'Jones', 'Collège', '1926', \"Jusqu'\", 'proposent', 'esthétique', 'évoque', 'croit', 'externe', 'empire', 'datant', 'nouveautés', 'Face', 'Conférence', 'tâche', 'noirs', 'opérateur', 'Orléans', 'recrutement', 'carré', 'pneus', 'Canal', 'salaire', 'offrant', 'Alfred', 'Acheter', 'institution', 'fine', 'pauvre', 'professionnelles', 'étrange', 'courants', 'fermé', 'adaptée', 'arrivent', 'compréhension', 'quasiment', 'Benoît', 'francophone', 'féminine', 'nations', 'V.', 'prête', 'Sébastien', 'hypothèse', '91', 'adaptés', 'statue', 'douleur', 'look', 'Vierge', 'fenêtres', 'sauce', 'Beach', 'forts', 'apparence', 'bénéficie', 'appels', 'encre', 'Rouen', 'infrastructures', 'romain', 'inspiration', 'difficiles', 'inscrits', 'réputation', 'Cordialement', 'suivent', 'Samedi', 'Steve', '►', 'espagnole', 'Année', 'similaire', '86', 'dieu', 'morte', 'fonctionnel', 'régionales', 'prédécesseur', 'conserve', 'câble', 'blocage', 'Quantité', 'médicale', 'résoudre', 'LNH', 'vapeur', 'transformer', 'départements', 'publiés', 'exceptionnelle', 'quelles', 'finances', 'Amour', '1921', 'sombre', 'Bataille', 'scénariste', 'présentée', 'compagnies', 'procédé', 'Blue', 'Jérôme', 'forment', 'courriel', 'tendances', 'nord-ouest', '125', 'normalement', 'quart', 'pur', 'traverse', 'chaînes', 'préciser', 'Zone', 'Oh', 'chœur', 'Téléphone', 'fidèle', 'Venise', 'commandé', '★', '1929', 'Benjamin', 'dame', 'hotel', 'fortes', 'satellite', 'colère', 'trains', 'traite', 'Poste', 'occidentale', 'favorable', 'princesse', 'salut', 'américaines', 'Mairie', 'claire', 'prévisions', 'indiquer', 'battre', 'collègues', 'Environnement', 'Réseau', 'rôles', 'White', 'scrabble', 'menée', 'écart', 'répartition', 'bloc', 'autoroute', 'malade', 'prêtre', 'aérienne', 'discipline', '110', 'Hongrie', 'témoignage', 'sortes', 'lutter', 'évident', 'alliance', 'mn', 'mines', 'bat', 'apparaissent', 'global', 'fournit', 'variable', 'Etats', 'League', 'royal', 'fréquence', 'filtre', 'Intérieur', 'Février', 'remarquable', 'périodes', 'Bob', 'dette', 'sponsorisé', 'Eau', 'adjoint', 'grille', 'adopté', 'quête', 'Néanmoins', 'Vidéos', 'Calendrier', 'congrès', '1919', 'culturelles', 'Bertrand', 'trente', '89', 'C3', 'choc', 'totalité', 'fourni', 'Ã', 'Liège', 'Luc', 'fromage', 'distingue', 'fuite', 'affichage', 'commerciaux', 'commerciales', 'Convention', 'Rhône', 'effectif', 'engagé', 'sauvage', 'Quatre', 'bienvenusCadre', 'arc', 'valide', 'employé', 'URL', 'chats', 'détruit', 'kit', 'Tours', 'Ali', 'recommandons', '160', 'incroyable', 'chargée', '360', 'prévoit', 'adaptées', 'encyclopédie', 'impôt', 'positif', 'campagnes', '--LES', 'rêves', '1917', 'journées', 'Commentaire', 'prépare', 'Dictionnaire', 'expertise', 'Ligne', 'fidèles', 'communiquer', 'tire', 'photographe', 'Samsung', 'montrent', 'Xavier', 'musées', 'prends', 'modalités', 'individuelle', 'adversaire', 'Jeunesse', 'Trump', 'islam', 'OK', 'sec', 'Donald', 'promouvoir', 'module', 'tournage', 'refus', 'réussir', 'présentant', 'end', 'Business', 'Invité', 'disait', 'Management', 'locations', 'Films', 'contacts', 'Jean-Paul', 'vocation', 'Alice', 'bandes', 'news', 'your', 'réussit', 'remercie', 'observation', 'Tony', 'états', 'religieuses', 'prit', 'trucs', 'Localisation', 'fournisseur', 'perso', 'sensible', 'entraîne', 'consacrée', 'Arnaud', 'canadienne', 'municipale', 'quinze', 'localité', 'délais', 'prière', 'Méditerranée', 'Center', 'pensez', 'Activités', 'agglomération', 'cadres', 'smartphone', 'compléter', 'inférieur', 'policiers', 'trouvait', 'Fête', 'aides', 'Grande-Bretagne', 'Vol', 'aire', '1928', 'hectares', 'Julie', 'pédagogique', 'Collectif', 'couvert', 'écologique', 'prestation', 'Sénégal', 'vague', 'Christine', 'réserver', 'impôts', 'garage', 'Route', 'détaillée', 'juridiques', 'due', '1911', 'chevalier', 'naturellement', '98', '2.0', 'pilotes', 'Groupes', 'découvertes', \"y'\", 'av.', 'magie', 'lourd', 'Peut-être', 'êtres', 'complexes', 'analyses', 'aliments', '1901', 'proposées', 'Hélène', 'sixième', 'prisonniers', 'allemands', 'expliqué', 'future', 'console', 'économies', 'isbn', 'comparer', 'pouces', 'Vainqueur', 'étrangère', 'accords', '87', '1910', 'Hors', '94', 'connait', 'Edward', 'comparaison', 'pleinement', 'engager', '96', 'augmente', 'Restaurant', 'pub', 'expert', 'Lac', 'hautes', 'Royaume', 'voisin', 'management', 'régulière', 'jazz', 'essaie', 'spectacles', 'Congo', 'créateur', 'poster', 'exceptionnel', 'shift', 'couper', 'tiré', 'localisation', 'Die', 'concentration', 'Pen', 'paire', 'Animaux', 'commencent', 'contributeurs', 'clientèle', 'registre', 'clôture', 'implique', 'largeur', 'Science', 'farine', 'Inn', 'Hotels.com', 'Fonds', 'longs', 'juifs', 'url', 'RC', 'bijoux', 'contrôler', 'sommeil', 'mit', 'obligations', 'grève', 'sécurisé', 'notice', 'crime', 'initialement', 'clavier', 'soupe', 'UMP', 'répertoire', 'streaming', 'complémentaires', 'Life', 'Disponibilité', 'remonte', 'Sénat', 'Corps', 'Sony', 'flotte', 'Game', 'priorité', 'tonnes', 'sélectionné', 'Yoga', 'manuel', 'milieux', 'Nouveaux', 'tenté', 'proposée', 'Alger', 'Nathalie', 'favoriser', 'facteur', 'Real', 'meubles', 'chinoise', 'ingrédients', 'modifiée', 'évoluer', 'france', 'accessibles', '1925', 'Auguste', 'Jérusalem', 'An', 'aise', 'Bravo', 'ONU', 'enlever', 'foyer', 'Jean-Claude', 'caméra', 'ok', 'Membres', 'ordinaire', 'colonne', 'fiction', 'chronique', 'Claire', '1924', 'administratives', 'spéciaux', 'Panier', 'taxe', 'gardien', 'différences', 'identique', 'douceur', 'artillerie', 'RDV', 'Outre', 'autrefois', 'alerte', 'Annuler', 'hauts', 'maritime', 'peintures', 'Format', 'acide', 'témoignages', 'cycliste', 'panneaux', 'lectures', 'coucher', 'adoption', 'Danemark', 'progression', 'accepté', 'Best', 'professeurs', 'Ford', 'panoramique', 'Entreprise', 'ch', 'Euro', 'pareil', 'drapeau', 'admis', 'confirmé', 'Voyage', 'Dimanche', 'musiques', 'compétence', 'célèbres', 'extraordinaire', 'jouent', 'Group', 'canon', 'J.-C.', 'lune', 'Soyez', 'Carlos', 'maternelle', 'récent', 'Sommaire', '1915', 'boulevard', 'étions', 'constater', 'causes', 'InvitéInvitéSujet', 'investissements', 'tranquille', 'alternative', 'Jean-François', 'CE', 'chances', 'Kit', 'négociations', 'limiter', 'Atlantique', 'Enfants', 'Lot', 'Taille', 'bonus', 'annuelle', 'francs', 'jambes', 'lever', 'pertes', 'stress', 'connaissent', '3ème', 'veuillez', 'quasi', 'Données', 'lunettes', '1912', 'voient', 'habitat', 'fonde', 'Free', 'seules', 'procédures', 'jury', 'Green', 'antique', 'Numéro', 'Jeudi', 'Ukraine', 'nation', 'apparaître', 'garçons', 'Niveau', 'manches', 'riz', 'maîtres', 'hameau', 'ressort', 'récents', 'circonstances', 'québécois', 'rentre', 'newsletter', 'électroniques', 'crimes', 'habitation', 'el', 'all', 'réduite', 'profonde', 'trouvez', 'LED', 'entrées', 'Médaille', 'Naissance', '3e', 'content', 'régler', 'universités', 'peint', 'jusque', 'individuel', 'Jean-Baptiste', 'intervenir', 'Utilisateur', 'blessé', 'maximale', 'téléchargement', 'commander', 'échapper', 'Décembre', 'To', 'sponsoriséSujet', 'souffle', 'Amazon', 'venait', 'pousse', 'plaques', 'ouvriers', 'continent', 'forums', 'terminer', 'auxquels', 'restera', 'britanniques', 'Irak', 'FRANCE', 'trouvant', 'Semaine', 'diagnostic', 'Roland', 'récentes', 'CA', 'caisse', 'imaginer', 'quitté', 'Temple', 'rendent', 'considérer', 'permanence', 'instruction', 'explication', 'contribuer', 'junior', 'Costa', 'tapis', 'Commune', 'Résumé', 'Norvège', 'that', 'atteinte', 'FR', 'Cap', '1927', 'lancée', 'mixte', 'pure', 'micro', 'disponibilitésDu', 'ferroviaire', 'bleue', 'sentiments', 'Fermer', 'vertu', 'mont', 'courts', 'sacré', '130', 'Metz', 'contente', 'séjours', 'universitaires', 'v.', 'sachant', 'resté', 'colonel', 'ménage', 'couvre', 'Utilisation', 'Brown', 'PàS', 'trait', 'ronde', 'officiers', 'Williams', 'oeuvres', 'Hall', 'bisous', 'Test', 'Walter', 'gars', 'serais', 'soutient', 'franchement', 'déposer', 'monastère', 'indice', 'mec', 'Équipe', 'genres', 'identification', '--Présentation', 'Tél', 'Ajoutez', 'accueillant', 'mariée', 'Louise', 'conclusion', 'html', 'interventions', 'précédents', 'destinés', 'abonnement', 'French', 'bouteille', 'abrite', 'communautaire', 'Magazine', 'imagine', 'foule', 'accent', 'citoyen', 'Esprit', 'rappel', 'BMW', 'monsieur', 'trace', 'Public', 'connaitre', 'parfum', 'Mini', 'poèmes', 'réalisées', 'Mathieu', 'culturels', 'Ensemble', 'soutenu', 'Renaissance', 'Eugène', 'spécialisés', 'AS', 'soyez', 'marquée', 'possession', 'Galaxy', 'ml', 's.', 'étudie', 'Bourse', 'geste', 'gâteau', 'Brest', 'grossesse', 'agissait', 'trimestre', 'Charlie', 'School', 'familial', 'joindre', '1913', 'ailes', 'séparation', 'générations', 'réactions', 'obligé', 'Wars', 'Profil', 'cool', 'Maire', 'grosses', 'mine', 'Mobile', 'Construction', 'intéresser', 'occupé', 'intellectuelle', '700', 'room', 'Liens', 'Journée', 'passages', 'Publicité', 'Auvergne', 'évaluer', 'pompe', 'sûrement', 'Finalement', 'cherchez', 'parlent', 'tables', 'tourné', 'classée', 'not', 'centrales', 'vis-à-vis', 'acquérir', 'I.', 'lèvres', 'César', 'London', 'signal', 'actuels', 'Île', 'explications', 'supports', 'prime', 'interprète', 'choisit', 'représenter', 'Magasiner', 'intervient', 'Trouvez', 'Entretien', 'représenté', 'préfecture', 'Manchester', '24h', 'restant', 'Azur', '้', 'sondage', 'Time', 'métrage', 'carbone', '2005Sujet', 'réfugiés', 'Nouvelles', 'nettement', 'Lausanne', 'proposant', 'Chapelle', 'arbitre', 'exercer', 'pouvaient', 'puissent', 'Support', 'testé', 'PARIS', '2010Sujet', 'drôle', 'doté', 'pauvreté', 'usages', 'conformément', 'Scénario', 'posté', 'graves', 'représentations', 'froide', 'oppose', 'Camille', 'permanente', 'littéraires', 'présentées', 'signaler', 'vingtaine', 'intégral', 'dramatique', 'constituée', 'Lundi', 'souligne', 'refaire', 'sonore', 'Reims', 'Modifier', 'spectateurs', 'parvenir', 'arabes', 'Roman', 'Imprimer', 'Ivoire', 'casque', 'Littérature', 'faibles', 'trou', 'suppose', 'Déjà', 'évènement', 'carton', 'Domaine', 'quelqu', 'Avenue', '1922', 'verbe', 'volet', 'diocèse', 'sexuelle', 'avancer', 'futurs', 'animé', 'Texte', 'éthique', 'Linux', 'Sarah', 'matériels', 'inférieure', 'Paru', 'boutons', 'Mardi', 'Juste', 'Dragon', 'universelle', 'Dijon', 'guère', 'Aquitaine', 'observer', 'Lit', 'convaincre', 'meurtre', 'Nintendo', '1916', 'interdiction', 'Kim', 'destin', 'balle', 'Écosse', 'établit', 'voler', 'astéroïde', 'conservé', 'brut', 'opéra', 'cardinal', 'Août', 'passagers', 'Pyrénées', 'Samuel', 'Inc', 'triste', 'verts', 'succession', 'Victoria', 'Bleu', 'incluant', 'Jackson', 'remplace', 'Island', '1923', 'Météo', 'Jour', 'russes', 'abri', 'révolutionnaire', 'aviation', 'puisqu', 'postal', 'communs', 'tube', 'essentielles', 'Deuxième', 'Jeune', 'attends', 'randonnées', 'paradis', 'requête', 'enseignant', 'plaît', 'saisir', 'consultez', 'alertes', 'initiale', 'panneau', 'caractéristique', 'attaquer', 'Recettes', 'commis', 'Caen', 'aile', 'blogs', 'désert', 'Bible', 'Mohamed', 'Section', 'vendeur', 'Hier', 'Little', 'Exposition', 'fonctionner', 'er', 'documentation', 'élaboration', 'chrétienne', 'allé', 'Stock', 'mené', 'précieux', 'supérieures', 'extraits', 'schéma', 'duquel', 'Cameroun', 'internes', 'golf', 'Professeur', 'terrible', 'parisienne', 'Anthony', 'frappe', 'Celle-ci', 'vrais', 'poursuite', 'nationalité', 'officiels', 'cordes', 'fédérale', 'gardé', 'Hervé', 'comprennent', 'intéressé', 'constructions', 'adopter', 'fabricant', 'apparemment', 'civilisation', 'aurai', 'Contactez-nous', 'islamique', 'indiquant', 'feux', 'inutile', 'Machine', 'trés', 'Young', 'Bulletin', 'Contacter', 'parlementaire', 'composants', 'boire', 'couronne', 'bourg', 'agences', 'up', 'poème', 'Roumanie', 'graphiques', 'remarquer', 'fantastique', 'fontsize', 'passés', '̀', 'Alexander', 'indépendants', 'profond', 'publicités', 'Avignon', 'constante', 'Consultez', 'star', 'figures', 'foot', 'épaisseur', 'paraître', 'arguments', 'Allemands', 'tombé', 'introduit', 'Quels', 'sainte', 'magnifiques', 'Toronto', 'volant', 'Angers', 'Légion', 'églises', 'Bar', 'vive', 'rois', 'suivie', 'habite', 'habitant', 'maillot', 'prévenir', 'taxes', 'Malheureusement', 'case', 'cliquer', 'toilette', 'charmant', 'jeter', 'appellation', 'désigné', '1906', 'définit', 'Jim', 'travaillent', 'fiable', 'VII', 'présentés', 'réfléchir', 'chère', 'Kevin', 'argument', 'sportives', 'my', 'Excellent', 'géant', 'produite', 'contribue', 'retrouvent', 'Roy', 'oubliez', 'façons', 'ouverts', 'réserves', 'grecque', 'classés', 'Double', 'pourrais', 'am', 'ouvertes', 'graines', 'Annuaire', 'Laval', 'our', 'host', 'etait', 'sortant', 'Alliance', 'étages', 'voila', 'typique', 'dedans', 'trône', 'profondément', 'battu', 'Maritimes', 'Soit', 'Day', 'souhaitent', 'hein', 'musicien', 'électeurs', 'Mans', 'prévues', 'Administration', 'rapides', 'gueule', 'marins', 'achète', 'devons', 'électorale', 'pratiquement', 'clinique', 'équipage', 'servent', 'spacieux', 'Marques', 'immédiate', 'géographiques', 'insee', 'associée', 'Quelles', 'PME', 'cf.', 'collecte', 'Charlotte', 'valable', 'Editions', 'employeur', 'promo', 'file', 'Boston', 'bateaux', 'dispute', 'revues', 'new', 'couches', 'Fred', 'deviendra', 'coll', 'obligatoires', 'bgcolor', 'traitements', 'verra', 'folie', 'UNE', 'librement', 'rechercher', 'collaborateurs', 'concernés', 'déplacements', 'partagé', 'Technique', 'ya', 'marge', 'powiat', 'escalier', 'Ontario', 'Minimum', 'priori', 'Café', 'manche', 'SNCF', 'Dossier', 'remboursement', 'survie', 'fixation', 'Paiement', 'Six', 'civils', 'W.', 'fournis', 'pensent', 'Lecture', 'zéro', 'séances', 'Mali', 'Vu', 'recommandations', 'Vallée', 'utilité', 'resultat', 'Personne', '1870', 'constate', 'âgé', 'Golf', 'fixé', 'policier', 'provoque', 'ligue', 'onze', 'pot', 'orbite', 'Mercredi', 'more', 'tissus', 'Central', 'néerlandais', 'récupération', 'détruire', 'OFFRE', 'Amsterdam', 'décoré', 'humeur', '1905', 'CV', 'ordinateurs', 'biologique', 'odeur', 'Texas', 'énormément', 'provinces', 'puits', 'Gros', 'septième', 'Obama', '350', 'citron', 'rapporte', 'attendu', 'Sylvie', 'émotions', 'séminaire', 'Né', 'Gilbert', 'vaisseau', 'stages', 'Patrimoine', 'bravo', 'assister', '¨', 'Enseignement', 'Johnson', '97', 'Venez', 'Jean-Luc', 'militants', 'parlant', 'dommages', 'savoir-faire', 'juive', 'artisans', 'Orient', 'estimé', 'satisfaction', 'gentilé', 'ha', 'ventre', 'Fontaine', 'Moulin', 'dormir', 'simplicité', 'tchèque', 'Karl', 'intense', 'chimiques', 'décennies', 'Dame', 'Mission', 'crédits', 'décider', 'fonctionnaires', 'serbe', 'accueillis', 'stable', 'complémentaire', 'universel', 'conquête', 'centaine', 'Allez', 'dépasse', 'philosophe', 'exprime', 'compliqué', 'Beauté', 'excellence', 'Las', 'utilisez', 'fiches', 'preuves', 'Marguerite', 'Stephen', 'plafond', 'drame', 'Trouver', 'recommandé', 'cités', 'haine', 'stay', 'Derniers', 'opérateurs', 'actualités', 'clic', 'abandonné', 'apprécier', 'prochaines', 'exposé', 'cuire', 'cap', 'côtes', 'préserver', 'ballon', 'évaluations', 'procéder', 'correspondent', 'complément', 'Bonsoir', 'marchandises', 'Transport', 'serai', 'disposer', '2017Voir', 'Pages', 'roue', 'Bac', 'SA', 'citation', 'combattre', 'refusé', 'Offre', 'Citation', 'témoin', 'dessert', 'qualifié', 'PSG', 'blanches', 'possèdent', 'probable', 'dirigeant', 'invitons', 'pause', 'pôle', 'adhésion', 'attribué', 'sacs', 'chef-lieu', 'dirigée', 'traditions', 'syndicats', 'manga', 'facture', 'Blanche', 'stratégies', 'heureuse', 'vendus', 'Techniques', 'moral', 'animations', 'issues', 'pensées', 'tailles', 'entraîner', 'Éric', 'Franck', 'étendue', 'forfait', 'hygiène', 'vice-président', '2010Age', 'latine', 'Neuf', 'oeufs', 'cellule', 'conseillé', 'protocole', 'Munich', 'dispositifs', 'anagramme', 'barrage', 'Édouard', 'Up', 'affronter', 'démarrage', 'paris', 'Jean-Louis', 'ferait', 'capables', 'satisfaire', 'communications', 'ingénierie', 'fréquemment', 'bourse', 'traités', 'Aperçu', 'Réalisation', 'actuelles', 'essentielle', 'défini', 'charte', 'serveurs', 'pomme', 'réunions', 'provenance', 'Question', 'catholiques', \"tarifsJusqu'\", 'Historique', 'énergies', 'branches', 'quelconque', 'mousse', 'défis', 'échanger', '0,00', 'horaire', 'apt', 'productions', 'Exemple', 'Johnny', 'TF1', 'Portrait', 'touristes', 'week', 'Statistiques', 'climatique', 'accusé', 'Logement', 'frac', 'époux', 'intéressante', 'canapé', 'Crédit', 'participent', 'rural', 'miroir', 'oublie', 'téléfilm', 'bière', 'correspondance', 'ultime', 'domestiques', 'dégâts', 'gouvernements', 'situées', 'Langue', 'stabilité', 'externes', 'reconnue', 'suspension', 'partiellement', 'gloire', 'majeurs', 'ISBN', 'dévoile', 'instructions', 'photographies', 'immigration', 'Company', 'select', 'institut', 'America', 'papiers', 'exécutif', 'disposent', 'étudié', 'fédération', 'Oise', 'Seul', 'Kong', 'nulle', 'opposé', 'Pôle', 'os', 'Troisième', 'fiscal', 'trajet', 'contribué', 'Brian', 'têtes', 'Gallimard', 'faculté', 'Dark', 'Unitaire', 'médicament', 'qualification', 'chimique', 'certificat', 'Racing', 'héritage', 'Jane', 'talents', 'Award', 'explosion', 'malades', 'confidentialité', 'positive', 'joint', 'sèche', 'ondes', 'nef', 'Carl', 'assistant', 'rond', 'canons', 'exerce', 'notoriété', 'éditeurs', 'URSS', 'plainte', 'idéalement', 'imprimé', 'basket-ball', 'XXX', 'al', 'boutiques', 'bête', 'connues', 'instance', '1907', 'Bay', 'Côté', 'astéroïdes', 'balcon', 'Robin', 'dynastie', 'Finlande', '2011Sujet', 'tués', 'esprits', 'sons', 'Taylor', 'mobilier', 'remonter', 'Jean-Marie', 'réglementation', 'cousin', 'Peugeot', 'Île-de-France', 'routière', 'marié', 'Marque', 'alliés', 'North', 'signer', 'Pinterest', 'vend', 'Celui', 'devaient', 'BTS', 'voyant', 'attirer', 'Suivant', 'nomination', 'digne', 'livré', 'Charte', 'partisans', 'Pacifique', 'habituellement', 'laser', 'circuits', 'délégation', 'Mouvement', 'températures', 'thématique', 'comportements', 'faim', 'réservéDu', 'précédentes', 'élite', 'colonnes', 'reconnaît', 'œufs', 'salarié', 'république', 'ingénieurs', 'ménages', 'merveilleux', 'oreille', 'investir', 'noix', 'vs', 'RSS', 'antenne', 'satisfait', 'Actuellement', 'Reine', 'racines', 'oncle', 'traits', 'motivation', 'Centrale', 'attentat', 'conducteur', 'Grands', 'connaissez', 'imaginaire', 'Contrairement', 'horreur', 'Serbie', 'marcher', 'feront', 'siren', 'filiale', 'Lady', 'relatifs', 'Marketing', 'fermer', 'confirmer', '1908', 'AC', 'T.', 'placée', 'récompense', 'législation', '±', 'ultra', 'fortune', 'Comté', 'traditionnels', 'Power', 'projection', 'moulin', 'Lune', 'bords', 'surpris', 'nécessairement', 'miel', 'hésite', 'Compte', 'remarqué', 'dépasser', 'Images', 'bénéfice', 'Jacob', 'territoriale', 'transmettre', 'iPad', 'have', 'intégralité', 'scrutin', 'compétitions', 'pensais', 'Félix', 'distinction', 'Chili', 'subi', 'préparé', 'réunit', 'naît', 'combinaison', 'réalisations', 'handicap', 'horizon', 'OS', 'FN', 'Oscar', 'orientale', 'Colombie', 'baseball', 'accueillante', 'supprimé', 'filtres', 'trous', 'Virginie', 'Marne', 'Station', 'transforme', 'War', 'pousser', 'Lieu', 'métalliques', 'phare', 'chante', 'fidélité', 'degrés', 'Nicole', 'coûte', 'ordonnance', 'XIXe', 'révolte', 'vies', 'révision', 'Appel', 'dictionnaire', 'Romain', 'sauvegarde', 'Giovanni', 'administrateurs', 'isolation', 'Étienne', 'camps', 'départemental', 'Fleurs', 'Mort', 'Cup', 'primaires', 'grade', 'expansion', 'Classe', 'gmina', 'corruption', 'Hill', 'Chevalier', 'Jean-Jacques', 'domination', 'Prise', 'illustrations', 'entouré', 'litres', 'Garde', 'mg', 'souligné', 'sensibles', 'Jonathan', 'franchise', 'pharmacie', 'High', 'k', 'semblait', 'Besoin', 'manifeste', 'venez', 'terrorisme', 'gentillesse', 'corriger', 'South', 'impériale', 'Suppression', 'artistiques', 'notables', 'Émile', 'Pack', 'masque', 'tue', 'Gratuit', 'Luis', 'nombres', 'sélections', 'Ile', 'Études', 'préférence', 'fausse', 'recul', 'devront', 'associées', 'Opéra', 'immobilière', 'violences', '2011Age', 'AFP', 'thématiques', 'stars', 'conversion', 'carburant', 'tournant', 'apres', 'spacieuse', 'fermés', 'suprême', 'pis', 'annoncer', 'topic', 'FORUM', 'saut', 'justifier', 'celles-ci', 'Doctinaute', 'promotions', 'régionaux', 'abandon', 'ports', 'volontaires', 'Cinq', 'cite', 'ajout', 'récits', 'responsabilités', 'Gaulle', 'susceptibles', 'précédemment', 'reposer', 'lieutenant', 'provisoire', 'DJ', 'sensation', 'sections', 'sanitaire', 'Chaussures', 'prévoir', 'vaisselle', 'Night', 'Occident', 'mentionné', 'consommateur', 'neutre', 'solaires', 'émotion', 'initial', 'mâle', '2017Déjà', 'personnellement', 'intensité', 'constituer', 'Formule', 'intégrée', 'sculpture', 'extrémité', 'parisien', 'Show', 'soldat', 'paragraphe', 'chair', 'boucle', 'Clément', 'banlieue', 'Ier', 'laine', 'voïvodie', 'archevêque', 'Hans', 'mystère', 'recommander', 'plume', 'anime', 'extérieurs', 'continuent', 'Bistro', 'strictement', 'Flash', 'Garantie', 'imprimer', 'data', 'Athènes', 'traditionnelles', 'Découvrir', 'promis', 'statistique', 'mécanisme', 'Tournoi', 'plaine', 'oblige', 'appuie', 'cheminée', 'VTT', 'Barbara', 'Allah', 'poule', 'écrivains', 'installée', 'autorisé', 'évolutions', 'Islam', 'fiche.php', 'fermée', 'pp.', 'Laura', 'renommée', 'requis', 'monté', 'technologique', 'enfer', 'témoins', 'Story', '/', 'jolies', 'cuivre', 'montrant', 'cassini', 'pollution', 'défenseur', 'Petits', 'surfaces', 'élevés', 'tirage', 'Valérie', 'déclarations', 'psychologie', 'XIII', 'volontaire', 'bloqué', 'ampleur', 'Lens', 'facilité', 'cassini.ehess.fr', 'Éducation', 'Sauf', '2,99', 'aperçu', '−', 'Libération', 'chaine', 'mineurs', 'urbanisme', 'doigt', 'imagination', 'quantités', 'symbolique', 'faisons', 'opportunité', 'commissaire', 'finance', 'Xbox', 'concepts', '--Problèmes', 'touché', 'pratiquer', 'baron', 'visibles', 'loup', 'établie', 'aériennes', 'puissante', 'participant', 'phénomènes', 'Concernant', '1896', 'Hong', 'aidé', 'cou', 'voté', 'chimie', 'Champagne', 'catastrophe', 'Début', 'sûre', 'Piscine', 'génial', 'HP', 'Amiens', '101', 'Canton', 'noires', 'styles', 'perspectives', 'attendent', 'Volume', 'remet', 'Certes', 'Video', 'hebdomadaire', 'accidents', 'Auto', 'Boutique', 'Villes', 'attaquant', 'supplément', 'jugé', 'recherchez', 'virtuelle', 'Toulon', 'apport', 'Systèmes', 'Ceux', 'Quoi', 'Commons', 'plait', 'égale', 'assurances', 'découvrez', 'linguistique', 'Analyse', 'invasion', 'robot', 'Long', 'Floride', 'créés', 'Anvers', 'Standard', 'réformes', 'jouant', 'so', 'prochains', 'Siège', 'varie', 'abonner', 'syndicat', 'Petites', 'souple', 'Connectez-vous', 'intitulée', 'anciennement', 'téléphonique', 'box', 'poulet', 'Saint-Pierre', 'bébés', 'spatiale', 'Parking', 'considérés', 'engagements', 'annexe', 'réunis', 'fondateurs', 'salaires', 'toilettes', 'réflexions', 'mauvaises', 'insectes', 'parait', 'couture', 'prouver', 'Photographie', 'précisé', 'Ray', 'choisis', 'gentil', 'effectuée', 'seuil', 'informé', 'apprécie', 'Alan', 'itinéraire', 'clos', 'terrestre', '✉', 'orgue', 'retenir', 'continu', 'dons', 'Alexis', 'devenus', 'Poids', 'descente', 'tabac', 'Wikipedia', 'opus', 'Society', 'debout', 'invitation', 'présidente', 'Rencontre', 'ème', 'problématique', 'illustre', 'insertion', 'poitrine', 'absolue', 'payé', 'apporté', 'Cher', 'College', 'distinguer', 'adhérents', 'ISO', 'Continuer', 'Tweet', 'Secrétaire', 'PSP', 'ruisseau', 'chaise', '1909', 'faune', 'illustration', 'conjoint', 'dose', 'sélectionner', 'one', 'fiscale', 'massage', '1,5', 'bandeau', 'protégé', 'promu', 'Femmes', 'Nouveautés', 'fallu', 'préfet', 'libertés', 'beaux-arts', 'romantique', 'enjeu', 'fibre', 'soeur', 'moi-même', 'accorde', 'Américains', 'curieux', 'subit', 'occasions', 'facebook', 'analyser', 'religions', 'augmenté', 'aussitôt', 'quai', 'Créé', 'Médecin', 'littéralement', 'directrice', 'demandent', 'examens', 'charbon', 'est-elle', 'noblesse', '2012Sujet', 'pleins', 'immédiat', 'historiens', 'neuve', 'Naples', 'Louvre', 'savait', 'écrans', 'juif', 'Abbaye', 'efficaces', 'incontournable', 'spécialité', 'Newsletter', 'investisseurs', 'éliminer', 'tranche', 'Catalogue', 'tiennent', 'cacher', 'gère', 'organes', 'proviennent', 'authentique', 'générique', 'alias', 'adresser', 'acoustique', 'Andrew', 'généraliste', 'studios', 'Biographie', 'financer', 'voyager', 'humidité', 'dépit', 'existait', 'clan', 'correct', 'op', '1793', 'Tel', 'drogue', 'porte-parole', 'sauvages', 'tenues', 'attentats', 'rendant', 'mobilisation', 'soirées', 'show', 'temporaire', 'barbecue', 'inscriptions', 'ref-data4', 'fixer', 'savais', 'adoré', \"Lorsqu'\", 'traversée', 'Arc', 'Libre', '1890', 'suédois', 'oldid', 'compagnon', 'admin', 'Etudes', 'Social', 'exemplaire', 'libérer', 'encontre', 'huiles', 'Wilson', 'Choisissez', 'coupé', 'inclut', 'rédigé', 'filière', 'constaté', 'View', 'paquet', 'essaye', 'dîner', 'ah', 'nice', 'Data', 'juger', 'dieux', 'olive', 'boissons', 'retours', 'phases', 'Manager', '1880', 'égal', 'observations', 'parlement', 'Profitez', 'définitive', 'ref-data8', 'Lewis', 'jouets', 'mécanismes', 'ref-data3', 'délicieux', 'ref-data1', 'ref-data2', 'ref-data5', '105', 'ref-data7', 'ref-data6', 'évolué', 'réside', 'mecs', 'chargement', 'exil', 'dir.', 'destinées', 'circulaire', 'consacre', 'biographie', 'retenu', 'initiatives', 'livrer', 'Lui', 'existant', 'Prague', 'Horaires', 'tort', 'violon', 'Economie', 'dégagée', 'manquer', 'municipales', 'développée', 'coller', 'refuge', 'mange', 'décrire', 'raconter', 'relever', '--Discussions', 'surement', 'papa', 'methodes', 'anonyme', 'Longueur', 'Dan', 'conversation', 'Nouvel', 'parution', 'pédagogiques', 'allée', 'coalition', 'contributeur', 'Lumière', 'shopping', 'Marché', 'Golden', 'révélé', 'amène', 'variables', 'Madagascar', 'sœurs', 'voisine', 'Ressources', 'orthographe', 'nu', 'femelle', 'Surtout', 'offerts', 'consensus', 'composés', 'nomenclatures', 'âgées', 'Manche', 'XIV', 'River', 'CC', 'p.revenumedian', 'Installation', 'Cuba', 'donnera', '2021173', 'Nouvelle-Zélande', 'Secret', 'Papier', 'EST', '2129090', '2123878', 'explorer', 'adversaires', '2129062', '2129059', '2123937', 'rendus', '2129068', '2129076', 'axes', 'noble', 'restes', 'colonie', 'colline', 'Départ', 'garanties', 'entourage', 'Ed', 'Cahiers', 'die', 'francophones', 'géographie', 'frein', 'conte', 'devenant', 'pattes', 'activer', 'p.page2code', 'Lucas', 'faisaient', 'troupe', 'décors', \"avancéeS'\", 'affirmé', 'plate-forme', 'renseignement', 'Notice', 'Info', 'africaine', 'relief', 'appuyer', 'portefeuille', 'tentatives', 'Davis', \"VOIRL'\", 'plongée', 'bis', 'Arabie', 'livret', 'rajouter', 'ref-data9', 'History', 'coordination', 'Annonces', 'phrases', 'partition', 'servant', 'émis', 'SMS', 'courir', 'colle', 'disparaître', 'q', 'Droits', 'fur', 'Mettre', 'Internationale', 'gain', 'transformé', 'wifi', 'TripAdvisor', 'gratuites', 'Martine', 'visibilité', 'sculpteur', 'jean', 'ambition', 'chars', 'bol', 'Rivière', 'susceptible', 'suites', 'réservée', 'rendement', 'expose', 'panne', 'perception', 'trouble', 'For', 'Spa', 'Camping', 'indiqués', 'laissent', '900', '115', 'pc', 'Mémoire', 'systématiquement', 'dirait', 'doctorat', 'terminée', 'text-align', 'Police', 'reportage', 'lacs', 'unies', 'metal', 'pop35', 'Assurance', 'an35', 'if', 'Faculté', 'offerte', 'aquarium', '2534314', 'balade', 'rempli', 'recens35', 'avocats', 'lis', 'Elizabeth', 'sérieusement', 'ambassadeur', '1904', 'confirmation', 'business', 'pop36', 'an36', 'publiées', 'Eh', 'Boîte', 'amoureuse', 'trentaine', '1881', 'Allemand', 'recens36', 'contemporains', 'Lake', 'ICI', 'Tim', 'installés', 'sanitaires', 'amont', 'finition', 'compagnons', 'pop37', 'an37', 'Somme', 'recens37', 'étudiante', 'particulières', 'Points', 'poignée', 'épicerie', 'great', 'vents', 'More', 'Laurence', 'suicide', 'chrétien', 'Langues', 'brillant', 'lourds', 'inspire', 'conçue', 'clocher', 'chapeau', 'mineur', 'planche', 'rotation', 'suffisant', 'abandonner', 'chambresLocation', 'couvrir', 'chirurgie', 'cahier', 'menaces', 'zonages', 'Architecture', 'pop38', 'Règlement', 'an38', 'prenez', 'promenade', 'recens38', 'auxquelles', 'créant', 'tirs', 'souviens', 'noyau', 'travaillant', 'publicitaire', 'Ernest', 'démonstration', 'personnaliser', 'inventaire', 'libéral', 'Médecins', 'Sun', 'Dead', 'continuité', 'Déclaration', 'passées', 'confusion', 'harmonie', 'assaut', 'May', 'eBay', 'armé', 'portugais', 'Marco', 'Nick', 'Girl', 'Européenne', 'remporter', 'Cartes', 'blé', 'sensibilité', 'formats', 'concernent', 'illustré', 'disciplines', 'témoigne', 'courtes', 'Diego', 'abonnés', 'décident', 'assassinat', 'DC', 'définie', 'tablettes', 'mi', 'partielle', 'supporter', 'assurée', 'marquis', 'discret', 'marquer', 'Résistance', 'épargne', 'communal', 'opinions', 'boule', 'symptômes', 'blessures', 'parts', 'convaincu', 'an39', 'pop39', 'K.', 'recens39', 'avère', 'Pâques', 'Librairie', 'ruines', 'days', 'Broché', 'intime', 'commune.asp', 'depcom', 'bombe', 'Valence', 'tubes', 'hâte', 'portraits', 'notions', 'Décoration', 'laver', 'obtention', 'bizarre', 'transparence', 'Times', 'fitness', 'British', 'lourde', 'actu', 'chalet', 'honte', 'interprété', 'reconstruction', 'Chacun', 'variations', 'avez-vous', 'brevet', 'mémoires', 'séquence', 'diriger', 'personnalisé', 'saga', 'provoquer', 'ponts', 'an40', 'Peut', 'distances', 'souffrance', 'organisées', 'Client', 'Madeleine', 'Limoges', 'attire', 'échecs', 'assis', 'Entrée', 'aîné', 'génétique', 'reviendrons', 'prononcé', 'conservateur', 'Saint-Louis', 'savons', 'voyez', 'formidable', 'Brigitte', 'noté', 'Album', 'rangs', 'territoriales', 'can', 'Leurs', 'OU', 'interdite', 'lave', 'couteau', 'vernis', 'chasseurs', '1500', 'monétaire', 'heureusement', 'matches', 'terroristes', 'subir', 'peaux', 'particules', 'Jazz', 'basque', 'perdue', 'Poitiers', 'Notes', 'enquêtes', '---', 'seins', '├', 'offensive', 'time', 'brigade', 'Contacts', 'lots', 'routier', 'Saint-Martin', 'agréables', 'Meilleure', 'Documents', 'cherchent', 'succède', 'diffuser', 'Dentiste', '--Archives', 'pop40', 'accompagnée', 'recens40', 'constat', 'observe', 'espoirs', 'respecte', 'bibliothèques', 'considérable', 'Besançon', 'Hello', 'Taux', 'Marion', 'planification', 'Réserver', 'construits', 'académie', 'tendre', 'partant', 'épée', 'poétique', 'vitesses', '2014-2015', 'propagande', 'caché', 'Coup', 'tomates', 'modules', 'juges', 'profité', 'préférés', 'fabrique', 'Monument', 'XVI', 'Ayant', 'fier', '2012Age', 'raisonnable', 'rassemble', 'charmante', 'Liban', 'Road', '104', 'médicaux', 'originales', 'Traité', 'vestiges', 'moyennes', 'planches', 'cinquante', 'destinations', 'doctrine', 'Réf', 'publicitaires', 'DANS', 'vif', '\\u200e', 'tensions', 'flore', '1800', 'Afghanistan', '1903', 'canaux', 'traduire', 'commentaireCharger', 'black', 'châteaux', 'Media', 'entité', 'Hollywood', 'Rochelle', 'chargés', 'Sac', 'étonnant', 'délégué', 'classification', 'menus', 'contes', 'champignons', 'variés', 'logistique', 'cavalerie', 'mères', 'dirais', 'Lucien', 'trésor', 'prêtres', 'choisissez', 'moines', 'cantons', 'Patrice', 'jette', 'posée', 'Immobilier', 'conformité', 'sénateur', 'rénové', 'tas', 'comptent', 'Fillon', 'Lord', 'tracé', 'créateurs', 'Jimmy', '1860', 'marbre', 'rangement', 'contrôles', 'paysans', 'vélos', 'Quartier', 'amener', 'al.', 'soie', 'concerné', 'gouvernance', 'baignoire', '1902', 'républicain', 'balades', '1886', 'maréchal', 'complexité', 'Havre', 'inconnue', 'identifié', 'Céline', 'Is', 'blessure', 'habitudes', 'coureur', 'Christopher', 'africain', 'originaux', 'rédacteur', 'Pékin', 'System', 'nuages', 'pluriel', 'souverain', 'postés', 'CNRS', 'contiennent', 'renouvellement', 'Extrait', 'flash', 'couverte', 'légitime', 'surnom', 'will', 'légale', 'rigueur', 'amené', 'Gaston', 'Promotion', 'jupe', '1891', 'N.', 'collèges', 'BA', 'allemandes', 'remercier', 'Chemin', 'instar', 'effectuées', 'débutant', 'signification', 'Your', 'solde', '1876', 'VIII', 'rebelles', 'And', 'reposant', 'br', 'vivants', 'usagers', 'were', 'aérien', 'c.', 'cachées', 'an41', 'pop41', 'recens41', 'Hitler', 'Magasin', 'Vosges', 'négatif', 'Rhône-Alpes', 'demandant', 'Olympique', 'invention', 'marchands', 'Libye', 'gagnant', 'inclinaison', 'roses', 'SC', 'métallique', 'Trop', 'fût', 'Series', 'Great', 'payant', 'refuser', 'm.', 'Idéal', 'roulant', 'étendre', 'emballage', 'Molière', 'protégée', '1789', 'combattants', 'bénéfices', 'Amis', 'fixes', 'Finances', 'prochainement', '1830', 'Miller', 'concurrents', 'rurale', 'polémique', 'adolescents', 'contrainte', 'engagée', 'nucléaires', 'perles', 'Vladimir', 'matériau', 'intégrale', 'mélanger', 'remarques', 'départementale', '1848', 'esclaves', 'avancées', 'diminuer', 'affirmer', 'fondamentaux', 'peintres', 'théorique', 'Interview', 'Hauteur', 'figurent', 'menées', 'faciles', 'na', 'légal', 'Observatoire', 'Bad', 'Digital', 'arbitrage', 'protéines', 'annuler', 'purement', 'descriptif', 'arrivés', 'fréquentes', 'maquillage', '--Jeux', 'foie', 'fabriquer', 'coupable', 'mythe', 'chouette', 'donnés', 'blocs', 'pourcentage', 'gestes', 'literie', 'aménagé', '450', 'proprement', 'Sylvain', 'répartis', 'Vieux', '4e', 'gel', 'Jeunes', 'vérification', 'plomb', 'Tunis', 'UNESCO', 'rêver', 'Resort', 'doublé', 'Moto', 'Porto', 'modeste', 'diminution', 'Sir', 'particularité', 'ouvrant', 'Midi', '2013-2014', 'douleurs', 'relevé', 'goûts', 'véritables', 'Gustave', 'relie', 'Western', 'Rendez-vous', 'lampe', 'Supprimer', 'po', 'théories', 'Heureusement', 'larges', 'Télévision', 'renseigner', 'Promotions', '1871', 'Tribunal', 'procureur', 'souhaité', 'FM', 'guematria', 'lycées', 'démission', 'bars', 'Univers', 'couvent', 'lumineuse', 'courante', 'métaux', 'conventions', 'souffre', 'nourrir', 'Montagne', 'pattern', 'dépendance', 'majeures', 'considérablement', 'protège', 'créativité', 'chanter', 'Sortie', 'YouTube', 'engagés', 'régimes', 'organisés', 'OpenEdition', 'apparait', 'gorge', 'devoirs', 'assisté', 'tend', 'Cloud', 'Co', '2009Age', 'conclu', 'effectifs', 'exister', 'carrés', 'Annie', 'représentée', 'racine', 'Ferdinand', 'caractérisée', 'mensuel', 'excès', 'EP', 'pr', 'Près', 'attractions', 'constamment', 'pantalon', 'bénévoles', 'résister', 'had', 'régulier', 'Traitement', 'passionnés', 'colonies', 'Land', 'occidental', 'prétexte', 'médiévale', 'rappelé', 'exploration', 'Huile', 'donna', 'débuté', 'carnet', 'ours', '1895', 'individuelles', 'Dimensions', 'Édition', 'made', 'espérons', '1898', 'consacrer', 'immeubles', 'proportion', 'compromis', 'placés', 'téléphones', 'contraint', 'Géorgie', 'marin', 'chercheur', 'cohérence', 'Pérou', 'fontaine', 'Traduction', 'Matt', 'incident', 'XXe', 'Régime', 'Moins', 'fabricants', 'Cécile', 'retire', 'exact', 'signée', 'scandale', 'résistant', 'pavillon', 'mécaniques', 'Miami', 'désolé', '2015-2016', 'Découverte', 'indien', 'coque', 'accorder', 'Moyen-Orient', 'archéologique', 'Jeff', 'Four', 'Comparer', 'Logo', 'absolu', 'avancé', 'marchand', 'suggestions', '---------------', 'certification', '128', 'Hubert', 'réparer', 'herbe', 'ange', 'laissez', 'supérieurs', 'variétés', 'Ryan', 'rémunération', 'visuel', 'couverts', 'popularité', 'cote', 'Jura', 'musulman', 'guitariste', 'ressource', 'Îles', 'Jean-Marc', 'pouvais', '§', 'falloir', 'Box', 'fauteuil', 'Peinture', 'superbes', \"I'\", 'camion', 'Email', 'Classic', 'Gold', 'Style', 'bordure', 'optimiser', 'Éditeur', 'Games', 'Industrie', 'comptable', 'polonaise', 'Responsable', 'sage', 'Professionnels', 'boîtes', 'della', 'Soin', 'verres', 'bancaires', 'Lionel', 'dames', 'envisager', 'Séjour', 'athlète', 'évêques', 'Justin', 'choisie', 'Heures', 'pack', 'encourager', 'marie', 'By', 'contenir', 'enregistre', 'officielles', 'prendra', 'hjem', 'Ferrari', 'Combien', 'sépare', 'cardiaque', 'moule', 'Space', 'Post', 'Emma', 'Essai', 'inscrite', 'inquiète', 'franc', 'retenue', 'administratifs', 'dés', 'Noire', 'puissants', 'familiales', 'exige', 'surprises', 'Boy', '00ZUn', 'product', 'attraction', 'confie', 'Bruce', 'usines', 'renvoie', 'agriculteurs', 'onde', '3000', 'trio', 'étang', 'Donner', 'faut-il', 'fonctionnelle', 'pension', 'conclure', 'weekend', 'fameuse', 'Palestine', 'galeries', 'Anciens', 'poêle', 'PAS', 'appliquée', 'Midi-Pyrénées', 'Stanley', 'transferts', 'intrigue', 'Campagne', 'renforcement', 'implantation', 'humide', 'Ivan', 'comportant', 'compilation', 'Howard', 'E-mail', 'symboles', 'confié', 'Choisir', 'before', 'défend', 'répression', 'Douglas', 'chic', 'épices', 'manipulation', 'métropole', 'remarquables', 'changeant', 'Rencontres', 'Server', 'leçons', 'Jason', 'imprimante', 'Mondial', 'Discuter', 'Portes', 'alinéa', '220', 'Billy', 'delà', 'Picardie', 'technologiques', 'Agriculture', 'CampagneIdéal', 'originalité', 'nettoyer', 'costume', 'africains', 'Entertainment', 'rendue', 'Prenez', 'Cercle', 'ST', 'suggère', 'appartiennent', 'Vatican', 'per', 'régulation', 'poivre', 'hyper', 'Contrôle', 'brun', 'CP', 'breton', 'UTC', 'psychologique', 'Jean-Michel', 'Mots-clés', 'watch', 'spirituel', 'espérer', 'validation', 'doucement', 'ajoutée', 'Alphonse', 'Préparation', 'courbe', 'rencontrent', '.Le', 'réservoir', 'vagues', 'véritablement', 'réductions', 'alternance', 'Moselle', 'ADN', 'hébergements', 'ascension', 'forteresse', 'ONG', 'Pedro', 'ébauche', 'Marche', 'State', 'métropolitaine', 'aidera', 'CO2', '106', 'casse', '2,5', 'jet', 'traverser', \"p'\", 'Premium', 'emporter', 'coins', 'grandeur', '1899', 'Caisse', 'Oxford', 'communistes', '170', 'résulte', 'stocks', 'Armand', 'index', 'Cadre', 'Aéroport', 'Visite', 'Zurich', 'médiatique', '.jpg', 'Prénom', 'meuble', 'rivières', 'coloris', 'Ton', 'fatigue', 'Recherches', 'multimédia', 'média', 'théologie', 'set', 'urbains', 'athlétisme', 'tempête', 'retiré', 'Johann', 'réels', 'Hôpital', 'estimer', 'sortent', 'chaleureuse', 'Simple', 'Presses', 'saints', 'Andrea', 'sommaire', 'cents', 'Mère', '\', 'Générales', 'Anderson', '1866', 'GT', 'Sydney', 'Sauvegarder', 'Économie', 'socialistes', 'sélectionnés', 'fuir', 'poil', 'larmes', 'soi-même', 'vocabulaire', 'pilotage', 'love', 'Conseiller', 'Fil', 'animateur', 'Genre', 'colloque', 'réagir', 'jaunes', 'Last', 'démontrer', 'archipel', '240', 'emploie', '1200', 'promet', '1861', 'paramètre', 'Bas', 'Online', '1889', 'alarme', 'sanctions', 'déploiement', 'Alimentation', 'merde', 'favori', '00ZLogement', 'Saint-Jean', 'ensembles', 'divorce', 'lentement', 'manuscrit', 'bloquer', 'mondes', 'passionné', 'pop42', 'majoritairement', 'an42', 'recens42', 'successivement', 'Java', 'Au-delà', 'inspecteur', 'évite', 'Pokémon', 'balles', '1.1', 'libéré', 'écho', 'Fox', 'patience', 'ail', 'solidaire', 'Fiat', 'fumée', 'procurer', 'semblable', 'tombée', 'Vert', 'substance', 'copier', 'bénéficient', 'équipés', 'tribu', 'bla', '▪', 'versant', 'refait', 'défauts', 'aborder', 'cartouche', 'Fax', 'Chinois', 'enregistrés', 'uniques', 'Sept', 'efficacement', 'détention', 'reliant', 'Croatie', 'pré', 'Carlo', 'Baby', 'apprécierez', '2012-2013', 'guides', 'tentent', 'Indonésie', 'Jersey', 'Egypte', 'industries', 'Résultat', 'Figaro', 'sagesse', 'croissant', 'Abonnez-vous', 'formant', 'attaché', 'tunnel', 'Andy', 'espérant', 'statuts', 'attribution', 'Automobile', 'sauter', 'PIB', 'émergence', 'vedette', 'Transports', 'âmes', 'fois-ci', 'Ignace', 'Der', 'cherché', 'Allen', 'climatisation', 'interroger', 'intéressantes', 'attache', 'Casa', '1850', 'Line', '750', 'stationnement', 'Seulement', 'express', 'matelas', 'Lisbonne', 'idéologie', 'fréquente', 'saisie', 'campus', 'age', 'Gironde', 'renommé', 'grand-père', 'affluent', 'Forces', 'Restauration', 'Books', 'coffre', 'curiosité', 'critère', 'monstre', 'anges', 'adoptée', 'conclusions', 'OM', 'évoqué', 'Varsovie', 'fous', 'Thaïlande', 'Gîtes', 'Objets', 'séjourner', 'Orchestre', 'Activité', 'musicales', 'Bulgarie', 'précipitations', 'céréales', 'standards', 'collègue', 'Moteur', 'développeurs', 'envoyés', '1897', 'Hamilton', 'HC', 'basses', 'ouvrier', 'prévus', 'futures', 'multitude', 'Suivez', 'regroupant', 'caractérise', 'héritier', 'Good', 'AUX', 'z', 'détendre', 'BBC', 'Animation', 'Junior', 'Élections', 'assise', 'vignes', 'Instagram', 'Définition', 'diable', 'Tibet', 'inédit', 'General', 'dominante', 'Sélection', 'serre', 'permettrait', 'Institute', 'enseignements', 'www.youtube.com', 'chantiers', 'Infirmiers', 'incapable', 'opposer', 'Résidence', '102', 'stratégiques', 'plastiques', 'Ok', 'master', '←', 'collectifs', 'déficit', 'Productions', 'banc', 'référendum', 'recevrez', 'palette', 'reçoivent', 'huitième', 'dépression', 'descendre', 'Décès', 'chapitres', 'Stage', 'Jordan', 'Gordon', 'Argent', \"T'\", 'Ottawa', 'négociation', 'hop', 'Lion', 'accordé', 'salade', 'chroniques', 'ramener', 'Maxime', 'migrants', 'Second', 'réfrigérateur', 'seigneurs', 'CHF', 'imposé', 'Parfois', 'frigo', 'ignore', 'East', 'robots', 'Fille', 'gravité', 'Isère', 'Mieux', 'Vendée', 'résidences', 'invisible', 'triple', 'batteries', 'Simone', 'complètes', 'dénonce', 'péninsule', 'deja', 'indicateurs', 'gré', 'dessinateur', 'manager', 'saurait', 'exploiter', 'Rugby', 'appuyant', 'balance', 'forumAccueilCréer', 'médicales', 'mentale', '1872', 'chaises', 'formés', 'sculptures', 'Joueur', 'automobiles', 'accessoire', 'étiquette', 'domestique', 'has', 'Saint-Denis', 'intelligent', 'belges', 'milliard', 'syndrome', '17h', 'implication', 'MP', 'textile', 'races', 'Patricia', 'Cabinet', 'Proche', 'Technologies', 'paisible', 'constructeurs', 'anti', 'occupent', 'arrival', 'rumah', 'Nîmes', 'nette', 'transmis', 'concevoir', 'Rhin', 'manqué', 'regrette', 'out', 'bleus', 'Vietnam', 'Arrondissement', 'transféré', 'soumettre', 'promesse', 'lumières', 'Anniversaire', 'fines', 'buteur', 'merveille', 'Problème', 'coule', 'Réservez', 'Boris', 'globalement', 'fosse', 'Kate', 'christianisme', 'uniforme', 'biologie', 'First', 'biodiversité', 'arrêtés', 'bouteilles', 'pertinence', 'souveraineté', 'Solutions', 'treize', 'bulletin', 'qualifiés', 'quinzaine', 'fabriqué', 'Frères', 'Challenge', '1885', 'écologie', 'individuels', 'Francesco', 'indispensables', 'icône', 'essentiels', 'commença', 'Distribution', 'Fantasy', 'apparu', 'massacre', 'préférée', 'portait', 'optimale', 'marais', 'tranquillité', '14h', 'minimale', 'Calais', 'entrepreneurs', 'vieilles', 'gothique', 'amende', 'Morgan', 'Lisa', 'tit', '5e', 'salons', 'Dordogne', 'sondages', 'classées', 'pdf', 'obstacles', 'divisé', 'produisent', 'détermination', 'commerçants', '2016-2017', 'extérieures', 'australien', 'Devant', 'PAR', 'formée', 'Voix', 'Audi', 'Bande', 'Printemps', 'âgés', 'affluence', 'Steven', 'occupée', 'élimination', 'valorisation', 'aimerai', 'probleme', 'messe', 'Casino', 'coach', 'apartment', 'précisions', 'grotte', 'touches', 'spirituelle', 'onglet', 'Conservatoire', 'tournois', 'verser', 'aménagements', 'entretenir', 'voisines', 'exclusion', 'Être', 'médailles', 'sociologie', 'arrêts', 'Tant', 'çà', 'cessé', 'veuve', 'assurent', 'Match', 'Saint-Étienne', 'poussé', 'restait', 'Déco', 'Kelly', 'NBA', 'propreté', 'spécialités', 'sentiers', 'capture', 'révéler', 'agrandir', 'cosy', 'agissant', 'filet', 'fouilles', 'lanceur', 'vêtement', 'élégant', 'méditation', 'abandonne', 'qualifie', 'sois', 'associe', 'affecté', 'autorise', 'italiens', 'List', 'infrastructure', 'Hommes', 'soumise', 'ID', 'pm', 'désirez', 'autorisés', 'Blues', 'Véronique', 'constitutionnel', 'Bébé', 'indices', 'Store', 'nov', 'quarante', 'Couronne', '00ZRoom', '4ème', 'Pharmacie', 'Youtube', 'camarades', 'annulation', 'science-fiction', 'comprise', 'manières', 'boulangerie', 'natale', 'effectués', 'résidents', 'correction', 'partagée', 'solides', 'cave', 'placement', 'difficilement', 'diplômé', 'virtuel', 'masculine', '--Photos', 'commodités', 'PlayStation', 'pseudonyme', 'Spécial', 'Venezuela', 'voulant', 'surveiller', 'reconnus', 'rayonnement', 'pop34', 'coffret', 'Unité', 'mignon', 'puissances', '1893', 'Old', 'fraîche', 'expressions', 'texture', 'People', 'Situation', 'Index', 'inspirée', 'Franz', 'dérivés', 'corde', 'profitez', 'réédition', 'bah', 'Précédent', 'Objet', 'Antiquité', 'économiser', 'soigner', 'assurant', 'an34', 'dignité', 'back', '113', '103', 'Nobel', 'postale', 'TypeEntire', 'festivals', 'Licence', 'beautiful', 'curé', 'Friedrich', 'divisions', 'indications', 'Do', 'cuillère', 'recens34', 'gares', 'climatiques', 'lame', 'tramway', 'visiblement', 'Honda', 'fluide', 'doubles', 'parent', 'varier', 'substances', 'mètre', 'Lambert', 'départementales', 'applicables', 'convertir', 'enveloppe', 'finis', 'Aires', 'Academy', 'Comédie', 'réunir', 'chants', 'extraction', 'hiérarchie', 'devrais', 'progresser', 'distribué', 'Mathématiques', 'Champs', 'Espagnol', 'fibres', 'coco', 'accessibilité', 'étroite', 'qualifier', 'Romains', 'leçon', '2020', 'ES', 'reçus', 'THE', 'folle', 'Japonais', 'immobilières', 'prononciation', 'oct', 'supporters', 'stand', 'Chauffage', 'emporte', 'rassemblement', 'fautes', 'crainte', 'paiements', 'neufs', 'foyers', 'enthousiasme', 'Contre', 'concernées', 'accomplir', 'Plaza', 'magazines', 'blonde', '2011-2012', 'Inter', 'garantit', 'pianiste', 'identiques', 'équipées', 'appellent', 'pile', 'porteur', 'Liberté', 'Autant', 'unes', 'Disneyland', 'validité', 'nocturne', 'légers', 'DS', 'rapprocher', 'acceptation', 'Maman', 'violation', 'Abraham', 'RechercherRésultats', 'Capitaine', 'Galles', 'Coucou', 'contraste', 'spa', 'appliqué', 'rachat', 'Montage', 'tri', 'battant', 'réaliste', 'Voyages', 'Motif', 'parquet', 'isolé', 'D2', 'iOS', 'Will', 'compositions', '--les', 'Bavière', 'clics', '112', 'satellites', 'déplace', 'Hot', '18h', 'Turin', 'potentiels', 'prisonnier', 'détient', 'neveu', 'Grandes', 'citations', 'baignade', 'Canon', 'systématique', 'violent', 'grand-mère', 'Caraïbes', 'Pau', 'Aix', 'Mis', 'Hugues', 'podium', 'secs', 'endémique', 'assiste', 'déguster', 'Sites', 'échappe', 'abusif', 'fiabilité', 'parlementaires', 'Fabrice', 'brésilien', 'Angel', 'pâtes', 'Carter', 'foncé', 'faillite', 'st', 'Batterie', 'permettront', 'mourut', 'motos', 'crises', 'woning', 'intéressants', 'Inscrivez-vous', 'attendait', 'industrielles', 'architectes', 'Yann', 'déçu', 'entré', 'wc', 'Partenaires', 'regardant', 'suffrages', 'Dakar', 'exprimé', 'devise', 'céramique', 'gravure', 'comparateur', 'frappé', 'Chat', 'Elisabeth', 'assiette', 'provoqué', 'IX', 'signifiant', 'dépôts', 'District', 'Wii', 'mystérieux', 'Objectif', 'Seuls', 'conclut', 'voulons', 'pochette', 'souligner', 'parcourir', 'goûter', 'taper', 'sale', '118', 'opposant', 'Zoom', 'sublime', 'Cédric', 'fondamentale', 'peut-on', 'Suites', 'repasser', 'bits', 'een', 'grise', 'séparés', '1894', 'veste', 'lignée', 'good', 'Walt', 'québécoise', 'Mémoires', 'Mariage', 'briques', 'loisir', 'Bilan', 'littoral', 'organe', 'détection', 'Renaud', 'impeccable', 'Magic', 'gendarmerie', 'prouve', 'Coin', 'irlandais', 'Miguel', 'coureurs', 'exécuter', 'Contexte', 'turc', 'baroque', '●', '--Concours', 'ex.', 'lavage', 'fausses', 'secrète', '1892', 'Final', 'Ain', 'av', 'applicable', 'Moore', 'descendants', 'Ball', 'Agenda', 'width', 'magnétique', 'souhait', 'Philippines', 'éponyme', 'clichés', 'trouvés', 'dotée', 'Equipements', 'écris', '2010-2011', 'Application', 'divine', 'registres', 'Ø', 'grain', 'Be', 'nés', 'Ahmed', 'Out', 'people', 'intervenants', 'intérieurs1', 'Colin', 'reservation', 'Etude', 'trophée', 'suggestion', 'lapin', 'restée', 'essor', 'poches', 'séparer', 'records', 'baisser', 'maîtresse', 'Actes', 'rénovée', 'cinématographique', 'sommets', 'dits', 'bulle', 'suffisante', 'Cycle', 'décennie', 'terroriste', 'appelait', 'Pape', 'entrepreneur', 'accueillants', 'Mo', 'open', 'animale', 'reçut', 'Ouverture', 'racisme', 'Augustin', 'restaurer', 'transactions', 'Fernando', 'capitalisme', 'avouer', 'cloud', 'montres', 'regardé', 'extra', 'composant', 'creux', 'envergure', 'Jr', 'minéraux', 'permettait', 'fournie', 'script', 'entités', 'clean', 'Paix', 'ascenseur', 'Bank', 'Philip', 'éteint', 'indienne', 'attribuée', 'maïs', 'Passion', 'job', 'recherché', 'péché', 'formules', 'favorise', 'kr', 'transporter', 'activement', 'dénomination', 'inauguré', 'archéologie', 'copié', 'militant', 'âgée', 'bataillon', 'séparé', 'Eva', 'désire', 'rumeurs', 'Bonaparte', '108', 'détaillé', 'développés', 'Square', 'Confédération', 'Etienne', 'Canadiens', 'richesses', 'Languedoc-Roussillon', 'partent', 'boules', 'domine', 'indicatif', 'pic', 'Hygiène', 'Unies', 'portables', 'miracle', 'costumes', 'marron', 'baiser', 'vivante', 'cirque', 'estimation', 'Nelson', 'animée', 'Di', 'porteurs', '00ZAccueil', 'nid', 'Cadeaux', 'remercions', 'Bell', 'cotation', 'rejet', 'Plage', 'Julia', 'Métiers', 'Party', 'Paulo', 'associer', 'Budapest', 'sanctuaire', 'Réseaux', '1867', 'teint', 'Gary', 'passait', 'déclin', 'collier', 'Corporation', 'Baie', 'référencement', 'détenus', 'épaule', 'Agnès', 'absent', 'enregistrements', 'Ferme', 'entourée', 'team', 'soutenue', 'anneau', 'Bach', 'disposant', 'étoilesà', 'Insee', 'quatorze', 'répondent', 'exacte', 'partagent', 'poils', 'CFA', 'collines', 'maîtriser', 'diffuse', 'organique', 'rédiger', 'viendra', 'Désolé', 'supporte', 'déclarer', 'doré', 'passions', 'légendes', 'Navy', '109', 'processeur', 'observé', 'Autour', 'survivre', 'M6', 'bouger', 'cyclisme', 'Burkina', 'gâteaux', 'favorables', 'flexible', 'confortables', 'sérénité', 'Bluetooth', 'Ski', 'Phil', 'collectivité', 'Russell', '5000', 'pénal', 'philosophique', 'réglage', 'levée', 'Course', 'Syndicat', 'faiblesse', 'prestige', 'obtenus', 'Pratique', 'Bisous', 'Objectifs', 'aval', 'créatures', 'XP', 'gite', 'simultanément', 'Robe', 'marqués', 'parlait', 'estimations', 'hésiter', 'tr', 'Play', 'considèrent', 'aptProperty', 'dragon', 'assassiné', 'Cambridge', 'échéant', 'assemblage', 'ment', 'adopte', 'voudrait', 'civiles', 'Forme', 'sentier', 'anagrammes', 'Adrien', 'opportunités', 'munitions', 'composer', 'Changer', 'Possibilité', '190', 'Coran', 'suisses', 'esclavage', 'infini', 'Main', '1888', 'prof', 'décorée', 'kmHôtels', 'Atlas', 'ira', 'étanchéité', 'sympathiques', 'connectés', 'SI', 'grandement', 'municipaux', 'asiatique', 'Bel', 'acides', 'Britanniques', 'roller', 'ruban', 'Auvergne-Rhône-Alpes', 'privilégié', 'like', 'sortis', 'sensibilisation', 'seize', 'ciblées', \"M'\", 'volontairement', 'Clark', 'Relations', 'encadrement', 'ose', 'Project', 'aisément', 'Franche-Comté', 'Guinée', 'Maine', 'Coffret', '107', 'juridiction', 'doutes', 'déroulement', 'consommer', 'décorations', 'décrite', 'intentions', 'Ortograf', 'hôpitaux', 'variante', 'protégés', 'Roche', 'préface', 'judiciaires', 'Halloween', 'Intel', 'interdire', 'fragile', 'Ardèche', 'Bijoux', 'São', 'smartphones', 'durs', 'défaites', 'fixée', 'pente', 'élégance', '135', 'Hérault', 'herbes', 'amuser', 'aveugle', 'Cyril', 'influences', 'manuscrits', 'condamnation', 'chêne', 'challenge', 'Jennifer', 'exclusif', 'Stars', 'idem', 'Global', 'Mohammed', 'DR', 'pardon', 'détruite', 'réveil', 'google', 'Pétrole', 'académique', 'trouvée', 'carrières', 'Sicile', 'reproduire', 'Vendu', 'leaders', 'compteur', 'écrites', 'sexuel', 'Casablanca', 'affiches', 'Juridique', 'fesses', 'Sources', 'innovations', 'Valls', 'boue', 'Studios', 'pois', 'Citroën', '2009-2010', 'Potter', 'vérifié', 'Laboratoire', 'orthodoxe', 'déc', 'occidentaux', 'capteur', 'précises', 'Champions', 'musulmane', 'VOUS', '1851', 'ヽ', 'Shanghai', 'monstres', 'terroir', '✔', 'remplacée', 'desservie', 'réservations', 'illustrer', 'calculer', 'traductions', 'poussière', 'compétitivité', 'Cathédrale', 'intéressés', 'trouvera', 'Séries', 'spectaculaire', 'valider', 'réuni', 'volontiers', 'Haïti', 'laboratoires', 'Michèle', 'guise', 'copies', 'poussée', 'élue', 'poursuivi', 'résume', 'Devenir', 'chèque', 'AVEC', 'sèches', 'Network', 'récolte', 'Wifi', '111', 'là-bas', 'dépassé', 'Mercedes', 'fournies', 'impulsion', 'sphère', 'lève', 'variantes', 'Wild', 'catch', 'variation', 'Recevez', 'tenait', 'spécifiquement', 'baies', 'approvisionnement', 'relevant', 'ancêtres', 'Islande', 'nobles', 'exclusive', 'lisse', 'carnets', 'Voiture', 'surnommé', 'allié', 'Largeur', 'prestigieux', 'occurrence', 'agression', 'firme', 'perdus', 'Matthieu', 'agenda', 'autel', 'revers', 'lion', 'recense', 'Parallèlement', 'spectateur', 'hongrois', 'problématiques', 'interaction', 'Championship', 'asile', 'améliorations', '1792', 'déterminé', 'nommés', 'Guadeloupe', 'Juliette', 'Située', 'démontre', 'Light', 'automatiques', 'figurant', 'rouler', 'Firefox', 'actionnaires', 'Dave', 'évacuation', 'retraites', 'optimisation', 'maux', '2013Sujet', 'Grégoire', '1875', 'végétaux', 'rapproche', 'mythique', 'visuelle', 'tarte', 'Écrit', 'gestionnaire', 'batailles', 'entretiens', 'adapte', 'modernité', '1878', 'armés', 'réputé', 'Golfe', 'passes', 'Clé', 'Jardins', 'ongles', 'synonyme', 'dispo', 'misère', 'tribus', 'Pop', 'considération', 'défilé', 'célébrer', 'indication', 'éventuelle', 'gardes', 'inauguration', 'indiquée', 'Document', '205', 'mosquée', 'possédant', 'posséder', 'musicaux', 'ambassade', 'pédagogie', 'demi-finale', 'nouveauté', 'humanitaire', 'coupes', 'aube', 'CDI', 'copains', 'Marianne', 'Aisne', 'échantillon', 'admirer', 'Comte', 'mythologie', 'Valley', 'cabine', 'évoquer', 'initiation', 'Clermont', 'traitant', 'boisson', 'Cookies', 'actives', 'Dommage', 'terminal', '--Forum', 'allure', 'Africa', 'Astuces', 'bâti', 'palmarès', 'cherchant', 'internaute', 'vaisseaux', 'répondant', 'tenus', 'serviettes', 'Martinique', 'UA', 'apportent', 'Sacs', 'Souvent', 'vertus', 'Affaire', 'arnaque', '1815', 'vertes', 'continuation', 'fermes', 'clef', 'maintient', '2008-2009', 'Jacqueline', 'den', 'amiral', 'Faut', 'draps', '£', 'créées', '--LA', 'a-t-elle', 'infection', 'concentrer', 'révélation', 'lourdes', 'Critique', 'calculs', 'rap', 'linéaire', 'agisse', 'directive', 'Germain', '1882', 'croise', 'significative', 'amusant', 'ferai', 'mentions', 'Death', 'robes', 'conçus', 'artisan', 'Stone', 'WordPress', 'rez-de-chaussée', 'Foot', 'trompe', 'admission', 'Valentin', 'Religion', 'remplaçant', 'Danse', 'reviens', 'disparaît', 'suspendu', 'variées', '.-', 'automated', 'Edmond', 'massive', 'OTAN', 'States', 'Envie', 'auberge', 'inox', 'comptant', 'Part', 'colonisation', 'vintage', 'tranches', 'reviennent', '¯', 'PLUS', 'Pakistan', 'démo', 'plu', 'faille', 'connaissais', 'saura', 'carrelage', 'élémentaire', 'Raoul', 'Publications', 'bébéEquipements', 'comptabilité', 'Projets', 'biologiques', 'seigneurie', 'canceled', 'dangers', 'approches', 'téléphoniques', 'close', 'Occitanie', 'gay', 'exposés', 'démarrer', 'go', 'intérieurs', 'put', 'statues', 'Thèmes', 'Physique', 'Assistance', 'Tapis', '230', '1887', 'Empereur', 'visuels', 'mentionne', 'illusion', 'dissolution', 'hauteurs', 'positionnement', 'voyageur', 'sérieuse', 'vus', 'Ian', 'piège', 'énormes', 'nue', '--LE', 'Giuseppe', 'animés', '1884', 'prononcer', 'concession', 'Diane', 'tasse', 'Landes', '1.2', 'sonores', 'saveurs', 'éleveurs', 'bacs', 'Avez-vous', 'inventé', 'urbaines', '1856', \"Quelqu'\", 'Raphaël', 'Read', 'envisage', 'évalué', 'procédés', 'JavaScript', 'PVC', 'demi-grand', 'croyances', 'caméras', 'Bio', 'Gaza', 'visité', 'compatibles', 'botanique', 'singulier', 'Arrivée', 'donnait', 'productivité', 'Buenos', '1-0', 'émet', 'ABC', 'Forêt', 't-il', 'baise', 'fonte', 'Vivre', 'coquine', 'écossais', 'Parcours', 'Toyota', 'IT', 'localités', 'tolérance', 'arrivant', '1846', '10h', 'Nation', 'artificielle', 'crochet', 'navette', 'sacrée', '123', 'sensations', 'réelles', 'disais', 'exprimés', 'ridicule', 'baptisé', 'Seuil', 'renouvelables', 'marches', 'causer', 'débutants', 'view', 'chaussée', 'censure', 'documentaires', 'pénale', 'jolis', 'rapporté', 'atouts', 'dégustation', 'existants', 'interactions', 'manteau', 'Marina', 'MP3', 'déposée', 'sont-ils', 'profils', 'baptême', 'élevées', 'diesel', 'apparente', 'arrestation', 'maxi', 'href', 'évoluant', 'Oliver', '1790', 'Ni', 'informe', 'Charente', 'Navigation', 'Fait', 'posts', 'prévision', 'Secrets', 'Ancienne', 'Bâle', 'indiquent', 'alternatives', 'Figure', 'intermédiaires', 'Vichy', 'grains', 'Hégésippe', 'Cœur', 'dérive', 'quarts', 'manquent', 'créent', 'Agent', 'obstacle', 'Reste', 'médiation', 'petit-déjeuner', 'Autorité', 'Tennis', 'nommer', 'im', 'fiscalité', 'Arles', 'attaqué', '--Annonces', 'Aventure', 'croient', 'plomberie', 'los', 'Thème', 'socle', 'Song', 'Queen', '1840', 'alphabet', 'Accéder', 'tantôt', 'diplômes', 'Bâtiment', 'légères', 'épaules', 'coiffure', 'Original', 'madame', 'commercialisation', 'Ross', 'CS', 'quarantaine', 'commissions', 'caisses', 'Autrement', 'bémol', 'plancher', 'appartenance', 'papillon', 'für', 'XI', 'fêter', 'Feu', 'promesses', 'rapprochement', 'indépendantes', 'Circuit', 'Trophée', 'Raison', 'vanille', 'dépannage', 'équation', 'accordée', 'Train', 'spécialisées', 'approuvé', 'Ciel', 'Victoire', 'oxygène', 'mutation', 'blues', 'signalé', 'Guyane', 'plutot', 'composent', 'Singapour', 'poules', 'câbles', 'préférable', 'répétition', 'Almouggar.com', 'Coeur', 'Disque', 'Géographie', 'chatte', 'Beau', 'Clermont-Ferrand', 'géré', 'Parker', 'Town', 'numero', 'accuse', 'enceintes', 'fondamental', 'Sud-Ouest', 'archéologiques', 'PêcheVoir', 'Anjou', 'Poser', 'Constantinople', 'Cliquer', 'autrui', 'entends', 'manoir', 'Princesse', 'vendue', 'XVIIIe', 'passa', 'duplicate', 'ci-après', '--Espace', 'partiel', 'kms', 'Populaire', 'Utiliser', 'recevez', 'casser', 'médiéval', 'valoir', 'tuto', 'manifestants', 'ad', 'coloniale', 'traversé', 'Paradis', 'sexuelles', 'sévère', 'oubli', 'Créez', 'roche', 'mien', 'admissibilité', 'Sud-Est', 'entame', 'tactile', 'alphabétique', 'solitaire', 'Élisabeth', 'adorable', 'commenter', 'XII', 'introduire', 'éducatif', 'Limousin', 'intellectuels', 'diplomatique', 'Saint-Pétersbourg', 'about', 'consultant', 'Wallonie', 'championne', 'correcte', 'Italien', 'dynamiques', 'Monique', 'accompagnés', 'intéressent', 'Beaux-Arts', 'porc', 'Jerry', 'fonctionnalité', 'amies', 'dénoncer', 'instants', 'encyclopédique', 'Opération', 'mat', 'quotidiens', 'Royale', 'positifs', 'Forums', 'maturité', 'mondiaux', 'enseigner', 'organisateurs', 'détriment', '127', 'PSPsexy', 'Vegas', 'Istanbul', 'pots', 'instances', 'puce', 'Revenir', 'signale', 'minuit', 'quoique', 'généralistes', 'matinée', 'pouce', 'renoncer', 'mental', 'budgétaire', 'essayez', 'imposant', 'Back', '--A', 'remercié', 'Meuse', 'achève', 'angles', 'Special', 'Flandre', 'Mail', 'Rica', 'Azure', 'Alberto', 'Malte', 'Who', 'audit', 'intervalle', '117', 'Stéphanie', 'municipalités', 'annoncée', 'épais', 'espérance', 'fonctionnaire', 'dettes', 'technicien', 'ouvrent', 'Gard', 'orale', 'approfondie', 'tomes', 'dessiner', 'basilique', 'Crédits', 'méchant', 'recommandation', 'Batman', 'tribunaux', 'dira', 'vain', 'Jusqu', '--Histoire', 'PDG', 'Hunter', 'escalade', 'tre', 'minorité', 'Rights', 'améliore', 'Universal', 'Rousseau', 'Faso', '--Questions', 'wikipédia', 'localement', 'Parfait', 'athlètes', 'Puy', 'volets', 'Rachel', 'liaisons', 'Métropole', 'SAS', 'Ingénieur', 'Lorient', 'Chantal', 'acheteur', 'lingerie', 'planètes', 'enregistrée', 'Quelque', 'congé', 'confondre', '1883', 'Caire', 'prétend', 'ranger', 'châssis', 'chaos', 'électoral', 'générer', '19h', 'impasse', 'mutuelle', 'radical', 'Prendre', 'icone', 'renouveler', 'périmètre', 'Bush', 'Conception', 'Téléchargez', 'Pauline', 'interroge', 'carrefour', 'Villeneuve', 'regards', 'scénarios', 'Annecy', 'vous-même', 'digital', 'poètes', 'Fonction', 'Bruges', 'possédait', 'entrent', 'cotisations', 'demandeurs', 'convivial', 'moine', 'barrière', '1863', 'résolu', '26Localisation', 'Stratégie', 'SE', 'nuage', 'Ann', 'détour', 'triangle', 'licences', 'Alexandra', '1Sauter', 'intégrés', 'décida', 'Stockholm', 'négocier', 'empreinte', '2013Age', 'mâles', 'Book', 'Gallery', 'désignation', 'segment', 'Posted', 'pourriez', 'sexualité', 'semblables', 'Actu', 'Professionnel', 'flèche', 'semestre', 'Constantin', 'chaudes', 'toiture', 'confluence', 'Retourner', '6e', 'Explorer', 'compact', 'quotidiennement', 'incarne', 'InvitéInvité', 'oeuf', 'démontré', 'Audio', 'allais', 'Marvel', 'buffet', 'coucou', 'Otto', 'DO', 'finissent', 'réguliers', 'alimenter', 'humides', 'discrimination', 'Micro', 'tribune', '♦', 'Comics', 'démocrate', 'Personnellement', 'Damien', 'franchir', 'vigne', 'para', 'gr', 'blason', 'cycles', 'caoutchouc', 'investi', 'saumon', 'consacrés', '9h', 'étendu', 'Aude', 'Roberto', 'cinquantaine', 'Bons', 'préoccupations', 'pirates', 'Equitation', 'rassembler', 'piliers', 'simulation', 'cinéaste', 'pompiers', '-10,5', 'réplique', 'aéronautique', 'guider', 'végétation', 'Full', 'désordre', 'LG', 'Catalogne', 'envoyée', 'Charme', 'Cologne', 'unis', 'pensait', 'complot', 'israélien', 'dictature', 'details', 'free', 'Chronique', 'Sociétés', 'croisière', 'fun', 'représentés', 'Berne', 'porno', 'appliquent', 'accroître', 'Metal', 'profondes', 'cliniques', 'there', 'prototype', 'vraies', '1865', 'Abs', 'Edouard', 'over', 'enchères', 'priorités', 'VOTRE', 'inégalités', 'séduire', 'injection', 'Effectivement', 'passez', 'éclat', 'Salvador', '1862', 'potable', 'synthétique', '11h', 'confier', 'restés', 'chauffer', 'aborde', 'EDF', 'Troyes', 'ressenti', 'jambe'])\n",
-            "[-0.0842, -0.0388, 0.0456, -0.0559, -0.0366, 0.0241, 0.0919, -0.0214, 0.0179, -0.1384, -0.0202, -0.1276, -0.0163, 0.0644, -0.1042, 0.0152, -0.0191, 0.0761, -0.0149, 0.0261, 0.0354, -0.077, -0.0034, 0.0941, -0.0169, 0.1621, 0.2469, -0.009, 0.0335, 0.0022, -0.0168, -0.0063, 0.0149, -0.0182, 0.0205, 0.0628, -0.3591, -0.0155, 0.0188, 0.0503, -0.0251, 0.0328, 0.04, 0.0639, -0.1502, 0.1655, 0.0538, 0.0762, -0.1086, -0.0351, 0.0534, 0.0267, 0.0255, 0.038, 0.0026, 0.3703, 0.0797, -0.0189, 0.4854, 0.0882, 0.0483, 0.224, 0.0077, -0.2437, -0.0396, -0.0343, -0.1632, -0.0818, -0.0074, 0.0008, -0.0255, -0.0482, -0.4431, -0.0576, -0.0413, -0.0182, -0.0852, -0.0737, 0.2608, -0.0044, -0.0147, -0.0486, -0.2496, -1.3323, -0.0243, -0.0382, 0.0852, 0.0166, 0.0292, -0.0092, 0.0345, -0.0205, 0.0806, -0.0287, 0.0068, -0.3224, -0.0187, -0.0661, -0.043, 0.4115, 0.021, 0.0019, 0.0826, 0.0753, 0.0254, 0.0634, 0.0524, -0.0342, -0.0224, 0.3635, 0.0102, -0.0121, -0.3234, 0.1405, 0.0347, 0.029, -0.0187, 0.0473, -0.067, 0.0084, -0.0503, -0.0469, -0.1019, 0.1343, -0.0289, 0.0632, 0.0699, 0.0675, 0.0196, -0.0432, 0.0576, 0.0173, 0.0264, 0.0001, 0.026, -0.0262, -0.3346, -0.025, 0.1202, 0.0655, 0.0264, -0.0396, 0.0032, -0.0192, -0.0364, -0.0285, 0.0278, 0.0017, -0.0048, -0.0001, -0.0395, 0.002, -0.1174, 0.0715, 0.0118, -0.0433, 0.0497, -0.0519, 0.0654, -0.0596, 0.006, 0.1493, 0.01, 0.0117, -0.1024, -0.0334, 0.0252, -0.2275, -0.0043, -0.0623, 0.3386, 0.0622, 0.0344, -0.3352, -0.0398, -0.161, -0.0401, -0.2124, 0.0329, 0.0056, -0.0218, -0.007, 0.1279, 0.0429, -0.0155, 0.0529, 0.1669, 0.0851, -0.4496, -0.0199, 0.1243, 0.0296, 0.0625, 0.5931, -0.0495, -0.0263, 0.0038, 0.0456, -0.0591, 0.0706, 0.046, 0.0196, 0.0271, 0.0136, 0.0427, 0.1151, 0.0651, 0.0513, 0.3261, -0.0095, -0.1681, 0.0631, 0.4491, 0.0119, -0.0168, -0.0606, -0.2383, -0.0494, 0.1051, 0.0095, -0.0175, -0.0459, 0.094, 0.0788, 0.0581, -0.0833, 0.0291, 0.0228, 0.004, -0.2135, -0.045, -0.2637, -0.0708, -0.0272, 0.0321, -0.0116, 0.0079, -0.0634, 0.1234, -0.0904, 0.0501, -0.0339, -0.0494, 0.0714, 0.1486, 0.1024, 0.0903, 0.0458, -0.0289, -0.0185, -0.034, 0.0427, -0.033, -0.0147, -0.2744, -0.0971, 0.0208, 0.0127, -0.0412, 0.0009, -0.0658, 0.0333, -0.0383, 0.0523, -0.019, 0.0391, 0.0702, 0.0231, 0.0573, 0.083, -0.1997, -0.0273, -0.0001, 0.002, -0.0557, 0.0669, -0.0026, 0.1349, 0.0173, -0.0312, -0.0388, 0.032, 0.0129, -0.0233, 0.0034, -0.0373, 0.0239, -0.07, 0.0412, 0.0402, 0.0019, -0.0405, -0.0111, -0.0038, 0.008, 0.1887, 0.0118, 0.3069, -0.0106, 0.0579]\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.2 Build the weight matrix \n",
-        "\n",
-        "We have a list of words associated to vector.\n",
-        "Now we need to specifically retrieve the vectors for the words present in our data, there is no need to keep vectors for all the words.\n",
-        "We thus build a matrix over the dataset associating each word present in the dataset to its vector. \n",
-        "For each word in dataset’s vocabulary, we check if it is in FastText’s vocabulary:\n",
-        "* if yes: load its pre-trained word vector. \n",
-        "* else: we initialize a random vector.\n",
-        "\n",
-        "\n",
-        "**Question:**  Examine the coverage, i.e.: \n",
-        "* print the number of tokens from FastText found in the training set \n",
-        "* and the number of unknown words."
-      ],
-      "metadata": {
-        "id": "GTA0vXeevSuO"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load the weight matrix: modify the code below to check the coverage of the \n",
-        "# pre-trained embeddings\n",
-        "emb_dim = 300\n",
-        "matrix_len = len(train.vocab)\n",
-        "weights_matrix = np.zeros((matrix_len, emb_dim))\n",
-        "\n",
-        "for i in range(0, len(train.vocab)):\n",
-        "    word = train.vocab.lookup_token(i)\n",
-        "    try: \n",
-        "        weights_matrix[i] = vectors[word]\n",
-        "    except KeyError:\n",
-        "        weights_matrix[i] = np.random.normal(scale=0.6, size=(emb_dim, ))\n",
-        "weights_matrix = torch.from_numpy(weights_matrix).to( torch.float32) \n",
-        "\n",
-        "print(weights_matrix)"
-      ],
-      "metadata": {
-        "id": "4XXFTaRxvRNk",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "1270af94-03c7-418a-c0b8-d1de5bd0f5ea"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "tensor([[ 0.4060, -0.8878, -1.2644,  ...,  0.0526, -0.6747, -0.5371],\n",
-            "        [-0.0842, -0.0388,  0.0456,  ...,  0.3069, -0.0106,  0.0579],\n",
-            "        [-0.0386,  0.0706,  0.0421,  ..., -0.3886,  0.0417,  0.0771],\n",
-            "        ...,\n",
-            "        [-0.7120,  0.5597, -1.1113,  ...,  0.3446,  0.0107,  0.5707],\n",
-            "        [-0.7066, -0.6019,  0.7080,  ...,  0.3817, -0.4877,  0.2715],\n",
-            "        [-0.2886,  0.1012, -0.0676,  ...,  0.2122, -0.5243,  0.0503]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "---------------------------------------------------\n",
-        "SOLUTION"
-      ],
-      "metadata": {
-        "id": "yqUw4CPDKzpk"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load the weight matrix: modify the code below to check the coverage of the \n",
-        "# pre-trained embeddings\n",
-        "emb_dim = 300\n",
-        "matrix_len = len(train.vocab)\n",
-        "weights_matrix = np.zeros((matrix_len, emb_dim))\n",
-        "words_found, words_unk = 0,0\n",
-        "\n",
-        "for i in range(0, len(train.vocab)):\n",
-        "    word = train.vocab.lookup_token(i)\n",
-        "    try: \n",
-        "        weights_matrix[i] = vectors[word]\n",
-        "        words_found += 1\n",
-        "    except KeyError:\n",
-        "        weights_matrix[i] = np.random.normal(scale=0.6, size=(emb_dim, ))\n",
-        "        words_unk += 1\n",
-        "weights_matrix = torch.from_numpy(weights_matrix).to( torch.float32) \n",
-        "print( \"Words found:\", weights_matrix.size() )\n",
-        "print( \"Unk words:\", words_unk )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "o-_cCnGtK0Ax",
-        "outputId": "e2b2025f-a119-465f-90f6-3cc52c4fcd8d"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Words found: torch.Size([43072, 300])\n",
-            "Unk words: 37486\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3 Exercise: Model definition\n",
-        "\n",
-        "#### a/ Define the embedding layer:\n",
-        "Now modify your model to add this embedding layer in the __init__() function below: \n",
-        "\n",
-        "* Define *self.embedding_bag*: a layer combining the word embeddings for the words. Here we just give the definition of the layer, i.e.:\n",
-        "  * we use pre initialized weights\n",
-        "  * we want to combine the embeddings by doing the average\n",
-        "See ```nn.EmbeddingBeg.from_pretrained( ..)```, https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html\n",
-        "* Retrieve the *embedding dimensions* to be used as parameter for the first linear function (look at the *EnbeddingBag* class definition).\n",
-        "\n",
-        "#### b/ Use the embedding layer\n",
-        "Now you need to tell the model when to use this embedding layer, thus you need to modify the *forward()* function to say that it needs to first *embed* the input before going through the linear and non linear layers.\n",
-        "\n",
-        "Look at the example in the doc: https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html\n",
-        "Note that this embedding layer needs the information about the offset, to retrieve the sequences / individual documents in the batch.\n",
-        "\n",
-        " "
-      ],
-      "metadata": {
-        "id": "VcLWQgu877rQ"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class FeedforwardNeuralNetModel(nn.Module):\n",
-        "    def __init__(self, hidden_dim, output_dim, weights_matrix):\n",
-        "        # calls the init function of nn.Module.  Dont get confused by syntax,\n",
-        "        # just always do it in an nn.Module\n",
-        "        super(FeedforwardNeuralNetModel, self).__init__()\n",
-        "\n",
-        "        # Embedding layer\n",
-        "        # ....\n",
-        "        # ----- SOLUTION\n",
-        "        #  mode (string, optional) – \"sum\", \"mean\" or \"max\". Default=mean.\n",
-        "        self.embedding_bag = nn.EmbeddingBag.from_pretrained(\n",
-        "                              weights_matrix,\n",
-        "                              mode='mean')\n",
-        "        embed_dim = self.embedding_bag.embedding_dim \n",
-        "\n",
-        "        # Linear function\n",
-        "        self.fc1 = nn.Linear(embed_dim, hidden_dim)\n",
-        "\n",
-        "        # Non-linearity\n",
-        "        self.sigmoid = nn.Sigmoid()\n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)  \n",
-        "\n",
-        "    def forward(self, text, offsets):\n",
-        "        # Embedding layer\n",
-        "        # ....\n",
-        "        # ----- SOLUTION\n",
-        "        embedded = self.embedding_bag(text, offsets)\n",
-        "\n",
-        "        # Linear function  \n",
-        "        out = self.fc1(embedded)\n",
-        "\n",
-        "        # Non-linearity  \n",
-        "        out = self.sigmoid(out) \n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        out = self.fc2(out)\n",
-        "        return out"
-      ],
-      "metadata": {
-        "id": "fXOPuCv_vZrr"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.4 Exercise: Train and evaluation functions (code given)\n",
-        "\n",
-        "Look at the code below that performs the training and evaluation of your model.\n",
-        "Note that:\n",
-        "* one epoch is one ieration over the entire training set\n",
-        "* each *input* is here a batch of several documents (here 2)\n",
-        "* the model computes a loss after making a prediction for each input / batch. We accumulate this loss, and compute a score after seing each batch\n",
-        "* at the end of each round / epoch, we print the accumulated loss and accuracy:\n",
-        "  * A good indicator that your model is doing what is supposed to, is the loss: it should decrease during training. At the same time, the accuracy on the training set should increase.\n",
-        "* in the evaluation procedure, we have to compute score for batched of data, that's why we have slight modifications in the code (use of *extend* tp have a set of predictions)\n",
-        "\n",
-        "Note: here we need to take into account the offsets in the training and evaluation procedures."
-      ],
-      "metadata": {
-        "id": "UsXmIGqApbxj"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "import matplotlib.pyplot as plt\n",
-        "import os\n",
-        "\n",
-        "def my_plot(epochs, loss):\n",
-        "    plt.plot(epochs, loss)\n",
-        "    #fig.savefig(os.path.join('./lossGraphs', 'train.jpg'))\n",
-        "\n",
-        "def training(model, train_loader, optimizer, num_epochs=5, plot=False ):\n",
-        "  loss_vals = []\n",
-        "    for epoch in range(num_epochs):\n",
-        "        train_loss, total_acc, total_count = 0, 0, 0\n",
-        "        for input, label, offsets in train_loader:\n",
-        "            # Step1. Clearing the accumulated gradients\n",
-        "            optimizer.zero_grad()\n",
-        "            # Step 2. Forward pass to get output/logits\n",
-        "            outputs = model( input, offsets ) # <---- argument offsets en plus\n",
-        "            # Step 3. Compute the loss, gradients, and update the parameters by\n",
-        "            # calling optimizer.step()\n",
-        "            # - Calculate Loss: softmax --> cross entropy loss\n",
-        "            loss = criterion(outputs, label)\n",
-        "            # - Getting gradients w.r.t. parameters\n",
-        "            loss.backward()\n",
-        "            # - Updating parameters\n",
-        "            optimizer.step()\n",
-        "            # Accumulating the loss over time\n",
-        "            train_loss += loss.item()\n",
-        "            total_acc += (outputs.argmax(1) == label).sum().item()\n",
-        "            total_count += label.size(0)\n",
-        "        # Compute accuracy on train set at each epoch\n",
-        "        print('Epoch: {}. Loss: {}. ACC {} '.format(epoch, train_loss/len(train), total_acc/len(train)))\n",
-        "        loss_vals.append(train_loss/len(train))\n",
-        "        total_acc, total_count = 0, 0\n",
-        "        train_loss = 0\n",
-        "    if plot:\n",
-        "      # plotting\n",
-        "      my_plot(np.linspace(1, num_epochs, num_epochs).astype(int), loss_vals)\n",
-        "\n",
-        "\n",
-        "def evaluate( model, dev_loader ):\n",
-        "    predictions = []\n",
-        "    gold = []\n",
-        "    with torch.no_grad():\n",
-        "        for input, label, offsets in dev_loader:\n",
-        "            probs = model(input, offsets) # <---- fct forward with offsets\n",
-        "            # -- to deal with batches\n",
-        "            predictions.extend( torch.argmax(probs, dim=1).cpu().numpy() ) \n",
-        "            gold.extend([int(l) for l in label])\n",
-        "    print(classification_report(gold, predictions))\n",
-        "    return gold, predictions"
-      ],
-      "metadata": {
-        "id": "US_0JmN5phqs"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3 Exercise: run experiments \n",
-        "\n",
-        "Look at the code below, it allows to run experiments with the following values for the hyper-parameters:\n",
-        "  * batch size = 2 \n",
-        "  * hidden dimension = 4\n",
-        "  * learning rate = 0.1\n",
-        "  * number of epochs = 5\n",
-        "  * using the Cross Entropy loss function\n",
-        "  * using SGD as the optimizer algorithm\n",
-        "\n",
-        "Questions:\n",
-        "  * What is the input dimension?\n",
-        "  * What is the output dimension? \n",
-        "  * What are the hyper-parameters that could be tuned? Propose a set of values to be tested for each one of them.\n",
-        "  * Run the code: what is the behaviour of the loss and accuracy?\n",
-        "  * What do you think about the performance of this model?"
-      ],
-      "metadata": {
-        "id": "NC2VtTmv-Q_c"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Set the values of the hyperparameters\n",
-        "hidden_dim = 4\n",
-        "learning_rate = 0.1\n",
-        "num_epochs = 5\n",
-        "criterion = nn.CrossEntropyLoss()\n",
-        "output_dim = 2"
-      ],
-      "metadata": {
-        "id": "Jod8FnWPs_Vi"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=5 )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "1Xug7ygbpAhS",
-        "outputId": "e098d905-b069-4624-9ab6-c6973d6df057"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.3520963605258392. ACC 0.5010940919037199 \n",
-            "Epoch: 1. Loss: 0.34579115099975216. ACC 0.5372985876268151 \n",
-            "Epoch: 2. Loss: 0.3294409021323164. ACC 0.6065247662621842 \n",
-            "Epoch: 3. Loss: 0.3155829164799602. ACC 0.6415357071812214 \n",
-            "Epoch: 4. Loss: 0.30930858377536957. ACC 0.6556594390292421 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.61      0.31      0.41       230\n",
-            "           1       0.63      0.86      0.73       319\n",
-            "\n",
-            "    accuracy                           0.63       549\n",
-            "   macro avg       0.62      0.58      0.57       549\n",
-            "weighted avg       0.62      0.63      0.60       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "**Note:** that we don't use here a SoftMax over the output of the final layer to obtain class probability: this is because this SoftMax application is done in the loss function chosen (*nn.CrossEntropyLoss()*). Be careful, it's not the case of all the loss functions available in PyTorch."
-      ],
-      "metadata": {
-        "id": "OBqQaAf6mxEI"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## Part 2 - Exercise: Tuning your model\n",
-        "\n",
-        "The model comes with a variety of hyper-parameters. To find the best model, we need to test different values for these free parameters.\n",
-        "\n",
-        "Be careful: \n",
-        "* you always optimize / fine-tune your model on the **development set**. \n",
-        "* Then you compare the results obtained with the different settings on the dev set to choose the best setting\n",
-        "* finally you report the results of the best model on the test set\n",
-        "* you always keep a track of your experimentation, for reproducibility purpose: report the values tested for each hyper-parameters and the values used by your best model. \n",
-        "\n",
-        "In this part, you have to test different values for the following hyper-parameters:\n",
-        "\n",
-        "1. Batch size \n",
-        "2. Max number of epochs (with best batch size)\n",
-        "3. Size of the hidden layer\n",
-        "4. Activation function\n",
-        "5. Optimizer\n",
-        "6. Learning rate\n",
-        "\n",
-        "Inspect your model to give some hypothesis on the influence of these parameters on the model by inspecting how they affect the loss during training and the performance of the model. \n",
-        "\n",
-        "Once done, modify your model to test a variation on the architecture. Here you don't have to tune all your model again, just try for example when keeping the best values found previously for the hyper-parameters: \n",
-        "\n",
-        "7. Try with 1 additional hidden layer\n",
-        "\n",
-        "**Note:** (not done below) Here you are trying to make a report on the performance of your model. try to organise your code to keep track of what you're doing:\n",
-        "* give a different name to each model, to be able to run them again\n",
-        "* save the results in a dictionnary of a file, to be able to use them later:  \n",
-        "  * think that you should be able to provide e.g. plots of your results (for example, plotting the accuracy for different value of a specific hyper-parameter), or analysis of your results (e.g. by inspecting the predictions of your model) so you need to be able to access the results."
-      ],
-      "metadata": {
-        "id": "1HmIthzRumir"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# For now, we keep a medium number of epochs eg 50\n",
-        "num_epochs = 20"
-      ],
-      "metadata": {
-        "id": "mPl550bHgYE7"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 1. BATCH SIZE\n",
-        "\n",
-        "We need to reload the data to change the size of the batch."
-      ],
-      "metadata": {
-        "id": "YXarvcQk4uEo"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Hyperparameters\n",
-        "hidden_dim = 4\n",
-        "learning_rate = 0.1"
-      ],
-      "metadata": {
-        "id": "V1RYBCEm4wNu"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-----> BATCH SIZE 2"
-      ],
-      "metadata": {
-        "id": "XbB7T1Un5ZET"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "batch_size = 2\n",
-        "\n",
-        "# Reload data\n",
-        "train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, collate_fn=collate_fn) # Bien modifie ici la batch size + shuffle = True!\n",
-        "dev_loader = DataLoader(dev, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)"
-      ],
-      "metadata": {
-        "id": "y1uRBZ5t5MsC"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs, plot=True )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "717e5ae1-81f6-446c-cf9b-0da303ff8d70",
-        "id": "RujCyodz4wNv"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.3443748711508122. ACC 0.5384921424308733 \n",
-            "Epoch: 1. Loss: 0.3238032021863052. ACC 0.6248259399244082 \n",
-            "Epoch: 2. Loss: 0.3119724961444187. ACC 0.6510841456136861 \n",
-            "Epoch: 3. Loss: 0.30653937585742286. ACC 0.6719713546847026 \n",
-            "Epoch: 4. Loss: 0.3030025432349846. ACC 0.66938531927591 \n",
-            "Epoch: 5. Loss: 0.3010095448503858. ACC 0.6741595384921424 \n",
-            "Epoch: 6. Loss: 0.2988497476623882. ACC 0.6851004575293416 \n",
-            "Epoch: 7. Loss: 0.29819395815238864. ACC 0.6793316093097275 \n",
-            "Epoch: 8. Loss: 0.2980856440660492. ACC 0.6805251641137856 \n",
-            "Epoch: 9. Loss: 0.2954139497789908. ACC 0.6845036801273126 \n",
-            "Epoch: 10. Loss: 0.2945998609125294. ACC 0.6839069027252834 \n",
-            "Epoch: 11. Loss: 0.2934940134095273. ACC 0.6884821961408395 \n",
-            "Epoch: 12. Loss: 0.2927938977151558. ACC 0.6974338571712752 \n",
-            "Epoch: 13. Loss: 0.29124776529333857. ACC 0.6924607121543664 \n",
-            "Epoch: 14. Loss: 0.2906765501863954. ACC 0.6932564153570718 \n",
-            "Epoch: 15. Loss: 0.29035230220010366. ACC 0.6930574895563955 \n",
-            "Epoch: 16. Loss: 0.2914984108932407. ACC 0.6928585637557191 \n",
-            "Epoch: 17. Loss: 0.2891622580364065. ACC 0.6920628605530137 \n",
-            "Epoch: 18. Loss: 0.289319252017652. ACC 0.696240302367217 \n",
-            "Epoch: 19. Loss: 0.2874025212341828. ACC 0.6922617863536901 \n",
-            "Epoch: 20. Loss: 0.2873479837082254. ACC 0.6948478217624826 \n",
-            "Epoch: 21. Loss: 0.28698403910261894. ACC 0.7020091505868311 \n",
-            "Epoch: 22. Loss: 0.2863148364384985. ACC 0.6998209667793913 \n",
-            "Epoch: 23. Loss: 0.2871159102981871. ACC 0.6998209667793913 \n",
-            "Epoch: 24. Loss: 0.2862042659926609. ACC 0.6998209667793913 \n",
-            "Epoch: 25. Loss: 0.2856487465593671. ACC 0.7024070021881839 \n",
-            "Epoch: 26. Loss: 0.28580112889948556. ACC 0.7020091505868311 \n",
-            "Epoch: 27. Loss: 0.2858768165732547. ACC 0.7032027053908892 \n",
-            "Epoch: 28. Loss: 0.2857147929743481. ACC 0.6982295603739805 \n",
-            "Epoch: 29. Loss: 0.28580333072390546. ACC 0.705390889198329 \n",
-            "Epoch: 30. Loss: 0.28389336485419403. ACC 0.7014123731848021 \n",
-            "Epoch: 31. Loss: 0.28368568674296063. ACC 0.7000198925800676 \n",
-            "Epoch: 32. Loss: 0.28407661078869406. ACC 0.7041973343942709 \n",
-            "Epoch: 33. Loss: 0.28380351586914665. ACC 0.7020091505868311 \n",
-            "Epoch: 34. Loss: 0.2823989510896347. ACC 0.7085737020091506 \n",
-            "Epoch: 35. Loss: 0.28255766987436. ACC 0.7006166699820967 \n",
-            "Epoch: 36. Loss: 0.2825257646711738. ACC 0.7111597374179431 \n",
-            "Epoch: 37. Loss: 0.2827194988978047. ACC 0.7045951859956237 \n",
-            "Epoch: 38. Loss: 0.2819667985492004. ACC 0.7075790730057688 \n",
-            "Epoch: 39. Loss: 0.2813402628642808. ACC 0.7018102247861547 \n",
-            "Epoch: 40. Loss: 0.2808800577325922. ACC 0.7045951859956237 \n",
-            "Epoch: 41. Loss: 0.27942367505207316. ACC 0.7063855182017108 \n",
-            "Epoch: 42. Loss: 0.27922166472362764. ACC 0.7089715536105032 \n",
-            "Epoch: 43. Loss: 0.2795443612313695. ACC 0.7043962601949473 \n",
-            "Epoch: 44. Loss: 0.27878284501995626. ACC 0.7085737020091506 \n",
-            "Epoch: 45. Loss: 0.27964969383012067. ACC 0.709369405211856 \n",
-            "Epoch: 46. Loss: 0.2784189229935959. ACC 0.7071812214044162 \n",
-            "Epoch: 47. Loss: 0.27862977107046777. ACC 0.7067833698030634 \n",
-            "Epoch: 48. Loss: 0.27821397670806464. ACC 0.7109608116172668 \n",
-            "Epoch: 49. Loss: 0.2767134781579315. ACC 0.709966182613885 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.62      0.30      0.41       230\n",
-            "           1       0.63      0.87      0.73       319\n",
-            "\n",
-            "    accuracy                           0.63       549\n",
-            "   macro avg       0.63      0.58      0.57       549\n",
-            "weighted avg       0.63      0.63      0.60       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-----> BATCH SIZE 100"
-      ],
-      "metadata": {
-        "id": "Wvf6nYZ55ff3"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "batch_size = 100\n",
-        "\n",
-        "train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, collate_fn=collate_fn) \n",
-        "dev_loader = DataLoader(dev, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)"
-      ],
-      "metadata": {
-        "id": "q7nMbTzl5ff4"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "75280b62-c873-477e-a14c-b9c5ce3028b5",
-        "id": "ZuMZ7YyV5ff4"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.007073940957116635. ACC 0.5084543465287448 \n",
-            "Epoch: 1. Loss: 0.007029072923453494. ACC 0.5126317883429481 \n",
-            "Epoch: 2. Loss: 0.007021559311567207. ACC 0.5201909687686493 \n",
-            "Epoch: 3. Loss: 0.007013624080113869. ACC 0.530336184603143 \n",
-            "Epoch: 4. Loss: 0.007002492050112468. ACC 0.5398846230356077 \n",
-            "Epoch: 5. Loss: 0.006991920661850386. ACC 0.5621643127113587 \n",
-            "Epoch: 6. Loss: 0.0069761488602226385. ACC 0.5528148000795703 \n",
-            "Epoch: 7. Loss: 0.006963936500481021. ACC 0.5892182216033419 \n",
-            "Epoch: 8. Loss: 0.0069445139232534574. ACC 0.6095086532723294 \n",
-            "Epoch: 9. Loss: 0.006923313166480048. ACC 0.5987666600358067 \n",
-            "Epoch: 10. Loss: 0.0069005172414383165. ACC 0.6363636363636364 \n",
-            "Epoch: 11. Loss: 0.006863713620172383. ACC 0.6208474239108812 \n",
-            "Epoch: 12. Loss: 0.0068298692918568405. ACC 0.6272130495325243 \n",
-            "Epoch: 13. Loss: 0.006794634694391012. ACC 0.6421324845832505 \n",
-            "Epoch: 14. Loss: 0.0067576949084661156. ACC 0.6530734036204495 \n",
-            "Epoch: 15. Loss: 0.006705810114524937. ACC 0.6538691068231549 \n",
-            "Epoch: 16. Loss: 0.006661873440489229. ACC 0.6574497712353292 \n",
-            "Epoch: 17. Loss: 0.006612105969052821. ACC 0.659637955042769 \n",
-            "Epoch: 18. Loss: 0.006558903671767002. ACC 0.6602347324447981 \n",
-            "Epoch: 19. Loss: 0.006500782574387462. ACC 0.668191764471852 \n",
-            "Epoch: 20. Loss: 0.006468181039079037. ACC 0.66938531927591 \n",
-            "Epoch: 21. Loss: 0.006398217683287105. ACC 0.6685896160732047 \n",
-            "Epoch: 22. Loss: 0.00635060680441385. ACC 0.6757509448975532 \n",
-            "Epoch: 23. Loss: 0.006308472675856952. ACC 0.672170280485379 \n",
-            "Epoch: 24. Loss: 0.006279352860444105. ACC 0.6856972349313706 \n",
-            "Epoch: 25. Loss: 0.0062244532595388405. ACC 0.6854983091306942 \n",
-            "Epoch: 26. Loss: 0.006182033960639494. ACC 0.6821165705191964 \n",
-            "Epoch: 27. Loss: 0.0061473599930560825. ACC 0.6829122737219018 \n",
-            "Epoch: 28. Loss: 0.006125714389045219. ACC 0.6892778993435449 \n",
-            "Epoch: 29. Loss: 0.00609686327473838. ACC 0.6912671573503083 \n",
-            "Epoch: 30. Loss: 0.006095695369922311. ACC 0.6886811219415158 \n",
-            "Epoch: 31. Loss: 0.006049742109618558. ACC 0.691665008951661 \n",
-            "Epoch: 32. Loss: 0.00603084385644045. ACC 0.6972349313705988 \n",
-            "Epoch: 33. Loss: 0.0059978616671602985. ACC 0.6984284861746568 \n",
-            "Epoch: 34. Loss: 0.005998012048244381. ACC 0.6986274119753332 \n",
-            "Epoch: 35. Loss: 0.005985496981802721. ACC 0.6932564153570718 \n",
-            "Epoch: 36. Loss: 0.005963753297501111. ACC 0.6952456733638352 \n",
-            "Epoch: 37. Loss: 0.005971982082126391. ACC 0.6998209667793913 \n",
-            "Epoch: 38. Loss: 0.005939266916200658. ACC 0.6964392281678934 \n",
-            "Epoch: 39. Loss: 0.005949360749961985. ACC 0.6982295603739805 \n",
-            "Epoch: 40. Loss: 0.005934212485008551. ACC 0.7012134473841257 \n",
-            "Epoch: 41. Loss: 0.005918450631321319. ACC 0.6948478217624826 \n",
-            "Epoch: 42. Loss: 0.005912830631847241. ACC 0.6972349313705988 \n",
-            "Epoch: 43. Loss: 0.005908906068530594. ACC 0.6954445991645116 \n",
-            "Epoch: 44. Loss: 0.005885356933809261. ACC 0.7026059279888601 \n",
-            "Epoch: 45. Loss: 0.005892672879287541. ACC 0.7036005569922419 \n",
-            "Epoch: 46. Loss: 0.0058904265359070755. ACC 0.7010145215834493 \n",
-            "Epoch: 47. Loss: 0.005880098729904779. ACC 0.7020091505868311 \n",
-            "Epoch: 48. Loss: 0.005885767656883663. ACC 0.695643524965188 \n",
-            "Epoch: 49. Loss: 0.005888840853160102. ACC 0.7039984085935946 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.64      0.36      0.46       230\n",
-            "           1       0.65      0.86      0.74       319\n",
-            "\n",
-            "    accuracy                           0.65       549\n",
-            "   macro avg       0.64      0.61      0.60       549\n",
-            "weighted avg       0.65      0.65      0.62       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-----> BATCH SIZE 10"
-      ],
-      "metadata": {
-        "id": "jemPmZxi62n0"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "batch_size = 10\n",
-        "\n",
-        "train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, collate_fn=collate_fn) #<-- use shuffle = True instead\n",
-        "dev_loader = DataLoader(dev, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)"
-      ],
-      "metadata": {
-        "id": "Mx8IMlLO62n2"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "7c1d6248-09c6-49bd-c8b5-cd57df4ac8d2",
-        "id": "LBjLVvoM62n2"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06943608308516655. ACC 0.5130296399443007 \n",
-            "Epoch: 1. Loss: 0.06835846744903115. ACC 0.5575890192958026 \n",
-            "Epoch: 2. Loss: 0.06575914487607298. ACC 0.6242291625223791 \n",
-            "Epoch: 3. Loss: 0.06329712385516625. ACC 0.6427292619852795 \n",
-            "Epoch: 4. Loss: 0.06130664807938666. ACC 0.668191764471852 \n",
-            "Epoch: 5. Loss: 0.06052716653508743. ACC 0.673363835289437 \n",
-            "Epoch: 6. Loss: 0.060176474734568705. ACC 0.682514422120549 \n",
-            "Epoch: 7. Loss: 0.05978312572048985. ACC 0.6880843445394867 \n",
-            "Epoch: 8. Loss: 0.05943953453225788. ACC 0.6823154963198726 \n",
-            "Epoch: 9. Loss: 0.05929612556721786. ACC 0.6892778993435449 \n",
-            "Epoch: 10. Loss: 0.05913474476429917. ACC 0.6880843445394867 \n",
-            "Epoch: 11. Loss: 0.05913642076106628. ACC 0.685896160732047 \n",
-            "Epoch: 12. Loss: 0.05894601099624391. ACC 0.6896757509448975 \n",
-            "Epoch: 13. Loss: 0.05861684172509654. ACC 0.6942510443604536 \n",
-            "Epoch: 14. Loss: 0.05863150297374167. ACC 0.6860950865327233 \n",
-            "Epoch: 15. Loss: 0.05871834742731239. ACC 0.6898746767455739 \n",
-            "Epoch: 16. Loss: 0.05839123122908378. ACC 0.6896757509448975 \n",
-            "Epoch: 17. Loss: 0.05847804964193416. ACC 0.6884821961408395 \n",
-            "Epoch: 18. Loss: 0.058277733841852045. ACC 0.6908693057489557 \n",
-            "Epoch: 19. Loss: 0.058386488127523464. ACC 0.691665008951661 \n",
-            "Epoch: 20. Loss: 0.05812547799486609. ACC 0.6974338571712752 \n",
-            "Epoch: 21. Loss: 0.05797829210272076. ACC 0.6974338571712752 \n",
-            "Epoch: 22. Loss: 0.0580150423086446. ACC 0.695643524965188 \n",
-            "Epoch: 23. Loss: 0.05798782616326082. ACC 0.6920628605530137 \n",
-            "Epoch: 24. Loss: 0.05793982845000583. ACC 0.6988263377760096 \n",
-            "Epoch: 25. Loss: 0.05766732708251047. ACC 0.6998209667793913 \n",
-            "Epoch: 26. Loss: 0.05790334768031591. ACC 0.6976327829719514 \n",
-            "Epoch: 27. Loss: 0.05761318465741842. ACC 0.6960413765665406 \n",
-            "Epoch: 28. Loss: 0.05759310899611755. ACC 0.6986274119753332 \n",
-            "Epoch: 29. Loss: 0.057751722742032885. ACC 0.6944499701611299 \n",
-            "Epoch: 30. Loss: 0.05742728516314218. ACC 0.6986274119753332 \n",
-            "Epoch: 31. Loss: 0.05744654730463303. ACC 0.6976327829719514 \n",
-            "Epoch: 32. Loss: 0.057447121611451546. ACC 0.6988263377760096 \n",
-            "Epoch: 33. Loss: 0.05743587963240081. ACC 0.7012134473841257 \n",
-            "Epoch: 34. Loss: 0.057487206849611755. ACC 0.700815595782773 \n",
-            "Epoch: 35. Loss: 0.05745081912102935. ACC 0.7030037795902129 \n",
-            "Epoch: 36. Loss: 0.05718231361832893. ACC 0.6978317087726278 \n",
-            "Epoch: 37. Loss: 0.05748365801372418. ACC 0.6958424507658644 \n",
-            "Epoch: 38. Loss: 0.057017978526072356. ACC 0.7067833698030634 \n",
-            "Epoch: 39. Loss: 0.057033468252008994. ACC 0.7022080763875075 \n",
-            "Epoch: 40. Loss: 0.05710869398829902. ACC 0.6996220409787149 \n",
-            "Epoch: 41. Loss: 0.056759040229880646. ACC 0.7006166699820967 \n",
-            "Epoch: 42. Loss: 0.057205665720986495. ACC 0.700815595782773 \n",
-            "Epoch: 43. Loss: 0.05693956865144103. ACC 0.7063855182017108 \n",
-            "Epoch: 44. Loss: 0.05696175061425656. ACC 0.7067833698030634 \n",
-            "Epoch: 45. Loss: 0.057026335483804855. ACC 0.7055898149990054 \n",
-            "Epoch: 46. Loss: 0.056927547490167554. ACC 0.6998209667793913 \n",
-            "Epoch: 47. Loss: 0.05687895283230451. ACC 0.7037994827929183 \n",
-            "Epoch: 48. Loss: 0.05670617793814335. ACC 0.7065844440023871 \n",
-            "Epoch: 49. Loss: 0.05673999334154723. ACC 0.7041973343942709 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.63      0.23      0.33       230\n",
-            "           1       0.62      0.90      0.73       319\n",
-            "\n",
-            "    accuracy                           0.62       549\n",
-            "   macro avg       0.62      0.56      0.53       549\n",
-            "weighted avg       0.62      0.62      0.57       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "------> Perte par rapport à 2, mais beaucoup plus rapide. On garde celui là (we could have tried a few more values here)"
-      ],
-      "metadata": {
-        "id": "VmXdgAMC7Ap0"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# So now we keep the data loaded with 10 batches\n",
-        "batch_size = 10\n",
-        "\n",
-        "train_loader = DataLoader(train, batch_size=batch_size, shuffle=False, collate_fn=collate_fn) #<-- use shuffle = True instead\n",
-        "dev_loader = DataLoader(dev, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)"
-      ],
-      "metadata": {
-        "id": "PaaocPgK7Gfy"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 3. HIDDEN SIZE"
-      ],
-      "metadata": {
-        "id": "NOCfrCXHXuHF"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Already optimized\n",
-        "batch_size = 10"
-      ],
-      "metadata": {
-        "id": "eoDeM5ldX2gk"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Hyper-parameters\n",
-        "learning_rate = 0.1\n",
-        "criterion = nn.CrossEntropyLoss()\n",
-        "output_dim = 2"
-      ],
-      "metadata": {
-        "id": "Decj_K3OXuHG"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-----> HIDDEN DIM 4"
-      ],
-      "metadata": {
-        "id": "qz3TaBqMXuHH"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "hidden_dim = 4"
-      ],
-      "metadata": {
-        "id": "_CMEWtIuX-cQ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "1eab3011-a409-43e5-b5a1-399724a17bbe",
-        "id": "m72hePuXXuHI"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06924030699928167. ACC 0.519395265565944 \n",
-            "Epoch: 1. Loss: 0.06755568319792678. ACC 0.5820568927789934 \n",
-            "Epoch: 2. Loss: 0.0643479654749606. ACC 0.6327829719514622 \n",
-            "Epoch: 3. Loss: 0.06209694384722295. ACC 0.6562562164312712 \n",
-            "Epoch: 4. Loss: 0.061107959345602626. ACC 0.6660035806644121 \n",
-            "Epoch: 5. Loss: 0.060512718390536305. ACC 0.66938531927591 \n",
-            "Epoch: 6. Loss: 0.06015065681728047. ACC 0.6735627610901134 \n",
-            "Epoch: 7. Loss: 0.0598090323511165. ACC 0.6787348319076985 \n",
-            "Epoch: 8. Loss: 0.059600808611204495. ACC 0.6829122737219018 \n",
-            "Epoch: 9. Loss: 0.05937369354254497. ACC 0.6860950865327233 \n",
-            "Epoch: 10. Loss: 0.05924973485838331. ACC 0.6866918639347523 \n",
-            "Epoch: 11. Loss: 0.05908976297552125. ACC 0.6878854187388104 \n",
-            "Epoch: 12. Loss: 0.059003198890247806. ACC 0.6878854187388104 \n",
-            "Epoch: 13. Loss: 0.05887418596460446. ACC 0.6884821961408395 \n",
-            "Epoch: 14. Loss: 0.05877320526228146. ACC 0.6894768251442212 \n",
-            "Epoch: 15. Loss: 0.058660052744892166. ACC 0.6908693057489557 \n",
-            "Epoch: 16. Loss: 0.05857120004638374. ACC 0.6920628605530137 \n",
-            "Epoch: 17. Loss: 0.05846636946736782. ACC 0.6930574895563955 \n",
-            "Epoch: 18. Loss: 0.0583727004301816. ACC 0.6924607121543664 \n",
-            "Epoch: 19. Loss: 0.05829021169244354. ACC 0.6930574895563955 \n",
-            "Epoch: 20. Loss: 0.058212152936241844. ACC 0.6938531927591008 \n",
-            "Epoch: 21. Loss: 0.05814118327334692. ACC 0.6940521185597772 \n",
-            "Epoch: 22. Loss: 0.05808073776081776. ACC 0.6944499701611299 \n",
-            "Epoch: 23. Loss: 0.058024488542149644. ACC 0.695046747563159 \n",
-            "Epoch: 24. Loss: 0.05797648725107458. ACC 0.696837079769246 \n",
-            "Epoch: 25. Loss: 0.05792635114856475. ACC 0.6964392281678934 \n",
-            "Epoch: 26. Loss: 0.05788604337414525. ACC 0.6974338571712752 \n",
-            "Epoch: 27. Loss: 0.05784654567510583. ACC 0.6970360055699224 \n",
-            "Epoch: 28. Loss: 0.057807977029526475. ACC 0.6982295603739805 \n",
-            "Epoch: 29. Loss: 0.05776816355748136. ACC 0.6986274119753332 \n",
-            "Epoch: 30. Loss: 0.05773178896634603. ACC 0.6988263377760096 \n",
-            "Epoch: 31. Loss: 0.057694174670926475. ACC 0.6992241893773622 \n",
-            "Epoch: 32. Loss: 0.05765648317522004. ACC 0.6998209667793913 \n",
-            "Epoch: 33. Loss: 0.05762090813646455. ACC 0.6998209667793913 \n",
-            "Epoch: 34. Loss: 0.057591354637087186. ACC 0.6998209667793913 \n",
-            "Epoch: 35. Loss: 0.057559573142884714. ACC 0.700218818380744 \n",
-            "Epoch: 36. Loss: 0.057518420771715865. ACC 0.700815595782773 \n",
-            "Epoch: 37. Loss: 0.057511935004994484. ACC 0.7000198925800676 \n",
-            "Epoch: 38. Loss: 0.057468027884286225. ACC 0.7012134473841257 \n",
-            "Epoch: 39. Loss: 0.057451791339539995. ACC 0.700815595782773 \n",
-            "Epoch: 40. Loss: 0.05742049626880074. ACC 0.7012134473841257 \n",
-            "Epoch: 41. Loss: 0.05740073836060815. ACC 0.7006166699820967 \n",
-            "Epoch: 42. Loss: 0.05737620045514142. ACC 0.7010145215834493 \n",
-            "Epoch: 43. Loss: 0.05734994709313876. ACC 0.7012134473841257 \n",
-            "Epoch: 44. Loss: 0.057335071667350024. ACC 0.7018102247861547 \n",
-            "Epoch: 45. Loss: 0.05730531897795279. ACC 0.7016112989854785 \n",
-            "Epoch: 46. Loss: 0.057294652366913265. ACC 0.7020091505868311 \n",
-            "Epoch: 47. Loss: 0.05726205780939148. ACC 0.7020091505868311 \n",
-            "Epoch: 48. Loss: 0.05724721420752687. ACC 0.7028048537895365 \n",
-            "Epoch: 49. Loss: 0.05722641405989072. ACC 0.7026059279888601 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.64      0.34      0.44       230\n",
-            "           1       0.64      0.86      0.74       319\n",
-            "\n",
-            "    accuracy                           0.64       549\n",
-            "   macro avg       0.64      0.60      0.59       549\n",
-            "weighted avg       0.64      0.64      0.61       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-----> BHIDDEN DIM 10"
-      ],
-      "metadata": {
-        "id": "CHMNOXBcaYuE"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "hidden_dim = 10"
-      ],
-      "metadata": {
-        "id": "6LLePhm2aYuF"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "c498c00a-62f8-4d5e-baac-5ce2f5bf0056",
-        "id": "kLkludZnaYuF"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06896211096940232. ACC 0.5315297394072012 \n",
-            "Epoch: 1. Loss: 0.06637562880441117. ACC 0.6091108016709768 \n",
-            "Epoch: 2. Loss: 0.06341122994015984. ACC 0.6439228167893376 \n",
-            "Epoch: 3. Loss: 0.061803018321141066. ACC 0.65904117764074 \n",
-            "Epoch: 4. Loss: 0.06101972030696941. ACC 0.6660035806644121 \n",
-            "Epoch: 5. Loss: 0.06050558253953773. ACC 0.6689874676745574 \n",
-            "Epoch: 6. Loss: 0.060153545039962154. ACC 0.6723692062860553 \n",
-            "Epoch: 7. Loss: 0.059852006238806855. ACC 0.6763477222995823 \n",
-            "Epoch: 8. Loss: 0.05964551357689875. ACC 0.6809230157151382 \n",
-            "Epoch: 9. Loss: 0.05943929881112391. ACC 0.6835090511239308 \n",
-            "Epoch: 10. Loss: 0.059304041406708495. ACC 0.6849015317286652 \n",
-            "Epoch: 11. Loss: 0.059154149585816454. ACC 0.6852993833300179 \n",
-            "Epoch: 12. Loss: 0.05905471958838046. ACC 0.686492938134076 \n",
-            "Epoch: 13. Loss: 0.058940565435507436. ACC 0.6866918639347523 \n",
-            "Epoch: 14. Loss: 0.05886337150392936. ACC 0.6878854187388104 \n",
-            "Epoch: 15. Loss: 0.058780789244879256. ACC 0.6884821961408395 \n",
-            "Epoch: 16. Loss: 0.05871899085986773. ACC 0.6892778993435449 \n",
-            "Epoch: 17. Loss: 0.05865352336848638. ACC 0.6892778993435449 \n",
-            "Epoch: 18. Loss: 0.0586048074619467. ACC 0.6908693057489557 \n",
-            "Epoch: 19. Loss: 0.058552351295770175. ACC 0.6942510443604536 \n",
-            "Epoch: 20. Loss: 0.05850790909087419. ACC 0.6932564153570718 \n",
-            "Epoch: 21. Loss: 0.058467955742959876. ACC 0.6936542669584245 \n",
-            "Epoch: 22. Loss: 0.05843013882494741. ACC 0.6944499701611299 \n",
-            "Epoch: 23. Loss: 0.05839480876756611. ACC 0.696240302367217 \n",
-            "Epoch: 24. Loss: 0.058362456553257884. ACC 0.6964392281678934 \n",
-            "Epoch: 25. Loss: 0.058333588234586696. ACC 0.6970360055699224 \n",
-            "Epoch: 26. Loss: 0.0583048580547486. ACC 0.6970360055699224 \n",
-            "Epoch: 27. Loss: 0.058276971534964625. ACC 0.6970360055699224 \n",
-            "Epoch: 28. Loss: 0.05825454208896865. ACC 0.696837079769246 \n",
-            "Epoch: 29. Loss: 0.05823096667935319. ACC 0.6980306345733042 \n",
-            "Epoch: 30. Loss: 0.05820865520360054. ACC 0.6978317087726278 \n",
-            "Epoch: 31. Loss: 0.05818741211175966. ACC 0.6982295603739805 \n",
-            "Epoch: 32. Loss: 0.05816647641602344. ACC 0.6982295603739805 \n",
-            "Epoch: 33. Loss: 0.058146640851053255. ACC 0.6980306345733042 \n",
-            "Epoch: 34. Loss: 0.05812764217584632. ACC 0.6986274119753332 \n",
-            "Epoch: 35. Loss: 0.058108912041677216. ACC 0.6988263377760096 \n",
-            "Epoch: 36. Loss: 0.058093623242796544. ACC 0.6988263377760096 \n",
-            "Epoch: 37. Loss: 0.058077310618240646. ACC 0.6990252635766859 \n",
-            "Epoch: 38. Loss: 0.058061877924001117. ACC 0.6998209667793913 \n",
-            "Epoch: 39. Loss: 0.05804592890319232. ACC 0.6990252635766859 \n",
-            "Epoch: 40. Loss: 0.0580320079342755. ACC 0.6994231151780386 \n",
-            "Epoch: 41. Loss: 0.058014122017434895. ACC 0.6992241893773622 \n",
-            "Epoch: 42. Loss: 0.05799840642344959. ACC 0.6998209667793913 \n",
-            "Epoch: 43. Loss: 0.05798272412364422. ACC 0.6996220409787149 \n",
-            "Epoch: 44. Loss: 0.0579593316008088. ACC 0.6998209667793913 \n",
-            "Epoch: 45. Loss: 0.057939109239991814. ACC 0.7000198925800676 \n",
-            "Epoch: 46. Loss: 0.057923655896958. ACC 0.700218818380744 \n",
-            "Epoch: 47. Loss: 0.05789986932778041. ACC 0.6998209667793913 \n",
-            "Epoch: 48. Loss: 0.057867199544145875. ACC 0.6980306345733042 \n",
-            "Epoch: 49. Loss: 0.057830534624915865. ACC 0.6984284861746568 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.63      0.35      0.45       230\n",
-            "           1       0.64      0.85      0.73       319\n",
-            "\n",
-            "    accuracy                           0.64       549\n",
-            "   macro avg       0.64      0.60      0.59       549\n",
-            "weighted avg       0.64      0.64      0.61       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-----> HIDDEN DIM 30"
-      ],
-      "metadata": {
-        "id": "ciuX1XwFatK1"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "hidden_dim = 30"
-      ],
-      "metadata": {
-        "id": "AC0RfEpZatK1"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "e3752e14-9fc9-45a2-b293-8622628cf104",
-        "id": "5P5QvBFAatK2"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06916412696322366. ACC 0.5267555201909687 \n",
-            "Epoch: 1. Loss: 0.06722096759423551. ACC 0.5904117764074001 \n",
-            "Epoch: 2. Loss: 0.06412798812476166. ACC 0.6339765267555202 \n",
-            "Epoch: 3. Loss: 0.06214847299932651. ACC 0.6526755520190969 \n",
-            "Epoch: 4. Loss: 0.06124751349555016. ACC 0.65904117764074 \n",
-            "Epoch: 5. Loss: 0.06071575187844739. ACC 0.6650089516610305 \n",
-            "Epoch: 6. Loss: 0.06035083478977316. ACC 0.6713745772826736 \n",
-            "Epoch: 7. Loss: 0.06005531560124947. ACC 0.6751541674955241 \n",
-            "Epoch: 8. Loss: 0.05984238558434956. ACC 0.6789337577083748 \n",
-            "Epoch: 9. Loss: 0.05964589461621978. ACC 0.6799283867117565 \n",
-            "Epoch: 10. Loss: 0.05950711206007791. ACC 0.6829122737219018 \n",
-            "Epoch: 11. Loss: 0.05936534083551172. ACC 0.6847026059279888 \n",
-            "Epoch: 12. Loss: 0.059265624250833523. ACC 0.6860950865327233 \n",
-            "Epoch: 13. Loss: 0.05915929378561123. ACC 0.6856972349313706 \n",
-            "Epoch: 14. Loss: 0.05908176730351157. ACC 0.6856972349313706 \n",
-            "Epoch: 15. Loss: 0.059000206131192404. ACC 0.6854983091306942 \n",
-            "Epoch: 16. Loss: 0.058936901528389006. ACC 0.686492938134076 \n",
-            "Epoch: 17. Loss: 0.05887285243072874. ACC 0.6874875671374577 \n",
-            "Epoch: 18. Loss: 0.05881847355530327. ACC 0.6874875671374577 \n",
-            "Epoch: 19. Loss: 0.058766317896371524. ACC 0.6878854187388104 \n",
-            "Epoch: 20. Loss: 0.05872137367025815. ACC 0.6888800477421921 \n",
-            "Epoch: 21. Loss: 0.058679233980814365. ACC 0.6898746767455739 \n",
-            "Epoch: 22. Loss: 0.058641203697856054. ACC 0.6912671573503083 \n",
-            "Epoch: 23. Loss: 0.058605874156249974. ACC 0.6904714541476029 \n",
-            "Epoch: 24. Loss: 0.05857295907703337. ACC 0.691068231549632 \n",
-            "Epoch: 25. Loss: 0.05854129607477789. ACC 0.6914660831509847 \n",
-            "Epoch: 26. Loss: 0.05851208630105196. ACC 0.6918639347523374 \n",
-            "Epoch: 27. Loss: 0.058484796124138275. ACC 0.6924607121543664 \n",
-            "Epoch: 28. Loss: 0.0584593109767243. ACC 0.6930574895563955 \n",
-            "Epoch: 29. Loss: 0.05843541669352334. ACC 0.6930574895563955 \n",
-            "Epoch: 30. Loss: 0.05841283296552263. ACC 0.6928585637557191 \n",
-            "Epoch: 31. Loss: 0.058391570612144963. ACC 0.6934553411577482 \n",
-            "Epoch: 32. Loss: 0.058371144431187995. ACC 0.6940521185597772 \n",
-            "Epoch: 33. Loss: 0.05835203282492095. ACC 0.6948478217624826 \n",
-            "Epoch: 34. Loss: 0.058334296909743566. ACC 0.695046747563159 \n",
-            "Epoch: 35. Loss: 0.0583169173122472. ACC 0.695046747563159 \n",
-            "Epoch: 36. Loss: 0.058300359036402176. ACC 0.6952456733638352 \n",
-            "Epoch: 37. Loss: 0.05828488306447149. ACC 0.695643524965188 \n",
-            "Epoch: 38. Loss: 0.05826912266918317. ACC 0.6958424507658644 \n",
-            "Epoch: 39. Loss: 0.05825412129345627. ACC 0.696240302367217 \n",
-            "Epoch: 40. Loss: 0.058240195824845256. ACC 0.6966381539685698 \n",
-            "Epoch: 41. Loss: 0.05822649668077363. ACC 0.6964392281678934 \n",
-            "Epoch: 42. Loss: 0.05821330964221427. ACC 0.6954445991645116 \n",
-            "Epoch: 43. Loss: 0.05820075450537336. ACC 0.6960413765665406 \n",
-            "Epoch: 44. Loss: 0.058187138644179175. ACC 0.6964392281678934 \n",
-            "Epoch: 45. Loss: 0.05817102754545278. ACC 0.696837079769246 \n",
-            "Epoch: 46. Loss: 0.05815539926569149. ACC 0.6970360055699224 \n",
-            "Epoch: 47. Loss: 0.058140018178616554. ACC 0.6964392281678934 \n",
-            "Epoch: 48. Loss: 0.058125598893764126. ACC 0.6970360055699224 \n",
-            "Epoch: 49. Loss: 0.0581111740124541. ACC 0.6972349313705988 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.62      0.27      0.37       230\n",
-            "           1       0.62      0.88      0.73       319\n",
-            "\n",
-            "    accuracy                           0.62       549\n",
-            "   macro avg       0.62      0.57      0.55       549\n",
-            "weighted avg       0.62      0.62      0.58       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-----> HIDDEN DIM 64"
-      ],
-      "metadata": {
-        "id": "vdAowqjnaM6m"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "hidden_dim = 64"
-      ],
-      "metadata": {
-        "id": "s3d0b5JOaM6n"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "39645515-7814-4c72-928c-f07881f21ea9",
-        "id": "dPVElrroaM6n"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06918686282120146. ACC 0.5289437039984086 \n",
-            "Epoch: 1. Loss: 0.06731588176023849. ACC 0.5965784762283668 \n",
-            "Epoch: 2. Loss: 0.06427250460741746. ACC 0.6327829719514622 \n",
-            "Epoch: 3. Loss: 0.062290343412803754. ACC 0.6532723294211259 \n",
-            "Epoch: 4. Loss: 0.06136146768177625. ACC 0.6610304356475035 \n",
-            "Epoch: 5. Loss: 0.06083343859953887. ACC 0.6642132484583251 \n",
-            "Epoch: 6. Loss: 0.06044989986141752. ACC 0.6689874676745574 \n",
-            "Epoch: 7. Loss: 0.06017542718916165. ACC 0.6731649094887607 \n",
-            "Epoch: 8. Loss: 0.05993544316111584. ACC 0.6765466481002586 \n",
-            "Epoch: 9. Loss: 0.05976648447004682. ACC 0.6787348319076985 \n",
-            "Epoch: 10. Loss: 0.05960057801818051. ACC 0.6803262383131092 \n",
-            "Epoch: 11. Loss: 0.05948651382362058. ACC 0.6827133479212254 \n",
-            "Epoch: 12. Loss: 0.05936432487689076. ACC 0.6847026059279888 \n",
-            "Epoch: 13. Loss: 0.05927935623259437. ACC 0.6849015317286652 \n",
-            "Epoch: 14. Loss: 0.05918656135734185. ACC 0.6847026059279888 \n",
-            "Epoch: 15. Loss: 0.05911824261902672. ACC 0.6851004575293416 \n",
-            "Epoch: 16. Loss: 0.05904605627795064. ACC 0.6868907897354287 \n",
-            "Epoch: 17. Loss: 0.058988605759502856. ACC 0.6872886413367814 \n",
-            "Epoch: 18. Loss: 0.05893096965682988. ACC 0.6882832703401631 \n",
-            "Epoch: 19. Loss: 0.05888151869945553. ACC 0.6876864929381341 \n",
-            "Epoch: 20. Loss: 0.05883267014382823. ACC 0.6880843445394867 \n",
-            "Epoch: 21. Loss: 0.05878903034289694. ACC 0.6880843445394867 \n",
-            "Epoch: 22. Loss: 0.058747436989840585. ACC 0.6888800477421921 \n",
-            "Epoch: 23. Loss: 0.0587054798551836. ACC 0.6894768251442212 \n",
-            "Epoch: 24. Loss: 0.058667122392880175. ACC 0.6894768251442212 \n",
-            "Epoch: 25. Loss: 0.05863180214115656. ACC 0.6898746767455739 \n",
-            "Epoch: 26. Loss: 0.05859861508832909. ACC 0.6898746767455739 \n",
-            "Epoch: 27. Loss: 0.05856748351833563. ACC 0.6904714541476029 \n",
-            "Epoch: 28. Loss: 0.058538229263443015. ACC 0.6912671573503083 \n",
-            "Epoch: 29. Loss: 0.058510525766793456. ACC 0.6908693057489557 \n",
-            "Epoch: 30. Loss: 0.05848419636055184. ACC 0.6906703799482793 \n",
-            "Epoch: 31. Loss: 0.058458312939810235. ACC 0.691068231549632 \n",
-            "Epoch: 32. Loss: 0.05843393267185142. ACC 0.6922617863536901 \n",
-            "Epoch: 33. Loss: 0.05841100349302009. ACC 0.6928585637557191 \n",
-            "Epoch: 34. Loss: 0.05838928854984817. ACC 0.6930574895563955 \n",
-            "Epoch: 35. Loss: 0.05836856827623023. ACC 0.6928585637557191 \n",
-            "Epoch: 36. Loss: 0.058349247443076034. ACC 0.6942510443604536 \n",
-            "Epoch: 37. Loss: 0.058329760109379916. ACC 0.6944499701611299 \n",
-            "Epoch: 38. Loss: 0.05830992062570372. ACC 0.6944499701611299 \n",
-            "Epoch: 39. Loss: 0.058295121457578175. ACC 0.6948478217624826 \n",
-            "Epoch: 40. Loss: 0.058276735309912335. ACC 0.6944499701611299 \n",
-            "Epoch: 41. Loss: 0.05826076196466973. ACC 0.6942510443604536 \n",
-            "Epoch: 42. Loss: 0.058244150036344575. ACC 0.6946488959618062 \n",
-            "Epoch: 43. Loss: 0.058228511761215164. ACC 0.6948478217624826 \n",
-            "Epoch: 44. Loss: 0.058213053106289395. ACC 0.6948478217624826 \n",
-            "Epoch: 45. Loss: 0.05819999741848691. ACC 0.695643524965188 \n",
-            "Epoch: 46. Loss: 0.0581852136465482. ACC 0.696240302367217 \n",
-            "Epoch: 47. Loss: 0.058173370629294105. ACC 0.6964392281678934 \n",
-            "Epoch: 48. Loss: 0.05816079556100146. ACC 0.6966381539685698 \n",
-            "Epoch: 49. Loss: 0.058147606986973334. ACC 0.6972349313705988 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.62      0.27      0.37       230\n",
-            "           1       0.62      0.88      0.73       319\n",
-            "\n",
-            "    accuracy                           0.62       549\n",
-            "   macro avg       0.62      0.57      0.55       549\n",
-            "weighted avg       0.62      0.62      0.58       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-----> HIDDEN DIM 100"
-      ],
-      "metadata": {
-        "id": "SPLx4mwpZ8Mt"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "hidden_dim = 100"
-      ],
-      "metadata": {
-        "id": "1N62Mw2nZ8Mu"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "e0bdc61a-14ae-496a-adb0-ac1f94ccbfef",
-        "id": "TZMuIksNZ8Mu"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06917759010752414. ACC 0.520588820370002 \n",
-            "Epoch: 1. Loss: 0.06705762690475263. ACC 0.5961806246270142 \n",
-            "Epoch: 2. Loss: 0.06400140089592214. ACC 0.6401432265764869 \n",
-            "Epoch: 3. Loss: 0.062146776276695244. ACC 0.6552615874278894 \n",
-            "Epoch: 4. Loss: 0.061300162472733455. ACC 0.6612293614481798 \n",
-            "Epoch: 5. Loss: 0.06078929286461263. ACC 0.6650089516610305 \n",
-            "Epoch: 6. Loss: 0.060443362819524796. ACC 0.6697831708772628 \n",
-            "Epoch: 7. Loss: 0.06016214593566149. ACC 0.6737616868907897 \n",
-            "Epoch: 8. Loss: 0.05996537376925133. ACC 0.6769444997016113 \n",
-            "Epoch: 9. Loss: 0.05977933667563102. ACC 0.6787348319076985 \n",
-            "Epoch: 10. Loss: 0.05965504488960184. ACC 0.6807240899144619 \n",
-            "Epoch: 11. Loss: 0.05952140737509476. ACC 0.6817187189178436 \n",
-            "Epoch: 12. Loss: 0.05943459829066178. ACC 0.6827133479212254 \n",
-            "Epoch: 13. Loss: 0.059335262828302926. ACC 0.6841058285259598 \n",
-            "Epoch: 14. Loss: 0.059268764776526185. ACC 0.6837079769246072 \n",
-            "Epoch: 15. Loss: 0.05919364758720686. ACC 0.6851004575293416 \n",
-            "Epoch: 16. Loss: 0.05913926471600552. ACC 0.6849015317286652 \n",
-            "Epoch: 17. Loss: 0.05908131185620401. ACC 0.685896160732047 \n",
-            "Epoch: 18. Loss: 0.059034374656842296. ACC 0.6852993833300179 \n",
-            "Epoch: 19. Loss: 0.058986146157888664. ACC 0.685896160732047 \n",
-            "Epoch: 20. Loss: 0.05894476813802383. ACC 0.6866918639347523 \n",
-            "Epoch: 21. Loss: 0.05890504864970993. ACC 0.6874875671374577 \n",
-            "Epoch: 22. Loss: 0.0588692116682824. ACC 0.6874875671374577 \n",
-            "Epoch: 23. Loss: 0.05883541230133805. ACC 0.6878854187388104 \n",
-            "Epoch: 24. Loss: 0.05880412687025986. ACC 0.6888800477421921 \n",
-            "Epoch: 25. Loss: 0.05877470903755159. ACC 0.6896757509448975 \n",
-            "Epoch: 26. Loss: 0.058747126226375845. ACC 0.6902725283469267 \n",
-            "Epoch: 27. Loss: 0.05872110533078764. ACC 0.6918639347523374 \n",
-            "Epoch: 28. Loss: 0.05869652181774858. ACC 0.6918639347523374 \n",
-            "Epoch: 29. Loss: 0.058673218518098355. ACC 0.6914660831509847 \n",
-            "Epoch: 30. Loss: 0.058651078759924376. ACC 0.6920628605530137 \n",
-            "Epoch: 31. Loss: 0.0586299903769367. ACC 0.6920628605530137 \n",
-            "Epoch: 32. Loss: 0.058609860541452015. ACC 0.6922617863536901 \n",
-            "Epoch: 33. Loss: 0.05859060251430605. ACC 0.6932564153570718 \n",
-            "Epoch: 34. Loss: 0.05857215594386922. ACC 0.6934553411577482 \n",
-            "Epoch: 35. Loss: 0.05855453916091152. ACC 0.6934553411577482 \n",
-            "Epoch: 36. Loss: 0.05853714394194719. ACC 0.6932564153570718 \n",
-            "Epoch: 37. Loss: 0.05852007168127098. ACC 0.6930574895563955 \n",
-            "Epoch: 38. Loss: 0.05850374254597948. ACC 0.6934553411577482 \n",
-            "Epoch: 39. Loss: 0.058488114088364664. ACC 0.6938531927591008 \n",
-            "Epoch: 40. Loss: 0.05847297409360016. ACC 0.6946488959618062 \n",
-            "Epoch: 41. Loss: 0.05845842594794021. ACC 0.6946488959618062 \n",
-            "Epoch: 42. Loss: 0.058444301698372426. ACC 0.6944499701611299 \n",
-            "Epoch: 43. Loss: 0.058430569669183974. ACC 0.6944499701611299 \n",
-            "Epoch: 44. Loss: 0.05841701759219241. ACC 0.695046747563159 \n",
-            "Epoch: 45. Loss: 0.05840258591687772. ACC 0.6948478217624826 \n",
-            "Epoch: 46. Loss: 0.05838884583685302. ACC 0.6948478217624826 \n",
-            "Epoch: 47. Loss: 0.05837544693917433. ACC 0.6952456733638352 \n",
-            "Epoch: 48. Loss: 0.0583625853784947. ACC 0.695046747563159 \n",
-            "Epoch: 49. Loss: 0.05834997150849129. ACC 0.6954445991645116 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.62      0.26      0.36       230\n",
-            "           1       0.62      0.89      0.73       319\n",
-            "\n",
-            "    accuracy                           0.62       549\n",
-            "   macro avg       0.62      0.57      0.55       549\n",
-            "weighted avg       0.62      0.62      0.58       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-----> HIDDEN DIM 512"
-      ],
-      "metadata": {
-        "id": "-n9xrbgOaBBW"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "hidden_dim = 512"
-      ],
-      "metadata": {
-        "id": "j8xOZDOWaBBY"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "8d92a2d5-9781-4a02-dcd3-def3f01f531c",
-        "id": "ZA52chWCaBBY"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.0686950459024032. ACC 0.5365028844241098 \n",
-            "Epoch: 1. Loss: 0.06554919333066195. ACC 0.6210463497115576 \n",
-            "Epoch: 2. Loss: 0.06287430665211766. ACC 0.6465088521981301 \n",
-            "Epoch: 3. Loss: 0.06164849479724428. ACC 0.6566540680326238 \n",
-            "Epoch: 4. Loss: 0.06106089448890891. ACC 0.6630196936542669 \n",
-            "Epoch: 5. Loss: 0.06063713147266973. ACC 0.6671971354684703 \n",
-            "Epoch: 6. Loss: 0.06036763339908692. ACC 0.6697831708772628 \n",
-            "Epoch: 7. Loss: 0.06010269768934779. ACC 0.6743584642928188 \n",
-            "Epoch: 8. Loss: 0.059954377874266634. ACC 0.6771434255022877 \n",
-            "Epoch: 9. Loss: 0.059766372481610396. ACC 0.6797294609110802 \n",
-            "Epoch: 10. Loss: 0.059672780935205144. ACC 0.6809230157151382 \n",
-            "Epoch: 11. Loss: 0.05953542923438803. ACC 0.6817187189178436 \n",
-            "Epoch: 12. Loss: 0.05946852925735794. ACC 0.6835090511239308 \n",
-            "Epoch: 13. Loss: 0.05936599172605822. ACC 0.6843047543266362 \n",
-            "Epoch: 14. Loss: 0.05931339195501693. ACC 0.6841058285259598 \n",
-            "Epoch: 15. Loss: 0.05923553461793263. ACC 0.6852993833300179 \n",
-            "Epoch: 16. Loss: 0.059191132726502366. ACC 0.6860950865327233 \n",
-            "Epoch: 17. Loss: 0.05913125236133517. ACC 0.6860950865327233 \n",
-            "Epoch: 18. Loss: 0.05909214182570651. ACC 0.6854983091306942 \n",
-            "Epoch: 19. Loss: 0.059045274599850095. ACC 0.6860950865327233 \n",
-            "Epoch: 20. Loss: 0.05901029463527642. ACC 0.686492938134076 \n",
-            "Epoch: 21. Loss: 0.05897261184846428. ACC 0.6866918639347523 \n",
-            "Epoch: 22. Loss: 0.05894137235102322. ACC 0.6874875671374577 \n",
-            "Epoch: 23. Loss: 0.058910085372619374. ACC 0.6884821961408395 \n",
-            "Epoch: 24. Loss: 0.058882338112145695. ACC 0.6890789735428685 \n",
-            "Epoch: 25. Loss: 0.05885559505417495. ACC 0.6896757509448975 \n",
-            "Epoch: 26. Loss: 0.05883099805391022. ACC 0.6896757509448975 \n",
-            "Epoch: 27. Loss: 0.058807639518883494. ACC 0.6894768251442212 \n",
-            "Epoch: 28. Loss: 0.058785773026722665. ACC 0.691068231549632 \n",
-            "Epoch: 29. Loss: 0.05876506839235805. ACC 0.6908693057489557 \n",
-            "Epoch: 30. Loss: 0.058745517879161296. ACC 0.691068231549632 \n",
-            "Epoch: 31. Loss: 0.05872697606816168. ACC 0.6908693057489557 \n",
-            "Epoch: 32. Loss: 0.05870937866530979. ACC 0.691665008951661 \n",
-            "Epoch: 33. Loss: 0.05869264146881832. ACC 0.6920628605530137 \n",
-            "Epoch: 34. Loss: 0.058676699977142095. ACC 0.691665008951661 \n",
-            "Epoch: 35. Loss: 0.058661491692552324. ACC 0.6926596379550428 \n",
-            "Epoch: 36. Loss: 0.0586469627432162. ACC 0.6936542669584245 \n",
-            "Epoch: 37. Loss: 0.0586330647826171. ACC 0.6934553411577482 \n",
-            "Epoch: 38. Loss: 0.05861975381572132. ACC 0.6938531927591008 \n",
-            "Epoch: 39. Loss: 0.05860698842637127. ACC 0.6938531927591008 \n",
-            "Epoch: 40. Loss: 0.05859473278301004. ACC 0.6940521185597772 \n",
-            "Epoch: 41. Loss: 0.05858295441551239. ACC 0.6934553411577482 \n",
-            "Epoch: 42. Loss: 0.05857162248407701. ACC 0.6932564153570718 \n",
-            "Epoch: 43. Loss: 0.05856070942733595. ACC 0.6934553411577482 \n",
-            "Epoch: 44. Loss: 0.05855019049400692. ACC 0.6936542669584245 \n",
-            "Epoch: 45. Loss: 0.05854004134779923. ACC 0.6940521185597772 \n",
-            "Epoch: 46. Loss: 0.05853024176676704. ACC 0.6940521185597772 \n",
-            "Epoch: 47. Loss: 0.05852077155860679. ACC 0.6942510443604536 \n",
-            "Epoch: 48. Loss: 0.05851161174634733. ACC 0.6940521185597772 \n",
-            "Epoch: 49. Loss: 0.058502746672949975. ACC 0.6936542669584245 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.62      0.26      0.36       230\n",
-            "           1       0.62      0.89      0.73       319\n",
-            "\n",
-            "    accuracy                           0.62       549\n",
-            "   macro avg       0.62      0.57      0.55       549\n",
-            "weighted avg       0.62      0.62      0.58       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 4. ACTIVATION FUNCTION"
-      ],
-      "metadata": {
-        "id": "SU5hZaAGa-oN"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Already optimized\n",
-        "batch_size = 10\n",
-        "hidden_dim = 10"
-      ],
-      "metadata": {
-        "id": "oFXMMG-xbOS4"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Hyper-parameters\n",
-        "learning_rate = 0.1\n",
-        "criterion = nn.CrossEntropyLoss()\n",
-        "output_dim = 2"
-      ],
-      "metadata": {
-        "id": "hGgQ8IVAbOS4"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "------> RELU"
-      ],
-      "metadata": {
-        "id": "2JOuEGpAbHvD"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class FeedforwardNeuralNetModel(nn.Module):\n",
-        "    def __init__(self, hidden_dim, output_dim, weights_matrix):\n",
-        "        # calls the init function of nn.Module.  Dont get confused by syntax,\n",
-        "        # just always do it in an nn.Module\n",
-        "        super(FeedforwardNeuralNetModel, self).__init__()\n",
-        "\n",
-        "        # Embedding layer\n",
-        "        # ....\n",
-        "        # ----- SOLUTION\n",
-        "        #  mode (string, optional) – \"sum\", \"mean\" or \"max\". Default=mean.\n",
-        "        self.embedding_bag = nn.EmbeddingBag.from_pretrained(\n",
-        "                              weights_matrix,\n",
-        "                              mode='mean')\n",
-        "        embed_dim = self.embedding_bag.embedding_dim \n",
-        "\n",
-        "        # Linear function\n",
-        "        self.fc1 = nn.Linear(embed_dim, hidden_dim)\n",
-        "\n",
-        "        # Non-linearity\n",
-        "        self.activation = nn.ReLU() #<--\n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)  \n",
-        "\n",
-        "    def forward(self, text, offsets):\n",
-        "        # Embedding layer\n",
-        "        # ....\n",
-        "        # ----- SOLUTION\n",
-        "        embedded = self.embedding_bag(text, offsets)\n",
-        "\n",
-        "        # Linear function  \n",
-        "        out = self.fc1(embedded)\n",
-        "\n",
-        "        # Non-linearity  \n",
-        "        out = self.activation(out) \n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        out = self.fc2(out)\n",
-        "        return out"
-      ],
-      "metadata": {
-        "id": "HNaP18nEZNTu"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "3jC2S26dbdD7",
-        "outputId": "1aa5c0e5-1b35-49da-8c78-891cd84d9877"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06942072910889731. ACC 0.5054704595185996 \n",
-            "Epoch: 1. Loss: 0.06856277003448574. ACC 0.5546051322856574 \n",
-            "Epoch: 2. Loss: 0.06591766325692806. ACC 0.6206484981102048 \n",
-            "Epoch: 3. Loss: 0.06291877846962561. ACC 0.6500895166103043 \n",
-            "Epoch: 4. Loss: 0.061278633457636865. ACC 0.6606325840461508 \n",
-            "Epoch: 5. Loss: 0.06041950248856181. ACC 0.6646111000596777 \n",
-            "Epoch: 6. Loss: 0.05980401388190721. ACC 0.6711756514819972 \n",
-            "Epoch: 7. Loss: 0.05930565481089161. ACC 0.6765466481002586 \n",
-            "Epoch: 8. Loss: 0.05886232488336064. ACC 0.6807240899144619 \n",
-            "Epoch: 9. Loss: 0.05843683607729572. ACC 0.6876864929381341 \n",
-            "Epoch: 10. Loss: 0.0579850317790633. ACC 0.6920628605530137 \n",
-            "Epoch: 11. Loss: 0.057525022178799394. ACC 0.6966381539685698 \n",
-            "Epoch: 12. Loss: 0.05711436834870311. ACC 0.6970360055699224 \n",
-            "Epoch: 13. Loss: 0.056641527731138314. ACC 0.7012134473841257 \n",
-            "Epoch: 14. Loss: 0.05623253186346167. ACC 0.7018102247861547 \n",
-            "Epoch: 15. Loss: 0.05579468431827537. ACC 0.7034016311915655 \n",
-            "Epoch: 16. Loss: 0.05532180878509933. ACC 0.7051919633976527 \n",
-            "Epoch: 17. Loss: 0.05489827995156113. ACC 0.7095683310125324 \n",
-            "Epoch: 18. Loss: 0.054420895312779556. ACC 0.7107618858165904 \n",
-            "Epoch: 19. Loss: 0.05386669599431301. ACC 0.7145414760294411 \n",
-            "Epoch: 20. Loss: 0.053418611796020345. ACC 0.7175253630395863 \n",
-            "Epoch: 21. Loss: 0.05291474591447839. ACC 0.722498508056495 \n",
-            "Epoch: 22. Loss: 0.0524292953930438. ACC 0.7244877660632584 \n",
-            "Epoch: 23. Loss: 0.051777515430703705. ACC 0.7294609110801671 \n",
-            "Epoch: 24. Loss: 0.05116368355927942. ACC 0.7338372786950468 \n",
-            "Epoch: 25. Loss: 0.05050421508982472. ACC 0.7358265367018102 \n",
-            "Epoch: 26. Loss: 0.04980646493256104. ACC 0.7390093495126318 \n",
-            "Epoch: 27. Loss: 0.04914311262824698. ACC 0.7453749751342749 \n",
-            "Epoch: 28. Loss: 0.048441451190360765. ACC 0.7487567137457728 \n",
-            "Epoch: 29. Loss: 0.04776734764933562. ACC 0.7571115973741794 \n",
-            "Epoch: 30. Loss: 0.046898810354122376. ACC 0.7640740003978516 \n",
-            "Epoch: 31. Loss: 0.04618029834997922. ACC 0.7702407002188184 \n",
-            "Epoch: 32. Loss: 0.04542325366816797. ACC 0.7774020290431669 \n",
-            "Epoch: 33. Loss: 0.04459663130593437. ACC 0.7833698030634574 \n",
-            "Epoch: 34. Loss: 0.0439375044516026. ACC 0.7851601352695444 \n",
-            "Epoch: 35. Loss: 0.043228709056857856. ACC 0.7913268350905113 \n",
-            "Epoch: 36. Loss: 0.042445782698751655. ACC 0.792918241495922 \n",
-            "Epoch: 37. Loss: 0.04166124297499728. ACC 0.8004774219216232 \n",
-            "Epoch: 38. Loss: 0.04107313388256423. ACC 0.8046548637358265 \n",
-            "Epoch: 39. Loss: 0.04042646231365792. ACC 0.8040580863337975 \n",
-            "Epoch: 40. Loss: 0.03963960715783906. ACC 0.8138054505669385 \n",
-            "Epoch: 41. Loss: 0.038990876658704564. ACC 0.8167893375770837 \n",
-            "Epoch: 42. Loss: 0.0382939168158122. ACC 0.8211657051919634 \n",
-            "Epoch: 43. Loss: 0.03765396263820171. ACC 0.825542072806843 \n",
-            "Epoch: 44. Loss: 0.036975571820862564. ACC 0.8285259598169883 \n",
-            "Epoch: 45. Loss: 0.036351039455820085. ACC 0.8297195146210463 \n",
-            "Epoch: 46. Loss: 0.03568981379946397. ACC 0.8317087726278098 \n",
-            "Epoch: 47. Loss: 0.03518347225020604. ACC 0.835289437039984 \n",
-            "Epoch: 48. Loss: 0.03447389968298339. ACC 0.8444400238710961 \n",
-            "Epoch: 49. Loss: 0.033695441180321764. ACC 0.8442410980704197 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.56      0.52      0.54       230\n",
-            "           1       0.67      0.71      0.69       319\n",
-            "\n",
-            "    accuracy                           0.63       549\n",
-            "   macro avg       0.62      0.61      0.61       549\n",
-            "weighted avg       0.62      0.63      0.63       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "------> Hardtanh"
-      ],
-      "metadata": {
-        "id": "D4tkSoOXckfU"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class FeedforwardNeuralNetModel(nn.Module):\n",
-        "    def __init__(self, hidden_dim, output_dim, weights_matrix):\n",
-        "        # calls the init function of nn.Module.  Dont get confused by syntax,\n",
-        "        # just always do it in an nn.Module\n",
-        "        super(FeedforwardNeuralNetModel, self).__init__()\n",
-        "\n",
-        "        # Embedding layer\n",
-        "        # ....\n",
-        "        # ----- SOLUTION\n",
-        "        #  mode (string, optional) – \"sum\", \"mean\" or \"max\". Default=mean.\n",
-        "        self.embedding_bag = nn.EmbeddingBag.from_pretrained(\n",
-        "                              weights_matrix,\n",
-        "                              mode='mean')\n",
-        "        embed_dim = self.embedding_bag.embedding_dim \n",
-        "\n",
-        "        # Linear function\n",
-        "        self.fc1 = nn.Linear(embed_dim, hidden_dim)\n",
-        "\n",
-        "        # Non-linearity\n",
-        "        self.activation = nn.Hardtanh()\n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)  \n",
-        "\n",
-        "    def forward(self, text, offsets):\n",
-        "        # Embedding layer\n",
-        "        # ....\n",
-        "        # ----- SOLUTION\n",
-        "        embedded = self.embedding_bag(text, offsets)\n",
-        "\n",
-        "        # Linear function  \n",
-        "        out = self.fc1(embedded)\n",
-        "\n",
-        "        # Non-linearity  \n",
-        "        out = self.activation(out) \n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        out = self.fc2(out)\n",
-        "        return out"
-      ],
-      "metadata": {
-        "id": "85rJ0LeNcnVh"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "c09b51cc-7d0e-422f-96c4-56606a02ce6e",
-        "id": "AG3KHam2cnVi"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06912730077827382. ACC 0.5265565943902925 \n",
-            "Epoch: 1. Loss: 0.06693142557656383. ACC 0.6029441018500099 \n",
-            "Epoch: 2. Loss: 0.06379574281168145. ACC 0.6399443007758107 \n",
-            "Epoch: 3. Loss: 0.061910910589310336. ACC 0.6574497712353292 \n",
-            "Epoch: 4. Loss: 0.06103705234050466. ACC 0.6646111000596777 \n",
-            "Epoch: 5. Loss: 0.06050537584409909. ACC 0.6691863934752338 \n",
-            "Epoch: 6. Loss: 0.060124982433715585. ACC 0.6713745772826736 \n",
-            "Epoch: 7. Loss: 0.059825400157692846. ACC 0.6769444997016113 \n",
-            "Epoch: 8. Loss: 0.059586842123642104. ACC 0.6811219415158146 \n",
-            "Epoch: 9. Loss: 0.059389169170625505. ACC 0.6829122737219018 \n",
-            "Epoch: 10. Loss: 0.05923326789253816. ACC 0.6852993833300179 \n",
-            "Epoch: 11. Loss: 0.05909600550976145. ACC 0.685896160732047 \n",
-            "Epoch: 12. Loss: 0.05898585811817601. ACC 0.6856972349313706 \n",
-            "Epoch: 13. Loss: 0.05888758094950559. ACC 0.687089715536105 \n",
-            "Epoch: 14. Loss: 0.05880669621342761. ACC 0.6884821961408395 \n",
-            "Epoch: 15. Loss: 0.0587295797370598. ACC 0.6896757509448975 \n",
-            "Epoch: 16. Loss: 0.058668571952467344. ACC 0.6914660831509847 \n",
-            "Epoch: 17. Loss: 0.058608014249934434. ACC 0.691665008951661 \n",
-            "Epoch: 18. Loss: 0.05855635845426397. ACC 0.6924607121543664 \n",
-            "Epoch: 19. Loss: 0.05850269709331557. ACC 0.6934553411577482 \n",
-            "Epoch: 20. Loss: 0.058469376952695114. ACC 0.6942510443604536 \n",
-            "Epoch: 21. Loss: 0.05842616894455252. ACC 0.6942510443604536 \n",
-            "Epoch: 22. Loss: 0.05838953687486863. ACC 0.6946488959618062 \n",
-            "Epoch: 23. Loss: 0.05835356955644931. ACC 0.6964392281678934 \n",
-            "Epoch: 24. Loss: 0.058319245331894934. ACC 0.6982295603739805 \n",
-            "Epoch: 25. Loss: 0.05828667389533144. ACC 0.6986274119753332 \n",
-            "Epoch: 26. Loss: 0.05825627778523576. ACC 0.6980306345733042 \n",
-            "Epoch: 27. Loss: 0.05822576936656731. ACC 0.6978317087726278 \n",
-            "Epoch: 28. Loss: 0.05819523083136858. ACC 0.6974338571712752 \n",
-            "Epoch: 29. Loss: 0.0581726550000644. ACC 0.6972349313705988 \n",
-            "Epoch: 30. Loss: 0.05813115125554254. ACC 0.696837079769246 \n",
-            "Epoch: 31. Loss: 0.05809444772431218. ACC 0.696837079769246 \n",
-            "Epoch: 32. Loss: 0.0580429145112198. ACC 0.6974338571712752 \n",
-            "Epoch: 33. Loss: 0.05801715195380553. ACC 0.696837079769246 \n",
-            "Epoch: 34. Loss: 0.05796332862758011. ACC 0.6972349313705988 \n",
-            "Epoch: 35. Loss: 0.05790024081043868. ACC 0.6982295603739805 \n",
-            "Epoch: 36. Loss: 0.057840524337295036. ACC 0.6978317087726278 \n",
-            "Epoch: 37. Loss: 0.05779010203289232. ACC 0.6980306345733042 \n",
-            "Epoch: 38. Loss: 0.05775263634002159. ACC 0.6990252635766859 \n",
-            "Epoch: 39. Loss: 0.05771525803844474. ACC 0.6976327829719514 \n",
-            "Epoch: 40. Loss: 0.05767879191795684. ACC 0.6978317087726278 \n",
-            "Epoch: 41. Loss: 0.05764709149531965. ACC 0.6978317087726278 \n",
-            "Epoch: 42. Loss: 0.05761691455412319. ACC 0.6984284861746568 \n",
-            "Epoch: 43. Loss: 0.0575916110840853. ACC 0.6980306345733042 \n",
-            "Epoch: 44. Loss: 0.05755931099271689. ACC 0.7000198925800676 \n",
-            "Epoch: 45. Loss: 0.05753736929815712. ACC 0.6996220409787149 \n",
-            "Epoch: 46. Loss: 0.05750204396575114. ACC 0.6994231151780386 \n",
-            "Epoch: 47. Loss: 0.05749101606306035. ACC 0.6988263377760096 \n",
-            "Epoch: 48. Loss: 0.057454643712879436. ACC 0.7004177441814203 \n",
-            "Epoch: 49. Loss: 0.057430451222672624. ACC 0.6998209667793913 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.64      0.37      0.46       230\n",
-            "           1       0.65      0.85      0.74       319\n",
-            "\n",
-            "    accuracy                           0.65       549\n",
-            "   macro avg       0.64      0.61      0.60       549\n",
-            "weighted avg       0.64      0.65      0.62       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 5. LEARNING RATE"
-      ],
-      "metadata": {
-        "id": "T-MTCs64c9R-"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Already optimized\n",
-        "batch_size = 10\n",
-        "hidden_dim = 10"
-      ],
-      "metadata": {
-        "id": "EGKtAcFfc9R_"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "----> learning_rate = 0.0001"
-      ],
-      "metadata": {
-        "id": "l7QZ17-fdJYY"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "learning_rate = 0.0001"
-      ],
-      "metadata": {
-        "id": "jYkx9YVsc9R_"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "lo6ootHAdJx1",
-        "outputId": "3fad47bb-b328-4729-81b3-6e0507eabf86"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.07287653228362512. ACC 0.49094887606922616 \n",
-            "Epoch: 1. Loss: 0.07263582983997771. ACC 0.49094887606922616 \n",
-            "Epoch: 2. Loss: 0.07241138401481108. ACC 0.49094887606922616 \n",
-            "Epoch: 3. Loss: 0.07220213146932514. ACC 0.49094887606922616 \n",
-            "Epoch: 4. Loss: 0.07200707030718431. ACC 0.49094887606922616 \n",
-            "Epoch: 5. Loss: 0.07182526268303596. ACC 0.49094887606922616 \n",
-            "Epoch: 6. Loss: 0.07165583276312323. ACC 0.49094887606922616 \n",
-            "Epoch: 7. Loss: 0.07149796235008839. ACC 0.49094887606922616 \n",
-            "Epoch: 8. Loss: 0.07135088048447001. ACC 0.49094887606922616 \n",
-            "Epoch: 9. Loss: 0.07121387364163843. ACC 0.49094887606922616 \n",
-            "Epoch: 10. Loss: 0.07108626437751583. ACC 0.49074995026854984 \n",
-            "Epoch: 11. Loss: 0.07096742720496757. ACC 0.49074995026854984 \n",
-            "Epoch: 12. Loss: 0.07085677660647458. ACC 0.49074995026854984 \n",
-            "Epoch: 13. Loss: 0.0707537580110312. ACC 0.49094887606922616 \n",
-            "Epoch: 14. Loss: 0.07065785842978602. ACC 0.49094887606922616 \n",
-            "Epoch: 15. Loss: 0.07056859308145666. ACC 0.49094887606922616 \n",
-            "Epoch: 16. Loss: 0.07048551033665794. ACC 0.49094887606922616 \n",
-            "Epoch: 17. Loss: 0.07040819114877045. ACC 0.49094887606922616 \n",
-            "Epoch: 18. Loss: 0.07033624280535347. ACC 0.49094887606922616 \n",
-            "Epoch: 19. Loss: 0.07026929603506088. ACC 0.49074995026854984 \n",
-            "Epoch: 20. Loss: 0.0702070084579996. ACC 0.49074995026854984 \n",
-            "Epoch: 21. Loss: 0.07014905833714237. ACC 0.49074995026854984 \n",
-            "Epoch: 22. Loss: 0.07009514721055995. ACC 0.49094887606922616 \n",
-            "Epoch: 23. Loss: 0.07004499387997198. ACC 0.49094887606922616 \n",
-            "Epoch: 24. Loss: 0.06999833974635267. ACC 0.49074995026854984 \n",
-            "Epoch: 25. Loss: 0.0699549406879532. ACC 0.49094887606922616 \n",
-            "Epoch: 26. Loss: 0.06991456991781504. ACC 0.49094887606922616 \n",
-            "Epoch: 27. Loss: 0.06987701522111181. ACC 0.49074995026854984 \n",
-            "Epoch: 28. Loss: 0.06984207867058366. ACC 0.49074995026854984 \n",
-            "Epoch: 29. Loss: 0.06980957615226122. ACC 0.49074995026854984 \n",
-            "Epoch: 30. Loss: 0.06977933678447738. ACC 0.49094887606922616 \n",
-            "Epoch: 31. Loss: 0.06975120021449374. ACC 0.49114780186990253 \n",
-            "Epoch: 32. Loss: 0.0697250187053153. ACC 0.49134672767057885 \n",
-            "Epoch: 33. Loss: 0.06970065204907962. ACC 0.49094887606922616 \n",
-            "Epoch: 34. Loss: 0.0696779736140767. ACC 0.49035209866719714 \n",
-            "Epoch: 35. Loss: 0.06965686177220903. ACC 0.49035209866719714 \n",
-            "Epoch: 36. Loss: 0.06963720468917993. ACC 0.49055102446787346 \n",
-            "Epoch: 37. Loss: 0.06961889941151203. ACC 0.49114780186990253 \n",
-            "Epoch: 38. Loss: 0.06960184765734728. ACC 0.49154565347125523 \n",
-            "Epoch: 39. Loss: 0.06958596083191629. ACC 0.49114780186990253 \n",
-            "Epoch: 40. Loss: 0.06957115430065479. ACC 0.49055102446787346 \n",
-            "Epoch: 41. Loss: 0.06955735069727931. ACC 0.49015317286652077 \n",
-            "Epoch: 42. Loss: 0.06954447916494536. ACC 0.49035209866719714 \n",
-            "Epoch: 43. Loss: 0.06953247025777977. ACC 0.49154565347125523 \n",
-            "Epoch: 44. Loss: 0.06952126337515803. ACC 0.49254028247463694 \n",
-            "Epoch: 45. Loss: 0.06951079884129394. ACC 0.49293813407598963 \n",
-            "Epoch: 46. Loss: 0.06950102417754064. ACC 0.493137059876666 \n",
-            "Epoch: 47. Loss: 0.06949188797237243. ACC 0.49134672767057885 \n",
-            "Epoch: 48. Loss: 0.06948334502728008. ACC 0.49015317286652077 \n",
-            "Epoch: 49. Loss: 0.06947535163772398. ACC 0.49055102446787346 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.44      0.70      0.54       230\n",
-            "           1       0.63      0.37      0.46       319\n",
-            "\n",
-            "    accuracy                           0.50       549\n",
-            "   macro avg       0.53      0.53      0.50       549\n",
-            "weighted avg       0.55      0.50      0.50       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "----> learning_rate = 0.5"
-      ],
-      "metadata": {
-        "id": "8ofbW-LidnCo"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "learning_rate = 0.5"
-      ],
-      "metadata": {
-        "id": "1bFV5uzXdiMU"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "5b5eee14-5bec-4d03-c28a-756ebfae8b9d",
-        "id": "SnipbtnodiMV"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06899163271006852. ACC 0.539486771434255 \n",
-            "Epoch: 1. Loss: 0.06517702153740665. ACC 0.617266759498707 \n",
-            "Epoch: 2. Loss: 0.06297323326479258. ACC 0.6399443007758107 \n",
-            "Epoch: 3. Loss: 0.061934177013996325. ACC 0.6520787746170679 \n",
-            "Epoch: 4. Loss: 0.06119394636732792. ACC 0.6564551422319475 \n",
-            "Epoch: 5. Loss: 0.06070206175154949. ACC 0.6628207678535906 \n",
-            "Epoch: 6. Loss: 0.06026897386312247. ACC 0.6677939128704993 \n",
-            "Epoch: 7. Loss: 0.05987513110987206. ACC 0.672170280485379 \n",
-            "Epoch: 8. Loss: 0.05942055651770213. ACC 0.6777402029043167 \n",
-            "Epoch: 9. Loss: 0.05892780445099636. ACC 0.6841058285259598 \n",
-            "Epoch: 10. Loss: 0.05839201176002909. ACC 0.6900736025462503 \n",
-            "Epoch: 11. Loss: 0.05783625583490273. ACC 0.6908693057489557 \n",
-            "Epoch: 12. Loss: 0.057291302460193726. ACC 0.6948478217624826 \n",
-            "Epoch: 13. Loss: 0.056798706483670205. ACC 0.6964392281678934 \n",
-            "Epoch: 14. Loss: 0.056330172334296914. ACC 0.6994231151780386 \n",
-            "Epoch: 15. Loss: 0.05592512204333094. ACC 0.7043962601949473 \n",
-            "Epoch: 16. Loss: 0.05553743654355534. ACC 0.7091704794111796 \n",
-            "Epoch: 17. Loss: 0.055203254224766976. ACC 0.7119554406206485 \n",
-            "Epoch: 18. Loss: 0.0548827683288913. ACC 0.7143425502287647 \n",
-            "Epoch: 19. Loss: 0.05460903216290479. ACC 0.7181221404416153 \n",
-            "Epoch: 20. Loss: 0.05431669450420401. ACC 0.7213049532524368 \n",
-            "Epoch: 21. Loss: 0.05409027660061404. ACC 0.723692062860553 \n",
-            "Epoch: 22. Loss: 0.05384888120702562. ACC 0.7250845434652875 \n",
-            "Epoch: 23. Loss: 0.05359562722510696. ACC 0.7274716530734037 \n",
-            "Epoch: 24. Loss: 0.053376591028336244. ACC 0.7292619852794907 \n",
-            "Epoch: 25. Loss: 0.053156857639817943. ACC 0.7302566142828725 \n",
-            "Epoch: 26. Loss: 0.05292541265890806. ACC 0.7348319076984284 \n",
-            "Epoch: 27. Loss: 0.05272208951578146. ACC 0.7348319076984284 \n",
-            "Epoch: 28. Loss: 0.052520521241531996. ACC 0.7364233141038393 \n",
-            "Epoch: 29. Loss: 0.05235762931206413. ACC 0.737417943107221 \n",
-            "Epoch: 30. Loss: 0.052175618854862854. ACC 0.7380147205092501 \n",
-            "Epoch: 31. Loss: 0.05198571057769729. ACC 0.7392082753133081 \n",
-            "Epoch: 32. Loss: 0.05180545676494418. ACC 0.7394072011139845 \n",
-            "Epoch: 33. Loss: 0.05163319956089598. ACC 0.7406007559180425 \n",
-            "Epoch: 34. Loss: 0.05147196178778232. ACC 0.7402029043166899 \n",
-            "Epoch: 35. Loss: 0.05131960003791473. ACC 0.7386114979112791 \n",
-            "Epoch: 36. Loss: 0.051201086443177696. ACC 0.7394072011139845 \n",
-            "Epoch: 37. Loss: 0.05102002929272888. ACC 0.7406007559180425 \n",
-            "Epoch: 38. Loss: 0.050804019208478005. ACC 0.7396061269146609 \n",
-            "Epoch: 39. Loss: 0.05062438897686259. ACC 0.7417943107221007 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.58      0.23      0.33       230\n",
-            "           1       0.61      0.88      0.72       319\n",
-            "\n",
-            "    accuracy                           0.61       549\n",
-            "   macro avg       0.59      0.55      0.52       549\n",
-            "weighted avg       0.60      0.61      0.56       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "----> learning_rate = 1"
-      ],
-      "metadata": {
-        "id": "QJJ__xWZdu7L"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "learning_rate = 1"
-      ],
-      "metadata": {
-        "id": "oMu4WtyOdu7M"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "f96c8962-cd27-45bc-8894-93119cddac4d",
-        "id": "4aMJb_Pldu7M"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.07048397742898037. ACC 0.5333200716132882 \n",
-            "Epoch: 1. Loss: 0.06720985362822383. ACC 0.5971752536303958 \n",
-            "Epoch: 2. Loss: 0.064870651991438. ACC 0.6210463497115576 \n",
-            "Epoch: 3. Loss: 0.06366148338193137. ACC 0.6363636363636364 \n",
-            "Epoch: 4. Loss: 0.06282020589810658. ACC 0.6471056296001592 \n",
-            "Epoch: 5. Loss: 0.06211517086044704. ACC 0.6614282872488562 \n",
-            "Epoch: 6. Loss: 0.06135640189463656. ACC 0.668788541873881 \n",
-            "Epoch: 7. Loss: 0.06065581123872047. ACC 0.6731649094887607 \n",
-            "Epoch: 8. Loss: 0.059938330245534965. ACC 0.6801273125124329 \n",
-            "Epoch: 9. Loss: 0.059223499554441915. ACC 0.6882832703401631 \n",
-            "Epoch: 10. Loss: 0.05856797975338499. ACC 0.695643524965188 \n",
-            "Epoch: 11. Loss: 0.05786031688097957. ACC 0.7006166699820967 \n",
-            "Epoch: 12. Loss: 0.0571405140085393. ACC 0.705987666600358 \n",
-            "Epoch: 13. Loss: 0.056542831515848505. ACC 0.7111597374179431 \n",
-            "Epoch: 14. Loss: 0.055870077107935366. ACC 0.7167296598368809 \n",
-            "Epoch: 15. Loss: 0.0551753983254316. ACC 0.7242888402625821 \n",
-            "Epoch: 16. Loss: 0.05453141237736365. ACC 0.7312512432862542 \n",
-            "Epoch: 17. Loss: 0.054280134731978145. ACC 0.7358265367018102 \n",
-            "Epoch: 18. Loss: 0.05365139386194801. ACC 0.7402029043166899 \n",
-            "Epoch: 19. Loss: 0.053165083512091746. ACC 0.7411975333200717 \n",
-            "Epoch: 20. Loss: 0.052540554120167365. ACC 0.7517406007559181 \n",
-            "Epoch: 21. Loss: 0.05197549119565035. ACC 0.7598965585836484 \n",
-            "Epoch: 22. Loss: 0.051534760308379515. ACC 0.7583051521782375 \n",
-            "Epoch: 23. Loss: 0.05152658173328654. ACC 0.7636761487964989 \n",
-            "Epoch: 24. Loss: 0.05128098886237008. ACC 0.7676546648100259 \n",
-            "Epoch: 25. Loss: 0.050514043869959425. ACC 0.770638551820171 \n",
-            "Epoch: 26. Loss: 0.050716691796623595. ACC 0.7702407002188184 \n",
-            "Epoch: 27. Loss: 0.05002721436158703. ACC 0.7807837676546648 \n",
-            "Epoch: 28. Loss: 0.049793344056624673. ACC 0.7789934354485777 \n",
-            "Epoch: 29. Loss: 0.05015849819699955. ACC 0.7768052516411379 \n",
-            "Epoch: 30. Loss: 0.04937954791933624. ACC 0.7847622836681918 \n",
-            "Epoch: 31. Loss: 0.0507163125921581. ACC 0.7783966580465487 \n",
-            "Epoch: 32. Loss: 0.049295397164488684. ACC 0.7817783966580466 \n",
-            "Epoch: 33. Loss: 0.04904123517881574. ACC 0.787746170678337 \n",
-            "Epoch: 34. Loss: 0.050237354649234914. ACC 0.7879450964790133 \n",
-            "Epoch: 35. Loss: 0.05178575980344942. ACC 0.7690471454147603 \n",
-            "Epoch: 36. Loss: 0.04931285798694899. ACC 0.7885418738810424 \n",
-            "Epoch: 37. Loss: 0.048327607255535. ACC 0.7970956833101254 \n",
-            "Epoch: 38. Loss: 0.05123219209324301. ACC 0.7776009548438433 \n",
-            "Epoch: 39. Loss: 0.05082752190860811. ACC 0.7853590610702208 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.49      0.70      0.58       230\n",
-            "           1       0.69      0.48      0.56       319\n",
-            "\n",
-            "    accuracy                           0.57       549\n",
-            "   macro avg       0.59      0.59      0.57       549\n",
-            "weighted avg       0.60      0.57      0.57       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "----> learning_rate = 0.2"
-      ],
-      "metadata": {
-        "id": "PBHmPwG7eEyF"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "learning_rate = 0.2"
-      ],
-      "metadata": {
-        "id": "KNmltKiMeEyF"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "3cbffae1-c6a3-4adb-d28f-527629a7897a",
-        "id": "PmDE6j86eEyF"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06899349832240739. ACC 0.5325243684105828 \n",
-            "Epoch: 1. Loss: 0.06535281002912792. ACC 0.6166699820966779 \n",
-            "Epoch: 2. Loss: 0.06280231211421171. ACC 0.6445195941913666 \n",
-            "Epoch: 3. Loss: 0.061588076105026736. ACC 0.6560572906305948 \n",
-            "Epoch: 4. Loss: 0.06084509976156336. ACC 0.6652078774617067 \n",
-            "Epoch: 5. Loss: 0.06039042388773923. ACC 0.6677939128704993 \n",
-            "Epoch: 6. Loss: 0.060018786022623755. ACC 0.6741595384921424 \n",
-            "Epoch: 7. Loss: 0.05978551142989273. ACC 0.6761487964989059 \n",
-            "Epoch: 8. Loss: 0.05955219064267274. ACC 0.6805251641137856 \n",
-            "Epoch: 9. Loss: 0.05941371199077798. ACC 0.6823154963198726 \n",
-            "Epoch: 10. Loss: 0.05925566872190191. ACC 0.6847026059279888 \n",
-            "Epoch: 11. Loss: 0.059158015925817375. ACC 0.6860950865327233 \n",
-            "Epoch: 12. Loss: 0.05904056864299854. ACC 0.6876864929381341 \n",
-            "Epoch: 13. Loss: 0.05895315326182629. ACC 0.6900736025462503 \n",
-            "Epoch: 14. Loss: 0.05884284056131755. ACC 0.6906703799482793 \n",
-            "Epoch: 15. Loss: 0.058768001623838544. ACC 0.6912671573503083 \n",
-            "Epoch: 16. Loss: 0.058660021839877924. ACC 0.6918639347523374 \n",
-            "Epoch: 17. Loss: 0.058595194200267604. ACC 0.6920628605530137 \n",
-            "Epoch: 18. Loss: 0.0585134467263807. ACC 0.691665008951661 \n",
-            "Epoch: 19. Loss: 0.05843780175672508. ACC 0.6920628605530137 \n",
-            "Epoch: 20. Loss: 0.058367803998132906. ACC 0.6934553411577482 \n",
-            "Epoch: 21. Loss: 0.058319510096509576. ACC 0.6938531927591008 \n",
-            "Epoch: 22. Loss: 0.05823388837406833. ACC 0.6926596379550428 \n",
-            "Epoch: 23. Loss: 0.05819618467761006. ACC 0.6944499701611299 \n",
-            "Epoch: 24. Loss: 0.058123201463813924. ACC 0.6948478217624826 \n",
-            "Epoch: 25. Loss: 0.05807964422248907. ACC 0.6948478217624826 \n",
-            "Epoch: 26. Loss: 0.05803262060409942. ACC 0.6966381539685698 \n",
-            "Epoch: 27. Loss: 0.058006321421100196. ACC 0.6964392281678934 \n",
-            "Epoch: 28. Loss: 0.057945672189214724. ACC 0.6980306345733042 \n",
-            "Epoch: 29. Loss: 0.0579122100295901. ACC 0.6964392281678934 \n",
-            "Epoch: 30. Loss: 0.05785082062765265. ACC 0.6984284861746568 \n",
-            "Epoch: 31. Loss: 0.05783017722232835. ACC 0.6982295603739805 \n",
-            "Epoch: 32. Loss: 0.05776693871878762. ACC 0.6988263377760096 \n",
-            "Epoch: 33. Loss: 0.057726877369320084. ACC 0.7004177441814203 \n",
-            "Epoch: 34. Loss: 0.05768596271124469. ACC 0.7000198925800676 \n",
-            "Epoch: 35. Loss: 0.0576562900292558. ACC 0.6990252635766859 \n",
-            "Epoch: 36. Loss: 0.05760319688957113. ACC 0.6994231151780386 \n",
-            "Epoch: 37. Loss: 0.057580855810099196. ACC 0.6990252635766859 \n",
-            "Epoch: 38. Loss: 0.057520069213043465. ACC 0.7006166699820967 \n",
-            "Epoch: 39. Loss: 0.05750346502727511. ACC 0.7004177441814203 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.62      0.32      0.42       230\n",
-            "           1       0.64      0.86      0.73       319\n",
-            "\n",
-            "    accuracy                           0.63       549\n",
-            "   macro avg       0.63      0.59      0.58       549\n",
-            "weighted avg       0.63      0.63      0.60       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 6. OPTIMIZER"
-      ],
-      "metadata": {
-        "id": "enMCV7JAeU1k"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Best results with SGD:\n",
-        "\n",
-        "```\n",
-        "              precision    recall  f1-score   support\n",
-        "\n",
-        "           0       0.65      0.34      0.45       230\n",
-        "           1       0.65      0.87      0.74       319\n",
-        "\n",
-        "    accuracy                           0.65       549\n",
-        "   macro avg       0.65      0.61      0.60       549\n",
-        "weighted avg       0.65      0.65      0.62       549\n",
-        "```"
-      ],
-      "metadata": {
-        "id": "DWf55kPme54B"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Already optimized\n",
-        "num_epochs = 40\n",
-        "batch_size = 10\n",
-        "hidden_dim = 10\n",
-        "learning_rate = 0.1\n",
-        "# activation = hard than\n"
-      ],
-      "metadata": {
-        "id": "t38eX3rheWnZ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "\n",
-        "# --> Adam\n",
-        "optimizer = torch.optim.Adam(model_ffnn.parameters(), lr=learning_rate)\n",
-        "\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "JBnYT4fJeswN",
-        "outputId": "142ff51c-5bb2-4ab7-b5d3-4cce5dd2b4f6"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.07264429911813988. ACC 0.570917047941118 \n",
-            "Epoch: 1. Loss: 0.0698777247855363. ACC 0.6085140242689476 \n",
-            "Epoch: 2. Loss: 0.06719673022565582. ACC 0.6427292619852795 \n",
-            "Epoch: 3. Loss: 0.06782082412395607. ACC 0.6347722299582256 \n",
-            "Epoch: 4. Loss: 0.06586369816958608. ACC 0.6514819972150387 \n",
-            "Epoch: 5. Loss: 0.06640658026065745. ACC 0.6602347324447981 \n",
-            "Epoch: 6. Loss: 0.06676655723201083. ACC 0.655062661627213 \n",
-            "Epoch: 7. Loss: 0.065749119306941. ACC 0.6606325840461508 \n",
-            "Epoch: 8. Loss: 0.0638378215714717. ACC 0.6658046548637359 \n",
-            "Epoch: 9. Loss: 0.06394622921469388. ACC 0.6757509448975532 \n",
-            "Epoch: 10. Loss: 0.06449328309585685. ACC 0.6791326835090511 \n",
-            "Epoch: 11. Loss: 0.06400464364441057. ACC 0.681320867316491 \n",
-            "Epoch: 12. Loss: 0.06352166555227569. ACC 0.6892778993435449 \n",
-            "Epoch: 13. Loss: 0.062298728503999735. ACC 0.691665008951661 \n",
-            "Epoch: 14. Loss: 0.06232551923709004. ACC 0.6924607121543664 \n",
-            "Epoch: 15. Loss: 0.06114841115469958. ACC 0.6944499701611299 \n",
-            "Epoch: 16. Loss: 0.05976851396699869. ACC 0.7085737020091506 \n",
-            "Epoch: 17. Loss: 0.06054833280013384. ACC 0.7006166699820967 \n",
-            "Epoch: 18. Loss: 0.059087974456757134. ACC 0.7119554406206485 \n",
-            "Epoch: 19. Loss: 0.059151375325745326. ACC 0.7103640342152377 \n",
-            "Epoch: 20. Loss: 0.058917334649703695. ACC 0.7175253630395863 \n",
-            "Epoch: 21. Loss: 0.059819571482677546. ACC 0.7034016311915655 \n",
-            "Epoch: 22. Loss: 0.05843818292054358. ACC 0.7177242888402626 \n",
-            "Epoch: 23. Loss: 0.05739628991639375. ACC 0.7219017306544658 \n",
-            "Epoch: 24. Loss: 0.05801852424196441. ACC 0.7228963596578476 \n",
-            "Epoch: 25. Loss: 0.05775874622072784. ACC 0.7232942112592003 \n",
-            "Epoch: 26. Loss: 0.05823313734754075. ACC 0.719116769444997 \n",
-            "Epoch: 27. Loss: 0.056928637741170254. ACC 0.7256813208673165 \n",
-            "Epoch: 28. Loss: 0.05637881731877916. ACC 0.7286652078774617 \n",
-            "Epoch: 29. Loss: 0.056092530804657904. ACC 0.737417943107221 \n",
-            "Epoch: 30. Loss: 0.056385003240760144. ACC 0.7304555400835488 \n",
-            "Epoch: 31. Loss: 0.05450110447965229. ACC 0.7413964591207479 \n",
-            "Epoch: 32. Loss: 0.05588278492906351. ACC 0.7330415754923414 \n",
-            "Epoch: 33. Loss: 0.05449453544932093. ACC 0.7475631589417148 \n",
-            "Epoch: 34. Loss: 0.053483706472324095. ACC 0.7537298587626815 \n",
-            "Epoch: 35. Loss: 0.05486349593859106. ACC 0.7509448975532127 \n",
-            "Epoch: 36. Loss: 0.05452731025768531. ACC 0.7455739009349512 \n",
-            "Epoch: 37. Loss: 0.05441718007861584. ACC 0.7493534911478019 \n",
-            "Epoch: 38. Loss: 0.05406648226664795. ACC 0.7515416749552417 \n",
-            "Epoch: 39. Loss: 0.053826684245229454. ACC 0.7589019295802666 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.61      0.25      0.35       230\n",
-            "           1       0.62      0.89      0.73       319\n",
-            "\n",
-            "    accuracy                           0.62       549\n",
-            "   macro avg       0.62      0.57      0.54       549\n",
-            "weighted avg       0.62      0.62      0.57       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "\n",
-        "# --> RMSprop\n",
-        "optimizer = torch.optim.RMSprop(model_ffnn.parameters(), lr=learning_rate)\n",
-        "\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "5bsQDKcMfC2u",
-        "outputId": "d615f772-4ee7-4efa-e13c-3a7f22b839de"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.09697006490753687. ACC 0.5058683111199522 \n",
-            "Epoch: 1. Loss: 0.08242940319943243. ACC 0.5237716331808235 \n",
-            "Epoch: 2. Loss: 0.07632671735598312. ACC 0.5834493733837278 \n",
-            "Epoch: 3. Loss: 0.07356333009926823. ACC 0.6077183210662422 \n",
-            "Epoch: 4. Loss: 0.07211291304764843. ACC 0.6341754525561966 \n",
-            "Epoch: 5. Loss: 0.06881588072574753. ACC 0.6532723294211259 \n",
-            "Epoch: 6. Loss: 0.06823393546588762. ACC 0.6532723294211259 \n",
-            "Epoch: 7. Loss: 0.06615830103155157. ACC 0.6705788740799682 \n",
-            "Epoch: 8. Loss: 0.06583924692324955. ACC 0.672767057887408 \n",
-            "Epoch: 9. Loss: 0.06481681103103555. ACC 0.6801273125124329 \n",
-            "Epoch: 10. Loss: 0.06337317771600497. ACC 0.6920628605530137 \n",
-            "Epoch: 11. Loss: 0.06232508947034942. ACC 0.6958424507658644 \n",
-            "Epoch: 12. Loss: 0.060841072802043754. ACC 0.7137457728267357 \n",
-            "Epoch: 13. Loss: 0.061758819855608806. ACC 0.7051919633976527 \n",
-            "Epoch: 14. Loss: 0.06073459279757739. ACC 0.7097672568132086 \n",
-            "Epoch: 15. Loss: 0.05904280062618895. ACC 0.7195146210463497 \n",
-            "Epoch: 16. Loss: 0.057938514900937904. ACC 0.7324447980903123 \n",
-            "Epoch: 17. Loss: 0.05864429787343792. ACC 0.7246866918639348 \n",
-            "Epoch: 18. Loss: 0.05763244996321991. ACC 0.7316490948876069 \n",
-            "Epoch: 19. Loss: 0.05643269296951173. ACC 0.7352297592997812 \n",
-            "Epoch: 20. Loss: 0.05568546101210818. ACC 0.7429878655261587 \n",
-            "Epoch: 21. Loss: 0.05648875765625468. ACC 0.7433857171275114 \n",
-            "Epoch: 22. Loss: 0.05520759497200231. ACC 0.7400039785160135 \n",
-            "Epoch: 23. Loss: 0.05451818002320816. ACC 0.7517406007559181 \n",
-            "Epoch: 24. Loss: 0.05449903000354388. ACC 0.7525363039586235 \n",
-            "Epoch: 25. Loss: 0.05405041901200198. ACC 0.7533320071613289 \n",
-            "Epoch: 26. Loss: 0.0540137551295098. ACC 0.751143823353889 \n",
-            "Epoch: 27. Loss: 0.053885131552652406. ACC 0.7549234135667396 \n",
-            "Epoch: 28. Loss: 0.05264411930840367. ACC 0.7612890391883828 \n",
-            "Epoch: 29. Loss: 0.05198502114480975. ACC 0.7664611100059677 \n",
-            "Epoch: 30. Loss: 0.05111291729949781. ACC 0.774020290431669 \n",
-            "Epoch: 31. Loss: 0.05044663274634399. ACC 0.7785955838472249 \n",
-            "Epoch: 32. Loss: 0.05148766371075998. ACC 0.7702407002188184 \n",
-            "Epoch: 33. Loss: 0.053206163160436214. ACC 0.7577083747762084 \n",
-            "Epoch: 34. Loss: 0.052041790745107515. ACC 0.7634772229958225 \n",
-            "Epoch: 35. Loss: 0.05049813932883519. ACC 0.7783966580465487 \n",
-            "Epoch: 36. Loss: 0.050170299291954566. ACC 0.7809826934553411 \n",
-            "Epoch: 37. Loss: 0.04990425775198498. ACC 0.7817783966580466 \n",
-            "Epoch: 38. Loss: 0.04984352514384897. ACC 0.7851601352695444 \n",
-            "Epoch: 39. Loss: 0.049690401037443176. ACC 0.782574099860752 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.57      0.21      0.31       230\n",
-            "           1       0.61      0.89      0.72       319\n",
-            "\n",
-            "    accuracy                           0.60       549\n",
-            "   macro avg       0.59      0.55      0.51       549\n",
-            "weighted avg       0.59      0.60      0.55       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "These alternatives do not work better here"
-      ],
-      "metadata": {
-        "id": "fXzs8Ty_fed_"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### todo NUMBER OF EPOCHS"
-      ],
-      "metadata": {
-        "id": "I3fnAViV7Gfx"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Hyperparameters\n",
-        "hidden_dim = 4\n",
-        "learning_rate = 0.1\n",
-        "criterion = nn.CrossEntropyLoss()\n",
-        "output_dim = 2"
-      ],
-      "metadata": {
-        "id": "k9LyIz0C7RJX"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "osgk0yyxIHeX"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "------> EPOCHS 5"
-      ],
-      "metadata": {
-        "id": "wVCcgJ4W7T9F"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "num_epochs = 5"
-      ],
-      "metadata": {
-        "id": "b73SD6T27S6g"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=5 )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "946088ea-438b-42a9-9120-0d7f3b49ae64",
-        "id": "LIwM6tKg7Gfz"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06961566724382624. ACC 0.4993037596976328 \n",
-            "Epoch: 1. Loss: 0.06948280193375526. ACC 0.5084543465287448 \n",
-            "Epoch: 2. Loss: 0.0693099447289826. ACC 0.5184006365625622 \n",
-            "Epoch: 3. Loss: 0.06904770855119173. ACC 0.5335189974139646 \n",
-            "Epoch: 4. Loss: 0.06864595733344353. ACC 0.5528148000795703 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.49      0.64      0.56       230\n",
-            "           1       0.67      0.53      0.59       319\n",
-            "\n",
-            "    accuracy                           0.58       549\n",
-            "   macro avg       0.58      0.58      0.57       549\n",
-            "weighted avg       0.60      0.58      0.58       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-------> EPOCHS 50"
-      ],
-      "metadata": {
-        "id": "rI9VK8mI7dUO"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "num_epochs = 5"
-      ],
-      "metadata": {
-        "id": "P_B5hb6M7bED"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs ) # <---- bien modifie ici !\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "524df7c0-c715-4dbb-f40d-0dcf81eb77a3",
-        "id": "UCzagdA-7bEE"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06958532500556337. ACC 0.5050726079172468 \n",
-            "Epoch: 1. Loss: 0.0694332154579231. ACC 0.5128307141436245 \n",
-            "Epoch: 2. Loss: 0.06921998313152934. ACC 0.5203898945693256 \n",
-            "Epoch: 3. Loss: 0.06889650951874572. ACC 0.5363039586234335 \n",
-            "Epoch: 4. Loss: 0.06840828495659268. ACC 0.5627610901133877 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.56      0.49      0.52       230\n",
-            "           1       0.66      0.72      0.69       319\n",
-            "\n",
-            "    accuracy                           0.62       549\n",
-            "   macro avg       0.61      0.60      0.61       549\n",
-            "weighted avg       0.62      0.62      0.62       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# To optimize\n",
-        "num_epochs = 50"
-      ],
-      "metadata": {
-        "id": "JkLqF0TO7Z5O"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "0e1cf32d-6454-48e3-ab6b-dc495302c852",
-        "id": "f3j9943U7Z5P"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06974182658672617. ACC 0.4991048338969564 \n",
-            "Epoch: 1. Loss: 0.06959589539784572. ACC 0.5030833499104834 \n",
-            "Epoch: 2. Loss: 0.06954592943001818. ACC 0.5048736821165705 \n",
-            "Epoch: 3. Loss: 0.06946516128285447. ACC 0.5106425303361846 \n",
-            "Epoch: 4. Loss: 0.06933077723410344. ACC 0.5174060075591804 \n",
-            "Epoch: 5. Loss: 0.06910902816637007. ACC 0.5253630395862343 \n",
-            "Epoch: 6. Loss: 0.06875421752127213. ACC 0.5450566938531928 \n",
-            "Epoch: 7. Loss: 0.06821451198753553. ACC 0.5691267157350308 \n",
-            "Epoch: 8. Loss: 0.06745087245550738. ACC 0.5957827730256614 \n",
-            "Epoch: 9. Loss: 0.06646774455190582. ACC 0.6182613885020887 \n",
-            "Epoch: 10. Loss: 0.06533211761922895. ACC 0.630992639745375 \n",
-            "Epoch: 11. Loss: 0.06415400347131987. ACC 0.6482991844042172 \n",
-            "Epoch: 12. Loss: 0.0630416821088899. ACC 0.658444400238711 \n",
-            "Epoch: 13. Loss: 0.062068336386317306. ACC 0.6660035806644121 \n",
-            "Epoch: 14. Loss: 0.06126375362700915. ACC 0.6705788740799682 \n",
-            "Epoch: 15. Loss: 0.060623588169785414. ACC 0.6745573900934951 \n",
-            "Epoch: 16. Loss: 0.06012473420947879. ACC 0.6779391287049931 \n",
-            "Epoch: 17. Loss: 0.059738411500483826. ACC 0.6817187189178436 \n",
-            "Epoch: 18. Loss: 0.059437829628364455. ACC 0.6827133479212254 \n",
-            "Epoch: 19. Loss: 0.05920113778764077. ACC 0.6854983091306942 \n",
-            "Epoch: 20. Loss: 0.0590116542602643. ACC 0.685896160732047 \n",
-            "Epoch: 21. Loss: 0.05885704045198963. ACC 0.6872886413367814 \n",
-            "Epoch: 22. Loss: 0.058728317605446036. ACC 0.6888800477421921 \n",
-            "Epoch: 23. Loss: 0.058619045448843894. ACC 0.6898746767455739 \n",
-            "Epoch: 24. Loss: 0.05852469103531262. ACC 0.6918639347523374 \n",
-            "Epoch: 25. Loss: 0.05844213044475034. ACC 0.6924607121543664 \n",
-            "Epoch: 26. Loss: 0.05836920895205593. ACC 0.695643524965188 \n",
-            "Epoch: 27. Loss: 0.058304359027398896. ACC 0.6946488959618062 \n",
-            "Epoch: 28. Loss: 0.05824632115361229. ACC 0.695046747563159 \n",
-            "Epoch: 29. Loss: 0.058194001341805156. ACC 0.6954445991645116 \n",
-            "Epoch: 30. Loss: 0.058146420063686956. ACC 0.6966381539685698 \n",
-            "Epoch: 31. Loss: 0.05810272050397117. ACC 0.6970360055699224 \n",
-            "Epoch: 32. Loss: 0.05806217686020643. ACC 0.6964392281678934 \n",
-            "Epoch: 33. Loss: 0.05802419174611509. ACC 0.6980306345733042 \n",
-            "Epoch: 34. Loss: 0.057988279923924115. ACC 0.6978317087726278 \n",
-            "Epoch: 35. Loss: 0.05795405742565775. ACC 0.6994231151780386 \n",
-            "Epoch: 36. Loss: 0.05792121719906149. ACC 0.6996220409787149 \n",
-            "Epoch: 37. Loss: 0.05788951218187489. ACC 0.7000198925800676 \n",
-            "Epoch: 38. Loss: 0.057858746260944074. ACC 0.7000198925800676 \n",
-            "Epoch: 39. Loss: 0.05782876131855661. ACC 0.7000198925800676 \n",
-            "Epoch: 40. Loss: 0.0577994254644666. ACC 0.700218818380744 \n",
-            "Epoch: 41. Loss: 0.057770634037802845. ACC 0.700218818380744 \n",
-            "Epoch: 42. Loss: 0.05774229846158131. ACC 0.6998209667793913 \n",
-            "Epoch: 43. Loss: 0.05771434464795181. ACC 0.7006166699820967 \n",
-            "Epoch: 44. Loss: 0.05768671226899857. ACC 0.7004177441814203 \n",
-            "Epoch: 45. Loss: 0.05765934953970347. ACC 0.7014123731848021 \n",
-            "Epoch: 46. Loss: 0.05763221215082491. ACC 0.7012134473841257 \n",
-            "Epoch: 47. Loss: 0.057605264087024016. ACC 0.7012134473841257 \n",
-            "Epoch: 48. Loss: 0.05757847185255354. ACC 0.700815595782773 \n",
-            "Epoch: 49. Loss: 0.05755180793940155. ACC 0.6998209667793913 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.65      0.33      0.44       230\n",
-            "           1       0.64      0.87      0.74       319\n",
-            "\n",
-            "    accuracy                           0.64       549\n",
-            "   macro avg       0.65      0.60      0.59       549\n",
-            "weighted avg       0.65      0.64      0.61       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "--------> EPOCHS 40"
-      ],
-      "metadata": {
-        "id": "lzGveQ6eZdNH"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Final value\n",
-        "num_epochs = 40"
-      ],
-      "metadata": {
-        "id": "m-mwa66bZZpG"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "training( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "673d5ded-f25d-4fcf-b390-9372d7e22a3d",
-        "id": "3x_KKznZZZpH"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.06965734783403675. ACC 0.5002983887010145 \n",
-            "Epoch: 1. Loss: 0.06959862697899923. ACC 0.4985080564949274 \n",
-            "Epoch: 2. Loss: 0.06953820148092012. ACC 0.5040779789138651 \n",
-            "Epoch: 3. Loss: 0.0694468540132271. ACC 0.5086532723294211 \n",
-            "Epoch: 4. Loss: 0.06930082560960972. ACC 0.516610304356475 \n",
-            "Epoch: 5. Loss: 0.06906634956888776. ACC 0.5279490749950269 \n",
-            "Epoch: 6. Loss: 0.06870004659811688. ACC 0.5436642132484584 \n",
-            "Epoch: 7. Loss: 0.06815687391661687. ACC 0.570917047941118 \n",
-            "Epoch: 8. Loss: 0.06740806327796679. ACC 0.6007559180425701 \n",
-            "Epoch: 9. Loss: 0.06646292948784495. ACC 0.618460314302765 \n",
-            "Epoch: 10. Loss: 0.06537891070980757. ACC 0.6317883429480804 \n",
-            "Epoch: 11. Loss: 0.06424785023753392. ACC 0.6433260393873085 \n",
-            "Epoch: 12. Loss: 0.06316567815414878. ACC 0.655062661627213 \n",
-            "Epoch: 13. Loss: 0.0622045275454543. ACC 0.6644121742590013 \n",
-            "Epoch: 14. Loss: 0.06139975504607691. ACC 0.6677939128704993 \n",
-            "Epoch: 15. Loss: 0.06075341642341629. ACC 0.6749552416948478 \n",
-            "Epoch: 16. Loss: 0.06024713083577009. ACC 0.6757509448975532 \n",
-            "Epoch: 17. Loss: 0.059854913373246735. ACC 0.6801273125124329 \n",
-            "Epoch: 18. Loss: 0.059551304985472855. ACC 0.682514422120549 \n",
-            "Epoch: 19. Loss: 0.05931491827618561. ACC 0.6854983091306942 \n",
-            "Epoch: 20. Loss: 0.05912910468516208. ACC 0.6860950865327233 \n",
-            "Epoch: 21. Loss: 0.05898135331959001. ACC 0.6874875671374577 \n",
-            "Epoch: 22. Loss: 0.05886238056337096. ACC 0.6880843445394867 \n",
-            "Epoch: 23. Loss: 0.0587652856760099. ACC 0.6892778993435449 \n",
-            "Epoch: 24. Loss: 0.0586849166499423. ACC 0.6902725283469267 \n",
-            "Epoch: 25. Loss: 0.0586173931125241. ACC 0.6912671573503083 \n",
-            "Epoch: 26. Loss: 0.058559769678950574. ACC 0.6934553411577482 \n",
-            "Epoch: 27. Loss: 0.05850979673926485. ACC 0.6946488959618062 \n",
-            "Epoch: 28. Loss: 0.05846574890084738. ACC 0.6952456733638352 \n",
-            "Epoch: 29. Loss: 0.058426297378511585. ACC 0.6972349313705988 \n",
-            "Epoch: 30. Loss: 0.05839041295169195. ACC 0.6976327829719514 \n",
-            "Epoch: 31. Loss: 0.05835730454569335. ACC 0.6986274119753332 \n",
-            "Epoch: 32. Loss: 0.05832635464714753. ACC 0.7000198925800676 \n",
-            "Epoch: 33. Loss: 0.058297083389457896. ACC 0.7000198925800676 \n",
-            "Epoch: 34. Loss: 0.05826912110407215. ACC 0.700218818380744 \n",
-            "Epoch: 35. Loss: 0.058242175233798064. ACC 0.7006166699820967 \n",
-            "Epoch: 36. Loss: 0.058216016217162124. ACC 0.7000198925800676 \n",
-            "Epoch: 37. Loss: 0.05819046414346659. ACC 0.7000198925800676 \n",
-            "Epoch: 38. Loss: 0.058165371755920965. ACC 0.700218818380744 \n",
-            "Epoch: 39. Loss: 0.05814062157634335. ACC 0.6998209667793913 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.66      0.33      0.44       230\n",
-            "           1       0.64      0.87      0.74       319\n",
-            "\n",
-            "    accuracy                           0.65       549\n",
-            "   macro avg       0.65      0.60      0.59       549\n",
-            "weighted avg       0.65      0.65      0.62       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "---> Loss continues to decrease slightly, accuracy starts to even decrease around 40. We keep 40."
-      ],
-      "metadata": {
-        "id": "iw-cOfbUZDoq"
-      }
-    }
-  ]
-}
\ No newline at end of file
diff --git a/notebooks/TP5_masterLiTL_RNN_2223.ipynb b/notebooks/TP5_masterLiTL_RNN_2223.ipynb
deleted file mode 100644
index 614d8b8e8b51ba23272a4ef3122c1c9eecf470bb..0000000000000000000000000000000000000000
--- a/notebooks/TP5_masterLiTL_RNN_2223.ipynb
+++ /dev/null
@@ -1,1251 +0,0 @@
-{
-  "nbformat": 4,
-  "nbformat_minor": 0,
-  "metadata": {
-    "colab": {
-      "provenance": []
-    },
-    "kernelspec": {
-      "name": "python3",
-      "display_name": "Python 3"
-    },
-    "language_info": {
-      "name": "python"
-    },
-    "accelerator": "GPU",
-    "gpuClass": "standard"
-  },
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# RNNs: implementing an LSTM with Pytorch\n",
-        "\n",
-        "* Modifications in the PyTorch code to use RNNs for classification \n",
-        "* POS tagging with RNNs\n",
-        "\n",
-        "You need to upload:\n",
-        "* the files from the Allocine corpus\n",
-        "* the file corresponding to the Fasttext embeddings: cc.fr.300.10000.vec\n",
-        "* the file *reader_pytorch_tp5.py* that contains some functions used during the TP (see the import line below). Organizing your code with modules improves readability!"
-      ],
-      "metadata": {
-        "id": "ov8EeZiWBpBC"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "tnlfNu2bBm2u"
-      },
-      "outputs": [],
-      "source": [
-        "from reader_pytorch_tp5 import Dataset\n",
-        "#, load_weights_matrix, load_vectors\n",
-        "# torch and torch modules to deal with text data\n",
-        "import torch \n",
-        "import torch.nn as nn\n",
-        "from torchtext.data.utils import get_tokenizer\n",
-        "from torchtext.vocab import build_vocab_from_iterator\n",
-        "from torch.utils.data import DataLoader\n",
-        "# you can use scikit to print scores\n",
-        "from sklearn.metrics import classification_report"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# CUDA for PyTorch\n",
-        "use_cuda = torch.cuda.is_available()\n",
-        "device = torch.device(\"cuda\" if use_cuda else \"cpu\")\n",
-        "print(device)"
-      ],
-      "metadata": {
-        "id": "KzNS86rVEv-M"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Paths to data:"
-      ],
-      "metadata": {
-        "id": "taGY9N-PJvWS"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Data files\n",
-        "train_file = \"allocine_train.tsv\"\n",
-        "dev_file = \"allocine_dev.tsv\"\n",
-        "test_file = \"allocine_test.tsv\"\n",
-        "# embeddings\n",
-        "embed_file='cc.fr.300.10000.vec'"
-      ],
-      "metadata": {
-        "id": "kGty4hWCJurB"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 0- Read and load the data (code given)\n",
-        "\n",
-        "We are going to make experiments using either an architecture based on:\n",
-        "* an embedding bag layer: word embeddings are summed or averaged. \n",
-        "* an LSTM layer: each sequence of word embeddings goes through the LSTM layer and the resulting vector is used as a new representation of the input sequence.\n",
-        "\n",
-        "**Note on batches:**\n",
-        "* to be able to use batches with the embedding bag layer, we need to use the *offsets* in the *collate_fn* function since the sequences are concatenated. \n",
-        "* but this is different with the LSTM, since we're not concatenating the sequences. However, we need to have all sequences of the same lenght. This is done by *padding*, you can see the way to do it at the end of the TP.\n",
-        "\n",
-        "--> We thus should have **2 different *collate_fn* functions, and 2 versions of the training and evaluating functions**, to take into acocunt the *offsets*. **Here, to make things simpler, we don't use batches.** You have the code to try it in the previous TP for FFNN and at the end of the TP for LSTM. "
-      ],
-      "metadata": {
-        "id": "Wv6H41YoFycw"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load the training and development data\n",
-        "trainset = Dataset( train_file )\n",
-        "devset = Dataset( dev_file, vocab=trainset.vocab )\n",
-        "\n",
-        "# Here for the embedding bag layer, we can't use batches, but we could use\n",
-        "# batches = K with the LSTM layer architecture\n",
-        "train_loader = DataLoader(trainset, shuffle=True)\n",
-        "dev_loader = DataLoader(devset, shuffle=False)"
-      ],
-      "metadata": {
-        "id": "2Sqqf4dQJmHB"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load embeddings\n",
-        "vectors = load_vectors( embed_file )\n",
-        "print( 'Version with', len( vectors), 'tokens')\n",
-        "print(vectors.keys() )\n",
-        "\n",
-        "# Compute weights matrix\n",
-        "weights_matrix = load_weights_matrix( trainset, vectors, emb_dim=300 )"
-      ],
-      "metadata": {
-        "id": "a0XTQXaKJ7IH"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 1- Model definition\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "TJghdjf-Leun"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1 FFNN with an embedding bag layer (code given)\n",
-        "\n",
-        "Below is the code written during TP4 for a classic FeedForward Neural Network using pretrained word embeddings (but without offsets, see the note about batches above)."
-      ],
-      "metadata": {
-        "id": "avYLIUvWMZWL"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class FeedforwardNeuralNetModel(nn.Module):\n",
-        "    def __init__(self, hidden_dim, output_dim, weights_matrix):\n",
-        "        # calls the init function of nn.Module.  Dont get confused by syntax,\n",
-        "        # just always do it in an nn.Module\n",
-        "        super(FeedforwardNeuralNetModel, self).__init__()\n",
-        "\n",
-        "        # Embedding layer\n",
-        "        #  mode (string, optional) – \"sum\", \"mean\" or \"max\". Default=mean.\n",
-        "        self.embedding_bag = nn.EmbeddingBag.from_pretrained(\n",
-        "                              weights_matrix,\n",
-        "                              mode='mean')\n",
-        "        embed_dim = self.embedding_bag.embedding_dim \n",
-        "\n",
-        "        # Linear function\n",
-        "        self.fc1 = nn.Linear(embed_dim, hidden_dim)\n",
-        "\n",
-        "        # Non-linearity\n",
-        "        self.sigmoid = nn.Sigmoid()\n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)  \n",
-        "\n",
-        "    def forward(self, text):\n",
-        "        # Embedding layer\n",
-        "        embedded = self.embedding_bag(text)\n",
-        "\n",
-        "        # Linear function  \n",
-        "        out = self.fc1(embedded)\n",
-        "\n",
-        "        # Non-linearity  \n",
-        "        out = self.sigmoid(out) \n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        out = self.fc2(out)\n",
-        "        return out"
-      ],
-      "metadata": {
-        "id": "hZKG5VRhJmJw"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.2 Exercise: From FFNN to LSTM\n",
-        "\n",
-        "We want to replace our hidden layer with an LSTM layer: the LSTM layers takes the word embeddings as input and the ouput will be directly fed to the output layer.\n",
-        "* you thus need to replace the embeddingBag layer with a simple embedding layer taking pretrained word embeddings, see the documentation here (search 'from_pretrained') https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html\n",
-        "* then you need to define an LSTM layer, see the doc here https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html. \n",
-        "\n",
-        "\n",
-        "The *forward* function is given. Note that:\n",
-        "* the LSTM has 2 outputs: ht and ct (hidden and memory state)\n",
-        "* the output of an LSTM, the 'y', is now the last hidden state computed for the entire sequence (classification task)\n",
-        "\n",
-        "In addition, note that in the forward pass, we need to reshape the data using:\n",
-        "```\n",
-        "x = x.view(len(x), 1, -1)\n",
-        "```\n",
-        "\n",
-        "We need to reshape our input data before passing it to the LSTM layer, because it takes a 3D tensor with *(Sequence lenght, Batch size, Input size)*. \n",
-        "This is done with the 'view' method, the pytorch 'reshape' function for tensors. (there's also a format with batch size first, more easy to understand)"
-      ],
-      "metadata": {
-        "id": "Ws0VVWYYMShP"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "\n",
-        "class LSTMModel(nn.Module):\n",
-        "    def __init__(self, hidden_dim, output_dim, weights_matrix, batch_first=True ):\n",
-        "        super(LSTMModel, self).__init__()\n",
-        "\n",
-        "        # Define an embedding layer\n",
-        "        # --\n",
-        "        \n",
-        "\n",
-        "        # Define an LSTM layer\n",
-        "        # -- \n",
-        "        \n",
-        "\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)          #out, (ht, ct) = self.lstm( embeds )\n",
-        "\n",
-        "    def forward(self, text):\n",
-        "        embeds = self.embedding(text)\n",
-        "        # print( text) # a tensor of indices representing the tokens in a sequence\n",
-        "        # print( embeds.shape) # (batch, seq, features) eg 1, 107, 300\n",
-        "        # We need: (seq, batch, feature)\n",
-        "        x = embeds.view(text.shape[1], 1, -1) # -1 allows to guess a dimension\n",
-        "        # print( x.shape) # (seq, batch, features) eg 107, 1, 300\n",
-        "        out, (ht, ct) = self.lstm( x ) # <--- here the real 'out' is ht\n",
-        "        y = self.fc2(ht[-1]) # <--- we keep only the last hidden state\n",
-        "        return y"
-      ],
-      "metadata": {
-        "id": "VV1vVgtmMShQ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 2- Running experiments\n",
-        "\n",
-        "The code to train and evaluate your network is given below (again version without offsets)."
-      ],
-      "metadata": {
-        "id": "ykWFAXIFLs3W"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from sklearn.metrics import classification_report, accuracy_score\n",
-        "\n",
-        "def train( model, train_loader, optimizer, num_epochs=5, trace=False ):\n",
-        "    for epoch in range(num_epochs):\n",
-        "        train_loss, total_acc, total_count = 0, 0, 0\n",
-        "        for input, label in train_loader:\n",
-        "            input = input.to(device)\n",
-        "            label = label.to(device)\n",
-        "            # Step1. Clearing the accumulated gradients\n",
-        "            optimizer.zero_grad()\n",
-        "            # Step 2. Forward pass to get output/logits\n",
-        "            outputs = model( input )\n",
-        "            if trace:\n",
-        "              print(input) # <---- call with trace=True to 'see' the input\n",
-        "              trace=False\n",
-        "            # Step 3. Compute the loss, gradients, and update the parameters by\n",
-        "            # calling optimizer.step()\n",
-        "            # - Calculate Loss: softmax --> cross entropy loss\n",
-        "            loss = criterion(outputs, label)\n",
-        "            # - Getting gradients w.r.t. parameters\n",
-        "            loss.backward()\n",
-        "            # - Updating parameters\n",
-        "            optimizer.step()\n",
-        "            # Accumulating the loss over time\n",
-        "            train_loss += loss.item()\n",
-        "            total_acc += (outputs.argmax(1) == label).sum().item()\n",
-        "            total_count += label.size(0)\n",
-        "        # Compute accuracy on train set at each epoch\n",
-        "        print('Epoch: {}. Loss: {}. ACC {} '.format(epoch, train_loss/total_count, total_acc/total_count))\n",
-        "        total_acc, total_count = 0, 0\n",
-        "        train_loss = 0\n",
-        "\n",
-        "def evaluate( model, dev_loader ):\n",
-        "    predictions = []\n",
-        "    gold = []\n",
-        "    with torch.no_grad():\n",
-        "        for input, label in dev_loader:\n",
-        "            input = input.to(device)\n",
-        "            label = label.to(device)\n",
-        "            probs = model(input)\n",
-        "            predictions.append( torch.argmax(probs, dim=1).cpu().numpy()[0] )\n",
-        "            gold.append(int(label))\n",
-        "    print(classification_report(gold, predictions))\n",
-        "    return gold, predictions"
-      ],
-      "metadata": {
-        "id": "B5_-75IOJmMY"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.1 Exercise: Experiment with an FFNN with an Embedding bag layer\n",
-        "\n",
-        "Run first experiments with the embedding bag layer architecture, using the values below for the hyper-parameters."
-      ],
-      "metadata": {
-        "id": "w3IbjQfOL29y"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Set the values of the hyperparameters\n",
-        "hidden_dim = 4\n",
-        "learning_rate = 0.1\n",
-        "num_epochs = 10\n",
-        "criterion = nn.CrossEntropyLoss()\n",
-        "output_dim = 2"
-      ],
-      "metadata": {
-        "id": "FJ913fY3KTKq"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "train( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "id": "SSjMfiIaKTKv"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2 Exercise: Experiment with an LSTM layer\n",
-        "\n",
-        "Run then experiments using the architecture based on an LSTM layer: Are results better? What about the computation time?\n",
-        "\n",
-        "Try a (very) few hyper-parameter variations to see if you can get better results with each model."
-      ],
-      "metadata": {
-        "id": "p7eoYgQ5MA-y"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialization of the model\n",
-        "model_lstm = LSTMModel(hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_lstm.parameters(), lr=learning_rate)\n",
-        "model = model_lstm.to(device)\n",
-        "\n",
-        "# Train the model\n",
-        "train( model_lstm, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_lstm, dev_loader )"
-      ],
-      "metadata": {
-        "id": "8cl5YdGHJmRx"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "QK9vV9tbQl-3"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "oYICwwkoQmCh"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# PART 2: LSTM for POS Tagging\n",
-        "\n",
-        "In the previous part, LSTM is used to encode a sequence, ie as a way to get a better representation than a bag of embeddings.\n",
-        "\n",
-        "RNNs are powerful for sequence labelling task, where the goal is to ouput a label for each token in the input sequence, eg POS tagging, NER, sentence/discourse segmentation (anything annotated with BIO scheme)..."
-      ],
-      "metadata": {
-        "id": "rTsfKWeP7Jdl"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 1 Small tutorial\n",
-        "\n",
-        "The code for an LSTM tagger is given below:\n",
-        "* the input is still word embeddings (here intialized randomly)\n",
-        "* the definition of the LSTM layer is the same as previously\n",
-        "* the output layer has (probably) more output dimensions, as given here by 'tagset_size' = here all the possible POS tags\n",
-        "\n",
-        "The difference is in the forward function:\n",
-        "* now we need to keep all the hidden states for each input token in the sequence = tag_space (instead for only outputing the last hidden state)\n",
-        "\n",
-        "Note also that here we apply a softmax function at the end, because the loss used doesn't include it.\n",
-        "\n",
-        "From: https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html "
-      ],
-      "metadata": {
-        "id": "7OOuoZLlIJI2"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "import torch\n",
-        "import torch.nn as nn\n",
-        "import torch.nn.functional as F\n",
-        "\n",
-        "class LSTMTagger(nn.Module):\n",
-        "\n",
-        "    def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size):\n",
-        "        super(LSTMTagger, self).__init__()\n",
-        "        self.hidden_dim = hidden_dim\n",
-        "\n",
-        "        self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)\n",
-        "\n",
-        "        # The LSTM takes word embeddings as inputs, and outputs hidden states\n",
-        "        # with dimensionality hidden_dim.\n",
-        "        self.lstm = nn.LSTM(embedding_dim, hidden_dim)\n",
-        "\n",
-        "        # The linear layer that maps from hidden state space to tag space\n",
-        "        self.hidden2tag = nn.Linear(hidden_dim, tagset_size)\n",
-        "\n",
-        "    def forward(self, sentence):\n",
-        "        embeds = self.word_embeddings(sentence)\n",
-        "        #print('embeds.shape', embeds.shape)\n",
-        "        #print(embeds.view(len(sentence), 1, -1).shape)\n",
-        "        lstm_out, _ = self.lstm(embeds.view(len(sentence), 1, -1))\n",
-        "        tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1)) # the whole output, vs output[-1] for classif\n",
-        "        tag_scores = F.log_softmax(tag_space, dim=1) # required with nn.NLLLoss()\n",
-        "        return tag_scores"
-      ],
-      "metadata": {
-        "id": "7O_41eHi71SO"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1 Prepare data\n",
-        "\n",
-        "As usual, an important step is to well prepare the data to be given to our model.\n",
-        "Below is some code to prepare a small toy dataset.\n",
-        "\n",
-        "- we need to go over the input sequences (sentences) and retrieve the vocabulary (words) and the tag set (POS).\n",
-        "- we build dictionaries to map words and POS to indices, and transform our data to list of indices. "
-      ],
-      "metadata": {
-        "id": "sfyJF7bIJv8M"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Transform a list of tokens into a list of indices using the dict given\n",
-        "def prepare_sequence(seq, to_ix):\n",
-        "    '''\n",
-        "    - seq: an input sequence of tokens\n",
-        "    - to_ix: a dictionary mapping token to indices\n",
-        "    output: a tensor of indices representing the input sequence\n",
-        "    '''\n",
-        "    idxs = [to_ix[w] for w in seq]\n",
-        "    return torch.tensor(idxs, dtype=torch.long)\n",
-        "\n",
-        "# Toy dataset\n",
-        "training_data = [\n",
-        "    # Tags are: DET - determiner; NN - noun; V - verb\n",
-        "    # For example, the word \"The\" is a determiner\n",
-        "    (\"The dog ate the apple\".split(), [\"DET\", \"NN\", \"V\", \"DET\", \"NN\"]),\n",
-        "    (\"Everybody read that book\".split(), [\"NN\", \"V\", \"DET\", \"NN\"])\n",
-        "]\n",
-        "\n",
-        "# Build the mapping from word to indices\n",
-        "word_to_ix = {}\n",
-        "# For each words-list (sentence) and tags-list in each tuple of training_data\n",
-        "for sent, tags in training_data:\n",
-        "    for word in sent:\n",
-        "        if word not in word_to_ix:  # word has not been assigned an index yet\n",
-        "            word_to_ix[word] = len(word_to_ix)  # Assign each word with a unique index\n",
-        "print(word_to_ix)\n",
-        "\n",
-        "# Here the mapping for POS tags is given\n",
-        "tag_to_ix = {\"DET\": 0, \"NN\": 1, \"V\": 2}  # Assign each tag with a unique index\n",
-        "ix_to_tag = {v: k for k, v in tag_to_ix.items()}"
-      ],
-      "metadata": {
-        "id": "6A5Z-EsT7w_V"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3 Run the model\n",
-        "\n",
-        "Now we can train the POS tagger over the toy dataset."
-      ],
-      "metadata": {
-        "id": "bJiuDcmyK9Ba"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# These will usually be more like 32 or 64 dimensional.\n",
-        "# We will keep them small, so we can see how the weights change as we train.\n",
-        "EMBEDDING_DIM = 6\n",
-        "HIDDEN_DIM = 6\n",
-        "\n",
-        "\n",
-        "model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))\n",
-        "loss_function = nn.NLLLoss() # does not include the softmax\n",
-        "optimizer = torch.optim.SGD(model.parameters(), lr=0.1)"
-      ],
-      "metadata": {
-        "id": "jiSYatB48Brn"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Look at the output of the code below: it corresponds to the scores for each POS (3 possibilities) for each token in the first training sentence (5 words) BEFORE TRAINING."
-      ],
-      "metadata": {
-        "id": "TRY-H1iMLVmM"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# See what the scores are before training\n",
-        "# Note that element i,j of the output is the score for tag j for word i.\n",
-        "# Here we don't need to train, so the code is wrapped in torch.no_grad()\n",
-        "with torch.no_grad():\n",
-        "    inputs = prepare_sequence(training_data[0][0], word_to_ix)\n",
-        "    tag_scores = model(inputs)\n",
-        "    print(tag_scores)"
-      ],
-      "metadata": {
-        "id": "XdC_GJufLN1d"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Now we train the model:"
-      ],
-      "metadata": {
-        "id": "Igkyu3W1LlnM"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "for epoch in range(300):  # again, normally you would NOT do 300 epochs, it is toy data\n",
-        "    for sentence, tags in training_data:\n",
-        "        # Step 1. Remember that Pytorch accumulates gradients.\n",
-        "        # We need to clear them out before each instance\n",
-        "        model.zero_grad()\n",
-        "\n",
-        "        # Step 2. Get our inputs ready for the network, that is, turn them into\n",
-        "        # Tensors of word indices.\n",
-        "        sentence_in = prepare_sequence(sentence, word_to_ix)\n",
-        "        targets = prepare_sequence(tags, tag_to_ix)\n",
-        "\n",
-        "        # Step 3. Run our forward pass.\n",
-        "        tag_scores = model(sentence_in)\n",
-        "\n",
-        "        # Step 4. Compute the loss, gradients, and update the parameters by\n",
-        "        #  calling optimizer.step()\n",
-        "        loss = loss_function(tag_scores, targets)\n",
-        "        loss.backward()\n",
-        "        optimizer.step()"
-      ],
-      "metadata": {
-        "id": "hW9FiA4dLHRw"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "And we look at the score after training: what do you see?"
-      ],
-      "metadata": {
-        "id": "4JmZd7P4Lp46"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# See what the scores are after training\n",
-        "with torch.no_grad():\n",
-        "    inputs = prepare_sequence(training_data[0][0], word_to_ix)\n",
-        "    tag_scores = model(inputs)\n",
-        "    predictions = torch.argmax(tag_scores, dim=1).cpu().numpy()\n",
-        "    print(tag_scores)\n",
-        "    print(predictions)\n",
-        "    print(training_data[0][0])\n",
-        "    print( [ix_to_tag[p] for p in predictions])\n",
-        "\n",
-        "    # The sentence is \"the dog ate the apple\".  i,j corresponds to score for tag j\n",
-        "    # for word i. The predicted tag is the maximum scoring tag.\n",
-        "    # Here, we can see the predicted sequence below is 0 1 2 0 1\n",
-        "    # since 0 is index of the maximum value of row 1,\n",
-        "    # 1 is the index of maximum value of row 2, etc.\n",
-        "    # Which is DET NOUN VERB DET NOUN, the correct sequence!\n",
-        "    #print(tag_scores)"
-      ],
-      "metadata": {
-        "id": "Q_xgiu1MBAnB"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 2. Training a POS tagger on a large set of data"
-      ],
-      "metadata": {
-        "id": "OiMM4pDON_kB"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "!pip install torchdata"
-      ],
-      "metadata": {
-        "id": "qWakPj_QQwPx"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from torch.utils.data import Dataset\n",
-        "from torchtext import datasets"
-      ],
-      "metadata": {
-        "id": "VyyuXUhmUg5r"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "#ud_dataset = torchtext.datasets.UDPOS(root: str = '.data', split: Union[Tuple[str], str] = ('train', 'valid', 'test'))\n",
-        "\n",
-        "train_iter, test_iter = datasets.UDPOS(split=('train', 'valid'))\n"
-      ],
-      "metadata": {
-        "id": "1CszON2uJmUb"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "ex = next(iter(train_iter))\n",
-        "print(ex[0])\n",
-        "print(ex[1])\n",
-        "print(ex[2])"
-      ],
-      "metadata": {
-        "id": "guxlgcFuRRR_"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from collections import Counter\n",
-        "from torchtext.vocab import vocab\n",
-        "\n",
-        "# Build vocabulary\n",
-        "training_size = 0\n",
-        "counter = Counter()\n",
-        "for (tokens, tags, _) in train_iter:\n",
-        "    training_size += 1\n",
-        "    counter.update(tokens)\n",
-        "vocab = vocab(counter, min_freq=10, specials=('<unk>', '<BOS>', '<EOS>', '<PAD>'))\n",
-        "print( \"total number of example in training set:\", training_size)"
-      ],
-      "metadata": {
-        "id": "xdoeEWyPX8pO"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "print(\"The length of the new vocab is\", len(vocab))\n",
-        "# token to indices\n",
-        "stoi = vocab.get_stoi()\n",
-        "print(\"The index of '<BOS>' is\", stoi['<BOS>'])\n",
-        "# indice to token\n",
-        "itos = vocab.get_itos()\n",
-        "print(\"The token at index 2 is\", itos[2])\n",
-        "print(\"The token at index 42 is\", itos[42])"
-      ],
-      "metadata": {
-        "id": "P-WrgNL0YCJK"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Transform a list of tokens into a list of indices using the dict given\n",
-        "def prepare_sequence(seq, to_ix):\n",
-        "    '''\n",
-        "    - seq: an input sequence of tokens\n",
-        "    - to_ix: a dictionary mapping token to indices\n",
-        "    output: a tensor of indices representing the input sequence\n",
-        "    '''\n",
-        "    idxs = [to_ix[w] for w in seq]\n",
-        "    return torch.tensor(idxs, dtype=torch.long)\n",
-        "\n",
-        "\n",
-        "# Build the mapping from word to indices, and from POS to indices\n",
-        "word_to_ix, tag_to_ix  = {}, {}\n",
-        "# For each words-list (sentence) and tags-list in each tuple of training_data\n",
-        "for sent, tags, _ in train_iter:\n",
-        "    for word in sent:\n",
-        "        if word not in word_to_ix:  # word has not been assigned an index yet\n",
-        "            word_to_ix[word] = len(word_to_ix)  # Assign each word with a unique index\n",
-        "    for tag in tags:\n",
-        "        if tag not in tag_to_ix:\n",
-        "            tag_to_ix[tag] = len(tag_to_ix)\n",
-        "\n",
-        "# Reverse mapping\n",
-        "ix_to_tag = {v: k for k, v in tag_to_ix.items()}\n",
-        "\n",
-        "# Print the mapping dictionaries\n",
-        "print(word_to_ix)\n",
-        "print(tag_to_ix)"
-      ],
-      "metadata": {
-        "id": "Va4-PPpSSPjc"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Train a model\n",
-        "\n",
-        "EMBEDDING_DIM = 6\n",
-        "HIDDEN_DIM = 6\n",
-        "\n",
-        "model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))\n",
-        "loss_function = nn.NLLLoss() # does not include the softmax\n",
-        "optimizer = torch.optim.SGD(model.parameters(), lr=0.1)\n",
-        "\n",
-        "epoch_acc, epoch_loss = 0, 0\n",
-        "\n",
-        "total_count = 0\n",
-        "\n",
-        "for epoch in range(3):  # again, normally you would NOT do 300 epochs, it is toy data\n",
-        "    index = 0\n",
-        "    for sentence, tags, _ in train_iter:\n",
-        "        index += 1\n",
-        "        # Step 1. Remember that Pytorch accumulates gradients.\n",
-        "        # We need to clear them out before each instance\n",
-        "        model.zero_grad()\n",
-        "\n",
-        "        # Step 2. Get our inputs ready for the network, that is, turn them into\n",
-        "        # Tensors of word indices.\n",
-        "        sentence_in = prepare_sequence(sentence, word_to_ix)\n",
-        "        targets = prepare_sequence(tags, tag_to_ix)\n",
-        "\n",
-        "        # Step 3. Run our forward pass.\n",
-        "        tag_scores = model(sentence_in)\n",
-        "\n",
-        "        # Compute accuracy score per token\n",
-        "        predictions = tag_scores.view(-1, tag_scores.shape[-1])\n",
-        "        max_preds = predictions.argmax(dim = 1, keepdim = True) # get the index of the max probability\n",
-        "        correct = max_preds.squeeze(1).eq(targets)\n",
-        "        acc_sentence = correct.sum()\n",
-        "        #acc_sentence = correct.sum() / targets.shape[0]\n",
-        "        \n",
-        "        \n",
-        "        if index in [29,55, 930]: # selection of short sentences #, 1150\n",
-        "          print( \"SENTENCE:\", sentence )\n",
-        "          print(\"GOLD (original):\", tags )\n",
-        "          print(\"GOLD (indices):\", targets)\n",
-        "          print( \"SCORES\", tag_scores )\n",
-        "          print(\"PRED (indices):\", list(max_preds.squeeze(1)) )\n",
-        "          print(\"PRED (mapped):\", [ix_to_tag[i.item()] for i in list(max_preds.squeeze(1))] )\n",
-        "          print( \"CORRECT / UNCORRECT list:\", correct)\n",
-        "          print(\"# CORRECT PREDicted POS =\", acc_sentence.item() )\n",
-        "          \n",
-        "          print( '\\n')\n",
-        "        \n",
-        "        # Step 4. Compute the loss, gradients, and update the parameters by\n",
-        "        #  calling optimizer.step()\n",
-        "        loss = loss_function(tag_scores, targets)\n",
-        "        loss.backward()\n",
-        "        optimizer.step()\n",
-        "\n",
-        "        epoch_loss += loss.item()\n",
-        "        epoch_acc += acc_sentence.item()\n",
-        "        total_count += len(sentence)\n",
-        "\n",
-        "    # Compute accuracy on train set at each epoch  \n",
-        "    print('Epoch: {}. Loss: {}. ACC {}.'.format(epoch, epoch_loss/total_count, \n",
-        "                                      round( (epoch_acc/total_count)*100, 2)))\n",
-        "    epoch_acc, epoch_loss, total_count = 0, 0, 0\n",
-        "    #print(epoch_acc / len(train_iter))\n",
-        "\n",
-        "\n",
-        "# {'PROPN': 0, 'PUNCT': 1, 'ADJ': 2, 'NOUN': 3, 'VERB': 4, 'DET': 5, 'ADP': 6, 'AUX': 7, 'PRON': 8, 'PART': 9, 'SCONJ': 10, 'NUM': 11, 'ADV': 12, 'CCONJ': 13, 'X': 14, 'INTJ': 15, 'SYM': 16}"
-      ],
-      "metadata": {
-        "id": "M2zfqhVmSxIC"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# Additional notes: solution with batches + bi-LSTM\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "-kjzjCgBHRtt"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## Batches with LSTM\n",
-        "\n",
-        "When using LSTMs, we can't use the concatenation solution: all the documents in a batch need to have the same length, because the size of the input defines the size of the network (each xi is associated with a state si). \n",
-        "\n",
-        "The solution is called **padding**: we add zeros at the end of the sequences that are shorter than the max length. \n",
-        "\n",
-        "The easiest solution to do so is to pad the sequences using *torch.nn.utils.rnn.pad_sequence* as done below within the *collate_batch_pad* function. This function returns a tensor of padded sequences, that can be directly used as input of our model.\n",
-        "\n",
-        "https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pad_sequence.html"
-      ],
-      "metadata": {
-        "id": "PMW11fIi_RPq"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from torchtext.data.utils import get_tokenizer\n",
-        "from torchtext.vocab import build_vocab_from_iterator\n",
-        "from torch.nn.utils.rnn import pad_sequence\n",
-        "\n",
-        "def collate_batch_pad(batch):\n",
-        "    label_list, text_list, offsets = [], [], [0]\n",
-        "    for (_label, _text) in batch:\n",
-        "         label_list.append(label_pipeline(_label))\n",
-        "         processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)\n",
-        "         text_list.append(processed_text)\n",
-        "         offsets.append(processed_text.size(0))\n",
-        "    label = torch.tensor(label_list, dtype=torch.int64)\n",
-        "    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)\n",
-        "    #text_list = torch.cat(text_list) # Instead of concatenating, we use padding\n",
-        "    text_list = pad_sequence(text_list, padding_value=0) # <-------\n",
-        "    return text_list.to(device), label.to(device)\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "3U9zTPil09aj"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "We slightly modify our model, just to take into account a custom batch size. See in the forward pass:\n",
-        "* the *view* method now has, as a 2nd argument, the batch size (while it was previously set to 1)"
-      ],
-      "metadata": {
-        "id": "Jz6ONIX1AmDn"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class LSTMModel3(nn.Module):\n",
-        "    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, batch_size):\n",
-        "        super(LSTMModel3, self).__init__()\n",
-        "        self.trace = True\n",
-        "        self.batch_size = batch_size # <------\n",
-        "        self.embedding = nn.Embedding(vocab_size, embedding_dim)\n",
-        "        self.lstm = nn.LSTM( input_size=embedding_dim, \n",
-        "                            hidden_size=hidden_dim, \n",
-        "                            bidirectional=False)\n",
-        "\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)  \n",
-        "\n",
-        "    def forward(self, text):\n",
-        "        embeds = self.embedding(text)\n",
-        "        if self.trace:\n",
-        "          print( len(text), self.batch_size, embeds.shape)\n",
-        "          self.trace = False\n",
-        "        x = embeds.view(len(text), self.batch_size, -1) # <------\n",
-        "        out, (ht, ct) = self.lstm( x )\n",
-        "        y = self.fc2(ht[-1])\n",
-        "        return y"
-      ],
-      "metadata": {
-        "id": "tk2xBsPQz6ed"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "You can now run an experiment with a batch size of 2.\n",
-        "\n",
-        "Note that we have another modification here in the Dataloader:\n",
-        "* drop_last=True: drop the last incomplete batch \n",
-        "\n",
-        "▶▶ **Uncomment the 'print' in the forward function above and in the train loop to see what the data looks like (stop training when a few tensors are printed).**"
-      ],
-      "metadata": {
-        "id": "EaODIVCQA05f"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load data\n",
-        "batch_size = 2\n",
-        "train_loader = DataLoader(train_iter, batch_size=batch_size, shuffle=True, \n",
-        "                          collate_fn=collate_batch_pad, drop_last=True)\n",
-        "dev_loader = DataLoader(dev_iter, shuffle=True, batch_size=2, \n",
-        "                        collate_fn=collate_batch_pad, drop_last=True)"
-      ],
-      "metadata": {
-        "id": "Dr42-G6ZvkU4"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Hyper-parameters\n",
-        "vocab_size = len(vocab)\n",
-        "emb_dim = 300\n",
-        "hidden_dim = 32\n",
-        "output_dim = 2\n",
-        "learning_rate = 0.1\n",
-        "num_epochs = 5\n",
-        "criterion = nn.CrossEntropyLoss()"
-      ],
-      "metadata": {
-        "id": "J1vCbZ_3vsNr"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model\n",
-        "model_lstm3 = LSTMModel3( vocab_size, emb_dim, hidden_dim, output_dim, batch_size )\n",
-        "optimizer = torch.optim.SGD(model_lstm3.parameters(), lr=learning_rate)\n",
-        "model_lstm3 = model_lstm3.to(device)\n",
-        "# Train the model\n",
-        "train( model_lstm3, train_loader, optimizer, num_epochs=5, trace=True )"
-      ],
-      "metadata": {
-        "id": "dA8gDgLtz8w-"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "We also modify the evaluation function to take batches as input."
-      ],
-      "metadata": {
-        "id": "M5uK8jLoFyxp"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "def evaluate_batch( model, dev_loader ):\n",
-        "    predictions = []\n",
-        "    gold = []\n",
-        "    with torch.no_grad():\n",
-        "        for input, label in dev_loader:\n",
-        "            input = input.to(device)\n",
-        "            label = label.to(device)\n",
-        "            probs = model(input)\n",
-        "            # print( probs)\n",
-        "            # print( torch.argmax(probs, dim=1).cpu().numpy())\n",
-        "            # predictions.append( torch.argmax(probs, dim=1).cpu().numpy()[0] )\n",
-        "            predictions.extend( torch.argmax(probs, dim=1).cpu().numpy() ) # <-----\n",
-        "            # gold.append( int(label) )\n",
-        "            gold.extend([int(l) for l in label])  # <-----\n",
-        "    print(classification_report(gold, predictions))\n",
-        "    return gold, predictions\n",
-        "\n",
-        "\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate_batch( model_lstm3, dev_loader )"
-      ],
-      "metadata": {
-        "id": "LgfhrZ7L08RY"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [],
-      "metadata": {
-        "id": "yLzmQOaKUY86"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## bi-GRU (or bi-LSTM)\n",
-        "\n",
-        "▶▶ **Modify the code to implement a bi-directional GRU. Hint: what is the size of the output of a bi-RNN?**"
-      ],
-      "metadata": {
-        "id": "IyQiRBv_3_Y5"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class BiGRUModel(nn.Module):\n",
-        "    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, batch_size):\n",
-        "        super(BiGRUModel, self).__init__()\n",
-        "        self.trace = True\n",
-        "        self.batch_size = batch_size\n",
-        "\n",
-        "        self.embedding = nn.Embedding(vocab_size, embedding_dim)\n",
-        "\n",
-        "        ## -- SOLUTION: here a parameter to change \n",
-        "        self.gru = nn.GRU( input_size=embedding_dim, \n",
-        "                            hidden_size=hidden_dim, \n",
-        "                            bidirectional=True)\n",
-        "        ## -- SOLUTION: don t forget that we have two vectors concatenated \n",
-        "        self.fc2 = nn.Linear(hidden_dim*2, output_dim)  \n",
-        "\n",
-        "    def forward(self, text):\n",
-        "        embeds = self.embedding(text)\n",
-        "        #print( len(text), self.batch_size, embeds.shape)\n",
-        "        x = embeds.view(len(text), self.batch_size, -1)\n",
-        "        output, hn = self.gru(x )\n",
-        "        # torch.Size([2, 2, 32]) : Direction, Batch, Hidden\n",
-        "        if self.trace:\n",
-        "          print( \"Size hidden:\", hn.shape ) \n",
-        "          self.trace = False\n",
-        "        # -- SOLUTION: here we need to keep backward and for ward hidden states\n",
-        "        hidden = torch.cat((hn[-2], hn[-1]), dim = 1) #same as torch.cat((hn[-2,:,:], hn[-1,:,:]), dim = 1)\n",
-        "        y = self.fc2(hidden)\n",
-        "        return y"
-      ],
-      "metadata": {
-        "id": "n6AqVPfA4A2f"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "batch_size=2\n",
-        "\n",
-        "dataloader = DataLoader(train_iter, batch_size=batch_size, shuffle=False, \n",
-        "                        collate_fn=collate_batch_pad, drop_last=True)"
-      ],
-      "metadata": {
-        "id": "MnP_uLrv4GZh"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Hyper-parameters\n",
-        "vocab_size = len(vocab)\n",
-        "emb_dim = 300\n",
-        "hidden_dim = 32\n",
-        "output_dim = 2\n",
-        "\n",
-        "learning_rate = 0.1\n",
-        "num_epochs = 5\n",
-        "\n",
-        "criterion = nn.CrossEntropyLoss()"
-      ],
-      "metadata": {
-        "id": "rqOmLUQm4IgQ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "model_bigru = BiGRUModel(vocab_size, emb_dim, hidden_dim, output_dim, batch_size)\n",
-        "optimizer = torch.optim.SGD(model_bigru.parameters(), lr=learning_rate)\n",
-        "model_bigru = model_bigru.to(device)"
-      ],
-      "metadata": {
-        "id": "rzHXdyVo4KkB"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Start training\n",
-        "for epoch in range(num_epochs):\n",
-        "    train_loss, total_acc, total_count = 0, 0, 0\n",
-        "    for text, label in dataloader:\n",
-        "        text = text.to(device)\n",
-        "        label = label.to(device)\n",
-        "\n",
-        "        # Clear gradients w.r.t. parameters\n",
-        "        optimizer.zero_grad()\n",
-        "\n",
-        "        # Forward pass to get output/logits\n",
-        "        outputs = model_bigru( text )\n",
-        "        #print(text)\n",
-        "\n",
-        "        # Calculate Loss: softmax --> cross entropy loss\n",
-        "        loss = criterion(outputs, label)\n",
-        "\n",
-        "        # Getting gradients w.r.t. parameters\n",
-        "        loss.backward()\n",
-        "\n",
-        "        # Updating parameters\n",
-        "        optimizer.step()\n",
-        "\n",
-        "        # Accumulating the loss over time\n",
-        "        train_loss += loss.item()\n",
-        "        total_acc += (outputs.argmax(1) == label).sum().item()\n",
-        "        total_count += label.size(0)\n",
-        "\n",
-        "    # Compute accuracy on train set at each epoch\n",
-        "    print('Epoch: {}. Loss: {}. ACC {} '.format(epoch, train_loss/count_train, total_acc/count_train))\n",
-        "        \n",
-        "    total_acc, total_count = 0, 0\n",
-        "    train_loss = 0"
-      ],
-      "metadata": {
-        "id": "cxg_n6fw4N3I"
-      },
-      "execution_count": null,
-      "outputs": []
-    }
-  ]
-}
\ No newline at end of file
diff --git a/notebooks/TP5_masterLiTL_RNN_2223_CORRECT.ipynb b/notebooks/TP5_masterLiTL_RNN_2223_CORRECT.ipynb
deleted file mode 100644
index c84f37aaddbdc9a61426111f86fbcdcdfae27e32..0000000000000000000000000000000000000000
--- a/notebooks/TP5_masterLiTL_RNN_2223_CORRECT.ipynb
+++ /dev/null
@@ -1,1955 +0,0 @@
-{
-  "nbformat": 4,
-  "nbformat_minor": 0,
-  "metadata": {
-    "colab": {
-      "provenance": []
-    },
-    "kernelspec": {
-      "name": "python3",
-      "display_name": "Python 3"
-    },
-    "language_info": {
-      "name": "python"
-    },
-    "accelerator": "GPU",
-    "gpuClass": "standard"
-  },
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# RNNs: implementing an LSTM with Pytorch\n",
-        "\n",
-        "* Modifications in the PyTorch code to use RNNs for classification \n",
-        "* POS tagging with RNNs\n",
-        "\n",
-        "You need to upload:\n",
-        "* the files from the Allocine corpus\n",
-        "* the file corresponding to the Fasttext embeddings: cc.fr.300.10000.vec\n",
-        "* the file *reader_pytorch_tp5.py* that contains some functions used during the TP (see the import line below). Organizing your code with modules improves readability!"
-      ],
-      "metadata": {
-        "id": "ov8EeZiWBpBC"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "tnlfNu2bBm2u"
-      },
-      "outputs": [],
-      "source": [
-        "from reader_pytorch_tp5 import Dataset, load_vectors, load_weights_matrix\n",
-        "#, load_weights_matrix, load_vectors\n",
-        "# torch and torch modules to deal with text data\n",
-        "import torch \n",
-        "import torch.nn as nn\n",
-        "from torchtext.data.utils import get_tokenizer\n",
-        "from torchtext.vocab import build_vocab_from_iterator\n",
-        "from torch.utils.data import DataLoader\n",
-        "# you can use scikit to print scores\n",
-        "from sklearn.metrics import classification_report"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# CUDA for PyTorch\n",
-        "use_cuda = torch.cuda.is_available()\n",
-        "device = torch.device(\"cuda\" if use_cuda else \"cpu\")\n",
-        "print(device)"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "KzNS86rVEv-M",
-        "outputId": "46a991c9-91ff-448b-a695-4a4d06e2334d"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "cuda\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Paths to data:"
-      ],
-      "metadata": {
-        "id": "taGY9N-PJvWS"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Data files\n",
-        "train_file = \"allocine_train.tsv\"\n",
-        "dev_file = \"allocine_dev.tsv\"\n",
-        "test_file = \"allocine_test.tsv\"\n",
-        "# embeddings\n",
-        "embed_file='cc.fr.300.10000.vec'"
-      ],
-      "metadata": {
-        "id": "kGty4hWCJurB"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 0- Read and load the data (code given)\n",
-        "\n",
-        "We are going to make experiments using either an architecture based on:\n",
-        "* an embedding bag layer: word embeddings are summed or averaged. \n",
-        "* an LSTM layer: each sequence of word embeddings goes through the LSTM layer and the resulting vector is used as a new representation of the input sequence.\n",
-        "\n",
-        "**Note on batches:**\n",
-        "* to be able to use batches with the embedding bag layer, we need to use the *offsets* in the *collate_fn* function since the sequences are concatenated. \n",
-        "* but this is different with the LSTM, since we're not concatenating the sequences. However, we need to have all sequences of the same lenght. This is done by *padding*, you can see the way to do it at the end of the TP.\n",
-        "\n",
-        "--> We thus should have **2 different *collate_fn* functions, and 2 versions of the training and evaluating functions**, to take into acocunt the *offsets*. **Here, to make things simpler, we don't use batches.** You have the code to try it in the previous TP for FFNN and at the end of the TP for LSTM. "
-      ],
-      "metadata": {
-        "id": "Wv6H41YoFycw"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load the training and development data\n",
-        "trainset = Dataset( train_file )\n",
-        "devset = Dataset( dev_file, vocab=trainset.vocab )\n",
-        "\n",
-        "# Here for the embedding bag layer, we can't use batches, but we could use\n",
-        "# batches = K with the LSTM layer architecture\n",
-        "train_loader = DataLoader(trainset, shuffle=True)\n",
-        "dev_loader = DataLoader(devset, shuffle=False)"
-      ],
-      "metadata": {
-        "id": "2Sqqf4dQJmHB"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load embeddings\n",
-        "vectors = load_vectors( embed_file )\n",
-        "print( 'Version with', len( vectors), 'tokens')\n",
-        "print(vectors.keys() )\n",
-        "\n",
-        "# Compute weights matrix\n",
-        "weights_matrix = load_weights_matrix( trainset, vectors, emb_dim=300 )"
-      ],
-      "metadata": {
-        "id": "a0XTQXaKJ7IH",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "49b2178c-c33b-4d1c-a5d2-7c8e05ca5046"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Originally we have:  2000000 tokens, and vectors of 300 dimensions\n",
-            "Version with 9999 tokens\n",
-            "dict_keys([',', 'de', '.', '</s>', 'la', 'et', ':', 'à', 'le', '\"', 'en', '’', 'les', 'des', ')', '(', 'du', 'est', 'un', \"l'\", \"d'\", 'une', 'pour', '/', '|', 'dans', 'sur', 'que', 'par', 'au', 'a', 'l', 'qui', '-', 'd', 'il', 'pas', '!', 'avec', '_', 'plus', \"'\", 'Le', 'ce', 'ou', 'La', 'ne', 'se', '»', '...', '?', 'vous', 'sont', 'son', '«', 'je', 'Les', 'Il', 'aux', '1', ';', 'mais', \"qu'\", 'on', \"n'\", 'comme', '2', 'sa', 'cette', 'y', 'nous', 'été', 'tout', 'fait', 'En', \"s'\", 'bien', 'ses', 'très', 'ont', 's', 'être', 'votre', 'ai', 'elle', 'n', '3', 'même', \"L'\", 'deux', 'faire', \"c'\", 'aussi', '>', 'leur', '%', 'si', 'entre', 'qu', '€', '&', '4', 'sans', 'Je', \"j'\", 'était', '10', 'autres', 'tous', 'peut', 'France', 'ces', '…', '5', 'lui', 'me', ']', '[', 'où', 'ans', '6', '#', 'après', '+', 'ils', 'dont', 'Pour', '°', '–', 'temps', '*', 'sous', 'Un', 'avoir', 'L', 'A', '}', 'site', 'peu', 'mon', 'encore', '12', 'depuis', '0', 'ça', 'fois', '2017', 'ainsi', 'alors', 'donc', 'notre', 'Ce', '20', '11', 'autre', 'monde', 'non', 'Paris', 'avant', 'Une', 'Elle', '15', 'également', 'Re', 'contre', 'Vous', 'c', 'moins', 'tu', 'suis', '7', 'ville', 'avait', 'vos', 'vers', 'premier', 'vie', 'Et', '2016', '2014', 'jour', '00', '2013', 'leurs', 'Dans', 'soit', '2012', 'toutes', 'nom', '2015', '14', 'De', 'On', '8', 'prix', '18', \"C'\", 'Mais', 'partie', '•', 'nos', 'voir', 'article', '16', 'Plus', '13', 'of', 'chez', 'inscription', 'première', 'quelques', 'toujours', '17', 'Nous', 'plusieurs', 'mai', 'place', 'français', '2011', 'cas', 'puis', 'Cette', 'année', 'ma', 'toute', '2010', 'the', '30', 'suite', 'pays', 'The', 'années', 'lors', 'fin', 'bon', '19', 'À', '21', 'dit', 'trois', 'grand', 'quand', 'partir', 'car', 'sera', '22', 'cet', 'jours', 'C', '2009', 'petit', '=', \"J'\", 'Si', 'maison', 'fut', 'ligne', 'faut', '9', 'nouveau', 'moi', 'lieu', 'mois', '23', 'cours', 'personnes', 'va', 'déjà', 'cela', '2008', 'beaucoup', 'juin', 'groupe', 'mars', 'travail', 'nouvelle', 'compte', '24', 'page', 'messages', '25', 'and', 'janvier', 'hui', 'film', 'commune', 'j', 'grande', 'ici', 'Au', 'avril', \"m'\", 'histoire', '2007', 'détail', 'famille', 'savoir', 'doit', 'avis', 'chaque', 'trop', 'enfants', 'eau', 'm', 'part', \"jusqu'\", 'septembre', 'mes', 'homme', 'rien', 'avons', 'octobre', 'décembre', 'forum', 'jeu', 'produits', 'trouve', 'juillet', 'produit', 'équipe', 'CEST', 'politique', 'là', 'novembre', 'permet', 'in', 'titre', 'pendant', 'notamment', 'recherche', 'nombre', '·', 'dire', 'http', 'service', 'pouvez', 'février', 'point', 'dernier', '05', 'moment', 'selon', 'mort', 'droit', '2006', 'DE', 'afin', 'jamais', 'effet', 'mise', 'Des', '—', '26', 'région', 'projet', '\\\\', 'saison', 'août', 'niveau', '28', 'reste', 'bonne', 'ensemble', '27', 'peuvent', 'exemple', 'Voir', '01', 'série', 'souvent', 'centre', 'Après', 'écrit', 'pouvoir', '--', 'mettre', 'km', 'général', 'Page', 'forme', 'début', '09', 'ceux', 'personne', 'eu', 'française', 'vraiment', 'services', 'demande', '29', 'question', 'Par', 'près', 'Merci', 'celui', 'qualité', 'vue', 'tant', 'petite', 'système', '©', 'Ils', 'ailleurs', 'Europe', 'avez', 'mieux', 'société', '^', 'informations', 'données', 'prendre', 'elles', 'guerre', 'surtout', 'to', 'Jean', 'né', 'CET', '08', 'certains', '06', 'village', 'membres', 'rapport', 'an', 'face', 'étaient', 'mot', 'femme', 'possible', '50', 'seul', '@', 'Prix', '04', 'rue', '07', 'te', 'celle', 'mal', 'articles', 'aide', 'nombreux', 'base', 'ayant', '<', '03', '2005', 'entreprise', 'Catégorie', '..', 'ni', 'liste', '02', 'livre', 'passe', 'https', 'mis', 'seulement', 'côté', 'public', 'utilisation', 'ton', 'développement', '31', 'vu', '100', 'D', 'chose', 'dès', 'quatre', 'situé', 'Ces', 'devant', 'photos', 'hommes', 'trouver', 'Son', 'image', '\\xad', 'fr', 'plan', 'étant', 'type', 'tour', '$', 'grâce', 'cadre', 'juste', 'musique', 'président', 'version', 'aime', 'points', 'simple', 'Avec', 'formation', 'jeune', 'assez', 'quoi', 'offre', 'origine', 'sens', 'serait', 'gratuit', 'Pierre', 'heures', 'Nombre', 'corps', 'salle', 'tête', 'sujet', 'adresse', 'carte', 'minutes', 'date', 'font', 'fils', 'création', 'donne', 'e', 'choix', 'album', 'dernière', 'agit', 'loi', 'passé', 'propre', 'coup', 'propose', 'environ', 'chambre', 'accès', 'devient', '....', \"D'\", 'semaine', 'sécurité', 'parce', 'vidéo', 'ensuite', 'porte', 'h', 'lien', 'haut', 'comment', 'femmes', 'façon', 'nationale', 'état', 'présente', 'long', 'nouvelles', 'tard', 'besoin', 'raison', 'club', 'gouvernement', 'retour', 'genre', 'problème', 'x', 'ancien', 'époque', 'séjour', 'Sur', 'Forum', 'passer', 'information', '40', 'auteur', 'belle', '�', 'autour', 'eux', 'rôle', 'bois', '2004', 'meilleur', 'jeux', 'marché', 'deuxième', 'population', 'État', 'manière', 'santé', 'photo', 'J', 'particulier', 'semble', 'pense', 'merci', 'proche', 'N', 'air', 'Tous', 'aurait', 'fonction', 'Tout', 'différents', 'Mar', 'entreprises', 'statistiques', 'plutôt', 'nuit', 'accueil', 'située', 'ordre', 'aller', '--Les', 'êtes', 'école', 'père', 'droits', 'as', 'petits', 'utiliser', 'édition', \"aujourd'\", 'occasion', 'maintenant', 'États-Unis', 'période', 'Grand', 'Saint', 'donner', 'fille', 'Lire', 'jeunes', 'millions', 'activités', 'sommes', 'aucun', 'enfant', 'seule', 'production', '000', 'autant', 'M.', 'II', 'anglais', 'hôtel', 'œuvre', 'habitants', 'espace', '“', 'art', 'nouveaux', 'Ajouter', 'réseau', 'gestion', 'modèle', 'but', 'prend', '2000', 'parfois', 'I', 'département', 'national', 'marque', 'New', 'veut', 'activité', 'quelque', 'église', 'avais', 'propos', '”', 'gauche', 'cause', 'texte', 'idée', 'pris', 'nombreuses', 'chef', 'existe', 'mots', 'main', 'scène', 'grands', 'route', 'gens', 'style', 'sites', 'durant', 'programme', 'pu', 'études', 'mesure', 'calme', 'Comment', 'conditions', 'ministre', 'seront', 'terme', 'laquelle', 'vient', 'mode', 'or', 'Comme', 'jardin', 'www.insee.fr', 'situation', 'travaux', 'vacances', 'journée', 'vrai', 'membre', 'plein', 'code', 'sein', 'web', 'rencontre', 'lire', 'mer', 'Du', 'numéro', 'pages', 'action', 'euros', 'Mai', 'loin', 'lorsque', 'sais', 'agréable', 'domaine', '2003', 'pourrait', 'nature', 'travers', 'Conseil', 'disponible', 'expérience', 'fond', 'François', 'roi', 'siècle', 'oui', 'sud', 'etc.', 'choses', 'heure', 'LA', 'Accueil', 'milieu', 'cuisine', 'pratique', 'terre', 'grandes', 'blog', 'américain', '~', 'questions', 'vente', 'construction', 'pourquoi', 'peux', 'différentes', 'toi', 'répondre', 'jusqu', 'Mon', 'emploi', 'abord', 'sortie', 'intérieur', 'droite', 'bas', 'cinq', 'Louis', 'aucune', 'plaisir', 'premiers', 'message', 'pièces', 'suivant', 'donné', 'enfin', 'proximité', 'logement', 'Alors', 'prise', 'voiture', 'objet', 'Nord', 'accord', 'section', 'âge', 'gros', 'nord', 'découvrir', 'technique', 'présent', 'République', 'soir', 'Depuis', 'créer', 'S', 'concernant', 'jouer', 'Paul', 'important', '2002', '1er', 'succès', 'appartement', 'Jeu', 'chambres', 'met', 'campagne', 'discuter', 'peut-être', 'territoire', 'Bonjour', 'certaines', 'argent', 'langue', 'rapide', 'parmi', 'geo', 'Internet', 'John', 'vais', 'Charles', 'résultats', 'Dieu', 'direction', 'moyen', '²', 'Français', 'Canada', 'couleur', 'Jeux', 'rendre', 'poste', 'fort', 'Sa', 'auprès', 'départ', 'armée', 'Michel', 'Centre', 'entrée', 'valeur', '2001', 'avaient', 'charge', 'zone', 'min', 'cœur', 'mère', 'match', 'taille', 'Allemagne', 'amour', 'noir', \"t'\", 'Sud', 'clients', 'aura', 'naissance', 'annonce', 'quartier', 'Québec', 'économique', 'frais', 'Afrique', 'mm', 'voyage', 'Pas', 'Selon', 'réponse', 'pied', 'Maison', 'international', 'culture', 'troisième', 'Mer', 'beau', 'connu', 'affaires', 'blanc', 'voix', 'doivent', 'directement', 'plupart', 'rouge', 'compris', 'amis', 'conseil', 'classe', 'Université', 'sujets', 't', 'Jacques', 'presse', 'protection', 'parti', 'arrivée', '35', 'rapidement', 'obtenir', 'application', 'parler', 'p.', 'association', 'doute', 'Sujets', 'mondiale', 'château', 'communauté', 'appel', 'images', 'panier', 'lequel', 'projets', 'étude', 'football', '60', 'générale', 'vite', 'libre', 'commentaire', 'arrive', 'Cet', 'ta', 'matière', 'aider', 'contrôle', 'risque', 'cm', 'commande', 'trouvé', '45', 'quel', 'unique', 'politiques', 'voit', 'Quand', 'intérêt', 'source', 'communes', 'contenu', 'internet', '1999', 'organisation', 'Date', 'utilisé', 'Robert', 'secteur', 'for', 'présence', 'B', 'mouvement', 'référence', 'is', 'villes', 'double', 'catégorie', 'techniques', 'force', 'lettres', 'ancienne', 'simplement', 'yeux', 'éléments', 'île', 'carrière', 'Coupe', 'vont', 'joueur', 'livres', 'passage', 'ET', 'historique', 'commence', 'petites', 'Italie', 'Cela', 'presque', 'Sam', 'sociale', 'parle', '32', 'moyenne', 'épisode', 'réalisé', 'particulièrement', 'problèmes', 'environnement', 'terrain', 'taux', 'films', 'tel', 'roman', 'David', 'chacun', '80', 'Bien', 'téléphone', 'pièce', 'Messages', 'actuellement', 'Tu', 'divers', 'super', 'dernières', 'Recherche', 'Histoire', 'similaires', 'second', 'couleurs', 'publié', 'parc', 'esprit', 'Votre', '33', 'derniers', 'énergie', 'publique', 'créé', 'cinéma', 'Union', 'lit', 'moteur', 'seconde', 'York', 'aujourd', 'disponibles', 'Philippe', 'sûr', 'US', 'Posté', 'TV', 'es', 'Non', 'facile', 'social', 'large', 'Google', 'siège', 'Lun', 'longtemps', 'communication', 'nécessaire', 'bord', 'Site', 'Ainsi', 'permis', 'liens', 'matin', 'directeur', 'mètres', 'Belgique', 'durée', 'vivre', 'Oui', 'Dim', 'table', 'Que', 'principal', 'solution', 'joue', 'devrait', 'idées', 'suivre', 'dimanche', 'personnel', 'ouverture', 'total', 'sait', 'envie', 'meilleure', 'six', 'fais', 'fil', 'collection', 'Liste', 'Marie', 'premières', 'semaines', 'groupes', 'désormais', 'parents', 'malgré', 'hôtels', '1998', 'Espagne', 'Guerre', 'Tour', '1990', 'ami', 'manque', 'lettre', 'position', 'hors', 'finale', 'via', 'cependant', 'nommé', 'conseils', 'haute', 'laisser', 'Notre', 'lieux', 'professionnels', 'difficile', 'militaire', 'venir', 'celles', 'bout', 'visite', 'Ven', 'évolution', 'coeur', 'internationale', 'veux', 'comprendre', 'université', 'voie', 'Rechercher', 'permettant', 'contrat', 'LE', 'Société', 'cher', 'Club', 'économie', 'soleil', 'partager', 'professionnel', 'chemin', 'devenir', 'permettre', 'Chine', 'bar', 'commentaires', 'établissement', 'traitement', 'réalité', 'utilise', 'retrouve', 'sélection', 'train', 'élèves', 'usage', 'port', 'tels', 'Bon', 'Etat', 'tes', 'européenne', 'Wikipédia', 'objectif', 'espèce', '{', 'faisant', 'concours', 'feu', 'lecture', 'location', 'suivi', 'certain', 'ca', '200', 'joueurs', 'vendredi', 'mariage', 'écran', 'propriété', '36', 'endroit', 'résultat', 'possède', 'samedi', 'disposition', 'décision', 'Facebook', 'analyse', 'mission', 'Très', 'etc', 'marche', '1997', 'from', '│', 'Lyon', 'Toutes', '34', 'soient', 'bâtiment', 'DU', 'moyens', 'province', 'Art', 'suivante', 'compagnie', 'longue', 'Fichier', 'américaine', 'puisque', 'inscrit', 'sorti', 'at', 'lundi', 'publics', 'pourtant', 'éviter', 'Suisse', 'finalement', 'Cependant', 'achat', 'personnage', 'parcours', 'Nouveau', 'enseignement', 'Commentaires', 'reçu', 'animaux', 'meilleurs', 'complet', 'parties', 'sources', '1996', '70', 'musée', 'chanson', 'Article', 'montre', 'Nos', 'Image', 'devez', 'importe', 'contact', 'officiel', 'outils', '1995', 'lui-même', 'DES', 'actions', 'peine', 'Juin', 'allemand', 'note', 'affaire', 'Église', 'bureau', 'processus', 'sol', 'matériel', 'Qui', 'changer', 'ait', '38', 'Nicolas', 'pratiques', 'importante', 'ouvrage', 'Pays', 'document', 'San', 'comprend', 'parfait', 'bain', 'furent', 'attention', 'liberté', 'possibilité', 'uniquement', 'Jan', 'M', 'by', 'X', 'sort', 'théâtre', 'frère', 'équipes', 'Ses', 'championnat', 'relation', 'police', 'mémoire', 'est-ce', \"S'\", 'Enfin', 'salon', 'Musée', 'laisse', 'commerce', 'armes', '44', 'personnages', '48', 'Henri', 'soutien', 'client', 'quelle', 'vitesse', 'Articles', 'lumière', 'extérieur', 'utilisateur', 'victoire', 'hôtes', 'Lors', 'course', '42', 'réaliser', 'choisir', 'objets', 'III', 'administration', 'véritable', 'bons', 'éducation', 'ouest', 'derrière', 'Ligue', 'tandis', 'généralement', 'Deux', 'annonces', 'peuple', 'acheter', 'règles', 'titres', '39', 'besoins', 'gamme', 'combat', 'huile', 'Wish', 'sociaux', 'honneur', 'critique', 'sorte', 'gare', 'continue', 'crise', 'papier', 'hiver', 'bataille', 'piscine', 'réseaux', 'sport', 'Japon', 'commun', 'retrouver', '41', '1994', 'permettent', 'puissance', 'modèles', 'thème', 'sciences', '37', 'mêmes', 'appelle', 'moderne', 'Ne', 'with', 'responsable', 'exposition', 'neuf', 'anciens', 'ajouter', 'court', 'classique', 'Petit', 'principe', 'ouvert', 'ouvre', 'forte', 'crois', 'précédent', 'sauf', 'stock', 'Publié', 'principale', '43', 'professeur', 'dispose', 'navigation', 'Londres', 'Amérique', 'régime', 'forces', '55', '90', 'garde', 'rend', 'buts', 'Elles', 'vol', 'appelé', '500', 'couple', 'livraison', 'celui-ci', 'Association', 'demander', 'avance', 'Accessoires', 'électrique', 'mains', '1992', 'connaître', 'transport', 'telle', 'connaissance', 'ressources', '--Le', 'changement', 'peau', 'dix', 'filles', 'i', 'offres', 'Chambre', 'Informations', 'Institut', 'Noël', 'impression', 'Voici', 'Angleterre', 'étape', 'magnifique', 'physique', '1980', 'vois', 'textes', 'cookies', 'numérique', 'présentation', 'utilisateurs', 'œuvres', 'Signaler', 'documents', 'majorité', 'fer', 'télévision', 'étudiants', 'artistes', 'recevoir', '52', 'relations', 'étais', 'élections', 'professionnelle', 'Russie', 'Festival', 'bande', 'poids', 'privée', 'principalement', 'St', 'émission', 'bonnes', '1993', 'familles', 'Ma', 'britannique', 'lignes', 'caractère', 'assurer', 'Thomas', 'participe', 'découverte', 'E', 'proposer', 'cartes', 'souhaite', 'Or', 'Salle', 'recherches', 'partenaires', 'chance', 'maire', 'peur', 'rivière', 'vignette', 'Ville', 'acteur', 'explique', 'univers', 'direct', '49', 'surface', 'soirée', 'confiance', 'journal', 'facilement', 'Windows', 'bientôt', 'Est', 'dessus', 'Mes', 'arrière', 'lac', 'Présentation', 'nouvel', 'Montréal', 'logiciel', 'abus', 'Répondre', 'devenu', 'installation', 'courant', 'faible', 'travailler', 'Service', 'Rome', 'profiter', 'langues', 'capacité', 'André', 'systèmes', 'auteurs', 'maisons', 'née', 'attaque', 'accessoires', 'Martin', 'actuelle', 'soins', 'Hotel', 'capitale', 'tableau', '1991', 'pieds', 'artiste', 'fête', 'fonds', 'concerne', 'est-à-dire', '46', 'classement', 'hauteur', 'plage', 'original', 'sept', 'mesures', 'coin', 'centrale', 'diverses', 'faite', 'dossier', 'cité', 'Pourquoi', 'ci-dessous', 'marques', 'EN', 'justice', 'Bernard', 'gratuitement', 'types', 'station', 'Sans', 'formes', 'célèbre', 'Joseph', 'éditions', 'fonctions', 'adore', 'dis', 'jeudi', 'paix', 'limite', 'sortir', 'LES', 'vote', 'Web', 'pleine', 'Championnat', 'mercredi', 'acteurs', 'principaux', 'plans', 'exploitation', 'épouse', 'supérieur', 'James', 'Georges', 'Parti', 'médias', 'confort', 'Claude', 'cherche', 'format', 'signe', 'propres', 'composé', 'R', 'mardi', 'V', '47', 'communale', 'naturel', 'FC', 'faites', 'di', 'lutte', '51', 'entièrement', 'peinture', 'actuel', 'écrire', 'structure', 'vieux', 'Premier', 'Vue', 'situe', 'pose', 'Monde', 'quotidien', 'espère', '´', 'Avr', 'espèces', '1970', 'risques', 'o', '59', 'populaire', 'prochain', 'infos', 'distance', 'étoiles', 'proches', 'latitude', 'moitié', 'détails', 'termes', 'Richard', 'immédiatement', 'solutions', 'contraire', 'sociales', 'importance', 'idéal', 'effets', 'représente', 'parfaitement', '¤', '56', 'Alain', 'locaux', 'entretien', '54', 'partout', 'penser', '1989', 'chaîne', 'top', 'pierre', 'patrimoine', 'voire', '57', 'choisi', 'réponses', 'g', 'rester', 'informatique', 'maladie', 'totalement', 'e-mail', 'Michael', 'discussion', 'complète', 'Guide', 'studio', 'pourra', 'Location', 'saint', 'Avis', 'défense', 'Carte', 'vidéos', 'réalisation', 'scientifique', 'Plan', 'Grande', 'rendez-vous', 'erreur', 'pourrez', 'Contact', 'décidé', 'gaz', 'opération', 'industrie', 'raisons', 'générales', 'H', 'Sujet', 'longitude', 'assurance', 'contacter', 'privé', 'améliorer', 'align', 'Hôtel', 'belles', 'valeurs', 'enquête', 'atteint', 'croissance', 'perdu', 'avenir', 'traduction', 'suffit', 'bébé', 'faits', 'participation', 'russe', 'régulièrement', 'zones', 'Président', 'appareil', 'goût', 'Groupe', 'El', 'terrasse', 'p', 'maximum', 'tellement', 'formé', 'Lycée', 'local', 'fonctionnement', 'Terre', 'dos', 'remporte', 'portes', '53', 'canton', 'ordinateur', 'gratuite', 'restaurant', 'machine', 'sexe', 'utilisant', 'fichier', 'construit', 'cour', 'division', 'mobile', 'approche', 'Bruxelles', 'recette', 'F', 'absence', 'écoles', 'vis', 'pouvait', \"lorsqu'\", 'unité', 'dû', 'sert', 'voyageurs', 'actualité', 'Rue', 'noms', 'volonté', 'existence', 'expression', 'ministère', 'méthode', 'italien', 'propriétaire', 'sociétés', 'Code', 'partage', 'cheveux', 'tient', 'décide', 'Marseille', '1988', 'International', 'Nov', 'bleu', 'consommation', 'entraide', 'élu', 'Autres', 'matchs', 'confortable', 'revient', 'européen', 'mondial', 'National', 'électronique', 'participer', 'régions', 'identité', 'Daniel', 'DH', 'Pendant', 'PC', 'minimum', 'Fév', 'faisait', 'ventes', 'quant', 'trouverez', 'apos', 'revue', 'probablement', 'Donc', 'apparaît', 'Oct', 'Chaque', 'fenêtre', 'voici', 'Aucun', 'demandes', 'recommande', 'ferme', 'outre', 'futur', 'morts', 'pression', 'maître', 'événements', 'réserve', 'attendre', '58', 'équipements', 'William', 'acte', 'viens', 'L.', 'regard', 'vert', 'publication', 'belge', 'différence', 'magasin', 'vent', 'kilomètres', 'étranger', 'reçoit', 'A.', 'manger', 'présenter', 'champ', '→', 'contexte', 'suivants', 'déjeuner', '300', 'École', 'chien', 'compétition', 'Services', 'Première', 'outil', 'commencé', 'porter', 'P', 'coupe', 'Bordeaux', 'statut', 'George', '́', 'montagne', 'chercher', 'responsabilité', 'Santé', 'description', 'Même', 'écriture', 'Empire', \"Aujourd'\", 'Partager', '1986', 'signifie', 'repas', 'immobilier', 'gagner', 'conception', 'travaille', 'bras', 'Bretagne', 'Avant', 'Dès', 'visage', 'fera', 'guide', 'efficace', 'rendu', 'puisse', 'id', 'épisodes', 'créée', '1987', 'hier', 'longueur', '†', 'Livraison', 'revenir', 'sinon', 'Titre', 'écrivain', 'correspond', 'élection', 'obtient', '1960', 'emplacement', 'design', 'celle-ci', 'tendance', 'Laurent', \"quelqu'\", 'voilà', 'Sciences', 'développer', 'réduction', 'domicile', 'applications', 'décès', '--La', 'jeunesse', 'réel', 'fit', '1982', 'retraite', 'contient', 'places', 'devait', 'radio', 'peintre', 'littérature', 'Déc', 'mises', 'Moi', 'forêt', 'figure', 'toutefois', 'beauté', 'clair', 'Commission', 'prochaine', 'Contenu', 'largement', '1984', 'cul', 'change', 'constitue', 'Sep', 'économiques', 'entier', 'ouverte', 'respect', 'disque', 'payer', 'Lorsque', 'vin', 'Connexion', '1985', 'Toulouse', 'café', 'milliards', 'bonheur', 'rejoint', 'programmes', 'vaut', 'médecin', 'oeuvre', 'pont', 'représentant', 'del', 'intérêts', 'Sélectionner', 'visiter', 'Entre', 'ciel', 'Retour', 'pétrole', 'verre', 'plantes', 'véhicule', 'preuve', 'chargé', 'suivantes', 'Patrick', 'Marc', 'joué', 'Homme', 'anniversaire', 'modifier', 'conseiller', 'Aoû', 'fruits', 'discours', 'débat', 'atteindre', 'altitude', 'phase', 'instant', 'historiques', 'Bonne', 'prévu', 'b', 'agence', '‘', 'vit', 'passant', 'Juil', 'regarder', 'Culture', 'final', 'certaine', 'Loire', 'inscrire', 'architecture', 'Nom', 'atelier', 'J.', 'critères', 'Maroc', 'issue', 'Disponible', 'vision', 'fleurs', 'spectacle', 'évaluation', 'huit', 'basse', 'prêt', 'complètement', 'louer', 'centres', 'volume', 'utilisés', 'sympa', 'Air', 'essayer', 'température', 'opérations', 'collaboration', 'fiche', 'souhaitez', '75', 'offrir', 'Ouest', 'demandé', 'Puis', 'dollars', 'distribution', 'Cliquez', 'tres', 'DVD', 'lu', 'supérieure', 'liés', 'montant', 'intervention', 'boutique', 'influence', 'Monsieur', 'diffusion', 'Conditions', 'troupes', 'sang', 'nécessaires', 'utilisée', 'Éditions', 'rejoindre', 'tenu', 'lance', 'véhicules', 'compter', 'objectifs', 'arrêt', 'Découvrez', 'Assemblée', 'construire', 'apprendre', \"N'\", 'présenté', 'Super', 'élevé', 'Mme', 'Certains', 'scolaire', 'publiques', 'compétences', 'éditeur', 'connecté', 'cliquez', 'Anne', 'excellent', 'écoute', 'budget', 'françaises', 'opposition', 'concept', 'étage', '150', 'équipé', 'événement', 'Tags', '1983', 'test', 'niveaux', 'commencer', 'avion', 'échange', 'caractéristiques', 'servir', 'envoyer', 'T', 'voulez', 'Château', 'tenue', 'fichiers', 'City', 'Sport', 'côtés', 'totale', 'poser', 'stade', 'eaux', 'entendu', 'Théâtre', 'conscience', 'humain', 'vallée', 'militaires', 'Christian', 'no', 'réussi', 'humaine', 'coordonnées', 'mauvais', 'touche', 'riche', 'Musique', 'associations', 'Twitter', 'suit', 'protéger', 'Top', 'Quelques', 'ouvrages', 'mari', 'portant', '×', 'remise', 'soi', 'candidat', 'Guillaume', 'Age', 'comte', 'utile', 'dur', 'aéroport', 'meilleures', 'IV', 'stratégie', 'hésitez', 'Algérie', 'promotion', 'Afficher', 'Créer', 'vide', '1975', 'autorités', 'Vie', '1981', 'telles', 'you', 'préparation', 'élève', 'technologie', 'théorie', 'Total', 'arrêté', '1978', 'Peter', 'paiement', 'journaliste', 'prises', 'tente', 'indique', 'locale', 'ouvrir', 'principales', 'Ben', 'traité', 'festival', 'espaces', 'von', 'loisirs', 'naturelle', 'défaut', 'support', 'baisse', 'Israël', 'phpBB', 'rencontres', 'O', 'Cour', '1968', 'Résultats', 'découvert', 'comptes', 'plat', 'Antoine', 'jolie', 'crée', 'Modèle', 'annoncé', 'victimes', 'avions', 'recettes', 'installer', 'lait', 'dehors', 'biens', 'légales', 'impossible', 'croire', 'email', 'Alexandre', 'municipalité', 'établissements', 'Asie', 'domaines', 'tombe', 'week-end', 'intéressant', 'noire', 'arts', 'conférence', 'Car', 'considéré', 'allez', 'champion', 'magazine', 'clubs', 'Olivier', 'coups', 'Parc', 'arriver', 'Parmi', 'commercial', 'pouvant', 'World', 'post', 'Disney', 'Académie', 'salles', 'fortement', 'résidence', 'artistique', 'champs', 'tourisme', 'proposé', 'In', 'CD', 'davantage', 'lancer', 'conflit', 'aventure', 'séries', 'serveur', 'rêve', 'civile', 'faveur', 'enregistrer', 'connue', '1979', 'Ça', 'tenir', 'japonais', 'perte', 'fonctionne', 'Albert', 'mairie', 'termine', 'espagnol', 'lesquels', 'garder', 'Jouer', 'allemande', 'précise', 'montrer', 'déclaré', 'exercice', 'quatrième', 'vérité', 'basée', 'scientifiques', 'trouvent', 'importants', 'right', 'capable', 'prison', 'villages', 'catégories', 'Maurice', 'soin', 'actes', 'aurais', 'métier', 'C.', 'veulent', 'foi', 'quantité', 'chinois', 'masse', 'expédition', 'récemment', 'charme', 'revanche', 'stage', 'concert', 'complexe', 'milliers', 'was', 'accéder', 'tôt', 'van', 'pop', 'pensée', '1976', 'Comité', 'secrétaire', 'der', 'superbe', 'clé', 'particuliers', 'fini', 'printemps', 'demain', 'commission', 'originale', 'camp', 'Permalien', 'dessin', 'marchés', 'envers', 'réception', 'lois', 'Dr', 'religion', 'chansons', 'lycée', 'ambiance', 'Mars', 'Quel', 'dois', 'vivant', 'engagement', '›', 'juridique', 'mur', 'noter', 'ski', 'consulter', 'central', 'option', '1977', 'juge', 'Sous', 'absolument', 'entrer', 'viennent', 'meme', 'Type', 'jaune', 'élément', 'r', 'chaleureux', 'catholique', 'Note', 'vendre', 'invite', 'menu', 'rose', 'essentiel', '1950', 'tarifs', 'couverture', 'Archives', 'Saison', 'Se', 'évêque', 'Pologne', 'Livre', 'Berlin', 'difficultés', 'blanche', '400', 'chapelle', 'olympiques', 'organisé', '1972', 'procédure', 'présents', 'frères', 'performance', 'perdre', '1973', 'Message', 'notes', 'génération', 'Journal', 'voitures', 'au-dessus', 'médecine', 'bâtiments', 'condition', '®', 'Photo', '1974', 'rappelle', 'importantes', 'glace', 'cheval', 'durable', 'connaît', 'effectuer', 'quitte', 'contenant', 'pro', 'continuer', 'tradition', 'candidats', 'beaux', 'lancé', 'automobile', 'Trois', 'Malgré', 'coût', 'réunion', 'Ca', 'primaire', 'réduire', 'chat', 'obtenu', 'définition', 'Produits', 'résumé', 'chasse', 'apporter', 'Jésus', 'sucre', 'Espace', 'Général', 'Vincent', 'laissé', 'vérifier', 'lendemain', 'député', 'Salon', 'traduit', 'froid', 'actrice', 'clés', 'terres', 'reprises', 'reprise', 'chiffres', 'résistance', 'publiée', 'surprise', 'chocolat', 'alimentation', 'Nuit', 'Nouvelle', 'échelle', 'autorité', 'ceci', 'Fiche', 'capital', 'Etats-Unis', 'chaud', 'comité', 'Plusieurs', 'M2', 'licence', 'échanges', 'interne', 'épreuve', 'collège', 'joli', 'liées', 'âme', 'tiers', 'critiques', 'enfance', 'vélo', 'Arts', 'télévisée', 'envoyé', 'pourraient', 'côte', 'Royaume-Uni', 'murs', '65', 'bus', 'fabrication', 'Black', 'réalisateur', 'demeure', 'prince', 'piste', 'conduit', 'soldats', 'lecteur', 'États', 'hôte', 'Fédération', 'douche', 'batterie', 'salariés', 'cadeau', 'Gestion', 'aspect', 'home', 'sommet', 'connaissances', 'Alpes', 'Projet', 'essentiellement', 'oublier', 'Politique', 'philosophie', 'René', 'seuls', 'district', 'Grâce', 'religieux', 'sac', 'IP', 'occupe', 'Nantes', 'locales', 'duc', 'documentaire', 'Toutefois', 'chute', 'méthodes', 'scénario', 'planète', 'parking', 'sympathique', 'héros', '2007Sujet', 'garantie', 'label', 'pêche', 'comportement', 'renseignements', 'cycle', 'humaines', 'crédit', 'mélange', 'consiste', 'précédente', 'accueille', 'logiciels', 'ajouté', 'Me', '.....', 'visiteurs', 'boîte', 'forcément', 'Van', 'grave', 'Australie', 'tournée', 'exception', 'multiples', 'chiffre', 'Film', 'connexion', 'logique', 'restauration', 'somme', '64', 'préparer', 'mail', 'comté', 'équipée', '1962', 'eut', 'édité', 'moindre', 'réflexion', 'portail', 'accessible', 'Actualités', 'vraie', 'anciennes', 'proposition', 'Mise', 'Inde', 'technologies', 'Leur', '1940', 'Bienvenue', 'financement', 'mouvements', 'modification', 'royaume', 'évidemment', 'acceptez', 'spécialiste', 'crème', 'Seconde', '1945', 'Voilà', 'File', 'etre', 'gérer', 'îles', 'découvre', 'affiche', 'Formation', 'équipement', 'Vos', '1967', 'augmentation', 'banque', 'règle', 'feuilles', 'agriculture', 'langage', 'Los', 'automatiquement', '3D', 'secret', 'simples', 'impact', 'Star', 'Ou', 'Description', 'till', 'certainement', 'régional', 'citer', 'info', 'rapports', 'portée', 'démarche', \"Qu'\", 'arrondissement', 'profil', 'hôpital', '1971', 'accueillir', 'suisse', 'expliquer', 'officielle', 'appareils', 'révolution', 'restaurants', 'violence', 'secondes', 'a-t-il', 'Durant', 'néanmoins', 'voulu', 'Pro', 'Brésil', 'veille', 'normal', 'animation', 'connais', 'Frédéric', \"--L'\", 'Roger', 'comporte', 'danse', '1969', 'inclus', 'Marine', 'apparition', 'bibliothèque', 'record', 'G', 'décrit', 'Strasbourg', 'score', 'Catherine', 'Bref', 'indépendance', 'archives', 'Henry', 'destination', 'Auteur', 'Genève', 'this', 'humains', 'composée', 'revenu', 'clairement', 'moments', 'f', 'VF', 'Dominique', 'faux', 'apprentissage', 'Aide', 'donnée', 'passion', 'achats', 'mauvaise', 'Attention', 'devoir', 'Royal', 'pilote', 'tome', 'Femme', 'chapitre', 'chaleur', 'faudra', 'permettra', 'USA', 'fournir', 'féminin', 'assure', 'reprend', 'thèmes', 'Radio', 'superficie', 'élus', 'séance', 'PS', 'investissement', 'commerces', 'producteur', 'citoyens', 'financière', 'Direction', 'indiqué', 'connecter', 'exactement', '1944', 'architecte', 'capitaine', 'Appartement', 'fondée', 'pire', 'publie', 'effectivement', 'science', 'meurt', 'heureux', 'initiative', 'météo', 'Maria', 'Révolution', 'conforme', 'entendre', 'arrivé', 'réforme', 'saisons', 'actif', 'accident', 'réalisée', 'matières', 'dessous', 'adultes', 'placé', 'rock', 'guitare', 'faudrait', 'truc', 'Place', 'text', 'Nice', 'bouche', 'nucléaire', 'réalise', 'hommage', 'acheté', 'essai', 'aimé', 'urgence', 'présidentielle', 'cuir', 'utiles', 'Collection', 'Var', 'reprendre', 'appartient', 'voyages', 'fondé', 'partenaire', 'tournoi', 'appelée', 'grosse', 'Banque', '1000', 'culturel', 'chômage', 'délai', 'principes', 'Quelle', 'pâte', 'eacute', 'piano', 'Sécurité', 'tours', 'décoration', '2008Sujet', 'WP', 'Y', 'frontière', 'difficulté', 'développé', 'étrangers', 'catalogue', 'faute', 'matériaux', 'spécial', 'missions', 'arabe', 'Anglais', 'circuit', 'four', 'Victor', 'permanent', 'réservation', 'étrangères', 'yoga', 'douce', 'auraient', 'Christophe', 'Jack', 'avantage', 'palais', 'responsables', 'Médecine', 'kg', 'classé', 'Park', 'pointe', 'supplémentaires', '\\ufeff', 'rares', 'bassin', 'Lille', 'Cours', 'sexy', 'avocat', 'pain', 'prennent', 'vêtements', '120', 'victime', 'pouvons', 'précis', 'One', 'Christ', 'profit', 'vouloir', 'disponibilité', 'parole', 'Eric', 'sent', 'marketing', 'arrêter', 'légèrement', 'signé', 'hausse', 'participé', 'Aux', 'robe', 'aurez', 'neige', 'Source', 'Catégories', 'Gérard', 'dynamique', 'transports', 'composition', 'classes', 'Guy', 'Générale', 'lesquelles', 'essais', 'produire', 'reconnaissance', 'devenue', 'propriétaires', 'visites', 'net', 'références', 'bains', 'vaste', 'spécifique', '1965', 'auquel', 'américains', 'conséquences', 'légende', 'convient', 'marine', 'elle-même', 'attend', 'restent', 'abbaye', 'Côte', 'empereur', '1966', '™', 'adapté', 'dessins', 'Max', 'Jules', 'efficacité', 'very', 'Pascal', 'entraîneur', 'environs', '250', 'institutions', 'parfaite', 'bref', 'décret', 'déclaration', 'conduite', 'Agence', 'machines', 'Sinon', '1964', 'rubrique', 'monuments', 'seraient', 'performances', 'single', 'au-delà', 'mandat', 'italienne', 'indépendant', 'You', 'partenariat', 'offert', 'portable', 'R.', 'souvenir', 'rédaction', 'Ceci', 'siècles', 'spécifiques', 'changements', 'porté', 'center', 'relativement', 'Simon', 'extension', 'organisations', 'électricité', 'limites', 'Microsoft', '1930', 'Manuel', 'Vidéo', 'collectif', 'Toute', 'représentation', 'plateau', 'possibles', 'réduit', 'recours', 'participants', 'centaines', 'dispositions', 'finir', 'Adresse', 'majeur', 'populations', 'agent', 'habitude', 'géographique', 'automatique', 'Ah', 'graphique', 'animal', 'sportif', 'Tourisme', 'emplois', 'Parlement', 'arbre', 'chefs', 'donnant', 'Tom', 'revenus', 'opinion', 'S.', 'fondateur', 'bilan', 'unités', 'Madame', 'estime', 'axe', 'Grèce', 'formule', 'littéraire', 'dépend', 'collections', 'dispositif', 'venu', 'bénéficier', 'fixe', 'phénomène', 'bouton', 'Blog', 'pape', 'rencontrer', 'rythme', 'préféré', 'notion', 'amoureux', 'répond', 'chant', 'dite', 'rare', 'gris', 'P.', 'remplacer', 'réellement', 'Accès', 'basé', 'fêtes', 'formations', 'und', 'usine', 'Ordre', 'bases', 'adaptation', 'financiers', 're', 'expériences', 'oiseaux', 'européens', 'pouvoirs', 'Marcel', 'procès', 'Est-ce', 'agents', 'apporte', 'étapes', 'Mentions', 'toile', 'rang', 'voies', 'ajoute', 'consacré', 'donnent', 'moto', 'tenter', 'finit', 'chacune', 'Région', 'longues', 'arbres', 'vues', 'versions', 'su', 'règne', 'Quant', 'liésPortail', 'copie', 'reconnu', '─', 'ex', 'actifs', 'Docteur', 'clip', 'circulation', 'remettre', 'iPhone', 'intitulé', 'fallait', 'Cuisine', 'courte', 'est-il', 'rues', 'dirigeants', 'métiers', 'Ensuite', 'climat', 'particulière', 'chiens', 'efforts', 'officiellement', 'récit', 'supprimer', 'bel', 'standard', 'experts', 'automne', 'courage', 'relative', '1963', 'attente', 'Pays-Bas', 'internautes', 'monter', 'Pièces', 'marqué', '1958', 'publicité', 'changé', 'partis', 'Stade', 'Jean-Pierre', 'Al', 'extrêmement', 'croix', 'Photos', 'bruit', 'Envoyer', 'tomber', 'conçu', 'Portail', 'commandes', 'latin', 'sable', '72', 'minute', 'left', 'former', 'télécharger', 'Thierry', 'enregistré', 'perd', 'Chambres', 'options', 'transfert', 'Palais', 'bateau', 'internationales', 'Bureau', 'justement', 'Blanc', 'pluie', 'territoires', 'titulaire', 'avancée', 'Office', 'obligatoire', 'angle', 'réservés', 'Love', 'horaires', 'structures', '1961', 'Petite', 'Afin', 'oublié', 'spécialisé', 'ci-dessus', 'examen', 'Divers', 'Galerie', 'pourront', 'personnelle', 'chanteur', \"puisqu'\", 'contenus', 'correspondant', 'Création', 'compositeur', 'interdit', 'histoires', 'sœur', 'Hollande', 'municipal', 'Communauté', 'Livres', 'sérieux', 'réussite', 'lecteurs', 'agricole', 'Bois', 'normes', 'mille', 'FAQ', 'Julien', 'quitter', 'avantages', 'Directeur', 'phrase', 'F.', 'augmenter', 'lorsqu', 'Rien', 'upright', '1920', 'logements', 'Washington', 'José', 'cabinet', 'enregistrement', 'Loi', 'B.', 'acier', 'Discussion', 'installé', 'précision', 'représentants', 'Dernière', 'Roi', 'intéresse', 'Bruno', 'classiques', 'exécution', 'listes', 'aménagement', 'œil', 'soumis', 'My', 'définir', 'billet', 'Lien', 'organisme', 'vigueur', 'logo', 'espoir', 'Autriche', 'raconte', 'utilisent', 'danger', 'v', 'prestations', 'Évaluation', 'paroles', 'Champion', 'Tunisie', 'Portugal', 'associé', 'attendant', 'avenue', 'allant', 'combien', 'Encore', 'organiser', 'Emmanuel', 'Faire', 'destiné', 'rayon', 'Vienne', 'Yves', 'vendu', 'démocratie', 'Chez', '♥', 'plastique', 'patients', 'impose', 'réaction', 'bronze', 'Âge', 'spéciale', 'extrait', 'potentiel', 'Montpellier', 'Apple', 'anglaise', 'vainqueur', 'constitué', 'allait', 'Ici', 'Table', 'canal', 'sel', 'midi', '1954', '95', 'Revue', 'Aucune', 'interprétation', 'doux', 'seigneur', 'limitée', 'camping', 'Système', 'TTC', 'dédié', 'chevaux', 'surveillance', 'intégration', 'maladies', 'appartements', 'pierres', 'issus', 'lancement', '85', 'session', 'légumes', 'hockey', 'supplémentaire', 'personnelles', 'Bibliothèque', 'Parce', 'musicale', 'individus', '1936', 'différent', 'organise', 'financier', 'ateliers', 'Affaires', 'Nationale', 'Nations', 'Jardin', 'Moscou', 'quels', 'Noir', 'montage', 'construite', 'rouges', 'numéros', 'Où', 'défaite', 'front', 'Père', 'culturelle', 'auront', 'armées', 'auto', 'commerciale', 'POUR', '1956', '1946', '1959', 'humour', 'postes', 'accepte', 'reine', 'autorisation', 'métro', 'remplacé', 'charges', 'Cannes', 'No', 'agir', 'métal', 'arme', 'Droit', 'règlement', 'poète', 'Entreprises', 'sports', 'Suite', 'Gilles', 'Pourtant', 'innovation', 'barre', 'vise', 'sorties', 'débuts', '62', 'Android', 'exemplaires', 'identifier', 'Big', 'Mr', 'alimentaire', 'garçon', 'hébergement', 'Normandie', 'rire', '600', 'employés', 'dates', 'Travaux', 'établir', 'écrits', 'vivement', 'pistes', 'flux', 'Série', 'socialiste', 'secondaire', 'Protection', 'apprend', 'dimension', 'égard', 'poissons', 'présentes', 'solo', 'don', 'tirer', 'vols', 'mécanique', 'poursuit', 'tourne', 'amélioration', 'annuaire', 'gagne', 'ceinture', 'électriques', 'Rennes', 'Californie', 'équilibre', 'secteurs', 'nuits', 'allons', 'nécessité', 'Infos', 'chercheurs', 'Belle', 'paysage', 'active', 'blancs', 'médaille', 'concurrence', 'Durée', 'Aller', 'erreurs', 'bac', 'joie', 'USB', 'ben', 'repris', 'travailleurs', 'préfère', 'royale', 'invités', 'respecter', 'Madrid', 'Demande', 'appeler', '1939', '2006Sujet', 'indispensable', '\\u200b', 'suppression', 'orchestre', 'Réponse', 'émissions', 'morceaux', 'luxe', 'précisément', 'trafic', 'léger', 'alentours', 'prénom', 'tué', 'Fondation', 'tennis', 'solaire', 'Denis', 'voulait', 'travaillé', 'Sports', 'cadeaux', 'Partagez', 'intention', 'naturelles', 'Famille', 'considère', 'Red', 'modernes', 'favoris', 'engage', 'hasard', 'vécu', 'sentiment', 'courses', 'Arthur', 'poursuivant', 'cesse', 'auparavant', 'Z', 'Vers', 'grec', 'Détails', 'urbaine', 'extrême', 'voulais', 'bio', 'live', 'rupture', 'soutenir', 'Programme', 'humanité', 'photographie', 'calcul', 'modifications', 'visant', 'faciliter', 'Santa', 'signature', 'plages', 'maintenir', 'déco', 'tissu', 'amie', 'affirme', 'Retrouvez', 'title', 'universitaire', 'Angeles', 'cathédrale', 'vingt', 'demi', '78', 'mettant', 'familiale', '77', 'Produit', 'personnalité', 'Offres', 'menace', 'mention', 'Mode', 'apprécié', 'Salut', 'scolaires', 'U', 'aimerais', 'écrite', 'quartiers', 'Sarkozy', 'calendrier', 'thé', 'rayons', 'News', 'All', 'exemples', 'conserver', 'échec', 'libres', 'vieille', 'SUR', '1957', 'décisions', 'plaque', 'dure', 'tribunal', 'alt', 'organisée', 'Qu', 'Constitution', 'conséquence', 'personnalités', 'Hôtels', 'Organisation', 'li', 'Emploi', 'semblent', 'fondation', 'maîtrise', 'essence', 'w', '68', 'leader', 'amateurs', 'magasins', 'bureaux', 'désigne', 'boite', 'coopération', 'retourner', 'propositions', 'Information', 'Music', 'issu', 'défendre', 'populaires', 'prévue', 'rugby', 'mettent', 'lié', 'installations', 'coté', 'King', 'maman', 'bonjour', 'Introduction', 'monument', 'ombre', 'Stéphane', 'Frais', 'remporté', 'journalistes', 'vins', 'D.', 'Moyen', 'Haute', 'it', 'civil', 'révèle', 'couples', 'fins', '1942', 'albums', 'souvenirs', 'Mark', 'transformation', 'tests', 'tourner', 'profondeur', 'Suède', 'ingénieur', 'fans', 'regarde', 'poésie', 'Q', 'touristique', 'terrains', '1955', 'HD', 'dialogue', 'nationales', 'scènes', 'Soins', 'dommage', 'Bourgogne', 'branche', 'après-midi', 'tir', 'ci', 'Seigneur', 'attaques', 'refuse', 'déroule', 'étudiant', 'profession', 'video', 'aimez', '800', 'régionale', 'autonomie', 'navigateur', 'G.', '66', '1943', 'éd.', 'plateforme', 'Veuillez', 'Provence', 'Milan', 'Turquie', 'Edition', 'Irlande', 'chaussures', 'empêcher', 'démocratique', 'HT', '1948', 'effort', 'instruments', 'façade', 'effectué', 'prévention', 'uns', 'Questions', 'rencontré', 'connus', 'accompagné', 'montagnes', 'canadien', 'Compagnie', 'jardins', 'sommes-nous', 'English', 'cent', 'commandant', 'Football', 'débute', 'source1', 'chemins', '1914', 'viande', 'enjeux', 'beurre', 'paraît', 'ul', 'servi', 'européennes', 'spécialisée', 'Mexique', 'WC', 'moteurs', 'intérieure', 'Isabelle', 'Télécharger', 'cinquième', 'utilisées', 'situations', 'Francis', 'devraient', 'Macron', 'Frank', 'capacités', 'personnels', 'visible', 'combats', 'devra', 'fan', 'Jeanne', 'K', 'invité', 'retard', 'réservé', 'galerie', 'Syrie', 'évolue', 'tester', 'acquis', '67', 'Concours', 'footballeur', 'légère', 'Avril', 'successeur', 'interface', 'serez', 'industriel', 'enceinte', 'accepter', 'contemporain', 'Annonce', 'entière', 'Développement', 'réelle', 'parlé', 'associés', 'Version', 'obligation', 'nul', 'déchets', 'appui', 'étudier', 'résolution', 'décédé', 'villa', 'envoie', 'comprenant', '1947', 'banques', 'poisson', 'députés', 'directe', 'excellente', 'établi', 'entend', '84', 'massif', 'suffisamment', 'Aujourd', 'u', 'sauver', 'silence', 'Chris', 'organismes', 'traditionnelle', '69', 'ordres', 'Raymond', 'déclare', 'cliquant', 'billets', 'enseignants', 'routes', 'malheureusement', 'EUR', 'concerts', 'Studio', 'possibilités', 'égalité', 'audio', 'Go', 'Home', 'we', 'stockage', 'assemblée', 'Division', 'prenant', 'mérite', 'effectue', 'thermique', 'énorme', 'Smith', 'propriétés', 'tuer', 'alimentaires', 'judiciaire', 'dimensions', 'devint', 'décor', 'Aussi', 'puissant', 'appartenant', 'récupérer', 'Point', 'Fin', 'naturels', 'sourire', 'couche', 'terminé', 'Lee', 'thèse', 'romans', 'paru', 'Haut', 'ennemi', 'secours', 'installe', 'accueilli', 'fermeture', 'nez', 'désigner', 'tarif', 'intermédiaire', 'Barcelone', 'assistance', 'dossiers', 'Autre', 'Maître', 'rappeler', 'Villa', 'oeil', 'cancer', 'arrête', 'Matériel', 'progrès', 'Records', 'poursuivre', 'Sainte', '1953', 'United', 'Master', 'cache', 'appliquer', 'morceau', 'aspects', 'entraînement', 'océan', 'Rose', 'fou', 'Informatique', 'navire', 'chauffage', 'développe', 'industrielle', '1952', 'confirme', 'fleuve', 'cuisson', 'remis', 'gouverneur', 'meteo', 'douze', 'aimer', '63', 'poche', 'are', 'Congrès', 'constituent', 'exprimer', 'Française', '1941', 'fusion', 'Là', 'Vente', 'Open', 'E.', 'peuples', 'Val', 'plante', 'Croix', 'musulmans', 'Live', 'votes', 'comprends', 'cellules', 'soviétique', 'internationaux', 'disparu', 'tableaux', 'étoile', 'Orange', 'audience', 'globale', 'médecins', 'lits', 'coûts', 'souci', 'transmission', 'Janvier', 'appris', 'orientation', 'ressemble', 'cimetière', 'rentrée', 'synthèse', 'gratuits', 'pensé', 'discussions', 'origines', 'docteur', 'Caroline', 'indépendante', 'recensement', 'cérémonie', 'Eglise', 'passée', 'Luxembourg', 'législatives', 'col', 'Cinéma', 'détachées', 'certes', 'do', 'ère', 'Dernier', 'proposons', 'relève', 'communautés', 'immense', 'Actualité', 'diplôme', 'acquisition', 'We', 'American', 'manifestations', 'chantier', 'déterminer', 'chers', 'télé', '--Autres', 'contribution', 'culte', 'convention', 'voisins', 'Notre-Dame', 'victoires', 'patron', 'montré', 'Alsace', 'tension', 'Ministère', 'définitivement', '1949', 'diversité', 'Man', 'troubles', 'm2', 'endroits', 'adresses', 'Ancien', '61', 'rive', 'Corée', 'mener', 'lol', 'riches', 'Atelier', 'consommateurs', 'montée', 'facteurs', 'adulte', 'UN', 'navires', '↑', 'mobilité', 'originaire', 'majeure', '76', 'formulaire', 'autonome', 'conduire', 'inverse', 'dépenses', 'touristiques', '1938', 'house', 'Tome', 'House', 'plats', 'symbole', 'sportive', 'Design', 'liée', 'privés', 'mathématiques', 'Championnats', 'déplacement', 'Sophie', 'intégrer', 'vol.', 'da', 'immeuble', '1951', 'kmEntre', '00ZNous', 'incendie', 'Serge', 'devis', 'relatives', 'religieuse', 'évidence', 'désir', 'aiment', 'Chicago', 'conséquent', 'regroupe', 'officier', 'fr.wikipedia.org', '99', 'Rock', 'Don', 'union', 'agricoles', 'Armée', 'disent', '74', 'color', 'repos', 'autrement', 'Grenoble', 'créations', 'traiter', 'frontières', 'poudre', 'énergétique', 'aluminium', 'Harry', 'généraux', 'introduction', 'musical', 'cercle', 'accompagner', 'Street', 'liquide', 'voile', 'Iran', 'essayé', 'index.php', 'envoi', 'parvient', 'BD', 'caractères', 'industriels', 'Gîte', 'portrait', 'cultures', 'orange', 'Maintenant', 'comptait', 'empêche', 'débit', 'écouter', 'Copyright', 'administrative', 'nommée', 'Rouge', 'régiment', 'contrats', 'traces', 'soucis', 'gagné', 'Gare', 'gîte', 'Mont', 'maintien', 'XV', 'mène', 'talent', 'Chapitre', 'courrier', 'nourriture', 'pauvres', 'vivent', 'office', 'guerres', 'comédie', 'laissant', 'expositions', 'équivalent', 'perspective', 'dessinée', 'biais', 'communiqué', 'conférences', 'provient', 'assuré', 'traditionnel', 'Fort', 'portent', 'paroisse', 'Beaucoup', 'Ministre', 'intégré', 'diffusée', 'tiens', 'occupation', 'représentent', 'différente', 'H.', 'degré', 'Ecole', 'chanteuse', 'temple', 'journaux', 'retrait', 'contrairement', 'remplir', 'infanterie', 'alcool', 'qualités', 'monte', 'Lettres', 'administrateur', 'modifié', 'AU', 'Education', 'University', 'dizaine', 'Juan', 'Pièce', 'Mot', 'inspiré', '1937', 'limité', 'amitié', 'adapter', 'optique', 'étend', 'Nancy', 'Couleur', 'remplacement', 'jus', 'fédéral', 'Commander', 'motif', 'diffusé', 'morale', 'Laisser', 'modes', 'nationaux', 'max', 'remarque', 'Léon', 'Nature', 'Florence', 'présentent', 'commandement', 'mets', 'Front', 'Antonio', 'Pont', 'individu', 'sentir', 'Action', 'Conseils', 'Presse', 'élevage', 'retrouvé', 'répondu', 'solidarité', 'progressivement', 'enseigne', '2ème', 'paramètres', '1ère', 'Mario', 'coton', 'Team', 'West', 'collectivités', '--Vos', '92', 'toucher', 'Inscription', 'conseillers', 'Hugo', 'Menu', 'Loisirs', 'codes', 'Seine', 'Alex', 'Communication', 'Porte', 'paysages', 'sud-ouest', 'Prince', 'collective', 'accompagnement', 'tentative', 'stations', 'posé', 'parallèle', 'démarches', 'déposé', 'million', 'Demandé', 'privées', 'verte', 'Base', 'Joe', 'réparation', 'publications', 'Force', 'médicaments', 'garantir', 'laboratoire', 'extérieure', 'dirigé', 'proposés', 'candidature', 'consultation', 'consulté', 'conseille', '83', 'race', 'monnaie', 'destruction', 'spécialistes', 'cible', 'astuces', 'administratif', 'bien-être', 'venue', 'Égypte', '1931', 'Miss', 'reproduction', 'compose', 'intelligence', 'Outils', 'deviennent', '93', 'TVA', 'Toujours', 'Octobre', 'signes', 'randonnée', 'dangereux', 'fruit', '2009Sujet', 'boulot', 'Corse', 'Savoie', 'libération', 'édifice', 'numériques', 'spécialement', 'Of', 'offrent', 'contemporaine', 'informatiques', 'occuper', 'manifestation', 'disparition', 'revoir', 'gras', 'communiste', 'Mac', 'défi', 'renforcer', 'conservation', 'informer', 'Travail', 'patient', 'mini', 'motifs', 'com', 'pseudo', 'romaine', 'wiki', 'liaison', 'avoue', '1935', '71', 'Mots', 'provenant', 'ceux-ci', 'venus', 'nécessite', 'envies', 'relais', 'Françoise', 'densité', '1918', 'Juillet', 'maintenance', 'repose', 'voter', 'débats', 'recueil', 'pommes', 'Express', 'Lorraine', 'solide', 'Peu', 'disant', 'profite', '180', 'dépôt', 'attentes', '79', 'imposer', 'fameux', 'Monaco', 'nettoyage', 'Wi-Fi', 'sols', 'Mike', 'Rio', 'attitude', 'fasse', 'retirer', 'éclairage', 'Réunion', 'Fils', 'PDF', 'nomme', 'dédiée', 'mesurer', '82', 'circonscription', 'jugement', 'sud-est', 'It', 'Meilleur', 'fonctionnalités', 'configuration', 'Scott', 'musiciens', 'Production', 'parcs', 'nord-est', 'souris', 'historien', 'colis', 'art.', 'dizaines', 'destinée', 'oreilles', 'Rapport', '00ZTrès', 'Celui-ci', 'voudrais', 'conflits', 'secondaires', '1933', 'toit', 'Classement', 'passent', 'venant', '73', 'Membre', 'béton', 'norme', '81', 'Partie', 'Francisco', 'programmation', 'cru', 'Village', 'annuel', '2018', 'duo', 'doigts', 'épreuves', 'Permission', 'euro', 'magique', 'dents', 'applique', 'oiseau', 'Juifs', 'respectivement', 'quotidienne', 'Temps', 'disques', 'constitution', 'feuille', 'championnats', 'This', 'correctement', 'condamné', 'rentrer', 'Enfant', 'Museum', 'Septembre', 'mourir', 'Versailles', 'Adam', '1934', '140', 'Napoléon', 'Soleil', 'Qualité', 'ministres', 'Commande', 'diamètre', 'Caractéristiques', 'variété', 'interview', 'librairie', 'Certaines', 'aient', 'Département', 'volumes', 'contributions', 'préalable', 'rarement', 'virus', 'considérée', 'retourne', 'Vacances', 'Chef', 'con', 'Port', 'Mary', 'dirige', 'afficher', 'Argentine', 'aventures', 'Défense', 'savent', '1900', 'baie', 'eux-mêmes', 'japonaise', 'VI', 'ajoutant', 'Lettre', 'instrument', 'idéale', 'mobiles', 'abbé', 'génie', 'tablette', 'UE', '88', 'cerveau', 'inconnu', 'reconnaître', 'Bill', 'expédié', 'W', 'lumineux', 'ennemis', 'déplacer', 'Vêtements', 'savez', '......', 'Didier', 'physiques', 'Province', 'rénovation', 'appelés', 'Situé', 'Achat', 'be', 'constructeur', 'compatible', 'linge', 'masculin', '1932', 'stratégique', 'fournisseurs', 'exercices', 'détente', 'bancaire', 'Renault', 'forêts', 'producteurs', '2e', 'exigences', 'lot', 'normale', 'évènements', 'Justice', 'réalisés', 'richesse', 'GPS', 'vas', 'prêts', 'situés', 'olympique', 'dites', 'queue', 'Press', 'blessés', 'Tokyo', 'publier', 'élevée', 'exclusivement', 'Anna', 'polonais', 'chrétiens', 'médical', 'contraintes', 'existent', 'transition', 'roues', 'placer', 'Cité', 'fleur', 'amateur', 'Gabriel', 'relatif', 'tenant', 'us', 'Awards', 'secrets', 'spéciales', 'Vendredi', 'tâches', 'financières', \"O'\", 'centre-ville', 'sportifs', 'chaude', 'éventuellement', 'reçuesAnnonce', 'récente', 'Commerce', 'champions', 'atmosphère', 'présidence', 'accompagne', 'messagerie', 'Novembre', 'Tableau', 'positions', 'urbain', 'Référence', 'bienvenue', 'intègre', 'Gouvernement', '--Divers', 'Épisode', 'sièges', 'Faites', 'Jones', 'Collège', '1926', \"Jusqu'\", 'proposent', 'esthétique', 'évoque', 'croit', 'externe', 'empire', 'datant', 'nouveautés', 'Face', 'Conférence', 'tâche', 'noirs', 'opérateur', 'Orléans', 'recrutement', 'carré', 'pneus', 'Canal', 'salaire', 'offrant', 'Alfred', 'Acheter', 'institution', 'fine', 'pauvre', 'professionnelles', 'étrange', 'courants', 'fermé', 'adaptée', 'arrivent', 'compréhension', 'quasiment', 'Benoît', 'francophone', 'féminine', 'nations', 'V.', 'prête', 'Sébastien', 'hypothèse', '91', 'adaptés', 'statue', 'douleur', 'look', 'Vierge', 'fenêtres', 'sauce', 'Beach', 'forts', 'apparence', 'bénéficie', 'appels', 'encre', 'Rouen', 'infrastructures', 'romain', 'inspiration', 'difficiles', 'inscrits', 'réputation', 'Cordialement', 'suivent', 'Samedi', 'Steve', '►', 'espagnole', 'Année', 'similaire', '86', 'dieu', 'morte', 'fonctionnel', 'régionales', 'prédécesseur', 'conserve', 'câble', 'blocage', 'Quantité', 'médicale', 'résoudre', 'LNH', 'vapeur', 'transformer', 'départements', 'publiés', 'exceptionnelle', 'quelles', 'finances', 'Amour', '1921', 'sombre', 'Bataille', 'scénariste', 'présentée', 'compagnies', 'procédé', 'Blue', 'Jérôme', 'forment', 'courriel', 'tendances', 'nord-ouest', '125', 'normalement', 'quart', 'pur', 'traverse', 'chaînes', 'préciser', 'Zone', 'Oh', 'chœur', 'Téléphone', 'fidèle', 'Venise', 'commandé', '★', '1929', 'Benjamin', 'dame', 'hotel', 'fortes', 'satellite', 'colère', 'trains', 'traite', 'Poste', 'occidentale', 'favorable', 'princesse', 'salut', 'américaines', 'Mairie', 'claire', 'prévisions', 'indiquer', 'battre', 'collègues', 'Environnement', 'Réseau', 'rôles', 'White', 'scrabble', 'menée', 'écart', 'répartition', 'bloc', 'autoroute', 'malade', 'prêtre', 'aérienne', 'discipline', '110', 'Hongrie', 'témoignage', 'sortes', 'lutter', 'évident', 'alliance', 'mn', 'mines', 'bat', 'apparaissent', 'global', 'fournit', 'variable', 'Etats', 'League', 'royal', 'fréquence', 'filtre', 'Intérieur', 'Février', 'remarquable', 'périodes', 'Bob', 'dette', 'sponsorisé', 'Eau', 'adjoint', 'grille', 'adopté', 'quête', 'Néanmoins', 'Vidéos', 'Calendrier', 'congrès', '1919', 'culturelles', 'Bertrand', 'trente', '89', 'C3', 'choc', 'totalité', 'fourni', 'Ã', 'Liège', 'Luc', 'fromage', 'distingue', 'fuite', 'affichage', 'commerciaux', 'commerciales', 'Convention', 'Rhône', 'effectif', 'engagé', 'sauvage', 'Quatre', 'bienvenusCadre', 'arc', 'valide', 'employé', 'URL', 'chats', 'détruit', 'kit', 'Tours', 'Ali', 'recommandons', '160', 'incroyable', 'chargée', '360', 'prévoit', 'adaptées', 'encyclopédie', 'impôt', 'positif', 'campagnes', '--LES', 'rêves', '1917', 'journées', 'Commentaire', 'prépare', 'Dictionnaire', 'expertise', 'Ligne', 'fidèles', 'communiquer', 'tire', 'photographe', 'Samsung', 'montrent', 'Xavier', 'musées', 'prends', 'modalités', 'individuelle', 'adversaire', 'Jeunesse', 'Trump', 'islam', 'OK', 'sec', 'Donald', 'promouvoir', 'module', 'tournage', 'refus', 'réussir', 'présentant', 'end', 'Business', 'Invité', 'disait', 'Management', 'locations', 'Films', 'contacts', 'Jean-Paul', 'vocation', 'Alice', 'bandes', 'news', 'your', 'réussit', 'remercie', 'observation', 'Tony', 'états', 'religieuses', 'prit', 'trucs', 'Localisation', 'fournisseur', 'perso', 'sensible', 'entraîne', 'consacrée', 'Arnaud', 'canadienne', 'municipale', 'quinze', 'localité', 'délais', 'prière', 'Méditerranée', 'Center', 'pensez', 'Activités', 'agglomération', 'cadres', 'smartphone', 'compléter', 'inférieur', 'policiers', 'trouvait', 'Fête', 'aides', 'Grande-Bretagne', 'Vol', 'aire', '1928', 'hectares', 'Julie', 'pédagogique', 'Collectif', 'couvert', 'écologique', 'prestation', 'Sénégal', 'vague', 'Christine', 'réserver', 'impôts', 'garage', 'Route', 'détaillée', 'juridiques', 'due', '1911', 'chevalier', 'naturellement', '98', '2.0', 'pilotes', 'Groupes', 'découvertes', \"y'\", 'av.', 'magie', 'lourd', 'Peut-être', 'êtres', 'complexes', 'analyses', 'aliments', '1901', 'proposées', 'Hélène', 'sixième', 'prisonniers', 'allemands', 'expliqué', 'future', 'console', 'économies', 'isbn', 'comparer', 'pouces', 'Vainqueur', 'étrangère', 'accords', '87', '1910', 'Hors', '94', 'connait', 'Edward', 'comparaison', 'pleinement', 'engager', '96', 'augmente', 'Restaurant', 'pub', 'expert', 'Lac', 'hautes', 'Royaume', 'voisin', 'management', 'régulière', 'jazz', 'essaie', 'spectacles', 'Congo', 'créateur', 'poster', 'exceptionnel', 'shift', 'couper', 'tiré', 'localisation', 'Die', 'concentration', 'Pen', 'paire', 'Animaux', 'commencent', 'contributeurs', 'clientèle', 'registre', 'clôture', 'implique', 'largeur', 'Science', 'farine', 'Inn', 'Hotels.com', 'Fonds', 'longs', 'juifs', 'url', 'RC', 'bijoux', 'contrôler', 'sommeil', 'mit', 'obligations', 'grève', 'sécurisé', 'notice', 'crime', 'initialement', 'clavier', 'soupe', 'UMP', 'répertoire', 'streaming', 'complémentaires', 'Life', 'Disponibilité', 'remonte', 'Sénat', 'Corps', 'Sony', 'flotte', 'Game', 'priorité', 'tonnes', 'sélectionné', 'Yoga', 'manuel', 'milieux', 'Nouveaux', 'tenté', 'proposée', 'Alger', 'Nathalie', 'favoriser', 'facteur', 'Real', 'meubles', 'chinoise', 'ingrédients', 'modifiée', 'évoluer', 'france', 'accessibles', '1925', 'Auguste', 'Jérusalem', 'An', 'aise', 'Bravo', 'ONU', 'enlever', 'foyer', 'Jean-Claude', 'caméra', 'ok', 'Membres', 'ordinaire', 'colonne', 'fiction', 'chronique', 'Claire', '1924', 'administratives', 'spéciaux', 'Panier', 'taxe', 'gardien', 'différences', 'identique', 'douceur', 'artillerie', 'RDV', 'Outre', 'autrefois', 'alerte', 'Annuler', 'hauts', 'maritime', 'peintures', 'Format', 'acide', 'témoignages', 'cycliste', 'panneaux', 'lectures', 'coucher', 'adoption', 'Danemark', 'progression', 'accepté', 'Best', 'professeurs', 'Ford', 'panoramique', 'Entreprise', 'ch', 'Euro', 'pareil', 'drapeau', 'admis', 'confirmé', 'Voyage', 'Dimanche', 'musiques', 'compétence', 'célèbres', 'extraordinaire', 'jouent', 'Group', 'canon', 'J.-C.', 'lune', 'Soyez', 'Carlos', 'maternelle', 'récent', 'Sommaire', '1915', 'boulevard', 'étions', 'constater', 'causes', 'InvitéInvitéSujet', 'investissements', 'tranquille', 'alternative', 'Jean-François', 'CE', 'chances', 'Kit', 'négociations', 'limiter', 'Atlantique', 'Enfants', 'Lot', 'Taille', 'bonus', 'annuelle', 'francs', 'jambes', 'lever', 'pertes', 'stress', 'connaissent', '3ème', 'veuillez', 'quasi', 'Données', 'lunettes', '1912', 'voient', 'habitat', 'fonde', 'Free', 'seules', 'procédures', 'jury', 'Green', 'antique', 'Numéro', 'Jeudi', 'Ukraine', 'nation', 'apparaître', 'garçons', 'Niveau', 'manches', 'riz', 'maîtres', 'hameau', 'ressort', 'récents', 'circonstances', 'québécois', 'rentre', 'newsletter', 'électroniques', 'crimes', 'habitation', 'el', 'all', 'réduite', 'profonde', 'trouvez', 'LED', 'entrées', 'Médaille', 'Naissance', '3e', 'content', 'régler', 'universités', 'peint', 'jusque', 'individuel', 'Jean-Baptiste', 'intervenir', 'Utilisateur', 'blessé', 'maximale', 'téléchargement', 'commander', 'échapper', 'Décembre', 'To', 'sponsoriséSujet', 'souffle', 'Amazon', 'venait', 'pousse', 'plaques', 'ouvriers', 'continent', 'forums', 'terminer', 'auxquels', 'restera', 'britanniques', 'Irak', 'FRANCE', 'trouvant', 'Semaine', 'diagnostic', 'Roland', 'récentes', 'CA', 'caisse', 'imaginer', 'quitté', 'Temple', 'rendent', 'considérer', 'permanence', 'instruction', 'explication', 'contribuer', 'junior', 'Costa', 'tapis', 'Commune', 'Résumé', 'Norvège', 'that', 'atteinte', 'FR', 'Cap', '1927', 'lancée', 'mixte', 'pure', 'micro', 'disponibilitésDu', 'ferroviaire', 'bleue', 'sentiments', 'Fermer', 'vertu', 'mont', 'courts', 'sacré', '130', 'Metz', 'contente', 'séjours', 'universitaires', 'v.', 'sachant', 'resté', 'colonel', 'ménage', 'couvre', 'Utilisation', 'Brown', 'PàS', 'trait', 'ronde', 'officiers', 'Williams', 'oeuvres', 'Hall', 'bisous', 'Test', 'Walter', 'gars', 'serais', 'soutient', 'franchement', 'déposer', 'monastère', 'indice', 'mec', 'Équipe', 'genres', 'identification', '--Présentation', 'Tél', 'Ajoutez', 'accueillant', 'mariée', 'Louise', 'conclusion', 'html', 'interventions', 'précédents', 'destinés', 'abonnement', 'French', 'bouteille', 'abrite', 'communautaire', 'Magazine', 'imagine', 'foule', 'accent', 'citoyen', 'Esprit', 'rappel', 'BMW', 'monsieur', 'trace', 'Public', 'connaitre', 'parfum', 'Mini', 'poèmes', 'réalisées', 'Mathieu', 'culturels', 'Ensemble', 'soutenu', 'Renaissance', 'Eugène', 'spécialisés', 'AS', 'soyez', 'marquée', 'possession', 'Galaxy', 'ml', 's.', 'étudie', 'Bourse', 'geste', 'gâteau', 'Brest', 'grossesse', 'agissait', 'trimestre', 'Charlie', 'School', 'familial', 'joindre', '1913', 'ailes', 'séparation', 'générations', 'réactions', 'obligé', 'Wars', 'Profil', 'cool', 'Maire', 'grosses', 'mine', 'Mobile', 'Construction', 'intéresser', 'occupé', 'intellectuelle', '700', 'room', 'Liens', 'Journée', 'passages', 'Publicité', 'Auvergne', 'évaluer', 'pompe', 'sûrement', 'Finalement', 'cherchez', 'parlent', 'tables', 'tourné', 'classée', 'not', 'centrales', 'vis-à-vis', 'acquérir', 'I.', 'lèvres', 'César', 'London', 'signal', 'actuels', 'Île', 'explications', 'supports', 'prime', 'interprète', 'choisit', 'représenter', 'Magasiner', 'intervient', 'Trouvez', 'Entretien', 'représenté', 'préfecture', 'Manchester', '24h', 'restant', 'Azur', '้', 'sondage', 'Time', 'métrage', 'carbone', '2005Sujet', 'réfugiés', 'Nouvelles', 'nettement', 'Lausanne', 'proposant', 'Chapelle', 'arbitre', 'exercer', 'pouvaient', 'puissent', 'Support', 'testé', 'PARIS', '2010Sujet', 'drôle', 'doté', 'pauvreté', 'usages', 'conformément', 'Scénario', 'posté', 'graves', 'représentations', 'froide', 'oppose', 'Camille', 'permanente', 'littéraires', 'présentées', 'signaler', 'vingtaine', 'intégral', 'dramatique', 'constituée', 'Lundi', 'souligne', 'refaire', 'sonore', 'Reims', 'Modifier', 'spectateurs', 'parvenir', 'arabes', 'Roman', 'Imprimer', 'Ivoire', 'casque', 'Littérature', 'faibles', 'trou', 'suppose', 'Déjà', 'évènement', 'carton', 'Domaine', 'quelqu', 'Avenue', '1922', 'verbe', 'volet', 'diocèse', 'sexuelle', 'avancer', 'futurs', 'animé', 'Texte', 'éthique', 'Linux', 'Sarah', 'matériels', 'inférieure', 'Paru', 'boutons', 'Mardi', 'Juste', 'Dragon', 'universelle', 'Dijon', 'guère', 'Aquitaine', 'observer', 'Lit', 'convaincre', 'meurtre', 'Nintendo', '1916', 'interdiction', 'Kim', 'destin', 'balle', 'Écosse', 'établit', 'voler', 'astéroïde', 'conservé', 'brut', 'opéra', 'cardinal', 'Août', 'passagers', 'Pyrénées', 'Samuel', 'Inc', 'triste', 'verts', 'succession', 'Victoria', 'Bleu', 'incluant', 'Jackson', 'remplace', 'Island', '1923', 'Météo', 'Jour', 'russes', 'abri', 'révolutionnaire', 'aviation', 'puisqu', 'postal', 'communs', 'tube', 'essentielles', 'Deuxième', 'Jeune', 'attends', 'randonnées', 'paradis', 'requête', 'enseignant', 'plaît', 'saisir', 'consultez', 'alertes', 'initiale', 'panneau', 'caractéristique', 'attaquer', 'Recettes', 'commis', 'Caen', 'aile', 'blogs', 'désert', 'Bible', 'Mohamed', 'Section', 'vendeur', 'Hier', 'Little', 'Exposition', 'fonctionner', 'er', 'documentation', 'élaboration', 'chrétienne', 'allé', 'Stock', 'mené', 'précieux', 'supérieures', 'extraits', 'schéma', 'duquel', 'Cameroun', 'internes', 'golf', 'Professeur', 'terrible', 'parisienne', 'Anthony', 'frappe', 'Celle-ci', 'vrais', 'poursuite', 'nationalité', 'officiels', 'cordes', 'fédérale', 'gardé', 'Hervé', 'comprennent', 'intéressé', 'constructions', 'adopter', 'fabricant', 'apparemment', 'civilisation', 'aurai', 'Contactez-nous', 'islamique', 'indiquant', 'feux', 'inutile', 'Machine', 'trés', 'Young', 'Bulletin', 'Contacter', 'parlementaire', 'composants', 'boire', 'couronne', 'bourg', 'agences', 'up', 'poème', 'Roumanie', 'graphiques', 'remarquer', 'fantastique', 'fontsize', 'passés', '̀', 'Alexander', 'indépendants', 'profond', 'publicités', 'Avignon', 'constante', 'Consultez', 'star', 'figures', 'foot', 'épaisseur', 'paraître', 'arguments', 'Allemands', 'tombé', 'introduit', 'Quels', 'sainte', 'magnifiques', 'Toronto', 'volant', 'Angers', 'Légion', 'églises', 'Bar', 'vive', 'rois', 'suivie', 'habite', 'habitant', 'maillot', 'prévenir', 'taxes', 'Malheureusement', 'case', 'cliquer', 'toilette', 'charmant', 'jeter', 'appellation', 'désigné', '1906', 'définit', 'Jim', 'travaillent', 'fiable', 'VII', 'présentés', 'réfléchir', 'chère', 'Kevin', 'argument', 'sportives', 'my', 'Excellent', 'géant', 'produite', 'contribue', 'retrouvent', 'Roy', 'oubliez', 'façons', 'ouverts', 'réserves', 'grecque', 'classés', 'Double', 'pourrais', 'am', 'ouvertes', 'graines', 'Annuaire', 'Laval', 'our', 'host', 'etait', 'sortant', 'Alliance', 'étages', 'voila', 'typique', 'dedans', 'trône', 'profondément', 'battu', 'Maritimes', 'Soit', 'Day', 'souhaitent', 'hein', 'musicien', 'électeurs', 'Mans', 'prévues', 'Administration', 'rapides', 'gueule', 'marins', 'achète', 'devons', 'électorale', 'pratiquement', 'clinique', 'équipage', 'servent', 'spacieux', 'Marques', 'immédiate', 'géographiques', 'insee', 'associée', 'Quelles', 'PME', 'cf.', 'collecte', 'Charlotte', 'valable', 'Editions', 'employeur', 'promo', 'file', 'Boston', 'bateaux', 'dispute', 'revues', 'new', 'couches', 'Fred', 'deviendra', 'coll', 'obligatoires', 'bgcolor', 'traitements', 'verra', 'folie', 'UNE', 'librement', 'rechercher', 'collaborateurs', 'concernés', 'déplacements', 'partagé', 'Technique', 'ya', 'marge', 'powiat', 'escalier', 'Ontario', 'Minimum', 'priori', 'Café', 'manche', 'SNCF', 'Dossier', 'remboursement', 'survie', 'fixation', 'Paiement', 'Six', 'civils', 'W.', 'fournis', 'pensent', 'Lecture', 'zéro', 'séances', 'Mali', 'Vu', 'recommandations', 'Vallée', 'utilité', 'resultat', 'Personne', '1870', 'constate', 'âgé', 'Golf', 'fixé', 'policier', 'provoque', 'ligue', 'onze', 'pot', 'orbite', 'Mercredi', 'more', 'tissus', 'Central', 'néerlandais', 'récupération', 'détruire', 'OFFRE', 'Amsterdam', 'décoré', 'humeur', '1905', 'CV', 'ordinateurs', 'biologique', 'odeur', 'Texas', 'énormément', 'provinces', 'puits', 'Gros', 'septième', 'Obama', '350', 'citron', 'rapporte', 'attendu', 'Sylvie', 'émotions', 'séminaire', 'Né', 'Gilbert', 'vaisseau', 'stages', 'Patrimoine', 'bravo', 'assister', '¨', 'Enseignement', 'Johnson', '97', 'Venez', 'Jean-Luc', 'militants', 'parlant', 'dommages', 'savoir-faire', 'juive', 'artisans', 'Orient', 'estimé', 'satisfaction', 'gentilé', 'ha', 'ventre', 'Fontaine', 'Moulin', 'dormir', 'simplicité', 'tchèque', 'Karl', 'intense', 'chimiques', 'décennies', 'Dame', 'Mission', 'crédits', 'décider', 'fonctionnaires', 'serbe', 'accueillis', 'stable', 'complémentaire', 'universel', 'conquête', 'centaine', 'Allez', 'dépasse', 'philosophe', 'exprime', 'compliqué', 'Beauté', 'excellence', 'Las', 'utilisez', 'fiches', 'preuves', 'Marguerite', 'Stephen', 'plafond', 'drame', 'Trouver', 'recommandé', 'cités', 'haine', 'stay', 'Derniers', 'opérateurs', 'actualités', 'clic', 'abandonné', 'apprécier', 'prochaines', 'exposé', 'cuire', 'cap', 'côtes', 'préserver', 'ballon', 'évaluations', 'procéder', 'correspondent', 'complément', 'Bonsoir', 'marchandises', 'Transport', 'serai', 'disposer', '2017Voir', 'Pages', 'roue', 'Bac', 'SA', 'citation', 'combattre', 'refusé', 'Offre', 'Citation', 'témoin', 'dessert', 'qualifié', 'PSG', 'blanches', 'possèdent', 'probable', 'dirigeant', 'invitons', 'pause', 'pôle', 'adhésion', 'attribué', 'sacs', 'chef-lieu', 'dirigée', 'traditions', 'syndicats', 'manga', 'facture', 'Blanche', 'stratégies', 'heureuse', 'vendus', 'Techniques', 'moral', 'animations', 'issues', 'pensées', 'tailles', 'entraîner', 'Éric', 'Franck', 'étendue', 'forfait', 'hygiène', 'vice-président', '2010Age', 'latine', 'Neuf', 'oeufs', 'cellule', 'conseillé', 'protocole', 'Munich', 'dispositifs', 'anagramme', 'barrage', 'Édouard', 'Up', 'affronter', 'démarrage', 'paris', 'Jean-Louis', 'ferait', 'capables', 'satisfaire', 'communications', 'ingénierie', 'fréquemment', 'bourse', 'traités', 'Aperçu', 'Réalisation', 'actuelles', 'essentielle', 'défini', 'charte', 'serveurs', 'pomme', 'réunions', 'provenance', 'Question', 'catholiques', \"tarifsJusqu'\", 'Historique', 'énergies', 'branches', 'quelconque', 'mousse', 'défis', 'échanger', '0,00', 'horaire', 'apt', 'productions', 'Exemple', 'Johnny', 'TF1', 'Portrait', 'touristes', 'week', 'Statistiques', 'climatique', 'accusé', 'Logement', 'frac', 'époux', 'intéressante', 'canapé', 'Crédit', 'participent', 'rural', 'miroir', 'oublie', 'téléfilm', 'bière', 'correspondance', 'ultime', 'domestiques', 'dégâts', 'gouvernements', 'situées', 'Langue', 'stabilité', 'externes', 'reconnue', 'suspension', 'partiellement', 'gloire', 'majeurs', 'ISBN', 'dévoile', 'instructions', 'photographies', 'immigration', 'Company', 'select', 'institut', 'America', 'papiers', 'exécutif', 'disposent', 'étudié', 'fédération', 'Oise', 'Seul', 'Kong', 'nulle', 'opposé', 'Pôle', 'os', 'Troisième', 'fiscal', 'trajet', 'contribué', 'Brian', 'têtes', 'Gallimard', 'faculté', 'Dark', 'Unitaire', 'médicament', 'qualification', 'chimique', 'certificat', 'Racing', 'héritage', 'Jane', 'talents', 'Award', 'explosion', 'malades', 'confidentialité', 'positive', 'joint', 'sèche', 'ondes', 'nef', 'Carl', 'assistant', 'rond', 'canons', 'exerce', 'notoriété', 'éditeurs', 'URSS', 'plainte', 'idéalement', 'imprimé', 'basket-ball', 'XXX', 'al', 'boutiques', 'bête', 'connues', 'instance', '1907', 'Bay', 'Côté', 'astéroïdes', 'balcon', 'Robin', 'dynastie', 'Finlande', '2011Sujet', 'tués', 'esprits', 'sons', 'Taylor', 'mobilier', 'remonter', 'Jean-Marie', 'réglementation', 'cousin', 'Peugeot', 'Île-de-France', 'routière', 'marié', 'Marque', 'alliés', 'North', 'signer', 'Pinterest', 'vend', 'Celui', 'devaient', 'BTS', 'voyant', 'attirer', 'Suivant', 'nomination', 'digne', 'livré', 'Charte', 'partisans', 'Pacifique', 'habituellement', 'laser', 'circuits', 'délégation', 'Mouvement', 'températures', 'thématique', 'comportements', 'faim', 'réservéDu', 'précédentes', 'élite', 'colonnes', 'reconnaît', 'œufs', 'salarié', 'république', 'ingénieurs', 'ménages', 'merveilleux', 'oreille', 'investir', 'noix', 'vs', 'RSS', 'antenne', 'satisfait', 'Actuellement', 'Reine', 'racines', 'oncle', 'traits', 'motivation', 'Centrale', 'attentat', 'conducteur', 'Grands', 'connaissez', 'imaginaire', 'Contrairement', 'horreur', 'Serbie', 'marcher', 'feront', 'siren', 'filiale', 'Lady', 'relatifs', 'Marketing', 'fermer', 'confirmer', '1908', 'AC', 'T.', 'placée', 'récompense', 'législation', '±', 'ultra', 'fortune', 'Comté', 'traditionnels', 'Power', 'projection', 'moulin', 'Lune', 'bords', 'surpris', 'nécessairement', 'miel', 'hésite', 'Compte', 'remarqué', 'dépasser', 'Images', 'bénéfice', 'Jacob', 'territoriale', 'transmettre', 'iPad', 'have', 'intégralité', 'scrutin', 'compétitions', 'pensais', 'Félix', 'distinction', 'Chili', 'subi', 'préparé', 'réunit', 'naît', 'combinaison', 'réalisations', 'handicap', 'horizon', 'OS', 'FN', 'Oscar', 'orientale', 'Colombie', 'baseball', 'accueillante', 'supprimé', 'filtres', 'trous', 'Virginie', 'Marne', 'Station', 'transforme', 'War', 'pousser', 'Lieu', 'métalliques', 'phare', 'chante', 'fidélité', 'degrés', 'Nicole', 'coûte', 'ordonnance', 'XIXe', 'révolte', 'vies', 'révision', 'Appel', 'dictionnaire', 'Romain', 'sauvegarde', 'Giovanni', 'administrateurs', 'isolation', 'Étienne', 'camps', 'départemental', 'Fleurs', 'Mort', 'Cup', 'primaires', 'grade', 'expansion', 'Classe', 'gmina', 'corruption', 'Hill', 'Chevalier', 'Jean-Jacques', 'domination', 'Prise', 'illustrations', 'entouré', 'litres', 'Garde', 'mg', 'souligné', 'sensibles', 'Jonathan', 'franchise', 'pharmacie', 'High', 'k', 'semblait', 'Besoin', 'manifeste', 'venez', 'terrorisme', 'gentillesse', 'corriger', 'South', 'impériale', 'Suppression', 'artistiques', 'notables', 'Émile', 'Pack', 'masque', 'tue', 'Gratuit', 'Luis', 'nombres', 'sélections', 'Ile', 'Études', 'préférence', 'fausse', 'recul', 'devront', 'associées', 'Opéra', 'immobilière', 'violences', '2011Age', 'AFP', 'thématiques', 'stars', 'conversion', 'carburant', 'tournant', 'apres', 'spacieuse', 'fermés', 'suprême', 'pis', 'annoncer', 'topic', 'FORUM', 'saut', 'justifier', 'celles-ci', 'Doctinaute', 'promotions', 'régionaux', 'abandon', 'ports', 'volontaires', 'Cinq', 'cite', 'ajout', 'récits', 'responsabilités', 'Gaulle', 'susceptibles', 'précédemment', 'reposer', 'lieutenant', 'provisoire', 'DJ', 'sensation', 'sections', 'sanitaire', 'Chaussures', 'prévoir', 'vaisselle', 'Night', 'Occident', 'mentionné', 'consommateur', 'neutre', 'solaires', 'émotion', 'initial', 'mâle', '2017Déjà', 'personnellement', 'intensité', 'constituer', 'Formule', 'intégrée', 'sculpture', 'extrémité', 'parisien', 'Show', 'soldat', 'paragraphe', 'chair', 'boucle', 'Clément', 'banlieue', 'Ier', 'laine', 'voïvodie', 'archevêque', 'Hans', 'mystère', 'recommander', 'plume', 'anime', 'extérieurs', 'continuent', 'Bistro', 'strictement', 'Flash', 'Garantie', 'imprimer', 'data', 'Athènes', 'traditionnelles', 'Découvrir', 'promis', 'statistique', 'mécanisme', 'Tournoi', 'plaine', 'oblige', 'appuie', 'cheminée', 'VTT', 'Barbara', 'Allah', 'poule', 'écrivains', 'installée', 'autorisé', 'évolutions', 'Islam', 'fiche.php', 'fermée', 'pp.', 'Laura', 'renommée', 'requis', 'monté', 'technologique', 'enfer', 'témoins', 'Story', '/', 'jolies', 'cuivre', 'montrant', 'cassini', 'pollution', 'défenseur', 'Petits', 'surfaces', 'élevés', 'tirage', 'Valérie', 'déclarations', 'psychologie', 'XIII', 'volontaire', 'bloqué', 'ampleur', 'Lens', 'facilité', 'cassini.ehess.fr', 'Éducation', 'Sauf', '2,99', 'aperçu', '−', 'Libération', 'chaine', 'mineurs', 'urbanisme', 'doigt', 'imagination', 'quantités', 'symbolique', 'faisons', 'opportunité', 'commissaire', 'finance', 'Xbox', 'concepts', '--Problèmes', 'touché', 'pratiquer', 'baron', 'visibles', 'loup', 'établie', 'aériennes', 'puissante', 'participant', 'phénomènes', 'Concernant', '1896', 'Hong', 'aidé', 'cou', 'voté', 'chimie', 'Champagne', 'catastrophe', 'Début', 'sûre', 'Piscine', 'génial', 'HP', 'Amiens', '101', 'Canton', 'noires', 'styles', 'perspectives', 'attendent', 'Volume', 'remet', 'Certes', 'Video', 'hebdomadaire', 'accidents', 'Auto', 'Boutique', 'Villes', 'attaquant', 'supplément', 'jugé', 'recherchez', 'virtuelle', 'Toulon', 'apport', 'Systèmes', 'Ceux', 'Quoi', 'Commons', 'plait', 'égale', 'assurances', 'découvrez', 'linguistique', 'Analyse', 'invasion', 'robot', 'Long', 'Floride', 'créés', 'Anvers', 'Standard', 'réformes', 'jouant', 'so', 'prochains', 'Siège', 'varie', 'abonner', 'syndicat', 'Petites', 'souple', 'Connectez-vous', 'intitulée', 'anciennement', 'téléphonique', 'box', 'poulet', 'Saint-Pierre', 'bébés', 'spatiale', 'Parking', 'considérés', 'engagements', 'annexe', 'réunis', 'fondateurs', 'salaires', 'toilettes', 'réflexions', 'mauvaises', 'insectes', 'parait', 'couture', 'prouver', 'Photographie', 'précisé', 'Ray', 'choisis', 'gentil', 'effectuée', 'seuil', 'informé', 'apprécie', 'Alan', 'itinéraire', 'clos', 'terrestre', '✉', 'orgue', 'retenir', 'continu', 'dons', 'Alexis', 'devenus', 'Poids', 'descente', 'tabac', 'Wikipedia', 'opus', 'Society', 'debout', 'invitation', 'présidente', 'Rencontre', 'ème', 'problématique', 'illustre', 'insertion', 'poitrine', 'absolue', 'payé', 'apporté', 'Cher', 'College', 'distinguer', 'adhérents', 'ISO', 'Continuer', 'Tweet', 'Secrétaire', 'PSP', 'ruisseau', 'chaise', '1909', 'faune', 'illustration', 'conjoint', 'dose', 'sélectionner', 'one', 'fiscale', 'massage', '1,5', 'bandeau', 'protégé', 'promu', 'Femmes', 'Nouveautés', 'fallu', 'préfet', 'libertés', 'beaux-arts', 'romantique', 'enjeu', 'fibre', 'soeur', 'moi-même', 'accorde', 'Américains', 'curieux', 'subit', 'occasions', 'facebook', 'analyser', 'religions', 'augmenté', 'aussitôt', 'quai', 'Créé', 'Médecin', 'littéralement', 'directrice', 'demandent', 'examens', 'charbon', 'est-elle', 'noblesse', '2012Sujet', 'pleins', 'immédiat', 'historiens', 'neuve', 'Naples', 'Louvre', 'savait', 'écrans', 'juif', 'Abbaye', 'efficaces', 'incontournable', 'spécialité', 'Newsletter', 'investisseurs', 'éliminer', 'tranche', 'Catalogue', 'tiennent', 'cacher', 'gère', 'organes', 'proviennent', 'authentique', 'générique', 'alias', 'adresser', 'acoustique', 'Andrew', 'généraliste', 'studios', 'Biographie', 'financer', 'voyager', 'humidité', 'dépit', 'existait', 'clan', 'correct', 'op', '1793', 'Tel', 'drogue', 'porte-parole', 'sauvages', 'tenues', 'attentats', 'rendant', 'mobilisation', 'soirées', 'show', 'temporaire', 'barbecue', 'inscriptions', 'ref-data4', 'fixer', 'savais', 'adoré', \"Lorsqu'\", 'traversée', 'Arc', 'Libre', '1890', 'suédois', 'oldid', 'compagnon', 'admin', 'Etudes', 'Social', 'exemplaire', 'libérer', 'encontre', 'huiles', 'Wilson', 'Choisissez', 'coupé', 'inclut', 'rédigé', 'filière', 'constaté', 'View', 'paquet', 'essaye', 'dîner', 'ah', 'nice', 'Data', 'juger', 'dieux', 'olive', 'boissons', 'retours', 'phases', 'Manager', '1880', 'égal', 'observations', 'parlement', 'Profitez', 'définitive', 'ref-data8', 'Lewis', 'jouets', 'mécanismes', 'ref-data3', 'délicieux', 'ref-data1', 'ref-data2', 'ref-data5', '105', 'ref-data7', 'ref-data6', 'évolué', 'réside', 'mecs', 'chargement', 'exil', 'dir.', 'destinées', 'circulaire', 'consacre', 'biographie', 'retenu', 'initiatives', 'livrer', 'Lui', 'existant', 'Prague', 'Horaires', 'tort', 'violon', 'Economie', 'dégagée', 'manquer', 'municipales', 'développée', 'coller', 'refuge', 'mange', 'décrire', 'raconter', 'relever', '--Discussions', 'surement', 'papa', 'methodes', 'anonyme', 'Longueur', 'Dan', 'conversation', 'Nouvel', 'parution', 'pédagogiques', 'allée', 'coalition', 'contributeur', 'Lumière', 'shopping', 'Marché', 'Golden', 'révélé', 'amène', 'variables', 'Madagascar', 'sœurs', 'voisine', 'Ressources', 'orthographe', 'nu', 'femelle', 'Surtout', 'offerts', 'consensus', 'composés', 'nomenclatures', 'âgées', 'Manche', 'XIV', 'River', 'CC', 'p.revenumedian', 'Installation', 'Cuba', 'donnera', '2021173', 'Nouvelle-Zélande', 'Secret', 'Papier', 'EST', '2129090', '2123878', 'explorer', 'adversaires', '2129062', '2129059', '2123937', 'rendus', '2129068', '2129076', 'axes', 'noble', 'restes', 'colonie', 'colline', 'Départ', 'garanties', 'entourage', 'Ed', 'Cahiers', 'die', 'francophones', 'géographie', 'frein', 'conte', 'devenant', 'pattes', 'activer', 'p.page2code', 'Lucas', 'faisaient', 'troupe', 'décors', \"avancéeS'\", 'affirmé', 'plate-forme', 'renseignement', 'Notice', 'Info', 'africaine', 'relief', 'appuyer', 'portefeuille', 'tentatives', 'Davis', \"VOIRL'\", 'plongée', 'bis', 'Arabie', 'livret', 'rajouter', 'ref-data9', 'History', 'coordination', 'Annonces', 'phrases', 'partition', 'servant', 'émis', 'SMS', 'courir', 'colle', 'disparaître', 'q', 'Droits', 'fur', 'Mettre', 'Internationale', 'gain', 'transformé', 'wifi', 'TripAdvisor', 'gratuites', 'Martine', 'visibilité', 'sculpteur', 'jean', 'ambition', 'chars', 'bol', 'Rivière', 'susceptible', 'suites', 'réservée', 'rendement', 'expose', 'panne', 'perception', 'trouble', 'For', 'Spa', 'Camping', 'indiqués', 'laissent', '900', '115', 'pc', 'Mémoire', 'systématiquement', 'dirait', 'doctorat', 'terminée', 'text-align', 'Police', 'reportage', 'lacs', 'unies', 'metal', 'pop35', 'Assurance', 'an35', 'if', 'Faculté', 'offerte', 'aquarium', '2534314', 'balade', 'rempli', 'recens35', 'avocats', 'lis', 'Elizabeth', 'sérieusement', 'ambassadeur', '1904', 'confirmation', 'business', 'pop36', 'an36', 'publiées', 'Eh', 'Boîte', 'amoureuse', 'trentaine', '1881', 'Allemand', 'recens36', 'contemporains', 'Lake', 'ICI', 'Tim', 'installés', 'sanitaires', 'amont', 'finition', 'compagnons', 'pop37', 'an37', 'Somme', 'recens37', 'étudiante', 'particulières', 'Points', 'poignée', 'épicerie', 'great', 'vents', 'More', 'Laurence', 'suicide', 'chrétien', 'Langues', 'brillant', 'lourds', 'inspire', 'conçue', 'clocher', 'chapeau', 'mineur', 'planche', 'rotation', 'suffisant', 'abandonner', 'chambresLocation', 'couvrir', 'chirurgie', 'cahier', 'menaces', 'zonages', 'Architecture', 'pop38', 'Règlement', 'an38', 'prenez', 'promenade', 'recens38', 'auxquelles', 'créant', 'tirs', 'souviens', 'noyau', 'travaillant', 'publicitaire', 'Ernest', 'démonstration', 'personnaliser', 'inventaire', 'libéral', 'Médecins', 'Sun', 'Dead', 'continuité', 'Déclaration', 'passées', 'confusion', 'harmonie', 'assaut', 'May', 'eBay', 'armé', 'portugais', 'Marco', 'Nick', 'Girl', 'Européenne', 'remporter', 'Cartes', 'blé', 'sensibilité', 'formats', 'concernent', 'illustré', 'disciplines', 'témoigne', 'courtes', 'Diego', 'abonnés', 'décident', 'assassinat', 'DC', 'définie', 'tablettes', 'mi', 'partielle', 'supporter', 'assurée', 'marquis', 'discret', 'marquer', 'Résistance', 'épargne', 'communal', 'opinions', 'boule', 'symptômes', 'blessures', 'parts', 'convaincu', 'an39', 'pop39', 'K.', 'recens39', 'avère', 'Pâques', 'Librairie', 'ruines', 'days', 'Broché', 'intime', 'commune.asp', 'depcom', 'bombe', 'Valence', 'tubes', 'hâte', 'portraits', 'notions', 'Décoration', 'laver', 'obtention', 'bizarre', 'transparence', 'Times', 'fitness', 'British', 'lourde', 'actu', 'chalet', 'honte', 'interprété', 'reconstruction', 'Chacun', 'variations', 'avez-vous', 'brevet', 'mémoires', 'séquence', 'diriger', 'personnalisé', 'saga', 'provoquer', 'ponts', 'an40', 'Peut', 'distances', 'souffrance', 'organisées', 'Client', 'Madeleine', 'Limoges', 'attire', 'échecs', 'assis', 'Entrée', 'aîné', 'génétique', 'reviendrons', 'prononcé', 'conservateur', 'Saint-Louis', 'savons', 'voyez', 'formidable', 'Brigitte', 'noté', 'Album', 'rangs', 'territoriales', 'can', 'Leurs', 'OU', 'interdite', 'lave', 'couteau', 'vernis', 'chasseurs', '1500', 'monétaire', 'heureusement', 'matches', 'terroristes', 'subir', 'peaux', 'particules', 'Jazz', 'basque', 'perdue', 'Poitiers', 'Notes', 'enquêtes', '---', 'seins', '├', 'offensive', 'time', 'brigade', 'Contacts', 'lots', 'routier', 'Saint-Martin', 'agréables', 'Meilleure', 'Documents', 'cherchent', 'succède', 'diffuser', 'Dentiste', '--Archives', 'pop40', 'accompagnée', 'recens40', 'constat', 'observe', 'espoirs', 'respecte', 'bibliothèques', 'considérable', 'Besançon', 'Hello', 'Taux', 'Marion', 'planification', 'Réserver', 'construits', 'académie', 'tendre', 'partant', 'épée', 'poétique', 'vitesses', '2014-2015', 'propagande', 'caché', 'Coup', 'tomates', 'modules', 'juges', 'profité', 'préférés', 'fabrique', 'Monument', 'XVI', 'Ayant', 'fier', '2012Age', 'raisonnable', 'rassemble', 'charmante', 'Liban', 'Road', '104', 'médicaux', 'originales', 'Traité', 'vestiges', 'moyennes', 'planches', 'cinquante', 'destinations', 'doctrine', 'Réf', 'publicitaires', 'DANS', 'vif', '\\u200e', 'tensions', 'flore', '1800', 'Afghanistan', '1903', 'canaux', 'traduire', 'commentaireCharger', 'black', 'châteaux', 'Media', 'entité', 'Hollywood', 'Rochelle', 'chargés', 'Sac', 'étonnant', 'délégué', 'classification', 'menus', 'contes', 'champignons', 'variés', 'logistique', 'cavalerie', 'mères', 'dirais', 'Lucien', 'trésor', 'prêtres', 'choisissez', 'moines', 'cantons', 'Patrice', 'jette', 'posée', 'Immobilier', 'conformité', 'sénateur', 'rénové', 'tas', 'comptent', 'Fillon', 'Lord', 'tracé', 'créateurs', 'Jimmy', '1860', 'marbre', 'rangement', 'contrôles', 'paysans', 'vélos', 'Quartier', 'amener', 'al.', 'soie', 'concerné', 'gouvernance', 'baignoire', '1902', 'républicain', 'balades', '1886', 'maréchal', 'complexité', 'Havre', 'inconnue', 'identifié', 'Céline', 'Is', 'blessure', 'habitudes', 'coureur', 'Christopher', 'africain', 'originaux', 'rédacteur', 'Pékin', 'System', 'nuages', 'pluriel', 'souverain', 'postés', 'CNRS', 'contiennent', 'renouvellement', 'Extrait', 'flash', 'couverte', 'légitime', 'surnom', 'will', 'légale', 'rigueur', 'amené', 'Gaston', 'Promotion', 'jupe', '1891', 'N.', 'collèges', 'BA', 'allemandes', 'remercier', 'Chemin', 'instar', 'effectuées', 'débutant', 'signification', 'Your', 'solde', '1876', 'VIII', 'rebelles', 'And', 'reposant', 'br', 'vivants', 'usagers', 'were', 'aérien', 'c.', 'cachées', 'an41', 'pop41', 'recens41', 'Hitler', 'Magasin', 'Vosges', 'négatif', 'Rhône-Alpes', 'demandant', 'Olympique', 'invention', 'marchands', 'Libye', 'gagnant', 'inclinaison', 'roses', 'SC', 'métallique', 'Trop', 'fût', 'Series', 'Great', 'payant', 'refuser', 'm.', 'Idéal', 'roulant', 'étendre', 'emballage', 'Molière', 'protégée', '1789', 'combattants', 'bénéfices', 'Amis', 'fixes', 'Finances', 'prochainement', '1830', 'Miller', 'concurrents', 'rurale', 'polémique', 'adolescents', 'contrainte', 'engagée', 'nucléaires', 'perles', 'Vladimir', 'matériau', 'intégrale', 'mélanger', 'remarques', 'départementale', '1848', 'esclaves', 'avancées', 'diminuer', 'affirmer', 'fondamentaux', 'peintres', 'théorique', 'Interview', 'Hauteur', 'figurent', 'menées', 'faciles', 'na', 'légal', 'Observatoire', 'Bad', 'Digital', 'arbitrage', 'protéines', 'annuler', 'purement', 'descriptif', 'arrivés', 'fréquentes', 'maquillage', '--Jeux', 'foie', 'fabriquer', 'coupable', 'mythe', 'chouette', 'donnés', 'blocs', 'pourcentage', 'gestes', 'literie', 'aménagé', '450', 'proprement', 'Sylvain', 'répartis', 'Vieux', '4e', 'gel', 'Jeunes', 'vérification', 'plomb', 'Tunis', 'UNESCO', 'rêver', 'Resort', 'doublé', 'Moto', 'Porto', 'modeste', 'diminution', 'Sir', 'particularité', 'ouvrant', 'Midi', '2013-2014', 'douleurs', 'relevé', 'goûts', 'véritables', 'Gustave', 'relie', 'Western', 'Rendez-vous', 'lampe', 'Supprimer', 'po', 'théories', 'Heureusement', 'larges', 'Télévision', 'renseigner', 'Promotions', '1871', 'Tribunal', 'procureur', 'souhaité', 'FM', 'guematria', 'lycées', 'démission', 'bars', 'Univers', 'couvent', 'lumineuse', 'courante', 'métaux', 'conventions', 'souffre', 'nourrir', 'Montagne', 'pattern', 'dépendance', 'majeures', 'considérablement', 'protège', 'créativité', 'chanter', 'Sortie', 'YouTube', 'engagés', 'régimes', 'organisés', 'OpenEdition', 'apparait', 'gorge', 'devoirs', 'assisté', 'tend', 'Cloud', 'Co', '2009Age', 'conclu', 'effectifs', 'exister', 'carrés', 'Annie', 'représentée', 'racine', 'Ferdinand', 'caractérisée', 'mensuel', 'excès', 'EP', 'pr', 'Près', 'attractions', 'constamment', 'pantalon', 'bénévoles', 'résister', 'had', 'régulier', 'Traitement', 'passionnés', 'colonies', 'Land', 'occidental', 'prétexte', 'médiévale', 'rappelé', 'exploration', 'Huile', 'donna', 'débuté', 'carnet', 'ours', '1895', 'individuelles', 'Dimensions', 'Édition', 'made', 'espérons', '1898', 'consacrer', 'immeubles', 'proportion', 'compromis', 'placés', 'téléphones', 'contraint', 'Géorgie', 'marin', 'chercheur', 'cohérence', 'Pérou', 'fontaine', 'Traduction', 'Matt', 'incident', 'XXe', 'Régime', 'Moins', 'fabricants', 'Cécile', 'retire', 'exact', 'signée', 'scandale', 'résistant', 'pavillon', 'mécaniques', 'Miami', 'désolé', '2015-2016', 'Découverte', 'indien', 'coque', 'accorder', 'Moyen-Orient', 'archéologique', 'Jeff', 'Four', 'Comparer', 'Logo', 'absolu', 'avancé', 'marchand', 'suggestions', '---------------', 'certification', '128', 'Hubert', 'réparer', 'herbe', 'ange', 'laissez', 'supérieurs', 'variétés', 'Ryan', 'rémunération', 'visuel', 'couverts', 'popularité', 'cote', 'Jura', 'musulman', 'guitariste', 'ressource', 'Îles', 'Jean-Marc', 'pouvais', '§', 'falloir', 'Box', 'fauteuil', 'Peinture', 'superbes', \"I'\", 'camion', 'Email', 'Classic', 'Gold', 'Style', 'bordure', 'optimiser', 'Éditeur', 'Games', 'Industrie', 'comptable', 'polonaise', 'Responsable', 'sage', 'Professionnels', 'boîtes', 'della', 'Soin', 'verres', 'bancaires', 'Lionel', 'dames', 'envisager', 'Séjour', 'athlète', 'évêques', 'Justin', 'choisie', 'Heures', 'pack', 'encourager', 'marie', 'By', 'contenir', 'enregistre', 'officielles', 'prendra', 'hjem', 'Ferrari', 'Combien', 'sépare', 'cardiaque', 'moule', 'Space', 'Post', 'Emma', 'Essai', 'inscrite', 'inquiète', 'franc', 'retenue', 'administratifs', 'dés', 'Noire', 'puissants', 'familiales', 'exige', 'surprises', 'Boy', '00ZUn', 'product', 'attraction', 'confie', 'Bruce', 'usines', 'renvoie', 'agriculteurs', 'onde', '3000', 'trio', 'étang', 'Donner', 'faut-il', 'fonctionnelle', 'pension', 'conclure', 'weekend', 'fameuse', 'Palestine', 'galeries', 'Anciens', 'poêle', 'PAS', 'appliquée', 'Midi-Pyrénées', 'Stanley', 'transferts', 'intrigue', 'Campagne', 'renforcement', 'implantation', 'humide', 'Ivan', 'comportant', 'compilation', 'Howard', 'E-mail', 'symboles', 'confié', 'Choisir', 'before', 'défend', 'répression', 'Douglas', 'chic', 'épices', 'manipulation', 'métropole', 'remarquables', 'changeant', 'Rencontres', 'Server', 'leçons', 'Jason', 'imprimante', 'Mondial', 'Discuter', 'Portes', 'alinéa', '220', 'Billy', 'delà', 'Picardie', 'technologiques', 'Agriculture', 'CampagneIdéal', 'originalité', 'nettoyer', 'costume', 'africains', 'Entertainment', 'rendue', 'Prenez', 'Cercle', 'ST', 'suggère', 'appartiennent', 'Vatican', 'per', 'régulation', 'poivre', 'hyper', 'Contrôle', 'brun', 'CP', 'breton', 'UTC', 'psychologique', 'Jean-Michel', 'Mots-clés', 'watch', 'spirituel', 'espérer', 'validation', 'doucement', 'ajoutée', 'Alphonse', 'Préparation', 'courbe', 'rencontrent', '.Le', 'réservoir', 'vagues', 'véritablement', 'réductions', 'alternance', 'Moselle', 'ADN', 'hébergements', 'ascension', 'forteresse', 'ONG', 'Pedro', 'ébauche', 'Marche', 'State', 'métropolitaine', 'aidera', 'CO2', '106', 'casse', '2,5', 'jet', 'traverser', \"p'\", 'Premium', 'emporter', 'coins', 'grandeur', '1899', 'Caisse', 'Oxford', 'communistes', '170', 'résulte', 'stocks', 'Armand', 'index', 'Cadre', 'Aéroport', 'Visite', 'Zurich', 'médiatique', '.jpg', 'Prénom', 'meuble', 'rivières', 'coloris', 'Ton', 'fatigue', 'Recherches', 'multimédia', 'média', 'théologie', 'set', 'urbains', 'athlétisme', 'tempête', 'retiré', 'Johann', 'réels', 'Hôpital', 'estimer', 'sortent', 'chaleureuse', 'Simple', 'Presses', 'saints', 'Andrea', 'sommaire', 'cents', 'Mère', '\', 'Générales', 'Anderson', '1866', 'GT', 'Sydney', 'Sauvegarder', 'Économie', 'socialistes', 'sélectionnés', 'fuir', 'poil', 'larmes', 'soi-même', 'vocabulaire', 'pilotage', 'love', 'Conseiller', 'Fil', 'animateur', 'Genre', 'colloque', 'réagir', 'jaunes', 'Last', 'démontrer', 'archipel', '240', 'emploie', '1200', 'promet', '1861', 'paramètre', 'Bas', 'Online', '1889', 'alarme', 'sanctions', 'déploiement', 'Alimentation', 'merde', 'favori', '00ZLogement', 'Saint-Jean', 'ensembles', 'divorce', 'lentement', 'manuscrit', 'bloquer', 'mondes', 'passionné', 'pop42', 'majoritairement', 'an42', 'recens42', 'successivement', 'Java', 'Au-delà', 'inspecteur', 'évite', 'Pokémon', 'balles', '1.1', 'libéré', 'écho', 'Fox', 'patience', 'ail', 'solidaire', 'Fiat', 'fumée', 'procurer', 'semblable', 'tombée', 'Vert', 'substance', 'copier', 'bénéficient', 'équipés', 'tribu', 'bla', '▪', 'versant', 'refait', 'défauts', 'aborder', 'cartouche', 'Fax', 'Chinois', 'enregistrés', 'uniques', 'Sept', 'efficacement', 'détention', 'reliant', 'Croatie', 'pré', 'Carlo', 'Baby', 'apprécierez', '2012-2013', 'guides', 'tentent', 'Indonésie', 'Jersey', 'Egypte', 'industries', 'Résultat', 'Figaro', 'sagesse', 'croissant', 'Abonnez-vous', 'formant', 'attaché', 'tunnel', 'Andy', 'espérant', 'statuts', 'attribution', 'Automobile', 'sauter', 'PIB', 'émergence', 'vedette', 'Transports', 'âmes', 'fois-ci', 'Ignace', 'Der', 'cherché', 'Allen', 'climatisation', 'interroger', 'intéressantes', 'attache', 'Casa', '1850', 'Line', '750', 'stationnement', 'Seulement', 'express', 'matelas', 'Lisbonne', 'idéologie', 'fréquente', 'saisie', 'campus', 'age', 'Gironde', 'renommé', 'grand-père', 'affluent', 'Forces', 'Restauration', 'Books', 'coffre', 'curiosité', 'critère', 'monstre', 'anges', 'adoptée', 'conclusions', 'OM', 'évoqué', 'Varsovie', 'fous', 'Thaïlande', 'Gîtes', 'Objets', 'séjourner', 'Orchestre', 'Activité', 'musicales', 'Bulgarie', 'précipitations', 'céréales', 'standards', 'collègue', 'Moteur', 'développeurs', 'envoyés', '1897', 'Hamilton', 'HC', 'basses', 'ouvrier', 'prévus', 'futures', 'multitude', 'Suivez', 'regroupant', 'caractérise', 'héritier', 'Good', 'AUX', 'z', 'détendre', 'BBC', 'Animation', 'Junior', 'Élections', 'assise', 'vignes', 'Instagram', 'Définition', 'diable', 'Tibet', 'inédit', 'General', 'dominante', 'Sélection', 'serre', 'permettrait', 'Institute', 'enseignements', 'www.youtube.com', 'chantiers', 'Infirmiers', 'incapable', 'opposer', 'Résidence', '102', 'stratégiques', 'plastiques', 'Ok', 'master', '←', 'collectifs', 'déficit', 'Productions', 'banc', 'référendum', 'recevrez', 'palette', 'reçoivent', 'huitième', 'dépression', 'descendre', 'Décès', 'chapitres', 'Stage', 'Jordan', 'Gordon', 'Argent', \"T'\", 'Ottawa', 'négociation', 'hop', 'Lion', 'accordé', 'salade', 'chroniques', 'ramener', 'Maxime', 'migrants', 'Second', 'réfrigérateur', 'seigneurs', 'CHF', 'imposé', 'Parfois', 'frigo', 'ignore', 'East', 'robots', 'Fille', 'gravité', 'Isère', 'Mieux', 'Vendée', 'résidences', 'invisible', 'triple', 'batteries', 'Simone', 'complètes', 'dénonce', 'péninsule', 'deja', 'indicateurs', 'gré', 'dessinateur', 'manager', 'saurait', 'exploiter', 'Rugby', 'appuyant', 'balance', 'forumAccueilCréer', 'médicales', 'mentale', '1872', 'chaises', 'formés', 'sculptures', 'Joueur', 'automobiles', 'accessoire', 'étiquette', 'domestique', 'has', 'Saint-Denis', 'intelligent', 'belges', 'milliard', 'syndrome', '17h', 'implication', 'MP', 'textile', 'races', 'Patricia', 'Cabinet', 'Proche', 'Technologies', 'paisible', 'constructeurs', 'anti', 'occupent', 'arrival', 'rumah', 'Nîmes', 'nette', 'transmis', 'concevoir', 'Rhin', 'manqué', 'regrette', 'out', 'bleus', 'Vietnam', 'Arrondissement', 'transféré', 'soumettre', 'promesse', 'lumières', 'Anniversaire', 'fines', 'buteur', 'merveille', 'Problème', 'coule', 'Réservez', 'Boris', 'globalement', 'fosse', 'Kate', 'christianisme', 'uniforme', 'biologie', 'First', 'biodiversité', 'arrêtés', 'bouteilles', 'pertinence', 'souveraineté', 'Solutions', 'treize', 'bulletin', 'qualifiés', 'quinzaine', 'fabriqué', 'Frères', 'Challenge', '1885', 'écologie', 'individuels', 'Francesco', 'indispensables', 'icône', 'essentiels', 'commença', 'Distribution', 'Fantasy', 'apparu', 'massacre', 'préférée', 'portait', 'optimale', 'marais', 'tranquillité', '14h', 'minimale', 'Calais', 'entrepreneurs', 'vieilles', 'gothique', 'amende', 'Morgan', 'Lisa', 'tit', '5e', 'salons', 'Dordogne', 'sondages', 'classées', 'pdf', 'obstacles', 'divisé', 'produisent', 'détermination', 'commerçants', '2016-2017', 'extérieures', 'australien', 'Devant', 'PAR', 'formée', 'Voix', 'Audi', 'Bande', 'Printemps', 'âgés', 'affluence', 'Steven', 'occupée', 'élimination', 'valorisation', 'aimerai', 'probleme', 'messe', 'Casino', 'coach', 'apartment', 'précisions', 'grotte', 'touches', 'spirituelle', 'onglet', 'Conservatoire', 'tournois', 'verser', 'aménagements', 'entretenir', 'voisines', 'exclusion', 'Être', 'médailles', 'sociologie', 'arrêts', 'Tant', 'çà', 'cessé', 'veuve', 'assurent', 'Match', 'Saint-Étienne', 'poussé', 'restait', 'Déco', 'Kelly', 'NBA', 'propreté', 'spécialités', 'sentiers', 'capture', 'révéler', 'agrandir', 'cosy', 'agissant', 'filet', 'fouilles', 'lanceur', 'vêtement', 'élégant', 'méditation', 'abandonne', 'qualifie', 'sois', 'associe', 'affecté', 'autorise', 'italiens', 'List', 'infrastructure', 'Hommes', 'soumise', 'ID', 'pm', 'désirez', 'autorisés', 'Blues', 'Véronique', 'constitutionnel', 'Bébé', 'indices', 'Store', 'nov', 'quarante', 'Couronne', '00ZRoom', '4ème', 'Pharmacie', 'Youtube', 'camarades', 'annulation', 'science-fiction', 'comprise', 'manières', 'boulangerie', 'natale', 'effectués', 'résidents', 'correction', 'partagée', 'solides', 'cave', 'placement', 'difficilement', 'diplômé', 'virtuel', 'masculine', '--Photos', 'commodités', 'PlayStation', 'pseudonyme', 'Spécial', 'Venezuela', 'voulant', 'surveiller', 'reconnus', 'rayonnement', 'pop34', 'coffret', 'Unité', 'mignon', 'puissances', '1893', 'Old', 'fraîche', 'expressions', 'texture', 'People', 'Situation', 'Index', 'inspirée', 'Franz', 'dérivés', 'corde', 'profitez', 'réédition', 'bah', 'Précédent', 'Objet', 'Antiquité', 'économiser', 'soigner', 'assurant', 'an34', 'dignité', 'back', '113', '103', 'Nobel', 'postale', 'TypeEntire', 'festivals', 'Licence', 'beautiful', 'curé', 'Friedrich', 'divisions', 'indications', 'Do', 'cuillère', 'recens34', 'gares', 'climatiques', 'lame', 'tramway', 'visiblement', 'Honda', 'fluide', 'doubles', 'parent', 'varier', 'substances', 'mètre', 'Lambert', 'départementales', 'applicables', 'convertir', 'enveloppe', 'finis', 'Aires', 'Academy', 'Comédie', 'réunir', 'chants', 'extraction', 'hiérarchie', 'devrais', 'progresser', 'distribué', 'Mathématiques', 'Champs', 'Espagnol', 'fibres', 'coco', 'accessibilité', 'étroite', 'qualifier', 'Romains', 'leçon', '2020', 'ES', 'reçus', 'THE', 'folle', 'Japonais', 'immobilières', 'prononciation', 'oct', 'supporters', 'stand', 'Chauffage', 'emporte', 'rassemblement', 'fautes', 'crainte', 'paiements', 'neufs', 'foyers', 'enthousiasme', 'Contre', 'concernées', 'accomplir', 'Plaza', 'magazines', 'blonde', '2011-2012', 'Inter', 'garantit', 'pianiste', 'identiques', 'équipées', 'appellent', 'pile', 'porteur', 'Liberté', 'Autant', 'unes', 'Disneyland', 'validité', 'nocturne', 'légers', 'DS', 'rapprocher', 'acceptation', 'Maman', 'violation', 'Abraham', 'RechercherRésultats', 'Capitaine', 'Galles', 'Coucou', 'contraste', 'spa', 'appliqué', 'rachat', 'Montage', 'tri', 'battant', 'réaliste', 'Voyages', 'Motif', 'parquet', 'isolé', 'D2', 'iOS', 'Will', 'compositions', '--les', 'Bavière', 'clics', '112', 'satellites', 'déplace', 'Hot', '18h', 'Turin', 'potentiels', 'prisonnier', 'détient', 'neveu', 'Grandes', 'citations', 'baignade', 'Canon', 'systématique', 'violent', 'grand-mère', 'Caraïbes', 'Pau', 'Aix', 'Mis', 'Hugues', 'podium', 'secs', 'endémique', 'assiste', 'déguster', 'Sites', 'échappe', 'abusif', 'fiabilité', 'parlementaires', 'Fabrice', 'brésilien', 'Angel', 'pâtes', 'Carter', 'foncé', 'faillite', 'st', 'Batterie', 'permettront', 'mourut', 'motos', 'crises', 'woning', 'intéressants', 'Inscrivez-vous', 'attendait', 'industrielles', 'architectes', 'Yann', 'déçu', 'entré', 'wc', 'Partenaires', 'regardant', 'suffrages', 'Dakar', 'exprimé', 'devise', 'céramique', 'gravure', 'comparateur', 'frappé', 'Chat', 'Elisabeth', 'assiette', 'provoqué', 'IX', 'signifiant', 'dépôts', 'District', 'Wii', 'mystérieux', 'Objectif', 'Seuls', 'conclut', 'voulons', 'pochette', 'souligner', 'parcourir', 'goûter', 'taper', 'sale', '118', 'opposant', 'Zoom', 'sublime', 'Cédric', 'fondamentale', 'peut-on', 'Suites', 'repasser', 'bits', 'een', 'grise', 'séparés', '1894', 'veste', 'lignée', 'good', 'Walt', 'québécoise', 'Mémoires', 'Mariage', 'briques', 'loisir', 'Bilan', 'littoral', 'organe', 'détection', 'Renaud', 'impeccable', 'Magic', 'gendarmerie', 'prouve', 'Coin', 'irlandais', 'Miguel', 'coureurs', 'exécuter', 'Contexte', 'turc', 'baroque', '●', '--Concours', 'ex.', 'lavage', 'fausses', 'secrète', '1892', 'Final', 'Ain', 'av', 'applicable', 'Moore', 'descendants', 'Ball', 'Agenda', 'width', 'magnétique', 'souhait', 'Philippines', 'éponyme', 'clichés', 'trouvés', 'dotée', 'Equipements', 'écris', '2010-2011', 'Application', 'divine', 'registres', 'Ø', 'grain', 'Be', 'nés', 'Ahmed', 'Out', 'people', 'intervenants', 'intérieurs1', 'Colin', 'reservation', 'Etude', 'trophée', 'suggestion', 'lapin', 'restée', 'essor', 'poches', 'séparer', 'records', 'baisser', 'maîtresse', 'Actes', 'rénovée', 'cinématographique', 'sommets', 'dits', 'bulle', 'suffisante', 'Cycle', 'décennie', 'terroriste', 'appelait', 'Pape', 'entrepreneur', 'accueillants', 'Mo', 'open', 'animale', 'reçut', 'Ouverture', 'racisme', 'Augustin', 'restaurer', 'transactions', 'Fernando', 'capitalisme', 'avouer', 'cloud', 'montres', 'regardé', 'extra', 'composant', 'creux', 'envergure', 'Jr', 'minéraux', 'permettait', 'fournie', 'script', 'entités', 'clean', 'Paix', 'ascenseur', 'Bank', 'Philip', 'éteint', 'indienne', 'attribuée', 'maïs', 'Passion', 'job', 'recherché', 'péché', 'formules', 'favorise', 'kr', 'transporter', 'activement', 'dénomination', 'inauguré', 'archéologie', 'copié', 'militant', 'âgée', 'bataillon', 'séparé', 'Eva', 'désire', 'rumeurs', 'Bonaparte', '108', 'détaillé', 'développés', 'Square', 'Confédération', 'Etienne', 'Canadiens', 'richesses', 'Languedoc-Roussillon', 'partent', 'boules', 'domine', 'indicatif', 'pic', 'Hygiène', 'Unies', 'portables', 'miracle', 'costumes', 'marron', 'baiser', 'vivante', 'cirque', 'estimation', 'Nelson', 'animée', 'Di', 'porteurs', '00ZAccueil', 'nid', 'Cadeaux', 'remercions', 'Bell', 'cotation', 'rejet', 'Plage', 'Julia', 'Métiers', 'Party', 'Paulo', 'associer', 'Budapest', 'sanctuaire', 'Réseaux', '1867', 'teint', 'Gary', 'passait', 'déclin', 'collier', 'Corporation', 'Baie', 'référencement', 'détenus', 'épaule', 'Agnès', 'absent', 'enregistrements', 'Ferme', 'entourée', 'team', 'soutenue', 'anneau', 'Bach', 'disposant', 'étoilesà', 'Insee', 'quatorze', 'répondent', 'exacte', 'partagent', 'poils', 'CFA', 'collines', 'maîtriser', 'diffuse', 'organique', 'rédiger', 'viendra', 'Désolé', 'supporte', 'déclarer', 'doré', 'passions', 'légendes', 'Navy', '109', 'processeur', 'observé', 'Autour', 'survivre', 'M6', 'bouger', 'cyclisme', 'Burkina', 'gâteaux', 'favorables', 'flexible', 'confortables', 'sérénité', 'Bluetooth', 'Ski', 'Phil', 'collectivité', 'Russell', '5000', 'pénal', 'philosophique', 'réglage', 'levée', 'Course', 'Syndicat', 'faiblesse', 'prestige', 'obtenus', 'Pratique', 'Bisous', 'Objectifs', 'aval', 'créatures', 'XP', 'gite', 'simultanément', 'Robe', 'marqués', 'parlait', 'estimations', 'hésiter', 'tr', 'Play', 'considèrent', 'aptProperty', 'dragon', 'assassiné', 'Cambridge', 'échéant', 'assemblage', 'ment', 'adopte', 'voudrait', 'civiles', 'Forme', 'sentier', 'anagrammes', 'Adrien', 'opportunités', 'munitions', 'composer', 'Changer', 'Possibilité', '190', 'Coran', 'suisses', 'esclavage', 'infini', 'Main', '1888', 'prof', 'décorée', 'kmHôtels', 'Atlas', 'ira', 'étanchéité', 'sympathiques', 'connectés', 'SI', 'grandement', 'municipaux', 'asiatique', 'Bel', 'acides', 'Britanniques', 'roller', 'ruban', 'Auvergne-Rhône-Alpes', 'privilégié', 'like', 'sortis', 'sensibilisation', 'seize', 'ciblées', \"M'\", 'volontairement', 'Clark', 'Relations', 'encadrement', 'ose', 'Project', 'aisément', 'Franche-Comté', 'Guinée', 'Maine', 'Coffret', '107', 'juridiction', 'doutes', 'déroulement', 'consommer', 'décorations', 'décrite', 'intentions', 'Ortograf', 'hôpitaux', 'variante', 'protégés', 'Roche', 'préface', 'judiciaires', 'Halloween', 'Intel', 'interdire', 'fragile', 'Ardèche', 'Bijoux', 'São', 'smartphones', 'durs', 'défaites', 'fixée', 'pente', 'élégance', '135', 'Hérault', 'herbes', 'amuser', 'aveugle', 'Cyril', 'influences', 'manuscrits', 'condamnation', 'chêne', 'challenge', 'Jennifer', 'exclusif', 'Stars', 'idem', 'Global', 'Mohammed', 'DR', 'pardon', 'détruite', 'réveil', 'google', 'Pétrole', 'académique', 'trouvée', 'carrières', 'Sicile', 'reproduire', 'Vendu', 'leaders', 'compteur', 'écrites', 'sexuel', 'Casablanca', 'affiches', 'Juridique', 'fesses', 'Sources', 'innovations', 'Valls', 'boue', 'Studios', 'pois', 'Citroën', '2009-2010', 'Potter', 'vérifié', 'Laboratoire', 'orthodoxe', 'déc', 'occidentaux', 'capteur', 'précises', 'Champions', 'musulmane', 'VOUS', '1851', 'ヽ', 'Shanghai', 'monstres', 'terroir', '✔', 'remplacée', 'desservie', 'réservations', 'illustrer', 'calculer', 'traductions', 'poussière', 'compétitivité', 'Cathédrale', 'intéressés', 'trouvera', 'Séries', 'spectaculaire', 'valider', 'réuni', 'volontiers', 'Haïti', 'laboratoires', 'Michèle', 'guise', 'copies', 'poussée', 'élue', 'poursuivi', 'résume', 'Devenir', 'chèque', 'AVEC', 'sèches', 'Network', 'récolte', 'Wifi', '111', 'là-bas', 'dépassé', 'Mercedes', 'fournies', 'impulsion', 'sphère', 'lève', 'variantes', 'Wild', 'catch', 'variation', 'Recevez', 'tenait', 'spécifiquement', 'baies', 'approvisionnement', 'relevant', 'ancêtres', 'Islande', 'nobles', 'exclusive', 'lisse', 'carnets', 'Voiture', 'surnommé', 'allié', 'Largeur', 'prestigieux', 'occurrence', 'agression', 'firme', 'perdus', 'Matthieu', 'agenda', 'autel', 'revers', 'lion', 'recense', 'Parallèlement', 'spectateur', 'hongrois', 'problématiques', 'interaction', 'Championship', 'asile', 'améliorations', '1792', 'déterminé', 'nommés', 'Guadeloupe', 'Juliette', 'Située', 'démontre', 'Light', 'automatiques', 'figurant', 'rouler', 'Firefox', 'actionnaires', 'Dave', 'évacuation', 'retraites', 'optimisation', 'maux', '2013Sujet', 'Grégoire', '1875', 'végétaux', 'rapproche', 'mythique', 'visuelle', 'tarte', 'Écrit', 'gestionnaire', 'batailles', 'entretiens', 'adapte', 'modernité', '1878', 'armés', 'réputé', 'Golfe', 'passes', 'Clé', 'Jardins', 'ongles', 'synonyme', 'dispo', 'misère', 'tribus', 'Pop', 'considération', 'défilé', 'célébrer', 'indication', 'éventuelle', 'gardes', 'inauguration', 'indiquée', 'Document', '205', 'mosquée', 'possédant', 'posséder', 'musicaux', 'ambassade', 'pédagogie', 'demi-finale', 'nouveauté', 'humanitaire', 'coupes', 'aube', 'CDI', 'copains', 'Marianne', 'Aisne', 'échantillon', 'admirer', 'Comte', 'mythologie', 'Valley', 'cabine', 'évoquer', 'initiation', 'Clermont', 'traitant', 'boisson', 'Cookies', 'actives', 'Dommage', 'terminal', '--Forum', 'allure', 'Africa', 'Astuces', 'bâti', 'palmarès', 'cherchant', 'internaute', 'vaisseaux', 'répondant', 'tenus', 'serviettes', 'Martinique', 'UA', 'apportent', 'Sacs', 'Souvent', 'vertus', 'Affaire', 'arnaque', '1815', 'vertes', 'continuation', 'fermes', 'clef', 'maintient', '2008-2009', 'Jacqueline', 'den', 'amiral', 'Faut', 'draps', '£', 'créées', '--LA', 'a-t-elle', 'infection', 'concentrer', 'révélation', 'lourdes', 'Critique', 'calculs', 'rap', 'linéaire', 'agisse', 'directive', 'Germain', '1882', 'croise', 'significative', 'amusant', 'ferai', 'mentions', 'Death', 'robes', 'conçus', 'artisan', 'Stone', 'WordPress', 'rez-de-chaussée', 'Foot', 'trompe', 'admission', 'Valentin', 'Religion', 'remplaçant', 'Danse', 'reviens', 'disparaît', 'suspendu', 'variées', '.-', 'automated', 'Edmond', 'massive', 'OTAN', 'States', 'Envie', 'auberge', 'inox', 'comptant', 'Part', 'colonisation', 'vintage', 'tranches', 'reviennent', '¯', 'PLUS', 'Pakistan', 'démo', 'plu', 'faille', 'connaissais', 'saura', 'carrelage', 'élémentaire', 'Raoul', 'Publications', 'bébéEquipements', 'comptabilité', 'Projets', 'biologiques', 'seigneurie', 'canceled', 'dangers', 'approches', 'téléphoniques', 'close', 'Occitanie', 'gay', 'exposés', 'démarrer', 'go', 'intérieurs', 'put', 'statues', 'Thèmes', 'Physique', 'Assistance', 'Tapis', '230', '1887', 'Empereur', 'visuels', 'mentionne', 'illusion', 'dissolution', 'hauteurs', 'positionnement', 'voyageur', 'sérieuse', 'vus', 'Ian', 'piège', 'énormes', 'nue', '--LE', 'Giuseppe', 'animés', '1884', 'prononcer', 'concession', 'Diane', 'tasse', 'Landes', '1.2', 'sonores', 'saveurs', 'éleveurs', 'bacs', 'Avez-vous', 'inventé', 'urbaines', '1856', \"Quelqu'\", 'Raphaël', 'Read', 'envisage', 'évalué', 'procédés', 'JavaScript', 'PVC', 'demi-grand', 'croyances', 'caméras', 'Bio', 'Gaza', 'visité', 'compatibles', 'botanique', 'singulier', 'Arrivée', 'donnait', 'productivité', 'Buenos', '1-0', 'émet', 'ABC', 'Forêt', 't-il', 'baise', 'fonte', 'Vivre', 'coquine', 'écossais', 'Parcours', 'Toyota', 'IT', 'localités', 'tolérance', 'arrivant', '1846', '10h', 'Nation', 'artificielle', 'crochet', 'navette', 'sacrée', '123', 'sensations', 'réelles', 'disais', 'exprimés', 'ridicule', 'baptisé', 'Seuil', 'renouvelables', 'marches', 'causer', 'débutants', 'view', 'chaussée', 'censure', 'documentaires', 'pénale', 'jolis', 'rapporté', 'atouts', 'dégustation', 'existants', 'interactions', 'manteau', 'Marina', 'MP3', 'déposée', 'sont-ils', 'profils', 'baptême', 'élevées', 'diesel', 'apparente', 'arrestation', 'maxi', 'href', 'évoluant', 'Oliver', '1790', 'Ni', 'informe', 'Charente', 'Navigation', 'Fait', 'posts', 'prévision', 'Secrets', 'Ancienne', 'Bâle', 'indiquent', 'alternatives', 'Figure', 'intermédiaires', 'Vichy', 'grains', 'Hégésippe', 'Cœur', 'dérive', 'quarts', 'manquent', 'créent', 'Agent', 'obstacle', 'Reste', 'médiation', 'petit-déjeuner', 'Autorité', 'Tennis', 'nommer', 'im', 'fiscalité', 'Arles', 'attaqué', '--Annonces', 'Aventure', 'croient', 'plomberie', 'los', 'Thème', 'socle', 'Song', 'Queen', '1840', 'alphabet', 'Accéder', 'tantôt', 'diplômes', 'Bâtiment', 'légères', 'épaules', 'coiffure', 'Original', 'madame', 'commercialisation', 'Ross', 'CS', 'quarantaine', 'commissions', 'caisses', 'Autrement', 'bémol', 'plancher', 'appartenance', 'papillon', 'für', 'XI', 'fêter', 'Feu', 'promesses', 'rapprochement', 'indépendantes', 'Circuit', 'Trophée', 'Raison', 'vanille', 'dépannage', 'équation', 'accordée', 'Train', 'spécialisées', 'approuvé', 'Ciel', 'Victoire', 'oxygène', 'mutation', 'blues', 'signalé', 'Guyane', 'plutot', 'composent', 'Singapour', 'poules', 'câbles', 'préférable', 'répétition', 'Almouggar.com', 'Coeur', 'Disque', 'Géographie', 'chatte', 'Beau', 'Clermont-Ferrand', 'géré', 'Parker', 'Town', 'numero', 'accuse', 'enceintes', 'fondamental', 'Sud-Ouest', 'archéologiques', 'PêcheVoir', 'Anjou', 'Poser', 'Constantinople', 'Cliquer', 'autrui', 'entends', 'manoir', 'Princesse', 'vendue', 'XVIIIe', 'passa', 'duplicate', 'ci-après', '--Espace', 'partiel', 'kms', 'Populaire', 'Utiliser', 'recevez', 'casser', 'médiéval', 'valoir', 'tuto', 'manifestants', 'ad', 'coloniale', 'traversé', 'Paradis', 'sexuelles', 'sévère', 'oubli', 'Créez', 'roche', 'mien', 'admissibilité', 'Sud-Est', 'entame', 'tactile', 'alphabétique', 'solitaire', 'Élisabeth', 'adorable', 'commenter', 'XII', 'introduire', 'éducatif', 'Limousin', 'intellectuels', 'diplomatique', 'Saint-Pétersbourg', 'about', 'consultant', 'Wallonie', 'championne', 'correcte', 'Italien', 'dynamiques', 'Monique', 'accompagnés', 'intéressent', 'Beaux-Arts', 'porc', 'Jerry', 'fonctionnalité', 'amies', 'dénoncer', 'instants', 'encyclopédique', 'Opération', 'mat', 'quotidiens', 'Royale', 'positifs', 'Forums', 'maturité', 'mondiaux', 'enseigner', 'organisateurs', 'détriment', '127', 'PSPsexy', 'Vegas', 'Istanbul', 'pots', 'instances', 'puce', 'Revenir', 'signale', 'minuit', 'quoique', 'généralistes', 'matinée', 'pouce', 'renoncer', 'mental', 'budgétaire', 'essayez', 'imposant', 'Back', '--A', 'remercié', 'Meuse', 'achève', 'angles', 'Special', 'Flandre', 'Mail', 'Rica', 'Azure', 'Alberto', 'Malte', 'Who', 'audit', 'intervalle', '117', 'Stéphanie', 'municipalités', 'annoncée', 'épais', 'espérance', 'fonctionnaire', 'dettes', 'technicien', 'ouvrent', 'Gard', 'orale', 'approfondie', 'tomes', 'dessiner', 'basilique', 'Crédits', 'méchant', 'recommandation', 'Batman', 'tribunaux', 'dira', 'vain', 'Jusqu', '--Histoire', 'PDG', 'Hunter', 'escalade', 'tre', 'minorité', 'Rights', 'améliore', 'Universal', 'Rousseau', 'Faso', '--Questions', 'wikipédia', 'localement', 'Parfait', 'athlètes', 'Puy', 'volets', 'Rachel', 'liaisons', 'Métropole', 'SAS', 'Ingénieur', 'Lorient', 'Chantal', 'acheteur', 'lingerie', 'planètes', 'enregistrée', 'Quelque', 'congé', 'confondre', '1883', 'Caire', 'prétend', 'ranger', 'châssis', 'chaos', 'électoral', 'générer', '19h', 'impasse', 'mutuelle', 'radical', 'Prendre', 'icone', 'renouveler', 'périmètre', 'Bush', 'Conception', 'Téléchargez', 'Pauline', 'interroge', 'carrefour', 'Villeneuve', 'regards', 'scénarios', 'Annecy', 'vous-même', 'digital', 'poètes', 'Fonction', 'Bruges', 'possédait', 'entrent', 'cotisations', 'demandeurs', 'convivial', 'moine', 'barrière', '1863', 'résolu', '26Localisation', 'Stratégie', 'SE', 'nuage', 'Ann', 'détour', 'triangle', 'licences', 'Alexandra', '1Sauter', 'intégrés', 'décida', 'Stockholm', 'négocier', 'empreinte', '2013Age', 'mâles', 'Book', 'Gallery', 'désignation', 'segment', 'Posted', 'pourriez', 'sexualité', 'semblables', 'Actu', 'Professionnel', 'flèche', 'semestre', 'Constantin', 'chaudes', 'toiture', 'confluence', 'Retourner', '6e', 'Explorer', 'compact', 'quotidiennement', 'incarne', 'InvitéInvité', 'oeuf', 'démontré', 'Audio', 'allais', 'Marvel', 'buffet', 'coucou', 'Otto', 'DO', 'finissent', 'réguliers', 'alimenter', 'humides', 'discrimination', 'Micro', 'tribune', '♦', 'Comics', 'démocrate', 'Personnellement', 'Damien', 'franchir', 'vigne', 'para', 'gr', 'blason', 'cycles', 'caoutchouc', 'investi', 'saumon', 'consacrés', '9h', 'étendu', 'Aude', 'Roberto', 'cinquantaine', 'Bons', 'préoccupations', 'pirates', 'Equitation', 'rassembler', 'piliers', 'simulation', 'cinéaste', 'pompiers', '-10,5', 'réplique', 'aéronautique', 'guider', 'végétation', 'Full', 'désordre', 'LG', 'Catalogne', 'envoyée', 'Charme', 'Cologne', 'unis', 'pensait', 'complot', 'israélien', 'dictature', 'details', 'free', 'Chronique', 'Sociétés', 'croisière', 'fun', 'représentés', 'Berne', 'porno', 'appliquent', 'accroître', 'Metal', 'profondes', 'cliniques', 'there', 'prototype', 'vraies', '1865', 'Abs', 'Edouard', 'over', 'enchères', 'priorités', 'VOTRE', 'inégalités', 'séduire', 'injection', 'Effectivement', 'passez', 'éclat', 'Salvador', '1862', 'potable', 'synthétique', '11h', 'confier', 'restés', 'chauffer', 'aborde', 'EDF', 'Troyes', 'ressenti', 'jambe'])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 1- Model definition\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "TJghdjf-Leun"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1 FFNN with an embedding bag layer (code given)\n",
-        "\n",
-        "Below is the code written during TP4 for a classic FeedForward Neural Network using pretrained word embeddings (but without offsets, see the note about batches above)."
-      ],
-      "metadata": {
-        "id": "avYLIUvWMZWL"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class FeedforwardNeuralNetModel(nn.Module):\n",
-        "    def __init__(self, hidden_dim, output_dim, weights_matrix):\n",
-        "        # calls the init function of nn.Module.  Dont get confused by syntax,\n",
-        "        # just always do it in an nn.Module\n",
-        "        super(FeedforwardNeuralNetModel, self).__init__()\n",
-        "\n",
-        "        # Embedding layer\n",
-        "        #  mode (string, optional) – \"sum\", \"mean\" or \"max\". Default=mean.\n",
-        "        self.embedding_bag = nn.EmbeddingBag.from_pretrained(\n",
-        "                              weights_matrix,\n",
-        "                              mode='mean')\n",
-        "        embed_dim = self.embedding_bag.embedding_dim \n",
-        "\n",
-        "        # Linear function\n",
-        "        self.fc1 = nn.Linear(embed_dim, hidden_dim)\n",
-        "\n",
-        "        # Non-linearity\n",
-        "        self.sigmoid = nn.Sigmoid()\n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)  \n",
-        "\n",
-        "    def forward(self, text):\n",
-        "        # Embedding layer\n",
-        "        embedded = self.embedding_bag(text)\n",
-        "\n",
-        "        # Linear function  \n",
-        "        out = self.fc1(embedded)\n",
-        "\n",
-        "        # Non-linearity  \n",
-        "        out = self.sigmoid(out) \n",
-        "\n",
-        "        # Linear function (readout)\n",
-        "        out = self.fc2(out)\n",
-        "        return out"
-      ],
-      "metadata": {
-        "id": "hZKG5VRhJmJw"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.2 Exercise: From FFNN to LSTM\n",
-        "\n",
-        "We want to replace our hidden layer with an LSTM layer: the LSTM layers takes the word embeddings as input and the ouput will be directly fed to the output layer.\n",
-        "* you thus need to replace the embeddingBag layer with a simple embedding layer taking pretrained word embeddings, see the documentation here (search 'from_pretrained') https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html\n",
-        "* then you need to define an LSTM layer, see the doc here https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html. \n",
-        "\n",
-        "\n",
-        "The *forward* function is given. Note that:\n",
-        "* the LSTM has 2 outputs: ht and ct (hidden and memory state)\n",
-        "* the output of an LSTM, the 'y', is now the last hidden state computed for the entire sequence (classification task)\n",
-        "\n",
-        "In addition, note that in the forward pass, we need to reshape the data using:\n",
-        "```\n",
-        "x = x.view(len(x), 1, -1)\n",
-        "```\n",
-        "\n",
-        "We need to reshape our input data before passing it to the LSTM layer, because it takes a 3D tensor with *(Sequence lenght, Batch size, Input size)*. \n",
-        "This is done with the 'view' method, the pytorch 'reshape' function for tensors. (there's also a format with batch size first, more easy to understand)"
-      ],
-      "metadata": {
-        "id": "Ws0VVWYYMShP"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "\n",
-        "class LSTMModel(nn.Module):\n",
-        "    def __init__(self, hidden_dim, output_dim, weights_matrix, batch_first=True ):\n",
-        "        super(LSTMModel, self).__init__()\n",
-        "\n",
-        "        # Define an embedding layer\n",
-        "        # -- SOLUTION\n",
-        "        self.embedding = nn.Embedding.from_pretrained( weights_matrix )\n",
-        "        embedding_dim = self.embedding.embedding_dim \n",
-        "\n",
-        "        # Define an LSTM layer\n",
-        "        # -- SOLUTION\n",
-        "        self.lstm = nn.LSTM( input_size=embedding_dim, \n",
-        "                            hidden_size=hidden_dim, \n",
-        "                            bidirectional=False)\n",
-        "\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)          #out, (ht, ct) = self.lstm( embeds )\n",
-        "\n",
-        "    def forward(self, text):\n",
-        "        embeds = self.embedding(text)\n",
-        "        # print( text) # a tensor of indices representing the tokens in a sequence\n",
-        "        # print( embeds.shape) # (batch, seq, features) eg 1, 107, 300\n",
-        "        # We need: (seq, batch, feature)\n",
-        "        x = embeds.view(text.shape[1], 1, -1) # -1 allows to guess a dimension\n",
-        "        # print( x.shape) # (seq, batch, features) eg 107, 1, 300\n",
-        "        out, (ht, ct) = self.lstm( x ) # <--- here the real 'out' is ht\n",
-        "        y = self.fc2(ht[-1]) # <--- we keep only the last hidden state\n",
-        "        return y"
-      ],
-      "metadata": {
-        "id": "VV1vVgtmMShQ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 2- Running experiments\n",
-        "\n",
-        "The code to train and evaluate your network is given below (again version without offsets)."
-      ],
-      "metadata": {
-        "id": "ykWFAXIFLs3W"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from sklearn.metrics import classification_report, accuracy_score\n",
-        "\n",
-        "def train( model, train_loader, optimizer, num_epochs=5, trace=False ):\n",
-        "    for epoch in range(num_epochs):\n",
-        "        train_loss, total_acc, total_count = 0, 0, 0\n",
-        "        for input, label in train_loader:\n",
-        "            input = input.to(device)\n",
-        "            label = label.to(device)\n",
-        "            # Step1. Clearing the accumulated gradients\n",
-        "            optimizer.zero_grad()\n",
-        "            # Step 2. Forward pass to get output/logits\n",
-        "            outputs = model( input )\n",
-        "            if trace:\n",
-        "              print(input) # <---- call with trace=True to 'see' the input\n",
-        "              trace=False\n",
-        "            # Step 3. Compute the loss, gradients, and update the parameters by\n",
-        "            # calling optimizer.step()\n",
-        "            # - Calculate Loss: softmax --> cross entropy loss\n",
-        "            loss = criterion(outputs, label)\n",
-        "            # - Getting gradients w.r.t. parameters\n",
-        "            loss.backward()\n",
-        "            # - Updating parameters\n",
-        "            optimizer.step()\n",
-        "            # Accumulating the loss over time\n",
-        "            train_loss += loss.item()\n",
-        "            total_acc += (outputs.argmax(1) == label).sum().item()\n",
-        "            total_count += label.size(0)\n",
-        "        # Compute accuracy on train set at each epoch\n",
-        "        print('Epoch: {}. Loss: {}. ACC {} '.format(epoch, train_loss/total_count, total_acc/total_count))\n",
-        "        total_acc, total_count = 0, 0\n",
-        "        train_loss = 0\n",
-        "\n",
-        "def evaluate( model, dev_loader ):\n",
-        "    predictions = []\n",
-        "    gold = []\n",
-        "    with torch.no_grad():\n",
-        "        for input, label in dev_loader:\n",
-        "            input = input.to(device)\n",
-        "            label = label.to(device)\n",
-        "            probs = model(input)\n",
-        "            predictions.append( torch.argmax(probs, dim=1).cpu().numpy()[0] )\n",
-        "            gold.append(int(label))\n",
-        "    print(classification_report(gold, predictions))\n",
-        "    return gold, predictions"
-      ],
-      "metadata": {
-        "id": "B5_-75IOJmMY"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.1 Exercise: Experiment with an FFNN with an Embedding bag layer\n",
-        "\n",
-        "Run first experiments with the embedding bag layer architecture, using the values below for the hyper-parameters."
-      ],
-      "metadata": {
-        "id": "w3IbjQfOL29y"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Set the values of the hyperparameters\n",
-        "hidden_dim = 4\n",
-        "learning_rate = 0.1\n",
-        "num_epochs = 10\n",
-        "criterion = nn.CrossEntropyLoss()\n",
-        "output_dim = 2"
-      ],
-      "metadata": {
-        "id": "FJ913fY3KTKq"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "train( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "id": "SSjMfiIaKTKv",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "40fa7c44-107e-47e6-9e77-3c1acafd68a7"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.7103600023706746. ACC 0.5084543465287448 \n",
-            "Epoch: 1. Loss: 0.7002908737267702. ACC 0.516610304356475 \n",
-            "Epoch: 2. Loss: 0.662875815048467. ACC 0.5945892182216034 \n",
-            "Epoch: 3. Loss: 0.63770688551087. ACC 0.6282076785359061 \n",
-            "Epoch: 4. Loss: 0.6257811904075641. ACC 0.6481002586035409 \n",
-            "Epoch: 5. Loss: 0.6205334295726974. ACC 0.6554605132285658 \n",
-            "Epoch: 6. Loss: 0.6104138190170505. ACC 0.6703799482792918 \n",
-            "Epoch: 7. Loss: 0.6084604199236421. ACC 0.6612293614481798 \n",
-            "Epoch: 8. Loss: 0.6043543937462373. ACC 0.6646111000596777 \n",
-            "Epoch: 9. Loss: 0.5993004708150943. ACC 0.6650089516610305 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.57      0.79      0.66       230\n",
-            "           1       0.79      0.57      0.66       319\n",
-            "\n",
-            "    accuracy                           0.66       549\n",
-            "   macro avg       0.68      0.68      0.66       549\n",
-            "weighted avg       0.69      0.66      0.66       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2 Exercise: Experiment with an LSTM layer\n",
-        "\n",
-        "Run then experiments using the architecture based on an LSTM layer: Are results better? What about the computation time?\n",
-        "\n",
-        "Try a (very) few hyper-parameter variations to see if you can get better results with each model."
-      ],
-      "metadata": {
-        "id": "p7eoYgQ5MA-y"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialization of the model\n",
-        "model_lstm = LSTMModel(hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_lstm.parameters(), lr=learning_rate)\n",
-        "model = model_lstm.to(device)\n",
-        "\n",
-        "# Train the model\n",
-        "train( model_lstm, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_lstm, dev_loader )"
-      ],
-      "metadata": {
-        "id": "8cl5YdGHJmRx",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "35eeeb91-ed9b-4a8f-d12f-183ec3be785c"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.7099002898065475. ACC 0.5092500497314502 \n",
-            "Epoch: 1. Loss: 0.6999005110897695. ACC 0.5237716331808235 \n",
-            "Epoch: 2. Loss: 0.6763738606644597. ACC 0.5701213447384126 \n",
-            "Epoch: 3. Loss: 0.6386794230333982. ACC 0.6256216431271135 \n",
-            "Epoch: 4. Loss: 0.6023483626577453. ACC 0.6658046548637359 \n",
-            "Epoch: 5. Loss: 0.5605765501417981. ACC 0.7065844440023871 \n",
-            "Epoch: 6. Loss: 0.5278763248086712. ACC 0.7213049532524368 \n",
-            "Epoch: 7. Loss: 0.4897404487366781. ACC 0.7483588621444202 \n",
-            "Epoch: 8. Loss: 0.4649431004727969. ACC 0.7702407002188184 \n",
-            "Epoch: 9. Loss: 0.4544118740582033. ACC 0.7712353292222002 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.46      0.74      0.57       230\n",
-            "           1       0.67      0.38      0.48       319\n",
-            "\n",
-            "    accuracy                           0.53       549\n",
-            "   macro avg       0.57      0.56      0.53       549\n",
-            "weighted avg       0.58      0.53      0.52       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [],
-      "metadata": {
-        "id": "UAjqxH9gUbtL"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Set the values of the hyperparameters\n",
-        "hidden_dim = 4\n",
-        "learning_rate = 0.1\n",
-        "num_epochs = 30\n",
-        "criterion = nn.CrossEntropyLoss()\n",
-        "output_dim = 2"
-      ],
-      "metadata": {
-        "id": "84PEAiufH84d"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model \n",
-        "model_ffnn = FeedforwardNeuralNetModel( hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_ffnn.parameters(), lr=learning_rate)\n",
-        "model_ffnn = model_ffnn.to(device)\n",
-        "# Train the model\n",
-        "train( model_ffnn, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_ffnn, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "365f5554-b858-41f7-82b1-57cfc563ef72",
-        "id": "Yn8yW5ErH84e"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.709749963394638. ACC 0.5128307141436245 \n",
-            "Epoch: 1. Loss: 0.6911146557749633. ACC 0.5424706584444002 \n",
-            "Epoch: 2. Loss: 0.6566515414016286. ACC 0.6114979112790929 \n",
-            "Epoch: 3. Loss: 0.6317141119057066. ACC 0.6399443007758107 \n",
-            "Epoch: 4. Loss: 0.6230158898495828. ACC 0.6526755520190969 \n",
-            "Epoch: 5. Loss: 0.6108375982547644. ACC 0.6560572906305948 \n",
-            "Epoch: 6. Loss: 0.6079069467867293. ACC 0.6628207678535906 \n",
-            "Epoch: 7. Loss: 0.6035416323477523. ACC 0.6620250646508852 \n",
-            "Epoch: 8. Loss: 0.5996583607426343. ACC 0.6717724288840262 \n",
-            "Epoch: 9. Loss: 0.5934296456477932. ACC 0.6685896160732047 \n",
-            "Epoch: 10. Loss: 0.5894441767768236. ACC 0.67157350308335 \n",
-            "Epoch: 11. Loss: 0.5866346642907028. ACC 0.6711756514819972 \n",
-            "Epoch: 12. Loss: 0.5850008157258968. ACC 0.6787348319076985 \n",
-            "Epoch: 13. Loss: 0.5811854699427376. ACC 0.6753530932962005 \n",
-            "Epoch: 14. Loss: 0.5782691600353717. ACC 0.6791326835090511 \n",
-            "Epoch: 15. Loss: 0.5742061922851424. ACC 0.6779391287049931 \n",
-            "Epoch: 16. Loss: 0.5727928795698742. ACC 0.6801273125124329 \n",
-            "Epoch: 17. Loss: 0.571492030055051. ACC 0.682514422120549 \n",
-            "Epoch: 18. Loss: 0.5717195964244283. ACC 0.6868907897354287 \n",
-            "Epoch: 19. Loss: 0.5683837923677049. ACC 0.6805251641137856 \n",
-            "Epoch: 20. Loss: 0.5643301861426642. ACC 0.6944499701611299 \n",
-            "Epoch: 21. Loss: 0.563318980974697. ACC 0.6827133479212254 \n",
-            "Epoch: 22. Loss: 0.5579198301091334. ACC 0.6964392281678934 \n",
-            "Epoch: 23. Loss: 0.5580193201680215. ACC 0.6894768251442212 \n",
-            "Epoch: 24. Loss: 0.5560032834618551. ACC 0.6946488959618062 \n",
-            "Epoch: 25. Loss: 0.5551374033577955. ACC 0.6918639347523374 \n",
-            "Epoch: 26. Loss: 0.5513722763765313. ACC 0.6918639347523374 \n",
-            "Epoch: 27. Loss: 0.5487415786706188. ACC 0.6934553411577482 \n",
-            "Epoch: 28. Loss: 0.547657126622003. ACC 0.6914660831509847 \n",
-            "Epoch: 29. Loss: 0.54438074429879. ACC 0.6940521185597772 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.66      0.67      0.67       230\n",
-            "           1       0.76      0.75      0.76       319\n",
-            "\n",
-            "    accuracy                           0.72       549\n",
-            "   macro avg       0.71      0.71      0.71       549\n",
-            "weighted avg       0.72      0.72      0.72       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialization of the model\n",
-        "model_lstm = LSTMModel(hidden_dim, output_dim, weights_matrix)\n",
-        "optimizer = torch.optim.SGD(model_lstm.parameters(), lr=learning_rate)\n",
-        "model = model_lstm.to(device)\n",
-        "\n",
-        "# Train the model\n",
-        "train( model_lstm, train_loader, optimizer, num_epochs=num_epochs )\n",
-        "\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate( model_lstm, dev_loader )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "add61a26-d0de-4548-87d7-29096a89f02f",
-        "id": "9EpuJBnEH84f"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Epoch: 0. Loss: 0.7111564963190461. ACC 0.49830913069425103 \n",
-            "Epoch: 1. Loss: 0.7016947415724222. ACC 0.5241694847821763 \n",
-            "Epoch: 2. Loss: 0.6763716080472961. ACC 0.5822558185796698 \n",
-            "Epoch: 3. Loss: 0.6428964518585676. ACC 0.6250248657250845 \n",
-            "Epoch: 4. Loss: 0.6064200428175003. ACC 0.6644121742590013 \n",
-            "Epoch: 5. Loss: 0.573960028702246. ACC 0.6958424507658644 \n",
-            "Epoch: 6. Loss: 0.5360553608741565. ACC 0.7181221404416153 \n",
-            "Epoch: 7. Loss: 0.4918938091774196. ACC 0.7485577879450965 \n",
-            "Epoch: 8. Loss: 0.46864604543076205. ACC 0.7704396260194948 \n",
-            "Epoch: 9. Loss: 0.4434980569702701. ACC 0.7869504674756316 \n",
-            "Epoch: 10. Loss: 0.4283135110263404. ACC 0.7927193156952457 \n",
-            "Epoch: 11. Loss: 0.41460178300394246. ACC 0.7994827929182415 \n",
-            "Epoch: 12. Loss: 0.3912994384431389. ACC 0.8179828923811419 \n",
-            "Epoch: 13. Loss: 0.3659793689458609. ACC 0.8285259598169883 \n",
-            "Epoch: 14. Loss: 0.36346412702577385. ACC 0.8319076984284862 \n",
-            "Epoch: 15. Loss: 0.3511178379107761. ACC 0.8301173662223991 \n",
-            "Epoch: 16. Loss: 0.3386651619592618. ACC 0.8410582852595981 \n",
-            "Epoch: 17. Loss: 0.3305226032288826. ACC 0.843843246469067 \n",
-            "Epoch: 18. Loss: 0.32555337970802795. ACC 0.8557787945096479 \n",
-            "Epoch: 19. Loss: 0.3166716355448622. ACC 0.8531927591008553 \n",
-            "Epoch: 20. Loss: 0.30443292041600606. ACC 0.8553809429082952 \n",
-            "Epoch: 21. Loss: 0.2924324467681074. ACC 0.8623433459319674 \n",
-            "Epoch: 22. Loss: 0.29089096912733264. ACC 0.8657250845434653 \n",
-            "Epoch: 23. Loss: 0.2925995253294328. ACC 0.871295006962403 \n",
-            "Epoch: 24. Loss: 0.29951526725338806. ACC 0.8633379749353491 \n",
-            "Epoch: 25. Loss: 0.2957113825633518. ACC 0.8663218619454943 \n",
-            "Epoch: 26. Loss: 0.27084534219887474. ACC 0.8744778197732246 \n",
-            "Epoch: 27. Loss: 0.2930874394890339. ACC 0.8673164909488761 \n",
-            "Epoch: 28. Loss: 0.2812645732511854. ACC 0.8689078973542869 \n",
-            "Epoch: 29. Loss: 0.2615818672186512. ACC 0.875870300377959 \n",
-            "              precision    recall  f1-score   support\n",
-            "\n",
-            "           0       0.47      0.79      0.59       230\n",
-            "           1       0.71      0.37      0.48       319\n",
-            "\n",
-            "    accuracy                           0.54       549\n",
-            "   macro avg       0.59      0.58      0.54       549\n",
-            "weighted avg       0.61      0.54      0.53       549\n",
-            "\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# PART 2: LSTM for POS Tagging\n",
-        "\n",
-        "In the previous part, LSTM is used to encode a sequence, ie as a way to get a better representation than a bag of embeddings.\n",
-        "\n",
-        "RNNs are powerful for sequence labelling task, where the goal is to ouput a label for each token in the input sequence, eg POS tagging, NER, sentence/discourse segmentation (anything annotated with BIO scheme)..."
-      ],
-      "metadata": {
-        "id": "rTsfKWeP7Jdl"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 1 Small tutorial\n",
-        "\n",
-        "The code for an LSTM tagger is given below:\n",
-        "* the input is still word embeddings (here intialized randomly)\n",
-        "* the definition of the LSTM layer is the same as previously\n",
-        "* the output layer has (probably) more output dimensions, as given here by 'tagset_size' = here all the possible POS tags\n",
-        "\n",
-        "The difference is in the forward function:\n",
-        "* now we need to keep all the hidden states for each input token in the sequence = tag_space (instead for only outputing the last hidden state)\n",
-        "\n",
-        "Note also that here we apply a softmax function at the end, because the loss used doesn't include it.\n",
-        "\n",
-        "From: https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html "
-      ],
-      "metadata": {
-        "id": "7OOuoZLlIJI2"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "import torch\n",
-        "import torch.nn as nn\n",
-        "import torch.nn.functional as F\n",
-        "\n",
-        "class LSTMTagger(nn.Module):\n",
-        "\n",
-        "    def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size):\n",
-        "        super(LSTMTagger, self).__init__()\n",
-        "        self.hidden_dim = hidden_dim\n",
-        "\n",
-        "        self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)\n",
-        "\n",
-        "        # The LSTM takes word embeddings as inputs, and outputs hidden states\n",
-        "        # with dimensionality hidden_dim.\n",
-        "        self.lstm = nn.LSTM(embedding_dim, hidden_dim)\n",
-        "\n",
-        "        # The linear layer that maps from hidden state space to tag space\n",
-        "        self.hidden2tag = nn.Linear(hidden_dim, tagset_size)\n",
-        "\n",
-        "    def forward(self, sentence):\n",
-        "        embeds = self.word_embeddings(sentence)\n",
-        "        #print('embeds.shape', embeds.shape)\n",
-        "        #print(embeds.view(len(sentence), 1, -1).shape)\n",
-        "        lstm_out, _ = self.lstm(embeds.view(len(sentence), 1, -1))\n",
-        "        tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1)) # the whole output, vs output[-1] for classif\n",
-        "        tag_scores = F.log_softmax(tag_space, dim=1) # required with nn.NLLLoss()\n",
-        "        return tag_scores"
-      ],
-      "metadata": {
-        "id": "7O_41eHi71SO"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1 Prepare data\n",
-        "\n",
-        "As usual, an important step is to well prepare the data to be given to our model.\n",
-        "Below is some code to prepare a small toy dataset.\n",
-        "\n",
-        "- we need to go over the input sequences (sentences) and retrieve the vocabulary (words) and the tag set (POS).\n",
-        "- we build dictionaries to map words and POS to indices, and transform our data to list of indices. "
-      ],
-      "metadata": {
-        "id": "sfyJF7bIJv8M"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Transform a list of tokens into a list of indices using the dict given\n",
-        "def prepare_sequence(seq, to_ix):\n",
-        "    '''\n",
-        "    - seq: an input sequence of tokens\n",
-        "    - to_ix: a dictionary mapping token to indices\n",
-        "    output: a tensor of indices representing the input sequence\n",
-        "    '''\n",
-        "    idxs = [to_ix[w] for w in seq]\n",
-        "    return torch.tensor(idxs, dtype=torch.long)\n",
-        "\n",
-        "# Toy dataset\n",
-        "training_data = [\n",
-        "    # Tags are: DET - determiner; NN - noun; V - verb\n",
-        "    # For example, the word \"The\" is a determiner\n",
-        "    (\"The dog ate the apple\".split(), [\"DET\", \"NN\", \"V\", \"DET\", \"NN\"]),\n",
-        "    (\"Everybody read that book\".split(), [\"NN\", \"V\", \"DET\", \"NN\"])\n",
-        "]\n",
-        "\n",
-        "# Build the mapping from word to indices\n",
-        "word_to_ix = {}\n",
-        "# For each words-list (sentence) and tags-list in each tuple of training_data\n",
-        "for sent, tags in training_data:\n",
-        "    for word in sent:\n",
-        "        if word not in word_to_ix:  # word has not been assigned an index yet\n",
-        "            word_to_ix[word] = len(word_to_ix)  # Assign each word with a unique index\n",
-        "print(word_to_ix)\n",
-        "\n",
-        "# Here the mapping for POS tags is given\n",
-        "tag_to_ix = {\"DET\": 0, \"NN\": 1, \"V\": 2}  # Assign each tag with a unique index\n",
-        "ix_to_tag = {v: k for k, v in tag_to_ix.items()}"
-      ],
-      "metadata": {
-        "id": "6A5Z-EsT7w_V",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "ca1feef8-a640-4022-ab92-f7850dbf1b67"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "{'The': 0, 'dog': 1, 'ate': 2, 'the': 3, 'apple': 4, 'Everybody': 5, 'read': 6, 'that': 7, 'book': 8}\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3 Run the model\n",
-        "\n",
-        "Now we can train the POS tagger over the toy dataset."
-      ],
-      "metadata": {
-        "id": "bJiuDcmyK9Ba"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# These will usually be more like 32 or 64 dimensional.\n",
-        "# We will keep them small, so we can see how the weights change as we train.\n",
-        "EMBEDDING_DIM = 6\n",
-        "HIDDEN_DIM = 6\n",
-        "\n",
-        "\n",
-        "model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))\n",
-        "loss_function = nn.NLLLoss() # does not include the softmax\n",
-        "optimizer = torch.optim.SGD(model.parameters(), lr=0.1)"
-      ],
-      "metadata": {
-        "id": "jiSYatB48Brn"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Look at the output of the code below: it corresponds to the scores for each POS (3 possibilities) for each token in the first training sentence (5 words) BEFORE TRAINING."
-      ],
-      "metadata": {
-        "id": "TRY-H1iMLVmM"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# See what the scores are before training\n",
-        "# Note that element i,j of the output is the score for tag j for word i.\n",
-        "# Here we don't need to train, so the code is wrapped in torch.no_grad()\n",
-        "with torch.no_grad():\n",
-        "    inputs = prepare_sequence(training_data[0][0], word_to_ix)\n",
-        "    tag_scores = model(inputs)\n",
-        "    print(tag_scores)"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "XdC_GJufLN1d",
-        "outputId": "6bd09f01-61e8-432a-d514-fdfe03765924"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "tensor([[-1.1174, -1.2052, -0.9855],\n",
-            "        [-1.0358, -1.2347, -1.0381],\n",
-            "        [-1.0594, -1.1806, -1.0606],\n",
-            "        [-1.0775, -1.1835, -1.0403],\n",
-            "        [-1.0767, -1.1744, -1.0490]])\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Now we train the model:"
-      ],
-      "metadata": {
-        "id": "Igkyu3W1LlnM"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "for epoch in range(300):  # again, normally you would NOT do 300 epochs, it is toy data\n",
-        "    for sentence, tags in training_data:\n",
-        "        # Step 1. Remember that Pytorch accumulates gradients.\n",
-        "        # We need to clear them out before each instance\n",
-        "        model.zero_grad()\n",
-        "\n",
-        "        # Step 2. Get our inputs ready for the network, that is, turn them into\n",
-        "        # Tensors of word indices.\n",
-        "        sentence_in = prepare_sequence(sentence, word_to_ix)\n",
-        "        targets = prepare_sequence(tags, tag_to_ix)\n",
-        "\n",
-        "        # Step 3. Run our forward pass.\n",
-        "        tag_scores = model(sentence_in)\n",
-        "\n",
-        "        # Step 4. Compute the loss, gradients, and update the parameters by\n",
-        "        #  calling optimizer.step()\n",
-        "        loss = loss_function(tag_scores, targets)\n",
-        "        loss.backward()\n",
-        "        optimizer.step()"
-      ],
-      "metadata": {
-        "id": "hW9FiA4dLHRw"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "And we look at the score after training: what do you see?"
-      ],
-      "metadata": {
-        "id": "4JmZd7P4Lp46"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# See what the scores are after training\n",
-        "with torch.no_grad():\n",
-        "    inputs = prepare_sequence(training_data[0][0], word_to_ix)\n",
-        "    tag_scores = model(inputs)\n",
-        "    predictions = torch.argmax(tag_scores, dim=1).cpu().numpy()\n",
-        "    print(tag_scores)\n",
-        "    print(predictions)\n",
-        "    print(training_data[0][0])\n",
-        "    print( [ix_to_tag[p] for p in predictions])\n",
-        "\n",
-        "    # The sentence is \"the dog ate the apple\".  i,j corresponds to score for tag j\n",
-        "    # for word i. The predicted tag is the maximum scoring tag.\n",
-        "    # Here, we can see the predicted sequence below is 0 1 2 0 1\n",
-        "    # since 0 is index of the maximum value of row 1,\n",
-        "    # 1 is the index of maximum value of row 2, etc.\n",
-        "    # Which is DET NOUN VERB DET NOUN, the correct sequence!\n",
-        "    #print(tag_scores)"
-      ],
-      "metadata": {
-        "id": "Q_xgiu1MBAnB",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "cc3324c1-700c-4a9a-ec8f-7c2c3c51fa16"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "tensor([[-0.0284, -4.8274, -3.9146],\n",
-            "        [-5.0426, -0.0264, -3.9300],\n",
-            "        [-3.6230, -3.4767, -0.0593],\n",
-            "        [-0.0618, -3.4643, -3.5544],\n",
-            "        [-3.5972, -0.0469, -3.9927]])\n",
-            "[0 1 2 0 1]\n",
-            "['The', 'dog', 'ate', 'the', 'apple']\n",
-            "['DET', 'NN', 'V', 'DET', 'NN']\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 2. Training a POS tagger on a large set of data"
-      ],
-      "metadata": {
-        "id": "OiMM4pDON_kB"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "!pip install torchdata"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "qWakPj_QQwPx",
-        "outputId": "678b25ee-9c3b-4503-c318-db4e3b4b067d"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
-            "Requirement already satisfied: torchdata in /usr/local/lib/python3.8/dist-packages (0.5.1)\n",
-            "Requirement already satisfied: torch==1.13.1 in /usr/local/lib/python3.8/dist-packages (from torchdata) (1.13.1+cu116)\n",
-            "Requirement already satisfied: urllib3>=1.25 in /usr/local/lib/python3.8/dist-packages (from torchdata) (1.26.14)\n",
-            "Requirement already satisfied: portalocker>=2.0.0 in /usr/local/lib/python3.8/dist-packages (from torchdata) (2.7.0)\n",
-            "Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from torchdata) (2.25.1)\n",
-            "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from torch==1.13.1->torchdata) (4.4.0)\n",
-            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->torchdata) (2.10)\n",
-            "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->torchdata) (4.0.0)\n",
-            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->torchdata) (2022.12.7)\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from torch.utils.data import Dataset\n",
-        "from torchtext import datasets"
-      ],
-      "metadata": {
-        "id": "VyyuXUhmUg5r"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "#ud_dataset = torchtext.datasets.UDPOS(root: str = '.data', split: Union[Tuple[str], str] = ('train', 'valid', 'test'))\n",
-        "\n",
-        "train_iter, test_iter = datasets.UDPOS(split=('train', 'valid'))\n"
-      ],
-      "metadata": {
-        "id": "1CszON2uJmUb"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "ex = next(iter(train_iter))\n",
-        "print(ex[0])\n",
-        "print(ex[1])\n",
-        "print(ex[2])"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "guxlgcFuRRR_",
-        "outputId": "0ea33855-9cd7-479c-d583-7189b4f20da2"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "['Al', '-', 'Zaman', ':', 'American', 'forces', 'killed', 'Shaikh', 'Abdullah', 'al', '-', 'Ani', ',', 'the', 'preacher', 'at', 'the', 'mosque', 'in', 'the', 'town', 'of', 'Qaim', ',', 'near', 'the', 'Syrian', 'border', '.']\n",
-            "['PROPN', 'PUNCT', 'PROPN', 'PUNCT', 'ADJ', 'NOUN', 'VERB', 'PROPN', 'PROPN', 'PROPN', 'PUNCT', 'PROPN', 'PUNCT', 'DET', 'NOUN', 'ADP', 'DET', 'NOUN', 'ADP', 'DET', 'NOUN', 'ADP', 'PROPN', 'PUNCT', 'ADP', 'DET', 'ADJ', 'NOUN', 'PUNCT']\n",
-            "['NNP', 'HYPH', 'NNP', ':', 'JJ', 'NNS', 'VBD', 'NNP', 'NNP', 'NNP', 'HYPH', 'NNP', ',', 'DT', 'NN', 'IN', 'DT', 'NN', 'IN', 'DT', 'NN', 'IN', 'NNP', ',', 'IN', 'DT', 'JJ', 'NN', '.']\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from collections import Counter\n",
-        "from torchtext.vocab import vocab\n",
-        "\n",
-        "# Build vocabulary\n",
-        "training_size = 0\n",
-        "counter = Counter()\n",
-        "for (tokens, tags, _) in train_iter:\n",
-        "    training_size += 1\n",
-        "    counter.update(tokens)\n",
-        "vocab = vocab(counter, min_freq=10, specials=('<unk>', '<BOS>', '<EOS>', '<PAD>'))\n",
-        "print( \"total number of example in training set:\", training_size)"
-      ],
-      "metadata": {
-        "id": "xdoeEWyPX8pO",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "d081ebf9-c912-4918-d5cd-e65ad1ac970d"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "total number of example in training set: 12543\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "print(\"The length of the new vocab is\", len(vocab))\n",
-        "# token to indices\n",
-        "stoi = vocab.get_stoi()\n",
-        "print(\"The index of '<BOS>' is\", stoi['<BOS>'])\n",
-        "# indice to token\n",
-        "itos = vocab.get_itos()\n",
-        "print(\"The token at index 2 is\", itos[2])\n",
-        "print(\"The token at index 42 is\", itos[42])"
-      ],
-      "metadata": {
-        "id": "P-WrgNL0YCJK",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "2dfffaa5-46f2-45de-c56b-47c43c8b84db"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "The length of the new vocab is 2182\n",
-            "The index of '<BOS>' is 1\n",
-            "The token at index 2 is <EOS>\n",
-            "The token at index 42 is operating\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Transform a list of tokens into a list of indices using the dict given\n",
-        "def prepare_sequence(seq, to_ix):\n",
-        "    '''\n",
-        "    - seq: an input sequence of tokens\n",
-        "    - to_ix: a dictionary mapping token to indices\n",
-        "    output: a tensor of indices representing the input sequence\n",
-        "    '''\n",
-        "    idxs = [to_ix[w] for w in seq]\n",
-        "    return torch.tensor(idxs, dtype=torch.long)\n",
-        "\n",
-        "\n",
-        "# Build the mapping from word to indices, and from POS to indices\n",
-        "word_to_ix, tag_to_ix  = {}, {}\n",
-        "# For each words-list (sentence) and tags-list in each tuple of training_data\n",
-        "for sent, tags, _ in train_iter:\n",
-        "    for word in sent:\n",
-        "        if word not in word_to_ix:  # word has not been assigned an index yet\n",
-        "            word_to_ix[word] = len(word_to_ix)  # Assign each word with a unique index\n",
-        "    for tag in tags:\n",
-        "        if tag not in tag_to_ix:\n",
-        "            tag_to_ix[tag] = len(tag_to_ix)\n",
-        "\n",
-        "# Reverse mapping\n",
-        "ix_to_tag = {v: k for k, v in tag_to_ix.items()}\n",
-        "\n",
-        "# Print the mapping dictionaries\n",
-        "print(word_to_ix)\n",
-        "print(tag_to_ix)"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "Va4-PPpSSPjc",
-        "outputId": "bdab4183-b139-46ed-b524-6a15a50ba3fd"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "{'Al': 0, '-': 1, 'Zaman': 2, ':': 3, 'American': 4, 'forces': 5, 'killed': 6, 'Shaikh': 7, 'Abdullah': 8, 'al': 9, 'Ani': 10, ',': 11, 'the': 12, 'preacher': 13, 'at': 14, 'mosque': 15, 'in': 16, 'town': 17, 'of': 18, 'Qaim': 19, 'near': 20, 'Syrian': 21, 'border': 22, '.': 23, '[': 24, 'This': 25, 'killing': 26, 'a': 27, 'respected': 28, 'cleric': 29, 'will': 30, 'be': 31, 'causing': 32, 'us': 33, 'trouble': 34, 'for': 35, 'years': 36, 'to': 37, 'come': 38, ']': 39, 'DPA': 40, 'Iraqi': 41, 'authorities': 42, 'announced': 43, 'that': 44, 'they': 45, 'had': 46, 'busted': 47, 'up': 48, '3': 49, 'terrorist': 50, 'cells': 51, 'operating': 52, 'Baghdad': 53, 'Two': 54, 'them': 55, 'were': 56, 'being': 57, 'run': 58, 'by': 59, '2': 60, 'officials': 61, 'Ministry': 62, 'Interior': 63, '!': 64, 'The': 65, 'MoI': 66, 'Iraq': 67, 'is': 68, 'equivalent': 69, 'US': 70, 'FBI': 71, 'so': 72, 'this': 73, 'would': 74, 'like': 75, 'having': 76, 'J.': 77, 'Edgar': 78, 'Hoover': 79, 'unwittingly': 80, 'employ': 81, 'high': 82, 'level': 83, 'members': 84, 'Weathermen': 85, 'bombers': 86, 'back': 87, '1960s': 88, 'third': 89, 'was': 90, 'head': 91, 'an': 92, 'investment': 93, 'firm': 94, 'You': 95, 'wonder': 96, 'if': 97, 'he': 98, 'manipulating': 99, 'market': 100, 'with': 101, 'his': 102, 'bombing': 103, 'targets': 104, 'Ghazaliyah': 105, 'and': 106, 'Jihad': 107, 'districts': 108, 'capital': 109, 'Although': 110, 'announcement': 111, 'probably': 112, 'made': 113, 'show': 114, 'progress': 115, 'identifying': 116, 'breaking': 117, 'terror': 118, 'I': 119, 'do': 120, \"n't\": 121, 'find': 122, 'news': 123, 'Baathists': 124, 'continue': 125, 'penetrate': 126, 'government': 127, 'very': 128, 'hopeful': 129, 'It': 130, 'reminds': 131, 'me': 132, 'too': 133, 'much': 134, 'ARVN': 135, 'officers': 136, 'who': 137, 'secretly': 138, 'working': 139, 'other': 140, 'side': 141, 'Vietnam': 142, 'Guerrillas': 143, 'member': 144, 'Kurdistan': 145, 'Democratic': 146, 'Party': 147, 'after': 148, 'kidnapping': 149, 'him': 150, 'Mosul': 151, 'police': 152, 'commander': 153, 'Ninevah': 154, 'Province': 155, 'bombings': 156, 'declined': 157, '80': 158, 'percent': 159, 'whereas': 160, 'there': 161, 'been': 162, 'big': 163, 'jump': 164, 'number': 165, 'kidnappings': 166, 'On': 167, 'Wednesday': 168, 'guerrillas': 169, 'kidnapped': 170, 'cosmetic': 171, 'surgeon': 172, 'wife': 173, 'while': 174, 'on': 175, 'their': 176, 'way': 177, 'home': 178, 'In': 179, 'Suwayrah': 180, 'Kut': 181, 'two': 182, 'car': 183, 'bombs': 184, 'discovered': 185, 'before': 186, 'could': 187, 'detonated': 188, '(': 189, 'southeastern': 190, 'has': 191, 'overwhelmingly': 192, 'Shiite': 193, 'population': 194, 'are': 195, 'lookout': 196, 'Baathist': 197, 'saboteurs': 198, 'willingly': 199, 'turn': 200, 'willingness': 201, 'main': 202, 'difference': 203, 'south': 204, 'as': 205, 'opposed': 206, 'center': 207, 'north': 208, 'country': 209, ')': 210, 'Kadhim': 211, 'Talal': 212, 'Husain': 213, 'assistant': 214, 'dean': 215, 'School': 216, 'Education': 217, 'Mustansiriyah': 218, 'University': 219, 'assassinated': 220, 'driver': 221, 'Salikh': 222, 'district': 223, 'engineer': 224, 'Asi': 225, 'Ali': 226, 'from': 227, 'Tikrit': 228, 'They': 229, 'also': 230, 'Hamid': 231, \"'Akkab\": 232, 'clan': 233, 'elder': 234, 'branch': 235, 'Dulaim': 236, 'tribe': 237, 'His': 238, 'mother': 239, 'attack': 240, 'leaders': 241, 'have': 242, 'past': 243, 'week': 244, 'half': 245, 'Hawijah': 246, 'launched': 247, 'left': 248, '6': 249, 'dead': 250, 'including': 251, '4': 252, 'soldiers': 253, 'One': 254, 'Jubur': 255, 'deputy': 256, 'garrison': 257, 'hundred': 258, 'Batawi': 259, 'demonstrated': 260, 'Friday': 261, 'protesting': 262, 'Sarhid': 263, 'sons': 264, 'gunmen': 265, 'wearing': 266, 'army': 267, 'uniforms': 268, 'largely': 269, 'Sunni': 270, 'Arab': 271, 'some': 272, 'observers': 273, 'accused': 274, 'elements': 275, 'behind': 276, 'assassination': 277, ';': 278, 'it': 279, 'more': 280, 'likely': 281, 'work': 282, 'punishing': 283, 'cooperating': 284, 'Dec.': 285, '15': 286, 'elections': 287, 'High': 288, 'Electoral': 289, 'Commission': 290, 'denied': 291, 'request': 292, 'Debaathification': 293, 'exclude': 294, '51': 295, 'individuals': 296, 'running': 297, 'party': 298, 'lists': 299, 'grounds': 300, 'sufficiently': 301, 'involved': 302, 'Baath': 303, 'activities': 304, 'warrant': 305, 'excluded': 306, 'civil': 307, 'office': 308, 'said': 309, 'no': 310, 'legal': 311, 'such': 312, 'exclusion': 313, 'item': 314, 'small': 315, 'one': 316, 'easily': 317, 'missed': 318, 'But': 319, 'my': 320, 'view': 321, 'highly': 322, 'significant': 323, 'pushed': 324, 'Ahmad': 325, 'Chalabi': 326, 'National': 327, 'Congress': 328, 'hard': 329, 'many': 330, 'Arabs': 331, 'into': 332, 'arms': 333, 'increasingly': 334, 'marginalized': 335, 'within': 336, 'however': 337, 'despite': 338, 'ties': 339, 'clientelage': 340, 'Washington': 341, 'Tehran': 342, 'He': 343, 'longer': 344, 'dominant': 345, 'list': 346, 'United': 347, 'Alliance': 348, 'wo': 349, 'seats': 350, 'new': 351, 'parliament': 352, 'Some': 353, '2,000': 354, 'junior': 355, 'old': 356, 'recalled': 357, 'duty': 358, 'recent': 359, 'months': 360, 'something': 361, 'blocked': 362, 'Now': 363, 'refusing': 364, 'punish': 365, 'people': 366, 'mere': 367, 'membership': 368, 'situation': 369, 'only': 370, 'going': 371, 'get': 372, 'better': 373, 'If': 374, 'someone': 375, 'committed': 376, 'crime': 377, 'against': 378, 'humanity': 379, 'prosecute': 380, 'person': 381, 'or': 382, 'she': 383, 'did': 384, 'not': 385, 'then': 386, 'should': 387, 'all': 388, 'same': 389, 'rights': 390, 'Iraqis': 391, 'Sharq': 392, 'Awsat': 393, 'reports': 394, 'key': 395, 'eyewitness': 396, 'trial': 397, 'Saddam': 398, 'Hussein': 399, '1982': 400, 'massacre': 401, 'Dujail': 402, 'died': 403, 'A': 404, 'team': 405, 'court': 406, 'managed': 407, 'take': 408, 'deposition': 409, 'begins': 410, 'again': 411, 'Nov.': 412, '28': 413, 'fighting': 414, 'still': 415, 'continues': 416, 'several': 417, 'areas': 418, 'mostly': 419, 'Sadr': 420, 'city': 421, 'Adhamiya': 422, 'Baghdadis': 423, 'venture': 424, 'out': 425, 'neighbourhoods': 426, 'any': 427, 'you': 428, 'never': 429, 'know': 430, 'where': 431, 'might': 432, 'stuck': 433, 'There': 434, 'talk': 435, 'night': 436, 'curfew': 437, 'implemented': 438, 'My': 439, 'neighbourhood': 440, 'surrounded': 441, 'troops': 442, 'three': 443, 'days': 444, 'now': 445, 'helicopters': 446, 'circling': 447, 'over': 448, 'our': 449, 'heads': 450, 'non-stop': 451, 'Fedayeen': 452, 'visible': 453, 'street': 454, 'become': 455, 'bolder': 456, 'than': 457, 'ever': 458, 'Yesterday': 459, 'tens': 460, 'putting': 461, 'road': 462, 'blocks': 463, 'setting': 464, 'mortars': 465, 'open': 466, 'when': 467, 'Americans': 468, 'leave': 469, 'area': 470, 'start': 471, 'firing': 472, 'indiscriminately': 473, 'shooting': 474, 'AK': 475, \"47's\": 476, 'air': 477, 'exact': 478, 'positions': 479, 'during': 480, 'war': 481, 'last': 482, 'year': 483, 'which': 484, 'indicates': 485, 'And': 486, 'nothing': 487, 'we': 488, 'can': 489, 'about': 490, 'really': 491, 'suggesting': 492, 'go': 493, 'fight': 494, 'living': 495, 'dream': 496, 'land': 497, 'Even': 498, 'IP': 499, 'ICDC': 500, 'abandoned': 501, 'those': 502, 'trained': 503, 'armed': 504, 'expect': 505, 'scared': 506, 'civilians': 507, 'anything': 508, 'except': 509, 'hide': 510, 'inside': 511, 'pray': 512, 'helicopter': 513, 'tank': 514, 'does': 515, 'bomb': 516, 'how': 517, 'distinguish': 518, 'brave': 519, 'valiant': 520, '?': 521, 'Everyone': 522, 'apprehensive': 523, 'April': 524, '9th': 525, '10th': 526, 'bloody': 527, 'Most': 528, 'gone': 529, 'few': 530, 'although': 531, 'seems': 532, 'rest': 533, \"'\": 534, 'normal': 535, 'define': 536, 'what': 537, 'rumours': 538, 'preparations': 539, 'slum': 540, 'dwellers': 541, 'another': 542, 'looting': 543, 'spree': 544, 'banks': 545, 'governmental': 546, 'public': 547, 'property': 548, 'similar': 549, 'took': 550, 'place': 551, 'already': 552, 'overheard': 553, 'youngsters': 554, 'joking': 555, 'saying': 556, 'things': 557, '\"': 558, 'time': 559, 'first': 560, 'loot': 561, 'Mosques': 562, 'calling': 563, 'donating': 564, 'blood': 565, 'food': 566, 'medicine': 567, 'Fallujah': 568, 'convoys': 569, 'headed': 570, 'most': 571, 'returned': 572, 'later': 573, 'though': 574, 'What': 575, 'irritates': 576, 'sudden': 577, 'false': 578, 'solidarity': 579, 'between': 580, \"Shi'ite\": 581, 'clerics': 582, 'glad': 583, 'each': 584, 's': 585, 'throats': 586, 'chance': 587, 'Shia': 588, 'describing': 589, 'Fallujan': 590, 'insurgents': 591, \"Ba'athists\": 592, 'Saddamites': 593, 'Wahhabis': 594, 'terrorists': 595, 'just': 596, 'ago': 597, 'So': 598, 'happened': 599, 'guess': 600, \"'s\": 601, 'Me': 602, 'brother': 603, 'cousin': 604, 'enemy': 605, 'friend': 606, 'thing': 607, 'Speaking': 608, 'Jazeera': 609, 'rely': 610, 'sent': 611, 'top': 612, 'reporter': 613, 'Ahmed': 614, 'Mansour': 615, 'spouting': 616, 'kinds': 617, 'propaganda': 618, 'hourly': 619, 'reminding': 620, 'Sahhaf': 621, 'targetting': 622, 'ambulances': 623, 'snipers': 624, 'children': 625, 'pregnant': 626, 'women': 627, 'using': 628, 'cluster': 629, 'hear': 630, 'once': 631, 'make': 632, 'unforgivable': 633, 'error': 634, 'mentioned': 635, 'militants': 636, 'Marines': 637, 'roofs': 638, 'mosques': 639, 'houses': 640, 'Hay': 641, 'Golan': 642, 'but': 643, 'course': 644, 'okay': 645, 'Someone': 646, 'called': 647, 'himself': 648, 'Abu': 649, 'Hafs': 650, 'Ibn': 651, 'Khattab': 652, 'Brigades': 653, 'group': 654, 'enormous': 655, 'casualties': 656, 'among': 657, 'sweared': 658, 'mutilating': 659, 'bodies': 660, 'Over': 661, '300': 662, 'reported': 663, '500': 664, 'wounded': 665, 'alone': 666, 'Iraqiyah': 667, 'tv': 668, 'controlling': 669, 'Ramadi': 670, 'Azzaman': 671, 'newspaper': 672, 'signed': 673, 'Abdul': 674, 'Aziz': 675, 'bin': 676, 'Muqrin': 677, 'Qaeda': 678, 'operative': 679, 'Saudi': 680, 'Arabia': 681, 'Islamic': 682, 'website': 683, 'voice': 684, 'stated': 685, 'originally': 686, 'permitted': 687, 'Islam': 688, 'case': 689, 'allowed': 690, 'Muslims': 691, 'use': 692, 'infidels': 693, 'deter': 694, 'committing': 695, 'criminal': 696, 'actions': 697, 'added': 698, 'America': 699, 'understand': 700, 'language': 701, 'force': 702, 'retaliation': 703, 'kicked': 704, 'Somalia': 705, 'humiliation': 706, 'soldier': 707, 'dragged': 708, 'Mogadishu': 709, 'whole': 710, 'world': 711, 'see': 712, 'day': 713, 'Jews': 714, 'defiled': 715, 'stepped': 716, 'Arabian': 717, 'peninsula': 718, 'together': 719, 'agents': 720, 'supporters': 721, 'Elena': 722, 'motorcycle': 723, 'tour': 724, 'through': 725, 'region': 726, 'around': 727, 'Chernobyl': 728, 'revived': 729, 'interest': 730, 'serious': 731, 'nuclear': 732, 'disasters': 733, 'history': 734, 'We': 735, 'even': 736, 'different': 737, 'versions': 738, 'opinions': 739, 'effect': 740, 'health': 741, 'affected': 742, 'fallout': 743, 'UPDATE': 744, 'write': 745, 'your': 746, 'own': 747, 'story': 748, 'post': 749, 'fault': 750, 'finding': 751, 'assigning': 752, 'blame': 753, 'learn': 754, 'may': 755, 'affect': 756, 'future': 757, 'soothing': 758, 'authoritative': 759, 'UNSCEAR': 760, 'Nations': 761, 'Scientific': 762, 'Committee': 763, 'Effects': 764, 'Atomic': 765, 'Radiation': 766, 'report': 767, '2000': 768, 'effects': 769, 'confirming': 770, 'scientific': 771, 'evidence': 772, 'radiation': 773, 'related': 774, 'exposed': 775, 'heavily': 776, 'promoted': 777, 'Australasian': 778, 'Protection': 779, 'Society': 780, 'press': 781, 'release': 782, 'titled': 783, 'THE': 784, 'MYTHS': 785, 'OF': 786, 'CHERNOBYL': 787, 'contained': 788, 'following': 789, 'widespread': 790, 'myths': 791, 'times': 792, 'reactor': 793, 'accident': 794, '1986': 795, 'caused': 796, 'thousands': 797, 'extra': 798, 'cancer': 799, 'deaths': 800, 'neighbouring': 801, 'regions': 802, 'severely': 803, 'exposure': 804, 'Many': 805, 'believe': 806, 'true': 807, 'Russian': 808, 'Federation': 809, 'Civil': 810, 'Defence': 811, 'Emergencies': 812, 'Elimination': 813, 'Conseguences': 814, 'Natural': 815, 'Disasters': 816, 'EMERCOM': 817, 'Russia': 818, '1996': 819, 'ACCIDENT': 820, 'TEN': 821, 'YEARS': 822, 'ON': 823, 'decade': 824, 'real': 825, 'increase': 826, 'childhood': 827, 'certain': 828, 'extent': 829, 'adult': 830, 'carcinoma': 831, 'thyroid': 832, 'contaminated': 833, 'former': 834, 'Soviet': 835, 'Union': 836, 'Wi940': 837, 'attributed': 838, 'until': 839, 'proven': 840, 'otherwise': 841, 'prestigious': 842, 'IAEA': 843, 'International': 844, 'Energy': 845, 'Agency': 846, 'published': 847, 'early': 848, 'based': 849, 'information': 850, 'sources': 851, 'However': 852, '2001': 853, 'Fifteen': 854, 'Years': 855, 'Accident': 856, 'Lessons': 857, 'learned': 858, 'contradict': 859, 'earlier': 860, 'Here': 861, 'excerpts': 862, 'dramatic': 863, 'induced': 864, 'cancers': 865, 'adolescents': 866, 'Belarus': 867, 'Ukraine': 868, 'observed': 869, 'since': 870, '1991': 871, '...': 872, 'drop': 873, 'birth': 874, 'rate': 875, 'deterioration': 876, 'reproductive': 877, 'complications': 878, 'pregnancy': 879, 'neonatal': 880, '....': 881, 'dynamics': 882, 'change': 883, 'state': 884, 'countries': 885, 'post-accident': 886, 'period': 887, 'characterized': 888, 'persistent': 889, 'negative': 890, 'tendencies': 891, 'morbidity': 892, 'healthy': 893, 'dropping': 894, 'disability': 895, 'increasing': 896, 'As': 897, 'parent': 898, 'well': 899, 'imagine': 900, 'painful': 901, 'must': 902, 'families': 903, 'whose': 904, 'succumbing': 905, 'poisoning': 906, 'lot': 907, 'Being': 908, 'informed': 909, 'give': 910, 'certainty': 911, 'desirable': 912, 'conflicting': 913, 'wealth': 914, 'references': 915, 'Read': 916, 'links': 917, 'draw': 918, 'conclusions': 919, 'These': 920, 'present': 921, 'viewpoints': 922, 'existed': 923, 'exist': 924, 'disaster': 925, 'Report': 926, 'http://www.ibiblio.org/expo/soviet.exhibit/chernobyl.html': 927, 'http://www.ibrae.ac.ru/IBRAE/eng/chernobyl/nat_rep/nat_repe.htm#24': 928, 'http://www.nsrl.ttu.edu/chernobyl/wildlifepreserve.htm': 929, 'http://www.environmentalchemistry.com/yogi/hazmat/articles/chernobyl1.html': 930, 'http://digon_va.tripod.com/Chernobyl.htm': 931, 'http://www.oneworld.org/index_oc/issue196/byckau.html': 932, 'http://www.collectinghistory.net/chernobyl/': 933, 'http://www.ukrainianweb.com/chernobyl_ukraine.htm': 934, 'http://www.bullatomsci.org/issues/1993/s93/s93Marples.html': 935, 'http://www.calguard.ca.gov/ia/Chernobyl-15%20years.htm': 936, 'http://www.infoukes.com/history/chornobyl/gregorovich/index.html': 937, 'http://www.un.org/ha/chernobyl/': 938, 'http://www.tecsoc.org/pubs/history/2002/apr26.htm': 939, 'http://www.chernobyl.org.uk/page2.htm': 940, 'http://www.time.com/time/daily/chernobyl/860901.accident.html': 941, 'http://www.infoukes.com/history/chornobyl/elg/': 942, 'http://www.world-nuclear.org/info/chernobyl/inf07.htm': 943, 'http://www.nea.fr/html/rp/chernobyl/conclusions5.html': 944, 'http://www.nea.fr/html/rp/chernobyl/c01.html': 945, 'http://www.nea.fr/html/rp/chernobyl/c05.html': 946, 'http://www.physics.isu.edu/radinf/chern.htm': 947, 'http://www.chernobyl.info/en': 948, 'http://www.arps.org.au/Chernobyl.htm': 949, 'http://www-formal.stanford.edu/jmc/progress/chernobyl.html': 950, 'http://www.21stcenturysciencetech.com/articles/chernobyl.html': 951, 'interested': 952, 'hearing': 953, 'reached': 954, 'found': 955, 'convincing': 956, 'child': 957, \"50's\": 958, 'glandular': 959, 'problems': 960, 'treated': 961, 'therapy': 962, 'primitive': 963, 'best': 964, 'stopped': 965, 'lesion': 966, 'neck': 967, 'started': 968, 'enlarging': 969, '--': 970, 'CA': 971, 'treatments': 972, 'Remember': 973, 'shoe': 974, 'sizing': 975, 'machines': 976, 'form': 977, 'xray': 978, 'That': 979, 'Do': 980, 'mention': 981, 'done': 982, 'doing': 983, 'Hirsohima': 984, '&': 985, 'Nagaski': 986, 'folks': 987, 'doubts': 988, '.......': 989, 'Children': 990, 'Project': 991, 'http://www.adiccp.org/home/default.asp': 992, 'offers': 993, 'ways': 994, 'help': 995, 'Rest': 996, 'Recuperation': 997, 'Program': 998, 'wherein': 999, 'weeks': 1000, 'summer': 1001, 'little': 1002, 'spent': 1003, 'receiving': 1004, 'wholesome': 1005, 'uncontaminated': 1006, 'good': 1007, 'medical': 1008, 'care': 1009, 'etc.': 1010, 'add': 1011, 'lives': 1012, 'S.': 1013, 'acquaintance': 1014, 'hosted': 1015, 'these': 1016, 'ones': 1017, 'breaks': 1018, 'heart': 1019, 'urge': 1020, 'protect': 1021, 'gather': 1022, 'almost': 1023, 'overwhelming': 1024, 'makes': 1025, 'grateful': 1026, 'blessings': 1027, 'Take': 1028, 'Linda': 1029, \"'m\": 1030, 'sorry': 1031, 'say': 1032, 'revealed': 1033, 'fake': 1034, 'videotape': 1035, 'audio': 1036, 'speeches': 1037, 'Bin': 1038, 'Laden': 1039, 'Ayman': 1040, 'Zawahiri': 1041, 'tell': 1042, 'hopes': 1043, 'remaining': 1044, 'leadership': 1045, 'organization': 1046, 'Because': 1047, 'Pakistan': 1048, 'capture': 1049, 'kill': 1050, '/': 1051, '3s': 1052, '25': 1053, 'commanders': 1054, 'middle': 1055, 'managers': 1056, 'close': 1057, 'contact': 1058, 'tape': 1059, 'signal': 1060, 'priorities': 1061, '1': 1062, 'Assassinate': 1063, 'overthrow': 1064, 'Gen.': 1065, 'Pervez': 1066, 'Musharraf': 1067, 'Pakistani': 1068, 'military': 1069, 'president': 1070, 'coup': 1071, '1999': 1072, 'thrown': 1073, 'States': 1074, 'Taliban': 1075, 'trying': 1076, 'purge': 1077, 'officer': 1078, 'corps': 1079, 'substantial': 1080, 'sympathizers': 1081, 'intelligence': 1082, 'captured': 1083, 'major': 1084, 'figures': 1085, 'Zubayda': 1086, 'Khalid': 1087, 'Shaykh': 1088, 'Muhammad': 1089, 'nearly': 1090, 'operatives': 1091, '400': 1092, 'whom': 1093, 'Pakistanis': 1094, 'turned': 1095, 'held': 1096, 'October': 1097, '2002': 1098, 'right': 1099, 'parties': 1100, '20': 1101, 'went': 1102, 'fundamentalist': 1103, 'religious': 1104, 'coalition': 1105, 'MMA': 1106, 'Northwest': 1107, 'Frontier': 1108, 'shelters': 1109, 'joint': 1110, 'Baluchistan': 1111, 'Afghanistan': 1112, 'instigate': 1113, 'Islamist': 1114, 'hope': 1115, 'catapult': 1116, 'power': 1117, 'political': 1118, 'allies': 1119, 'hosts': 1120, 'thereby': 1121, 'gain': 1122, 'control': 1123, 'base': 1124, 'operations': 1125, 'All': 1126, 'unlikely': 1127, 'crackpot': 1128, 'schemes': 1129, 'mujahidin': 1130, 'virtually': 1131, 'Response': 1132, 'whatever': 1133, 'strengthen': 1134, 'legitimacy': 1135, 'hand': 1136, 'pressure': 1137, 'off': 1138, 'uniform': 1139, 'fair': 1140, 'election': 1141, 'repeal': 1142, 'contentious': 1143, 'Legal': 1144, 'Framework': 1145, 'Order': 1146, 'essentially': 1147, 'perpetuates': 1148, 'dictatorship': 1149, 'restrictions': 1150, 'lifted': 1151, 'mainstream': 1152, 'Muslim': 1153, 'League': 1154, 'N': 1155, 'People': 1156, 'defeat': 1157, 'hogtied': 1158, 'secret': 1159, 'strong': 1160, 'arm': 1161, 'India': 1162, 'final': 1163, 'settlement': 1164, 'Kashmir': 1165, 'issue': 1166, 'attempted': 1167, 'lack': 1168, 'helping': 1169, 'Indian': 1170, 'justification': 1171, 'generates': 1172, 'far': 1173, 'terrorism': 1174, 'threat': 1175, 'Target': 1176, 'Israel': 1177, 'encourage': 1178, 'worst': 1179, 'Palestinians': 1180, 'playing': 1181, 'iron': 1182, 'fist': 1183, 'policies': 1184, 'Sharon': 1185, 'succeeded': 1186, 'politically': 1187, 'isolating': 1188, 'Hamas': 1189, 'process': 1190, 'cutting': 1191, 'its': 1192, 'funding': 1193, 'pull': 1194, 'less': 1195, 'sophisticated': 1196, 'attacks': 1197, 'defanged': 1198, 'simply': 1199, 'means': 1200, 'establishing': 1201, 'general': 1202, 'peace': 1203, 'Bush': 1204, 'administration': 1205, 'finally': 1206, 'apply': 1207, 'effective': 1208, 'stop': 1209, 'outrages': 1210, 'colonization': 1211, 'West': 1212, 'Bank': 1213, 'Gaza': 1214, 'line': 1215, 'worked': 1216, 'tandem': 1217, 'ratchet': 1218, 'tensions': 1219, 'further': 1220, 'spill': 1221, 'serve': 1222, 'recruiting': 1223, 'tool': 1224, 'search': 1225, 'willing': 1226, 'hit': 1227, 'owes': 1228, 'least': 1229, 'crisis': 1230, 'cease': 1231, 'militarily': 1232, 'unnecessary': 1233, 'provocations': 1234, 'establish': 1235, 'genuine': 1236, 'Make': 1237, 'Republican': 1238, 'Right': 1239, 'tactics': 1240, 'actually': 1241, 'hostile': 1242, 'territory': 1243, 'without': 1244, 'succeed': 1245, 'By': 1246, 'moving': 1247, 'quickly': 1248, 'sovereignty': 1249, 'improvement': 1250, 'able': 1251, 'foreigners': 1252, 'Certainly': 1253, 'Shiites': 1254, 'hate': 1255, 'likewise': 1256, 'Kurds': 1257, 'problem': 1258, 'mollifying': 1259, 'Sunnis': 1260, 'solved': 1261, 'avoid': 1262, 'giving': 1263, 'entrée': 1264, 'put': 1265, 'away': 1266, 'free': 1267, 'fetishism': 1268, 'creating': 1269, 'jobs': 1270, 'pumping': 1271, 'money': 1272, 'households': 1273, 'need': 1274, 'FDR': 1275, 'Ronald': 1276, 'Reagan': 1277, 'Of': 1278, 'sooner': 1279, 'withdrawn': 1280, 'favor': 1281, 'provocative': 1282, 'local': 1283, 'international': 1284, 'Getting': 1285, 'Spanish': 1286, 'rallying': 1287, 'cry': 1288, 'getting': 1289, 'British': 1290, 'keep': 1291, 'mind': 1292, 'nationalists': 1293, 'radicals': 1294, 'remain': 1295, 'dangerous': 1296, 'infiltrators': 1297, 'eyes': 1298, 'ball': 1299, 'George': 1300, 'W.': 1301, 'alleged': 1302, 'Thursday': 1303, 'John': 1304, 'Edwards': 1305, 'lacks': 1306, 'experience': 1307, 'necessary': 1308, 'argument': 1309, 'lacked': 1310, 'ran': 1311, 'sort': 1312, 'cheap': 1313, 'shot': 1314, 'hoists': 1315, 'petard': 1316, 'Let': 1317, 'remember': 1318, 'seminal': 1319, 'moment': 1320, 'fails': 1321, 'pop': 1322, 'quiz': 1323, 'November': 1324, '5': 1325, 'Web': 1326, 'posted': 1327, '3:29': 1328, 'p.m.': 1329, 'EST': 1330, '2029': 1331, 'GMT': 1332, 'WASHINGTON': 1333, 'CNN': 1334, 'Texas': 1335, 'Gov.': 1336, 'enduring': 1337, 'sharp': 1338, 'criticism': 1339, 'unable': 1340, 'name': 1341, 'four': 1342, 'current': 1343, 'hot': 1344, 'spots': 1345, 'President': 1346, 'Bill': 1347, 'Clinton': 1348, 'says': 1349, 'pick': 1350, 'names': 1351, 'front': 1352, 'runner': 1353, 'presidential': 1354, 'nomination': 1355, 'faltered': 1356, 'affairs': 1357, 'posed': 1358, 'Andy': 1359, 'Hiller': 1360, 'WHDH': 1361, 'TV': 1362, 'Boston': 1363, 'asked': 1364, 'Chechnya': 1365, 'Taiwan': 1366, 'partial': 1367, 'response': 1368, 'query': 1369, 'leader': 1370, 'referring': 1371, 'Taiwanese': 1372, 'Lee': 1373, 'Teng': 1374, 'hui': 1375, 'others': 1376, 'Can': 1377, 'charge': 1378, 'inquiring': 1379, 'Pervaiz': 1380, 'seized': 1381, '12': 1382, 'Wait': 1383, 'wait': 1384, '50': 1385, 'questions': 1386, 'replied': 1387, 'No': 1388, 'answering': 1389, 'question': 1390, 'elected': 1391, 'guy': 1392, 'appears': 1393, 'bring': 1394, 'stability': 1395, 'think': 1396, 'subcontinent': 1397, 'Gore': 1398, 'released': 1399, 'statement': 1400, 'taking': 1401, 'task': 1402, 'comments': 1403, 'troubling': 1404, 'candidate': 1405, 'oldest': 1406, 'democracy': 1407, 'characterize': 1408, 'takeover': 1409, 'Further': 1410, 'disturbing': 1411, 'nation': 1412, 'tested': 1413, 'weapons': 1414, 'shortly': 1415, 'voicing': 1416, 'opposition': 1417, 'Comprehensive': 1418, 'Test': 1419, 'Ban': 1420, 'Treaty': 1421, 'spokesman': 1422, 'criticized': 1423, 'condone': 1424, 'democratically': 1425, 'governments': 1426, 'David': 1427, 'Leavy': 1428, 'Security': 1429, 'Council': 1430, 'Not': 1431, 'General': 1432, 'confused': 1433, 'making': 1434, 'moreover': 1435, 'suggest': 1436, 'prime': 1437, 'minister': 1438, 'installation': 1439, 'strongest': 1440, 'supporter': 1441, 'part': 1442, 'because': 1443, 'anger': 1444, 'Prime': 1445, 'Minister': 1446, 'Nawaz': 1447, 'Sharif': 1448, 'down': 1449, 'confronting': 1450, 'explicitly': 1451, 'came': 1452, 'warmonger': 1453, 'ca': 1454, 'ominous': 1455, 'performance': 1456, 'interview': 1457, 'stuttering': 1458, 'obviously': 1459, 'idea': 1460, 'talking': 1461, 'ill': 1462, 'fated': 1463, 'instincts': 1464, 'liked': 1465, 'authoritarian': 1466, 'rule': 1467, 'equating': 1468, 'needed': 1469, 'South': 1470, 'Asia': 1471, 'giants': 1472, 'radical': 1473, 'politics': 1474, 'latter': 1475, 'dire': 1476, 'security': 1477, 'becoming': 1478, 'unstable': 1479, 'play': 1480, 'brinkmanship': 1481, 'risking': 1482, 'twice': 1483, 'September': 1484, '11': 1485, 'under': 1486, 'extreme': 1487, 'duress': 1488, 'continued': 1489, 'support': 1490, 'Islamism': 1491, 'recently': 1492, 'implicated': 1493, 'attempts': 1494, 'body': 1495, 'proclaimed': 1496, 'bringing': 1497, 'fall': 1498, 'answer': 1499, 'merit': 1500, 'Another': 1501, 'certainly': 1502, 'knows': 1503, 'foreign': 1504, 'Indeed': 1505, 'given': 1506, 'rampaged': 1507, 'alienating': 1508, 'ignoring': 1509, 'vital': 1510, 'conflicts': 1511, 'potential': 1512, 'blow': 1513, 'argue': 1514, 'campaign': 1515, 'literature': 1516, 'believes': 1517, 'U.S.': 1518, 'active': 1519, 'resolve': 1520, 'reducing': 1521, 'Northern': 1522, 'Ireland': 1523, 'role': 1524, 'promoting': 1525, 'Israelis': 1526, 'From': 1527, 'Daily': 1528, 'Star': 1529, 'Juan': 1530, 'Cole': 1531, 'June': 1532, '04': 1533, '2004': 1534, 'gradually': 1535, 'wearies': 1536, 'begun': 1537, 'worrying': 1538, 'conditions': 1539, 'anti-American': 1540, 'closer': 1541, 'suffer': 1542, 'instability': 1543, 'acutely': 1544, 'Ironically': 1545, 'proponents': 1546, 'Israeli': 1547, 'Ariel': 1548, 'neoconservative': 1549, 'Have': 1550, 'weakened': 1551, 'biggest': 1552, 'faces': 1553, 'conventional': 1554, 'armies': 1555, 'asymmetrical': 1556, 'Palestinian': 1557, 'national': 1558, 'liberation': 1559, 'movements': 1560, 'derailing': 1561, 'Oslo': 1562, 'intifada': 1563, 'encouraged': 1564, 'suicide': 1565, 'discouraged': 1566, 'immigrants': 1567, 'withdrew': 1568, 'Lebanese': 1569, 'May': 1570, 'Hizbullah': 1571, 'mollified': 1572, 'estimated': 1573, '5,000': 1574, 'fighters': 1575, 'pursued': 1576, 'compel': 1577, 'withdraw': 1578, 'Shebaa': 1579, 'Farms': 1580, 'sliver': 1581, 'annexed': 1582, '1967': 1583, 'Any': 1584, 'thorough': 1585, 'assessment': 1586, 'impact': 1587, 'aftermath': 1588, 'environment': 1589, 'therefore': 1590, 'closely': 1591, 'examine': 1592, 'conduct': 1593, 'warfare': 1594, 'often': 1595, 'gave': 1596, 'clear': 1597, 'danger': 1598, 'themselves': 1599, 'end': 1600, 'occupation': 1601, 'Strip': 1602, 'driven': 1603, 'economic': 1604, 'considerations': 1605, 'practical': 1606, 'At': 1607, 'points': 1608, 'late': 1609, '1980s': 1610, 'reportedly': 1611, 'scenes': 1612, 'overtures': 1613, 'arrive': 1614, 'deal': 1615, 'allow': 1616, 'launch': 1617, '1990s': 1618, 'biological': 1619, 'program': 1620, 'destroyed': 1621, 'chemical': 1622, 'stockpiles': 1623, 'Its': 1624, 'ramshackle': 1625, 'collapsed': 1626, 'invasion': 1627, '2003': 1628, 'difficult': 1629, 'menace': 1630, 'bungling': 1631, 'post-war': 1632, 'created': 1633, 'weak': 1634, 'failed': 1635, 'Armed': 1636, 'militias': 1637, 'staffed': 1638, 'men': 1639, 'training': 1640, 'proliferated': 1641, 'chose': 1642, 'ally': 1643, 'itself': 1644, 'groups': 1645, 'Supreme': 1646, 'Revolution': 1647, '15,000': 1648, 'Badr': 1649, 'Corps': 1650, 'paramilitary': 1651, 'Iranian': 1652, 'Revolutionary': 1653, 'Guards': 1654, 'Anti-Israeli': 1655, 'pro-Palestinian': 1656, 'feeling': 1657, 'ideological': 1658, 'currents': 1659, 'generally': 1660, 'follow': 1661, 'theocratic': 1662, 'notions': 1663, 'Iran': 1664, 'Ayatollah': 1665, 'Ruhollah': 1666, 'Khomeini': 1667, 'routinely': 1668, 'chant': 1669, 'demonstrate': 1670, 'vehemently': 1671, 'protested': 1672, 'Sheikh': 1673, 'Yassin': 1674, 'March': 1675, 'Worse': 1676, 'drew': 1677, 'denunciation': 1678, 'moderate': 1679, 'cautious': 1680, 'Grand': 1681, 'Sistani': 1682, 'wields': 1683, 'moral': 1684, 'authority': 1685, 'suppressed': 1686, 'regime': 1687, 'organized': 1688, 'reestablished': 1689, 'historical': 1690, 'inevitable': 1691, 'coreligionists': 1692, 'rich': 1693, 'enough': 1694, 'petroleum': 1695, 'sales': 1696, 'position': 1697, 'bankroll': 1698, 'fundamentalists': 1699, 'deeply': 1700, 'sympathize': 1701, 'deep': 1702, 'inks': 1703, 'Jordan': 1704, 'Palestine': 1705, 'cities': 1706, 'truck': 1707, 'route': 1708, 'Amman': 1709, 'influence': 1710, 'Salafi': 1711, 'movement': 1712, 'popular': 1713, 'Secular': 1714, 'nationalist': 1715, 'universally': 1716, 'post-Saddam': 1717, 'exception': 1718, 'Whereas': 1719, 'ensured': 1720, 'populist': 1721, 'kept': 1722, 'firmly': 1723, 'organize': 1724, 'An': 1725, 'proliferate': 1726, 'inevitably': 1727, 'worry': 1728, 'modicum': 1729, 'normality': 1730, 'citizens': 1731, 'benefit': 1732, 'reserves': 1733, 'private': 1734, 'funneled': 1735, 'aid': 1736, 'interests': 1737, 'served': 1738, 'neighbors': 1739, 'achieved': 1740, 'trading': 1741, 'aggressive': 1742, 'annexation': 1743, 'occupied': 1744, 'indefinite': 1745, 'postponement': 1746, 'unprecedented': 1747, 'rage': 1748, 'violence': 1749, 'spread': 1750, 'throughout': 1751, 'promotion': 1752, 'pro-Zionist': 1753, 'twin': 1754, 'occupations': 1755, 'profoundly': 1756, 'strengthened': 1757, 'www.juancole.com': 1758, 'professor': 1759, 'modern': 1760, 'Middle': 1761, 'East': 1762, 'Michigan': 1763, 'author': 1764, 'Sacred': 1765, 'Space': 1766, 'Holy': 1767, 'War': 1768, 'I.B.': 1769, 'Tauris': 1770, 'DAILY': 1771, 'STAR': 1772, 'publishes': 1773, 'commentary': 1774, 'agreement': 1775, 'Agence': 1776, 'Global': 1777, 'Tamils': 1778, 'feel': 1779, 'proposed': 1780, 'defense': 1781, 'Sri': 1782, 'Lanka': 1783, 'Sinhala': 1784, 'rulers': 1785, 'prepare': 1786, 'abandoning': 1787, 'hints': 1788, 'Indo': 1789, 'drawn': 1790, 'protests': 1791, 'Tamil': 1792, 'TNA': 1793, 'backed': 1794, 'LTTE': 1795, 'Apart': 1796, '1,200': 1797, 'lost': 1798, '1987': 1799, 'peacekeeping': 1800, 'immensely': 1801, 'unpopular': 1802, 'Nadu': 1803, 'Jaffna': 1804, 'Sinhalese': 1805, 'majority': 1806, 'considered': 1807, 'violation': 1808, 'defensive': 1809, 'Ranjit': 1810, 'Devraj': 1811, 'NEW': 1812, 'DELHI': 1813, 'While': 1814, 'ready': 1815, 'enter': 1816, 'cooperation': 1817, 'wary': 1818, 'involvement': 1819, 'island': 1820, 'decades': 1821, 'seen': 1822, 'violent': 1823, 'strife': 1824, 'ethnic': 1825, 'leaving': 1826, '60,000': 1827, 'both': 1828, 'sides': 1829, 'explains': 1830, 'delay': 1831, 'signing': 1832, 'formal': 1833, 'Lankan': 1834, 'Chandrika': 1835, 'Kumaratunga': 1836, 'visit': 1837, 'According': 1838, 'Professor': 1839, 'S': 1840, 'D': 1841, 'Muni': 1842, 'expert': 1843, 'Jawaharal': 1844, 'Nehru': 1845, 'talks': 1846, 'Colombo': 1847, 'Liberation': 1848, 'Tigers': 1849, 'Eelam': 1850, 'stalemated': 1851, 'For': 1852, 'reason': 1853, 'keen': 1854, 'beef': 1855, 'preparedness': 1856, 'want': 1857, 'initiate': 1858, 'conflict': 1859, 'deterring': 1860, 'starting': 1861, 'look': 1862, 'brink': 1863, 'launching': 1864, 'offensive': 1865, 'told': 1866, 'IPS': 1867, 'six': 1868, 'rounds': 1869, 'rebels': 1870, 'abruptly': 1871, 'pulled': 1872, 'negotiations': 1873, 'demanding': 1874, 'recognition': 1875, 'self': 1876, 'proceeding': 1877, 'preceded': 1878, 'Norwegian': 1879, 'Foreign': 1880, 'Jan': 1881, 'Petersen': 1882, 'bid': 1883, 'revive': 1884, 'supposed': 1885, 'ceasefire': 1886, 'successfully': 1887, 'brokered': 1888, 'February': 1889, 'discussions': 1890, 'reclusive': 1891, 'Velupillai': 1892, 'Prabhakaran': 1893, 'rebel': 1894, 'stronghold': 1895, 'Kilinochchi': 1896, 'success': 1897, 'chief': 1898, 'negotiator': 1899, 'Anton': 1900, 'Balasingham': 1901, 'envoy': 1902, 'Erik': 1903, 'Solheim': 1904, 'closed': 1905, 'door': 1906, 'airport': 1907, 'Saturday': 1908, 'effort': 1909, 'salvage': 1910, 'track': 1911, 'diplomatic': 1912, 'intractable': 1913, 'Kalkat': 1914, 'difficulty': 1915, 'lay': 1916, 'fact': 1917, 'de': 1918, 'jure': 1919, 'east': 1920, 'every': 1921, 'aspect': 1922, 'veteran': 1923, 'intervention': 1924, 'implement': 1925, 'Peace': 1926, 'Accord': 1927, 'ambitiously': 1928, 'provided': 1929, 'disarming': 1930, 'formidable': 1931, 'reiteration': 1932, 'older': 1933, 'minus': 1934, 'commitment': 1935, 'currently': 1936, 'chairs': 1937, 'independent': 1938, 'Conflict': 1939, 'Resolution': 1940, 'failure': 1941, 'disarm': 1942, 'subdue': 1943, 'remained': 1944, 'capable': 1945, 'influencing': 1946, 'Norwegians': 1947, 'mean': 1948, 'limited': 1949, 'honest': 1950, 'broker': 1951, 'keenly': 1952, 'aware': 1953, 'unlike': 1954, 'underwrite': 1955, 'arrangement': 1956, 'reluctantly': 1957, 'accepted': 1958, 'accord': 1959, 'Under': 1960, 'northeastern': 1961, 'provincial': 1962, 'council': 1963, 'formed': 1964, 'deployed': 1965, 'peacekeepers': 1966, 'differences': 1967, 'soon': 1968, 'surfaced': 1969, 'led': 1970, 'clashes': 1971, 'Tiger': 1972, 'keeping': 1973, 'About': 1974, 'phase': 1975, '1989': 1976, 'Ranasinghe': 1977, 'Premadasa': 1978, 'critic': 1979, 'mediation': 1980, 'Last': 1981, 'initiative': 1982, 'Japan': 1983, 'persuade': 1984, 'negotiating': 1985, 'table': 1986, 'package': 1987, 'offer': 1988, 'US$': 1989, '4.5': 1990, 'billion': 1991, 'special': 1992, 'Yasushi': 1993, 'Akashi': 1994, 'tangible': 1995, 'visits': 1996, 'frustrated': 1997, 'man': 1998, 'complained': 1999, 'reaching': 2000, 'impasse': 2001, 'ideologue': 2002, 'sniffed': 2003, 'proposal': 2004, 'solution': 2005, 'predetermined': 2006, 'resolutions': 2007, 'declarations': 2008, 'donor': 2009, 'conferences': 2010, 'negotiated': 2011, 'constraints': 2012, 'external': 2013, 'P': 2014, 'Sithamparanathan': 2015, 'quoted': 2016, 'She': 2017, 'brass': 2018, 'Nirmal': 2019, 'Chander': 2020, 'Vij': 2021, 'apprehension': 2022, 'pointed': 2023, 'advised': 2024, 'consider': 2025, 'sentiments': 2026, '45': 2027, 'million': 2028, 'separated': 2029, 'narrow': 2030, 'Palk': 2031, 'Straits': 2032, 'option': 2033, 'circumstances': 2034, 'dirty': 2035, 'New': 2036, 'Delhi': 2037, 'always': 2038, 'counted': 2039, 'render': 2040, 'neighborly': 2041, 'shared': 2042, 'belief': 2043, 'religion': 2044, 'ethnicity': 2045, 'basis': 2046, 'secession': 2047, 'puts': 2048, 'succinctly': 2049, 'Times': 2050, 'Online': 2051, '16/11/2004': 2052, 'Unreported': 2053, 'media': 2054, 'Valley': 2055, 'cultural': 2056, 'genocide': 2057, 'resulted': 2058, 'fleeing': 2059, 'valley': 2060, 'Hindu': 2061, 'human': 2062, 'habitation': 2063, 'recorded': 2064, 'nine': 2065, 'dozen': 2066, 'temples': 2067, 'used': 2068, 'building': 2069, 'material': 2070, 'urinals': 2071, 'Thus': 2072, 'none': 2073, 'busybodies': 2074, 'across': 2075, 'bothered': 2076, 'notice': 2077, 'development': 2078, 'calls': 2079, 'bluff': 2080, 'M.D.': 2081, 'Nalapat': 2082, 'secretaries': 2083, 'save': 2084, 'perhaps': 2085, 'Dean': 2086, 'Rusk': 2087, 'gobbled': 2088, 'credit': 2089, 'outcomes': 2090, 'brazen': 2091, 'Colin': 2092, 'Powell': 2093, 'surprised': 2094, 'alliance': 2095, 'Maulana': 2096, 'Fazlur': 2097, 'Rahman': 2098, 'visited': 2099, 'issued': 2100, 'series': 2101, 'conciliatory': 2102, 'statements': 2103, 'telling': 2104, 'forced': 2105, 'hawkish': 2106, 'precisely': 2107, 'likes': 2108, 'embarrassment': 2109, 'reality': 2110, 'choice': 2111, 'distinction': 2112, 'Realists': 2113, 'includes': 2114, 'policy': 2115, 'establishment': 2116, 'Strobe': 2117, 'Talbott': 2118, 'long': 2119, 'sought': 2120, 'divest': 2121, 'capability': 2122, 'feasible': 2123, 'acceptance': 2124, 'status': 2125, 'quo': 2126, 'keeps': 2127, 'China': 2128, 'gifted': 2129, 'slice': 2130, 'Simultaneously': 2131, 'ensure': 2132, 'degree': 2133, 'autonomy': 2134, 'cut': 2135, 'jihadis': 2136, 'attempting': 2137, 'convert': 2138, 'second': 2139, 'understood': 2140, 'term': 2141, 'yet': 2142, 'affinity': 2143, 'generals': 2144, 'pendulum': 2145, 'swung': 2146, 'toward': 2147, 'quixotic': 2148, 'prize': 2149, 'loose': 2150, 'lobbyist': 2151, 'Christina': 2152, 'Rocca': 2153, 'minimum': 2154, 'accept': 2155, 'deliver': 2156, 'writer': 2157, 'regarded': 2158, 'trifurcation': 2159, 'Jammu': 2160, 'Buddhist': 2161, 'dominated': 2162, 'Ladakh': 2163, 'taxpayers': 2164, 'With': 2165, 'luck': 2166, 'attract': 2167, 'locations': 2168, 'tourist': 2169, 'education': 2170, 'services': 2171, 'haven': 2172, 'happy': 2173, 'outcome': 2174, 'tiny': 2175, 'jihadi': 2176, 'segment': 2177, 'patronized': 2178, 'State': 2179, 'Department': 2180, 'Army': 2181, 'score': 2182, 'catastrophic': 2183, 'Bangladesh': 2184, '1971': 2185, 'filled': 2186, 'tales': 2187, 'atrocities': 2188, 'innocent': 2189, 'Despite': 2190, 'Sept.': 2191, 'supports': 2192, 'jihad': 2193, 'price': 2194, 'paying': 2195, 'Unfortunately': 2196, 'decided': 2197, 'seriously': 2198, 'frequent': 2199, 'boasts': 2200, 'nudging': 2201, 'Indians': 2202, 'gestures': 2203, 'Islamabad': 2204, 'misnamed': 2205, 'tanks': 2206, 'lead': 2207, 'numerous': 2208, 'emerged': 2209, 'prized': 2210, 'version': 2211, 'Ibrahim': 2212, 'Rugova': 2213, 'Yugoslavia': 2214, 'foreigner': 2215, 'afford': 2216, 'ignore': 2217, 'nationalism': 2218, 'struck': 2219, 'conferees': 2220, 'scholars': 2221, 'analysts': 2222, 'endorse': 2223, 'sake': 2224, 'trip': 2225, 'York': 2226, 'Vienna': 2227, 'wrinkles': 2228, 'remains': 2229, 'merely': 2230, 'piece': 2231, 'paper': 2232, 'writing': 2233, 'op': 2234, 'ed': 2235, 'Sonia': 2236, 'Gandhi': 2237, 'Atal': 2238, 'Behari': 2239, 'Vajpayee': 2240, 'instantly': 2241, 'business': 2242, 'community': 2243, 'indulged': 2244, 'empty': 2245, 'bout': 2246, 'saber': 2247, 'rattling': 2248, 'pointing': 2249, 'beneficiary': 2250, 'mythical': 2251, 'perception': 2252, 'especially': 2253, 'corner': 2254, 'emerging': 2255, 'alternative': 2256, 'destination': 2257, 'hence': 2258, 'trusty': 2259, 'supplier': 2260, 'nukes': 2261, 'missiles': 2262, 'scare': 2263, 'involving': 2264, 'flashpoints': 2265, 'North': 2266, 'Korea': 2267, 'Since': 2268, 'talked': 2269, 'signaling': 2270, 'acceptable': 2271, 'action': 2272, 'followed': 2273, 'disputes': 2274, 'eager': 2275, 'indefinitely': 2276, 'carry': 2277, 'lucrative': 2278, 'resolution': 2279, 'challenging': 2280, 'implying': 2281, 'commands': 2282, 'Once': 2283, 'Manmohan': 2284, 'Singh': 2285, 'shows': 2286, 'appetite': 2287, 'face': 2288, 'truth': 2289, 'ramp': 2290, 'insurgency': 2291, 'spawn': 2292, 'fresh': 2293, 'killers': 2294, 'Mumbai': 2295, 'London': 2296, 'Chicago': 2297, 'shown': 2298, 'understands': 2299, 'realities': 2300, 'Hu': 2301, 'Jintao': 2302, 'Beijing': 2303, 'opened': 2304, 'Wen': 2305, 'Jiabao': 2306, 'expected': 2307, 'next': 2308, 'friends': 2309, 'formally': 2310, 'accepting': 2311, 'Sikkim': 2312, 'backing': 2313, 'permanent': 2314, 'U.N.': 2315, 'thus': 2316, 'five': 2317, 'Osama': 2318, 'geopolitics': 2319, 'Manipal': 2320, 'Academy': 2321, 'Higher': 2322, '28/10/2004': 2323, 'Ok': 2324, 'Kerry': 2325, 'Four': 2326, 'advantage': 2327, 'known': 2328, 'invoked': 2329, 'regulation': 2330, 'desert': 2331, 'band': 2332, 'brothers': 2333, 'Dan': 2334, 'Rather': 2335, 'libeled': 2336, 'impugned': 2337, 'service': 2338, 'Air': 2339, 'Guard': 2340, '60': 2341, 'Minutes': 2342, 'II': 2343, 'forged': 2344, 'documents': 2345, 'During': 2346, 'flew': 2347, 'F': 2348, '102': 2349, 'Delta': 2350, 'Dagger': 2351, 'fighter': 2352, 'interceptor': 2353, 'saw': 2354, 'theater': 2355, '1962': 2356, 'December': 2357, '1969': 2358, 'squadrons': 2359, 'Tan': 2360, 'Son': 2361, 'Nhut': 2362, 'Da': 2363, 'Nang': 2364, 'Bien': 2365, 'Hoa': 2366, 'Udorn': 2367, 'Don': 2368, 'Muang': 2369, 'Thailand': 2370, 'Click': 2371, 'here': 2372, 'source': 2373, 'knew': 2374, 'unit': 2375, 'transferred': 2376, 'controversy': 2377, 'anyone': 2378, 'wanted': 2379, 'fly': 2380, 'jets': 2381, 'let': 2382, 'flying': 2383, 'supersonic': 2384, 'anybody': 2385, 'reporters': 2386, 'journalistic': 2387, 'ethics': 2388, 'uncovered': 2389, 'example': 2390, 'considerably': 2391, 'follows': 2392, 'text': 2393, 'e-mail': 2394, 'mine': 2395, 'thanks': 2396, 'Dave': 2397, 'Manzano': 2398, 'facts': 2399, '---------': 2400, '’s': 2401, 'Before': 2402, 'Dems': 2403, '’': 2404, 'spin': 2405, 'n’t': 2406, 'Alabama': 2407, 'physical': 2408, 'daddy': 2409, 'got': 2410, 'News': 2411, 'coverage': 2412, 'tended': 2413, 'focus': 2414, 'brief': 2415, 'portion': 2416, '—': 2417, 'everything': 2418, 'else': 2419, 'record': 2420, 'full': 2421, 'joined': 2422, '1968': 2423, 'Almost': 2424, 'immediately': 2425, 'began': 2426, 'extended': 2427, 'Six': 2428, 'basic': 2429, 'Fifty': 2430, 'flight': 2431, 'Twenty': 2432, 'begin': 2433, 'periods': 2434, 'weekends': 2435, 'After': 2436, 'racking': 2437, 'hundreds': 2438, 'hours': 2439, 'accumulated': 2440, 'requirements': 2441, 'guardsmen': 2442, 'required': 2443, 'accumulate': 2444, 'meet': 2445, 'yearly': 2446, 'obligation': 2447, 'records': 2448, 'earned': 2449, '253': 2450, 'thereafter': 2451, 'measured': 2452, '340': 2453, '1970': 2454, 'words': 2455, 'satisfy': 2456, 'entire': 2457, 'hitch': 2458, 'acd': 2459, '137': 2460, '112': 2461, '1972': 2462, 'numbers': 2463, 'indicate': 2464, 'showed': 2465, 'Did': 2466, 'brings': 2467, '“': 2468, 'deserted': 2469, '”': 2470, 'according': 2471, 'anti-Bush': 2472, 'filmmaker': 2473, 'Michael': 2474, 'Moore': 2475, 'AWOL': 2476, 'Terry': 2477, 'McAuliffe': 2478, 'chairman': 2479, 'permission': 2480, 'Senate': 2481, 'superior': 2482, 'OK': 2483, 'Requests': 2484, 'unusual': 2485, 'retired': 2486, 'Col.': 2487, 'William': 2488, 'Campenni': 2489, 'glut': 2490, 'pilots': 2491, 'winding': 2492, 'Force': 2493, 'desk': 2494, '’72': 2495, '’73': 2496, 'pilot': 2497, 'solve': 2498, '1973': 2499, '56': 2500, 'requirement': 2501, 'Then': 2502, 'plans': 2503, 'Harvard': 2504, 'Business': 2505, 'showing': 2506, 'frequently': 2507, 'July': 2508, '1974': 2509, 'received': 2510, 'honorable': 2511, 'discharge': 2512, 'serving': 2513, 'original': 2514, 'cover': 2515, 'marks': 2516, 'evaluation': 2517, 'clearly': 2518, 'stands': 2519, 'notch': 2520, 'natural': 2521, 'contemporaries': 2522, 'exceptionally': 2523, 'fine': 2524, 'young': 2525, 'continually': 2526, 'flies': 2527, 'intercept': 2528, 'missions': 2529, 'proficiency': 2530, 'exceptional': 2531, 'questioning': 2532, 'Globe': 2533, 'CBS': 2534, 'outlets': 2535, 'Democrats': 2536, 'spitting': 2537, 'mad': 2538, 'Swift': 2539, 'Boat': 2540, 'Veterans': 2541, 'Truth': 2542, 'reasonable': 2543, 'Voters': 2544, 'perfectly': 2545, 'decide': 2546, 'whether': 2547, 'important': 2548, 'camp': 2549, 'blames': 2550, 'boat': 2551, 'veterans': 2552, 'Swifties': 2553, 'gets': 2554, 'sense': 2555, 'entirely': 2556, 'reasons': 2557, 'noted': 2558, 'passing': 2559, 'personally': 2560, 'questioned': 2561, 'word': 2562, 'explain': 2563, 'Earlier': 2564, 'Just': 2565, 'episode': 2566, 'spotlight': 2567, 'someday': 2568, 'Byron': 2569, 'White': 2570, 'House': 2571, 'correspondent': 2572, 'Review': 2573, 'column': 2574, 'Hill': 2575, 'atmosphere': 2576, 'eerie': 2577, 'strikingly': 2578, 'familiar': 2579, 'suspect': 2580, 'streets': 2581, 'looming': 2582, 'doubt': 2583, 'regard': 2584, 'date': 2585, '30': 2586, 'January': 2587, 'renewed': 2588, 'awaiting': 2589, 'dreading': 2590, 'interim': 2591, 'promised': 2592, 'measures': 2593, 'reduce': 2594, 'fail': 2595, 'balloting': 2596, 'centres': 2597, 'voting': 2598, 'attacked': 2599, 'picture': 2600, 'competing': 2601, 'seem': 2602, 'Coalition': 2603, 'Allawi': 2604, 'Iraqiya': 2605, 'Ayad': 2606, 'ministers': 2607, 'quite': 2608, 'expectedly': 2609, 'campaigning': 2610, 'handed': 2611, '100': 2612, 'dollar': 2613, 'gifts': 2614, 'journalists': 2615, 'attending': 2616, 'conference': 2617, 'practice': 2618, 'bad': 2619, 'memories': 2620, 'Naji': 2621, 'Abbudi': 2622, 'affirmed': 2623, 'claims': 2624, 'educating': 2625, 'merits': 2626, 'Emminence': 2627, 'openly': 2628, 'reference': 2629, 'abusing': 2630, 'official': 2631, 'Again': 2632, 'written': 2633, 'allegation': 2634, 'intentional': 2635, 'Hazim': 2636, \"Sha'lan\": 2637, 'engaging': 2638, 'shrill': 2639, \"Ba'athist\": 2640, 'double': 2641, 'agent': 2642, 'CIA': 2643, 'dismisses': 2644, 'thief': 2645, 'stooge': 2646, 'longs': 2647, 'origins': 2648, 'defending': 2649, 'remark': 2650, 'Arabiya': 2651, 'embarrass': 2652, 'viewers': 2653, 'roll': 2654, 'floor': 2655, 'extremely': 2656, 'amusing': 2657, 'watching': 2658, 'looking': 2659, 'smug': 2660, 'amused': 2661, 'contrasted': 2662, 'barely': 2663, 'swearing': 2664, 'Fistfights': 2665, 'please': 2666, 'son': 2667, \"Khaza'il\": 2668, 'Diwaniya': 2669, 'replace': 2670, 'M.S.': 2671, 'Sahaf': 2672, 'nonsensical': 2673, 'passed': 2674, 'jokes': 2675, 'Kurdish': 2676, 'PUK': 2677, 'KDP': 2678, 'outside': 2679, 'act': 2680, 'grab': 2681, 'vote': 2682, 'conservative': 2683, 'surprisingly': 2684, 'rooting': 2685, 'Communist': 2686, 'attempt': 2687, 'counter': 2688, 'Islamists': 2689, 'forthcoming': 2690, 'Assembly': 2691, 'largest': 2692, 'registered': 2693, 'larger': 2694, '***': 2695, 'Several': 2696, 'candidates': 2697, 'targeted': 2698, 'threats': 2699, 'Sectarian': 2700, 'highest': 2701, 'attacking': 2702, 'Husseiniyas': 2703, 'interesting': 2704, 'conversation': 2705, 'aged': 2706, 'taxi': 2707, 'live': 2708, 'relatives': 2709, 'Amiriya': 2710, 'asking': 2711, 'belong': 2712, 'assessing': 2713, 'sectarian': 2714, 'background': 2715, 'hurling': 2716, 'abuses': 2717, 'Persians': 2718, 'Majoos': 2719, 'fire': 2720, 'worshippers': 2721, 'rabid': 2722, 'dogs': 2723, 'handful': 2724, 'descriptions': 2725, 'described': 2726, 'f*ed': 2727, 'horse': 2728, 'dismissed': 2729, 'thieves': 2730, 'traitors': 2731, 'believed': 2732, 'viable': 2733, 'mess': 2734, 'resistance': 2735, 'commonsense': 2736, 'First': 2737, 'driving': 2738, 'submission': 2739, 'contend': 2740, 'impossible': 2741, 'hold': 2742, 'Leaving': 2743, 'aside': 2744, 'views': 2745, 'examples': 2746, 'offered': 2747, 'eventually': 2748, 'leads': 2749, 'opinion': 2750, 'above': 2751, 'planning': 2752, 'timer': 2753, 'claimed': 2754, 'stage': 2755, \"d'etat\": 2756, 'return': 2757, '10': 2758, 'withdrawal': 2759, 'sensing': 2760, 'incredulity': 2761, 'asserted': 2762, 'parts': 2763, 'central': 2764, 'command': 2765, 'seperate': 2766, 'labels': 2767, 'leaderships': 2768, 'regional': 2769, 'concur': 2770, '18': 2771, 'governorates': 2772, 'along': 2773, 'removed': 2774, 'fatal': 2775, 'misconception': 2776, 'harm': 2777, 'anywhere': 2778, 'assumes': 2779, 'realises': 2780, 'call': 2781, 'reconciliation': 2782, 'dissenting': 2783, 'tribal': 2784, 'Sheikhs': 2785, 'rather': 2786, 'upper': 2787, 'effectively': 2788, 'root': 2789, 'midst': 2790, 'promise': 2791, 'sharing': 2792, 'disenfranchised': 2793, 'abused': 2794, 'Very': 2795, 'Anbar': 2796, 'terrible': 2797, 'blunder': 2798, 'accidentally': 2799, 'Razaq': 2800, 'Inad': 2801, \"Gu'ud\": 2802, 'Bu': 2803, 'Nimr': 2804, 'powerful': 2805, 'Dulaym': 2806, 'favoured': 2807, 'terms': 2808, 'family': 2809, 'seat': 2810, 'governor': 2811, 'rose': 2812, 'mid-nineties': 2813, 'execution': 2814, 'Thamir': 2815, 'Madhlum': 2816, 'Dulaymi': 2817, 'belonging': 2818, 'revolt': 2819, 'step': 2820, 'arrest': 2821, 'Hassan': 2822, 'Lihabi': 2823, 'Lihaib': 2824, 'scattered': 2825, 'Salah': 2826, 'Din': 2827, 'Lihaibi': 2828, 'incident': 2829, 'path': 2830, 'forward': 2831, 'vice': 2832, 'versa': 2833, 'Both': 2834, '14': 2835, 'centuries': 2836, 'possible': 2837, 'partition': 2838, 'possibility': 2839, 'borders': 2840, 'Luis': 2841, 'Posada': 2842, 'Carriles': 2843, 'Miami': 2844, 'Herald': 2845, 'relaxed': 2846, 'luxury': 2847, 'condo': 2848, 'yesterday': 2849, 'hid': 2850, 'thought': 2851, 'taken': 2852, 'custody': 2853, 'Immigration': 2854, 'Authorities': 2855, 'whereabouts': 2856, 'shrug': 2857, 'knowledge': 2858, 'entered': 2859, 'comfortable': 2860, 'thugs': 2861, 'overplayed': 2862, 'embarrassed': 2863, 'patron': 2864, \"'d\": 2865, 'faithful': 2866, 'servant': 2867, 'player': 2868, 'cue': 2869, 'bomber': 2870, 'pesky': 2871, 'dark': 2872, 'skinned': 2873, 'extradited': 2874, 'Meiring': 2875, 'inquisitive': 2876, 'journalist': 2877, 'doorstep': 2878, 'single': 2879, 'trail': 2880, 'Philippines': 2881, 'harms': 2882, \"'ll\": 2883, 'am': 2884, 'maybe': 2885, 'saved': 2886, 'either': 2887, 'crimes': 2888, 'wave': 2889, 'flag': 2890, 'Terror': 2891, 'vulnerable': 2892, 'node': 2893, 'agencies': 2894, 'organizations': 2895, 'Ask': 2896, 'Nichols': 2897, 'exacerbated': 2898, 'Philippine': 2899, 'exploit': 2900, 'ancient': 2901, 'Venezuela': 2902, 'answered': 2903, 'Yes': 2904, 'determined': 2905, 'Strong': 2906, 'Man': 2907, 'Hugo': 2908, 'Chavez': 2909, 'guaranteed': 2910, 'post-Chavez': 2911, 'puppet': 2912, 'Caracas': 2913, 'Whether': 2914, 'justice': 2915, 'Venezuelan': 2916, 'vain': 2917, 'instead': 2918, 'embarrassing': 2919, 'killer': 2920, 'strut': 2921, 'gloating': 2922, 'freedom': 2923, 'threatens': 2924, 'consensus': 2925, 'fiction': 2926, 'unspoken': 2927, 'connection': 2928, 'smuggling': 2929, 'dating': 2930, 'book': 2931, 'Disposable': 2932, 'Patriot': 2933, 'Jack': 2934, 'Terrell': 2935, 'asset': 2936, 'recruited': 2937, 'Contra': 2938, 'identifies': 2939, 'recruit': 2940, 'scheme': 2941, 'Oliver': 2942, 'recall': 2943, 'object': 2944, 'smuggle': 2945, 'explosives': 2946, 'http://www.amazon.ca/exec/obidos/ASIN/0915765381/701-3377456-8181939': 2947, \"'ve\": 2948, 'read': 2949, 'memoir': 2950, 'ring': 2951, 'wider': 2952, 'context': 2953, 'confirmed': 2954, 'allegations': 2955, 'drug': 2956, 'connections': 2957, 'target': 2958, 'discrediting': 2959, 'TWIG': 2960, 'counterintelligence': 2961, 'interference': 2962, 'covert': 2963, 'ops': 2964, 'types': 2965, 'Ollie': 2966, 'Robert': 2967, 'Owen': 2968, 'Vince': 2969, 'Cannistaro': 2970, 'Buck': 2971, 'Revell': 2972, 'Peter': 2973, 'Dale': 2974, 'Scott': 2975, 'account': 2976, 'whistleblowing': 2977, 'stifled': 2978, 'Cocaine': 2979, 'Politics': 2980, 'ole': 2981, 'Due': 2982, 'Judge': 2983, '1983': 2984, 'ruling': 2985, 'testify': 2986, 'pseudonym': 2987, 'opening': 2988, 'cross-examination': 2989, 'Wilson': 2990, 'prosecution': 2991, 'convince': 2992, 'jury': 2993, 'relevant': 2994, 'files': 2995, 'claiming': 2996, 'sold': 2997, 'C': 2998, 'Quaddaffi': 2999, 'charging': 3000, 'rogue': 3001, 'contacts': 3002, 'Office': 3003, 'Naval': 3004, 'Intelligence': 3005, 'non-social': 3006, 'retirement': 3007, 'turmoil': 3008, 'Charles': 3009, 'A.': 3010, 'Briggs': 3011, 'rescue': 3012, 'Third': 3013, 'ranking': 3014, 'declaration': 3015, '3rd': 3016, '8th': 3017, 'authorized': 3018, 'pertains': 3019, 'Edwin': 3020, 'P.': 3021, 'various': 3022, 'concerning': 3023, '28th': 3024, 'Declaration': 3025, 'states': 3026, 'directly': 3027, 'indirectly': 3028, 'retiring': 3029, 'http://www.disinfo.com/archive/pages/dossier/id334/pg1/': 3030, 'Federal': 3031, 'District': 3032, 'Lynn': 3033, 'Hughes': 3034, 'Huston': 3035, 'threw': 3036, 'conviction': 3037, 'wrote': 3038, '`': 3039, 'knowingly': 3040, 'concluding': 3041, 'honesty': 3042, 'comes': 3043, 'http://www.bigeye.com/111003.htm': 3044, 'http://www.thekcrachannel.com/news/4503872/detail.html': 3045, 'looks': 3046, 'rearing': 3047, 'Louisianna': 3048, '..': 3049, 'Former': 3050, 'Pastor': 3051, 'Deputy': 3052, 'Implicated': 3053, 'Church': 3054, 'Child': 3055, 'Sex': 3056, 'Abuse': 3057, 'PONCHATOULA': 3058, 'La.': 3059, 'Sheriff': 3060, 'deputies': 3061, 'Louisiana': 3062, 'ongoing': 3063, 'investigation': 3064, 'sexual': 3065, 'abuse': 3066, 'animals': 3067, 'Ponchatoula': 3068, 'church': 3069, 'Austin': 3070, 'Aaron': 3071, 'Bernard': 3072, 'III': 3073, '36': 3074, 'arrested': 3075, 'aggravated': 3076, 'rape': 3077, 'age': 3078, '13': 3079, 'Police': 3080, 'confessed': 3081, 'detectives': 3082, 'sex': 3083, 'girl': 3084, 'admitted': 3085, 'knowing': 3086, 'acts': 3087, 'dog': 3088, 'occurred': 3089, 'Hosanna': 3090, 'Tangipahoa': 3091, 'Parish': 3092, 'sheriff': 3093, 'Christopher': 3094, 'Blair': 3095, 'Labat': 3096, '24': 3097, 'booked': 3098, 'Tuesday': 3099, 'count': 3100, 'nature': 3101, 'Monday': 3102, 'Louis': 3103, 'Lamonica': 3104, 'pastor': 3105, 'counts': 3106, 'walked': 3107, 'Livingston': 3108, 'implicate': 3109, 'unravelling': 3110, 'northwest': 3111, 'murder': 3112, 'missing': 3113, 'purpose': 3114, 'Rummy': 3115, 'send': 3116, 'yeah': 3117, 'evening': 3118, 'featured': 3119, 'television': 3120, 'Germany': 3121, 'ARD': 3122, 'Tagesthemen': 3123, 'newly': 3124, 'papers': 3125, 'complicit': 3126, 'airliner': 3127, 'gandalf': 3128, 'relate': 3129, 'thinking': 3130, 'enjoy': 3131, 'reading': 3132, 'blog': 3133, 'definitely': 3134, 'immigration': 3135, 'Canada': 3136, 'ól': 3137, 'ai': 3138, 'nt': 3139, 'yuor': 3140, 'Please': 3141, 'check': 3142, 'hey': 3143, 'great': 3144, 'site': 3145, 'los': 3146, 'angeles': 3147, 'online': 3148, 'excellent': 3149, 'Keep': 3150, 'pretty': 3151, 'covers': 3152, 'stuff': 3153, 'sure': 3154, 'Hey': 3155, 'love': 3156, 'advice': 3157, 'deals': 3158, 'searching': 3159, 'info': 3160, 'agree': 3161, 'totally': 3162, 'Paul': 3163, 'How': 3164, 'Would': 3165, 'Like': 3166, 'To': 3167, 'Know': 3168, 'YOU': 3169, 'Live': 3170, 'Beautiful': 3171, 'Is': 3172, 'Custom': 3173, 'Designed': 3174, 'YOUR': 3175, 'Specifications': 3176, '.........': 3177, 'NO': 3178, 'COST': 3179, 'CAN': 3180, 'Hard': 3181, 'IF': 3182, 'HOW': 3183, 'Pass': 3184, 'Without': 3185, 'Least': 3186, 'Taking': 3187, 'Look': 3188, 'Only': 3189, 'Catch': 3190, 'HAVE': 3191, 'Income': 3192, 'ABOVE': 3193, '$': 3194, '21,000': 3195, '......': 3196, 'Follow': 3197, 'Easy': 3198, 'Instructions': 3199, 'Provided': 3200, 'Get-A-Free-House.com': 3201, '+': 3202, 'implications': 3203, 'Andaman': 3204, 'Islands': 3205, 'sink': 3206, 'scrutiny': 3207, 'fallibility': 3208, 'evident': 3209, 'inability': 3210, 'foresee': 3211, 'advance': 3212, 'pro-India': 3213, 'Bangladeshi': 3214, 'Hasina': 3215, 'Wazed': 3216, 'August': 3217, '21': 3218, 'rally': 3219, 'Dhaka': 3220, 'Nepalese': 3221, 'King': 3222, 'Gyanendra': 3223, 'dismissing': 3224, 'imposing': 3225, 'virtual': 3226, 'absolute': 3227, 'monarchy': 3228, 'glaring': 3229, 'Trouble': 3230, 'islands': 3231, 'Ramtanu': 3232, 'Maitra': 3233, 'charged': 3234, '34': 3235, 'Arakan': 3236, 'separatists': 3237, 'Myanmar': 3238, 'hiding': 3239, 'Landfall': 3240, 'note': 3241, 'wing': 3242, 'Unity': 3243, 'illegal': 3244, 'entry': 3245, 'deported': 3246, 'tip': 3247, 'iceberg': 3248, 'growing': 3249, 'concern': 3250, 'Reports': 3251, 'circulating': 3252, 'thick': 3253, 'depot': 3254, 'operate': 3255, 'freely': 3256, 'Sea': 3257, 'Information': 3258, 'direction': 3259, 'light': 3260, '26': 3261, 'tsunami': 3262, 'heavy': 3263, 'toll': 3264, 'Andamans': 3265, 'Correspondents': 3266, 'flocked': 3267, 'miserable': 3268, 'surrounding': 3269, 'navy': 3270, 'Far': 3271, 'Eastern': 3272, 'Command': 3273, 'established': 3274, 'blue': 3275, 'water': 3276, 'Deteriorating': 3277, 'deteriorated': 3278, 'Nepal': 3279, 'Bhutan': 3280, 'particularly': 3281, 'Manipur': 3282, 'Nagaland': 3283, 'Tripura': 3284, 'rock': 3285, 'solid': 3286, 'western': 3287, 'developed': 3288, 'withstanding': 3289, 'adventure': 3290, 'sector': 3291, 'eastern': 3292, 'multitude': 3293, 'secessionist': 3294, 'Southeast': 3295, 'conduit': 3296, 'traffic': 3297, '572': 3298, 'large': 3299, 'constitute': 3300, 'Nicobar': 3301, 'transit': 3302, 'drugs': 3303, 'travel': 3304, 'directions': 3305, 'Aceh': 3306, 'coast': 3307, 'Africa': 3308, 'network': 3309, 'unknown': 3310, 'Port': 3311, 'unnamed': 3312, 'permanently': 3313, 'settled': 3314, 'ration': 3315, 'cards': 3316, 'Indonesia': 3317, 'Malaysia': 3318, 'migrated': 3319, 'temporarily': 3320, 'plunder': 3321, 'resources': 3322, 'Havelock': 3323, 'Diglipur': 3324, 'Campbell': 3325, 'Bay': 3326, 'Neil': 3327, 'Rangott': 3328, 'overrun': 3329, 'estimate': 3330, 'suggests': 3331, '50,000': 3332, 'unofficial': 3333, 'higher': 3334, 'Bangladeshis': 3335, 'millions': 3336, 'countrymen': 3337, 'densely': 3338, 'populated': 3339, 'homeland': 3340, 'settle': 3341, 'elsewhere': 3342, 'technical': 3343, 'skills': 3344, 'demand': 3345, 'unlawful': 3346, 'presence': 3347, 'guns': 3348, 'cash': 3349, 'ground': 3350, 'Coast': 3351, 'grossly': 3352, 'unequipped': 3353, 'surge': 3354, 'migrants': 3355, 'naval': 3356, 'Arms': 3357, 'profitable': 3358, 'Considering': 3359, 'huge': 3360, 'strategic': 3361, 'importance': 3362, 'amazing': 3363, 'lax': 3364, 'sit': 3365, 'sea': 3366, 'lanes': 3367, 'Strait': 3368, 'Malacca': 3369, 'tankers': 3370, 'merchant': 3371, 'ships': 3372, 'pass': 3373, 'daily': 3374, 'oil': 3375, 'lapses': 3376, 'dependent': 3377, 'smaller': 3378, 'nations': 3379, 'maintain': 3380, 'Unless': 3381, 'providing': 3382, 'nationals': 3383, 'secessionists': 3384, 'runners': 3385, 'traffickers': 3386, 'generate': 3387, 'confidence': 3388, 'capitals': 3389, 'tend': 3390, 'anti-India': 3391, 'outfits': 3392, 'Inter-': 3393, 'Services': 3394, 'ISI': 3395, 'linked': 3396, 'Maoists': 3397, 'networks': 3398, 'weaken': 3399, 'flank': 3400, 'lackluster': 3401, 'dealing': 3402, 'startling': 3403, 'black': 3404, 'eye': 3405, 'mid-1980s': 3406, 'wide': 3407, 'ranging': 3408, 'operation': 3409, 'inhabited': 3410, 'neighboring': 3411, 'caches': 3412, 'destroy': 3413, 'carried': 3414, 'repeated': 3415, 'requests': 3416, 'addition': 3417, 'activity': 3418, 'maritime': 3419, 'defunct': 3420, 'Asiaweek': 3421, 'shipment': 3422, 'ammunition': 3423, 'purchased': 3424, 'Cambodia': 3425, 'worth': 3426, 'dollars': 3427, 'port': 3428, 'Phuket': 3429, 'aboard': 3430, 'freighter': 3431, 'Comex': 3432, 'Joux': 3433, 'standard': 3434, 'procedure': 3435, 'vessel': 3436, 'changed': 3437, 'Horizon': 3438, 'journey': 3439, 'Bengal': 3440, 'tracked': 3441, 'Orissa': 3442, 'spy': 3443, 'planes': 3444, 'Aviation': 3445, 'Research': 3446, 'Center': 3447, 'intercepted': 3448, 'vessels': 3449, '1997': 3450, 'Thai': 3451, 'interception': 3452, '16': 3453, 'meter': 3454, 'chase': 3455, 'Ranong': 3456, 'confiscation': 3457, 'tons': 3458, 'Among': 3459, 'rocket': 3460, 'propelled': 3461, 'grenade': 3462, 'launchers': 3463, 'assault': 3464, 'rifles': 3465, 'M': 3466, '79': 3467, '10,000': 3468, 'persons': 3469, 'Front': 3470, 'crew': 3471, 'heading': 3472, 'Cox': 3473, 'Bazar': 3474, 'Until': 3475, '1995': 3476, 'maintained': 3477, 'Twante': 3478, 'coat': 3479, 'west': 3480, 'Subsequently': 3481, 'became': 3482, 'backup': 3483, 'born': 3484, 'passport': 3485, 'allegedly': 3486, 'constructing': 3487, 'submarine': 3488, 'shipyard': 3489, 'Sirae': 3490, 'Steady': 3491, 'buildup': 3492, 'steady': 3493, 'ports': 3494, 'conduits': 3495, 'host': 3496, 'militant': 3497, 'steadily': 3498, 'moved': 3499, 'lawlessness': 3500, 'extremist': 3501, 'trafficking': 3502, 'gun': 3503, 'anti-Indian': 3504, 'widely': 3505, 'acknowledged': 3506, 'nurtured': 3507, 'Harkat': 3508, 'ul': 3509, 'Jehad': 3510, 'Islami': 3511, 'Chittagong': 3512, 'northeast': 3513, 'touch': 3514, 'result': 3515, 'coastal': 3516, 'nest': 3517, 'pattern': 3518, 'arrests': 3519, 'seizures': 3520, 'brought': 3521, 'Laos': 3522, 'transported': 3523, 'northward': 3524, 'Kalikhola': 3525, 'passes': 3526, 'northern': 3527, 'Assam': 3528, 'Meghalaya': 3529, 'Note': 3530, 'comprise': 3531, 'lying': 3532, '1,000': 3533, 'kilometers': 3534, 'Stretching': 3535, '750': 3536, 'reach': 3537, 'Sumatra': 3538, 'Ten': 3539, 'Degree': 3540, 'Channel': 3541, 'divides': 3542, 'archipelago': 3543, 'Travel': 3544, 'forbidden': 3545, 'non-Indians': 3546, 'Island': 3547, 'writes': 3548, 'journals': 3549, 'regular': 3550, 'contributor': 3551, 'EIR': 3552, 'Defense': 3553, 'Aakrosh': 3554, 'tied': 3555, 'quarterly': 3556, 'journal': 3557, 'Karzai': 3558, 'rivalry': 3559, 'accuses': 3560, 'consulates': 3561, 'Kandahar': 3562, 'Jalalabad': 3563, 'train': 3564, 'Balochi': 3565, 'Balochistan': 3566, 'claim': 3567, '42': 3568, 'RAW': 3569, 'unless': 3570, 'undermining': 3571, '’’': 3572, 'deny': 3573, '‘’': 3574, 'Should': 3575, 'Afghan': 3576, 'soil': 3577, 'neighbours': 3578, 'Amrullah': 3579, 'Saleh': 3580, 'Directorate': 3581, 'equations': 3582, 'KABUL': 3583, 'landlocked': 3584, 'suffered': 3585, 'constant': 3586, 'Central': 3587, 'Asian': 3588, 'Republics': 3589, 'powers': 3590, 'interfering': 3591, 'signs': 3592, 'reassurance': 3593, 'stable': 3594, 'peaceful': 3595, 'Nobody': 3596, 'looser': 3597, 'English': 3598, 'Nation': 3599, 'publicly': 3600, 'supported': 3601, 'electoral': 3602, 'undercurrents': 3603, 'favourite': 3604, 'contenders': 3605, 'repeatedly': 3606, 'Western': 3607, 'harbouring': 3608, 'extremists': 3609, 'pledged': 3610, 'disrupt': 3611, 'avoided': 3612, 'criticising': 3613, 'catch': 3614, '22': 3615, 'meeting': 3616, 'sidelines': 3617, 'UN': 3618, 'desperately': 3619, 'anxious': 3620, 'secure': 3621, 'non-interference': 3622, 'diplomats': 3623, 'intimately': 3624, 'reigning': 3625, 'peacefully': 3626, 'Where': 3627, 'Mullah': 3628, 'Omar': 3629, 'Usmani': 3630, 'Gulbuddin': 3631, 'Hikmetar': 3632, 'flustered': 3633, 'Hikmetyar': 3634, 'Hizb': 3635, 'e': 3636, 'focused': 3637, 'diplomat': 3638, 'briefed': 3639, 'realise': 3640, 'bigger': 3641, 'pleased': 3642, 'results': 3643, 'cooperate': 3644, 'curbing': 3645, 'angry': 3646, 'categorically': 3647, 'snub': 3648, 'options': 3649, 'insist': 3650, 'decision': 3651, 'unconnected': 3652, 'tripartite': 3653, 'NATO': 3654, 'Kabul': 3655, 'tough': 3656, 'message': 3657, 'instrumental': 3658, 'persuading': 3659, 'restrain': 3660, 'disrupting': 3661, 'crackdown': 3662, 'Lt.': 3663, 'Barno': 3664, 'tactical': 3665, 'goes': 3666, 'adds': 3667, 'Also': 3668, 'crossing': 3669, 'point': 3670, 'Chaman': 3671, 'Pashtun': 3672, 'leading': 3673, 'units': 3674, 'sympathetic': 3675, 'mullahs': 3676, 'JUI': 3677, 'oblivious': 3678, 'facing': 3679, 'Waziristan': 3680, 'anti-Americanism': 3681, 'anti-army': 3682, 'actionable': 3683, 'presenting': 3684, 'suspected': 3685, 'Moreover': 3686, 'try': 3687, 'quietly': 3688, 'isolated': 3689, 'facilitated': 3690, 'happen': 3691, 'push': 3692, 'win': 3693, 'demotion': 3694, 'Fahim': 3695, 'warlord': 3696, 'Ismail': 3697, 'Khan': 3698, 'fear': 3699, 'reprisals': 3700, 'Their': 3701, 'removal': 3702, 'provide': 3703, 'increased': 3704, 'motivation': 3705, 'welcomed': 3706, 'appointment': 3707, 'Ashfaq': 3708, 'Kiyani': 3709, 'Kayani': 3710, 'delegation': 3711, 'meetings': 3712, 'issues': 3713, 'assured': 3714, 'adverse': 3715, 'acted': 3716, 'upon': 3717, 'swiftly': 3718, 'Senior': 3719, 'warned': 3720, 'shift': 3721, 'reflecting': 3722, 'traditionally': 3723, 'Tajik': 3724, 'strenuous': 3725, 'efforts': 3726, 'Younis': 3727, 'Qanooni': 3728, 'strike': 3729, 'oppose': 3730, 'particular': 3731, 'feared': 3732, 'refused': 3733, 'fellow': 3734, 'Panjsheri': 3735, 'Tajiks': 3736, 'urged': 3737, 'stand': 3738, 'proved': 3739, 'critical': 3740, 'Hazara': 3741, 'Mohammed': 3742, 'Mohaqeq': 3743, 'posing': 3744, 'stabilise': 3745, 'reduced': 3746, 'hardliners': 3747, 'undermine': 3748, 'strategy': 3749, 'deepen': 3750, 'rift': 3751, 'moderates': 3752, 'concerned': 3753, 'Shindand': 3754, 'massive': 3755, 'era': 3756, 'airbase': 3757, 'kilometres': 3758, 'enhanced': 3759, 'ousting': 3760, 'Governor': 3761, 'Herat': 3762, 'province': 3763, 'month': 3764, 'objections': 3765, 'ouster': 3766, 'warlords': 3767, 'heightened': 3768, 'neo-conservatives': 3769, 'aggressively': 3770, 'Iranians': 3771, 'listening': 3772, 'spying': 3773, 'facility': 3774, 'pad': 3775, 'Special': 3776, 'Forces': 3777, 'insists': 3778, 'poses': 3779, 'Nevertheless': 3780, 'places': 3781, 'sensitive': 3782, 'relations': 3783, 'scenario': 3784, 'abundantly': 3785, 'nor': 3786, 'Pashtuns': 3787, 'move': 3788, 'tribes': 3789, 'Quetta': 3790, 'resisted': 3791, 'voted': 3792, 'rapidly': 3793, 'changing': 3794, 'demise': 3795, 'fluid': 3796, 'reconsider': 3797, 'unlimited': 3798, 'sanctuary': 3799, 'Link': 3800, '16/10/2004': 3801, 'debate': 3802, 'multi-millionnaires': 3803, 'cleverly': 3804, 'manufactured': 3805, 'absurd': 3806, 'charges': 3807, 'vets': 3808, 'flip': 3809, 'flopped': 3810, 'contradicting': 3811, 'Or': 3812, 'eyewitnesses': 3813, 'address': 3814, 'substance': 3815, 'Big': 3816, 'Lie': 3817, 'risk': 3818, 'falling': 3819, 'logic': 3820, 'absurdity': 3821, 'appreciated': 3822, 'bravery': 3823, 'life': 3824, 'lived': 3825, 'zone': 3826, 'wounds': 3827, 'superficial': 3828, 'shrapnel': 3829, 'forearm': 3830, 'minor': 3831, 'wound': 3832, 'brain': 3833, 'demonstrates': 3834, 'mortal': 3835, 'absent': 3836, 'yourself': 3837, 'medal': 3838, 'youth': 3839, 'drinking': 3840, 'fish': 3841, 'wee': 3842, 'risked': 3843, 'slack': 3844, 'efficiently': 3845, 'alcoholism': 3846, 'possibly': 3847, 'speaks': 3848, 'character': 3849, 'addictive': 3850, 'personality': 3851, 'erratic': 3852, 'alarming': 3853, 'explosive': 3854, 'temper': 3855, 'provoked': 3856, 'disastrous': 3857, 'siege': 3858, 'spring': 3859, '600': 3860, 'revenge': 3861, 'civilian': 3862, 'mercenaries': 3863, 'African': 3864, 'Newsweek': 3865, 'commanded': 3866, 'cabinet': 3867, 'sadistic': 3868, 'streak': 3869, 'enjoyed': 3870, 'executions': 3871, 'delight': 3872, 'seemed': 3873, 'prospect': 3874, 'executing': 3875, 'wrong': 3876, 'doers': 3877, 'enjoying': 3878, 'scale': 3879, 'Drug': 3880, 'ability': 3881, 'emotions': 3882, 'empathy': 3883, 'pickling': 3884, 'nervous': 3885, 'system': 3886, 'toxic': 3887, 'substances': 3888, 'damaged': 3889, 'goods': 3890, 'abstain': 3891, 'visual': 3892, 'spatial': 3893, 'abilities': 3894, 'abstraction': 3895, 'solving': 3896, 'short': 3897, 'memory': 3898, 'slowest': 3899, 'recover': 3900, 'wagon': 3901, 'pretzel': 3902, 'laudable': 3903, 'suffers': 3904, 'severe': 3905, 'suffering': 3906, 'absenting': 3907, 'senate': 3908, 'Winton': 3909, 'Red': 3910, 'Blount': 3911, 'stint': 3912, 'unclear': 3913, 'slacked': 3914, 'nephew': 3915, 'Murph': 3916, 'Archibald': 3917, 'appeared': 3918, 'Public': 3919, 'Radio': 3920, 'Things': 3921, 'Considered': 3922, 'gives': 3923, 'devastating': 3924, 'insight': 3925, '8:00': 3926, 'PM': 3927, 'ET': 3928, 'NPR': 3929, 'season': 3930, 'fulfilled': 3931, 'obligations': 3932, 'lieutenant': 3933, '1970s': 3934, 'scoured': 3935, 'remembered': 3936, 'seeing': 3937, 'Mr.': 3938, 'headquarters': 3939, 'Montgomery': 3940, 'Wade': 3941, 'Goodwyn': 3942, 'WADE': 3943, 'GOODWYN': 3944, 'reporting': 3945, 'Baba': 3946, 'Groom': 3947, 'smart': 3948, 'funny': 3949, 'woman': 3950, 'smack': 3951, 'dab': 3952, 'exciting': 3953, 'scheduler': 3954, 'job': 3955, 'hub': 3956, 'wheel': 3957, 'her': 3958, 'handsome': 3959, 'remembers': 3960, '32': 3961, 'Ms.': 3962, 'BABA': 3963, 'GROOM': 3964, 'Campaign': 3965, 'Worker': 3966, 'wear': 3967, 'khaki': 3968, 'trousers': 3969, 'jacket': 3970, 'phone': 3971, 'accent': 3972, 'melded': 3973, 'everybody': 3974, 'gotten': 3975, 'construction': 3976, 'Prominent': 3977, 'Southern': 3978, 'Republicans': 3979, 'rare': 3980, 'breed': 3981, 'appointed': 3982, 'Richard': 3983, 'Nixon': 3984, 'postmaster': 3985, 'tennis': 3986, 'partners': 3987, 'father': 3988, 'Congressman': 3989, 'Lieutenant': 3990, 'urging': 3991, 'county': 3992, 'chairpersons': 3993, '67': 3994, 'counties': 3995, 'Back': 3996, 'Deep': 3997, 'rural': 3998, 'apparatus': 3999, 'Texan': 4000, 'supplies': 4001, 'helped': 4002, 'statewide': 4003, 'marriage': 4004, 'coming': 4005, 'infantry': 4006, 'dedicated': 4007, 'workers': 4008, 'MURPH': 4009, 'ARCHIBALD': 4010, 'Nephew': 4011, 'Well': 4012, 'morning': 4013, 'mid-evenings': 4014, 'Ordinarily': 4015, 'noon': 4016, 'ordinarily': 4017, '5:30': 4018, '6:00': 4019, \"'72\": 4020, 'manager': 4021, 'materials': 4022, 'concerns': 4023, 'overall': 4024, 'impression': 4025, 'somebody': 4026, 'figured': 4027, 'broached': 4028, 'subject': 4029, 'unpleasant': 4030, 'DC': 4031, 'dated': 4032, 'beautiful': 4033, 'evenings': 4034, 'house': 4035, 'rented': 4036, 'disrepair': 4037, 'damage': 4038, 'walls': 4039, 'chandelier': 4040, 'owned': 4041, 'grumble': 4042, 'unpaid': 4043, 'repair': 4044, 'bill': 4045, 'friendly': 4046, 'stories': 4047, 'kind': 4048, 'starter': 4049, \"'re\": 4050, 'kids': 4051, 'football': 4052, 'weather': 4053, 'gambit': 4054, 'frequency': 4055, 'discussed': 4056, 'mid-20s': 4057, 'conversations': 4058, 'senatorial': 4059, 'frankly': 4060, 'inappropriate': 4061, 'sometimes': 4062, 'Yale': 4063, 'Haven': 4064, 'whenever': 4065, 'grandson': 4066, 'Connecticut': 4067, 'senator': 4068, 'class': 4069, 'boy': 4070, 'Democrat': 4071, 'law': 4072, 'enforcement': 4073, 'Prescott': 4074, 'laugh': 4075, 'dutifully': 4076, 'notes': 4077, 'drunk': 4078, 'guys': 4079, 'girls': 4080, 'buddy': 4081, 'impress': 4082, 'behavior': 4083, 'untouched': 4084, 'Our': 4085, 'Republic': 4086, 'hands': 4087, 'When': 4088, 'burning': 4089, 'flesh': 4090, 'death': 4091, 'abiding': 4092, 'citizen': 4093, 'Bob': 4094, 'Dylan': 4095, 'Afraid': 4096, 'today': 4097, 'discuss': 4098, 'attention': 4099, 'Mirror': 4100, 'headline': 4101, '200,000': 4102, 'AK47s': 4103, 'Fallen': 4104, 'Into': 4105, 'Hands': 4106, 'Terrorists': 4107, 'thread': 4108, 'RI': 4109, 'discussion': 4110, 'board': 4111, 'smuggled': 4112, '99': 4113, 'tonne': 4114, 'cache': 4115, 'flown': 4116, 'Bosnia': 4117, 'planeloads': 4118, 'vanished': 4119, 'Orders': 4120, 'ahead': 4121, 'contracted': 4122, 'via': 4123, 'complex': 4124, 'web': 4125, 'traders': 4126, 'Moldovan': 4127, 'airline': 4128, 'transport': 4129, 'blasted': 4130, 'Liberia': 4131, 'Amnesty': 4132, 'separate': 4133, 'probe': 4134, 'meant': 4135, 'Mike': 4136, 'Blakemore': 4137, 'unbelievable': 4138, 'terrifying': 4139, 'defence': 4140, 'chiefs': 4141, 'hired': 4142, '90s': 4143, 'Bosnian': 4144, 'controllers': 4145, 'flights': 4146, 'supposedly': 4147, '2005': 4148, 'purchases': 4149, 'Nato': 4150, 'voiced': 4151, 'fears': 4152, 'Swiss': 4153, 'firms': 4154, 'tracking': 4155, 'mechanism': 4156, 'siphoned': 4157, 'UK': 4158, 're-routed': 4159, 'Aerocom': 4160, 'yes': 4161, 'Victor': 4162, 'Bout': 4163, 'bang': 4164, 'wall': 4165, 'incompetence': 4166, 'theory': 4167, 'receives': 4168, 'Administration': 4169, 'harshest': 4170, 'critics': 4171, 'misdirection': 4172, 'representative': 4173, 'privatized': 4174, 'global': 4175, 'gangland': 4176, 'billions': 4177, 'vanish': 4178, 'Pentagon': 4179, 'contracts': 4180, 'untouchable': 4181, 'stature': 4182, 'sinks': 4183, 'beneath': 4184, 'frothing': 4185, 'triviality': 4186, 'Meanwhile': 4187, 'Toledo': 4188, 'priest': 4189, 'Gerald': 4190, 'Robinson': 4191, 'guilty': 4192, 'Rev.': 4193, 'stony': 4194, 'faced': 4195, 'verdict': 4196, 'blinked': 4197, 'glanced': 4198, 'lawyers': 4199, 'handcuffs': 4200, 'sacristy': 4201, 'adjoining': 4202, 'hospital': 4203, 'chapel': 4204, 'downtown': 4205, 'Easter': 4206, '1980': 4207, 'Investigators': 4208, 'nun': 4209, 'Margaret': 4210, 'Ann': 4211, 'Pahl': 4212, '71': 4213, 'strangled': 4214, 'stabbed': 4215, 'chest': 4216, 'forming': 4217, 'shape': 4218, 'inverted': 4219, 'cross': 4220, 'recognized': 4221, 'Satanic': 4222, 'symbol': 4223, 'altar': 4224, 'cloth': 4225, 'draped': 4226, 'naked': 4227, 'sexually': 4228, 'assaulted': 4229, 'humiliate': 4230, 'prosecutor': 4231, 'Mandros': 4232, 'closing': 4233, 'arguments': 4234, 'everyone': 4235, 'God': 4236, 'sentencing': 4237, 'tearful': 4238, 'Claudia': 4239, 'Vercellotti': 4240, 'Survivors': 4241, 'Network': 4242, 'Those': 4243, 'Abused': 4244, 'Priests': 4245, 'SNAP': 4246, 'reopen': 4247, 'rot': 4248, 'hell': 4249, 'More': 4250, 'prosecutors': 4251, 'tools': 4252, 'horrific': 4253, 'defendants': 4254, 'seemingly': 4255, 'institutions': 4256, 'victims': 4257, 'witnesses': 4258, 'stay': 4259, 'silent': 4260, 'changes': 4261, 'speak': 4262, 'protected': 4263, 'weapon': 4264, 'letter': 4265, 'opener': 4266, 'Finally': 4267, 'email': 4268, 'reopening': 4269, 'Atlanta': 4270, 'Murders': 4271, 'Dekalb': 4272, 'County': 4273, 'Chief': 4274, 'Graham': 4275, 'reopened': 4276, 'investigations': 4277, 'mysteriously': 4278, 'stepping': 4279, 'replacement': 4280, 'Brown': 4281, 'supervisor': 4282, 'PD': 4283, 'murders': 4284, 'subsequent': 4285, 'matter': 4286, 'individually': 4287, 'institutionally': 4288, 'domain': 4289, 'lots': 4290, 'jeff': 4291, 'thank': 4292, 'god': 4293, 'souls': 4294, 'congress': 4295, 'CRACKDOWN': 4296, 'POLYGAMY': 4297, 'GROUP': 4298, 'Small': 4299, 'polygamous': 4300, 'southwestern': 4301, 'watchful': 4302, 'fairly': 4303, 'benign': 4304, 'sect': 4305, 'Fundamentalist': 4306, 'Latter': 4307, 'Day': 4308, 'Saints': 4309, 'FLDS': 4310, 'Mormonism': 4311, '1890': 4312, 'Warren': 4313, 'Jeffs': 4314, 'Wanted': 4315, 'Fugitives': 4316, 'caps': 4317, 'approach': 4318, 'practices': 4319, 'grew': 4320, 'followers': 4321, 'communities': 4322, 'assets': 4323, '110': 4324, 'school': 4325, 'intertwined': 4326, 'ex-members': 4327, 'mainly': 4328, 'underage': 4329, 'marry': 4330, 'secluded': 4331, 'compounds': 4332, 'federal': 4333, 'crack': 4334, 'vigorously': 4335, 'Specifically': 4336, 'Utah': 4337, 'Arizona': 4338, 'arranging': 4339, 'spiritual': 4340, 'marriages': 4341, 'weekend': 4342, 'Salt': 4343, 'Lake': 4344, 'City': 4345, 'Phoenix': 4346, 'traveling': 4347, 'bodyguards': 4348, 'apocalyptic': 4349, 'Christian': 4350, 'Identity': 4351, 'philosophies': 4352, 'Aryan': 4353, 'neo-Nazi': 4354, 'Creativity': 4355, 'Movement': 4356, 'preached': 4357, 'racism': 4358, 'race': 4359, 'devil': 4360, 'evil': 4361, 'unto': 4362, 'earth': 4363, 'cited': 4364, 'Poverty': 4365, 'Law': 4366, 'editorial': 4367, 'Deseret': 4368, 'Morning': 4369, 'unwillingness': 4370, 'stir': 4371, 'hornet': 4372, 'contributed': 4373, 'kid': 4374, 'glove': 4375, 'lawmakers': 4376, 'http://www.csmonitor.com/2006/0509/p02s01-ussc.html?s=t5': 4377, 'Maybe': 4378, 'exactly': 4379, 'Loose': 4380, \"AK47's\": 4381, '?!?!?': 4382, 'Never': 4383, 'regularly': 4384, 'scheduled': 4385, 'programming': 4386, 'Raw': 4387, 'Story': 4388, 'i': 4389, 'headlines': 4390, 'Funny': 4391, 'squirelled': 4392, 'meaning': 4393, 'hint': 4394, 'conspiracy': 4395, 'abusers': 4396, 'satanic': 4397, 'underground': 4398, 'judge': 4399, 'bench': 4400, 'obeying': 4401, \"it's\": 4402, 'feet': 4403, 'Personally': 4404, 'damn': 4405, 'adults': 4406, 'invovled': 4407, 'marrying': 4408, 'enfurates': 4409, 'cults': 4410, 'multimillions': 4411, 'poverty': 4412, 'cult': 4413, 'reassigns': 4414, 'wives': 4415, 'husband': 4416, 'displeases': 4417, 'reward': 4418, 'Husbands': 4419, 'mothers': 4420, 'teen': 4421, 'daughters': 4422, 'retardation': 4423, 'genetic': 4424, 'needs': 4425, 'gene': 4426, 'parents': 4427, 'vegetable': 4428, 'doctor': 4429, 'begs': 4430, 'intermarrying': 4431, 'pure': 4432, 'fumarase': 4433, 'deficiency': 4434, 'kingston': 4435, 'convicted': 4436, 'beating': 4437, 'daughter': 4438, 'unconcious': 4439, 'shit': 4440, 'shoot': 4441, 'juicy': 4442, 'profits': 4443, 'evaporate': 4444, 'comparison': 4445, 'contractors': 4446, 'awash': 4447, 'tax': 4448, 'milking': 4449, 'angle': 4450, 'whoopsie': 4451, 'daisy': 4452, 'huh': 4453, 'Christ': 4454, 'bit': 4455, 'tired': 4456, 'treating': 4457, 'gullible': 4458, 'idiots': 4459, 'suppose': 4460, 'lucky': 4461, 'GOP': 4462, 'outsourcing': 4463, 'bypassing': 4464, 'channels': 4465, 'turning': 4466, 'unruly': 4467, 'cast': 4468, 'characters': 4469, 'order': 4470, 'create': 4471, 'preparation': 4472, 'http://www.rawstory.com/news/2006/US_outsourcing_special_operations_intelligence_gathering_0413.html': 4473, 'deserves': 4474, 'MEK': 4475, 'unquestionably': 4476, 'boast': 4477, 'Mujahedeen': 4478, 'affair': 4479, \"''\": 4480, 'generations': 4481, 'martyrs': 4482, 'grandmothers': 4483, 'grown': 4484, 'schools': 4485, 'Ashraf': 4486, 'Family': 4487, 'nights': 4488, 'Fridays': 4489, 'invaded': 4490, 'Kuwait': 4491, 'France': 4492, 'Denmark': 4493, 'England': 4494, 'raised': 4495, 'guardians': 4496, 'usually': 4497, '19': 4498, 'fill': 4499, 'ranks': 4500, 'youngest': 4501, 'generation': 4502, 'Though': 4503, 'boys': 4504, 'taught': 4505, 'blindly': 4506, 'Every': 4507, 'beginning': 4508, 'poster': 4509, 'Massoud': 4510, 'Maryam': 4511, 'salute': 4512, 'shout': 4513, 'praises': 4514, 'Nadereh': 4515, 'Afshari': 4516, 'believer': 4517, 'responsible': 4518, 'gulf': 4519, 'German': 4520, 'tried': 4521, 'absorb': 4522, 'Rajavis': 4523, 'brainwash': 4524, 'Which': 4525, 'empowerment': 4526, 'enlightenment': 4527, 'sacrifice': 4528, 'inspired': 4529, 'wisdom': 4530, 'bright': 4531, 'fellows': 4532, 'set': 4533, 'Jeff': 4534, 'SPLOID.com': 4535, 'topic': 4536, 'http://www.sploid.com/news/2006/05/evil_priest_gui.php': 4537, 'Umm': 4538, 'Question': 4539, 'Mark': 4540, 'Jimmy': 4541, 'Plant': 4542, 'Blogshares': 4543, 'fantasy': 4544, 'blogosphere': 4545, 'game': 4546, 'pretend': 4547, 'Satan': 4548, 'http://www.laweekly.com/general/features/satan-loves-you/13454/': 4549, 'metal': 4550, 'strippers': 4551, 'dope': 4552, 'Okay': 4553, 'partly': 4554, 'evolves': 4555, 'music': 4556, 'belongs': 4557, 'weirder': 4558, 'guardian': 4559, 'morality': 4560, 'Praise': 4561, 'Given': 4562, 'void': 4563, 'educational': 4564, 'establishments': 4565, 'religions': 4566, 'guiding': 4567, 'righteousness': 4568, 'fallen': 4569, 'Hmmmmmm': 4570, '....................': 4571, 'trauma': 4572, 'controlled': 4573, 'slaves': 4574, 'wikipedia': 4575, 'stub': 4576, 'waiting': 4577, 'http://en.wikipedia.org/wiki/Aerocom': 4578, 'hates': 4579, ':)': 4580, 'chants': 4581, 'Manson': 4582, 'tees': 4583, 'bearing': 4584, 'Kill': 4585, 'Columbine': 4586, 'acting': 4587, 'indescriminately': 4588, 'murdered': 4589, 'classmates': 4590, 'brainwashed': 4591, 'fans': 4592, 'literally': 4593, 'fulfilling': 4594, 'paradigm': 4595, 'er': 4596, 'phoney': 4597, 'thy': 4598, 'neighbor': 4599, 'REAL': 4600, 'MORALITY': 4601, '?????': 4602, 'hmmmm': 4603, 'indeed': 4604, 'detect': 4605, 'hissing': 4606, 'lisp': 4607, 'serpent': 4608, 'article': 4609, 'deathly': 4610, 'inversion': 4611, 'ala': 4612, 'satanism': 4613, 'brainwashing': 4614, 'Perhaps': 4615, 'phenomenon': 4616, 'invitation': 4617, 'couter-cultural': 4618, 'hypocrisy': 4619, 'percentage': 4620, 'Morality': 4621, 'crowd': 4622, 'lip': 4623, 'loving': 4624, 'beyond': 4625, 'congregation': 4626, 'checked': 4627, 'Satanists': 4628, 'destruction': 4629, 'dealt': 4630, 'Christians': 4631, 'Irony': 4632, 'Long': 4633, 'editor': 4634, 'simple': 4635, 'entering': 4636, 'previously': 4637, 'unexplored': 4638, 'socio-political': 4639, 'require': 4640, 'examination': 4641, 'introspection': 4642, 'Kevin': 4643, 'Coogan': 4644, 'publication': 4645, 'previous': 4646, 'quote': 4647, 'Imaginary': 4648, 'romantic': 4649, 'varied': 4650, 'gloomy': 4651, 'monotonous': 4652, 'barren': 4653, 'boring': 4654, 'marvelous': 4655, 'intoxicating': 4656, 'Simone': 4657, 'Weil': 4658, 'Starroute': 4659, 'due': 4660, 'appartently': 4661, 'cognitively': 4662, 'functional': 4663, 'senseless': 4664, 'incompetent': 4665, 'sign': 4666, 'ulterior': 4667, 'hidden': 4668, 'motives': 4669, 'trust': 4670, 'befuddled': 4671, 'wilt': 4672, 'http://youtube.com/watch?v=d46_ctqDmI4': 4673, 'buying': 4674, 'BS': 4675, 'specifically': 4676, 'tidbit': 4677, 'waaaaaaaaaaaaay': 4678, 'definitions': 4679, 'http://news.bbc.co.uk/2/hi/programmes/this_world/4446342.stm': 4680, 'relentless': 4681, 'uncover': 4682, 'shocking': 4683, 'Italy': 4684, 'tale': 4685, 'gripped': 4686, '1998': 4687, 'Fabio': 4688, 'Tollis': 4689, 'Chiara': 4690, 'Marino': 4691, 'disappeared': 4692, 'pub': 4693, 'Midnight': 4694, 'centre': 4695, 'scene': 4696, 'Milan': 4697, 'Michele': 4698, 'attend': 4699, 'concerts': 4700, 'festivals': 4701, 'Europe': 4702, 'handing': 4703, 'leaflets': 4704, 'quizzing': 4705, 'forms': 4706, 'obsessed': 4707, 'images': 4708, 'collection': 4709, 'paraphernalia': 4710, 'bedroom': 4711, 'convinced': 4712, 'disappearance': 4713, 'inseparable': 4714, 'Yeah': 4715, 'posts': 4716, 'wholly': 4717, 'expand': 4718, 'include': 4719, 'freaky': 4720, 'bozos': 4721, 'Talk': 4722, 'beat': 4723, 'Smartwolf': 4724, 'principle': 4725, 'employed': 4726, 'deliberately': 4727, 'GWB': 4728, 'neocons': 4729, 'Jesus': 4730, 'Nazareth': 4731, 'ignorant': 4732, 'why': 4733, 'phonies': 4734, 'appellation': 4735, 'imposters': 4736, 'Everything': 4737, 'lie': 4738, 'serves': 4739, 'purposes': 4740, 'identified': 4741, 'fully': 4742, 'subterfuge': 4743, 'magician': 4744, 'rigorous': 4745, 'perceive': 4746, 'See': 4747, 'avant': 4748, 'guard': 4749, 'art': 4750, '20th': 4751, 'Century': 4752, 'Italian': 4753, 'Futurism': 4754, 'labeled': 4755, 'degenerate': 4756, 'Socialists': 4757, 'Adolf': 4758, 'Hitler': 4759, 'exhibition': 4760, '1937': 4761, 'curating': 4762, 'parallel': 4763, 'Expressionist': 4764, 'quick': 4765, 'overview': 4766, 'Entartete': 4767, 'Kunst': 4768, 'Degenerate': 4769, 'Art': 4770, 'exhibit': 4771, 'http://en.wikipedia.org/wiki/Degenerate_art': 4772, 'notion': 4773, 'appropriated': 4774, 'Nazis': 4775, 'traced': 4776, 'Jewish': 4777, 'intellectual': 4778, 'Max': 4779, 'Nordau': 4780, '1892': 4781, 'authored': 4782, 'Degeneration': 4783, 'co': 4784, 'founder': 4785, 'World': 4786, 'Zionist': 4787, 'Organization': 4788, 'apparently': 4789, 'Are': 4790, 'adherent': 4791, 'Crowleyan': 4792, 'Thelema': 4793, 'ilk': 4794, 'appropriating': 4795, 'appropriators': 4796, 'redirect': 4797, 'energy': 4798, 'Does': 4799, 'reappropriation': 4800, 'originate': 4801, 'Seems': 4802, 'imaginary': 4803, 'Whore': 4804, 'Babalon': 4805, 'Babylon': 4806, 'accurate': 4807, 'valid': 4808, 'socio': 4809, 'conundrum': 4810, 'Confused': 4811, 'Good': 4812, 'Why': 4813, 'undecided': 4814, 'answers': 4815, 'Balance': 4816, 'Coil': 4817, 'wish': 4818, 'Wikipedia': 4819, 'easier': 4820, 'spending': 4821, 'obscure': 4822, 'detailed': 4823, 'http://en.wikipedia.org/wiki/John_Balance': 4824, 'http://www.guardian.co.uk/obituaries/story/0,3604,1371372,00.html': 4825, 'blended': 4826, 'systems': 4827, 'Shamanism': 4828, 'Christianity': 4829, 'Buddhism': 4830, 'Paganism': 4831, 'Hermeticism': 4832, 'Gnosticism': 4833, 'imbued': 4834, 'vast': 4835, 'output': 4836, 'magickal': 4837, 'designed': 4838, 'functionally': 4839, 'transcendent': 4840, 'listeners': 4841, 'kg': 4842, 'per': 4843, '1000': 4844, 'tonnes': 4845, 'containers': 4846, 'load': 4847, '20,000': 4848, 'E@tG': 4849, 'formulate': 4850, 'acquiring': 4851, 'Reporting': 4852, 'Susan': 4853, 'Polk': 4854, 'bay': 4855, 'farmer': 4856, 'event': 4857, 'Lo': 4858, 'behold': 4859, 'Mormons': 4860, 'booth': 4861, 'delivering': 4862, 'Mormon': 4863, 'genealogy': 4864, 'amazed': 4865, 'spiel': 4866, 'delivered': 4867, 'Kindly': 4868, 'utterly': 4869, 'programmed': 4870, 'watch': 4871, 'Has': 4872, 'purportedly': 4873, 'Ahmadinejad': 4874, 'http://www.thetruthseeker.co.uk/article.asp?id=4503': 4875, 'verified': 4876, 'succintly': 4877, 'succint': 4878, 'regardless': 4879, 'processes': 4880, 'W': 4881, 'contrast': 4882, 'whoever': 4883, 'vs.': 4884, 'Bring': 4885, 'condition': 4886, 'farce': 4887, 'definately': 4888, 'Change': 4889, 'Alex': 4890, 'Jones': 4891, 'Rio': 4892, 'Grande': 4893, 'Blood': 4894, 'Important': 4895, 'Kos': 4896, 'Diary': 4897, 'bush': 4898, 'gathering': 4899, 'storm': 4900, 'scandals': 4901, 'http://www.dailykos.com/story/2006/5/12/232746/857': 4902, '=': 4903, 'Executive': 4904, 'creepy': 4905, 'scary': 4906, 'accumulating': 4907, 'basically': 4908, 'sieze': 4909, 'feels': 4910, 'minute': 4911, '==': 4912, 'revoke': 4913, '13011': 4914, 'exmearden': 4915, 'Fri': 4916, '2006': 4917, '08:27:46': 4918, 'PDT': 4919, 'scanning': 4920, 'whitehouse.gov': 4921, 'noticed': 4922, 'Amendments': 4923, '11030': 4924, '13279': 4925, '13339': 4926, '13381': 4927, '13389': 4928, 'Revocation': 4929, 'jumping': 4930, 'fray': 4931, 'blogger': 4932, 'TroubleFunk': 4933, 'Tronicus': 4934, 'Simply': 4935, 'permeate': 4936, 'Mystery': 4937, 'Tradition': 4938, 'confluence': 4939, 'spirituality': 4940, 'alchemical': 4941, 'initially': 4942, 'appropriation': 4943, 'Similarly': 4944, 'invoking': 4945, 'Egyptian': 4946, 'gods': 4947, 'goddesses': 4948, 'reaffirmation': 4949, 'oppressive': 4950, 'hierarchical': 4951, 'compartmentalize': 4952, 'personal': 4953, 'weirdness': 4954, 'hardcore': 4955, 'factions': 4956, 'integrate': 4957, 'synthesis': 4958, 'regards': 4959, 'vacuous': 4960, 'perspective': 4961, 'culture': 4962, 'Shall': 4963, 'censor': 4964, 'works': 4965, 'poet': 4966, 'Baudelaire': 4967, 'artists': 4968, 'checking': 4969, 'knee': 4970, 'jerk': 4971, 'reaction': 4972, 'apologize': 4973, 'over-generalizations': 4974, 'literalist': 4975, 'True': 4976, 'believers': 4977, 'hung': 4978, 'pyrimidal': 4979, 'structure': 4980, 'cloak': 4981, 'motivations': 4982, 'masses': 4983, 'boggles': 4984, 'ANYONE': 4985, 'value': 4986, 'christian': 4987, 'shall': 4988, 'ye': 4989, 'hackles': 4990, 'haul': 4991, 'Rock': 4992, 'Roll': 4993, 'Whie': 4994, 'subscribe': 4995, 'listen': 4996, 'patently': 4997, 'rediculous': 4998, 'bother': 4999, 'specific': 5000, 'pin': 5001, 'Sub-cultures': 5002, 'lable': 5003, 'implies': 5004, 'develope': 5005, 'vacuum': 5006, 'egos': 5007, 'metaphors': 5008, 'literaly': 5009, 'wether': 5010, 'banging': 5011, 'Canibal': 5012, 'Corpse': 5013, 'humming': 5014, 'Onward': 5015, 'Soldiers': 5016, 'mixing': 5017, 'militarism': 5018, 'respect': 5019, 'adhear': 5020, 'non-violence': 5021, 'forgiveness': 5022, 'charity': 5023, 'Smartwolves': 5024, 'monopoly': 5025, 'lifestyle': 5026, 'hissy': 5027, 'fit': 5028, 'wanting': 5029, 'buy': 5030, 'wants': 5031, 'sus': 5032, 'located': 5033, 'enroute': 5034, 'storage': 5035, 'stooges': 5036, 'pretext': 5037, 'Thanks': 5038, 'Nick': 5039, 'Keck': 5040, 'speech': 5041, 'gentleman': 5042, 'advisory': 5043, 'multi-nation': 5044, 'corporation': 5045, 'worthwhile': 5046, 'View': 5047, 'Eye': 5048, 'Storm': 5049, 'Haim': 5050, 'Harari': 5051, 'Advisory': 5052, 'Board': 5053, 'multi-national': 5054, 'technological': 5055, 'entertainment': 5056, 'occasion': 5057, 'Chairman': 5058, 'suggested': 5059, 'events': 5060, 'Government': 5061, 'privileged': 5062, '200': 5063, 'proverbial': 5064, 'fascinating': 5065, 'thoughts': 5066, 'prefer': 5067, 'devote': 5068, 'remarks': 5069, 'broader': 5070, 'refer': 5071, 'Morocco': 5072, 'predominantly': 5073, 'Moslem': 5074, 'non-Arab': 5075, 'non-Moslem': 5076, 'minorities': 5077, 'immediate': 5078, 'neighborhood': 5079, 'spite': 5080, 'upheaval': 5081, 'mass': 5082, 'happening': 5083, 'Sudan': 5084, 'massacring': 5085, 'Algeria': 5086, 'village': 5087, 'Algerians': 5088, 'invade': 5089, 'endanger': 5090, 'butcher': 5091, 'Egypt': 5092, 'poison': 5093, 'gas': 5094, 'Yemen': 5095, \"60's\": 5096, 'Assad': 5097, 'Father': 5098, 'El': 5099, 'Hamma': 5100, 'Syria': 5101, 'Libyan': 5102, 'blowing': 5103, 'Pan': 5104, 'Am': 5105, 'dysfunctional': 5106, 'league': 5107, 'Mauritania': 5108, 'Gulf': 5109, 'total': 5110, 'EU': 5111, 'expansion': 5112, 'combined': 5113, 'GDP': 5114, 'Netherlands': 5115, 'plus': 5116, 'Belgium': 5117, 'equal': 5118, 'California': 5119, 'Within': 5120, 'meager': 5121, 'gaps': 5122, 'poor': 5123, 'succeeding': 5124, 'corrupt': 5125, 'social': 5126, 'below': 5127, '150': 5128, 'Human': 5129, 'grotesque': 5130, 'Libya': 5131, 'Chair': 5132, 'Rights': 5133, 'commission': 5134, 'prepared': 5135, 'committee': 5136, 'intellectuals': 5137, 'auspices': 5138, 'books': 5139, 'translated': 5140, 'Greece': 5141, 'translates': 5142, 'publications': 5143, 'Birth': 5144, 'rates': 5145, 'decline': 5146, 'wealthy': 5147, 'advanced': 5148, 'cultures': 5149, 'creates': 5150, 'breeding': 5151, 'cruel': 5152, 'dictators': 5153, 'fanaticism': 5154, 'incitement': 5155, 'Civilization': 5156, 'Judaism': 5157, 'decent': 5158, 'devout': 5159, 'Moslems': 5160, 'develops': 5161, 'Islamophobia': 5162, 'accomplices': 5163, 'omission': 5164, 'applies': 5165, 'afraid': 5166, 'express': 5167, 'amplified': 5168, 'rampant': 5169, 'acknowledges': 5170, 'pillars': 5171, 'undeclared': 5172, '*': 5173, 'element': 5174, 'Suicide': 5175, 'invention': 5176, 'expression': 5177, 'lately': 5178, 'potent': 5179, 'psychological': 5180, 'direct': 5181, 'relatively': 5182, 'accidents': 5183, 'quantitatively': 5184, 'lethal': 5185, 'earthquakes': 5186, 'die': 5187, 'AIDS': 5188, 'Russians': 5189, 'murderers': 5190, 'fuss': 5191, 'killings': 5192, 'spectacular': 5193, 'frightening': 5194, 'dismembered': 5195, 'horrible': 5196, 'lifelong': 5197, 'injuries': 5198, 'detail': 5199, 'hysterical': 5200, 'tourism': 5201, 'industry': 5202, 'Bali': 5203, 'Turkey': 5204, 'undisputed': 5205, 'preventive': 5206, 'murderer': 5207, 'penetrated': 5208, 'constantly': 5209, 'improving': 5210, 'arrange': 5211, 'plane': 5212, 'explode': 5213, 'Who': 5214, 'crowded': 5215, 'detector': 5216, 'lines': 5217, 'counters': 5218, 'busy': 5219, 'Put': 5220, 'station': 5221, 'Spain': 5222, 'buses': 5223, 'Protect': 5224, 'movie': 5225, 'theaters': 5226, 'concert': 5227, 'halls': 5228, 'supermarkets': 5229, 'shopping': 5230, 'malls': 5231, 'hospitals': 5232, 'guards': 5233, 'hall': 5234, 'somewhat': 5235, 'vulnerability': 5236, 'strict': 5237, 'controls': 5238, 'eliminate': 5239, 'Money': 5240, 'cold': 5241, 'blooded': 5242, 'murderous': 5243, 'fanatic': 5244, 'beliefs': 5245, 'blown': 5246, 'politician': 5247, 'relative': 5248, 'influential': 5249, 'truly': 5250, 'supreme': 5251, 'fervor': 5252, 'benefits': 5253, 'Heaven': 5254, 'Instead': 5255, 'outcast': 5256, 'naive': 5257, 'retarded': 5258, 'incited': 5259, 'hotheads': 5260, 'delights': 5261, 'pay': 5262, 'handsomely': 5263, 'performed': 5264, 'despair': 5265, 'poorest': 5266, 'happens': 5267, 'desperate': 5268, 'continents': 5269, 'Desperation': 5270, 'reconnaissance': 5271, 'transportation': 5272, 'Bremmer': 5273, 'exploded': 5274, 'vicious': 5275, 'inhuman': 5276, 'cynical': 5277, 'funded': 5278, 'affluent': 5279, 'hunger': 5280, 'identical': 5281, 'pirates': 5282, 'seas': 5283, 'crucial': 5284, 'united': 5285, 'pyramid': 5286, 'arresting': 5287, 'dealer': 5288, 'tolerate': 5289, 'thrive': 5290, 'humble': 5291, 'trains': 5292, 'Istanbul': 5293, 'unity': 5294, 'Civilized': 5295, 'horror': 5296, 'absolutely': 5297, 'indispensable': 5298, 'wakes': 5299, 'ingredient': 5300, 'lies': 5301, 'Words': 5302, 'politicians': 5303, 'professional': 5304, 'norms': 5305, 'diplomacy': 5306, 'childish': 5307, 'deliberate': 5308, 'fabrications': 5309, 'heights': 5310, 'incredible': 5311, 'provocation': 5312, 'plot': 5313, 'Mouhamad': 5314, 'Said': 5315, 'Disinformation': 5316, 'tactic': 5317, 'preposterous': 5318, 'ridiculed': 5319, 'milieu': 5320, 'icon': 5321, 'jester': 5322, 'respectable': 5323, 'newspapers': 5324, 'prevent': 5325, 'credence': 5326, 'liars': 5327, 'anti-Semite': 5328, 'subtle': 5329, 'holocaust': 5330, 'temple': 5331, 'Jerusalem': 5332, 'occurrence': 5333, 'finance': 5334, 'dispatch': 5335, 'condemn': 5336, 'cameras': 5337, 'audience': 5338, 'routine': 5339, 'opposite': 5340, 'Arabic': 5341, 'Incitement': 5342, 'accompanied': 5343, 'pictures': 5344, 'mutilated': 5345, 'distort': 5346, 'Little': 5347, 'hatred': 5348, 'admiration': 5349, 'sets': 5350, 'tuned': 5351, 'soap': 5352, 'operas': 5353, 'recommend': 5354, 'demonstration': 5355, 'Berlin': 5356, 'carrying': 5357, 'banners': 5358, 'supporting': 5359, 'featuring': 5360, 'babies': 5361, 'dressed': 5362, 'defined': 5363, 'Arafat': 5364, 'activists': 5365, 'walks': 5366, 'restaurant': 5367, 'mid-day': 5368, 'eats': 5369, 'observes': 5370, 'eating': 5371, 'lunch': 5372, 'adjacent': 5373, 'tables': 5374, 'pays': 5375, 'blows': 5376, 'herself': 5377, 'rolling': 5378, 'martyr': 5379, 'activist': 5380, 'European': 5381, 'Dignitaries': 5382, 'bereaved': 5383, 'flows': 5384, 'actual': 5385, 'equips': 5386, 'sends': 5387, 'Orwellian': 5388, 'nomenclature': 5389, 'realize': 5390, 'emotional': 5391, 'infrastructure': 5392, 'Joseph': 5393, 'Goebbels': 5394, 'repeat': 5395, 'outperformed': 5396, 'successors': 5397, 'Huge': 5398, 'amounts': 5399, 'channeled': 5400, 'concentric': 5401, 'spheres': 5402, 'inner': 5403, 'circle': 5404, 'funds': 5405, 'hideouts': 5406, 'soft': 5407, 'circles': 5408, 'primarily': 5409, 'financed': 5410, 'regimes': 5411, 'Authority': 5412, 'safe': 5413, 'havens': 5414, 'wholesale': 5415, 'vendors': 5416, 'planners': 5417, 'preachers': 5418, 'welfare': 5419, 'feed': 5420, 'hungry': 5421, 'schooling': 5422, 'ignorance': 5423, 'operates': 5424, 'madrasas': 5425, 'inciting': 5426, 'electronic': 5427, 'printed': 5428, 'inferior': 5429, 'unthinkable': 5430, 'minimal': 5431, 'blaming': 5432, 'miseries': 5433, 'outer': 5434, 'donations': 5435, 'Governments': 5436, \"NGO's\": 5437, 'goals': 5438, 'noble': 5439, 'infested': 5440, 'exploited': 5441, 'victim': 5442, 'Saudis': 5443, 'financing': 5444, 'Figuratively': 5445, 'speaking': 5446, 'inwards': 5447, 'blackmail': 5448, 'horrifying': 5449, 'factor': 5450, 'Half': 5451, 'receptive': 5452, 'guaranteeing': 5453, 'blind': 5454, 'comfortably': 5455, 'camps': 5456, 'join': 5457, 'packaged': 5458, 'tours': 5459, 'hotspots': 5460, 'ski': 5461, 'Switzerland': 5462, 'Mrs.': 5463, 'Paris': 5464, 'bankrupt': 5465, 'typical': 5466, 'ringleader': 5467, 'Aksa': 5468, 'brigade': 5469, 'payment': 5470, 'couple': 5471, 'performing': 5472, 'retail': 5473, 'fourth': 5474, 'laws': 5475, 'civilized': 5476, 'liberties': 5477, 'fashioned': 5478, 'habits': 5479, 'respecting': 5480, 'sites': 5481, 'symbols': 5482, 'avoiding': 5483, 'mutilation': 5484, 'shields': 5485, 'Nazi': 5486, 'disregard': 5487, 'observe': 5488, 'student': 5489, 'science': 5490, 'debates': 5491, 'anti-democratic': 5492, 'winning': 5493, 'democratic': 5494, 'abolishing': 5495, 'Other': 5496, 'aspects': 5497, 'society': 5498, 'limitations': 5499, 'policeman': 5500, 'dealers': 5501, 'penalty': 5502, 'multiple': 5503, 'dilemmas': 5504, 'raid': 5505, 'priests': 5506, 'hostages': 5507, 'ambulance': 5508, 'strip': 5509, 'pretended': 5510, 'belly': 5511, 'standing': 5512, 'mental': 5513, 'arch-murderer': 5514, 'moves': 5515, 'location': 5516, 'dilemma': 5517, 'Suppose': 5518, 'Teheran': 5519, 'atrocity': 5520, 'responsibility': 5521, 'promising': 5522, 'interviews': 5523, 'condemnations': 5524, 'invite': 5525, 'functions': 5526, 'treat': 5527, 'dignitary': 5528, 'homework': 5529, 'figure': 5530, 'illusions': 5531, 'lawless': 5532, 'ice': 5533, 'hockey': 5534, 'sending': 5535, 'ballerina': 5536, 'skater': 5537, 'knock': 5538, 'heavyweight': 5539, 'boxer': 5540, 'chess': 5541, 'cannibals': 5542, 'handle': 5543, 'throw': 5544, 'stones': 5545, 'shoots': 5546, 'immunity': 5547, 'sheltered': 5548, 'royally': 5549, 'pretends': 5550, 'crooks': 5551, 'protection': 5552, 'criminals': 5553, 'repeating': 5554, 'temporary': 5555, 'evolution': 5556, 'adapted': 5557, 'punishment': 5558, 'rules': 5559, 'twilight': 5560, 'educate': 5561, 'eliminated': 5562, 'financial': 5563, 'starvation': 5564, 'organizing': 5565, 'elite': 5566, 'counter-propaganda': 5567, 'boycott': 5568, 'access': 5569, 'internet': 5570, 'Above': 5571, 'determination': 5572, 'Allow': 5573, 'depart': 5574, 'malignant': 5575, 'tumor': 5576, 'remove': 5577, 'surgically': 5578, 'starve': 5579, 'preventing': 5580, 'expanding': 5581, 'comment': 5582, 'justified': 5583, 'pre-war': 5584, 'map': 5585, 'Lebanon': 5586, 'colony': 5587, 'conquest': 5588, 'territories': 5589, 'unfriendly': 5590, 'encircled': 5591, 'republics': 5592, 'surprising': 5593, 'incite': 5594, 'uprising': 5595, 'plan': 5596, 'encircle': 5597, 'resulting': 5598, 'ambitions': 5599, 'ideology': 5600, 'supremacy': 5601, 'ruthless': 5602, 'execute': 5603, 'elaborate': 5604, 'traces': 5605, 'Embassies': 5606, 'develop': 5607, 'conservatives': 5608, 'virtuoso': 5609, 'cop': 5610, 'versus': 5611, 'sponsors': 5612, 'Hezbollah': 5613, 'Uzbekistan': 5614, 'consortium': 5615, 'players': 5616, 'trade': 5617, 'appease': 5618, 'refuse': 5619, 'signals': 5620, 'dry': 5621, 'conglomerate': 5622, 'pointless': 5623, 'enterprises': 5624, 'collaborate': 5625, 'beautifully': 5626, 'fertile': 5627, 'monitor': 5628, 'finances': 5629, 'relief': 5630, 'react': 5631, 'forceful': 5632, 'decisively': 5633, 'naivety': 5634, 'surrender': 5635, 'yielded': 5636, 'matters': 5637, 'won': 5638, 'surely': 5639, 'costly': 5640, 'expelling': 5641, 'forbidding': 5642, 'veils': 5643, 'functioning': 5644, 'judicial': 5645, 'equality': 5646, 'ideas': 5647, 'racial': 5648, 'defamation': 5649, 'avoidance': 5650, 'regarding': 5651, 'worship': 5652, 'inflammatory': 5653, 'carefully': 5654, 'transition': 5655, 'paving': 5656, 'prevail': 5657, 'takes': 5658, 'landscape': 5659, 'victory': 5660, 'understandable': 5661, 'recoil': 5662, 'wars': 5663, 'horrors': 5664, 'cost': 5665, 'additional': 5666, 'tide': 5667, 'associated': 5668, 'faction': 5669, 'Vanguards': 5670, 'Conquest': 5671, 'seeking': 5672, 'recreate': 5673, 'mecca': 5674, 'struggle': 5675, 'acquired': 5676, 'anthrax': 5677, 'strain': 5678, 'Veterinary': 5679, 'Medical': 5680, 'Diagnostic': 5681, 'Lab': 5682, 'senior': 5683, 'abroad': 5684, 'islamists': 5685, 'available': 5686, 'requested': 5687, 'Anthrax': 5688, 'Means': 5689, 'Motive': 5690, 'Modus': 5691, 'Operandi': 5692, 'Opportunity': 5693, 'Homeland': 5694, 'disclosed': 5695, 'Atta': 5696, 'Zacarias': 5697, 'Moussaoui': 5698, 'inquiries': 5699, 'cropdusters': 5700, 'contemplated': 5701, 'dispersing': 5702, 'included': 5703, 'rumor': 5704, 'setback': 5705, 'KSM': 5706, 'Rawalpindi': 5707, 'Panel': 5708, 'experts': 5709, 'concluded': 5710, 'restrained': 5711, 'difficulties': 5712, '9/11': 5713, 'Staff': 5714, 'ambitious': 5715, 'advances': 5716, 'produce': 5717, 'prior': 5718, 'Director': 5719, 'Tenet': 5720, '9': 5721, 'Spring': 5722, 'named': 5723, 'Shukrijumah': 5724, 'Jafar': 5725, 'Pilot': 5726, 'casing': 5727, 'Photographs': 5728, 'computer': 5729, 'disc': 5730, 'locks': 5731, 'passengers': 5732, 'bulletin': 5733, 'surveillance': 5734, 'disperse': 5735, 'mailings': 5736, 'bureaucratically': 5737, 'impolite': 5738, 'contest': 5739, 'lone': 5740, 'scientist': 5741, 'argued': 5742, 'Fall': 5743, 'warning': 5744, 'Princeton': 5745, 'islamist': 5746, 'scholar': 5747, 'Lewis': 5748, 'explained': 5749, 'disagree': 5750, 'innocents': 5751, 'sanctioned': 5752, 'biochemical': 5753, 'Prophet': 5754, 'guidance': 5755, 'Scheuer': 5756, 'analyst': 5757, 'warn': 5758, 'letters': 5759, 'branches': 5760, 'D.C.': 5761, 'symbolic': 5762, 'detention': 5763, 'sheik': 5764, 'Abdel': 5765, 'Trade': 5766, '1993': 5767, 'Handwritten': 5768, 'laptop': 5769, '#': 5770, 'production': 5771, 'spray': 5772, 'dryer': 5773, 'addressed': 5774, 'recruitment': 5775, 'expertise': 5776, 'Salama': 5777, 'Mabruk': 5778, 'disk': 5779, 'confiscated': 5780, 'Azerbaijan': 5781, 'underestimate': 5782, 'research': 5783, 'stages': 5784, '5th': 5785, 'Capitol': 5786, 'Others': 5787, 'airliners': 5788, 'directed': 5789, '31': 5790, 'indicating': 5791, 'crop': 5792, 'dusting': 5793, 'Ramzi': 5794, 'Binalshibh': 5795, '14,000': 5796, 'conspirator': 5797, 'mission': 5798, 'dusters': 5799, 'biochemist': 5800, 'Malaysian': 5801, 'Yazid': 5802, 'Sufaat': 5803, 'sharpest': 5804, 'shed': 5805, 'superiors': 5806, 'unreliable': 5807, 'filing': 5808, 'Jew': 5809, 'sympathizer': 5810, 'Hambali': 5811, 'supervised': 5812, 'Hindi': 5813, 'Britani': 5814, 'NYC': 5815, 'studied': 5816, 'virulent': 5817, 'Ames': 5818, 'guide': 5819, 'Dr.': 5820, 'quest': 5821, 'weaponize': 5822, 'confidante': 5823, 'prison': 5824, 'Emails': 5825, 'Atef': 5826, 'USAMRIID': 5827, 'koran': 5828, 'instructed': 5829, 'jihadist': 5830, 'crusader': 5831, 'enemies': 5832, 'OBL': 5833, 'Wall': 5834, 'Street': 5835, 'Journal': 5836, 'contains': 5837, 'memo': 5838, 'seek': 5839, 'talent': 5840, 'beneficial': 5841, 'easy': 5842, 'specialists': 5843, 'greatly': 5844, 'Christmas': 5845, 'audiotape': 5846, 'orange': 5847, 'alert': 5848, 'yellow': 5849, 'brigades': 5850, 'banner': 5851, 'paradise': 5852, 'somewhere': 5853, 'spotted': 5854, 'Wherever': 5855, 'traceable': 5856, 'profilers': 5857, 'draft': 5858, 'Sheik': 5859, 'Bojinka': 5860, 'threatened': 5861, 'dates': 5862, 'Use': 5863, 'detentions': 5864, 'Patrick': 5865, 'Retired': 5866, 'Assistant': 5867, 'Secretary': 5868, 'Analysis': 5869, 'testified': 5870, 'interrogations': 5871, 'nonconventional': 5872, 'notably': 5873, 'WTC': 5874, 'briefing': 5875, 'steps': 5876, 'raw': 5877, 'seed': 5878, 'product': 5879, 'unweaponized': 5880, 'Moro': 5881, 'MILF': 5882, 'obtaining': 5883, 'intended': 5884, 'shura': 5885, 'sworn': 5886, 'lengthy': 5887, 'confession': 5888, 'attorney': 5889, 'resort': 5890, 'possessed': 5891, 'extradition': 5892, 'associate': 5893, 'recipe': 5894, 'unprocessed': 5895, 'weight': 5896, 'accounts': 5897, 'distribution': 5898, 'transfers': 5899, 'Significantly': 5900, 'individual': 5901, 'quarter': 5902, 'century': 5903, 'contacted': 5904, 'necessarily': 5905, 'copy': 5906, 'Ft.': 5907, 'Detrick': 5908, 'Senator': 5909, 'Leahy': 5910, 'Congressional': 5911, 'collected': 5912, 'MSNBC': 5913, 'relying': 5914, 'spokesperson': 5915, 'narrowed': 5916, 'pool': 5917, 'labs': 5918, 'match': 5919, 'overseas': 5920, 'techniques': 5921, 'efficient': 5922, 'bioweaponeer': 5923, 'Kenneth': 5924, 'Alibek': 5925, 'optimal': 5926, 'method': 5927, 'electrostatic': 5928, 'dominance': 5929, 'spores': 5930, 'trillion': 5931, 'spore': 5932, 'concentration': 5933, 'clumps': 5934, '40': 5935, 'microns': 5936, 'Spores': 5937, 'inhalable': 5938, 'extraordinary': 5939, 'simpler': 5940, 'achieve': 5941, 'grams': 5942, 'industrial': 5943, 'processing': 5944, 'sponsored': 5945, 'lab': 5946, 'mistaken': 5947, 'theories': 5948, 'sponsorship': 5949, 'indicated': 5950, 'Dugway': 5951, 'undermines': 5952, 'liberals': 5953, 'Steve': 5954, 'Hatfill': 5955, 'biodefense': 5956, 'useful': 5957, 'USDA': 5958, 'employee': 5959, 'Johnelle': 5960, 'Bryant': 5961, 'sensational': 5962, 'purchasing': 5963, 'retrofitting': 5964, 'cropduster': 5965, 'interrogators': 5966, 'manufacturing': 5967, 'details': 5968, 'aerial': 5969, 'dispersal': 5970, 'consistent': 5971, 'opportunity': 5972, 'met': 5973, 'plotters': 5974, 'hijackers': 5975, 'Jemaah': 5976, 'Islamiah': 5977, 'JI': 5978, 'company': 5979, 'Green': 5980, 'Laboratory': 5981, 'Medicine': 5982, 'items': 5983, 'symbolizes': 5984, 'holy': 5985, 'manual': 5986, 'stayed': 5987, 'condominium': 5988, 'lessons': 5989, 'marketing': 5990, 'Infocus': 5991, 'Technologies': 5992, '35,000': 5993, 'traveled': 5994, 'Brigade': 5995, 'realizing': 5996, 'perceiving': 5997, 'Filipino': 5998, 'bragging': 5999, 'manipulate': 6000, 'thwarted': 6001, 'logistical': 6002, 'Various': 6003, 'doctors': 6004, 'Qadoos': 6005, 'bacteriologist': 6006, 'Aafia': 6007, 'Siddiqui': 6008, 'PhD': 6009, 'Karachi': 6010, 'Microbiologist': 6011, 'harboring': 6012, 'fugitives': 6013, 'cardiac': 6014, 'granted': 6015, 'pre-arrest': 6016, 'bail': 6017, 'Yet': 6018, 'stipend': 6019, 'officially': 6020, 'low': 6021, 'IQ': 6022, 'Brandeis': 6023, 'neurology': 6024, 'nabbed': 6025, 'Understandably': 6026, 'Amerithrax': 6027, 'confidential': 6028, 'rarely': 6029, 'grant': 6030, 'manhunt': 6031, 'Van': 6032, 'Harp': 6033, 'classified': 6034, 'releasing': 6035, 'Attorney': 6036, 'Ashcroft': 6037, 'Mueller': 6038, 'Her': 6039, 'Ismat': 6040, 'grandchildren': 6041, 'minicab': 6042, 'uncle': 6043, 'detained': 6044, 'Chemical': 6045, 'Wire': 6046, 'Group': 6047, 'lawyer': 6048, 'advises': 6049, 'airfare': 6050, 'tickets': 6051, 'heard': 6052, 'translation': 6053, 'phrase': 6054, 'english': 6055, 'chemicals': 6056, 'appear': 6057, 'pursuit': 6058, 'Floridian': 6059, 'Adnan': 6060, 'assisting': 6061, 'nickname': 6062, 'DOJ': 6063, 'commercial': 6064, 'Summer': 6065, 'Hamilton': 6066, 'Maati': 6067, 'faulty': 6068, 'analysis': 6069, 'preconceptions': 6070, 'testimony': 6071, 'millennium': 6072, 'Ressam': 6073, 'hijacker': 6074, 'Alhaznawi': 6075, 'cutaneous': 6076, 'bumping': 6077, 'suitcase': 6078, 'relating': 6079, 'Prague': 6080, 'conclusion': 6081, 'obtained': 6082, 'Ken': 6083, 'assisted': 6084, 'mobile': 6085, 'biolab': 6086, 'foisted': 6087, 'Curveball': 6088, 'divined': 6089, 'design': 6090, 'entourage': 6091, 'birthday': 6092, 'Mukhabarat': 6093, 'rejected': 6094, 'suggestion': 6095, 'preferring': 6096, 'pursue': 6097, 'concept': 6098, 'scientists': 6099, 'code': 6100, 'Charlie': 6101, 'Alpha': 6102, 'Kay': 6103, 'survey': 6104, 'hunt': 6105, 'WMD': 6106, 'innovations': 6107, 'milling': 6108, 'drying': 6109, 'motive': 6110, 'Senators': 6111, 'Daschle': 6112, 'tending': 6113, 'simplistically': 6114, 'receive': 6115, 'appropriations': 6116, 'pursuant': 6117, 'prevented': 6118, 'achieving': 6119, 'interferes': 6120, 'expressed': 6121, 'sentiment': 6122, 'exchange': 6123, 'plotter': 6124, 'Yousef': 6125, 'Judiciary': 6126, 'overseeing': 6127, 'Appropriations': 6128, 'Subcommittee': 6129, 'blanket': 6130, 'waiver': 6131, 'lift': 6132, 'pursuing': 6133, 'imprisonment': 6134, 'Mubarak': 6135, 'foremost': 6136, 'height': 6137, 'sentence': 6138, 'Albanian': 6139, 'returnees': 6140, 'retrial': 6141, 'debt': 6142, 'loan': 6143, 'guarantees': 6144, 'pale': 6145, 'Knights': 6146, 'Banner': 6147, 'secular': 6148, 'somehow': 6149, 'creation': 6150, 'Anwar': 6151, 'Sadat': 6152, 'Camp': 6153, 'treaty': 6154, 'underscore': 6155, 'liberal': 6156, 'democrats': 6157, 'profile': 6158, 'overlook': 6159, 'uses': 6160, 'domestic': 6161, 'educated': 6162, 'AMI': 6163, 'publisher': 6164, 'Enquirer': 6165, 'goofy': 6166, 'Jennifer': 6167, 'Lopez': 6168, 'enclosing': 6169, 'proposing': 6170, 'Disease': 6171, 'Control': 6172, 'employees': 6173, 'Leonard': 6174, 'containing': 6175, 'Sun': 6176, 'Bobby': 6177, 'Bender': 6178, 'recalls': 6179, 'modus': 6180, 'operandi': 6181, 'signature': 6182, 'offices': 6183, 'Gamaa': 6184, 'Islamiya': 6185, 'treatment': 6186, 'imprisoned': 6187, 'casualty': 6188, 'outstanding': 6189, 'rewards': 6190, 'explanation': 6191, 'ten': 6192, 'mailed': 6193, 'Sound': 6194, 'Leavenworth': 6195, 'defendant': 6196, 'Parole': 6197, 'Officer': 6198, 'mid-February': 6199, 'Along': 6200, 'considerable': 6201, 'jail': 6202, 'tension': 6203, 'controversial': 6204, 'Feith': 6205, 'summarized': 6206, 'purported': 6207, 'assistance': 6208, 'Hayat': 6209, 'deadly': 6210, 'missive': 6211, 'Brian': 6212, 'Jenkins': 6213, 'sender': 6214, 'purporting': 6215, 'cyanide': 6216, 'Zealand': 6217, 'ingredients': 6218, 'nerve': 6219, 'chapter': 6220, 'Poisonous': 6221, 'Letter': 6222, 'Eagle': 6223, 'stamp': 6224, 'green': 6225, 'hearts': 6226, 'birds': 6227, 'codes': 6228, 'masterminds': 6229, 'Jenny': 6230, 'representing': 6231, 'symbolism': 6232, 'Birds': 6233, 'video': 6234, 'Martyrs': 6235, 'FAQ': 6236, 'Azzam': 6237, 'Publications': 6238, 'Hearts': 6239, 'refers': 6240, 'mailer': 6241, 'Greendale': 6242, 'revealing': 6243, 'correspondence': 6244, 'color': 6245, 'perp': 6246, 'cute': 6247, 'naming': 6248, 'river': 6249, 'i.e.': 6250, 'Cairo': 6251, 'announcing': 6252, 'merger': 6253, 'Darunta': 6254, 'recruits': 6255, 'washed': 6256, 'Hadith': 6257, 'Messenger': 6258, 'Allah': 6259, 'wherever': 6260, 'Paradise': 6261, 'seldom': 6262, 'relates': 6263, 'sleepers': 6264, 'spadework': 6265, 'fundraising': 6266, 'charitable': 6267, 'causes': 6268, 'alias': 6269, 'sergeant': 6270, 'Whatever': 6271, 'persuasion': 6272, 'deserve': 6273, 'sufficient': 6274, 'Media': 6275, 'approximation': 6276, 'Second': 6277, 'hindsight': 6278, 'Efrem': 6279, 'Zimbalist': 6280, 'Jr.': 6281, 'striking': 6282, 'appropriate': 6283, 'balance': 6284, 'exhausted': 6285, 'accusing': 6286, 'Stephen': 6287, 'dubious': 6288, 'suspicion': 6289, 'founded': 6290, 'premises': 6291, 'reliable': 6292, 'guilt': 6293, 'fixation': 6294, 'rumored': 6295, 'stemmed': 6296, 'careers': 6297, 'staff': 6298, 'predisposition': 6299, 'winger': 6300, '7': 6301, '8': 6302, 'pending': 6303, 'libel': 6304, 'uncertain': 6305, 'suit': 6306, 'columnist': 6307, 'Nicholas': 6308, 'Kristof': 6309, 'agreed': 6310, 'apparent': 6311, 'compromise': 6312, 'permit': 6313, 'discovery': 6314, 'proceed': 6315, 'file': 6316, 'Answer': 6317, 'Complaint': 6318, 'Theory': 6319, 'ironically': 6320, 'coincidental': 6321, 'adding': 6322, 'regrettable': 6323, 'leaks': 6324, 'leak': 6325, 'enthusiasm': 6326, 'dropped': 6327, 'proves': 6328, 'Berry': 6329, 'residences': 6330, 'prove': 6331, 'gasp': 6332, 'insider': 6333, 'searches': 6334, 'excluding': 6335, 'Maureen': 6336, 'Andre': 6337, 'curves': 6338, 'FX': 6339, 'inflation': 6340, 'CPI': 6341, 'PPI': 6342, 'valuation': 6343, 'determine': 6344, 'index': 6345, 'Typically': 6346, 'savings': 6347, 'eliminating': 6348, 'nonessential': 6349, 'specifics': 6350, 'Bolivia': 6351, 'Jamaica': 6352, 'Guatemala': 6353, 'Columbia': 6354, 'Puerto': 6355, 'Rico': 6356, 'data': 6357, 'Panama': 6358, 'Brazil': 6359, 'Euro': 6360, 'Underwriting': 6361, 'IV': 6362, 'Cindy': 6363, 'revalue': 6364, 'Philip': 6365, 'regrets': 6366, 'commitments': 6367, 'Kaminski': 6368, 'Dear': 6369, 'inviting': 6370, 'Risk': 6371, 'Australia': 6372, 'Sydney': 6373, 'aiming': 6374, 'programme': 6375, 'Hong': 6376, 'Kong': 6377, 'Tel': 6378, '+852': 6379, '2545': 6380, '2710': 6381, 'Kind': 6382, 'Annesley': 6383, 'Conference': 6384, 'Producer': 6385, 'Waters': 6386, '+44': 6387, '7484': 6388, '9866': 6389, '9800': 6390, 'www.risk-conferences.com/risk2001aus': 6391, 'Beth': 6392, 'reservations': 6393, 'Round': 6394, 'Table': 6395, '5/18': 6396, 'Sullivan': 6397, 'Steak': 6398, '6:30': 6399, 'ling': 6400, 'overdue': 6401, 'Paula': 6402, 'Will': 6403, 'drive': 6404, 'FYI': 6405, 'Anne': 6406, 'Sarah': 6407, 'mail': 6408, 'Roberts': 6409, 'hire': 6410, 'Sara': 6411, 'Woody': 6412, 'MBA': 6413, 'grad': 6414, 'Rice': 6415, 'compared': 6416, 'title': 6417, 'admin': 6418, 'coordinator': 6419, 'honestly': 6420, 'Admin': 6421, \"coordinator's\": 6422, 'administrative': 6423, 'compare': 6424, 'duties': 6425, 'Sr.': 6426, 'Spec.': 6427, 'Parkhill': 6428, 'Sevil': 6429, 'scope': 6430, 'responsibilities': 6431, 'broad': 6432, 'specialist': 6433, 'salary': 6434, 'range': 6435, '33': 6436, '66': 6437, 'K': 6438, 'advise': 6439, 'Clayton': 6440, 'appreciate': 6441, 'Martin': 6442, 'box': 6443, 'wonderfully': 6444, 'keys': 6445, 'nice': 6446, 'Enron': 6447, 'refund': 6448, 'server': 6449, 'Iris': 6450, 'Congratulations': 6451, 'paperwork': 6452, 'unique': 6453, 'opportunities': 6454, 'advisors': 6455, 'consisted': 6456, 'mutual': 6457, 'fund': 6458, 'invest': 6459, 'Home': 6460, 'Depot': 6461, 'Coke': 6462, 'biased': 6463, 'valuable': 6464, 'equity': 6465, 'hedge': 6466, 'growth': 6467, 'correlation': 6468, 'S@P': 6469, 'diversification': 6470, 'dinner': 6471, 'markets': 6472, 'Gapinski': 6473, 'Account': 6474, 'Vice': 6475, 'Emery': 6476, 'Financial': 6477, 'PaineWebber': 6478, 'Inc.': 6479, '713-654-0365': 6480, '800-553-3119': 6481, 'x365': 6482, 'Fax': 6483, '713-654-1281': 6484, 'Cell': 6485, '281-435-0295': 6486, 'Appreciate': 6487, 'ENE': 6488, 'bound': 6489, 'forgo': 6490, '%': 6491, 'premium': 6492, 'lighten': 6493, 'stategy': 6494, 'approved': 6495, 'sell': 6496, 'unexercised': 6497, 'vested': 6498, 'pullback': 6499, 'stock': 6500, 'bounce': 6501, '@': 6502, '75': 6503, '73': 6504, 'Call': 6505, 'Notice': 6506, 'Regarding': 6507, 'Entry': 6508, 'transmit': 6509, 'orders': 6510, 'instructions': 6511, 'transmitted': 6512, 'Privacy': 6513, 'Confidentiality': 6514, 'review': 6515, 'content': 6516, 'communications': 6517, 'cares': 6518, '??????': 6519, 'Sean.Cooper@ElPaso.com': 6520, 'rescheduled': 6521, 'Your': 6522, 'Beau': 6523, 'invited': 6524, 'thursday': 6525, 'NYMEX': 6526, 'cocktail': 6527, 'hour': 6528, 'oh': 6529, 'agenda': 6530, \"Tuesday's\": 6531, '3:30': 6532, 'Houston': 6533, 'completely': 6534, 'update': 6535, 'weekly': 6536, \"Monday's\": 6537, '???????????????': 6538, 'employment': 6539, 'respond': 6540, 'Lavorato': 6541, 'attached': 6542, 'allocation': 6543, 'amongst': 6544, 'categories': 6545, 'Real': 6546, 'Time': 6547, 'Traders': 6548, 'presentation': 6549, 'tomorrow': 6550, 'x': 6551, 'comparisons': 6552, 'lose': 6553, '65': 6554, 'k': 6555, 'hiring': 6556, 'math': 6557, 'stretch': 6558, 'ASAP': 6559, 'reviewing': 6560, 'renewal': 6561, 'Laurent': 6562, 'communicated': 6563, 'ask': 6564, 'Current': 6565, 'Salary': 6566, '47,500': 6567, 'Job': 6568, 'Specialist': 6569, 'YE': 6570, 'PRC': 6571, 'Rating': 6572, 'Satisfactory': 6573, 'Original': 6574, 'Proposition': 6575, 'Base': 6576, 'Year': 6577, 'Agreement': 6578, 'Revised': 6579, 'Proposal': 6580, '55': 6581, 'Case': 6582, 'approximately': 6583, 'consideration': 6584, 'rated': 6585, 'satisfactory': 6586, 'room': 6587, 'Secondly': 6588, 'performers': 6589, 'respectively': 6590, 'eg.': 6591, 'Thomas': 6592, 'Jason': 6593, 'Choate': 6594, 'Todd': 6595, 'DeCook': 6596, 'Makkai': 6597, 'Listing': 6598, 'Maria': 6599, 'Valdes': 6600, '62,500': 6601, '55,008': 6602, '60,008': 6603, '42,008': 6604, 'Oxley': 6605, 'Transmission': 6606, 'Expansion': 6607, 'Systems': 6608, 'Transition': 6609, 'Feb.': 6610, 'Florida': 6611, 'OVERVIEW': 6612, 'regulatory': 6613, 'challenges': 6614, 'electric': 6615, 'transmission': 6616, 'capacity': 6617, 'demands': 6618, 'competitive': 6619, 'FERC': 6620, 'RTO': 6621, 'initiatives': 6622, 'parameters': 6623, 'solutions': 6624, 'technology': 6625, 'models': 6626, 'analyze': 6627, 'proposals': 6628, 'pricing': 6629, 'alternatives': 6630, 'traditional': 6631, 'methods': 6632, 'legislative': 6633, 'ensuring': 6634, 'grid': 6635, 'brochure': 6636, 'Workshops': 6637, 'clicking': 6638, 'link': 6639, '<': 6640, 'http://www.euci.com/pdf/trans_expn.pdf': 6641, '>': 6642, '<<': 6643, '>>': 6644, 'Electricity': 6645, 'Market': 6646, 'Design': 6647, 'Georgia': 6648, '969': 6649, 'Essie': 6650, 'Sonya': 6651, '07/30/2001': 6652, '05:17': 6653, 'Embedded': 6654, 'Picture': 6655, 'Device': 6656, 'Independent': 6657, 'Bitmap': 6658, 'WHO': 6659, 'WHAT': 6660, 'Happy': 6661, 'Hour': 6662, 'Suarez': 6663, 'WHEN': 6664, 'Today': 6665, 'pm': 6666, 'WHERE': 6667, 'Porch': 6668, '217': 6669, 'Gray': 6670, 'St.': 6671, '713': 6672, '571-9571': 6673, 'WHY': 6674, 'EBS': 6675, 'NOT': 6676, 'Leon': 6677, 'xferring': 6678, 'Co.': 6679, '1691': 6680, 'Regards': 6681, 'Vicsandra': 6682, 'decisions': 6683, 'helpful': 6684, 'Patty': 6685, 'Corporate': 6686, 'Tax': 6687, 'x35172': 6688, 'EB': 6689, '1774': 6690, 'red': 6691, 'companies': 6692, 'indication': 6693, 'rank': 6694, 'entities': 6695, 'assigned': 6696, '18T': 6697, 'EI': 6698, 'Operations': 6699, 'LLC': 6700, 'entity': 6701, 'TIS': 6702, 'SAP': 6703, 'Hyperion': 6704, 'income': 6705, 'liabilities': 6706, 'corporate': 6707, 'sheet': 6708, 'inactive': 6709, '86M': 6710, 'Net': 6711, 'Works': 6712, 'MTM': 6713, 'Per': 6714, 'financials': 6715, 'expenses': 6716, 'reorg': 6717, '80Y': 6718, 'Broadband': 6719, 'Acquisition': 6720, 'Inc': 6721, 'acquistion': 6722, 'WarpSpeed': 6723, 'Communications': 6724, '83N': 6725, 'dissolved': 6726, 'completion': 6727, 'Company': 6728, 'amount': 6729, 'I/S': 6730, '1579': 6731, 'Division': 6732, '17H': 6733, 'Networks': 6734, 'Holding': 6735, 'Administrative': 6736, 'Companies': 6737, 'Same': 6738, 'EPI': 6739, 'Set': 6740, 'centralize': 6741, 'Broke': 6742, '1179': 6743, 'Commodity': 6744, 'Richards': 6745, 'Mary': 6746, 'Fischer': 6747, '1307': 6748, 'EBIC': 6749, 'Apache': 6750, 'Rolls': 6751, 'Cherokee': 6752, 'Finance': 6753, 'VOF': 6754, 'CFC': 6755, 'Glen': 6756, 'Walloch': 6757, 'Walker': 6758, '1689': 6759, 'Ventures': 6760, 'Branom': 6761, 'Analyst': 6762, '345-8702': 6763, 'leon.branom@enron.com': 6764, 'Virginia': 6765, 'Hello': 6766, 'Cross': 6767, 'Signac': 6768, 'impressionist': 6769, 'lithograph': 6770, 'gallery': 6771, 'Weston': 6772, 'Lichtenstein': 6773, 'hanging': 6774, 'magnificent': 6775, 'Appel': 6776, 'Actually': 6777, 'depending': 6778, 'listed': 6779, 'favorites': 6780, 'purchase': 6781, 'numbered': 6782, 'artist': 6783, 'outrageously': 6784, 'expensive': 6785, 'Rothko': 6786, 'Kline': 6787, 'Bonnard': 6788, 'colorful': 6789, 'Lautrec': 6790, 'Suerat': 6791, 'lithos': 6792, 'Braque': 6793, 'Arp': 6794, 'Rouault': 6795, 'Modrian': 6796, 'Motherwell': 6797, 're-looking': 6798, 'Picasso': 6799, 'cubist': 6800, '1920s': 6801, 'technique': 6802, 'wa': 6803, 'pronunciation': 6804, 'Vs': 6805, 'proper': 6806, 'spelling': 6807, 'sale': 6808, 'galleries': 6809, 'SF': 6810, 'Matisse': 6811, 'burner': 6812, 'mike': 6813, 'Huskers': 6814, 'drool': 6815, 'Sooners': 6816, 'Rice@ENRON': 6817, 'COMMUNICATIONS': 6818, '01/19/2001': 6819, '09:14': 6820, 'AM': 6821, 'McConnell@ECT': 6822, '01/19/01': 6823, '07:55': 6824, 'm': 6825, '07:24': 6826, 'postpone': 6827, 'Presentation': 6828, 'sunday': 6829, 'cancel': 6830, 'PS': 6831, 'bowl': 6832, 'games': 6833, 'galleryfurniture.com': 6834, 'Shreveport': 6835, '))': 6836, 'realized': 6837, 'sick': 6838, 'college': 6839, 'fan': 6840, 'intial': 6841, 'document': 6842, 'additions': 6843, 'wording': 6844, 'calendars': 6845, 'Too': 6846, 'Compaq': 6847, 'San': 6848, 'Antonio': 6849, 'wow': 6850, 'restaurants': 6851, 'Ric': 6852, 'Menger': 6853, 'Mann@ENRON': 6854, '09/20/2000': 6855, '04:18': 6856, 'Francis': 6857, 'TRY': 6858, '445': 6859, 'ENA': 6860, 'orientation': 6861, '430': 6862, '27': 6863, 'vacation': 6864, 'Francisco': 6865, 'Enterprise': 6866, 'spouses': 6867, 'Figures': 6868, 'fyi': 6869, 'wrap': 6870, 'LOI': 6871, 'licensed': 6872, 'Fuel': 6873, 'equipment': 6874, 'intend': 6875, 'manufacturer': 6876, 'generic': 6877, 'attach': 6878, 'Development': 6879, 'agreeing': 6880, 'substantially': 6881, 'optionality': 6882, 'bug': 6883, 'bite': 6884, 'backside': 6885, 'ONE': 6886, 'EPC': 6887, 'contract': 6888, 'confidentiality': 6889, 'Bart': 6890, 'handy': 6891, 'speed': 6892, 'Forget': 6893, 'project': 6894, '170': 6895, 'paid': 6896, 'expecting': 6897, 'attributable': 6898, 'CRRA': 6899, 'FuelCell': 6900, 'meaningful': 6901, 'listing': 6902, 'ONSI': 6903, 'Hence': 6904, 'attachment': 6905, 'mark': 6906, 'assumption': 6907, 'Based': 6908, 'reacts': 6909, 'ultimate': 6910, 'Performance': 6911, 'tests': 6912, 'Remarkably': 6913, 'Sent': 6914, 'Ben': 6915, 'Jacoby@ECT': 6916, 'Mom': 6917, 'tommorow': 6918, 'Chris': 6919, 'beers': 6920, 'McDermott': 6921, 'Michael.McDermott@spectrongroup.com': 6922, '06/01/2000': 6923, '06:00:56': 6924, 'Yo': 6925, 'Mama': 6926, '`s': 6927, 'fat': 6928, 'mama': 6929, 'hauls': 6930, 'ass': 6931, 'trips': 6932, 'dances': 6933, 'skip': 6934, 'diagnosed': 6935, 'disease': 6936, 'mayonnaise': 6937, 'aspirin': 6938, '<-': 6939, 'winner': 6940, 'cereal': 6941, 'lifeguard': 6942, 'zoo': 6943, 'elephants': 6944, 'peanuts': 6945, 'graduation': 6946, 'photograph': 6947, 'license': 6948, 'pants': 6949, 'driveway': 6950, 'pack': 6951, 'Maximum': 6952, 'Occupancy': 6953, '240': 6954, 'Patrons': 6955, 'OR': 6956, 'milk': 6957, 'carton': 6958, 'Levis': 6959, '501': 6960, 'jeans': 6961, 'wears': 6962, 'Levi`s': 6963, '1002`s': 6964, 'elevator': 6965, 'HAS': 6966, 'silver': 6967, 'shovel': 6968, 'mouth': 6969, 'orbiting': 6970, 'shade': 6971, ':-)': 6972, 'Done': 6973, 'Expect': 6974, 'tonight': 6975, 'Poll': 6976, 'co-workers': 6977, 'cd': 6978, 'waste': 6979, 'arthritis': 6980, 'formality': 6981, 'Microwave': 6982, 'fixed': 6983, 'Jai': 6984, 'Hawker': 6985, '974-6721': 6986, 'forget': 6987, 'model': 6988, 'Kathy': 6989, 'forgot': 6990, 'Thanx': 6991, 'reminder': 6992, 'currency': 6993, 'Calgary': 6994, 'reply': 6995, 'Peters': 6996, 'Give': 6997, 'NX3': 6998, 'NX1': 6999, '11:30': 7000, 'CD': 7001, '3-1663': 7002, 'deed': 7003, 'Find': 7004, 'resume': 7005, 'Hopefully': 7006, 'spel': 7007, 'anyting': 7008, 'incorrectly': 7009, 'worker': 7010, 'afternoon': 7011, 'Kelowna': 7012, 'golfing': 7013, 'Cheers': 7014, 'resond': 7015, 'Dawn': 7016, 'Corp.': 7017, 'Suite': 7018, '1100': 7019, '70': 7020, 'Toronto': 7021, 'Ontario': 7022, 'M5J': 7023, '1S9': 7024, '416-865-3700': 7025, 'DeVries': 7026, '416-865-3703': 7027, 'Manager': 7028, '416-865-3704': 7029, 'Attached': 7030, 'forecast': 7031, 'X': 7032, 'NWP': 7033, 'PGT': 7034, 'Sushi': 7035, 'Ryan': 7036, 'Watt': 7037, '26/09/2000': 7038, '14:14': 7039, 'Fernley': 7040, 'Sally': 7041, 'Off': 7042, 'Jackie': 7043, 'Gentle': 7044, 'page': 7045, 'communication': 7046, 'fundamental': 7047, 'standards': 7048, 'summary': 7049, 'introduce': 7050, 'inclusion': 7051, 'Globalflash': 7052, 'newsletter': 7053, 'Late': 7054, 'sounds': 7055, 'Meagan': 7056, 'Charity': 7057, 'dance': 7058, 'Bearkadette': 7059, 'Ball': 7060, 'winter': 7061, 'Cotillion': 7062, 'row': 7063, 'Sunday': 7064, 'laundry': 7065, '!!': 7066, 'Hi': 7067, 'Talked': 7068, 'shower': 7069, 'grand': 7070, 'mid-January': 7071, 'sound': 7072, 'Mother': 7073, 'timing': 7074, 'delivery': 7075, 'intent': 7076, 'introduction': 7077, 'applied': 7078, 'commodity': 7079, 'engage': 7080, 'worldwide': 7081, 'professionals': 7082, 'mitigated': 7083, 'management': 7084, 'consistency': 7085, 'enable': 7086, 'Brent': 7087, 'drafted': 7088, 'circulated': 7089, 'Shona': 7090, 'reviewed': 7091, 'belittle': 7092, 'meat': 7093, 'Rick': 7094, 'Causey': 7095, 'defining': 7096, 'regularity': 7097, 'identify': 7098, 'compiling': 7099, 'commissioned': 7100, 'Moscoso': 7101, 'James': 7102, 'publish': 7103, 'Controller': 7104, 'hopefully': 7105, 'Sorry': 7106, 'interrupted': 7107, 'responding': 7108, 'input': 7109, 'Delainey@ECT': 7110, '11/10/2000': 7111, '01:04': 7112, 'ie': 7113, '13.9': 7114, '11.5': 7115, 'flat': 7116, 'goal': 7117, 'Delainey': 7118, 'speaker': 7119, 'Sue': 7120, 'enjoys': 7121, 'utility': 7122, 'bashing': 7123, 'respects': 7124, 'panel': 7125, 'thanked': 7126, 'intervening': 7127, 'Miller': 7128, 'godsend': 7129, 'Dasovich': 7130, '12:33': 7131, 'offended': 7132, 'quoting': 7133, 'CEO': 7134, 'regulated': 7135, 'attributing': 7136, '----': 7137, 'decidely': 7138, 'downhill': 7139, 'Best': 7140, 'modulate': 7141, '12:21': 7142, 'politely': 7143, 'participate': 7144, 'actively': 7145, 'Amen': 7146, 'IBM': 7147, 'Erin': 7148, '11:08': 7149, 'IT': 7150, 'backpedalling': 7151, 'overcome': 7152, 'TIBCO': 7153, 'Terminal': 7154, 'Server': 7155, 'commit': 7156, 'transferring': 7157, 'messages': 7158, 'domains': 7159, 'initiated': 7160, 'Corp': 7161, 'EES': 7162, 'agrees': 7163, 'proprietary': 7164, 'WebSphere': 7165, 'WebLogic': 7166, 'BackWeb': 7167, 'HR': 7168, 'user': 7169, 'responses': 7170, 'anonymous': 7171, 'CONFIRMIT': 7172, 'surveys': 7173, 'Messages': 7174, 'simultaneously': 7175, 'users': 7176, 'administrator': 7177, 'expire': 7178, 'disappear': 7179, 'retrieve': 7180, 'miss': 7181, 'expired': 7182, 'plain': 7183, 'pushing': 7184, 'hoping': 7185, 'foot': 7186, 'test': 7187, 'implementing': 7188, 'Steven': 7189, 'J': 7190, 'Kean': 7191, '11/09/2000': 7192, '11:35': 7193, 'eg': 7194, 'Tokyo': 7195, 'unreachable': 7196, 'Courtney': 7197, 'Votaw': 7198, '11/08/2000': 7199, '11:02': 7200, 'Document': 7201, 'calendar': 7202, 'Kaufman@ECT': 7203, 'Lysa': 7204, 'Akin@ECT': 7205, '05:59': 7206, 'Kaufman': 7207, 'Meeting': 7208, 'Date': 7209, '13th': 7210, '1:30': 7211, '2:30': 7212, '888-422-7132': 7213, 'Pin': 7214, '411507': 7215, 'ONLY': 7216, '362416': 7217, '503/464-7927': 7218, 'Akin': 7219, \"Ass't.\": 7220, '814014': 7221, 'Marketing': 7222, '3,500': 7223, 'mmbtu': 7224, '30th': 7225, '2.975': 7226, 'invoicing': 7227, 'invoice': 7228, 'Sitara': 7229, 'Darla': 7230, 'Express': 7231, 'card': 7232, 'expiration': 7233, '3/03': 7234, 'Otherwise': 7235, 'assume': 7236, 'Thank': 7237, 'non': 7238, 'bondad': 7239, 'Jane': 7240, '763736': 7241, '01': 7242, 'Southwest': 7243, 'Gas': 7244, 'discrepancy': 7245, 'reflects': 7246, 'SJ': 7247, 'Bondad': 7248, 'SWG': 7249, 'Non-Bondad': 7250, 'confirm': 7251, 'correct': 7252, 'Laurie': 7253, 'Ellis': 7254, 'Client': 7255, 'Phone': 7256, '345-9945': 7257, '646-8420': 7258, 'Email': 7259, 'laurie.ellis@enron.com': 7260, 'flooding': 7261, 'Hope': 7262, 'survived': 7263, 'ok': 7264, 'V02': 7265, 'Anderson': 7266, 'flowed': 7267, 'Nancy': 7268, 'ENRON.XLS': 7269, 'File': 7270, 'enrongss.xls': 7271, 'volumes': 7272, 'flowing': 7273, 'gda': 7274, 'blanco': 7275, '759933': 7276, 'nonbondad': 7277, 'SW': 7278, 'honro': 7279, 'reconfirm': 7280, 'trader': 7281, 'enclosed': 7282, 'Volumes': 7283, 'PGE': 7284, 'CityGate': 7285, 'delvery': 7286, '11/1/01': 7287, 'spreadsheet': 7288, 'Indexed': 7289, 'Basis': 7290, 'patience': 7291, 'walk': 7292, 'thru': 7293, 'Des': 7294, 'Moines': 7295, 'dthat': 7296, 'Joe': 7297, 'Cester': 7298, 'NetMeeting': 7299, 'Deb': 7300, 'Tholt': 7301, 'M.': 7302, 'theraphy': 7303, 'updates': 7304, 'Jared': 7305, 'BUNCH': 7306, 'plate': 7307, 'busier': 7308, 'cool': 7309, 'Ruth': 7310, 'objects': 7311, 'maam': 7312, 'UBS': 7313, 'Judy': 7314, 'Franklin': 7315, 'Transportation': 7316, 'Work': 7317, '832.676.3177': 7318, '832.676.1329': 7319, 'Pager': 7320, '1.888.509.3736': 7321, '******************************************************************': 7322, 'ElPaso': 7323, 'Corporation': 7324, 'solely': 7325, 'notify': 7326, 'SHE': 7327, 'IS': 7328, 'ALWAYS': 7329, 'PHONE': 7330, 'bet': 7331, 'Shemin': 7332, '!!!': 7333, 'Dominion': 7334, 'Davis': 7335, 'myself': 7336, 'Savier': 7337, 'sp': 7338, 'tabs': 7339, 'monthly': 7340, 'schedule': 7341, 'Tennessee': 7342, 'NET': 7343, '284': 7344, 'approve': 7345, 'Ed': 7346, 'approval': 7347, 'Cullen': 7348, 'Dykman': 7349, 'copies': 7350, 'Melanie': 7351, 'minutes': 7352, 'revised': 7353, 'Stipulation': 7354, 'modified': 7355, 'faxed': 7356, 'Toni': 7357, 'Donohue': 7358, 'deleted': 7359, 'assuming': 7360, 'revision': 7361, 'Gotschal': 7362, 'T.': 7363, 'Metcalfe': 7364, 'LLP': 7365, '177': 7366, 'Montague': 7367, 'Brooklyn': 7368, '11201': 7369, '718-780-0046': 7370, 'fax': 7371, '718-780-0276': 7372, 'dmetcalfe@cullenanddykman.com': 7373, '____________________________________________________': 7374, 'contain': 7375, 'sole': 7376, 'recipient': 7377, 'reliance': 7378, 'forwarding': 7379, 'strictly': 7380, 'prohibited': 7381, 'delete': 7382, '-ECT-KEDNE': 7383, 're': 7384, 'IGTS': 7385, 'Cap': 7386, 'Releases': 7387, '-FINAL.doc': 7388, 'BLACKLINE': 7389, '-Stip': 7390, '-2-F.doc': 7391, 'heartwarming': 7392, 'Barbara': 7393, 'Walters': 7394, 'gender': 7395, 'roles': 7396, 'customarily': 7397, 'husbands': 7398, 'yards': 7399, 'approached': 7400, 'enabled': 7401, 'reversal': 7402, 'Land': 7403, 'mines': 7404, 'Kuwaiti': 7405, 'attorneys': 7406, 'Tenn': 7407, 'Iroq': 7408, 'space': 7409, 'bottom': 7410, 'fun': 7411, '10:30': 7412, 'REALLY': 7413, 'DO': 7414, 'TO': 7415, 'GO': 7416, 'KNOW': 7417, 'LOT': 7418, 'GOING': 7419, 'WITH': 7420, 'AND': 7421, 'LITTLE': 7422, 'WOMAN': 7423, 'HANDLE': 7424, 'TRACTOR': 7425, 'ALONG': 7426, 'FOR': 7427, 'COMPANY': 7428, 'BUT': 7429, 'NECESSARY': 7430, 'PLATE': 7431, 'DAD': 7432, 'Chris.Germany@enron.com': 7433, '01/25/2002': 7434, '03:13:58': 7435, 'garage': 7436, 'annoyed': 7437, 'notified': 7438, '10:00': 7439, 'GRRRRRRR': 7440, 'twinkies': 7441, 'Correction': 7442, 'welch': 7443, 'GE': 7444, 'GM': 7445, 'eThink': 7446, 'Team': 7447, 'eSpeak': 7448, 'tremendous': 7449, 'cases': 7450, 'creative': 7451, 'Britney': 7452, 'Spears': 7453, '61': 7454, 'colleagues': 7455, 'sampling': 7456, 'suggestions': 7457, 'eSpeakers': 7458, 'Welch': 7459, 'Motors': 7460, 'McNeally': 7461, 'Microsystems': 7462, 'Satisfied': 7463, 'Customers': 7464, 'Covey': 7465, 'Seven': 7466, 'Habits': 7467, 'Highly': 7468, 'Effective': 7469, 'Oprah': 7470, 'Winfrey': 7471, 'talkshow': 7472, 'Joint': 7473, 'Chiefs': 7474, 'U.S.A': 7475, 'Alan': 7476, 'Greenspan': 7477, 'Reserve': 7478, 'Gates': 7479, 'Microsoft': 7480, 'promises': 7481, 'guests': 7482, 'guest': 7483, 'speakers': 7484, 'ethink@enron.com': 7485, 'Everybody': 7486, 'plenty': 7487, 'internal': 7488, 'scheduling': 7489, 'participation': 7490, 'Confirmed': 7491, 'Hyatt': 7492, 'Regency': 7493, 'Downtown': 7494, 'perfect': 7495, 'lobby': 7496, '7:00': 7497, 'breakfast': 7498, 'Smith': 7499, '800': 7500, 'convenient': 7501, '945': 7502, 'patient': 7503, 'Nesbitt': 7504, 'ekrapels@esaibos.com': 7505, 'correction': 7506, 'spend': 7507, 'pre-meeting': 7508, 'cruise': 7509, 'EDT': 7510, '2:300': 7511, 'www.weathereffects.com': 7512, 'electricity': 7513, 'EOL': 7514, 'quality': 7515, 'Hedging': 7516, 'Trading': 7517, 'deadline': 7518, 'pressures': 7519, 'intrigued': 7520, 'competition': 7521, 'platforms': 7522, 'astonished': 7523, 'Goldman': 7524, 'Morgan': 7525, 'BP': 7526, 'Shell': 7527, 'compete': 7528, 'yours': 7529, 'shotgun': 7530, 'proud': 7531, 'password': 7532, 'WSI': 7533, 'seasonal': 7534, 'PJM': 7535, 'NEPOOL': 7536, 'ESAI': 7537, 'contributes': 7538, 'forecasts': 7539, 'judgments': 7540, 'herding': 7541, 'bore': 7542, 'e.g.': 7543, 'Nepool': 7544, 'onpeak': 7545, '43': 7546, '46': 7547, '4:00': 7548, 'P.S.': 7549, 'Caroline': 7550, 'Abramo@ENRON': 7551, '03/02/2001': 7552, '10:46': 7553, 'Joe_Lardy@cargill.com': 7554, '10:39:03': 7555, 'Currently': 7556, 'Cargill': 7557, 'MM': 7558, 'collateral': 7559, 'threshold': 7560, 'cleanest': 7561, 'biz': 7562, 'master': 7563, 'isda': 7564, 'mutually': 7565, 'agreeable': 7566, 'annex': 7567, '20,000,000': 7568, 'referenced': 7569, 'Schedule': 7570, 'B': 7571, 'POA': 7572, 'distinct': 7573, 'measure': 7574, 'mill': 7575, 'gross': 7576, 'workable': 7577, 'relationships': 7578, 'priority': 7579, 'regading': 7580, 'allocate': 7581, 'limit': 7582, 'yourselves': 7583, 'Dee': 7584, 'Shackleton': 7585, 'Bailey': 7586, '02/27/2001': 7587, '08:23': 7588, 'blacklined': 7589, 'b': 7590, 'Paragraph': 7591, 'ISDA': 7592, 'Master': 7593, '11/8/2000': 7594, '19th': 7595, 'Cordially': 7596, 'transactions': 7597, 'Jorge': 7598, 'Garcia@ENRON': 7599, '03/01/2001': 7600, '01:35': 7601, 'Afternoon': 7602, 'Confirmations': 7603, 'trades': 7604, 'Laurel': 7605, 'Edison': 7606, 'Swap': 7607, 'Ltd.': 7608, 'PG&E': 7609, 'Calculation': 7610, 'Floating': 7611, 'Amount': 7612, 'payable': 7613, 'Payment': 7614, 'calculated': 7615, 'Notional': 7616, 'Quantity': 7617, 'Period': 7618, 'Price': 7619, 'USD': 7620, '38,000': 7621, 'Provisions': 7622, 'fee': 7623, '{': 7624, 'netting': 7625, 'provisions': 7626, '02:10': 7627, 'prepares': 7628, 'Singapore': 7629, 'distant': 7630, 'Houson': 7631, 'departments': 7632, 'philosophy': 7633, 'omnibus': 7634, 'ps': 7635, 'Congrats': 7636, 'offsite': 7637, 'shake': 7638, 'Carlos': 7639, 'Alatorre@ENRON': 7640, '06:07': 7641, 'Prod': 7642, 'Description': 7643, 'fro': 7644, 'LME': 7645, 'Product': 7646, 'Settlement': 7647, 'Transaction': 7648, 'Curr': 7649, 'Spot': 7650, 'Mar': 7651, 'JPY': 7652, 'Limited': 7653, 'EEFTL': 7654, 'Management': 7655, 'Counterparty': 7656, 'submits': 7657, 'Currency': 7658, 'volume': 7659, 'submitted': 7660, 'Website': 7661, 'multiplied': 7662, 'Metal': 7663, 'Exchange': 7664, 'fixing': 7665, 'Reuters': 7666, 'MTLE': 7667, 'transaction': 7668, 'correspond': 7669, 'forth': 7670, 'description': 7671, 'Dollar': 7672, 'Dollars': 7673, 'insurance': 7674, 'mom': 7675, 'dad': 7676, 'surgery': 7677, 'p.m': 7678, '1.5': 7679, 'ICU': 7680, '48': 7681, 'Term': 7682, 'Worth': 7683, 'anyway': 7684, 'accessibility': 7685, 'manage': 7686, 'client': 7687, 'expectations': 7688, 'accordingly': 7689, 'wedding': 7690, 'Wars': 7691, 'Museum': 7692, 'Fine': 7693, 'Arts': 7694, '++++++': 7695, 'CONFIDENTIALITY': 7696, 'NOTICE': 7697, '+++++': 7698, 'hereby': 7699, 'dissemination': 7700, 'copying': 7701, 'attachments': 7702, 'herein': 7703, 'Mann': 7704, '03/15/2001': 7705, '04:03': 7706, 'Lorie': 7707, 'Leigh': 7708, 'ECT': 7709, '04:17': 7710, 'Plus': 7711, 'hosting': 7712, '22nd': 7713, '1-800-991-9019': 7714, 'passcode': 7715, '6871082#': 7716, '11:00': 7717, 'CST': 7718, '3143C': 7719, 'Turbine': 7720, 'Purchase': 7721, '713-853-1696': 7722, 'carotid': 7723, 'artery': 7724, 'transports': 7725, 'circulatory': 7726, 'Kathleen': 7727, '04:11': 7728, 'worse': 7729, 'Origination': 7730, 'ours': 7731, 'rows': 7732, '49': 7733, '53': 7734, 'columns': 7735, 'E': 7736, '04:44': 7737, 'titles': 7738, 'verify': 7739, 'formatted': 7740, 'print': 7741, 'size': 7742, 'org': 7743, 'chart': 7744, 'submit': 7745, 'imperative': 7746, 'Louise': 7747, 'Kitchen': 7748, 'revisions': 7749, 'blackline': 7750, 'correctly': 7751, 'sample': 7752, 'availability': 7753, 'provision': 7754, 'redvepco.doc': 7755, 'SAMPLE.DOC': 7756, '46093': 7757, '02/13/2001': 7758, '04:13': 7759, 'Peggy': 7760, 'Banczak': 7761, 'handles': 7762, 'Mexico': 7763, 'Schwartzenburg@ENRON_DEVELOPMENT': 7764, '03/16/2001': 7765, '09:22': 7766, 'bust': 7767, 'structuring': 7768, 'Laidlaw': 7769, 'Harry': 7770, 'Okabayashi': 7771, 'tasking': 7772, 'procure': 7773, 'engineering': 7774, 'Wholesale': 7775, 'ABB': 7776, 'Renee': 7777, 'Alfaro': 7778, 'JWVS': 7779, 'Janice': 7780, 'significantly': 7781, 'watched': 7782, 'deteriorate': 7783, 'ultimately': 7784, 'thankful': 7785, 'privilege': 7786, 'homes': 7787, 'Sounds': 7788, 'Eric': 7789, 'SMSU': 7790, 'joining': 7791, 'delighted': 7792, 'obtain': 7793, 'Elizabeth': 7794, 'married': 7795, 'Buenos': 7796, 'Aires': 7797, 'Argentina': 7798, 'honeymoon': 7799, 'returning': 7800, 'sixth': 7801, 'grandchild': 7802, 'lb.': 7803, 'oz.': 7804, 'inch': 7805, 'grandsons': 7806, 'granddaughters': 7807, 'Ginger': 7808, 'Rees': 7809, 'Copeland': 7810, 'Lay': 7811, 'Tori': 7812, 'L.': 7813, 'Wells': 7814, 'Rosalee': 7815, '3:00': 7816, 'crystallizes': 7817, 'Arthur': 7818, 'Levitt': 7819, 'brainstorm': 7820, 'generated': 7821, 'sees': 7822, '5:00': 7823, '8:30': 7824, 'Could': 7825, '___________': 7826, 'Garten': 7827, 'Kitty': 7828, 'Armada': 7829, 'M306': 7830, 'ultra': 7831, 'portable': 7832, 'notebook': 7833, 'enterprise': 7834, 'equip': 7835, 'latest': 7836, 'laptops': 7837, 'consumer': 7838, 'M300': 7839, 'lightest': 7840, \"E500's\": 7841, 'heavier': 7842, 'http://www.compaq.com/products/notebooks/index.html': 7843, 'Compaq.com': 7844, 'notebook.url': 7845, 'Jose': 7846, 'participating': 7847, 'Fleming': 7848, 'RE': 7849, '???': 7850, 'Reception': 7851, 'Recently': 7852, 'Dewhurst': 7853, 'reception': 7854, 'Wed.': 7855, '6/14': 7856, 'Petroleum': 7857, 'Club': 7858, '.?': 7859, 'greater': 7860, 'Reform': 7861, 'Caucus': 7862, 'educators': 7863, 'common': 7864, 'approaches': 7865, '14th': 7866, 'Kent': 7867, 'Grusendorf': 7868, 'Representative': 7869, '94': 7870, 'o.k.': 7871, 'kenneth.lay@enron.com': 7872, 'WPO': 7873, 'Forum': 7874, 'Everett': 7875, 'Joy': 7876, '713/871-5119': 7877, '===================================================': 7878, 'NOTE': 7879, 'legally': 7880, 'disseminate': 7881, 'virus': 7882, 'defect': 7883, 'affiliates': 7884, 'loss': 7885, 'arising': 7886, '====================================================': 7887, 'expense': 7888, 'Olson': 7889, 'Katsof': 7890, 'Tco': 7891, 'Pool': 7892, 'Leach': 7893, 'swap': 7894, 'TCO': 7895, 'Index': 7896, '.04': 7897, '36647': 7898, 'Demand': 7899, 'speadsheet': 7900, 'matching': 7901, 'Brenda': 7902, 'Pasquallie': 7903, 'Jr': 7904, 'PO': 7905, 'Box': 7906, 'Cedar': 7907, 'Lane': 7908, '77415-0027': 7909, 'Had': 7910, '33,000': 7911, 'miles': 7912, 'Ram': 7913, '2500': 7914, 'ton': 7915, '360': 7916, 'Magnum': 7917, 'Motor': 7918, 'Infinity': 7919, 'stereo': 7920, 'bucket': 7921, 'nerf': 7922, 'bars': 7923, 'bed': 7924, 'liner': 7925, 'camper': 7926, 'tow': 7927, 'Oh': 7928, 'dueled': 7929, 'catalytic': 7930, 'converter': 7931, 'Flow': 7932, 'Masters': 7933, 'Makes': 7934, 'fuel': 7935, 'consumption': 7936, 'tolerable': 7937, 'Debbie': 7938, '16,900': 7939, 'clean': 7940, 'Sandalwood': 7941, 'Driftwood': 7942, 'gray': 7943, 'Jerry': 7944, 'dodge': 7945, 'Yep': 7946, 'articulating': 7947, 'dirt': 7948, 'plant': 7949, 'ST': 7950, 'Augustine': 7951, 'Grass': 7952, 'rain': 7953, 'economy': 7954, 'faltering': 7955, 'Dow': 7956, 'Stock': 7957, 'Hooray': 7958, 'hoorah': 7959, 'Needs': 7960, '41': 7961, 'spoke': 7962, 'bunch': 7963, 'Dad': 7964, 'lock': 7965, 'gate': 7966, 'steers': 7967, 'heifers': 7968, 'tractor': 7969, 'Reggie': 7970, '11/01/01': 7971, 'Be': 7972, 'sweety': 7973, 'balcony': 7974, 'gaze': 7975, 'moon': 7976, 'pasture': 7977, 'shuttle': 7978, 'hickies': 7979, 'burns': 7980, 'jealous': 7981, 'wonderful': 7982, 'grades': 7983, 'reassured': 7984, 'graduate': 7985, 'scholarship': 7986, 'kinesiologist': 7987, 'sports': 7988, 'injury': 7989, 'therapist': 7990, 'legs': 7991, '11/03': 7992, 'Jaime': 7993, 'Jgerma5@aol.com': 7994, 'careful': 7995, 'listened': 7996, 'Maw': 7997, 'shut': 7998, 'zipped': 7999, 'alright': 8000, 'Shucks': 8001, 'Sherrar': 8002, 'Rise': 8003, 'Rebellion': 8004, 'dudes': 8005, '76': 8006, 'saga': 8007, 'borrow': 8008, 'style': 8009, 'split': 8010, '120': 8011, 'shares': 8012, 'Powder': 8013, 'Dry': 8014, 'Bro': 8015, '2301': 8016, 'Brazosport': 8017, 'Blvd': 8018, '3611': 8019, 'Investment': 8020, 'Recovery': 8021, 'Freeport': 8022, '77541': 8023, '451': 8024, '0491': 8025, '0448': 8026, '979': 8027, '238': 8028, '2102': 8029, '548': 8030, '7034': 8031, 'brand': 8032, 'Must': 8033, 'wheeler': 8034, 'divy': 8035, 'cashout': 8036, 'buring': 8037, 'dough': 8038, 'ck': 8039, 'Oglethorpe': 8040, 'Dec': 8041, 'Doug': 8042, 'invoiced': 8043, 'phones': 8044, '713-853-4743': 8045, 'Ernie': 8046, 'emails': 8047, 'anwser': 8048, 'responds': 8049, 'prices': 8050, 'Simien': 8051, '08/01/2001': 8052, 'Mary.Ellenberger@enron.com': 8053, '05/03/2001': 8054, '04:06:52': 8055, 'cc': 8056, 'Subject': 8057, 'Re': 8058, 'TGPL': 8059, 'LA': 8060, 'Z1': 8061, '9.95': 8062, 'Feb': 8063, '6.25': 8064, '4.98': 8065, '5.37': 8066, 'esimien@nisource.com': 8067, '01:32:35': 8068, 'favour': 8069, 'Apr': 8070, 'Gregg': 8071, 'Penman': 8072, '10/23/2000': 8073, '12:12': 8074, 'circulate': 8075, 'Hodge': 8076, 'slightly': 8077, 'Peoples': 8078, 'audit': 8079, 'm.nordstrom@pecorp.com': 8080, '10/20/2000': 8081, '11:32': 8082, 'enovate': 8083, 'Section': 8084, 'XIII': 8085, 'Audit': 8086, 'MEH-risk': 8087, 'Oct': 8088, '20.doc': 8089, 'machine': 8090, 'Laura': 8091, 'initial': 8092, 'pages': 8093, 'Portland': 8094, '10/26/2000': 8095, '11:07': 8096, 'spirit': 8097, 'jointly': 8098, 'L.L.C': 8099, 'slight': 8100, 'Highlighting': 8101, 'designated': 8102, 'optimistic': 8103, 'Activity': 8104, 'picking': 8105, 'dramatically': 8106, 'blurred': 8107, 'Therefore': 8108, 'mid': 8109, 'prompt': 8110, 'complicated': 8111, 'whomever': 8112, 'Janet': 8113, 'comfort': 8114, 'conscientious': 8115, 'initials': 8116, 'Either': 8117, 'coordinate': 8118, '11:26': 8119, 'FCE': 8120, 'Thanksgiving': 8121, 'Craig': 8122, 'Danelia': 8123, 'roasted': 8124, 'turkey': 8125, 'roast': 8126, 'joy': 8127, 'cooking': 8128, 'elsewise': 8129, 'played': 8130, 'Uno': 8131, 'fast': 8132, 'physically': 8133, 'meek': 8134, 'Alena': 8135, 'memorized': 8136, 'messy': 8137, 'embarrased': 8138, 'apartment': 8139, 'baby': 8140, 'lease': 8141, 'roaches': 8142, 'crawling': 8143, 'sometime': 8144, 'upstairs': 8145, 'suite': 8146, 'neat': 8147, 'bathroom': 8148, 'cozy': 8149, 'Uncle': 8150, 'thrilled': 8151, 'stilted': 8152, 'XMAS': 8153, '21st': 8154, '27th': 8155, 'chatting': 8156, 'Kyle.Jones@radianz.com': 8157, '11/29/2000': 8158, '05:07': 8159, 'Tana': 8160, 'log': 8161, 'Anyway': 8162, 'Series': 8163, 'Thanksgiv8ing': 8164, 'Dinners': 8165, 'gon': 8166, 'na': 8167, 'swell': 8168, 'Ma': 8169, 'r': 8170, 'woud': 8171, 'wierd': 8172, 'botn': 8173, 'appartment': 8174, 'ocnversation': 8175, 'Unlce': 8176, 'shocked': 8177, 'Xmas': 8178, 'Got': 8179, 'ta': 8180, 'Love': 8181, 'ya': 8182, 'Kyle': 8183, 'Harrison': 8184, 'Technical': 8185, 'Solutions': 8186, 'Engineer': 8187, 'Radianz': 8188, '1251': 8189, 'Avenue': 8190, 'Americas': 8191, '7th': 8192, 'Floor': 8193, 'NY': 8194, '10016': 8195, 'USA': 8196, '+1': 8197, '212': 8198, '899-4425': 8199, '899-4310': 8200, '917': 8201, '859-7187': 8202, 'kyle.jones@radianz.com': 8203, 'http://www.radianz.com': 8204, '|--------+----------------------->': 8205, '|': 8206, 'Tana.Jones@en': 8207, 'ron.com': 8208, '04:34': 8209, '>----------------------------------------------------------------------------|': 8210, 'Computer': 8211, 'sister': 8212, '?!': 8213, 'Kyle.Jones@ra': 8214, 'Return': 8215, 'Receipt': 8216, 'AMERICAS': 8217, 'Equant': 8218, '01:00:51': 8219, 'Taffy': 8220, 'Milligan': 8221, 'Patel@ENRON': 8222, '04:49': 8223, 'GCP': 8224, 'Signoffs': 8225, 'Approvals': 8226, '11/29/00': 8227, 'marked': 8228, 'Patel': 8229, 'Bradley': 8230, 'Diebner@ECT': 8231, '04:31': 8232, 'bd': 8233, 'Breslau': 8234, 'countersignature': 8235, 'Thinking': 8236, 'w/o': 8237, 'Adding': 8238, 'Specified': 8239, 'Entities': 8240, 'default': 8241, 'defaults': 8242, 'trigger': 8243, 'component': 8244, 'Sage': 8245, '11/30/2000': 8246, '10:52': 8247, 'ECCL': 8248, 'Deutsche': 8249, '\"\"': 8250, 'DB': 8251, 'hesitant': 8252, 'potentially': 8253, 'swaps': 8254, 'structured': 8255, 'Bradford': 8256, 'Credit': 8257, '11/8/00': 8258, 'paralegal': 8259, 'Denis': 8260, \"O'Connell\": 8261, '11/22/2000': 8262, '06:05': 8263, 'counterparties': 8264, 'behalf': 8265, 'Tks': 8266, 'Deutsched': 8267, 'AG': 8268, 'Taylor': 8269, 'co-signing': 8270, 'TAGG': 8271, 'counterparty': 8272, 'assess': 8273, 'Russell': 8274, 'properly': 8275, 'updated': 8276, 'Seoul': 8277, 'planned': 8278, 'Ted': 8279, 'laid': 8280, 'etc': 8281, 'harder': 8282, 'Travis': 8283, 'Chuck': 8284, 'dragging': 8285, 'U.T.': 8286, 'Kelley': 8287, 'Parks': 8288, 'Wild': 8289, 'Card': 8290, 'gang': 8291, 'warm': 8292, 'Emily': 8293, 'musical': 8294, 'Rent': 8295, 'Diego': 8296, 'Labor': 8297, 'Hoot': 8298, 'Julie': 8299, 'Needless': 8300, 'excited': 8301, 'girlie': 8302, 'birdie': 8303, 'separately': 8304, 'exploring': 8305, 'considering': 8306, '__________________________________________________': 8307, 'Yahoo!': 8308, 'Send': 8309, 'instant': 8310, 'alerts': 8311, 'http://im.yahoo.com/': 8312, 'Tonto': 8313, 'a.k.a': 8314, 'kick': 8315, 'Lone': 8316, 'Ranger': 8317, 'forgotten': 8318, 'songs': 8319, 'incredibly': 8320, 'voices': 8321, 'poignant': 8322, 'caught': 8323, 'Corey': 8324, 'Jeopardy': 8325, 'occasions': 8326, 'detract': 8327, 'enjoyment': 8328, 'Trivial': 8329, 'Pursuit': 8330, 'obliterating': 8331, 'thesis': 8332, 'Trivia': 8333, 'Kori': 8334, 'Night': 8335, 'introduced': 8336, 'spell': 8337, 'Darren': 8338, 'Shorty': 8339, 'Noble': 8340, '08/17/2000': 8341, '10:05': 8342, 're-run': 8343, 'Smart': 8344, 'LW': 8345, 'adhering': 8346, 'faithfully': 8347, 'pinning': 8348, 'shirt': 8349, 'remind': 8350, 'confident': 8351, 'colors': 8352, 'failing': 8353, 'elephant': 8354, 'Thought': 8355, 'Dixie': 8356, 'Chicks': 8357, '08/16/2000': 8358, '10:56': 8359, 'AAAAAGGGHHHHHH': 8360, 'TX': 8361, 'exam': 8362, 'rode': 8363, 'organizational': 8364, 'pleasure': 8365, 'Bowen': 8366, '07/14/2000': 8367, '03:58': 8368, 'Out': 8369, 'requires': 8370, 'GILBERGD@sullcrom.com': 8371, '02:18': 8372, 'disclosure': 8373, 'EnronOnline': 8374, 'assist': 8375, 'T1': 8376, 'Direct': 8377, 'Bockius': 8378, 'Ted.Bockius@ivita.com': 8379, '07/17/2000': 8380, '02:21': 8381, 'emergency': 8382, 'Taub': 8383, 'visitors': 8384, '??': 8385, 'Amy': 8386, 'Cornell': 8387, 'CPCG': 8388, '281-518-9526': 8389, '281-518-1081': 8390, 'amy.cornell@compaq.com': 8391, 'mailto:amy.cornell@compaq.com': 8392, 'Jann': 8393, 'phoned': 8394, 'Riggins': 8395, 'bicycle': 8396, 'cycling': 8397, 'injured': 8398, 'Hospital': 8399, '1504': 8400, 'Loop': 8401, '713-793-2000': 8402, 'flowers': 8403, 'e-mailed': 8404, 'prayers': 8405, 'Rosario': 8406, 'Gonzales': 8407, 'ESSG': 8408, 'CCA-15': 8409, '150301': 8410, '153B09': 8411, '281-514-3183': 8412, 'rosario.gonzales@compaq.com': 8413, 'mailto:rosario.gonzales@compaq.com': 8414, 'provisional': 8415, 'application': 8416, 'patent': 8417, 'placed': 8418, 'copyright': 8419, 'roughly': 8420, 'Forster@ENRON': 8421, '06:15': 8422, 'Patent': 8423, 'Pending': 8424, 'homepage': 8425, 'guidelines': 8426, 'Hansen@ENRON': 8427, '04:28': 8428, 'planing': 8429, 'Hoston': 8430, 'implementation': 8431, 'Forster': 8432, '02:34': 8433, 'taxes': 8434, 'mid-August': 8435, 'Leonardo': 8436, 'Pacheco': 8437, '08:50': 8438, 'ETA': 8439, 'PA': 8440, 'ext.': 8441, '39938': 8442, 'documentation': 8443, 'calculating': 8444, 'termination': 8445, 'Amsterdam': 8446, 'attractive': 8447, 'developments': 8448, 'Pickle': 8449, 'Haedicke': 8450, '07/18/2000': 8451, '08:58': 8452, 'CFTC': 8453, 'deregulation': 8454, 'EEI': 8455, 'slides': 8456, 'Plan': 8457, 'Days': 8458, 'Oct.': 8459, 'Leave': 8460, 'Thur.': 8461, 'Arrv.': 8462, 'a.m.': 8463, 'transfer': 8464, 'Nice': 8465, 'rent': 8466, 'hotel': 8467, 'collapse': 8468, 'Fri.': 8469, 'Stay': 8470, 'Monaco': 8471, 'Sat.': 8472, '23': 8473, 'Drive': 8474, 'Tropez': 8475, 'Cannes': 8476, 'towns': 8477, 'Sun.': 8478, 'Mon.': 8479, 'Tue.': 8480, 'Versailles': 8481, 'Fontainbleu': 8482, '29': 8483, 'Giverny': 8484, 'Monet': 8485, 'gardens': 8486, 'Eurostar': 8487, 'arrv.': 8488, 'CLH': 8489, 'Tues.': 8490, 'Fly': 8491, 'lv.': 8492, '4:30': 8493, 'confusing': 8494, 'Taylors': 8495, 'forwarded': 8496, 'EI.London': 8497, 'Ladies': 8498, 'Enclosed': 8499, 'worksheet': 8500, 'Ineos': 8501, 'Acrylics': 8502, 'thresholds': 8503, 'MACS': 8504, 'Pounds': 8505, 'Troy': 8506, 'Black': 8507, 'CP': 8508, 'Ineos.xls': 8509, 'Robbi': 8510, 'looked': 8511, 'UEComm': 8512, 'AUD': 8513, 'Marie': 8514, 'Uecomm': 8515, 'Suttle': 8516, \"OK'd\": 8517, 'Anthony': 8518, 'w': 8519, 'r.': 8520, 't.': 8521, 'CSA': 8522, 'executable': 8523, 'Fred': 8524, 'Pat': 8525, 'inserted': 8526, 'amended': 8527, 'timeframes': 8528, 'Support': 8529, 'Annex': 8530, 'Clauses': 8531, 'ease': 8532, 'amendmnets': 8533, 'hesitate': 8534, 'Sill': 8535, 'Counsel': 8536, '126': 8537, 'Trenerry': 8538, 'Crescent': 8539, 'Abbotsford': 8540, 'VIC': 8541, '3067': 8542, 'Ph.': 8543, '03': 8544, '9221': 8545, '4101': 8546, 'Fax.': 8547, '4193': 8548, 'Mob.': 8549, '0417': 8550, '575': 8551, '920': 8552, 'UC': 8553, '0308.doc': 8554, 'Turn': 8555, 'Reminder': 8556, 'ConEd': 8557, '1:00': 8558, '3801A': 8559, 'handling': 8560, 'Deemed': 8561, 'Ispat': 8562, 'Mexicana': 8563, 'S.A.': 8564, 'C.V': 8565, 'omitted': 8566, 'x33907': 8567, 'Elliotts': 8568, 'CONGRATULATIONS': 8569, '!!!!!!!': 8570, 'everyday': 8571, 'Babies': 8572, 'Elliott': 8573, 'arrived': 8574, 'Glad': 8575, 'storing': 8576, 'sleep': 8577, 'cause': 8578, 'congratulations': 8579, 'gentlemen': 8580, 'Emma': 8581, '6th': 8582, 'triplets': 8583, 'Benjamin': 8584, '12.45': 8585, 'lbs': 8586, 'ozs': 8587, 'Toby': 8588, '12.46': 8589, 'Hannah': 8590, '12.48': 8591, 'lowest': 8592, 'weights': 8593, 'OOPS': 8594, 'Nylon': 8595, 'Polykron': 8596, 'ISDAs': 8597, 'Rebecca': 8598, 'attaching': 8599, 'authorizing': 8600, 'brokerage': 8601, 'revise': 8602, 'clearer': 8603, 'Jim': 8604, 'Armogida': 8605, 'revising': 8606, 'Liz': 8607, 'Heard': 8608, 'Marquez': 8609, 'guaranty': 8610, 'Pemex': 8611, 'Lucy': 8612, 'Ortiz': 8613, 'Pinto': 8614, 'Leite': 8615, 'reflect': 8616, '713/345-7942': 8617, 'francisco.pinto.leite@enron.com': 8618, 'Tanya': 8619, 'Niagara': 8620, 'Mohawk': 8621, 'drafts': 8622, 'Para.': 8623, 'Having': 8624, 'spoken': 8625, 'Dennis': 8626, 'Goldmann': 8627, 'Guaranties': 8628, 'sum': 8629, 'Holdings': 8630, 'f': 8631, 'o': 8632, 'respective': 8633, 'raise': 8634, 'modify': 8635, 'existing': 8636, 'understanding': 8637, '315-460-3344': 8638, '315-460-3349': 8639, 'Snyder': 8640, 'ENRON': 8641, 'SCHEDULE': 8642, 'nmemdrft8-7-01': 8643, '.doc': 8644, 'Para13': 8645, \"GTC's\": 8646, 'Tracy': 8647, 'Hai': 8648, 'adjustment': 8649, 'incorrect': 8650, 'liquidations': 8651, 'P&L': 8652, \"#'s\": 8653, 'adjustments': 8654, 'swing': 8655, 'adjusted': 8656, 'Karim': 8657, 'Evidently': 8658, 'Stacey': 8659, 'coding': 8660, 'delta': 8661, 'messed': 8662, 'liq': 8663, 'liquidation': 8664, 'flipping': 8665, 'PUTS': 8666, 'Marcelo': 8667, 'Meira': 8668, 'Sr': 8669, 'Developer': 8670, '345-3436': 8671, 'id': 8672, '11608': 8673, 'values': 8674, 'positive': 8675, 'CORRECT': 8676, 'till': 8677, 'adjust': 8678, '2nd': 8679, 'offering': 8680, 'informally': 8681, '11:45': 8682, 'max': 8683, 'gearing': 8684, '02': 8685, 'improved': 8686, 'til': 8687, '2:00': 8688, 'eat': 8689, 'hook': 8690, 'videoconference': 8691, 'Videoconference': 8692, 'Room': 8693, 'Associate': 8694, 'Recruiting': 8695, '26th': 8696, 'conferenced': 8697, 'Nella': 8698, 'Fagan': 8699, 'propose': 8700, 'confusion': 8701, 'responded': 8702, 'TCA': 8703, 'Tabors': 8704, 'Alberta': 8705, 'Export': 8706, '050901.doc': 8707, 'Rob': 8708, 'redlined': 8709, 'Access': 8710, 'Pricing': 8711, 'Analysis_0712': 8712, 'Article': 8713, 'section': 8714, '5.1': 8715, 'outage': 8716, 'TAU': 8717, 'Katie': 8718, 'Kaplan': 8719, 'kaplan@iepa.com': 8720, '10/27/2000': 8721, '06:20': 8722, 'kaplan': 8723, 'Greetings': 8724, 'IEP': 8725, 'historic': 8726, 'Julia': 8727, 'Sacramento': 8728, 'targeting': 8729, '100,000': 8730, 'contributions': 8731, 'respondents': 8732, 'COB': 8733, 'Policy': 8734, '916': 8735, '448-9499': 8736, 'heat': 8737, 'Hoecker': 8738, 'chats': 8739, 'post-call': 8740, 'regroup': 8741, 'Jeremy': 8742, 'Meier': 8743, 'jermeier@earthlink.net': 8744, '10/29/2000': 8745, '11:48': 8746, 'instructive': 8747, 'Robbie': 8748, 'et': 8749, 'MSA': 8750, 'certification': 8751, 'await': 8752, 'tariff': 8753, 'CPUC': 8754, 'addresses': 8755, 'Rossi': 8756, 'Michelle': 8757, 'Melissa': 8758, 'Lloyd': 8759, 'Blumenfeld': 8760, 'Cohen': 8761, 'Cal': 8762, 'Markets': 8763, 'Lara': 8764, 'Leibman@ENRON': 8765, '10/31/2000': 8766, '03:48': 8767, 'Angie': 8768, 'Buis': 8769, '10/31/00': 8770, '02:17': 8771, '11/2': 8772, 'dial': 8773, '1-877-331-6867': 8774, 'participants': 8775, 'prompted': 8776, '600-480': 8777, 'Wayne': 8778, '4434': 8779, 'dialing': 8780, '857-771': 8781, 'operator': 8782, 'duration': 8783, '3.5': 8784, 'terminate': 8785, 'x-37097': 8786, 'filed': 8787, 'Industry': 8788, 'Restructuring': 8789, 'Strategy': 8790, 'Motion': 8791, 'Approval': 8792, 'thirty': 8793, 'signatories': 8794, 'appendices': 8795, 'electronically': 8796, 'shipped': 8797, 'Additional': 8798, 'participated': 8799, 'devoted': 8800, 'ratepayer': 8801, 'advocates': 8802, 'customers': 8803, 'generators': 8804, 'marketers': 8805, 'shippers': 8806, 'providers': 8807, ',?': 8808, 'suppliers': 8809, 'producers': 8810, 'utilities': 8811, 'aggregators': 8812, 'pipeline': 8813, 'municipalities': 8814, 'accomplishment': 8815, 'Assignments': 8816, 'resting': 8817, 'laurels': 8818, 'ld2d-#69366-1.DOC': 8819, 'ld2d-#69345-1.DOC': 8820, 'ld2d-#69397-1.DOC': 8821, 'ld2d-#69396-1.DOC': 8822, 'ld2d-#69377-1.XLS': 8823, 'ld2d-#69381-1.DOC': 8824, 'ld2d-#69336-1.XLS': 8825, 'Primary': 8826, '4-12': 8827, 'ld2d-#69334-1.DOC': 8828, 'Severin': 8829, 'Borenstein': 8830, 'E.T.': 8831, 'Grether': 8832, 'Haas': 8833, 'U.C.': 8834, 'Institute': 8835, '2539': 8836, 'Channing': 8837, 'Way': 8838, 'Berkeley': 8839, '94720-1900': 8840, '94720-5180': 8841, 'p': 8842, '510-642-3689': 8843, '510-642-5145': 8844, '707-885-2508': 8845, 'http://www.ucei.berkeley.edu/ucei': 8846, 'borenste@haas.berkeley.edu': 8847, 'WWW': 8848, 'http://haas.berkeley.edu/~borenste': 8849, 'rough': 8850, 'CEM': 8851, 'distributed': 8852, 'GA': 8853, 'Steffes': 8854, 'Topic': 8855, 'PUC': 8856, 'Priorities': 8857, 'Goal': 8858, 'refute': 8859, 'Loretta': 8860, 'Lynch': 8861, 'Carl': 8862, 'Woods': 8863, 'assertions': 8864, 'deregulate': 8865, 'clock': 8866, 'alter': 8867, 'Comments': 8868, 'Laird': 8869, 'S.D.': 8870, 'shaped': 8871, '8:35': 8872, 'southwest': 8873, 'Sandi': 8874, 'sez': 8875, 'renewable': 8876, '03/08/2000': 8877, '09:45': 8878, 'Fyi': 8879, 'Justin': 8880, 'Marly': 8881, 'suffix': 8882, 'ONLINE': 8883, 'purely': 8884, 'descriptive': 8885, 'registration': 8886, 'incorporates': 8887, 'owner': 8888, 'adequate': 8889, 'core': 8890, 'logo': 8891, 'Jonathan': 8892, 'Goddard': 8893, '08/03/2000': 8894, 'X37047': 8895, 'proceeded': 8896, 'TM': 8897, 'affords': 8898, 'akin': 8899, 'McDonald': 8900, 'trademarks': 8901, 'Mc': 8902, '01:50': 8903, 'trademarking': 8904, 'covered': 8905, 'EnronEAuction': 8906, 'register': 8907, '____________________________________________________________': 8908, 'mistake': 8909, 'disclose': 8910, 'contents': 8911, 'Edmund': 8912, 'non-approved': 8913, 'Austria': 8914, 'Croatia': 8915, 'Czech': 8916, 'Poland': 8917, 'Portugal': 8918, 'Romania': 8919, 'Slovenia': 8920, 'Below': 8921, 'Jurisdictions': 8922, 'derivatives': 8923, 'Finland': 8924, 'Norway': 8925, 'Sweden': 8926, 'U.K': 8927, 'Gibraltar': 8928, 'Scotland': 8929, 'incorporated': 8930, 'jurisdiction': 8931, 'U.K.': 8932, 'Cappelletto': 8933, 'compliance': 8934, 'OTC': 8935, 'Derivatives': 8936, 'Contracts': 8937, 'Qualified': 8938, 'Securities': 8939, 'Act': 8940, 'annual': 8941, 'comply': 8942, 'Canadian': 8943, 'provinces': 8944, 'eligible': 8945, 'participant': 8946, 'equivalant': 8947, 'Molly': 8948, 'Harris': 8949, '05:37': 8950, '3/8/00': 8951, '...?!!!': 8952, 'Crawfish': 8953, 'Boil': 8954, 'Garden': 8955, 'Heights': 8956, '3926': 8957, 'Feagan': 8958, 'celebration': 8959, 'anniversary': 8960, 'Nat': 8961, 'futures': 8962, 'Shankman': 8963, 'Arnold': 8964, 'amendment': 8965, 'BC': 8966, 'executed': 8967, 'Representation': 8968, 'rep': 8969, 'confirms': 8970, 'ECC': 8971, 'Much': 8972, 'Amendment': 8973, 'Subscription': 8974, 'WeatherTrade': 8975, 'amends': 8976, 'Fee': 8977, 'subparagraph': 8978, 'c': 8979, 'Copies': 8980, 'Updating': 8981, 'B.': 8982, 'mergers': 8983, 'cpys': 8984, 'Tom': 8985, 'freeze': 8986, 'button': 8987, 'clicked': 8988, 'popped': 8989, 'unfreeze': 8990, 'scoop': 8991, 'Wow': 8992, 'Carol': 8993, 'Kuykendall': 8994, '03/09/2000': 8995, '03:51': 8996, 'hi': 8997, 'Arco': 8998, 'Products': 8999, 'adn': 9000, 'Torrey': 9001, 'ARCO': 9002, 'thorny': 9003, 'e-commerce': 9004, 'contracting': 9005, 'ETA_revision0307.doc': 9006, 'representation': 9007, 'Confirmation': 9008, 'Desk': 9009, '05:39': 9010, '3/9/00': 9011, 'Probably': 9012, 'Frank': 9013, 'Australian': 9014, '03/10/2000': 9015, '3/10/00': 9016, '04/04/2001': 9017, '09:27': 9018, 'Merchanting': 9019, 'Metals': 9020, 'substantiation': 9021, 'allocated': 9022, 'monitored': 9023, 'signoff': 9024, '03/04/2001': 9025, '16:29': 9026, 'intention': 9027, 'documented': 9028, 'robust': 9029, 'tonnage': 9030, 'timely': 9031, 'debtors': 9032, 'creditor': 9033, 'balances': 9034, 'OBSF': 9035, 'transactional': 9036, 'barclays': 9037, 'intercompany': 9038, 'continuing': 9039, 'AS400': 9040, 'inconsistency': 9041, 'useability': 9042, 'outright': 9043, 'screen': 9044, 'enquiry': 9045, 'AA': 9046, 'macro': 9047, 'transparent': 9048, 'accounting': 9049, 'Consequently': 9050, 'inform': 9051, 'misstated': 9052, 'simplifications': 9053, 'reconciling': 9054, 'analyses': 9055, 'enquiries': 9056, 'timetable': 9057, 'outline': 9058, 'reprioritised': 9059, 'rescoped': 9060, 'MO': 9061, 'incentive': 9062, 'awards': 9063, 'unsociable': 9064, 'objectives': 9065, 'headcount': 9066, 'duplicate': 9067, 'replacing': 9068, 'Traffic': 9069, 'mm': 9070, 'exists': 9071, 'DPR': 9072, 'p&l': 9073, 'investigate': 9074, 'misstatements': 9075, 'timeframe': 9076, 'retention': 9077, 'economically': 9078, 'reconciled': 9079, 'repeatable': 9080, 'instigated': 9081, 'prioritised': 9082, 'circularisation': 9083, '23rd': 9084, 'returns': 9085, 'co-ordination': 9086, 'requiring': 9087, 'download': 9088, 'vanilla': 9089, 'Barclays': 9090, 'recalculation': 9091, 'utilising': 9092, 'manually': 9093, 'creditors': 9094, 'needing': 9095, '21/03/2001': 9096, '18:20': 9097, 'Complexities': 9098, 'Sheet': 9099, 'Facility': 9100, 'commenced': 9101, 'uncertainty': 9102, 'revocation': 9103, 'bugs': 9104, 'functionality': 9105, 'compounded': 9106, 'operational': 9107, 'burden': 9108, 'amend': 9109, 'renegotiation': 9110, 'developer': 9111, 'resigned': 9112, 'gardening': 9113, 'lower': 9114, 'usage': 9115, 'irrespective': 9116, 'parochial': 9117, 'mitigating': 9118, 'levels': 9119, 'assurance': 9120, 'accuracy': 9121, 'Q1': 9122, 'delayed': 9123, 'decoupled': 9124, 'Brokerage': 9125, 'developers': 9126, 'AR': 9127, 'AP': 9128, 'reviews': 9129, 'businesses': 9130, 'components': 9131, 'covering': 9132, 'summarised': 9133, 'contingencies': 9134, 'build': 9135, 'VBA': 9136, 'excel': 9137, 'downloads': 9138, 'User': 9139, 'commence': 9140, 'resubstantiation': 9141, 'completed': 9142, 'inventory': 9143, 'Inspection': 9144, 'inspectors': 9145, 'expectation': 9146, 'replies': 9147, 'Substantive': 9148, 'checks': 9149, 'priced': 9150, 'unpriced': 9151, 'spot': 9152, 'Full': 9153, 'substantiating': 9154, 'existence': 9155, 'applicable': 9156, 'invoices': 9157, 'substantive': 9158, 'x34703': 9159, 'disappointed': 9160, 'TEXAS': 9161, 'Graduate': 9162, 'felt': 9163, 'experiences': 9164, 'recommendations': 9165, 'extracurricular': 9166, 'compensate': 9167, 'Professors': 9168, 'Titman': 9169, 'Ronn': 9170, 'Jemison': 9171, 'courses': 9172, 'Admissions': 9173, 'retaking': 9174, 'GMAT': 9175, 'monumental': 9176, 'successful': 9177, 'Sincerely': 9178, 'Rogers': 9179, 'favorable': 9180, 'chances': 9181, 'UT': 9182, 'learning': 9183, 'retake': 9184, 'commitee': 9185, 'extrcurricular': 9186, 'committment': 9187, 'dialague': 9188, 'Private': 9189, 'Equity': 9190, 'Fund': 9191, 'banking': 9192, 'Teco': 9193, 'O&M': 9194, 'costs': 9195, 'depicts': 9196, 'valuing': 9197, 'booking': 9198, 'curve': 9199, 'Hub': 9200, 'converting': 9201, 'MWh': 9202, 'volatilities': 9203, 'intra-day': 9204, 'blend': 9205, 'blending': 9206, 'formula': 9207, 'vols': 9208, '15th': 9209, 'twenty': 9210, 'deducting': 9211, 'SPRDOPT': 9212, 'Exotic': 9213, 'Options': 9214, 'function': 9215, 'VOM': 9216, 'stream': 9217, 'P&I': 9218, 'principal': 9219, 'Yvan': 9220, 'probability': 9221, 'misunderstanding': 9222, 'Furthermore': 9223, 'reiterate': 9224, 'RAC': 9225, 'reserve': 9226, 'methodology': 9227, 'ii': 9228, 'inherent': 9229, 'matches': 9230, 'enables': 9231, 'appropriately': 9232, 'Randy': 9233, 'Gallup': 9234, 'Compression': 9235, 'ECS': 9236, 'obligates': 9237, 'faith': 9238, 'CDEC': 9239, 'automated': 9240, 'automatically': 9241, 'alerted': 9242, 'peak': 9243, 'loading': 9244, 'complete': 9245, 'obligated': 9246, 'Transwestern': 9247, 'developing': 9248, 'accomplish': 9249, 'harmless': 9250, 'mentions': 9251, 'managing': 9252, 'mitigate': 9253, 'tilt': 9254, 'TW': 9255, 'flexibiltiy': 9256, 'absence': 9257, 'communicate': 9258, 'teh': 9259, 'info.': 9260, 'excuse': 9261, 'DF': 9262, 'Centilli': 9263, '12/14/2000': 9264, '02:49': 9265, 'Nemec': 9266, 'Service': 9267, 'Contract': 9268, 'Load': 9269, 'compressor': 9270, '200,987.33': 9271, 'incurred': 9272, 'remainder': 9273, 'averaging': 9274, '79,000': 9275, 'bidders': 9276, 'bidding': 9277, 'chunk': 9278, 'primary': 9279, 'deemed': 9280, 'alternate': 9281, 'primaries': 9282, 'alternates': 9283, 'None': 9284, 'importantly': 9285, 'memorializes': 9286, 'nailed': 9287, 'underlying': 9288, 'pro': 9289, 'forma': 9290, 'discount': 9291, 'Topack': 9292, 'Needles': 9293, '01/11/2001': 9294, '02:42': 9295, 'Dynegy': 9296, 'agreements': 9297, 'pls': 9298, 'df': 9299, 'format': 9300, 'kinda': 9301, 'topics': 9302, 'asap': 9303, 'MK': 9304, 'whasssup': 9305, 'rehearing': 9306, 'Stojic': 9307, 'Kelly': 9308, 'DENISE': 9309, 'LAGESSE': 9310, '01/12/2001': 9311, '10:34': 9312, 'Forgot': 9313, 'Drew': 9314, 'Fossum': 9315, '04:37': 9316, 'Lou': 9317, 'Huber': 9318, 'chair': 9319, 'Norma': 9320, '01:14': 9321, 'authorization': 9322, 'Aeron': 9323, '47': 9324, 'type': 9325, 'surplus': 9326, '567.77': 9327, 'lou': 9328, '01/13/2001': 9329, 'Sommer': 9330, 'MKM': 9331, 'spies': 9332, 'Stan': 9333, 'Dari': 9334, 'vented': 9335, 'aggravation': 9336, 'drafting': 9337, 'Gibson': 9338, 'complaining': 9339, 'duplicity': 9340, 'tempers': 9341, 'cooled': 9342, 'strongly': 9343, 'coordinated': 9344, 'orally': 9345, 'phonne': 9346, 'Yea': 9347, 'hoss': 9348, 'Ca': 9349, '14721': 9350, 'Evan': 9351, 'completing': 9352, 'CEC': 9353, 'CAEM': 9354, 'Directors': 9355, 'Hotel': 9356, 'conjunction': 9357, 'DISCO': 9358, 'Future': 9359, 'www.caem.org': 9360, 'Following': 9361, 'session': 9362, 'convention': 9363, 'unfortunately': 9364, 'reserved': 9365, 'block': 9366, 'rooms': 9367, 'nearby': 9368, 'Wyndham': 9369, 'lodging': 9370, 'hotels': 9371, 'Duncan': 9372, '202.739.0134': 9373, 'Mangold': 9374, '703.729.2710': 9375, 'H': 9376, 'NW': 9377, '20001': 9378, '202.582.1234': 9379, '1.800.233.1234': 9380, '202.637.4781': 9381, 'http://washington.hyatt.com/wasgh/index.html': 9382, '1400': 9383, '20005': 9384, '202.429.1700': 9385, '1.877.999.3223': 9386, '202.785.0786': 9387, 'http://www.wyndham.com/Washington_DC/default.cfm': 9388, 'Lora': 9389, 'Sullivan@ENRON': 9390, '07/19/2001': 9391, '03:31': 9392, 'Ace': 9393, 'Reporters': 9394, 'transcripts': 9395, 'Robertson': 9396, 'Affairs': 9397, '1775': 9398, '20006': 9399, '202-466-9142': 9400, '202-828-3372': 9401, 'lora.sullivan@enron.com': 9402, 'Ursula': 9403, 'BRADLEY': 9404, 'JR': 9405, 'ROBERT': 9406, 'L': 9407, 'Evaluation': 9408, 'Associates': 9409, 'Analysts': 9410, 'blank': 9411, 'retrieved': 9412, 'PEP': 9413, 'evaluations': 9414, 'Evaluations': 9415, 'BRENNER': 9416, 'URSULA': 9417, 'J.doc': 9418, 'Jean': 9419, 'Thane': 9420, 'communicating': 9421, 'commissioners': 9422, 'Ercot': 9423, 'responsive': 9424, 'ignored': 9425, 'complaints': 9426, 'complain': 9427, 'PUCT': 9428, 'Wood': 9429, 'Noel': 9430, 'legacy': 9431, 'recognizes': 9432, 'repercussions': 9433, 'Sibley': 9434, 'Wolens': 9435, 'legislature': 9436, 'engaged': 9437, 'apprised': 9438, 'Electric': 9439, 'forum': 9440, 'invitees': 9441, 'Commissioners': 9442, 'Sam': 9443, 'probing': 9444, 'a.m': 9445, 'PRS': 9446, '9:30': 9447, 'budget': 9448, 'Walking': 9449, 'Presto': 9450, 'ERCOT': 9451, 'reflective': 9452, 'ISO': 9453, 'fixes': 9454, 'messaging': 9455, 'constructive': 9456, 'FORMAL': 9457, 'PLAN': 9458, 'leverage': 9459, 'Becky': 9460, 'outgrowth': 9461, 'Leslie': 9462, 'Hunter': 9463, 'summaries': 9464, 'Fundamentals': 9465, 'intranet': 9466, 'envision': 9467, 'meantime': 9468, 'Kaminski@ECT': 9469, '04/30/2001': 9470, '02:28': 9471, 'Percell': 9472, 'extensive': 9473, 'modeling': 9474, 'Science': 9475, 'Advance': 9476, 'Mathematics': 9477, 'optimization': 9478, 'numerical': 9479, 'improve': 9480, 'efficiency': 9481, 'introducing': 9482, 'executives': 9483, 'arrangements': 9484, 'percell@swbell.net': 9485, '11:16:58': 9486, 'briefly': 9487, 'afterwards': 9488, 'SIAM': 9489, 'Workshop': 9490, 'simulation': 9491, 'software': 9492, 'products': 9493, 'utilize': 9494, 'mathematical': 9495, 'confines': 9496, 'qualifications': 9497, 'addendum': 9498, 'academic': 9499, 'consulting': 9500, '10030': 9501, 'Doliver': 9502, '77042-2016': 9503, '532-3836': 9504, 'Percell,': 9505, 'Resume': 9506, 'Only.doc': 9507, 'Exp.doc': 9508, 'Contact': 9509, 'Stark': 9510, 'Nasim': 9511, 'Khan@TRANSREDES': 9512, '12:42': 9513, 'assignment': 9514, 'NK': 9515, 'Stanley': 9516, 'Horton@ENRON': 9517, '12:35': 9518, '09:24': 9519, '11th': 9520, 'posting': 9521, 'belonged': 9522, 'Danny': 9523, 'Danny_Jones%ENRON@eott.com': 9524, '01:39:56': 9525, 'Horton': 9526, '0000108806': 9527, 'department': 9528, 'aviation': 9529, 'hangar': 9530, 'attendant': 9531, 'enron': 9532, 'persue': 9533, 'feild': 9534, 'respectfully': 9535, 'recommendation': 9536, 'referral': 9537, 'ETS': 9538, 'Anything': 9539, 'Respectfully': 9540, '281-443-3744': 9541, 'smithjones@ev1.net': 9542, '05/01/2001': 9543, 'Fehl': 9544, 'Hannon': 9545, 'WNBA': 9546, 'Comets': 9547, '104': 9548, 'Row': 9549, 'Seats': 9550, 'Preseason': 9551, 'Game': 9552, '7:30': 9553, 'SOL': 9554, 'Detroit': 9555, 'SHOCK': 9556, 'Los': 9557, 'Angeles': 9558, 'SPARKS': 9559, 'FIRE': 9560, '17': 9561, 'STARZZ': 9562, 'MYSTICS': 9563, 'MONARCHS': 9564, 'Indiana': 9565, 'FEVER': 9566, 'Cleveland': 9567, 'ROCKERS': 9568, '12:30': 9569, 'LIBERTY': 9570, 'Seattle': 9571, 'STORM': 9572, 'Orlando': 9573, 'MIRACLE': 9574, 'MERCURY': 9575, 'Minnesota': 9576, 'LYNX': 9577, 'listings': 9578, '713/853-6197': 9579, 'Mailing': 9580, 'iis': 9581, 'Stephen.Dyer@bakerbotts.com': 9582, '08:50:01': 9583, 'Took': 9584, 'Adam': 9585, 'SD': 9586, 'Billy': 9587, 'Dorsey@ENRON_DEVELOPMENT': 9588, '05/02/2001': 9589, '12:03': 9590, 'Weekly': 9591, 'CDT': 9592, 'Location': 9593, '50th': 9594, 'Boardroom': 9595, 'Video': 9596, 'Connections': 9597, 'remote': 9598, 'Conf': 9599, 'AT&T': 9600, 'Sherri': 9601, 'Sera': 9602, '713/853-5984': 9603, 'Dorsey': 9604, '713/646-6505': 9605, 'medium': 9606, '_______': 9607, '12:00': 9608, '4th': 9609, 'committments': 9610, 'divisions': 9611, 'Password': 9612, 'Application': 9613, 'applicant': 9614, 'database': 9615, 'Parent': 9616, 'ID': 9617, 'provides': 9618, 'downstream': 9619, 'Stephanie': 9620, 'Ferrous': 9621, 'preference': 9622, 'division': 9623, 'Samuel': 9624, 'Schott': 9625, '03/21/2001': 9626, '01:58': 9627, 'highlighted': 9628, 'Attn.': 9629, 'GCP_London': 9630, 'Rgds': 9631, 'x3-9890': 9632, 'ENW_GCP': 9633, 'Cass': 9634, '04/16/2001': 9635, '04:52': 9636, 'Datamanager': 9637, 'Steel': 9638, 'Hot': 9639, 'Rolled': 9640, 'Plate': 9641, 'Phy': 9642, 'Short': 9643, 'Type': 9644, 'Stl': 9645, 'Plt': 9646, 'Reference': 9647, 'Termination': 9648, 'rolled': 9649, 'steel': 9650, 'thickness': 9651, 'width': 9652, '72': 9653, 'inches': 9654, 'F.O.B.': 9655, 'Marine': 9656, 'Ill': 9657, 'Metro': 9658, 'Area': 9659, 'Seller': 9660, 'freight': 9661, 'unloading': 9662, 'warehouse': 9663, 'Buyer': 9664, 'quantity': 9665, 'lesser': 9666, 'allowance': 9667, 'Each': 9668, 'Dispatch': 9669, 'guarantee': 9670, 'supply': 9671, 'receipt': 9672, 'outlined': 9673, 'Terms': 9674, 'Conditions': 9675, 'Contractual': 9676, 'telegraphic': 9677, 'Unit': 9678, 'Measure': 9679, 'net': 9680, 'STEPS': 9681, 'APPROVAL': 9682, 'click': 9683, 'START': 9684, 'select': 9685, 'PROGRAMS': 9686, 'TEST': 9687, 'APPLICATIONS': 9688, 'ENRONONLINE': 9689, 'CLUSTER': 9690, 'PROD': 9691, 'PROCEED': 9692, 'USUAL': 9693, 'LOGIN': 9694, 'PASSWORD': 9695, 'Production': 9696, 'Cluster': 9697, 'EnronOnLine': 9698, 'Types': 9699, 'Awaiting': 9700, 'Partially': 9701, 'Approved': 9702, 'mouse': 9703, 'properties': 9704, 'APPROVE': 9705, 'Hare': 9706, '05:51': 9707, 'Incorporated': 9708, 'setups': 9709, 'confirmation': 9710, 'reads': 9711, 'compromising': 9712, 'customer': 9713, 'Applications': 9714, 'transact': 9715, 'understandably': 9716, 'upset': 9717, '03:11': 9718, '03/28/2001': 9719, '01:09': 9720, 'System': 9721, 'Sub': 9722, 'Cheryl': 9723, 'Johnson': 9724, 'Name': 9725, '_': 9726, 'Data': 9727, 'Tradename': 9728, 'broken': 9729, 'defeats': 9730, 'Doc': 9731, 'eve.': 9732, 'MHC': 9733, 'voicemail': 9734, 'Butcher': 9735, 'handled': 9736, 'sessions': 9737, 'Kriste': 9738, 'K.': 9739, '4861': 9740, '853-7557': 9741, '646-5847': 9742, '08:00': 9743, 'Pacific': 9744, 'Tijuana': 9745, 'Conf.': 9746, '*~*~*~*~*~*~*~*~*~*': 9747, 'PST': 9748, '800/711-8000': 9749, 'Passcode': 9750, '4153030': 9751, 'Henderson': 9752, 'Employment': 9753, 'Cash': 9754, 'Brad': 9755, 'Seleznov': 9756, 'herewith': 9757, 'intentions': 9758, 'Dealbench': 9759, 'Word': 9760, 'Tobias': 9761, 'Munk': 9762, 'Teresa': 9763, 'Lund': 9764, 'Bridgeline': 9765, 'non-compete': 9766, 'formatting': 9767, 'SSD': 9768, '220b': 9769, 'dg': 9770, 'Services.doc': 9771, '220a': 9772, 'DG': 9773, 'Services.DOC': 9774, 'Agreements': 9775, 'Diane': 9776, 'Goode': 9777, 'groan': 9778, 'GIS': 9779, 'ids': 9780, 'Eid': 9781, 'migrate': 9782, 'Brandee': 9783, 'Sanborn': 9784, 'I.S.C.': 9785, 'Customer': 9786, 'Care': 9787, 'Process': 9788, 'http://isc.enron.com/site': 9789, 'OLE': 9790, 'Object': 9791, 'Ngoc': 9792, 'Luan': 9793, 'Do@ENRON_DEVELOPMENT': 9794, '08/07/2001': 9795, '12:36': 9796, 'Whom': 9797, 'Concern': 9798, 'Through': 9799, 'identity': 9800, 'fraud': 9801, 'stolen': 9802, 'identification': 9803, 'IDs': 9804, 'SS': 9805, 'safer': 9806, 'bus': 9807, 'databases': 9808, 'sourcing': 9809, 'badge': 9810, 'safeguard': 9811, 'Points': 9812, '3.30': 9813, '5.30': 9814, '46C1': 9815, 'Leads': 9816, 'Sunjay': 9817, 'Arya': 9818, 'Gary': 9819, 'Khymberly': 9820, 'Booth': 9821, 'Mecole': 9822, 'Tim': 9823, \"O'Rourke\": 9824, 'Cashion': 9825, 'Sheila': 9826, 'Walton': 9827, 'Wendy': 9828, 'Fincher': 9829, 'Knudsen': 9830, 'Karen': 9831, 'Phillips': 9832, 'Davies': 9833, 'Skinner': 9834, 'Shanna': 9835, 'Funkhouser': 9836, 'Peer': 9837, 'gathered': 9838, 'Upon': 9839, 'contacting': 9840, 'projects': 9841, 'rotation': 9842, 'contribution': 9843, 'x54667': 9844, 'occur': 9845, \"Ya'll\": 9846, 'Sandra': 9847, 'McMahon': 9848, 'Affirmative': 9849, 'Action': 9850, 'demographic': 9851, 'workforce': 9852, 'origin': 9853, 'nationality': 9854, 'Skilling': 9855, 'HBS': 9856, 'study': 9857, 'Modern': 9858, 'Giants': 9859, 'shadow': 9860, 'morph': 9861, 'earliest': 9862, 'convience': 9863, 'Try': 9864, 'bob': 9865, 'NEPCO': 9866, 'picketing': 9867, 'pipe': 9868, 'fitters': 9869, 'picket': 9870, 'interfere': 9871, 'Olgletree': 9872, 'Stubley': 9873, 'Indivero': 9874, 'jobsite': 9875, 'Construction': 9876, 'Osler': 9877, 'visiting': 9878, 'Building': 9879, 'Planning': 9880, 'Zoning': 9881, 'dept': 9882, 'pipefitters': 9883, 'inquired': 9884, 'Apparently': 9885, 'Payne': 9886, 'Creek': 9887, 'counsel': 9888, 'Croall': 9889, 'Galen': 9890, 'Torneby': 9891, '11831': 9892, 'Parkway': 9893, 'Bothell': 9894, 'WA': 9895, '98011': 9896, '425-415-3052': 9897, '425-922-0475': 9898, '425-415-3098': 9899, 'mailto:galent@nepco.com': 9900, 'mailto:galen.torneby@nepco.com': 9901, 'Hopkinson@ENRON_DEVELOPMENT': 9902, '09/16/99': 9903, '10:07': 9904, 'invitaion': 9905, 'Shackleton@ECT': 9906, '08:55': 9907, 'wise': 9908, 'Felix': 9909, 'Araujo': 9910, 'Cintra': 9911, 'Tozzini': 9912, 'derivative': 9913, 'Sao': 9914, 'Paulo': 9915, 'Sept': 9916, 'BA': 9917, 'Marval': 9918, '10:16': 9919, '___________________________________________': 9920, 'Warning': 9921, 'Em-enro2.doc': 9922, 'cancelled': 9923, 'Andrea': 9924, 'Bertone@ENRON_DEVELOPMENT': 9925, '09/15/99': 9926, '04:41': 9927, '08:15': 9928, 'Daniel': 9929, 'R': 9930, 'Castagnola@ENRON_DEVELOPMENT': 9931, '05/17/99': 9932, '01:47': 9933, 'Looks': 9934, '11:23': 9935, 'extension': 9936, '35620': 9937, 'luncheon': 9938, 'comprehensive': 9939, 'pertinent': 9940, 'reschedule': 9941, 'Obviously': 9942, 'LA.': 9943, 'eligibility': 9944, '09/03/99': 9945, '01:57': 9946, 'sided': 9947, 'laminated': 9948, 'Lunch': 9949, 'L/C': 9950, 'Manogue': 9951, 'doc': 9952, 'lined': 9953, 'Fedexed': 9954, 'overnight': 9955, 'S&S': 9956, 'gtee': 9957, 'l/c': 9958, 'drops': 9959, 'bank': 9960, 'refuses': 9961, 'docs': 9962, \"one's\": 9963, 'issuing': 9964, 'owe': 9965, 'Phoebe': 9966, 'Chloe': 9967, 'N.O.': 9968, 'Memphis': 9969, 'Eleuthra': 9970, 'Petersburg': 9971, 'Amelia': 9972, 'Plantation': 9973, '380': 9974, 'SE': 9975, 'scaring': 9976, 'usual': 9977, 'selling': 9978, 'burgers': 9979, 'franchise': 9980, 'SARA': 9981, 'SamChawk@aol.com': 9982, '09/11/99': 9983, '07:48:44': 9984, 'stranger': 9985, 'SAM': 9986, 'tells': 9987, 'Cone': 9988, '.....': 9989, 'iii': 9990, 'definitive': 9991, 'discretion': 9992, 'Quick': 9993, '09/17/99': 9994, '04:50': 9995, 'Nordic': 9996, 'tks': 9997, '09:48': 9998, 'JMB': 9999, 'JBennett@GMSSR.com': 10000, '12/22/2000': 10001, '06:28': 10002, 'Parties': 10003, 'procedural': 10004, 'hearings': 10005, '12/27': 10006, '12/28': 10007, 'moments': 10008, 'holidays': 10009, 'Angela': 10010, 'Minkin': 10011, '1%P701!.doc': 10012, 'Lindh': 10013, 'FRL3@pge.com': 10014, '12/21/2000': 10015, '07:50': 10016, 'Confidential': 10017, 'Rule': 10018, 'Participants': 10019, 'workshops': 10020, 'Maintains': 10021, '2007': 10022, 'Offers': 10023, 'Provides': 10024, 'vintaged': 10025, 'Redwood': 10026, '7.5': 10027, 'cent': 10028, 'dth': 10029, 'minimizing': 10030, 'bypass': 10031, 'Adopts': 10032, 'reliability': 10033, 'escalator': 10034, 'adjustable': 10035, 'Preserves': 10036, 'differential': 10037, 'Baja': 10038, 'paths': 10039, 'Proposes': 10040, 'aggregation': 10041, 'anticipates': 10042, 'Core': 10043, 'Procurement': 10044, 'Incentive': 10045, 'Mechanism': 10046, 'CPIM': 10047, 'holdings': 10048, 'anticipated': 10049, 'increases': 10050, 'feedback': 10051, 'Attachment': 10052, 'workpapers': 10053, 'extend': 10054, 'wishes': 10055, 'holiday': 10056, 'Ray': 10057, 'Williams': 10058, '415': 10059, '973-2776': 10060, '973-3634': 10061, '12-20-00.doc': 10062, 'Proposed': 10063, '27.doc': 10064, 'COS': 10065, 'Rates': 10066, 'Workpapers': 10067, '12-20-2000': 10068, 'Proposal.xls': 10069, 'stabilization': 10070, 'Jeffrey': 10071, 'Few': 10072, 'fleshing': 10073, 'pager': 10074, '888.916.7184': 10075, '415.782.7822': 10076, '415.621.8317': 10077, 'finalize': 10078, '800.713.8600': 10079, 'Code': 10080, '80435': 10081, '12/26/2000': 10082, '03:15': 10083, 'Going': 10084, 'wild': 10085, 'ride': 10086, 'Kingerski': 10087, '03:33': 10088, 'acknowledge': 10089, 'modest': 10090, 'reasoned': 10091, 'whim': 10092, 'overly': 10093, 'prescriptive': 10094, 'excellently': 10095, 'perishable': 10096, 'observations': 10097, 'OBSERVATION': 10098, 'finger': 10099, 'gouging': 10100, 'bent': 10101, 'spikes': 10102, 'pose': 10103, 'risks': 10104, 'refunds': 10105, 'Reliant': 10106, 'Duke': 10107, 'Barton': 10108, 'democrat': 10109, 'Filner': 10110, 'locked': 10111, 'Bilbray': 10112, '---': 10113, 'lauded': 10114, 'Wolak': 10115, 'emphatically': 10116, 'culprit': 10117, 'screwed': 10118, 'incentives': 10119, 'embedded': 10120, 'IMPLICATION': 10121, 'prudent': 10122, 'fingered': 10123, 'clamoring': 10124, 'subsides': 10125, 'stunk': 10126, 'profited': 10127, 'consumers': 10128, 'w/out': 10129, 'declaring': 10130, 'fashion': 10131, 'finesse': 10132, 'specify': 10133, 'Shawna': 10134, 'Johnson@ENRON': 10135, '02/22/2001': 10136, 'Programs': 10137, 'Penn': 10138, 'undergraduate': 10139, 'campus': 10140, 'interviewing': 10141, 'interns': 10142, 'interviewers': 10143, '1st': 10144, 'interviewer': 10145, 'Campus': 10146, 'Place': 10147, 'Pennsylvania': 10148, 'Interviews': 10149, 'Inn': 10150, 'Pen': 10151, 'Interviewers': 10152, 'McGowan': 10153, 'Jen': 10154, 'Fraser': 10155, 'Rhee': 10156, 'Hilgert': 10157, 'referrals': 10158, 'VP': 10159, 'ext': 10160, '58369': 10161, 'Coordinator': 10162, 'Kushnick': 10163, 'skush@swbell.net': 10164, '01/26/2001': 10165, '12:48': 10166, '01/25/2001': 10167, '09:40': 10168, 'Byargeon': 10169, 'Loch': 10170, 'offshore': 10171, 'drilling': 10172, 'supplement': 10173, 'VPP': 10174, '1/31': 10175, 'Medusa': 10176, 'involves': 10177, 'Murphy': 10178, 'Agip': 10179, 'Callon': 10180, 'Mississippi': 10181, 'Canyon': 10182, 'Blocks': 10183, '538': 10184, '582': 10185, 'reservoir': 10186, 'barrels': 10187, 'sour': 10188, 'crude': 10189, '40,000': 10190, 'bpd': 10191, '1Q': 10192, 'Quality': 10193, 'Mars': 10194, 'API': 10195, 'Gravity': 10196, '2.0': 10197, 'sulfur': 10198, 'Plans': 10199, 'Equilon': 10200, '143': 10201, 'platform': 10202, 'onshore': 10203, 'WD': 10204, 'pumps': 10205, 'floating': 10206, 'Platt': 10207, '95,000': 10208, 'Meraux': 10209, 'refinery': 10210, 'notional': 10211, 'binding': 10212, 'Amanda': 10213, 'Huble@ENRON': 10214, '01/24/2001': 10215, '01:02': 10216, 'typically': 10217, 'Hoog': 10218, '09:37': 10219, 'burdensome': 10220, 'muni': 10221, 'ended': 10222, 'downside': 10223, 'loses': 10224, 'hedging': 10225, 'collecting': 10226, 'payout': 10227, 'losing': 10228, 'combine': 10229, 'liability': 10230, 'RusAmArts@aol.com': 10231, '11:57': 10232, 'highlight': 10233, 'MMC': 10234, 'EAST': 10235, 'WHOLESALE': 10236, 'RETAIL': 10237, 'COMM': 10238, 'ENERGY': 10239, 'SERVICES': 10240, 'Resource': 10241, 'Rina': 10242, 'ENRONR~1.DOC': 10243, 'Yikes': 10244, 'Alma': 10245, 'Martinez@ENRON': 10246, '11:36': 10247, '7:35': 10248, 'lady': 10249, 'Nicki': 10250, 'yrs.': 10251, 'waited': 10252, '8:15': 10253, 'grandmother': 10254, 'Pretty': 10255, 'strange': 10256, 'aye': 10257, 'runs': 10258, 'UofH': 10259, 'accompany': 10260, 'lecture': 10261, 'departure': 10262, 'relieved': 10263, 'EGM': 10264, 'Jana': 10265, 'Giovannini': 10266, '10:51': 10267, 'volunteered': 10268, '11:42': 10269, 'recognize': 10270, 'anticipate': 10271, 'fulltime': 10272, 'Cycle': 10273, 'interviewed': 10274, 'Managers': 10275, 'round': 10276, 'buttons': 10277, '1.65': 10278, 'Great': 10279, '02:02': 10280, 'deviation': 10281, 'Eco': 10282, 'reactions': 10283, 'favourable': 10284, 'Perry@ENRON_DEVELOPMENT': 10285, '25/01/2001': 10286, '00:20': 10287, 'LNG': 10288, '272,000': 10289, '0.10': 10290, '3,300,000': 10291, 'share': 10292, '1,650,000': 10293, 'counting': 10294, 'margin': 10295, '1,922,000': 10296, 'cargo': 10297, 'Marianne': 10298, '1.1': 10299, 'parentheses': 10300, '3.1': 10301, 'proviso': 10302, 'insert': 10303, '6.1': 10304, 'semicolon': 10305, 'clause': 10306, '6.2.1': 10307, '6.3': 10308, 'reworded': 10309, 'Capitalize': 10310, 'definition': 10311, 'Average': 10312, 'Annual': 10313, 'Factor': 10314, 'Delete': 10315, 'Costs': 10316, 'Govt': 10317, 'GTC': 10318, 'ECP': 10319, 'EESI': 10320, 'reps': 10321, 'Collateral': 10322, 'comma': 10323, 'deposit': 10324, 'granting': 10325, 'perfection': 10326, 'Events': 10327, 'Default': 10328, 'dispute': 10329, 'consolidation': 10330, 'Remedies': 10331, 'UCC': 10332, 'Disclaimer': 10333, 'warranties': 10334, 'setoff': 10335, 'Clair': 10336, '3889': 10337, '713-853-3989': 10338, '713-646-3393': 10339, 'carol.st.clair@enron.com': 10340, 'Castano@EES': 10341, '05/30/2001': 10342, '11:05': 10343, 'incorporate': 10344, 'Con': 10345, 'billing': 10346, 'midmarket': 10347, 'collect': 10348, 'T&D': 10349, 'Setoff': 10350, 'affiliate': 10351, 'differently': 10352, 'harsh': 10353, 'majeure': 10354, 'soften': 10355, 'GTCs': 10356, 'calculation': 10357, 'saving': 10358, 'hybrid': 10359, 'Dietrich': 10360, 'Hillegonds': 10361, 'hiatus': 10362, 'pocket': 10363, '7/16': 10364, 'mid-July': 10365, 'Bond': 10366, 'St': 10367, '05/31/2001': 10368, '09:01': 10369, 'Phyllis': 10370, 'LC': 10371, 'transferable': 10372, 'lemelpe@NU.COM': 10373, '03:00': 10374, 'LOC': 10375, 'Mid': 10376, 'Power': 10377, 'Form': 10378, 'Christie': 10379, 'Rhonda': 10380, 'Lepore': 10381, 'Select': 10382, 'Settlements': 10383, 'reconcile': 10384, '860-665-2368': 10385, 'leporjj@selectenergy.com': 10386, 'Denton': 10387, '05/25/2001': 10388, '12:45': 10389, '5/1/01': 10390, '12:01': 10391, '6/1/01': 10392, '10:44': 10393, 'Valerie': 10394, 'Mooney': 10395, 'Sacks': 10396, 'discussing': 10397, 'tuning': 10398, 'Bruce': 10399, 'Val': 10400, 'finalizing': 10401, 'finished': 10402, 'coordinating': 10403, 'Lemell': 10404, '06/01/2001': 10405, '03:20': 10406, 'Deal': 10407, 'No.': 10408, '74419': 10409, 'Enpower': 10410, '295870': 10411, 'chnages': 10412, '06/04/01': 10413, '08:38': 10414, 'transferability': 10415, 'ICC': 10416, 'governs': 10417, 'Guaranty': 10418, 'Were': 10419, 'Interconnect': 10420, 'Questar': 10421, 'reimbursable': 10422, 'interconnect': 10423, 'payments': 10424, 'CIAC': 10425, 'ourselves': 10426, 'Para': 10427, '3.2': 10428, 'protects': 10429, 'financially': 10430, 'IRS': 10431, 'Guthrie': 10432, 'Kim': 10433, '713-853-3098': 10434, 'Trails': 10435, '02-05-02.doc': 10436, 'Earl': 10437, 'metering': 10438, 'facilities': 10439, 'ROW': 10440, 'ft': 10441, 'specifications': 10442, 'helps': 10443, 'Theirs': 10444, 'Chanley': 10445, '505-625-8031': 10446, '3.': 10447, 'departing': 10448, 'Newark': 10449, 'Rome': 10450, 'Ticket': 10451, '1,183': 10452, 'ticket': 10453, 'Janell': 10454, 'leg': 10455, 'X33098': 10456, 'telephony': 10457, 'Hotline': 10458, 'extensions': 10459, 'greetings': 10460, 'Kowalke': 10461, 'Reps.': 10462, 'notification': 10463, 'Popup': 10464, 'Critical': 10465, 'Buchanan': 10466, 'TMS': 10467, '713-853-3044': 10468, 'TK': 10469, 'hurry': 10470, 'wondering': 10471, 'Top': 10472, 'Shippers': 10473, 'Revenues': 10474, 'Browncover': 10475, 'Total': 10476, '180.9': 10477, 'revenues': 10478, 'ledger': 10479, '165.9': 10480, '10.0': 10481, 'Sempra': 10482, 'Richardson': 10483, 'Astr': 10484, '2.7': 10485, 'SoCal': 10486, '1.8': 10487, 'prepayment': 10488, 'x36709': 10489, 'richard': 10490, 'Operational': 10491, 'Accountabilities': 10492, 'interpersonal': 10493, 'mature': 10494, 'Daugherty': 10495, 'Spiritual': 10496, 'Methodist': 10497, 'Health': 10498, '6565': 10499, 'Fannin': 10500, '77030-2707': 10501, '713-793-1429': 10502, 'Page': 10503, '281-735-5919': 10504, '713-819-2784': 10505, '713-790-2605': 10506, 'Mansoor': 10507, 'attain': 10508, 'bankruptcy': 10509, 'reluctant': 10510, 'ship': 10511, 'prepaid': 10512, 'Daniels': 10513, 'Fisher': 10514, 'Rosemont': 10515, 'instrumentation': 10516, 'chromatograph': 10517, 'prepayments': 10518, 'mode': 10519, 'I/C': 10520, 'UltraSonic': 10521, 'testing': 10522, 'Kansas': 10523, 'realistic': 10524, 'Listening': 10525, 'w/': 10526, 'investors': 10527, \"'02\": 10528, 'Dunn': 10529, 'heckuvalot': 10530, 'mischief': 10531, 'detrimental': 10532, 'Investors': 10533, 'intends': 10534, 'QFs': 10535, 'haircuts': 10536, 'Figured': 10537, 'schedulers': 10538, 'shop': 10539, 'attendance': 10540, './': 10541, 'windows': 10542, 'OFOs': 10543, 'holding': 10544, 'Probing': 10545, 'palace': 10546, 'focuses': 10547, 'hikes': 10548, 'KIMBERLY': 10549, 'KINDY': 10550, 'Orange': 10551, 'Register': 10552, 'SACRAMENTO': 10553, 'subpoenas': 10554, 'investigative': 10555, 'Sen.': 10556, 'Santa': 10557, 'Ana': 10558, 'focusing': 10559, 'Shakespearean': 10560, 'twists': 10561, 'intrigue': 10562, 'Lawmakers': 10563, 'allege': 10564, 'fueled': 10565, 'Winter': 10566, 'Operator': 10567, 'defied': 10568, 'concerted': 10569, 'e-mails': 10570, 'memos': 10571, 'Maviglio': 10572, 'betrayed': 10573, 'mounting': 10574, 'Fishman': 10575, 'lights': 10576, 'megawatt': 10577, 'limits': 10578, 'seven': 10579, 'grinned': 10580, 'beared': 10581, 'cap': 10582, 'investigating': 10583, 'broke': 10584, 'Records': 10585, 'Regulatory': 10586, 'represented': 10587, 'dozens': 10588, 'sow': 10589, 'threaten': 10590, 'stifle': 10591, 'generating': 10592, 'Hall': 10593, 'coordination': 10594, 'aim': 10595, 'collusion': 10596, 'fix': 10597, 'violate': 10598, '250': 10599, 'profit': 10600, 'withhold': 10601, 'declared': 10602, 'Stage': 10603, 'braced': 10604, 'blackouts': 10605, 'narrowly': 10606, 'averted': 10607, 'pivotal': 10608, 'abolish': 10609, 'Final': 10610, 'lifting': 10611, 'rested': 10612, 'Neither': 10613, 'representatives': 10614, 'retrospect': 10615, 'regulators': 10616, 'justifying': 10617, 'sat': 10618, 'advisers': 10619, 'poker': 10620, 'accelerated': 10621, 'Prices': 10622, 'jumped': 10623, 'average': 10624, '249': 10625, '700': 10626, 'overcharges': 10627, 'exceeded': 10628, 'hurt': 10629, 'Californians': 10630, 'spike': 10631, 'skyrocketing': 10632, 'plants': 10633, 'Smutney': 10634, 'executive': 10635, 'director': 10636, 'represents': 10637, 'consult': 10638, 'unaware': 10639, 'consulted': 10640, 'Producers': 10641, 'chaos': 10642, 'defended': 10643, 'motion': 10644, 'transpired': 10645, 'clues': 10646, 'resurrect': 10647, 'recreating': 10648, 'dig': 10649, 'Vicki': 10650, 'DA': 10651, 'UDCs': 10652, 'indifferent': 10653, 'adopted': 10654, 'SCE': 10655, 'SDG&E': 10656, 'teams': 10657, 'scramble': 10658, 'golf': 10659, 'wager': 10660, 'Montavano': 10661, 'Shapiro': 10662, 'switch': 10663, 'Neal': 10664, 'Manne': 10665, 'NMANNE@SusmanGodfrey.com': 10666, '11/28/2000': 10667, '06:16': 10668, 'negotiation': 10669, 'Particularly': 10670, 'entreaty': 10671, 'RNR': 10672, 'conformity': 10673, 'arbitrators': 10674, 'ineffective': 10675, 'Accordingly': 10676, 'arbitration': 10677, 'choose': 10678, 'hardship': 10679, 'Rance@ENRON': 10680, 'percentages': 10681, 'Perkins': 10682, 'Chumley': 10683, 'contractor': 10684, 'Veronica': 10685, 'Parra': 10686, 'Nedre': 10687, 'Strambler': 10688, 'Fran': 10689, 'Mayes': 10690, 'Felicia': 10691, 'Solis': 10692, 'Carter': 10693, 'McCullough': 10694, 'Lisa': 10695, 'Mellencamp': 10696, 'Shelia': 10697, 'Tweed': 10698, 'Sanders': 10699, 'Deffner': 10700, 'Brain': 10701, 'Kerrigan': 10702, 'Worthy': 10703, 'Structuring': 10704, 'Technology': 10705, 'Alford': 10706, 'Coffman': 10707, 'Keeney': 10708, 'Insurance': 10709, 'Marshall': 10710, 'Hooser': 10711, '11:34': 10712, 'H.': 10713, 'Klimberg': 10714, 'LIPA': 10715, 'Anyone': 10716, 'Blaine@ENRON_DEVELOPMENT': 10717, '07:35': 10718, 'actins': 10719, 'manages': 10720, 'litgation': 10721, 'litigation': 10722, 'insurers': 10723, 'sued': 10724, 'Casualty': 10725, 'mb': 10726, 'steer': 10727, 'sensitivity': 10728, 'proceedings': 10729, 'Beachcrofts': 10730, 'DPC': 10731, 'Address': 10732, 'Robin': 10733, 'Gibbs': 10734, 'Montgomery@ENRON': 10735, '08:22': 10736, 'Russ': 10737, '3-5297': 10738, 'brianp@aiglincoln.com': 10739, 'Jacobs': 10740, 'rsjacobs@Encoreacq.com': 10741, '11:25': 10742, 'Rich': 10743, 'Kinga': 10744, 'Patterson': 10745, 'harass': 10746, 'pre': 10747, 'Chanukah': 10748, 'C.DTF': 10749, 'crushed': 10750, 'Williams@ENRON_DEVELOPMENT': 10751, '09:46': 10752, 'fold': 10753, 'AAA': 10754, 'atty': 10755, '11/27/2000': 10756, '10:25': 10757, '3,202.61': 10758, '11-20-2000': 10759, 'Nuria_R_Ibarra@calpx.com': 10760, '04/28/2000': 10761, '11:15:11': 10762, 'Patricia': 10763, 'Gillman': 10764, '4_28_00.doc': 10765, '09:56': 10766, 'melanie.gray@weil.com': 10767, '11/13/2000': 10768, '03:43': 10769, 'pleadings': 10770, 'A&K': 10771, 'Trustee': 10772, 'nonenforcement': 10773, 'remedies': 10774, 'pulling': 10775, 'Court': 10776, 'trustee': 10777, 'oppositon': 10778, 'Nov': 10779, '**********': 10780, 'reader': 10781, 'telephone': 10782, '713-546-5000': 10783, 'Gerry': 10784, 'Strathmann': 10785, 'gstrathmann@mediaone.net': 10786, '02:19': 10787, 'eCommerce': 10788, 'Dispute': 10789, 'Protocol': 10790, 'enthusiastic': 10791, 'Pitney': 10792, 'Bowes': 10793, 'Daimler': 10794, 'Chrysler': 10795, 'focal': 10796, 'aspirational': 10797, 'Arbitration': 10798, 'Association': 10799, 'B2B': 10800, 'validate': 10801, 'assumptions': 10802, 'refine': 10803, 'offerings': 10804, 'Initially': 10805, 'consultants': 10806, 'Ideally': 10807, 'consist': 10808, 'cross-functional': 10809, 'marketplaces': 10810, 'underway': 10811, '978-376-9004': 10812, '->': 10813, '978': 10814, '376-9004': 10815, '303-294-4499': 10816, '09:52': 10817, 'tel': 10818, 'Palmer@ENRON': 10819, '10:45': 10820, 'Leopold': 10821, 'Jason.Leopold@dowjones.com': 10822, '10:40': 10823, 'Energyphiles': 10824, 'anti-trust': 10825, 'assembled': 10826, 'battered': 10827, 'lawsuit': 10828, '550': 10829, 'b/t': 10830, '1810': 10831, 'Offices': 10832, 'Levine': 10833, 'Steinberg': 10834, 'Huver': 10835, '619-231-9449': 10836, 'complaint': 10837, 'UCAN': 10838, '***********************************': 10839, 'teacher': 10840, 'kills': 10841, 'students': 10842, 'Shames': 10843, 'Utility': 10844, 'Consumers': 10845, '1717': 10846, 'Kettner': 10847, 'Blvd.': 10848, '105': 10849, '92101': 10850, '619-696-6966': 10851, 'mshames@ucan.org': 10852, 'Marriage': 10853, 'Kids': 10854, 'suck': 10855, 'abomination': 10856, 'numbing': 10857, 'trailor': 10858, 'trash': 10859, 'cretins': 10860, 'procreating': 10861, 'springer': 10862, 'crapfest': 10863, 'hippie': 10864, 'monkey': 10865, 'fuck': 10866, 'grow': 10867, 'Politically': 10868, 'permissive': 10869, 'bullshit': 10870, 'noone': 10871, 'fucked': 10872, 'likley': 10873, 'smoking': 10874, 'fucking': 10875, 'perv': 10876, 'lazy': 10877, 'waht': 10878, 'sympathy': 10879, 'Fuck': 10880, 'Stop': 10881, 'pawn': 10882, 'brats': 10883, 'break': 10884, 'mommy': 10885, 'madea': 10886, 'Tough': 10887, 'drag': 10888, 'singles': 10889, 'segueway': 10890, 'instances': 10891, 'Mommies': 10892, 'childcare': 10893, 'insidious': 10894, 'Mommism': 10895, 'stamped': 10896, 'http://www.newsday.com/news/opinion/ny-vpnasa054135614feb05,0,5979821.story?coll=ny-editorials-headlines': 10897, 'Newsday.com': 10898, 'NASA': 10899, 'engineers': 10900, 'astronauts': 10901, 'giddy': 10902, 'fever': 10903, 'tentative': 10904, 'Discovery': 10905, 'technically': 10906, 'safety': 10907, 'features': 10908, 'procedures': 10909, 'agency': 10910, 'errors': 10911, 'Challenger': 10912, 'sacrificed': 10913, 'image': 10914, 'puffing': 10915, 'Seeing': 10916, 'woke': 10917, 'cosmos': 10918, 'imagination': 10919, 'species': 10920, 'shuttles': 10921, 'preserve': 10922, 'defects': 10923, 'encouraging': 10924, 'overlooked': 10925, 'losses': 10926, 'Clearly': 10927, 'tackling': 10928, 'superb': 10929, 'minded': 10930, 'Kennedy': 10931, 'boost': 10932, 'morale': 10933, 'deliveries': 10934, 'thermal': 10935, 'protective': 10936, 'tile': 10937, 'orbit': 10938, 'hunks': 10939, 'insulation': 10940, 'PR': 10941, 'hurdles': 10942, 'lovers': 10943, 'redefine': 10944, 'rekindle': 10945, 'Selah': 10946, 'Posted': 10947, 'Hidden': 10948, 'Nook': 10949, '2/7/2005': 10950, '01:09:32': 10951, 'Healing': 10952, 'Collective': 10953, 'Body': 10954, 'Orwell': 10955, 'novel': 10956, '1984': 10957, 'doublethink': 10958, 'device': 10959, 'totalitarian': 10960, 'irreconcilable': 10961, 'duality': 10962, 'cherished': 10963, 'dualities': 10964, 'autonomous': 10965, 'destinies': 10966, 'separation': 10967, 'beings': 10968, 'tress': 10969, 'rocks': 10970, 'sky': 10971, 'healing': 10972, 'collective': 10973, 'soul': 10974, 'Think': 10975, 'choir': 10976, 'strength': 10977, 'harmony': 10978, 'dischord': 10979, 'insult': 10980, 'Living': 10981, 'synch': 10982, 'tributaries': 10983, 'sickness': 10984, 'weakest': 10985, 'sickest': 10986, 'lesson': 10987, 'teenager': 10988, 'scorn': 10989, 'intolerance': 10990, 'Herpes': 10991, 'climate': 10992, 'shame': 10993, 'indignity': 10994, 'hurting': 10995, 'escape': 10996, 'ocean': 10997, 'swim': 10998, 'haunt': 10999, 'consequences': 11000, 'rejection': 11001, 'embrace': 11002, 'affects': 11003, 'shapes': 11004, 'destiny': 11005, 'healthier': 11006, 'collectively': 11007, 'Fortunately': 11008, 'behaviour': 11009, 'choices': 11010, 'planet': 11011, 'crash': 11012, 'burn': 11013, 'conflagration': 11014, 'arrogance': 11015, 'rise': 11016, 'prejudice': 11017, 'kicking': 11018, 'screaming': 11019, 'Sunshine': 11020, 'Scipio': 11021, 'Homeopath': 11022, 'Herbalist': 11023, 'Holistic': 11024, 'Viral': 11025, 'Simple': 11026, 'Idea': 11027, 'Freedom': 11028, 'downsizing': 11029, 'debts': 11030, 'Agel': 11031, 'vehicle': 11032, 'uniquely': 11033, 'positioned': 11034, 'giant': 11035, 'category': 11036, 'Imagine': 11037, 'innovation': 11038, 'Innovative': 11039, 'introduces': 11040, 'Gelceuticals': 11041, 'innovative': 11042, 'nutritional': 11043, 'Gel': 11044, 'Suspension': 11045, 'packets': 11046, 'absorption': 11047, 'vitamins': 11048, 'minerals': 11049, 'nutrients': 11050, 'maximized': 11051, 'consuming': 11052, 'Consider': 11053, 'convenience': 11054, 'factors': 11055, 'tablets': 11056, 'capsules': 11057, 'juice': 11058, 'bottle': 11059, 'glass': 11060, 'Single': 11061, 'packages': 11062, 'capabilities': 11063, 'Perfect': 11064, 'swallowing': 11065, 'Faster': 11066, 'Learn': 11067, 'Compensation': 11068, 'compensation': 11069, 'revolutionary': 11070, 'binary': 11071, 'breakaway': 11072, 'unilevel': 11073, 'matrix': 11074, 'viability': 11075, 'longevity': 11076, 'residual': 11077, 'principles': 11078, 'unsure': 11079, 'discover': 11080, 'possibilities': 11081, 'feature': 11082, 'field': 11083, 'Jensen': 11084, 'smoke': 11085, '·': 11086, 'Create': 11087, 'Residual': 11088, 'Vehicle': 11089, 'Dreams': 11090, 'Amazing': 11091, 'Breakthrough': 11092, 'Behind': 11093, 'Quadra': 11094, 'Builds': 11095, 'Bigger': 11096, 'Bonus': 11097, 'Checks': 11098, 'Help': 11099, 'Build': 11100, 'Stronger': 11101, 'Secret': 11102, 'Lock': 11103, 'Legacy': 11104, 'Position': 11105, '620-294-4000': 11106, '620-294-3000': 11107, '5107': 11108, 'DATE': 11109, 'TIME': 11110, 'Standard': 11111, 'LOCATION': 11112, 'PT': 11113, '**': 11114, 'MT': 11115, 'CT': 11116, 'Fillmore': 11117, '612-205-9814': 11118, '620-294-1909': 11119, 'Dharmadeva': 11120, 'dharmad...@gmail.com': 11121, 'Namaskar': 11122, 'kaoshikii': 11123, 'yoga': 11124, 'postures': 11125, 'males': 11126, 'females': 11127, 'Dharma': 11128, 'Kaoshikii': 11129, 'invented': 11130, '1978': 11131, 'Shrii': 11132, \"A'nandamu'rti\": 11133, 'psycho-spiritual': 11134, 'exercise': 11135, 'benefiting': 11136, 'stamina': 11137, 'ward': 11138, 'cure': 11139, 'diseases': 11140, 'youthful': 11141, 'childbirth': 11142, 'Sanskrit': 11143, 'kosa': 11144, 'shell': 11145, 'layer': 11146, 'innermost': 11147, 'layers': 11148, 'kosas': 11149, 'blossoming': 11150, 'microcosm': 11151, 'Macrocosm': 11152, 'Cosmic': 11153, 'Consciousness': 11154, 'normally': 11155, 'referred': 11156, 'mysticism': 11157, 'Benefits': 11158, 'Exercises': 11159, 'glands': 11160, 'limbs': 11161, 'toes': 11162, 'Increases': 11163, 'spine': 11164, 'flexible': 11165, 'Arthritis': 11166, 'waist': 11167, 'joints': 11168, 'Gout': 11169, 'becomes': 11170, 'Irregularities': 11171, 'menstruation': 11172, 'cured': 11173, 'Glandular': 11174, 'secretions': 11175, 'Troubles': 11176, 'bladder': 11177, 'urethra': 11178, 'Gives': 11179, 'Adds': 11180, 'charm': 11181, 'shine': 11182, 'skin': 11183, 'Removes': 11184, 'lethargy': 11185, 'Cures': 11186, 'insomnia': 11187, 'hysteria': 11188, 'Fear': 11189, 'complexes': 11190, 'Hopelessness': 11191, 'Helps': 11192, 'potentiality': 11193, 'Spinal': 11194, 'pain': 11195, 'piles': 11196, 'hernia': 11197, 'hydrocele': 11198, 'kidney': 11199, 'gall': 11200, 'troubles': 11201, 'gastric': 11202, 'dyspepsia': 11203, 'acidity': 11204, 'dysentery': 11205, 'obesity': 11206, 'liver': 11207, 'Dance': 11208, 'eighteen': 11209, 'rhythmically': 11210, 'dancer': 11211, 'dhin': 11212, \"ta'\": 11213, 'dancers': 11214, 'placing': 11215, 'toe': 11216, 'heel': 11217, 'danced': 11218, 'Ideation': 11219, 'ideation': 11220, 'upraised': 11221, 'folded': 11222, 'represent': 11223, 'Parama': 11224, \"Purus'a\": 11225, 'Bending': 11226, 'fulfil': 11227, 'backward': 11228, 'obstacles': 11229, 'O': 11230, 'Lord': 11231, 'cosmic': 11232, 'rhythm': 11233, 'Quebecker': 11234, 'wins': 11235, 'award': 11236, 'Pittsburgh': 11237, 'Quebec': 11238, 'awarded': 11239, 'Carnegie': 11240, 'Medal': 11241, 'polar': 11242, 'bear': 11243, 'knife': 11244, 'Baffin': 11245, 'Fortier': 11246, 'Gatineau': 11247, 'Que.': 11248, 'Arctic': 11249, 'Circle': 11250, 'mauled': 11251, 'bears': 11252, 'Soper': 11253, 'River': 11254, 'canoeing': 11255, 'orthodontist': 11256, 'leaning': 11257, 'tent': 11258, 'seconds': 11259, 'girlfriend': 11260, 'paw': 11261, 'ripping': 11262, 'ceiling': 11263, 'considers': 11264, 'humans': 11265, 'snack': 11266, 'screamed': 11267, 'frighten': 11268, 'metres': 11269, 'ripped': 11270, 'mauling': 11271, 'Alain': 11272, 'Parenteau': 11273, 'screams': 11274, 'grabbed': 11275, 'glasses': 11276, 'unzipped': 11277, 'dwarfed': 11278, 'knocking': 11279, 'distracting': 11280, 'allowing': 11281, 'Doyon': 11282, 'tripped': 11283, 'beside': 11284, 'jaw': 11285, 'fur': 11286, 'centimetre': 11287, 'blade': 11288, 'badly': 11289, 'bleeding': 11290, 'lashed': 11291, 'canoes': 11292, 'paddled': 11293, 'eight': 11294, 'travelled': 11295, 'nearest': 11296, 'airlifted': 11297, 'gash': 11298, 'jugular': 11299, 'bronze': 11300, 'Crawford': 11301, 'Aug.': 11302, 'defend': 11303, 'sandwich': 11304, 'robber': 11305, 'wielding': 11306, 'punches': 11307, 'assailant': 11308, 'industrialist': 11309, 'Andrew': 11310, 'hero': 11311, '1904': 11312, '181': 11313, 'Apple': 11314, 'Computers': 11315, 'favorite': 11316, 'fruit': 11317, 'Jobs': 11318, \"O'clock\": 11319, 'CISCO': 11320, 'acronym': 11321, 'popularly': 11322, 'COMp': 11323, 'PAQ': 11324, 'denote': 11325, 'integral': 11326, 'Corel': 11327, 'derived': 11328, 'Cowpland': 11329, 'COwpland': 11330, 'REsearch': 11331, 'Google': 11332, 'joke': 11333, 'boasting': 11334, 'engine': 11335, 'Googol': 11336, 'zeros': 11337, 'founders': 11338, 'Stanford': 11339, 'Sergey': 11340, 'Brin': 11341, 'Larry': 11342, 'presented': 11343, 'angel': 11344, 'investor': 11345, 'cheque': 11346, 'Hotmail': 11347, 'Founder': 11348, 'accessing': 11349, 'Sabeer': 11350, 'Bhatia': 11351, 'ending': 11352, 'hotmail': 11353, 'html': 11354, 'HoTMaiL': 11355, 'selective': 11356, 'uppercasing': 11357, 'Hewlett': 11358, 'Packard': 11359, 'tossed': 11360, 'coin': 11361, 'Intel': 11362, 'Noyce': 11363, 'Gordon': 11364, 'trademarked': 11365, 'chain': 11366, 'INTegrated': 11367, 'ELectronics': 11368, 'Lotus': 11369, 'Notes': 11370, 'Mitch': 11371, 'Kapor': 11372, 'Padmasana': 11373, 'Transcendental': 11374, 'Meditation': 11375, 'Maharishi': 11376, 'Mahesh': 11377, 'Yogi': 11378, 'Coined': 11379, 'MICROcomputer': 11380, 'SOFTware': 11381, 'Originally': 11382, 'christened': 11383, 'Micro': 11384, 'Soft': 11385, 'Motorola': 11386, 'Galvin': 11387, 'radios': 11388, 'cars': 11389, 'radio': 11390, 'Victrola': 11391, 'ORACLE': 11392, 'Ellison': 11393, 'Oats': 11394, 'Oracle': 11395, 'SQL': 11396, 'terminated': 11397, 'finish': 11398, 'RDBMS': 11399, 'Later': 11400, 'Sony': 11401, 'originated': 11402, 'Latin': 11403, 'sonus': 11404, 'sonny': 11405, 'slang': 11406, 'youngster': 11407, 'SUN': 11408, 'Founded': 11409, 'buddies': 11410, 'Andreas': 11411, 'Bechtolsheim': 11412, 'built': 11413, 'microcomputer': 11414, 'Vinod': 11415, 'Khosla': 11416, 'McNealy': 11417, 'manufacture': 11418, 'computers': 11419, 'UNIX': 11420, 'OS': 11421, 'Gulliver': 11422, 'Travels': 11423, 'repulsive': 11424, 'appearance': 11425, 'Founders': 11426, 'Yang': 11427, 'Filo': 11428, 'selected': 11429, 'yahoos': 11430, 'Yahoo': 11431, 'mayur...@yahoo.com': 11432, 'SMS': 11433, '919819602175': 11434, 'forums': 11435, 'Guild': 11436, 'accessible': 11437, 'suddenly': 11438, 'Usually': 11439, 'bandwidth': 11440, 'maintenance': 11441, 'Humanpixel': 11442, 'Aye': 11443, 'Mate': 11444, 'projected': 11445, 'Blizzard': 11446, 'preorder': 11447, '2/3': 11448, 'Febuary': 11449, 'feb': 11450, '05': 11451, 'calender': 11452, 'retailers': 11453, 'websites': 11454, 'firewalls': 11455, 'lol': 11456, ';)': 11457, 'curious': 11458, 'hav': 11459, 'Check': 11460, 'multiplayer': 11461, 'graphics': 11462, 'amoung': 11463, 'gaming': 11464, 'MUD': 11465, 'beta': 11466, 'preview': 11467, 'Warm': 11468, 'GW': 11469, 'Lady': 11470, 'Kingel': 11471, 'hail': 11472, 'Legit': 11473, 'Gaming': 11474, 'Guilds': 11475, 'legit': 11476, 'guilds': 11477, 'DI': 11478, 'straightforward': 11479, 'greet': 11480, 'guild': 11481, 'ULGG': 11482, 'wander': 11483, 'Announce': 11484, 'Arrival': 11485, 'greeted': 11486, 'feast': 11487, 'paste': 11488, 'browser': 11489, 'friendship': 11490, 'honor': 11491, 'Come': 11492, 'hello': 11493, 'warmly': 11494, 'moreso': 11495, 'Judges': 11496, 'Lawyers': 11497, 'Policemen': 11498, 'Counselors': 11499, 'Taxpayers': 11500, 'et.': 11501, 'al.': 11502, 'downtrodden': 11503, 'dispossesed': 11504, 'torturing': 11505, 'convicts': 11506, 'alcohol': 11507, 'addicts': 11508, 'unemployed': 11509, 'unemployable': 11510, 'ex-cons': 11511, 'uninsured': 11512, 'homeless': 11513, 'tongues': 11514, 'Crime': 11515, 'budgets': 11516, 'militarize': 11517, 'Bullet': 11518, 'proof': 11519, 'vests': 11520, 'automatic': 11521, 'robots': 11522, 'testosterone': 11523, 'oozing': 11524, 'prisons': 11525, 'sentences': 11526, 'tighten': 11527, 'belt': 11528, 'spartan': 11529, 'courts': 11530, 'Unemployent': 11531, 'stays': 11532, 'oversees': 11533, 'dregs': 11534, 'rabble': 11535, 'deeper': 11536, 'humane': 11537, 'cohesive': 11538, 'Us': 11539, 'Them': 11540, 'gated': 11541, 'gentrified': 11542, 'Independence': 11543, 'Constitution': 11544, 'phrases': 11545, 'convict': 11546, 'addict': 11547, 'prostitute': 11548, 'darkest': 11549, 'ruts': 11550, '22s': 11551, 'crafting': 11552, 'instilling': 11553, 'burrowed': 11554, 'surface': 11555, 'succumbed': 11556, 'incarcerated': 11557, 'probation': 11558, 'parole': 11559, 'interface': 11560, 'travelling': 11561, 'grim': 11562, 'failures': 11563, 'bravely': 11564, 'struggling': 11565, 'insights': 11566, 'Solidarity': 11567, 'Reilly': 11568, 'Bruha': 11569, 'P.O.': 11570, '8274': 11571, 'Cranston': 11572, '02920': 11573, 'conceptualize': 11574, 'guerilla': 11575, 'promote': 11576, 'Ideas': 11577, 'welcome': 11578, 'Collaboration': 11579, 'prayed': 11580, 'annotated': 11581, 'D.': 11582, 'Singmaster': 11583, 'Mathematical': 11584, 'Intelligencer': 11585, 'v': 11586, 'pp': 11587, '69': 11588, '---------------------------------------------------------------------------': 11589, '-----': 11590, 'postings': 11591, 'comp.mail.maps': 11592, 'E.g.': 11593, 'pathalias': 11594, 'smail': 11595, 'comp.sources.unix': 11596, 'archives': 11597, 'archive': 11598, 'moderator': 11599, 'indices': 11600, 'comp.sources.d': 11601, 'NSA': 11602, 'eater': 11603, 'Usenet': 11604, 'keywords': 11605, 'Peanutjake': 11606, 'peanutjak...@usa.com': 11607, 'Groups': 11608, 'misc.consumers': 11609, 'IMMEDIATE': 11610, 'ATTENTION': 11611, 'NEEDED': 11612, 'HIGHLY': 11613, 'CONFIDENTIAL': 11614, 'URGENT': 11615, 'ASSISTANCE': 11616, 'FROM': 11617, 'GEORGE': 11618, 'WALKER': 11619, 'BUSH': 11620, '202.456.1414': 11621, '202.456.1111': 11622, 'FAX': 11623, '202.456.2461': 11624, 'Sir': 11625, 'Madam': 11626, 'Herbert': 11627, 'surprise': 11628, 'neither': 11629, 'reputable': 11630, 'maximum': 11631, 'presently': 11632, 'trapped': 11633, 'republic': 11634, 'solicit': 11635, 'extraction': 11636, 'nineteen': 11637, 'eighties': 11638, 'regain': 11639, 'revenue': 11640, 'unsuccessful': 11641, 'partner': 11642, 'acquire': 11643, 'emirate': 11644, 'subsidiary': 11645, 're-secured': 11646, 'sixty': 11647, '61,000,000,000': 11648, '36,000,000,000': 11649, 'supplied': 11650, 'Kingdom': 11651, 'Persian': 11652, 'monarchies': 11653, 'sixteen': 11654, '16,000,000,000': 11655, 'Japanese': 11656, 'urgent': 11657, 'removing': 11658, 'shoulder': 11659, 'upcoming': 11660, '100,000,000,000': 11661, '200,000,000,000': 11662, 'acquisition': 11663, 'urgently': 11664, 'gracious': 11665, 'distinguished': 11666, 'sitting': 11667, 'vice-president': 11668, 'Cheney': 11669, 'Halliburton': 11670, 'Condoleeza': 11671, 'dedication': 11672, 'Chevron': 11673, 'tanker': 11674, 'beseech': 11675, 'equaling': 11676, 'Internal': 11677, 'Revenue': 11678, 'trusted': 11679, 'intermediary': 11680, 'fifteenth': 11681, 'magnitude': 11682, 'worried': 11683, 'assuring': 11684, 'bold': 11685, 'regretted': 11686, 'assure': 11687, 'co-operate': 11688, 'plight': 11689, 'forever': 11690, 'Switchboard': 11691, 'presid...@whitehouse.gov': 11692, 'battles': 11693, 'Watch': 11694, 'airlift': 11695, 'Emergency': 11696, 'southern': 11697, 'battling': 11698, 'survivors': 11699, 'Hurricane': 11700, 'Katrina': 11701, 'destructive': 11702, 'Hundreds': 11703, 'Orleans': 11704, 'flooded': 11705, 'mayor': 11706, 'rescuers': 11707, 'Amid': 11708, 'worsening': 11709, 'evacuate': 11710, 'stadium': 11711, 'shelter': 11712, 'Superdome': 11713, 'toilets': 11714, 'overflowing': 11715, 'Map': 11716, 'Blanco': 11717, 'directive': 11718, 'resident': 11719, 'escaping': 11720, 'hollering': 11721, 'flashing': 11722, 'Kioka': 11723, 'Associated': 11724, 'Press': 11725, 'hack': 11726, 'beauty': 11727, 'flood': 11728, 'waters': 11729, 'Flooding': 11730, 'Walls': 11731, 'breached': 11732, '1,350': 11733, '3,000': 11734, 'lb': 11735, 'sandbags': 11736, 'concrete': 11737, 'barriers': 11738, 'Biloxi': 11739, 'roof': 11740, 'barn': 11741, 'oak': 11742, 'trees': 11743, 'pines': 11744, 'letting': 11745, 'Natalie': 11746, 'McVeigh': 11747, 'Oakley': 11748, 'Blogging': 11749, 'Nagin': 11750, 'submerged': 11751, 'sections': 11752, 'Engineers': 11753, 'evacuees': 11754, 'BBC': 11755, 'Alastair': 11756, 'Leithead': 11757, 'panic': 11758, 'Heavily': 11759, 'impose': 11760, 'martial': 11761, 'stem': 11762, 'outbreaks': 11763, 'looters': 11764, 'stealing': 11765, 'non-essential': 11766, 'Casinos': 11767, 'housed': 11768, 'barges': 11769, 'hurled': 11770, 'onto': 11771, 'beach': 11772, 'Tens': 11773, 'restored': 11774, 'Hiroshima': 11775, 'Haley': 11776, 'Barbour': 11777, 'viewing': 11778, 'brunt': 11779, 'slammed': 11780, 'Gulfport': 11781, 'inland': 11782, '54': 11783, 'flats': 11784, 'municipal': 11785, 'Vincent': 11786, 'Creel': 11787, 'Mobilising': 11788, 'residents': 11789, 'prayer': 11790, 'mobilised': 11791, 'volunteers': 11792, 'dispatched': 11793, 'donate': 11794, 'organisations': 11795, 'Damage': 11796, 'estimates': 11797, 'bn': 11798, '70.85': 11799, 'barrel': 11800, 'fields': 11801, 'secretary': 11802, 'MOON': 11803, 'LANDING': 11804, 'HOAX': 11805, 'CHURCH': 11806, 'TECHNOLOGY': 11807, 'GOVERNMENT': 11808, 'Shuttle': 11809, 'Carried': 11810, 'Aircraft': 11811, 'Q': 11812, 'WASTE': 11813, 'Answered': 11814, 'Category': 11815, 'Astronomy': 11816, 'Asked': 11817, 'yheggy': 11818, 'ga': 11819, 'List': 11820, '2.00': 11821, '18:32': 11822, 'Expires': 11823, '17:32': 11824, '420072': 11825, 'googlenut': 11826, '19:14': 11827, '16.379': 11828, 'fiscal': 11829, 'Release': 11830, 'Aeronautics': 11831, 'FY04': 11832, 'enacted': 11833, 'reduction': 11834, '665': 11835, '4.319': 11836, 'Station': 11837, '1.6': 11838, 'reduces': 11839, 'ISS': 11840, 'FY05': 11841, 'Moon': 11842, 'vision': 11843, 'Crew': 11844, 'Exploration': 11845, 'CEV': 11846, '268': 11847, 'lunar': 11848, 'exploration': 11849, 'Centennial': 11850, 'Challenges': 11851, 'Neighborhood': 11852, 'Reinvestment': 11853, 'NRC': 11854, '115': 11855, 'Spacetoday.net': 11856, '16.4': 11857, 'clarification': 11858, 'rating': 11859, 'Googlenut': 11860, 'Search': 11861, 'nasa': 11862, 'Log': 11863, 'saem_aero': 11864, '18:11': 11865, 'Excellent': 11866, 'webpage': 11867, 'grade': 11868, 'crossed': 11869, 'bridge': 11870, 'airplane': 11871, 'recieved': 11872, 'mathematics': 11873, 'drove': 11874, 'cellular': 11875, 'reaped': 11876, 'outreach': 11877, 'jaqamofino': 11878, '06:02': 11879, 'HUGE': 11880, 'payers': 11881, 'wastes': 11882, 'payer': 11883, 'monies': 11884, 'Endowment': 11885, 'NEA': 11886, 'healthcare': 11887, 'housing': 11888, 'trillions': 11889, 'invent': 11890, 'cellfone': 11891, 'bridges': 11892, 'cents': 11893, 'desparate': 11894, 'dear': 11895, 'hoax': 11896, 'actully': 11897, 'Beyond': 11898, 'sponoring': 11899, '5000': 11900, 'explaining': 11901, 'votes': 11902, 'humanatarian': 11903, 'validity': 11904, 'Rockin': 11905, 'worthy': 11906, 'Abby': 11907, 'beloved': 11908, 'bless': 11909, 'flyer': 11910, 'Benefit': 11911, 'raiser': 11912, 'Roy': 11913, 'raising': 11914, 'sponsoring': 11915, 'distributing': 11916, 'Grant': 11917, 'prognosis': 11918, 'recipients': 11919, 'grows': 11920, 'exponentially': 11921, 'contribute': 11922, 'caring': 11923, 'BENEFIT': 11924, 'AUCTION': 11925, 'RAFFLE': 11926, 'ABBY': 11927, 'FREEMAN': 11928, 'JUNE': 11929, 'P.M.': 11930, 'A.M.': 11931, 'MAIN': 11932, 'STREET': 11933, 'SALOON': 11934, 'ADMISSION': 11935, 'DONATIONS': 11936, 'AT': 11937, 'DOOR': 11938, 'Freeman': 11939, 'non-Hodgkin': 11940, 'lymphoma': 11941, 'bands': 11942, \"cookin'\": 11943, 'prizes': 11944, 'Bands': 11945, 'Band': 11946, 'Contest': 11947, 'Festival': 11948, 'Cuyahoga': 11949, 'Falls': 11950, 'logging': 11951, 'Cast': 11952, 'Donations': 11953, 'Charter': 11954, 'Kendel': 11955, 'Bunnell': 11956, 'Spencer': 11957, 'Filed': 11958, '19/11/2004': 11959, 'insatiable': 11960, 'prompting': 11961, 'collisions': 11962, 'globe': 11963, 'seeks': 11964, 'intrusion': 11965, 'territorial': 11966, 'Chinese': 11967, 'soaring': 11968, 'Increased': 11969, 'petrol': 11970, 'preferably': 11971, 'apologised': 11972, 'mouthpiece': 11973, 'commented': 11974, 'prelude': 11975, 'arena': 11976, 'pariah': 11977, 'veto': 11978, 'sanctions': 11979, 'Darfur': 11980, 'invested': 11981, 'oilfield': 11982, 'exporter': 11983, 'expanded': 11984, 'overtook': 11985, 'boosted': 11986, 'ownership': 11987, 'polluting': 11988, 'coal': 11989, 'Shortages': 11990, 'cuts': 11991, 'ordered': 11992, 'avail': 11993, 'clash': 11994, 'furious': 11995, 'outbid': 11996, 'battle': 11997, 'enabling': 11998, 'overland': 11999, 'hostilities': 12000, 'Increasingly': 12001, 'Claude': 12002, 'Mandil': 12003, 'hardly': 12004, 'thinks': 12005, 'Eurasia': 12006, 'inflated': 12007, 'falters': 12008, 'plummet': 12009, 'Kindopp': 12010, 'fraction': 12011, 'aggression': 12012, 'greatest': 12013, 'wield': 12014, 'petition': 12015, 'Britain': 12016, 'Visualizations': 12017, '-----------------------------------------------': 12018, 'visualizations': 12019, 'transcendence': 12020, 'Visualisations': 12021, 'meditation': 12022, 'stick': 12023, 'intense': 12024, 'beginners': 12025, 'MP3': 12026, 'visualisations': 12027, 'lap': 12028, 'straight': 12029, 'tongue': 12030, 'breathing': 12031, 'calm': 12032, 'nose': 12033, 'Spend': 12034, 'concentrating': 12035, 'breath': 12036, 'nostrils': 12037, 'Visualization': 12038, 'Continue': 12039, 'breathe': 12040, 'slowly': 12041, 'muscles': 12042, 'lighter': 12043, 'motor': 12044, 'sensory': 12045, 'organs': 12046, 'withdrawing': 12047, 'quietness': 12048, 'melting': 12049, 'naturally': 12050, 'tropical': 12051, 'basking': 12052, 'glow': 12053, 'sun': 12054, 'Visualize': 12055, 'vivid': 12056, 'colours': 12057, 'Feel': 12058, 'warmth': 12059, 'golden': 12060, 'penetrates': 12061, 'warmer': 12062, 'surrounds': 12063, 'rays': 12064, 'familiarity': 12065, 'vastness': 12066, 'merge': 12067, 'universal': 12068, 'Mind': 12069, 'ideate': 12070, 'desire': 12071, 'Nam': 12072, 'Kevalam': 12073, 'mantra': 12074, 'serenely': 12075, 'restfully': 12076, 'limp': 12077, 'sinking': 12078, 'sand': 12079, 'earthly': 12080, 'relaxation': 12081, 'sunlight': 12082, 'warming': 12083, 'gently': 12084, 'sensed': 12085, 'merging': 12086, 'infinite': 12087, 'bathed': 12088, 'absorbing': 12089, 'ray': 12090, 'glowing': 12091, 'radiantly': 12092, 'gentle': 12093, 'breeze': 12094, 'swirls': 12095, 'relaxes': 12096, 'Open': 12097, 'Mountain': 12098, 'mountain': 12099, 'happiness': 12100, 'NAM': 12101, 'KEVALAM': 12102, 'Infinite': 12103, 'everywhere': 12104, 'wordy': 12105, 'translate': 12106, 'internally': 12107, 'intuitively': 12108, 'Touching': 12109, 'builds': 12110, 'intuition': 12111, 'synthetic': 12112, 'grapple': 12113, 'meanings': 12114, 'analytical': 12115, 'endless': 12116, 'consciousness': 12117, 'dot': 12118, 'practicing': 12119, 'miracle': 12120, 'ordinary': 12121, 'NORTH': 12122, 'CAROLINA': 12123, 'RELIGIOUS': 12124, 'COALITION': 12125, 'MARRIAGE': 12126, 'EQUALITY': 12127, 'conclude': 12128, 'gay': 12129, 'Carolina': 12130, 'Religious': 12131, 'Equality': 12132, 'extending': 12133, 'couples': 12134, 'NCRC4ME': 12135, 'signatures': 12136, 'Leaders': 12137, 'NC': 12138, 'presents': 12139, 'resolved': 12140, 'equally': 12141, 'ban': 12142, 'defeated': 12143, 'reintroduced': 12144, 'pro-same': 12145, 'CHS': 12146, 'Vestry': 12147, 'unanimously': 12148, 'Rector': 12149, 'Deacon': 12150, 'Clare': 12151, 'Supporters': 12152, 'Sign': 12153, 'postal': 12154, 'signers': 12155, 'Raleigh': 12156, 'Spirit': 12157, 'Dudley': 12158, 'Cate': 12159, '828-296-8466': 12160, 'jodud...@aol.com': 12161, '---------------------------': 12162, 'necessities': 12163, 'clothing': 12164, 'affection': 12165, 'supportive': 12166, 'liberty': 12167, 'posterity': 12168, 'affirms': 12169, 'inalienable': 12170, 'fruits': 12171, 'labor': 12172, 'Throughout': 12173, 'tyrants': 12174, 'denying': 12175, 'oppressed': 12176, 'peoples': 12177, 'nurture': 12178, 'shameful': 12179, 'slavery': 12180, 'injustice': 12181, 'denial': 12182, 'interracial': 12183, 'discriminatory': 12184, 'Denial': 12185, 'inequities': 12186, 'protest': 12187, 'clergy': 12188, 'mandated': 12189, 'civic': 12190, 'sacred': 12191, 'texts': 12192, 'traditions': 12193, 'affirm': 12194, 'coerce': 12195, 'bar': 12196, 'consenting': 12197, 'differing': 12198, 'genders': 12199, 'lets': 12200, 'scriptural': 12201, 'theological': 12202, 'liturgical': 12203, 'conscience': 12204, 'officiate': 12205, 'Likewise': 12206, 'dishonors': 12207, 'convictions': 12208, 'visibility': 12209, 'Dempsey': 12210, 'Breeze': 12211, 'FL': 12212, '850-748-0740': 12213, 'McGinnis': 12214, 'bmc...@patriot.net': 12215, 'Reason': 12216, 'Oppose': 12217, 'Nomination': 12218, 'Alito': 12219, 'Tear': 12220, 'Down': 12221, 'Balances': 12222, 'Giving': 12223, 'Fellow': 12224, 'nominated': 12225, 'vacancy': 12226, 'Consent': 12227, 'http://loveallpeople.org/usconstitutiona.txt': 12228, 'qualified': 12229, 'evaluate': 12230, 'intellect': 12231, 'graduated': 12232, 'Appeals': 12233, 'encyclopedic': 12234, 'recite': 12235, 'Judicial': 12236, 'Temperament': 12237, 'courteous': 12238, 'mild': 12239, 'mannered': 12240, 'respectful': 12241, 'meticulous': 12242, 'judges': 12243, 'loves': 12244, 'outnumber': 12245, 'Jan.': 12246, 'fifty': 12247, 'judging': 12248, 'haste': 12249, 'repent': 12250, 'leisure': 12251, 'Sometimes': 12252, 'regret': 12253, 'tragic': 12254, 'flaw': 12255, 'unacceptable': 12256, 'Justice': 12257, 'tearing': 12258, 'Unitary': 12259, 'vastly': 12260, 'Presidential': 12261, 'Constitutional': 12262, 'Legislative': 12263, 'crazy': 12264, 'Branch': 12265, 'Agencies': 12266, 'Military': 12267, 'Commander': 12268, 'boss': 12269, 'Administrator': 12270, 'Decisions': 12271, 'rendered': 12272, 'Laws': 12273, 'Dictator': 12274, 'unrestrained': 12275, 'Free': 12276, 'Brave': 12277, 'Dictatorship': 12278, 'Fascist': 12279, 'THAT': 12280, 'ALL': 12281, 'AMERICANS': 12282, 'SHOULD': 12283, 'OPPOSE': 12284, 'NOMINATION': 12285, 'SAMUEL': 12286, 'ALITO': 12287, 'Testimony': 12288, 'http://judiciary.senate.gov/testimony.cfm?id=1725&wit_id=4905': 12289, 'Descriptions': 12290, 'Links': 12291, 'http://www.UnitaryExecutive.net': 12292, 'Blessings': 12293, 'http://www.LoveAllPeople.org': 12294, 'http://www.InternetchurchOfChrist.org': 12295, 'http://www.loveallpeople.org/theonereasonwhy.html': 12296, 'http://www.loveallpeople.org/theonereasonwhy.txt': 12297, '###': 12298, 'CONTACT': 12299, '1908': 12300, 'Mt': 12301, 'Vernon': 12302, 'Ave': 12303, '2543': 12304, 'Alexandria': 12305, 'VA': 12306, '22301': 12307, '7037686710': 12308, 'Reply': 12309, 'Diplomacy': 12310, 'Trying': 12311, 'Landing': 12312, 'Hoax': 12313, 'strategies': 12314, 'relation': 12315, 'gleaned': 12316, 'underneath': 12317, 'Country': 12318, 'Numero': 12319, 'assert': 12320, 'mesh': 12321, 'economical': 12322, 'thawed': 12323, 'Dependant': 12324, 'unify': 12325, 'aims': 12326, 'landing': 12327, '2018': 12328, 'shifting': 12329, 'towards': 12330, 'programs': 12331, 'launches': 12332, 'manned': 12333, 'spaceflight': 12334, 'Secretive': 12335, 'outsiders': 12336, 'MARK': 12337, 'CARREAU': 12338, 'Copyright': 12339, 'Chronicle': 12340, 'Shenzhou': 12341, 'VI': 12342, 'spacecraft': 12343, 'Gansu': 12344, 'pair': 12345, 'embarked': 12346, 'hurtling': 12347, 'span': 12348, 'Fei': 12349, 'Junlong': 12350, 'Nie': 12351, 'Haishen': 12352, 'Jiuquan': 12353, 'Satellite': 12354, 'Launch': 12355, 'solo': 12356, 'Liwei': 12357, 'vaulted': 12358, 'communist': 12359, 'spacefaring': 12360, 'sustain': 12361, 'secretive': 12362, 'explorers': 12363, 'Joan': 12364, 'Freese': 12365, 'College': 12366, 'Newport': 12367, 'R.I': 12368, 'rush': 12369, 'buster': 12370, 'Economics': 12371, 'determiner': 12372, 'worries': 12373, 'technologies': 12374, 'delegate': 12375, 'roundtable': 12376, 'destinations': 12377, 'applaud': 12378, 'achievements': 12379, 'Allard': 12380, 'Beutel': 12381, 'stressed': 12382, 'partnership': 12383, 'multi-compartment': 12384, 'module': 12385, 'fliers': 12386, 'Earth': 12387, 'spacewalks': 12388, 'demonstrations': 12389, 'docking': 12390, 'undocking': 12391, 'assembly': 12392, 'E.': 12393, 'Pike': 12394, 'Va.': 12395, 'GlobalSecurity.org': 12396, 'jam': 12397, 'numero': 12398, 'uno': 12399, 'Cold': 12400, 'scored': 12401, 'Apollo': 12402, 'Soviets': 12403, 'V': 12404, 'Hainan': 12405, 'assemble': 12406, 'mark.carr...@chron.com': 12407, 'righter': 12408, 'righ...@sonic.net': 12409, 'alt.animals.rights.promotion': 12410, 'alt.animals': 12411, 'alt.animals.cat': 12412, 'alt.animals.ethics.vegetarian': 12413, 'alt.animals.lion': 12414, 'alt.animals.tiger': 12415, 'alt.animals.felines.diseases': 12416, 'alt.animals.dog': 12417, 'alt.animals.horses.breeding': 12418, 'alt.animals.felines.snowleopards': 12419, 'animal': 12420, 'nightmare': 12421, 'Civet': 12422, 'Cats': 12423, 'losers': 12424, 'sheds': 12425, 'degrees': 12426, 'fires': 12427, 'periodically': 12428, 'scrape': 12429, 'sweat': 12430, 'genitals': 12431, 'corporations': 12432, 'prolong': 12433, 'scent': 12434, 'perfumes': 12435, 'demons': 12436, 'GREEDY': 12437, 'cats': 12438, 'mercy': 12439, 'pasted': 12440, 'plays': 12441, 'song': 12442, 'cat': 12443, 'Meowing': 12444, 'vocals': 12445, 'furnaces': 12446, 'feelings': 12447, 'dying': 12448, 'troubled': 12449, 'slow': 12450, 'agonizing': 12451, 'Cat': 12452, 'Holocaust': 12453, 'DOING': 12454, 'judgment': 12455, 'emailed': 12456, 're-read': 12457, 'imagined': 12458, 'hellish': 12459, 'creatures': 12460, 'sweet': 12461, 'minds': 12462, 'torture': 12463, 'starters': 12464, 'uploaded': 12465, 'relaxing': 12466, 'cooked': 12467, 'Holocaust-esque': 12468, 'chambers': 12469, 't...@sonic.net': 12470, 'Thu': 12471, '02:39:27': 12472, '0800': 12473, 'SPAR': 12474, 's...@sonic.net': 12475, 'Rachels': 12476, 'fitting': 12477, 'abundance': 12478, 'greed': 12479, 'civet': 12480, 'Hunger': 12481, 'Moral': 12482, 'Obligation': 12483, 'articles': 12484, 'Singer': 12485, 'utilitarianism': 12486, 'non-human': 12487, 'entitled': 12488, 'Vegetarianism': 12489, 'Weight': 12490, 'Problem': 12491, 'intelligent': 12492, 'sociable': 12493, 'cages': 12494, 'darkened': 12495, 'temperature': 12496, 'confined': 12497, 'justifies': 12498, 'mistreatment': 12499, 'misfortune': 12500, 'perfume': 12501, 'Musk': 12502, 'scraped': 12503, 'surv': 12504, 'ive': 12505, 'musk': 12506, 'Kant': 12507, 'Animals': 12508, 'vengeance': 12509, 'trivial': 12510, 'tormented': 12511, 'effected': 12512, 'url': 12513, 'http://www.sonic.net/~fsjob/TragiCore-TheCivetCat.mp3': 12514, 'lyrics': 12515, 'audible': 12516, 'vegetarian': 12517, 'vegan': 12518, 'Farewell': 12519, 'icq': 12520, 'uin': 12521, '5249025': 12522, 'Wigner': 12523, 'Heisenberg': 12524, 'Shrodinger': 12525, '-------------------': 12526, '.:': 12527, 'VEGAN': 12528, ':.': 12529, 'MAKE': 12530, 'THOUSANDS': 12531, 'THIS': 12532, 'SCAM': 12533, 'useless': 12534, 'pre-fabricated': 12535, 'crap': 12536, 'pre-fab': 12537, 'WELL': 12538, 'GUESS': 12539, '25.00': 12540, '1000.00': 12541, '10,000.00': 12542, '42,000.00': 12543, '6.00': 12544, 'stamps': 12545, 'lottery': 12546, '..........': 12547, 'NOW': 12548, 'Suggestion': 12549, 'Print': 12550, 'postage': 12551, 'IMPORTANT': 12552, 'rip': 12553, 'adhered': 12554, 'dividends': 12555, 'PLEASE': 12556, 'EXACTLY': 12557, 'integrity': 12558, 'Mail': 12559, 'Lists': 12560, 'bucks': 12561, 'mailing': 12562, 'secondary': 12563, 'STEP': 12564, 'Get': 12565, 'pieces': 12566, 'PUT': 12567, 'ME': 12568, 'MAILING': 12569, 'LIST': 12570, '1.00': 12571, 'bills': 12572, 'EACH': 12573, 'envelope': 12574, 'thievery': 12575, 'Next': 12576, 'envelopes': 12577, 'seal': 12578, 'sealed': 12579, 'stating': 12580, 'ABSOLUTELY': 12581, 'LEGAL': 12582, '!!!!': 12583, 'requesting': 12584, 'legitimate': 12585, 'skeptical': 12586, 'Post': 12587, '1-800-238-5355': 12588, 'G.': 12589, 'Burrows': 12590, '264': 12591, 'Tor': 12592, 'Toowoomba': 12593, 'QLD': 12594, '4350': 12595, 'Luest': 12596, '366': 12597, 'Grove': 12598, '92842': 12599, 'V.': 12600, 'Bourret': 12601, 'Broome': 12602, '11222': 12603, 'R.': 12604, 'Ansems': 12605, 'Foulkesstraat': 12606, '4641': 12607, 'BW': 12608, 'Ossendrecht': 12609, 'Brumbley': 12610, '4632': 12611, 'Hilton': 12612, 'Columbus': 12613, 'Ohio': 12614, '43228': 12615, 'TWO': 12616, 'NAME': 12617, 'THREE': 12618, '24,000': 12619, 'Title': 12620, 'Sec.': 12621, '1302': 12622, '1341': 12623, 'Postal': 12624, 'Lottery': 12625, 'REMEMBER': 12626, 'retain': 12627, 'VERIFIES': 12628, 'theft': 12629, 'downloaded': 12630, 'reimbursed': 12631, 'geometrically': 12632, 'reaches': 12633, 'CASH': 12634, '*****': 12635, 'DIRECTIONS': 12636, 'POST': 12637, 'NEWS': 12638, 'GROUPS': 12639, 're-type': 12640, 'cursor': 12641, 'edit': 12642, 'menu': 12643, 'notepad': 12644, 'Save': 12645, 'settings': 12646, 'FOUR': 12647, 'Visit': 12648, 'boards': 12649, 'highlighting': 12650, 'selecting': 12651, 'Fill': 12652, 'header': 12653, 'scroll': 12654, '!!!!!!': 12655, \"'S\": 12656, 'Really': 12657, 'Wishes': 12658, 'Blue': 12659, 'Planet': 12660, 'Bad': 12661, 'Wolf': 12662, 'Whipple': 12663, 'UNITED': 12664, 'PRESS': 12665, 'INTERNATIONAL': 12666, 'Boulder': 12667, 'CO': 12668, 'UPI': 12669, 'Ever': 12670, 'ate': 12671, 'Riding': 12672, 'Hood': 12673, 'grandma': 12674, 'blew': 12675, 'thirds': 12676, 'Three': 12677, 'Pigs': 12678, 'persistently': 12679, 'reputation': 12680, 'wolf': 12681, 'exterminated': 12682, 'remnant': 12683, 'Isle': 12684, 'Royale': 12685, 'Park': 12686, 'Superior': 12687, 'Yellowstone': 12688, '1943': 12689, 'sheep': 12690, 'cattle': 12691, 'ranchers': 12692, 'extermination': 12693, 'conducted': 12694, 'gratefully': 12695, 'dusted': 12696, 'graze': 12697, 'cows': 12698, 'ruminate': 12699, 'discouraging': 12700, 'offs': 12701, 'wolves': 12702, 'Alaska': 12703, 'legend': 12704, 'UFOs': 12705, 'Sasquatch': 12706, 'fleeting': 12707, 'Wyoming': 12708, 'park': 12709, 'imported': 12710, 'captive': 12711, 'Rumor': 12712, 'renegade': 12713, 'biologist': 12714, 'caged': 12715, 'reestablish': 12716, 'caper': 12717, 'rehabilitate': 12718, 'Eventually': 12719, 'trickle': 12720, 'predator': 12721, 'Rocky': 12722, 'Mountains': 12723, 'Fish': 12724, 'Wildlife': 12725, 'albeit': 12726, 'packs': 12727, 'flourished': 12728, '850': 12729, 'roaming': 12730, 'Rockies': 12731, 'compelling': 12732, 'reintroduction': 12733, 'keystone': 12734, 'populations': 12735, 'ecology': 12736, 'variety': 12737, 'Oregon': 12738, 'OSU': 12739, 'forestry': 12740, 'professors': 12741, 'Ripple': 12742, 'Beschta': 12743, 'unfortunate': 12744, 'smacks': 12745, 'elk': 12746, 'browse': 12747, 'unmolested': 12748, 'aspen': 12749, 'willow': 12750, 'streams': 12751, 'saplings': 12752, 'erosion': 12753, 'munching': 12754, 'photographs': 12755, 'Bangs': 12756, 'recovery': 12757, 'bald': 12758, 'billiard': 12759, 'triggered': 12760, 'veritable': 12761, 'ecological': 12762, 'cascade': 12763, 'streamside': 12764, 'habitat': 12765, 'beaver': 12766, 'instance': 12767, 'uninteresting': 12768, 'willows': 12769, 'cottonwoods': 12770, 'critters': 12771, 'beavers': 12772, 'avian': 12773, 'berry': 12774, 'producing': 12775, 'shrubs': 12776, 'Plants': 12777, 'wildland': 12778, 'ecosystems': 12779, 'herd': 12780, 'markedly': 12781, 'suspicious': 12782, 'generalizations': 12783, 'cautioned': 12784, 'Wolves': 12785, 'endangered': 12786, 'altogether': 12787, 'regulations': 12788, 'conservationists': 12789, 'Colorado': 12790, 'vacated': 12791, 'FWS': 12792, 'downgrade': 12793, 'Regardless': 12794, 'distances': 12795, 'highway': 12796, 'dynamic': 12797, '31,000': 12798, 'lions': 12799, 'Pound': 12800, 'pound': 12801, 'livestock': 12802, 'occasionally': 12803, 'Brothers': 12804, 'Grimm': 12805, 'accommodate': 12806, 'courtesy': 12807, 'arriving': 12808, 'rumors': 12809, '300,000': 12810, 'hybrids': 12811, 'pets': 12812, 'survive': 12813, 'ranger': 12814, 'Glacier': 12815, 'equipped': 12816, 'DNA': 12817, 'descendants': 12818, 'examining': 12819, 'relationship': 12820, 'environmental': 12821, 'E-mail': 12822, 'sciencem...@upi.com': 12823, 'Climate': 12824, 'Humans': 12825, 'Scientists': 12826, 'Celsius': 12827, 'Fahrenheit': 12828, 'trend': 12829, 'portends': 12830, 'meanwhile': 12831, 'insects': 12832, 'altering': 12833, 'patterns': 12834, 'turns': 12835, 'surest': 12836, 'barometers': 12837, 'biologists': 12838, 'biosphere': 12839, 'acknowledging': 12840, 'Nina': 12841, 'ecologist': 12842, 'conservation': 12843, 'pioneer': 12844, 'Aldo': 12845, 'Proceedings': 12846, 'Sciences': 12847, 'uninterrupted': 12848, 'phenological': 12849, 'Phenology': 12850, 'studies': 12851, 'organism': 12852, 'cycle': 12853, 'pulse': 12854, 'phenophases': 12855, 'latitudes': 12856, 'migrations': 12857, 'flowered': 12858, 'phoebe': 12859, 'forest': 12860, 'phlox': 12861, 'blooming': 12862, 'mid-May': 12863, 'cuckoo': 12864, 'bird': 12865, 'laying': 12866, 'eggs': 12867, 'findings': 12868, 'determining': 12869, 'geographical': 12870, 'Observed': 12871, 'Impacts': 12872, 'Pew': 12873, 'researchers': 12874, 'affecting': 12875, 'biology': 12876, 'causal': 12877, 'Camille': 12878, 'Parmesan': 12879, 'occurring': 12880, 'Across': 12881, 'edge': 12882, 'career': 12883, 'studying': 12884, 'checkerspot': 12885, 'butterfly': 12886, 'migrates': 12887, 'localized': 12888, 'extinctions': 12889, 'Empirical': 12890, 'extinction': 12891, 'prematurely': 12892, 'snowstorm': 12893, 'Tree': 12894, 'swallows': 12895, 'nesting': 12896, 'Tropical': 12897, 'Bird': 12898, 'watchers': 12899, 'Caribbean': 12900, 'Sufficient': 12901, 'detectable': 12902, 'Such': 12903, 'contraction': 12904, 'ranges': 12905, 'composition': 12906, 'alterations': 12907, 'ecosystem': 12908, 'carbon': 12909, 'Alaskan': 12910, 'tundra': 12911, 'switched': 12912, 'dioxide': 12913, 'releases': 12914, 'CO2': 12915, 'stored': 12916, 'winters': 12917, 'decompose': 12918, 'coincided': 12919, 'Iceland': 12920, 'Impact': 12921, 'Assessment': 12922, 'ACIA': 12923, 'impacts': 12924, 'Corell': 12925, 'experiencing': 12926, 'rapid': 12927, 'temperatures': 12928, 'predicting': 12929, 'Ocean': 12930, 'predictions': 12931, 'Appraisal': 12932, 'falls': 12933, 'IPN': 12934, 'predict': 12935, 'rises': 12936, 'exceed': 12937, 'diminish': 12938, 'solar': 12939, 'Atlantic': 12940, 'fisheries': 12941, 'stocks': 12942, 'predicted': 12943, 'cod': 12944, 'haddock': 12945, 'saithe': 12946, 'herring': 12947, 'whiting': 12948, 'flatfish': 12949, 'crustaceans': 12950, 'lobster': 12951, 'shrimp': 12952, 'capelin': 12953, 'Greenland': 12954, 'halibut': 12955, 'varieties': 12956, 'pile': 12957, 'examined': 12958, 'chasms': 12959, 'dividing': 12960, 'examines': 12961, 'neglects': 12962, 'non-commercial': 12963, 'seals': 12964, 'butterflies': 12965, 'unconsumables': 12966, 'transcend': 12967, 'assumed': 12968, 'unspecified': 12969, 'rosy': 12970, 'tug': 12971, 'dandelions': 12972, 'Wisconsin': 12973, 'pastures': 12974, 'Sand': 12975, 'Almanac': 12976, 'Sit': 12977, 'tussock': 12978, 'cock': 12979, 'ears': 12980, 'bedlam': 12981, 'meadowlarks': 12982, 'redwings': 12983, 'upland': 12984, 'plover': 12985, 'Argentine': 12986, 'Preamble': 12987, 'gamut': 12988, '---->===}*{===<----': 12989, 'lasting': 12990, 'learnt': 12991, 'Relief': 12992, 'displaced': 12993, 'vowed': 12994, 'restore': 12995, 'breakdown': 12996, 'commentators': 12997, 'profound': 12998, 'perceived': 12999, 'inquiry': 13000, 'altered': 13001, 'Bashers': 13002, 'appalled': 13003, 'podium': 13004, 'downfalls': 13005, 'socialism': 13006, 'revolted': 13007, 'chaps': 13008, 'sight': 13009, 'detractors': 13010, 'scoring': 13011, 'Mac': 13012, 'Nottingham': 13013, 'Warming': 13014, 'Distances': 13015, 'Juggernaut': 13016, 'irrelevant': 13017, 'Windermere': 13018, 'anytime': 13019, 'depiction': 13020, 'Bulgaria': 13021, 'communistic': 13022, 'remnants': 13023, 'Believe': 13024, 'sown': 13025, 'stricken': 13026, 'Dallas': 13027, 'Fort': 13028, 'Metroplex': 13029, 'diversity': 13030, 'vacationed': 13031, 'minority': 13032, 'white': 13033, 'Arkansas': 13034, 'Montana': 13035, 'Idaho': 13036, 'workplace': 13037, 'Nashua': 13038, 'Hampshire': 13039, 'pockets': 13040, 'diverse': 13041, 'Additionally': 13042, 'standings': 13043, 'stakes': 13044, 'filmed': 13045, 'reflection': 13046, 'perceptions': 13047, 'evacuated': 13048, '1.25': 13049, 'stadiums': 13050, 'centers': 13051, 'populate': 13052, 'Galveston': 13053, 'Sure': 13054, 'shy': 13055, 'snow': 13056, 'experienced': 13057, 'booming': 13058, 'influx': 13059, 'buyers': 13060, 'household': 13061, 'rebuilding': 13062, 'Linna': 13063, 'slanted': 13064, 'admit': 13065, 'credibility': 13066, \"who's\": 13067, 'aunt': 13068, 'straightened': 13069, 'cousins': 13070, 'Aunt': 13071, 'Mayor': 13072, 'mumbo': 13073, 'jumbo': 13074, 'flogging': 13075, 'burst': 13076, 'laughing': 13077, 'mirth': 13078, 'smirk': 13079, 'trotting': 13080, 'schtick': 13081, 'resounding': 13082, 'trot': 13083, 'shunted': 13084, 'radar': 13085, 'stumping': 13086, 'refineries': 13087, 'pour': 13088, 'OPEC': 13089, 'touting': 13090, 'FREEDOM': 13091, 'polution': 13092, 'dependency': 13093, 'theirs': 13094, 'puke': 13095, 'Aries': 13096, 'Flexibility': 13097, 'motto': 13098, 'adopt': 13099, 'flow': 13100, 'ups': 13101, 'downs': 13102, 'natives': 13103, 'belts': 13104, 'curb': 13105, 'seize': 13106, 'societal': 13107, 'trends': 13108, 'creativity': 13109, 'eloquent': 13110, 'persuasive': 13111, 'enthusiastically': 13112, 'overtime': 13113, 'career-wise': 13114, 'aspiring': 13115, 'climb': 13116, 'Taurus': 13117, 'Tenacity': 13118, 'Diligence': 13119, 'aspiration': 13120, 'progresses': 13121, 'impressive': 13122, 'newfound': 13123, 'stimulating': 13124, 'Gemini': 13125, 'Success': 13126, 'knocks': 13127, 'reaping': 13128, 'wake': 13129, 'leaps': 13130, 'bounds': 13131, 'concepts': 13132, 'combines': 13133, 'earning': 13134, 'Cancer': 13135, 'Finding': 13136, 'outward': 13137, 'fits': 13138, 'starts': 13139, 'alternating': 13140, 'Enjoy': 13141, 'restful': 13142, 'hectic': 13143, 'happier': 13144, 'dissatisfaction': 13145, 'fades': 13146, 'mountains': 13147, 'Leo': 13148, 'Abundance': 13149, 'Pursuing': 13150, 'advantages': 13151, 'deciding': 13152, 'advancement': 13153, 'thin': 13154, 'Romance': 13155, 'envy': 13156, 'tight': 13157, 'inconvenient': 13158, 'advancements': 13159, 'sheer': 13160, 'Virgo': 13161, 'Perseverance': 13162, 'smoothly': 13163, 'grindstone': 13164, 'reaffirmed': 13165, 'hopeless': 13166, 'prosperity': 13167, 'accomplishments': 13168, 'Libra': 13169, 'Flex': 13170, 'beneficent': 13171, 'Jupiter': 13172, 'Happiness': 13173, 'wed': 13174, 'theme': 13175, 'satisfaction': 13176, 'Scorpio': 13177, 'Transmutation': 13178, 'transformation': 13179, 'dreamed': 13180, 'residence': 13181, 'horizons': 13182, 'cling': 13183, 'Sagittarius': 13184, 'Empowerment': 13185, 'Pluto': 13186, 'punch': 13187, 'packed': 13188, 'combination': 13189, 'effectiveness': 13190, 'gaining': 13191, 'binds': 13192, 'hindered': 13193, 'Overall': 13194, 'Capricorn': 13195, 'awaited': 13196, 'partnerships': 13197, 'Financially': 13198, 'lean': 13199, 'unbearable': 13200, 'stronger': 13201, 'wiser': 13202, 'Aquarius': 13203, 'Magic': 13204, 'intuitive': 13205, 'psychic': 13206, 'mysteries': 13207, 'universe': 13208, 'mystical': 13209, 'awareness': 13210, 'brimming': 13211, 'infuse': 13212, 'peaks': 13213, 'Pisces': 13214, 'Self': 13215, 'surprises': 13216, 'Uranus': 13217, 'unexpected': 13218, 'windfall': 13219, 'unexpectedly': 13220, 'retreats': 13221, 'regenerate': 13222, 'unpredictable': 13223, 'Remain': 13224, 'flourish': 13225, 'dictionary': 13226, 'Mayur': 13227, 'Mails': 13228, 'Everyday': 13229, 'Share': 13230, 'mailto:mayur...@yahoo.com': 13231, '09819602175': 13232, 'ymsgr:sendIM?mayursha&__Hi+Mayur...': 13233, 'offline': 13234, 'online?u=mayursha&m=g&t=1': 13235, 'Download': 13236, '-------------------------------------------------------------': 13237, 'mysterious': 13238, 'RAPHAEL': 13239, 'Holinshed': 13240, 'Neoplatonic': 13241, 'painter': 13242, 'Sanzio': 13243, 'painted': 13244, 'Fighting': 13245, 'Dragon': 13246, '06': 13247, '----------------------------------------------------------------------': 13248, 'Shakspere': 13249, 'Bridget': 13250, '-----------------------------------------------------------------------': 13251, 'ARCHILOCHUS': 13252, 'eclipse': 13253, '648': 13254, 'Koran': 13255, 'descends': 13256, '610': 13257, 'AD': 13258, 'CLEMENT': 13259, 'Methodius': 13260, 'dies': 13261, '884': 13262, 'Petrarch': 13263, 'meets': 13264, 'LAURA': 13265, '1327': 13266, 'DURER': 13267, '1528': 13268, 'BRIDGET': 13269, 'Vere': 13270, '1584': 13271, 'Walsingham': 13272, '1590': 13273, 'native': 13274, 'Crete': 13275, 'EL': 13276, 'GRECO': 13277, '1614': 13278, 'LUCIO': 13279, 'PAINT': 13280, 'Pompey': 13281, 'ha': 13282, 'MfM': 13283, 'Sc.': 13284, '}': 13285, 'plague': 13286, '1348': 13287, '1483': 13288, '1520': 13289, 'Hobbes': 13290, '1588': 13291, 'Start': 13292, 'SOUND': 13293, 'FURY': 13294, '1928': 13295, 'EARTHQUAKE': 13296, '1580': 13297, 'Historian': 13298, 'Stow': 13299, '1605': 13300, 'Sat': 13301, 'Wed': 13302, 'Alexander': 13303, 'conquered': 13304, 'Darius': 13305, 'fortunate': 13306, 'Potidea': 13307, 'JOHN': 13308, 'AUBREY': 13309, 'F.R.S.': 13310, '---------------------------------------------------------------------': 13311, 'ANTONIO': 13312, 'PEREZ': 13313, '1535': 13314, '1611': 13315, 'Labour': 13316, 'Lost': 13317, 'Adriana': 13318, 'Armatho': 13319, 'bombast': 13320, 'refugee': 13321, '1593': 13322, 'acquainted': 13323, 'ANTHONY': 13324, 'Bacon': 13325, 'intimacy': 13326, 'Spaniard': 13327, 'affectation': 13328, '1594': 13329, 'PEREGRINO': 13330, 'Holofernes': 13331, 'ridiculing': 13332, 'traveler': 13333, 'picked': 13334, 'spruce': 13335, 'odd': 13336, 'PEREGRINate': 13337, 'Scene': 13338, 'unmistakable': 13339, 'Nathaniel': 13340, 'singular': 13341, 'epithet': 13342, 'enters': 13343, 'parody': 13344, 'sobriquet': 13345, '----------------------------------------------------------------': 13346, 'Shakespeare': 13347, 'Electronic': 13348, 'Vol.': 13349, '0832': 13350, 'MGr...@usa.pipeline.com': 13351, '10:57:32': 13352, '0400': 13353, 'Facts': 13354, 'Purpose': 13355, \"1590's\": 13356, 'Essex': 13357, 'physician': 13358, 'Leicester': 13359, 'socially': 13360, 'ailment': 13361, 'Perez': 13362, 'conversos': 13363, 'undoubtedly': 13364, 'ethnically': 13365, 'Doctor': 13366, 'RODERIGO': 13367, 'LOPEZ': 13368, '1525': 13369, 'Portugese': 13370, 'Queen': 13371, 'summarily': 13372, 'quartered': 13373, 'Tyburn': 13374, '1560': 13375, 'certificate': 13376, 'Robsart': 13377, 'stairs': 13378, 'RUY': 13379, 'handily': 13380, 'comers': 13381, 'tournament': 13382, '1561': 13383, 'Libro': 13384, 'la': 13385, 'invencion': 13386, 'y': 13387, 'arte': 13388, 'del': 13389, 'Juego': 13390, 'Acedraz': 13391, 'classic': 13392, 'Chess': 13393, 'openings': 13394, '-------------------------------------------------------------------': 13395, '1530': 13396, '1647': 13397, 'Ruy': 13398, 'b.': 13399, 'Zafra': 13400, '1533': 13401, 'Atahualpa': 13402, 'inca': 13403, 'emperor': 13404, 'peru': 13405, 'learns': 13406, '1542': 13407, 'LEONARDO': 13408, 'Giovanni': 13409, 'a.k.a.': 13410, 'Il': 13411, 'Puttino': 13412, 'Boy': 13413, 'Calaria': 13414, '1550': 13415, 'Valdiviesco': 13416, 'Bishop': 13417, 'Nicaragua': 13418, '1551': 13419, 'Ivan': 13420, 'bans': 13421, '1555': 13422, 'Castling': 13423, 'castling': 13424, 'proposes': 13425, 'Introduces': 13426, 'Alcala': 13427, '1562': 13428, 'reformer': 13429, 'writings': 13430, '1570': 13431, 'Gianutto': 13432, 'della': 13433, 'Mantia': 13434, 'Horatio': 13435, 'Author': 13436, '1572': 13437, 'eminent': 13438, '1574': 13439, 'Boi': 13440, 'Ceron': 13441, 'Phillip': 13442, '1575': 13443, 'beats': 13444, 'Madrid': 13445, 'Plague': 13446, 'Cremona': 13447, 'banned': 13448, '1576': 13449, 'prisoner': 13450, 'Catherine': 13451, 'Medici': 13452, 'lopez': 13453, 'Terrible': 13454, 'Tarsia': 13455, 'Venice': 13456, 'curate': 13457, 'divert': 13458, 'idle': 13459, 'CHESS': 13460, 'fives': 13461, 'billiards': 13462, 'diversion': 13463, 'obliged': 13464, 'supposition': 13465, 'nobody': 13466, 'Quixote': 13467, 'comedy': 13468, 'emperors': 13469, 'popes': 13470, 'ends': 13471, 'strips': 13472, 'garments': 13473, 'grave': 13474, 'Sancho': 13475, 'lasts': 13476, 'mixed': 13477, 'jumbled': 13478, 'shaken': 13479, 'stowed': 13480, 'bag': 13481, 'Thou': 13482, 'doltish': 13483, 'shrewd': 13484, 'Ay': 13485, 'shrewdness': 13486, 'sticks': 13487, 'yield': 13488, 'dung': 13489, 'Freemason': 13490, 'sponsered': 13491, 'revolutions': 13492, 'French': 13493, 'Bolivar': 13494, 'Garibaldi': 13495, 'blatantly': 13496, 'Masonic': 13497, 'Nostromo': 13498, 'Tale': 13499, 'Seaboard': 13500, 'Decoud': 13501, 'exotic': 13502, 'dandy': 13503, 'Parisian': 13504, 'boulevard': 13505, 'sanded': 13506, 'cafe': 13507, 'Albergo': 13508, 'Giorgio': 13509, 'Viola': 13510, 'companion': 13511, 'coloured': 13512, 'Faithful': 13513, 'Hero': 13514, 'dimly': 13515, 'candle': 13516, 'sensations': 13517, 'Looking': 13518, 'window': 13519, 'darkness': 13520, 'impenetrable': 13521, 'buildings': 13522, 'harbour': 13523, 'obscurity': 13524, 'Placid': 13525, 'spreading': 13526, 'dumb': 13527, 'expressionless': 13528, 'motionless': 13529, 'stare': 13530, 'emptiness': 13531, 'depth': 13532, 'abyss': 13533, 'uneasy': 13534, 'overtopped': 13535, 'Juste': 13536, 'prominent': 13537, 'eyelids': 13538, 'wreathed': 13539, 'solemnity': 13540, 'dense': 13541, 'cloud': 13542, '------------------------------------------------------------------': 13543, 'Wisteria': 13544, 'Lodge': 13545, 'Murillo': 13546, 'precaution': 13547, 'satellite': 13548, 'Lucas': 13549, 'greatness': 13550, 'slept': 13551, 'avenger': 13552, 'prearranged': 13553, 'doors': 13554, 'postponed': 13555, 'crept': 13556, 'sprang': 13557, 'traitress': 13558, 'plunged': 13559, 'knives': 13560, 'rid': 13561, 'Garcia': 13562, 'gagged': 13563, 'twisted': 13564, 'swear': 13565, 'sleeve': 13566, 'gorse': 13567, 'bushes': 13568, 'winds': 13569, 'detected': 13570, 'burglar': 13571, '------------------------------------------------------': 13572, 'Neuendorffer': 13573, 'revolution': 13574, 'Sixties': 13575, 'Beast': 13576, 'Liverpool': 13577, 'Titanic': 13578, 'arrogant': 13579, 'captain': 13580, 'orchestra': 13581, 'allows': 13582, 'recording': 13583, 'studio': 13584, 'homosexuals': 13585, 'lunatics': 13586, 'Beatles': 13587, 'king': 13588, 'Enrique': 13589, 'VIII': 13590, 'adulterated': 13591, 'Bible': 13592, 'divorce': 13593, 'rein': 13594, 'divorces': 13595, 'murdering': 13596, 'fingers': 13597, 'Boleyn': 13598, 'nicknamed': 13599, 'Devil': 13600, 'Piccadilly': 13601, 'Circus': 13602, 'brothel': 13603, 'Piccadilla': 13604, 'Sin': 13605, 'nowadays': 13606, 'antichrist': 13607, 'Lennon': 13608, 'puppets': 13609, 'disintegration': 13610, 'mankind': 13611, 'Stuart': 13612, 'Sutcliffe': 13613, 'bass': 13614, 'club': 13615, 'Hamburg': 13616, 'haemorrhage': 13617, 'bruises': 13618, 'stardom': 13619, 'shrink': 13620, 'Pope': 13621, 'GOD': 13622, 'CURSE': 13623, 'fell': 13624, 'WEEK': 13625, 'LATER': 13626, 'Epstein': 13627, 'forger': 13628, 'Beatle': 13629, 'overdose': 13630, 'preach': 13631, 'magic': 13632, 'Rosemary': 13633, 'Roman': 13634, 'Polansky': 13635, 'upholstered': 13636, 'silk': 13637, 'Came': 13638, 'LSD': 13639, 'schizophrenic': 13640, 'Walrus': 13641, 'incoherent': 13642, 'expositions': 13643, 'Sympathy': 13644, 'pact': 13645, 'Rolling': 13646, 'Stones': 13647, 'guitarist': 13648, 'Mick': 13649, 'Jagger': 13650, 'assassin': 13651, 'Antichrist': 13652, 'beard': 13653, 'bogus': 13654, 'Yoko': 13655, 'Ono': 13656, 'proclaiming': 13657, 'ridiculized': 13658, 'admonished': 13659, 'ballad': 13660, 'crucify': 13661, 'distresses': 13662, 'Stone': 13663, 'magazine': 13664, 'condensed': 13665, 'Cabalah': 13666, 'tradition': 13667, 'arrogantly': 13668, 'Henley': 13669, 'Thames': 13670, 'divinity': 13671, 'throat': 13672, 'metastasis': 13673, 'McCartney': 13674, 'toying': 13675, 'planets': 13676, 'deluded': 13677, 'ego': 13678, 'sweeper': 13679, 'produces': 13680, 'advertising': 13681, 'loved': 13682, 'Heather': 13683, 'Mills': 13684, 'intimate': 13685, 'bought': 13686, 'mourning': 13687, 'promotional': 13688, 'waning': 13689, 'popularity': 13690, 'masquerade': 13691, 'pretending': 13692, 'afore': 13693, 'insecure': 13694, 'womanish': 13695, 'effeminate': 13696, 'manners': 13697, 'ugly': 13698, 'virility': 13699, 'repressed': 13700, 'homosexuality': 13701, 'film': 13702, 'uneasiness': 13703, 'sings': 13704, 'traumas': 13705, 'Asher': 13706, 'manliness': 13707, 'inferiority': 13708, 'handicapped': 13709, 'conscious': 13710, 'superiority': 13711, 'virile': 13712, 'musician': 13713, 'anymore': 13714, 'fame': 13715, 'Besides': 13716, 'intercourse': 13717, 'homosexual': 13718, 'Cavern': 13719, 'recovered': 13720, 'collar': 13721, 'tie': 13722, 'crippled': 13723, 'wore': 13724, 'boots': 13725, 'manifestations': 13726, 'studios': 13727, 'filming': 13728, 'Swedish': 13729, 'parade': 13730, 'despective': 13731, 'manner': 13732, 'ah': 13733, 'alike': 13734, 'bundle': 13735, 'greeting': 13736, 'entrance': 13737, 'Friar': 13738, 'overbearing': 13739, 'receptionist': 13740, 'Hand': 13741, 'cinema': 13742, 'despotism': 13743, 'pedantry': 13744, 'worshiped': 13745, 'chauvinisms': 13746, 'hated': 13747, 'Oasis': 13748, 'untalented': 13749, 'musicians': 13750, 'elementary': 13751, 'guitar': 13752, 'chords': 13753, 'sounded': 13754, 'poorly': 13755, 'Satanism': 13756, 'deceive': 13757, 'disguise': 13758, 'deceiving': 13759, 'ghostly': 13760, 'weakening': 13761, 'proclaimers': 13762, 'aversion': 13763, 'dissipation': 13764, 'illness': 13765, 'antisocialism': 13766, 'apprentice': 13767, 'mentally': 13768, 'manifest': 13769, 'anti': 13770, 'feminism': 13771, 'rebellion': 13772, 'addiction': 13773, 'outlines': 13774, 'youths': 13775, 'hierarchies': 13776, 'convulsed': 13777, 'misanthropy': 13778, 'misogyny': 13779, 'paedophilia': 13780, 'irrational': 13781, 'feeble': 13782, 'lasciviousness': 13783, 'existent': 13784, 'aberrations': 13785, 'manoeuvre': 13786, 'marionettes': 13787, 'misery': 13788, 'curse': 13789, 'L.P': 13790, 'CURSED': 13791, 'BY': 13792, 'throwing': 13793, 'HIGH': 13794, 'COURT': 13795, 'Five': 13796, 'yamwhatiyam': 13797, 'pop...@spinach.eat': 13798, 'alt.consumers': 13799, 'ba.consumers': 13800, 'misc.consumers.frugal-living': 13801, 'Attack': 13802, 'Looming': 13803, 'Folly': 13804, 'Rivers': 13805, 'Pitt': 13806, 't': 13807, 'u': 13808, 'h': 13809, 'Perspective': 13810, '09': 13811, 'wires': 13812, 'preparing': 13813, 'reinforcing': 13814, 'Turkish': 13815, 'Der': 13816, 'Tagesspiegel': 13817, 'mullah': 13818, 'ramifications': 13819, 'Blowback': 13820, 'amalgam': 13821, 'religiously': 13822, 'principally': 13823, 'Dawa': 13824, 'SCIRI': 13825, 'umbilical': 13826, 'essence': 13827, 'owns': 13828, 'undertake': 13829, 'twelve': 13830, 'Hawk': 13831, 'aimed': 13832, 'disgruntled': 13833, 'sham': 13834, 'probable': 13835, 'taxed': 13836, 'reprisal': 13837, 'loyal': 13838, 'escalation': 13839, 'bunker': 13840, 'bases': 13841, 'seething': 13842, 'cauldron': 13843, 'Armaments': 13844, 'Unlike': 13845, 'fifteen': 13846, 'worn': 13847, 'grueling': 13848, 'heyday': 13849, 'armaments': 13850, 'nonetheless': 13851, 'Strategic': 13852, 'Studies': 13853, '540,000': 13854, '350,000': 13855, '120,000': 13856, '1,613': 13857, '21,600': 13858, 'armored': 13859, 'vehicles': 13860, '3,200': 13861, 'artillery': 13862, '306': 13863, 'combat': 13864, 'aircraft': 13865, 'submarines': 13866, '59': 13867, 'combatants': 13868, 'amphibious': 13869, 'CSIS': 13870, 'asymmetric': 13871, 'proliferation': 13872, 'missile': 13873, 'MILNET': 13874, 'astride': 13875, 'Tanker': 13876, 'squarely': 13877, 'bullseye': 13878, 'shipping': 13879, 'Navy': 13880, 'modernizing': 13881, 'cites': 13882, 'modernization': 13883, 'troublesome': 13884, 'anti-shipping': 13885, 'anti-ship': 13886, 'patrol': 13887, 'craft': 13888, 'midget': 13889, 'arrayed': 13890, 'exit': 13891, 'Hormuz': 13892, 'mountainous': 13893, 'coastline': 13894, 'holds': 13895, 'Missile': 13896, 'batteries': 13897, 'havoc': 13898, 'fleet': 13899, 'armament': 13900, 'Sunburn': 13901, 'fastest': 13902, 'Mach': 13903, 'altitude': 13904, '2.2': 13905, 'faster': 13906, 'Harpoon': 13907, 'manufacturers': 13908, 'cripple': 13909, 'destroyer': 13910, 'Exocet': 13911, 'Recall': 13912, 'Exocets': 13913, 'USS': 13914, 'shreds': 13915, '37': 13916, 'sailors': 13917, 'carrier': 13918, 'Theodore': 13919, 'Roosevelt': 13920, '7,000': 13921, 'Sailing': 13922, 'Tarawa': 13923, 'Expeditionary': 13924, 'Strike': 13925, 'Pearl': 13926, 'Harbor': 13927, 'detection': 13928, 'chooses': 13929, 'retaliate': 13930, 'muscle': 13931, 'fired': 13932, 'grenades': 13933, 'roadside': 13934, 'vaunted': 13935, '2,210': 13936, 'guerrilla': 13937, 'lasted': 13938, 'thousand': 13939, 'decides': 13940, '23,000': 13941, 'unspeakably': 13942, 'Connection': 13943, 'condemnation': 13944, 'Rafik': 13945, 'Hariri': 13946, 'Damascus': 13947, 'conceivably': 13948, 'scoff': 13949, 'Virtually': 13950, 'credible': 13951, 'counterweight': 13952, '215,000': 13953, '4,700': 13954, 'comprised': 13955, 'eleven': 13956, 'totaling': 13957, '650': 13958, 'possesses': 13959, 'arsenals': 13960, 'ballistic': 13961, 'SCUD': 13962, 'Compounding': 13963, 'Economy': 13964, 'loom': 13965, 'engagement': 13966, 'exploding': 13967, 'hampered': 13968, 'thirst': 13969, 'inked': 13970, 'liquefied': 13971, 'Yadavaran': 13972, '150,000': 13973, 'Caspian': 13974, 'Kazakhstan': 13975, 'imperil': 13976, 'confrontation': 13977, 'palm': 13978, 'Conservative': 13979, 'surpluses': 13980, 'accumulation': 13981, 'sums': 13982, 'dumping': 13983, 'provoke': 13984, 'showdown': 13985, 'teaching': 13986, 'hegemonic': 13987, 'superpower': 13988, 'arose': 13989, 'hardest': 13990, 'ceases': 13991, 'undervalued': 13992, 'shoppers': 13993, 'Wal': 13994, 'Mart': 13995, 'shelves': 13996, 'Neiman': 13997, 'Marcus': 13998, 'incomes': 13999, 'coincides': 14000, 'rising': 14001, 'Depression': 14002, 'squeeze': 14003, 'extends': 14004, 'realm': 14005, 'Preparedness': 14006, 'overwhelm': 14007, 'foe': 14008, 'battlefield': 14009, 'cemented': 14010, 'sapped': 14011, 'decrease': 14012, 'deployments': 14013, 're-enlist': 14014, 'stretched': 14015, 'economists': 14016, 'Nobel': 14017, 'Prize': 14018, 'nationally': 14019, 'renowned': 14020, 'analyzed': 14021, 'tag': 14022, 'Bilmes': 14023, 'Laureate': 14024, 'Stiglitz': 14025, 'surpassing': 14026, 'envelops': 14027, 'involve': 14028, 'shatter': 14029, 'Add': 14030, 'implicit': 14031, 'disruption': 14032, 'Mideast': 14033, 'undersized': 14034, 'resupply': 14035, 'carriers': 14036, 'minted': 14037, 'imperiled': 14038, 'Conclusion': 14039, 'Possible': 14040, 'maniac': 14041, 'fraught': 14042, 'peril': 14043, 'catastrophe': 14044, 'envelop': 14045, 'cocked': 14046, 'hat': 14047, 'Vladimir': 14048, 'Putin': 14049, 'bluntly': 14050, 'endeavor': 14051, 'aiding': 14052, 'dangers': 14053, 'offset': 14054, 'gains': 14055, 'bubble': 14056, 'encased': 14057, 'zealot': 14058, '1600': 14059, 'consistently': 14060, 'undertaken': 14061, 'garner': 14062, 'lobbed': 14063, 'damaging': 14064, 'Karl': 14065, 'Rove': 14066, 'advisor': 14067, 'notoriously': 14068, 'ballot': 14069, 'midterms': 14070, 'gained': 14071, 'Abramoff': 14072, 'scandal': 14073, 'subsume': 14074, 'fought': 14075, 'Logic': 14076, 'insane': 14077, 'unavoidable': 14078, 'Graydon': 14079, 'excepted': 14080, '68.4': 14081, 'Number': 14082, 'Endangered': 14083, 'Threatened': 14084, 'Species': 14085, '0': 14086, 'voluntarily': 14087, '408': 14088, 'extinct': 14089, '2050': 14090, 'pollution': 14091, 'mentioning': 14092, 'paragraphs': 14093, 'EPA': 14094, 'Draft': 14095, 'Environment': 14096, '68': 14097, 'ratify': 14098, 'Kyoto': 14099, 'greenhouse': 14100, 'gases': 14101, '5.2': 14102, '1990': 14103, '2012': 14104, 'emissions': 14105, 'Percentage': 14106, 'reneged': 14107, 'regulate': 14108, '44': 14109, 'fossil': 14110, 'timber': 14111, 'mining': 14112, 'industries': 14113, 'rollbacks': 14114, 'downgrading': 14115, 'appointees': 14116, 'alumni': 14117, 'Approximate': 14118, 'injurious': 14119, 'relay': 14120, 'widest': 14121, 'Environmental': 14122, 'polluters': 14123, 'penalties': 14124, 'historically': 14125, 'valued': 14126, 'conducting': 14127, '3.7': 14128, '62': 14129, '63': 14130, 'Task': 14131, 'environmentalists': 14132, 'investigated': 14133, 'Estimated': 14134, 'premature': 14135, 'Clear': 14136, 'Skies': 14137, 'Clean': 14138, 'Water': 14139, 'violations': 14140, 'mountaintop': 14141, '750,000': 14142, 'Tons': 14143, 'polluter': 14144, '3.8': 14145, 'Superfund': 14146, 'fees': 14147, 'uncommitted': 14148, '270': 14149, 'citing': 14150, 'Negligence': 14151, 'unheeded': 14152, 'screened': 14153, 'Ground': 14154, 'Zero': 14155, '78': 14156, 'lung': 14157, 'ailments': 14158, '88': 14159, 'ear': 14160, 'Asbestos': 14161, 'Libby': 14162, 'Grace': 14163, 'produced': 14164, \"Qa'ida\": 14165, '101': 14166, '83': 14167, 'painting': 14168, 'Library': 14169, 'Prince': 14170, 'Bandar': 14171, 'ambassador': 14172, '1,700': 14173, 'visas': 14174, 'Visa': 14175, '140': 14176, 'Naturalisation': 14177, 'INS': 14178, 'legalised': 14179, 'gambling': 14180, 'linguists': 14181, 'mid-October': 14182, 'Nearly': 14183, 'Reward': 14184, 'Dick': 14185, 'Donald': 14186, 'Rumsfeld': 14187, 'Wolfowitz': 14188, 'Perle': 14189, 'Representatives': 14190, 'Newspaper': 14191, 'GI': 14192, 'toys': 14193, 'Ambitious': 14194, 'warrior': 14195, '130': 14196, '191': 14197, 'recognised': 14198, 'spends': 14199, '401.3': 14200, 'Saviour': 14201, 'spurs': 14202, 'gift': 14203, '2.5': 14204, '237': 14205, 'Minimum': 14206, 'misleading': 14207, 'Henry': 14208, 'Waxman': 14209, 'simultaneous': 14210, 'Actual': 14211, 'cement': 14212, 'factory': 14213, '80,000': 14214, 'delays': 14215, '4.7': 14216, '680': 14217, 'reconstruction': 14218, 'Bechtel': 14219, '2.8': 14220, 'Value': 14221, '35': 14222, 'suspended': 14223, 'Criminal': 14224, '92': 14225, 'urban': 14226, 'potable': 14227, '1945': 14228, 'Death': 14229, 'coffins': 14230, 'photographed': 14231, 'memorial': 14232, 'attended': 14233, 'Interceptor': 14234, 'outfitting': 14235, 'masks': 14236, 'investigators': 14237, 'autumn': 14238, '90': 14239, 'detectors': 14240, 'defective': 14241, '87': 14242, 'Humvees': 14243, 'armour': 14244, 'stopping': 14245, 'protecting': 14246, 'landmines': 14247, 'Making': 14248, '3.29': 14249, 'Nationwide': 14250, 'grants': 14251, '94.40': 14252, 'Samoa': 14253, '5.87': 14254, '77.92': 14255, 'alma': 14256, 'mater': 14257, '215': 14258, 'surveyed': 14259, 'Mayors': 14260, 'dime': 14261, 'airports': 14262, 'screening': 14263, 'baggage': 14264, '22,600': 14265, 'unscreened': 14266, 'passenger': 14267, '95': 14268, 'subjected': 14269, 'inspection': 14270, '5.5': 14271, 'budgeted': 14272, 'vaccines': 14273, 'pathogens': 14274, 'Centres': 14275, 'advantaged': 14276, '10.9': 14277, 'unaffected': 14278, 'sweeping': 14279, '42,000': 14280, 'Skull': 14281, 'Bones': 14282, 'McCallum': 14283, 'SEC': 14284, 'Donaldson': 14285, '189': 14286, '113': 14287, 'Pioneer': 14288, 'bundling': 14289, 'cheques': 14290, 'Pioneers': 14291, 'bankruptcies': 14292, 'recession': 14293, '489': 14294, 'deficit': 14295, '5.6': 14296, 'Projected': 14297, '7.22': 14298, 'mid-2004': 14299, 'cutter': 14300, '39': 14301, 'phased': 14302, '30,858': 14303, 'tsar': 14304, '9.3': 14305, '2.3': 14306, 'Friend': 14307, '34.6': 14308, '6.8': 14309, 'defines': 14310, 'subsidies': 14311, 'richest': 14312, '1e': 14313, 'Loss': 14314, 'stockholders': 14315, '205': 14316, '59,339': 14317, 'jet': 14318, 'Length': 14319, 'Kenny': 14320, 'Lawman': 14321, '57': 14322, 'Aids': 14323, 'abstinence': 14324, 'programmes': 14325, 'libertarian': 14326, 'admits': 14327, 'Guantánamo': 14328, 'Cuba': 14329, 'nationalities': 14330, 'detainees': 14331, 'Guantanamo': 14332, 'prisoners': 14333, 'handcuffed': 14334, 'shackled': 14335, 'surgical': 14336, 'earmuffs': 14337, 'blindfolds': 14338, 'mid-2003': 14339, 'psychiatrists': 14340, '43.6': 14341, '2.4': 14342, 'Image': 14343, 'booster': 14344, '2,500': 14345, 'Rank': 14346, 'Attitudes': 14347, '1949': 14348, '23.8': 14349, '85': 14350, 'Indonesians': 14351, 'unfavourable': 14352, 'endorsements': 14353, 'longest': 14354, 'Record': 14355, 'holder': 14356, 'Briefing': 14357, 'Determined': 14358, 'Targets': 14359, 'ranch': 14360, 'retreat': 14361, 'Kennebunkport': 14362, 'Maine': 14363, 'fool': 14364, 'trick': 14365, 'Factors': 14366, '52': 14367, 'midterm': 14368, 'Election': 14369, 'Software': 14370, 'Economist': 14371, '185': 14372, 're-election': 14373, 'expects': 14374, 'raisers': 14375, '187': 14376, '64.2': 14377, 'Rangers': 14378, 'WMDs': 14379, 'describe': 14380, 'Evangelicals': 14381, 'saviour': 14382, 'interpret': 14383, 'voters': 14384, 'Ugh': 14385, 'stupid': 14386, 'sisters': 14387, 'ohh': 14388, 'dads': 14389, 'lonely': 14390, 'forgive': 14391, 'Equine': 14392, 'collages': 14393, 'uk': 14394, 'NEED': 14395, 'HELP': 14396, '!!!?': 14397, 'foundation': 14398, 'Horse': 14399, 'psychology': 14400, 'employs': 14401, 'Hartpury': 14402, 'Merrist': 14403, 'NVQ': 14404, 'equine': 14405, 'HND': 14406, 'UCAS': 14407, 'Woking': 14408, 'Surrey': 14409, 'Moreton': 14410, 'Morrell': 14411, 'Coventry': 14412, 'Warwickshire': 14413, 'Gloucestershire': 14414, 'Go': 14415, 'universities': 14416, 'Pacquiao': 14417, 'Philipines': 14418, 'famous': 14419, 'Cheap': 14420, 'hookers': 14421, 'intimidating': 14422, 'blush': 14423, 'japanese': 14424, 'dress': 14425, 'nasty': 14426, 'insulting': 14427, 'undesirable': 14428, 'puttagenius': 14429, 'caloy': 14430, 'gro': 14431, 'irene': 14432, 'filipinos': 14433, 'plunge': 14434, 'pit': 14435, 'expulse': 14436, 'rotten': 14437, 'overs': 14438, 'dinasaurs': 14439, 'texting': 14440, 'Limerick': 14441, 'pros': 14442, 'cons': 14443, 'L.I.T': 14444, 'Moyross': 14445, 'ppl': 14446, 'sh*t': 14447, 'loads': 14448, 'spoilt': 14449, 'Orla': 14450, 'directing': 14451, \"AREA'S\": 14452, 'limerick': 14453, 'nowhere': 14454, 'university': 14455, 'myTouch': 14456, '4G': 14457, 'crashes': 14458, 'custom': 14459, 'ROMs': 14460, 'install': 14461, 'MIUI': 14462, 'newest': 14463, 'Cyanogen': 14464, 'Mod': 14465, 'voided': 14466, 'warrenty': 14467, 'installing': 14468, 'roms': 14469, 'ROM': 14470, 'cynangon': 14471, 'mod': 14472, 'clockwork': 14473, 'Cynagon': 14474, 'rom': 14475, 'bugless': 14476, 'beast': 14477, 'baked': 14478, 'snake': 14479, 'launcher': 14480, 'adw': 14481, 'mytouch': 14482, '4g': 14483, 'moors': 14484, 'penines': 14485, 'Yorkshire': 14486, 've': 14487, 'yorkshire': 14488, 'distance': 14489, 'werewolf': 14490, 'london': 14491, 'bleak': 14492, 'antiquities': 14493, 'burial': 14494, 'mounds': 14495, 'stone': 14496, 'settlements': 14497, 'farmlands': 14498, 'skies': 14499, 'wash': 14500, 'goodness': 14501, 'farms': 14502, 'stood': 14503, 'moorland': 14504, 'purple': 14505, 'heather': 14506, 'wildlife': 14507, 'wildflowers': 14508, 'appy': 14509, 'lope': 14510, 'stride': 14511, 'tick': 14512, 'spur': 14513, 'concentrate': 14514, 'essential': 14515, 'Lope': 14516, 'jog': 14517, 'OLYMPUS': 14518, 'X940': 14519, 'DIGITAL': 14520, 'CAMERA': 14521, 'digital': 14522, 'camera': 14523, 'wel': 14524, 'sony': 14525, 'anyways': 14526, 'olympus': 14527, 'any1': 14528, 'ur': 14529, 'gud': 14530, 'casual': 14531, 'photography': 14532, 'wht': 14533, 'abt': 14534, 'comparable': 14535, 'mega': 14536, 'pixel': 14537, 'n': 14538, 'optical': 14539, 'zoom': 14540, 'wud': 14541, 'Olympus': 14542, '940': 14543, 'Megapixel': 14544, 'Digital': 14545, 'Camera': 14546, 'filters': 14547, 'sorts': 14548, 'def': 14549, 'VERY': 14550, 'satisfied': 14551, 'photos': 14552, 'nikon': 14553, 'dslr': 14554, 'lens': 14555, 'sensor': 14556, 'infinity': 14557, 'photo': 14558, 'smallest': 14559, 'aperture': 14560, 'expose': 14561, 'stops': 14562, 'Cure': 14563, 'cleaned': 14564, 'Pixel': 14565, 'Mapping': 14566, 'sensors': 14567, 'flipped': 14568, 'pixels': 14569, 'exposures': 14570, 'skilled': 14571, 'migrant': 14572, 'visa': 14573, 'NZ': 14574, '.???': 14575, 'poles': 14576, 'preferable': 14577, 'depends': 14578, 'restricted': 14579, 'restrict': 14580, 'dine': 14581, 'Clark': 14582, 'Walk': 14583, 'BIG': 14584, 'BOWL': 14585, 'THAI': 14586, 'FOOD': 14587, 'ASIAN': 14588, 'BEST': 14589, 'PLACE': 14590, 'EVER': 14591, '!!!!!!!!!!!!': 14592, 'appetizers': 14593, 'meal': 14594, 'coupons': 14595, 'http://www.restaurant.com': 14596, 'chains': 14597, 'walking': 14598, 'mice': 14599, 'unresponsive': 14600, 'infected': 14601, 'dears': 14602, ':(': 14603, 'arsenic': 14604, 'vet': 14605, 'snap': 14606, 'trap': 14607, 'rats': 14608, 'invasive': 14609, 'Arm': 14610, 'Hammer': 14611, 'Crayola': 14612, 'Clay': 14613, 'giraffes': 14614, 'homemade': 14615, 'artistic': 14616, 'giraffe': 14617, 'sculpture': 14618, 'sculpted': 14619, 'dried': 14620, 'fragile': 14621, 'paint': 14622, 'kiln': 14623, 'clay': 14624, 'armatures': 14625, 'wire': 14626, 'armature': 14627, 'acrylic': 14628, 'kitten': 14629, 'forida': 14630, 'carolina': 14631, 'camping': 14632, 'cabin': 14633, 'virginia': 14634, 'adapt': 14635, 'litter': 14636, 'Mitten': 14637, '0nside': 14638, 'harness': 14639, 'leash': 14640, 'pan': 14641, 'surroundings': 14642, 'stress': 14643, 'depressed': 14644, 'cleaners': 14645, 'parakeet': 14646, 'dust': 14647, 'budgie': 14648, 'pledge': 14649, 'swiffer': 14650, 'duster': 14651, 'cleaner': 14652, 'ventilated': 14653, 'parakeets': 14654, 'Nothing': 14655, 'cotton': 14656, 'diapers': 14657, 'damp': 14658, 'Swiffer': 14659, 'micro-fiber': 14660, 'Miracle': 14661, 'Cloth': 14662, 'fantastic': 14663, 'fabric': 14664, 'softener': 14665, 'sheets': 14666, 'cleaning': 14667, 'ruins': 14668, 'grabbing': 14669, 'http://www.solutions.com/jump.jsp?itemID=1361&itemType=PRODUCT&path=1%2C3%2C477&iProductID=1361': 14670, 'lingering': 14671, 'fragrance': 14672, 'injure': 14673, 'RP': 14674, 'haha': 14675, 'LOL': 14676, 'Callum': 14677, 'saaaaaam': 14678, '!?': 14679, 'situations': 14680, 'D:': 14681, 'guz': 14682, 'whoooooo': 14683, 'stupidity': 14684, '=(': 14685, 'EDIT': 14686, 'callum': 14687, 'gpa': 14688, 'u.k': 14689, 'rep.': 14690, 'ireland': 14691, 'irish': 14692, 'dongle': 14693, 'pc': 14694, 'normall': 14695, 'USB': 14696, 'Region': 14697, 'aka': 14698, 'PAL': 14699, 'broadband': 14700, 'DELL': 14701, 'Acer': 14702, 'Asus': 14703, 'eMachines': 14704, 'newborn': 14705, 'reside': 14706, 'gallon': 14707, 'fry': 14708, 'breeder': 14709, 'eaten': 14710, 'Feed': 14711, 'flakes': 14712, 'Provide': 14713, 'overcrowded': 14714, 'pet': 14715, 'stores': 14716, 'foods': 14717, 'jack': 14718, 'dempsey': 14719, 'offspring': 14720, 'Monopoly': 14721, '!!!!!!!!!!!!!!!!!!!!!': 14722, 'POINTS': 14723, '!!!!!!!!!!?': 14724, 'Mcdonald': 14725, 'wan': 14726, 'EXTRA': 14727, 'Large': 14728, 'Fries': 14729, 'PIECES': 14730, 'drinks': 14731, 'REWARDED': 14732, '!!!!!!!!!!!': 14733, 'THANK': 14734, '!!!!!!!!!!!!!': 14735, ':D': 14736, '(:': 14737, 'http://www.playatmcd.com/en-us/Main/Gameboard': 14738, 'Peels': 14739, 'Chicken': 14740, 'McNuggets': 14741, 'fries': 14742, 'Medium': 14743, 'Fountain': 14744, 'Drink': 14745, 'McCAFE': 14746, 'Filet': 14747, 'Hash': 14748, 'Browns': 14749, 'Egg': 14750, 'McMuffin': 14751, 'Sausage': 14752, 'Fruit': 14753, 'Maple': 14754, 'Oatmeal': 14755, 'bearded': 14756, 'dragon': 14757, 'spines': 14758, 'becca': 14759, 'beardies': 14760, 'ovr': 14761, 'yrs': 14762, 'lik': 14763, 'eneedle': 14764, 'ar': 14765, 'pillow': 14766, 'prickly': 14767, 'cactus': 14768, 'puff': 14769, 'badder': 14770, 'scratch': 14771, 'lil': 14772, 'Beardies': 14773, 'delicate': 14774, 'predators': 14775, 'adaptation': 14776, 'kimberwick': 14777, 'Used': 14778, 'horses': 14779, 'pullers': 14780, 'hacking': 14781, 'hunting': 14782, 'ported': 14783, 'mouths': 14784, 'precise': 14785, 'pelham': 14786, 'slots': 14787, 'reins': 14788, 'poll': 14789, 'Useful': 14790, 'younger': 14791, 'independently': 14792, 'snaffle': 14793, 'vague': 14794, 'rider': 14795, 'canon': 14796, 't3i': 14797, 'november': 14798, '~': 14799, 'christmas': 14800, 'yeaa': 14801, 'cunclude': 14802, 'canan': 14803, 'tips': 14804, ':O': 14805, 'Canon': 14806, 'EOS': 14807, 'T2i': 14808, 'quicker': 14809, 'DSLR': 14810, 'Buying': 14811, 'Guide': 14812, 'http://www.the-dslr-photographer.com/2009/11/which-dslr-to-buy/': 14813, 'kido': 14814, 'smile': 14815, 'POP': 14816, 'icing': 14817, 'PoP': 14818, 'plaster': 14819, 'sculpting': 14820, 'uncommon': 14821, 'unset': 14822, 'wet': 14823, 'mud': 14824, 'Plaster': 14825, 'chemically': 14826, 'cools': 14827, 'dries': 14828, 'soaked': 14829, 'mold': 14830, 'slip': 14831, 'casting': 14832, 'molding': 14833, 'wax': 14834, 'soaking': 14835, 'http://www.mikegigi.com/castgobl.htm#LGGOBPROJ': 14836, 'Dwarf': 14837, 'Hamster': 14838, 'Noise': 14839, 'Wheel': 14840, 'dwarf': 14841, 'disturb': 14842, 'thei': 14843, 'energetic': 14844, 'hers': 14845, 'wheels': 14846, 'noise': 14847, 'rubber': 14848, 'edges': 14849, 'Super': 14850, 'Pet': 14851, 'Silent': 14852, 'Spinner': 14853, 'Exercise': 14854, '10.99': 14855, '12.99': 14856, 'PETSMART': 14857, 'hamster': 14858, 'HATES': 14859, 'MORE': 14860, 'digs': 14861, 'jumps': 14862, 'noiseless': 14863, 'squeaks': 14864, 'wrath': 14865, 'bored': 14866, 'boarding': 14867, 'Howrah': 14868, 'Asansol': 14869, 'stations': 14870, 'Calcutta': 14871, 'Foreigner': 14872, 'reservation': 14873, 'Reservation': 14874, 'desired': 14875, 'halts': 14876, 'TC': 14877, 'allot': 14878, 'inquire': 14879, 'railway': 14880, 'railways': 14881, 'petsmart': 14882, 'Josalyn': 14883, 'Leainne': 14884, 'drama': 14885, 'mcallister': 14886, 'deli': 14887, \"',\": 14888, 'mormon': 14889, 'hvae': 14890, 'pwople': 14891, 'hirier': 14892, '2;30': 14893, 'h=guys': 14894, 'Jeez': 14895, 'punctuation': 14896, 'Cover': 14897, 'resumes': 14898, 'typos': 14899, 'whatnot': 14900, 'Nope': 14901, '2015': 14902, 'semester': 14903, 'reapply': 14904, 'embassy': 14905, 'ANY': 14906, 'Visas': 14907, 'Study': 14908, 'Permits': 14909, 'administered': 14910, 'Citizenship': 14911, 'applications': 14912, 'C&IC': 14913, 'http://www.cic.gc.ca/english/index.asp': 14914, 'Prevent': 14915, 'Escaping': 14916, 'Cage': 14917, 'videos': 14918, 'youtube': 14919, 'escaped': 14920, 'FREAK': 14921, 'OUT': 14922, 'aquarium': 14923, 'cage': 14924, 'plastic': 14925, 'rat': 14926, 'chicken': 14927, 'wiring': 14928, 'rodents': 14929, 'hamsters': 14930, 'flatten': 14931, 'pancake': 14932, 'slide': 14933, 'whhich': 14934, 'IMPOSSIBLE': 14935, 'http://www.petsathome.com/shop/combi-1-dwarf-hamster-cage-by-ferplast-15986': 14936, 'spacious': 14937, 'Aquiriums': 14938, 'airway': 14939, 'dwarfs': 14940, 'cm': 14941, 'hammy': 14942, 'Rachel': 14943, 'Traveler': 14944, 'unknowledgeable': 14945, 'dislike': 14946, 'enviroment': 14947, 'unhappy': 14948, '18th': 14949, 'reassure': 14950, 'atm': 14951, 'Advice': 14952, 'Hotels': 14953, 'prefere': 14954, 'sleeping': 14955, 'Wool': 14956, 'Light': 14957, 'itchy': 14958, 'Hit': 14959, 'beg': 14960, 'spare': 14961, 'survival': 14962, 'Vietnamese': 14963, 'Mayko': 14964, 'Meiko': 14965, 'Regenesis': 14966, 'actress': 14967, 'Nguyen': 14968, 'fathers': 14969, 'orphans': 14970, 'E.g': 14971, 'Thanh': 14972, '===>': 14973, 'Thi': 14974, 'Thuy': 14975, 'Lan': 14976, 'origination': 14977, 'splitter': 14978, 'filter': 14979, 'ADSL': 14980, 'ph': 14981, 'connected': 14982, 'buzzing': 14983, 'disconnected': 14984, 'stil': 14985, 'Woud': 14986, 'modem': 14987, 'static': 14988, 'DSL': 14989, 'EVERYTHING': 14990, 'EXCEPT': 14991, 'filtered': 14992, 'alarm': 14993, 'boxes': 14994, 'doubling': 14995, 'jacks': 14996, 'connects': 14997, 'Holga': 14998, 'whilst': 14999, 'wind': 15000, 'darkroom': 15001, 'rewind': 15002, 'owners': 15003, 'easiest': 15004, 'scratched': 15005, 'folds': 15006, 'neatly': 15007, 'Adorama': 15008, 'http://www.adorama.com/BLCBS.html': 15009, 'DIY': 15010, 'YouTube': 15011, 'channel': 15012, 'http://bit.ly/kPlaylists': 15013, 'lo': 15014, 'fi': 15015, 'http://dianacamera.com': 15016, 'statue': 15017, 'censored': 15018, 'sophomore': 15019, 'Statue': 15020, 'florence': 15021, 'clothes': 15022, 'mid-cities': 15023, 'metro': 15024, 'parental': 15025, 'nudes': 15026, 'museum': 15027, 'female': 15028, 'pools': 15029, 'beaches': 15030, 'manikins': 15031, 'store': 15032, 'display': 15033, 'skipping': 15034, 'prudish': 15035, 'ignoramus': 15036, 'Better': 15037, 'Steakhouse': 15038, 'Philadelphia': 15039, 'steak': 15040, 'staying': 15041, 'decor': 15042, 'Davio': 15043, 'Del': 15044, 'Frisco': 15045, 'Sidenote': 15046, 'Capital': 15047, 'Grille': 15048, 'Barclay': 15049, 'Palm': 15050, 'Rib': 15051, 'Morton': 15052, 'weighed': 15053, 'chosen': 15054, 'taste': 15055, 'lovely': 15056, 'HAMSTERS': 15057, 'steam': 15058, 'd': 15059, 'Rodents': 15060, 'bedding': 15061, 'ammonia': 15062, 'urine': 15063, 'aways': 15064, 'european': 15065, 'Jeju': 15066, 'Namsan': 15067, 'Tower': 15068, 'amusement': 15069, 'parks': 15070, 'Lotte': 15071, 'Everland': 15072, 'Carribbean': 15073, '^_^': 15074, 'http://3.bp.blogspot.com/-X_e2uwT6wPw/Tkj_7UVTw6I/AAAAAAAAAGs/e_hICAdYPYI/s1600/lotte_world_from_high_up.jpg': 15075, 'indoors': 15076, 'outdoors': 15077, 'Resort': 15078, 'http://v2.cache7.c.bigcache.googleapis.com/static.panoramio.com/photos/original/42661265.jpg?redirect_counter=2': 15079, 'http://tong.visitkorea.or.kr/cms/resource/81/188181_image2_1.jpg': 15080, 'tower': 15081, 'http://farm3.static.flickr.com/2406/2527255596_db23df940f.jpg': 15082, 'Hoped': 15083, 'jejudo': 15084, 'jeju': 15085, 'll': 15086, 'dove': 15087, 'streaks': 15088, 'picky': 15089, 'petco': 15090, 'Doves': 15091, 'pigeon': 15092, 'Seed': 15093, 'eaters': 15094, 'bread': 15095, 'worms': 15096, 'shallow': 15097, 'dish': 15098, 'drink': 15099, 'bait': 15100, 'petshoppe': 15101, 'container': 15102, 'wheat': 15103, 'corn': 15104, 'paris': 15105, 'cdg': 15106, 'montparnasse': 15107, 'france': 15108, 'CDG': 15109, 'ty': 15110, 'RER': 15111, 'Buy': 15112, 'Saint': 15113, 'Michel': 15114, 'Notre': 15115, 'Dame': 15116, 'Porte': 15117, \"d'\": 15118, 'Montparnasse': 15119, 'Bienvenue': 15120, 'Opera': 15121, 'Bus': 15122, 'Vanves': 15123, 'Balard': 15124, 'Invalides': 15125, 'Chatillon': 15126, 'Montrouge': 15127, 'Photography': 15128, 'smooth': 15129, 'crisp': 15130, 'editing': 15131, 'GIMP': 15132, 'shots': 15133, 'http://www.flickr.com/photos/adamtolle/6094960940/in/set-72157627535453128/': 15134, 'Thx': 15135, 'gimp': 15136, 'blak': 15137, '>>>': 15138, 'brightness': 15139, 'modes': 15140, 'tutorial': 15141, 'http://gimpedblog.blogspot.com/2011/09/gimp-video-tutorial-how-to-convert.html': 15142, 'adjusting': 15143, 'chef': 15144, 'http://gimpedblog.blogspot.com/2011/09/how-to-use-gimp-for-beginners-lesson-4.html': 15145, 'Picasa': 15146, 'photoshop': 15147, 'CS5': 15148, 'macbook': 15149, 'photoscape': 15150, 'cheapest': 15151, 'surgeons': 15152, 'thailand': 15153, 'boob': 15154, 'artwork': 15155, 'perform': 15156, 'Cheapest': 15157, 'clinic': 15158, 'Bumrungard': 15159, 'Yanhee': 15160, 'brakes': 15161, 'parachute': 15162, 'infections': 15163, 'accidental': 15164, 'nicks': 15165, 'screw': 15166, 'Bumrungrad': 15167, 'cheaper': 15168, 'http://www.bumrungrad.com/en/patient-services/clinics-and-centers/plastic-surgery-thailand-bangkok/breast-augmentation-ba': 15169, 'Hospitals': 15170, 'gravy': 15171, 'licks': 15172, 'canned': 15173, 'label': 15174, 'Canned': 15175, 'moisture': 15176, 'spoilage': 15177, 'male': 15178, 'blender': 15179, 'anemic': 15180, 'mash': 15181, 'spoon': 15182, 'riding': 15183, 'hill': 15184, 'cantering': 15185, 'talented': 15186, 'Olympic': 15187, 'spooky': 15188, 'graceful': 15189, 'sliding': 15190, 'bond': 15191, 'rides': 15192, 'ribbons': 15193, 'galloping': 15194, 'quiet': 15195, 'encounters': 15196, 'foxes': 15197, 'deer': 15198, 'woodpeckers': 15199, 'pecking': 15200, 'Fascinating': 15201, 'nano': 15202, 'reef': 15203, 'fiji': 15204, 'carribean': 15205, 'maintaining': 15206, 'gravity': 15207, '1.024': 15208, 'powerhead': 15209, 'sump': 15210, 'intake': 15211, 'protein': 15212, 'skimmer': 15213, 'overflow': 15214, 'hang': 15215, 'piping': 15216, 'pump': 15217, 'hose': 15218, 'Hydor': 15219, 'SlimSkim': 15220, 'Nano': 15221, 'NOOK': 15222, 'Color': 15223, 'Tablet': 15224, 'HD': 15225, 'battery': 15226, 'processor': 15227, 'iPad': 15228, 'Kindle': 15229, 'e-reader': 15230, 'Fire': 15231, 'mini': 15232, 'tablet': 15233, 'darn': 15234, 'Judging': 15235, 'Basically': 15236, 'microphone': 15237, 'http://www.squidoo.com/nook-tablet': 15238, 'eReader': 15239, 'Comparison': 15240, 'HTC': 15241, 'Flyer': 15242, 'http://www.droidforums.net/forum/droid-news/181335-ereader-tablet-comparison-b-n-nook-tablet-b-n-nook-color-kindle-fire-htc-flyer.html': 15243, 'Pubs': 15244, 'Philly': 15245, 'Food': 15246, 'awesome': 15247, 'american': 15248, 'tavern': 15249, '=)': 15250, 'philly': 15251, \"to's\": 15252, 'Magazine': 15253, 'suburbs': 15254, 'Wishing': 15255, 'burger': 15256, 'Chickie': 15257, 'Pete': 15258, 'gosh': 15259, 'crab': 15260, 'betta': 15261, 'beginner': 15262, 'gravel': 15263, 'tear': 15264, 'fins': 15265, 'conditioner': 15266, 'sponge': 15267, 'bettas': 15268, 'heater': 15269, '82': 15270, 'Lights': 15271, 'optinal': 15272, 'nessasary': 15273, 'aquasafe': 15274, 'algae': 15275, 'lazers': 15276, 'Wang': 15277, 'recovering': 15278, 'comic': 15279, 'sci': 15280, 'movies': 15281, 'laser': 15282, 'sights': 15283, 'mount': 15284, 'wang': 15285, 'beam': 15286, 'Mount': 15287, 'grip': 15288, 'Laser': 15289, 'grips': 15290, 'wangs': 15291, 'Remove': 15292, 'screws': 15293, 'semi-automatic': 15294, 'Newer': 15295, 'rail': 15296, 'receiver': 15297, 'shaft': 15298, 'multi': 15299, 'devices': 15300, 'flashlight': 15301, 'Prepare': 15302, 'Tighten': 15303, 'securely': 15304, 'Flip': 15305, 'feeds': 15306, 'transitional': 15307, 'scream': 15308, 'sleeps': 15309, 'Budgies': 15310, 'breast': 15311, 'feeding': 15312, 'bisexual': 15313, 'titts': 15314, 'feathered': 15315, 'Ignore': 15316, 'btw': 15317, 'canada': 15318, 'provider': 15319, 'canadian': 15320, 'wireless': 15321, '611': 15322, 'cell': 15323, 'compatible': 15324, 'Ye$': 15325, 'Text': 15326, 'CANADA': 15327, 'U$': 15328, 'Thi$': 15329, '$ervice': 15330, 'co$t': 15331, 'varie$': 15332, 'WiFi': 15333, '$ometime$': 15334, 'companie': 15335, '$involved': 15336, '$ome': 15337, 'unde$tood': 15338, 'me$$age': 15339, 'Fernando': 15340, 'becouse': 15341, 'panicking': 15342, 'bouild': 15343, 'carrot': 15344, 'tube': 15345, 'realtion': 15346, 'useing': 15347, 'CHILL': 15348, 'Firstly': 15349, 'hammie': 15350, 'Thirdly': 15351, 'cge': 15352, 'ans': 15353, 'willl': 15354, 'explore': 15355, 'smells': 15356, 'noises': 15357, 'comfy': 15358, 'Fujairah': 15359, 'suitable': 15360, 'Dubai': 15361, 'LIVE': 15362, 'THERE': 15363, 'Fishing': 15364, 'Jet': 15365, 'snorkeling': 15366, 'diving': 15367, 'finishing': 15368, 'quieter': 15369, 'mins': 15370, 'Visited': 15371, 'economics': 15372, 'skill': 15373, 'console': 15374, 'PS3': 15375, 'BOX': 15376, 'Kinect': 15377, 'DS': 15378, 'PSP': 15379, 'newer': 15380, 'Wii': 15381, 'U': 15382, 'PS4': 15383, 'Interface': 15384, 'JOYSTICK': 15385, 'coz': 15386, 'joystick': 15387, 'discomfort': 15388, 'XBOX': 15389, 'Joys': 15390, 'soo': 15391, 'comfyy': 15392, 'playstation': 15393, 'Xbox': 15394, 'halfway': 15395, 'lifetime': 15396, 'kinect': 15397, 'wii': 15398, 'lifespan': 15399, 'seizure': 15400, 'bounces': 15401, 'ascertain': 15402, 'wildly': 15403, 'lifespans': 15404, 'conceivable': 15405, 'Indoor': 15406, 'cared': 15407, 'Older': 15408, 'urinary': 15409, 'tract': 15410, 'Male': 15411, 'Stories': 15412, 'outdoor': 15413, 'expectancy': 15414, 'Devon': 15415, 'bonus': 15416, 'Gaining': 15417, 'loosing': 15418, 'cockatiel': 15419, 'gesture': 15420, 'resorted': 15421, 'Eating': 15422, 'flock': 15423, 'pace': 15424, 'ruin': 15425, 'Patience': 15426, 'cuddly': 15427, 'tame': 15428, 'dat': 15429, 'breyer': 15430, 'breyers': 15431, 'stables': 15432, 'barns': 15433, 'stalls': 15434, 'Pictures': 15435, 'Breyer': 15436, 'miniature': 15437, 'replica': 15438, 'sketch': 15439, '3d': 15440, 'orthographic': 15441, 'square': 15442, 'cube': 15443, 'length': 15444, 'hobby': 15445, 'shops': 15446, 'wood': 15447, 'panels': 15448, 'carpenter': 15449, 'glue': 15450, 'clamps': 15451, 'corners': 15452, 'hinges': 15453, 'saws': 15454, 'drills': 15455, 'pencil': 15456, 'ruler': 15457, 'bryer': 15458, 'vary': 15459, 'cork': 15460, 'balsa': 15461, 'plywood': 15462, 'pre-cut': 15463, 'slats': 15464, 'hardware': 15465, 'http://www.binkyswoodworking.com/HorseStable.php': 15466, 'http://www.blueoakstables.com/breyerhorsebarns_barn003.asp': 15467, 'http://www.railroadredux.com/tag/northwest-shortline/': 15468, 'http://www.adventurehobbycraft.com/products/hobby_craft_supplies.html#metal': 15469, 'http://www.natureandtech.com/?page_id=2200': 15470, 'http://www.utrechtart.com/Craft-Supplies/Woodworking%20Supplies/': 15471, 'biting': 15472, 'kitty': 15473, 'bites': 15474, 'x.x': 15475, 'panics': 15476, 'teething': 15477, 'scratching': 15478, 'LOTS': 15479, 'balls': 15480, 'yarn': 15481, 'feathery': 15482, 'birdy': 15483, 'toy': 15484, 'randomly': 15485, 'wil': 15486, 'rambunctious': 15487, 'feather': 15488, 'flooring': 15489, 'http://www.ebay.co.uk/itm/250927098564?var=550057729382&ssPageName=STRK:MEWAX:IT&_trksid=p3984.m1438.l2649#ht_2079wt_893': 15490, 'http://www.ebay.co.uk/itm/130589513308?var=430034792128&ssPageName=STRK:MEWAX:IT&_trksid=p3984.m1438.l2648#ht_1500wt_660': 15491, 'http://www.ebay.co.uk/itm/250927098564?var=550057729382&ssPageName=STRK:MEWAX:IT&_trksid=p3984.m1438.l2649#ht_': 15492, 'LOVE': 15493, 'fleece': 15494, 'ratty': 15495, 'taller': 15496, 'hammocks': 15497, 'cheaply': 15498, 'springs': 15499, 'annoying': 15500, 'IMO': 15501, 'http://www.equinecaninefeline.com/catalog/mamble-hamster-narrow-100cm-cage-p-12642.html': 15502, 'http://www.equinecaninefeline.com/catalog/abode-large-metal-cage-liberta-free-delivery-p-6679.html': 15503, 'http://www.equinecaninefeline.com/catalog/savic-freddy-cage-free-delivery-p-6750.html': 15504, 'http://www.netpetshop.co.uk/p-19500-savic-chichi-2-chinchilla-rat-degu-ferret-cage.aspx': 15505, 'http://www.justcages.co.uk/ferret-cages/ferplast-furet-plus-ferret-cage#v_431': 15506, 'ebay': 15507, 'Exact': 15508, 'Bought': 15509, 'Ebay': 15510, 'Rat': 15511, 'Calculater': 15512, 'Says': 15513, 'Enough': 15514, 'Rats': 15515, 'heating': 15516, 'prop': 15517, 'heated': 15518, 'burrows': 15519, 'rests': 15520, 'reptile': 15521, 'carpet': 15522, 'substrate': 15523, 'propping': 15524, 'slithers': 15525, 'distribute': 15526, 'opinons': 15527, \"UTH's\": 15528, 'burrowing': 15529, 'snakes': 15530, 'UTH': 15531, 'corns': 15532, 'kings': 15533, 'milks': 15534, 'Bottom': 15535, 'overt': 15536, 'watt': 15537, 'bulb': 15538, 'brunch': 15539, 'bday': 15540, 'fam': 15541, 'bridal': 15542, 'denny': 15543, 'ihop': 15544, 'torrance': 15545, 'thanx': 15546, 'Breakfast': 15547, 'relax': 15548, 'fabulous': 15549, 'toast': 15550, 'Grill': 15551, 'conveniently': 15552, 'Expressway': 15553, 'parking': 15554, 'Plenty': 15555, 'Directions': 15556, 'Ogden': 15557, 'Exit': 15558, 'Hubbard': 15559, '1381': 15560, 'IL': 15561, '60622': 15562, '312-666-2372': 15563, 'Hours': 15564, 'Operation': 15565, 'wine': 15566, 'Coronas': 15567, 'Heineken': 15568, 'L.A.': 15569, '1912': 15570, 'lifeboats': 15571, 'SOLAS': 15572, 'Safety': 15573, 'Life': 15574, 'tragedy': 15575, 'muster': 15576, 'drill': 15577, 'lifeboat': 15578, 'sailing': 15579, 'dock': 15580, 'navigation': 15581, 'adoption': 15582, 'http://www.caribbean-cruising.net': 15583, '--------------------------------------------------': 15584, 'Edit': 15585, 'ensures': 15586, 'proficient': 15587, 'Okinawa': 15588, 'obvious': 15589, 'Naha': 15590, 'venues': 15591, 'showcase': 15592, 'venue': 15593, 'shrines': 15594, 'sumo': 15595, 'Eat': 15596, 'conveyor': 15597, 'sushi': 15598, 'Climb': 15599, 'Fuji': 15600, 'similarities': 15601, 'delicious': 15602, 'sashimi': 15603, 'nightlife': 15604, 'izakaya': 15605, 'Lonely': 15606, 'vs': 15607, 'auto': 15608, 'semiautomatic': 15609, 'm16': 15610, \"16's\": 15611, 'McNamara': 15612, '16s': 15613, 'SEA': 15614, '60s': 15615, 'dirtier': 15616, 'gunpowder': 15617, 'chrome': 15618, 'coating': 15619, 'jamming': 15620, 'Than': 15621, 'powder': 15622, 'bean': 15623, 'clog': 15624, 'semi': 15625, ';P': 15626, 'Christchurch': 15627, 'Earthquakes': 15628, 'aftershocks': 15629, 'Rotarua': 15630, 'Rotorua': 15631, 'earthquake': 15632, 'CBD': 15633, 'rubble': 15634, 'cleared': 15635, 'christchurch': 15636, 'ps.': 15637, 'Wellington': 15638, 'kaffee': 15639, 'eis': 15640, 'creams': 15641, 'gelatos': 15642, 'www.kaffeeeis.co.nz': 15643, 'Loads': 15644, 'hazards': 15645, 'paranoid': 15646, 'sturdy': 15647, 'debris': 15648, 'rotorua': 15649, 'louise': 15650, 'disciplines': 15651, 'hh': 15652, 'tall': 15653, 'pony': 15654, 'thankfully': 15655, '16.2': 15656, '16.3': 15657, 'TB': 15658, 'spurt': 15659, 'groom': 15660, 'saddle': 15661, '14.2': 15662, 'hop': 15663, 'bareback': 15664, 'Iguazu': 15665, 'Widely': 15666, 'waterfalls': 15667, 'attraction': 15668, 'locally': 15669, '‘': 15670, 'Garganta': 15671, 'Diablo': 15672, 'Throat': 15673, 'mist': 15674, 'shinning': 15675, 'rainbow': 15676, 'foreground': 15677, 'trademark': 15678, 'cascades': 15679, 'Foz': 15680, 'Iguaçu': 15681, 'Janeiro': 15682, 'reclining': 15683, 'Brazilian': 15684, 'geared': 15685, 'cater': 15686, 'Waterfalls': 15687, 'accommodation': 15688, 'scenery': 15689, 'idk': 15690, 'Charlotte': 15691, 'deliteful': 15692, 'Parisians': 15693, 'washing': 15694, 'ordering': 15695, 'intermediate': 15696, 'Mediterranean': 15697, 'magical': 15698, 'Edinburgh': 15699, 'Champagne': 15700, 'experice': 15701, 'upbringing': 15702, 'bta': 15703, 'BTA': 15704, 'romance': 15705, 'scammers': 15706, 'http://www.country-couples.co.uk/datingtips/basic-travel-allowance-bta-dating-scam/': 15707, 'Basic': 15708, 'Allowance': 15709, 'scammer': 15710, 'Personal': 15711, 'Traveller': 15712, 'Assistance': 15713, 'Assurance': 15714, 'wodges': 15715, '…': 15716, 'SUCH': 15717, 'THING': 15718, 'scam': 15719, 'http://www.romancescam.com/forum/viewtopic.php?t=7231': 15720, 'AS': 15721, 'BASIC': 15722, 'TRAVEL': 15723, 'ALLOWANCE': 15724, 'CIC': 15725, 'http://www.cic.gc.ca/english/contacts/index.asp': 15726, 'birthdate': 15727, 'conned': 15728, 'steal': 15729, 'Anti-Fraud': 15730, 'Centre': 15731, 'http://www.antifraudcentre-centreantifraude.ca/english/home-eng.html': 15732, 'SCAMMERS': 15733, 'PC': 15734, 'verifies': 15735, 'http://nigeria.usembassy.gov/scams.html': 15736, 'reproduce': 15737, 'Mature': 15738, 'mate': 15739, 'tankmates': 15740, 'conditons': 15741, 'VS': 15742, 'ideal': 15743, 'THEY': 15744, 'Ian': 15745, 'Dempseys': 15746, 'cichlid': 15747, 'Bredders': 15748, 'breeeding': 15749, 'cave': 15750, '6.5': 15751, 'bloodworms': 15752, 'blackworms': 15753, 'earthworms': 15754, 'ther': 15755, 'spaces': 15756, 'temp': 15757, 'calico': 15758, 'spayed': 15759, 'uterine': 15760, 'horn': 15761, 'peeing': 15762, 'scrub': 15763, 'Frequent': 15764, 'urination': 15765, 'Bladder': 15766, 'Urinary': 15767, 'indicator': 15768, 'untreated': 15769, 'renal': 15770, 'Signs': 15771, 'Vomiting': 15772, 'listlessness': 15773, 'Seizures': 15774, 'toxins': 15775, 'immigeration': 15776, 'minimunm': 15777, 'http://www.cic.gc.ca/english/immigrate/skilled/assess/index.asp': 15778, 'HOWEVER': 15779, 'Skilled': 15780, 'residency': 15781, 'minimums': 15782, 'GOOD': 15783, 'http://www.canadavisa.com/canadian-immigration-faq-skilled-workers.html': 15784, 'qualify': 15785, 'accurately': 15786, 'substituted': 15787, 'evaluated': 15788, 'criteria': 15789, 'BEN': 15790, 'circular': 15791, 'basket': 15792, 'Alright': 15793, 'fineally': 15794, 'airlines': 15795, 'monday': 15796, 'smiling': 15797, '-_-': 15798, 'fancy': 15799, '****': 15800, 'sigh': 15801, 'snooty': 15802, '.!': 15803, 'JANUARY': 15804, 'Gold': 15805, 'honey': 15806, 'crapload': 15807, 'Renaissance': 15808, 'achievement': 15809, 'spanned': 15810, 'marking': 15811, 'Medieval': 15812, 'Early': 15813, 'renaissance': 15814, 'historians': 15815, 'Jacob': 15816, 'Burckhardt': 15817, 'literate': 15818, 'patronage': 15819, 'Rinascimento': 15820, 'rebirth': 15821, 'classical': 15822, 'antiquity': 15823, 'humanists': 15824, 'labelled': 15825, 'Dark': 15826, 'Ages': 15827, 'concentrated': 15828, 'periodizing': 15829, 'apogee': 15830, 'arts': 15831, '1490s': 15832, 'fresco': 15833, 'Supper': 15834, 'Lorenzo': 15835, \"de'\": 15836, 'Florence': 15837, '1527': 15838, 'sacking': 15839, 'Hochrenaissance': 15840, 'nineteenth': 15841, 'Style': 15842, 'Johann': 15843, 'Joachim': 15844, 'Winckelmann': 15845, 'over-simplifying': 15846, 'iconic': 15847, 'visitor': 15848, 'americans': 15849, 'gates': 15850, 'privacy': 15851, 'embassies': 15852, 'VISA': 15853, 'http://travel.state.gov/travel/cis_pa_tw/cis/cis_1052.html': 15854, 'kindness': 15855, 'sussex': 15856, 'silkie': 15857, 'pekin': 15858, 'silkies': 15859, 'pics': 15860, 'hens': 15861, 'Sussex': 15862, 'Silkie': 15863, 'crossbred': 15864, 'mutt': 15865, 'genetics': 15866, 'chicks': 15867, 'Feather': 15868, 'Silkies': 15869, 'hookless': 15870, 'feathers': 15871, 'Sussexs': 15872, 'recessive': 15873, 'Skin': 15874, 'dominate': 15875, 'rec.': 15876, 'dom.': 15877, 'genes': 15878, 'dilute': 15879, 'darker': 15880, 'Beards': 15881, 'Muffs': 15882, 'muff': 15883, 'incomplete': 15884, 'Feathered': 15885, 'Feet': 15886, 'Shanks': 15887, 'shanks': 15888, 'Crest': 15889, 'crest': 15890, 'Comb': 15891, 'walnut': 15892, 'combs': 15893, 'genetically': 15894, 'comb': 15895, 'Rose': 15896, 'Pea': 15897, 'pea': 15898, 'combed': 15899, 'Toes': 15900, 'Crossed': 15901, 'incompletely': 15902, 'fifth': 15903, 'crosses': 15904, 'Hens': 15905, 'smarter': 15906, 'Jamie': 15907, 'RhodeRunner': 15908, 'Nikon': 15909, 'D7000': 15910, 'http://i.imgur.com/S2MD2.jpg': 15911, 'http://i.imgur.com/T2zff.jpg': 15912, 'http://i.imgur.com/Xytex.jpg': 15913, 'lighting': 15914, 'deleting': 15915, 'pic': 15916, 'gf': 15917, 'couch': 15918, 'fixture': 15919, 'rug': 15920, 'creeping': 15921, 'cord': 15922, 'crumpled': 15923, 'curtain': 15924, 'noticeable': 15925, 'outlet': 15926, 'Compositionally': 15927, 'calf': 15928, 'Using': 15929, 'blurring': 15930, 'unwanted': 15931, 'ruined': 15932, 'customs': 15933, '’m': 15934, 'Wake': 15935, 'travels': 15936, '’ve': 15937, 'waked': 15938, 'desisted': 15939, 'cups': 15940, 'tea': 15941, 'bun': 15942, 'Wakes': 15943, 'boarder': 15944, 'Protestants': 15945, 'Catholics': 15946, 'countryside': 15947, 'notable': 15948, 'funeral': 15949, 'temperance': 15950, 'abstaining': 15951, 'tee': 15952, 'hight': 15953, 'filling': 15954, 'Croke': 15955, '25th': 15956, '12th': 15957, 'Marches': 15958, 'Irish': 15959, 'unarguable': 15960, 'ticks': 15961, 'marches': 15962, 'protestants': 15963, 'Ulster': 15964, 'paraded': 15965, 'Barn': 15966, 'brack': 15967, 'sinnel': 15968, 'cake': 15969, 'easter': 15970, 'col': 15971, 'cannon': 15972, 'Halloween': 15973, 'http://news.yahoo.com/nestl-purina-releases-commercial-aimed-dogs-183443091.html': 15974, 'squeaky': 15975, 'chew': 15976, 'pitched': 15977, 'ad': 15978, 'advert': 15979, 'parrot': 15980, 'T.V.': 15981, 'flickering': 15982, 'streamed': 15983, 'broadcast': 15984, 'Hz': 15985, 'flawless': 15986, 'scratchy': 15987, 'flicker': 15988, 'fusion': 15989, 'slower': 15990, 'choppy': 15991, 'Hearing': 15992, 'entery': 15993, 'chases': 15994, 'hauling': 15995, '0.70': 15996, 'mile': 15997, 'Impossible': 15998, 'proportion': 15999, 'trailers': 16000, 'safest': 16001, 'Rusted': 16002, 'torn': 16003, 'unhealthy': 16004, 'slant': 16005, 'downright': 16006, 'trailer': 16007, 'dehydrated': 16008, 'super': 16009, 'suspension': 16010, 'Transport': 16011, 'bonded': 16012, 'insured': 16013, 'customize': 16014, 'cruises': 16015, 'http://www.cruisecompete.com/specials/regions/world/1': 16016, 'onboard': 16017, 'sail': 16018, 'quotes': 16019, 'CruiseCompete': 16020, 'chartering': 16021, 'itinerary': 16022, 'Travelling': 16023, 'cabins': 16024, 'occupancy': 16025, 'customise': 16026, 'Prearranged': 16027, 'segments': 16028, 'i.e': 16029, 'Transatlantic': 16030, 'Barcelona': 16031, 'Suez': 16032, 'canal': 16033, 'upscale': 16034, 'DOUBLE': 16035, 'shore': 16036, 'Panamal': 16037, 'Canal': 16038, 'Med': 16039, 'corssing': 16040, 'Was': 16041, 'Caucasian': 16042, 'Chinatown': 16043, 'chinese': 16044, 'WWII': 16045, 'Addition': 16046, 'Haight': 16047, 'Mission': 16048, 'latin': 16049, 'southeast': 16050, 'asians': 16051, 'philipinos': 16052, 'caucasians': 16053, 'populous': 16054, 'tourists': 16055, 'caucasian': 16056, 'hippies': 16057, 'photographers': 16058, 'ethicities': 16059, 'barrier': 16060, \"70's\": 16061, 'hippy': 16062, 'Marin': 16063, 'discrimination': 16064, 'MUNI': 16065, 'drivers': 16066, 'Latino': 16067, 'illegals': 16068, 'mid-80s': 16069, 'migration': 16070, 'fewer': 16071, 'Mexican': 16072, 'Caucasians': 16073, 'Pop': 16074, 'neighborhoods': 16075, 'laborers': 16076, 'Calif': 16077, '70s': 16078, 'Willie': 16079, 'progressive': 16080, 'welcoming': 16081, 'tolerant': 16082, 'rabbits': 16083, 'chickens': 16084, 'rabbit': 16085, 'hutch': 16086, 'coop': 16087, 'scraps': 16088, 'veggies': 16089, 'digest': 16090, 'sneaks': 16091, 'roosters': 16092, 'Roosters': 16093, 'duck': 16094, 'Guinea': 16095, 'pigs': 16096, 'kittens': 16097, 'Rabbits': 16098, 'non-veg': 16099, 'yea': 16100, 'pen': 16101, 'burrow': 16102, 'holes': 16103, 'melt': 16104, 'bras': 16105, 'furnace': 16106, 'flower': 16107, 'pot': 16108, 'hole': 16109, 'scrap': 16110, 'surounded': 16111, 'charcoal': 16112, 'lit': 16113, 'pumped': 16114, 'tin': 16115, 'pewter': 16116, 'aluminum': 16117, 'zinc': 16118, 'echo': 16119, 'Molten': 16120, 'pressurized': 16121, 'oxygen': 16122, 'foresaw': 16123, 'pouring': 16124, 'tooling': 16125, 'fumes': 16126, 'precautions': 16127, 'Pewter': 16128, 'melts': 16129, 'stove': 16130, 'Brass': 16131, 'barbecue': 16132, 'blacksmithing': 16133, 'melted': 16134, 'crucible': 16135, 'propane': 16136, 'torch': 16137, 'plumbers': 16138, 'cylinders': 16139, 'grill': 16140, 'http://www.mikegigi.com/castgobl.htm': 16141, 'http://www.mikegigi.com/techspec.htm#SELCTEMP': 16142, 'setup': 16143, 'blower': 16144, 'http://www.mikegigi.com/meltmetl.htm': 16145, 'http://www.mikegigi.com/firehole.htm': 16146, 'cafes': 16147, 'Halal': 16148, 'Dartmouth': 16149, 'consume': 16150, 'baker': 16151, 'kitchen': 16152, 'sliced': 16153, 'ham': 16154, 'pork': 16155, 'halal': 16156, 'utensils': 16157, 'Places': 16158, 'catering': 16159, 'opted': 16160, 'slaughter': 16161, 'Cafes': 16162, 'cutlery': 16163, 'bakery': 16164, 'brown': 16165, 'hygiene': 16166, 'cruelty': 16167, 'forbid': 16168, 'Kosher': 16169, 'dictate': 16170, 'python': 16171, 'ANYTHING': 16172, 'pythons': 16173, 'dude': 16174, 'researching': 16175, 'Tell': 16176, 'fed': 16177, 'buttered': 16178, 'TERRIFIED': 16179, 'pester': 16180, 'chores': 16181, 'nagged': 16182, 'Prove': 16183, 'Bargain': 16184, 'Offer': 16185, 'Play': 16186, 'Snake': 16187, 'TOO': 16188, 'Python': 16189, 'Salazar': 16190, 'Potter': 16191, 'affectionate': 16192, 'creature': 16193, 'tail': 16194, 'flush': 16195, 'skull': 16196, 'INSULTING': 16197, 'ANSWERS': 16198, 'LIKE': 16199, 'SERIOUSLY': 16200, '>:(': 16201, 'iw': 16202, 'ould': 16203, 'jaws': 16204, 'detach': 16205, ',,': 16206, 'youre': 16207, 'pre-killed': 16208, 'tupperwear': 16209, 'airholes': 16210, 'whack': 16211, 'refrigerator': 16212, \"I'd\": 16213, 'stunning': 16214, 'TBH': 16215, 'alive': 16216, 'prongs': 16217, 'prey': 16218, 'judgement': 16219, 'frozen': 16220, 'Im': 16221, 'shock': 16222, 'Gay': 16223, 'Village': 16224, 'subway': 16225, 'immigrate': 16226, 'favours': 16227, 'Marrying': 16228, 'http://www.cic.gc.ca/english/immigrate/index.asp': 16229, 'specified': 16230, 'Coming': 16231, 'overstay': 16232, 'expulsion': 16233, '...........': 16234, 'MUST': 16235, 'Immigrant': 16236, 'WAIT': 16237, 'CLEAN': 16238, \"process's\": 16239, 'bags': 16240, '...............': 16241, 'Social': 16242, 'employer': 16243, 'loud': 16244, 'puppy': 16245, 'Shih': 16246, 'Tzu': 16247, 'bark': 16248, 'trainer': 16249, 'clip': 16250, 'blades': 16251, 'swivels': 16252, 'UH': 16253, 'pup': 16254, 'harshly': 16255, 'scold': 16256, 'admire': 16257, 'obedience': 16258, 'treats': 16259, 'clicker': 16260, 'scented': 16261, 'Agra': 16262, 'Varanasi': 16263, 'rs': 16264, 'mates': 16265, 'wandering': 16266, 'Rs': 16267, 'Ajay': 16268, 'Guesthouse': 16269, 'Travelled': 16270, 'Rooms': 16271, 'travelguides': 16272, 'tripadvisor': 16273, 'travellers': 16274, 'recommended': 16275, 'Rough': 16276, 'Taj': 16277, 'http://www.goldentriangleindia.com/delhi/hotels-in-delhi.html': 16278, 'delhi': 16279, 'Aster': 16280, 'karol': 16281, 'bagh': 16282, 'Karol': 16283, 'Bagh': 16284, 'Shopping': 16285, 'Palace': 16286, 'Birla': 16287, 'Mandir': 16288, 'Temple': 16289, 'Connaught': 16290, 'Jantar': 16291, 'Mantar': 16292, 'Atithi': 16293, 'Aditya': 16294, 'centrally': 16295, 'situated': 16296, 'Sandeep': 16297, 'degu': 16298, 'guinea': 16299, 'pig': 16300, 'stink': 16301, 'Depends': 16302, 'Degus': 16303, 'trainable': 16304, 'Mine': 16305, 'hoodie': 16306, 'pouch': 16307, 'pairs': 16308, 'trios': 16309, 'Pig': 16310, 'skittish': 16311, 'preferred': 16312, 'Degu': 16313, 'cavies': 16314, 'awake': 16315, 'whistle': 16316, 'encouragement': 16317, 'leaf': 16318, 'lettuce': 16319, 'romaine': 16320, 'tomatos': 16321, 'celery': 16322, 'cucumbers': 16323, 'carrots': 16324, 'broccoli': 16325, 'cauliflower': 16326, 'garlic': 16327, 'onions': 16328, 'potatos': 16329, 'smell': 16330, 'cleaser': 16331, 'massage': 16332, 'Fostering': 16333, 'HATING': 16334, 'Need': 16335, 'volunteer': 16336, 'fostering': 16337, 'wit': 16338, 'ruining': 16339, 'poop': 16340, 'disgustingly': 16341, 'bare': 16342, 'scratches': 16343, 'ridiculous': 16344, 'Limit': 16345, 'Depending': 16346, 'batch': 16347, 'scooping': 16348, 'awhile': 16349, 'diarrhea': 16350, 'foster': 16351, 'medication': 16352, 'deworming': 16353, 'claws': 16354, 'teeth': 16355, 'teach': 16356, 'inappropriately': 16357, 'sleeves': 16358, 'interacting': 16359, 'frame': 16360, 'socialization': 16361, 'Generally': 16362, 'clawing': 16363, 'litterbox': 16364, 'Decide': 16365, 'volunteering': 16366, ';-)': 16367, 'evidentary': 16368, 'registrar': 16369, 'Registrar': 16370, 'Thunder': 16371, 'applying': 16372, 'expedited': 16373, 'http://www.ontario.ca/en/information_bundle/birthcertificates/119274.html': 16374, 'http://www.ontario.ca/en/information_bundle/birthcertificates/119275.html': 16375, 'PROVIDED': 16376, 'citizenship': 16377, 'google': 16378, 'Royal': 16379, 'Carnival': 16380, 'BEEN': 16381, 'BOARD': 16382, 'BOTH': 16383, 'teens': 16384, 'JUST': 16385, 'STUFF': 16386, 'LIKED': 16387, 'OVERALL': 16388, 'royal': 16389, 'carnival': 16390, 'followings': 16391, 'aficionados': 16392, 'Explore': 16393, 'sailed': 16394, 'Liberty': 16395, 'Mariner': 16396, 'Seas': 16397, 'Itinerary': 16398, 'Cayman': 16399, 'Cozumel': 16400, 'Bahamas': 16401, 'Maarten': 16402, 'Cay': 16403, 'Turk': 16404, 'Coco': 16405, 'Labadee': 16406, 'Haiti': 16407, 'distinguishing': 16408, 'Shows': 16409, 'afterward': 16410, 'comedian': 16411, 'juggling': 16412, 'comedians': 16413, 'Dining': 16414, 'dining': 16415, 'Friendliness': 16416, 'waiter': 16417, 'crews': 16418, 'choosing': 16419, 'Pools': 16420, 'salt': 16421, 'Spa': 16422, 'spa': 16423, 'cruiseline': 16424, 'Regent': 16425, 'rssc.com': 16426, 'WalMart': 16427, 'collage': 16428, 'hehe': 16429, 'typo': 16430, 'smartest': 16431, 'worldly': 16432, 'Lots': 16433, 'continent': 16434, 'Hawaii': 16435, 'Cities': 16436, 'Beaches': 16437, 'Disney': 16438, 'Savannah': 16439, 'Charleston': 16440, 'Nashville': 16441, 'Birmingham': 16442, 'Seville': 16443, 'Valencia': 16444, 'Bilboa': 16445, 'Pamplona': 16446, 'Guernica': 16447, 'Lisbon': 16448, 'Algarve': 16449, 'Pyrenees': 16450, 'Andorra': 16451, 'tailor': 16452, 'dislikes': 16453, 'Europass': 16454, 'desires': 16455, 'Nigeria': 16456, 'nigeria': 16457, 'Obudu': 16458, 'menaces': 16459, 'bowls': 16460, 'cheek': 16461, 'freaked': 16462, 'Shepherd': 16463, 'Major': 16464, 'behaviors': 16465, 'pounds': 16466, 'MAJOR': 16467, 'crate': 16468, 'frustrating': 16469, 'potty': 16470, 'fetch': 16471, 'patients': 16472, 'tosses': 16473, 'praise': 16474, 'repition': 16475, 'tricks': 16476, 'Potty': 16477, 'classes': 16478, 'Mekong': 16479, 'Ho': 16480, 'chi': 16481, 'Minh': 16482, 'pricey': 16483, 'inexpensive': 16484, 'Sinh': 16485, 'Cafe': 16486, 'Tourist': 16487, '248': 16488, 'De': 16489, 'packer': 16490, 'clubs': 16491, 'tele': 16492, '84838389593': 16493, 'adventurous': 16494, 'Tho': 16495, 'waterfront': 16496, 'biking': 16497, 'souvenirs': 16498, 'Pho': 16499, 'Tre': 16500, 'Kiwi': 16501, 'Cho': 16502, 'moto': 16503, 'ex-pat': 16504, 'Intrepid': 16505, 'Trip': 16506, 'coconut': 16507, 'candies': 16508, 'farm': 16509, 'quad': 16510, 'bikes': 16511, 'hangout': 16512, 'touristy': 16513, 'fino': 16514, 'unsteady': 16515, 'dvd': 16516, 'flops': 16517, 'freakin': 16518, 'DVD': 16519, 'Yoga': 16520, 'riders': 16521, 'noticing': 16522, 'butt': 16523, 'dressage': 16524, 'touching': 16525, 'scissors': 16526, 'wile': 16527, 'heels': 16528, 'throws': 16529, 'stirrups': 16530, 'boot': 16531, 'evenly': 16532, 'wight': 16533, 'BTW': 16534, 'irons': 16535, 'knees': 16536, 'alot': 16537, 'thigh': 16538, 'brase': 16539, 'flopping': 16540, ':/': 16541, 'gastroenteritis': 16542, 'diarheya': 16543, 'vomit': 16544, 'Animal': 16545, 'pancreatitis': 16546, 'abnormal': 16547, 'fluids': 16548, 'injection': 16549, 'nausea': 16550, 'antibiotics': 16551, 'tryed': 16552, 'grocerys': 16553, 'rice': 16554, 'boiled': 16555, 'Seince': 16556, 'etter': 16557, 'walkin': 16558, 'wagin': 16559, 'everbody': 16560, 'vomiting': 16561, 'irritation': 16562, 'stomach': 16563, 'intestines': 16564, 'Parvovirus': 16565, 'radiographs': 16566, 'prescribe': 16567, 'severly': 16568, 'electrolyte': 16569, 'imbalances': 16570, 'bland': 16571, 'diet': 16572, 'hospitalized': 16573, 'hydration': 16574, 'administer': 16575, 'veterinarian': 16576, 'clarify': 16577, 'Boiled': 16578, 'WHITE': 16579, 'Bland': 16580, 'SPICES': 16581, 'obstruction': 16582, 'etiquette': 16583, \"20's\": 16584, 'anglo': 16585, 'saxon': 16586, 'pairing': 16587, 'saxons': 16588, 'seriousness': 16589, 'nicer': 16590, 'stringing': 16591, 'contrary': 16592, 'scenarios': 16593, 'backgrounds': 16594, 'offend': 16595, 'compliment': 16596, 'fancies': 16597, 'objection': 16598, 'pals': 16599, 'uni': 16600, 'Non': 16601, 'apron': 16602, 'strings': 16603, 'Christiane': 16604, 'finds': 16605, 'pleasing': 16606, 'boyfriend': 16607, 'sluts': 16608, 'Unfair': 16609, 'handicap': 16610, 'Zealander': 16611, 'flee': 16612, '25,000': 16613, 'W.a.b.b.y': 16614, \"you're\": 16615, 'logical': 16616, 'Dux': 16617, 'Litterarum': 16618, 'melodramatic': 16619, 'Lol': 16620, 'Hatmanone': 16621, 'gasps': 16622, 'Joking': 16623, 'compassionate': 16624, 'teenage': 16625, 'mellow': 16626, 'worthless': 16627, 'Auckland': 16628, 'employable': 16629, 'bachelor': 16630, 'profession': 16631, 'earn': 16632, 'Otago': 16633, 'accents': 16634, 'racked': 16635, 'extradite': 16636, 'cough': 16637, 'c.': 16638, 'Whilst': 16639, 'Oz': 16640, 'advertised': 16641, 'networking': 16642, 'lamp': 16643, 'sucks': 16644, 'feisty': 16645, 'tries': 16646, 'pinkies': 16647, 'pinky': 16648, 'crawls': 16649, 'braining': 16650, 'bloodying': 16651, 'dipping': 16652, 'tuna': 16653, 'gerbil': 16654, 'tweezers': 16655, 'sad': 16656, 'hibernate': 16657, 'pinkie': 16658, 'hibernation': 16659, 'brumation': 16660, 'slowed': 16661, 'metabolism': 16662, 'cooler': 16663, 'instinct': 16664, 'shedding': 16665, 'enclosure': 16666, 'Hibernation': 16667, 'necessity': 16668, 'bred': 16669, 'milky': 16670, 'dull': 16671, 'neutered': 16672, 'sniffing': 16673, 'hissed': 16674, 'hisses': 16675, 'chasing': 16676, 'pawing': 16677, 'meowing': 16678, 'roughhouse': 16679, 'intruder': 16680, 'rub': 16681, 'furniture': 16682, 'invading': 16683, 'opens': 16684, 'scruff': 16685, 'guts': 16686, 'reminded': 16687, 'hiss': 16688, 'cries': 16689, 'apart': 16690, 'f*ck': 16691, 'hitting': 16692, 'paws': 16693, 'tails': 16694, 'wagging': 16695, 'Tet': 16696, '1964': 16697, 'pacify': 16698, 'Westmoreland': 16699, 'Destroy': 16700, 'Defend': 16701, 'pacifying': 16702, 'Thing': 16703, 'Local': 16704, 'VC': 16705, 'challenged': 16706, 'Main': 16707, 'NVA': 16708, 'swept': 16709, 'Communists': 16710, 'leaned': 16711, 'firepower': 16712, 'sunny': 16713, 'WERE': 16714, 'hoped': 16715, 'Offensive': 16716, 'sneak': 16717, 'stranded': 16718, 'peasants': 16719, 'WAS': 16720, 'infiltrate': 16721, 'redeploying': 16722, 'rushed': 16723, 'counterattacked': 16724, 'Hue': 16725, 'rallied': 16726, 'SOUTH': 16727, 'VIETNAMESE': 16728, '….': 16729, 'chased': 16730, 'topple': 16731, 'intents': 16732, 'shattered': 16733, 'obtuse': 16734, 'platter': 16735, 'LBJ': 16736, 'antiwar': 16737, 'emancipate': 16738, 'unpalatable': 16739, 'subduing': 16740, 'Vo': 16741, 'Giap': 16742, 'Bearded': 16743, 'reflector': 16744, 'UVA': 16745, 'psycholical': 16746, 'eatin': 16747, 'juvenile': 16748, 'crickets': 16749, 'diurnal': 16750, 'reptiles': 16751, 'UVB': 16752, 'emitting': 16753, 'emit': 16754, 'bulbs': 16755, 'reproduced': 16756, 'fluorescent': 16757, 'MVB': 16758, 'mercury': 16759, 'vapor': 16760, 'coiled': 16761, 'compact': 16762, 'blindness': 16763, 'Zoomed': 16764, 'Repsitun': 16765, 'http://lllreptile.com/store/catalog/reptile-supplies/uvb-fluorescent-lights-mercury-vapor-bulbs/-/zoo-med-24-repti-sun-100-fluorescent-bulb/': 16766, 'Petsmart': 16767, 'Freeze': 16768, 'staple': 16769, 'feeder': 16770, 'dragons': 16771, 'hunters': 16772, 'Crickets': 16773, 'phoenix': 16774, 'turkistan': 16775, 'dubia': 16776, 'Wax': 16777, 'guides': 16778, 'http://herp-info.webs.com/beardeddragon.htm': 16779, 'http://www.beardeddragon.org/articles/caresheet/?page=1': 16780, 'atleast': 16781, 'shady': 16782, 'UV': 16783, 'ventilation': 16784, 'oven': 16785, 'lizards': 16786, 'PetSmart': 16787, 'disgrace': 16788, 'associates': 16789, 'sheesh': 16790, 'thermometer': 16791, 'processed': 16792, 'leafy': 16793, 'kale': 16794, 'spinach': 16795, 'finch': 16796, 'affordable': 16797, 'WHICH': 16798, 'WOULD': 16799, 'BE': 16800, 'QUIETEST': 16801, 'thx': 16802, 'zebra': 16803, 'finches': 16804, 'chirping': 16805, 'tamed': 16806, 'touched': 16807, 'budgies': 16808, 'adorable': 16809, 'eaiser': 16810, 'beak': 16811, 'vent': 16812, 'stripes': 16813, 'fo': 16814, 'hair': 16815, 'stipes': 16816, 'balding': 16817, 'cere': 16818, 'pink': 16819, 'hahahaahh': 16820, 'Honestly': 16821, 'millet': 16822, 'Push': 16823, 'screem': 16824, 'harming': 16825, 'yell': 16826, 'ot': 16827, 'sholder': 16828, '!!!!!!!!!!!!!!!': 16829, 'friendlier': 16830, 'Parakeet': 16831, 'Cookie': 16832, ':P': 16833, '20s': 16834, 'crazier': 16835, 'shirtsleeves': 16836, 'sunglasses': 16837, 'woollies': 16838, 'driest': 16839, 'continental': 16840, 'seasons': 16841, 'basic\\xadally': 16842, 'reasonably': 16843, '–': 16844, 'crowds': 16845, 'Autumn': 16846, 'blur': 16847, 'Still': 16848, 'festivities': 16849, 'freezing': 16850, 'brutal': 16851, 'Crowds': 16852, 'thinnest': 16853, 'attractions': 16854, 'paradoxically': 16855, 'leaves': 16856, 'grey': 16857, 'sheeting': 16858, 'warms': 16859, 'Waterproof': 16860, 'footwear': 16861, 'umbrella': 16862, 'Scotsman': 16863, 'Connolly': 16864, 'changeable': 16865, 'Dublin': 16866, 'Hemisphere': 16867, 'Cliffs': 16868, 'Moher': 16869, 'Dingle': 16870, 'waterproof': 16871, 'jackets': 16872, 'BBQ': 16873, 'onwards': 16874, 'shorten': 16875, 'wetter': 16876, 'windier': 16877, 'colder': 16878, 'frosts': 16879, 'Golden': 16880, 'Wonder': 16881, 'KilliFish': 16882, 'Breeding': 16883, 'Killifish': 16884, 'whitish': 16885, 'colourful': 16886, 'Flakes': 16887, 'Earthworms': 16888, 'uncut': 16889, 'aspire': 16890, 'Worms': 16891, 'Daphnia': 16892, 'Lipids': 16893, 'wonders': 16894, 'sexing': 16895, 'Aplocheilus': 16896, 'lineatus': 16897, 'spawning': 16898, 'killies': 16899, 'mop': 16900, 'rinsed': 16901, 'vial': 16902, 'fishing': 16903, 'bobber': 16904, 'non-crumbly': 16905, 'styrofoam': 16906, 'float': 16907, 'incubating': 16908, 'tray': 16909, 'seasoned': 16910, 'planted': 16911, 'hatch': 16912, 'defrosted': 16913, 'Separated': 16914, 'nourishing': 16915, 'Separating': 16916, 'judged': 16917, 'dings': 16918, 'incubation': 16919, 'chlorine': 16920, 'choramine': 16921, 'tap': 16922, 'chlorination': 16923, 'microscopic': 16924, 'THEN': 16925, 'jar': 16926, 'sate': 16927, 'snacks': 16928, 'killie': 16929, 'Cory': 16930, 'snails': 16931, 'mineral': 16932, 'Aplo.': 16933, 'chemistries': 16934, 'hardness': 16935, 'TDS': 16936, 'Dissolved': 16937, 'Solids': 16938, 'Winging': 16939, 'PPM': 16940, '5.8': 16941, '10.6': 16942, 'DH': 16943, 'gardneri': 16944, 'meters': 16945, 'thrifty': 16946, 'aquarist': 16947, 'calcium': 16948, 'magnesium': 16949, 'consequence': 16950, 'sodium': 16951, 'chloride': 16952, 'chorion': 16953, 'egg': 16954, 'yoke': 16955, 'embryo': 16956, 'suffocate': 16957, 'mystery': 16958, 'fungus': 16959, 'Acriflaven': 16960, 'pipette': 16961, 'eyedropper': 16962, 'Methylene': 16963, 'dyed': 16964, 'membrane': 16965, 'grist': 16966, 'yr': 16967, 'olds': 16968, 'holidaying': 16969, 'rejuvenating': 16970, 'memorable': 16971, 'Especially': 16972, 'enjoyable': 16973, 'inception': 16974, 'attracted': 16975, 'thematically': 16976, 'animated': 16977, 'cartoon': 16978, 'cartoons': 16979, 'luxurious': 16980, 'ages': 16981, 'comforts': 16982, 'travelers': 16983, 'furnished': 16984, 'decorated': 16985, 'marvelously': 16986, 'eatables': 16987, 'deliciously': 16988, 'fishes': 16989, 'prawns': 16990, 'shores': 16991, 'imposingly': 16992, 'amnesties': 16993, 'spaciously': 16994, 'seclusion': 16995, 'rejuvenate': 16996, '........': 16997, 'Break': 16998, 'coffee': 16999, 'mornings': 17000, 'BLAST': 17001, 'seating': 17002, 'dinners': 17003, 'magnet': 17004, 'magnetic': 17005, 'whiteboard': 17006, 'walkie': 17007, 'talkie': 17008, 'WILL': 17009, 'Navigator': 17010, 'lieu': 17011, 'chilling': 17012, 'preschoolers': 17013, 'emergencies': 17014, 'wasted': 17015, 'illustrated': 17016, 'splash': 17017, 'fountain': 17018, 'wading': 17019, 'spoiled': 17020, 'Cruise': 17021, 'payoff': 17022, 'grasped': 17023, 'ale': 17024, 'spicy': 17025, 'lemonade': 17026, 'fare': 17027, 'preferences': 17028, 'beverage': 17029, 'farrier': 17030, 'copied': 17031, 'shoes': 17032, 'SO': 17033, 'flirty': 17034, 'hugs': 17035, 'rubbing': 17036, 'crappy': 17037, 'NEVER': 17038, 'nail': 17039, 'HIM': 17040, 'farriers': 17041, 'lousy': 17042, 'apprenticed': 17043, 'WEEKS': 17044, 'crumbling': 17045, 'nails': 17046, 'groped': 17047, 'Barry': 17048, \"they're\": 17049, 'friday': 17050, 'Nail': 17051, 'charming': 17052, 'Nails': 17053, 'Own': 17054, 'belive': 17055, 'becuse': 17056, 'Hoof': 17057, 'Younger': 17058, 'hottie': 17059, 'Joby': 17060, 'GIRL': 17061, 'Bio': 17062, '30s': 17063, 'divorced': 17064, 'flirted': 17065, 'Horribly': 17066, 'Habit': 17067, 'Underwear': 17068, 'Working': 17069, 'Mare': 17070, 'hoof': 17071, 'Ummmm': 17072, 'mare': 17073, 'Foot': 17074, 'Wholes': 17075, 'Laughing': 17076, 'cheeks': 17077, 'Oops': 17078, 'flirt': 17079, 'guss': 17080, 'knocked': 17081, 'Up': 17082, 'heartbroken': 17083, 'Guy': 17084, 'lo9nger': 17085, 'shitty': 17086, 'Cute': 17087, 'bloke': 17088, 'sub-par': 17089, 'flirting': 17090, 'ought': 17091, 'shoddy': 17092, 'EPM': 17093, 'Dealt': 17094, 'Might': 17095, 'lame': 17096, 'chalked': 17097, 'theeth': 17098, 'trainers': 17099, 'dentist': 17100, 'hay': 17101, 'gant': 17102, 'topline': 17103, 'neurological': 17104, 'drags': 17105, 'atrophied': 17106, 'atrophy': 17107, 'grain': 17108, 'chewed': 17109, 'spinal': 17110, 'titer': 17111, 'wobblers': 17112, 'chiro': 17113, 'acupuncturist': 17114, 'Arby': 17115, 'Owner': 17116, 'ornament': 17117, 'rideable': 17118, 'paragraph': 17119, 'regimen': 17120, 'symptoms': 17121, 'exhibited': 17122, 'starving': 17123, 'ridden': 17124, 'Gallop': 17125, 'colleges': 17126, 'Looked': 17127, 'compression': 17128, 'acupuncture': 17129, 'therapies': 17130, 'Yahoos': 17131, 'Y!A': 17132, 'comprehension': 17133, 'comprehend': 17134, 'Worst': 17135, 'heartbreaking': 17136, 'Shee': 17137, 'MI': 17138, 'experimental': 17139, 'additive': 17140, 'hauled': 17141, 'Windsor': 17142, 'racing': 17143, 'wintering': 17144, 'farmers': 17145, 'clearing': 17146, 'opossums': 17147, 'trotters': 17148, 'tracks': 17149, 'coincidence': 17150, 'backs': 17151, 'gangly': 17152, 'tighter': 17153, 'MSU': 17154, 'Strongid': 17155, 'mosquito': 17156, 'Nile': 17157, 'repoire': 17158, 'fixable': 17159, 'poneh': 17160, 'remission': 17161, 'relapse': 17162, 'stroke': 17163, 'Extremely': 17164, 'salon': 17165, 'rude': 17166, 'Rude': 17167, 'insensitive': 17168, 'discourteous': 17169, '!!!!!': 17170, 'Dr': 17171, 'Greenwalt': 17172, 'snowboard': 17173, 'meds': 17174, 'bodytalk': 17175, 'undeniable': 17176, '!.': 17177, 'Wedding': 17178, '11/7/08': 17179, 'impressed': 17180, 'Cj': 17181, 'Saucey': 17182, 'Tattoo': 17183, 'Shop': 17184, 'tattoo': 17185, 'Aztec': 17186, 'ants': 17187, 'Loved': 17188, 'star': 17189, 'Lynda': 17190, 'compassion': 17191, 'testament': 17192, 'Bright': 17193, 'Tours': 17194, 'Affordable': 17195, 'Tour': 17196, 'Operators': 17197, 'Agents': 17198, 'Chennai': 17199, 'Student': 17200, 'Package': 17201, 'heritage': 17202, 'promptly': 17203, 'GREAT': 17204, 'JOB': 17205, 'GUYS': 17206, 'pcs': 17207, 'professionalism': 17208, 'Barrett': 17209, 'unturned': 17210, 'warmed': 17211, 'KB': 17212, 'FAST': 17213, 'Kobey': 17214, 'coats': 17215, 'Farmer': 17216, 'LFTD': 17217, 'kindergarten': 17218, 'infant': 17219, 'PAT': 17220, 'rang': 17221, 'SRD': 17222, 'Scot': 17223, 'Spill': 17224, 'Whisky': 17225, 'Fantastic': 17226, 'florist': 17227, 'La': 17228, 'Crosse': 17229, 'coworkers': 17230, '<3': 17231, 'bagels': 17232, 'edmonton': 17233, 'instructor': 17234, 'lane': 17235, 'Faris': 17236, 'Crim': 17237, 'Squeege': 17238, 'Prompt': 17239, 'Windows': 17240, 'Friendly': 17241, 'resource': 17242, 'Edmark': 17243, 'Larson': 17244, 'Range': 17245, 'Rover': 17246, 'Sport': 17247, 'Window': 17248, 'Tints': 17249, 'Tintman': 17250, 'tints': 17251, 'Ltd': 17252, 'Professional': 17253, 'deliverd': 17254, 'rear': 17255, 'Helpers': 17256, 'excellant': 17257, 'nicest': 17258, 'pubs': 17259, 'garden': 17260, 'decking': 17261, 'beer': 17262, 'awful': 17263, 'Verizon': 17264, 'salespeople': 17265, 'Incredibly': 17266, 'Dupont': 17267, '1?!?!?': 17268, 'graphic': 17269, 'Fresh': 17270, 'Studio': 17271, 'flyers': 17272, 'posters': 17273, 'unbeatable': 17274, 'architectural': 17275, 'Surgeon': 17276, 'Wallen': 17277, 'accomdating': 17278, 'Stainless': 17279, 'tattoos': 17280, 'Cathy': 17281, '******': 17282, 'Stars': 17283, 'Forest': 17284, 'Tots': 17285, 'postive': 17286, 'teachers': 17287, 'Wine': 17288, 'selection': 17289, 'knowledgeable': 17290, 'tastings': 17291, 'repairs': 17292, 'bradley': 17293, 'dusty': 17294, 'QuikTrip': 17295, 'recieve': 17296, 'Awesome': 17297, 'haircut': 17298, 'Palatine': 17299, 'towel': 17300, 'shave': 17301, 'salons': 17302, 'barbershops': 17303, 'Baffled': 17304, 'ambiance': 17305, 'décor': 17306, 'scrumptious': 17307, 'banana': 17308, \"c'm\": 17309, 'Adorn': 17310, 'refreshment': 17311, 'Debi': 17312, 'Chineese': 17313, 'Wok': 17314, 'chefs': 17315, 'specials': 17316, 'Pure': 17317, 'Pilates': 17318, 'TomiPilates': 17319, 'clients': 17320, 'refurb': 17321, 'electrical': 17322, 'subsequently': 17323, 'PJC': 17324, 'Thoroughly': 17325, 'personalized': 17326, 'Definitely': 17327, 'Angels': 17328, 'haves': 17329, 'Comfort': 17330, 'Zone': 17331, 'Slowest': 17332, 'Unfriendly': 17333, 'Sstaff': 17334, 'Weekends': 17335, 'Starbucks': 17336, 'staffs': 17337, 'daytime': 17338, 'Skip': 17339, 'te': 17340, 'Absolutely': 17341, 'PHOTOS': 17342, 'DONE': 17343, 'Hellada': 17344, 'Gallery': 17345, 'Marek': 17346, 'Dzida': 17347, 'photographer': 17348, 'Beach': 17349, 'personaly': 17350, 'BAD': 17351, 'COFFEE': 17352, 'NT': 17353, 'BOTHER': 17354, 'cup': 17355, 'MUCH': 17356, 'BURNT': 17357, 'bitter': 17358, 'sugar': 17359, 'mask': 17360, 'CHANGE': 17361, 'PROCESS': 17362, 'PPL': 17363, 'Westfield': 17364, 'Rt': 17365, '????': 17366, 'compares': 17367, 'Brick': 17368, 'Ikea': 17369, 'com': 17370, 'Qwest': 17371, 'Moving': 17372, 'http://www.speedtest.net/result/1155244347.png': 17373, 'G': 17374, 'Charge': 17375, '129': 17376, 'Tmobile': 17377, 'Extensive': 17378, 'popcorn': 17379, 'wings': 17380, 'asian': 17381, 'pizza': 17382, 'yam': 17383, 'sweets': 17384, 'Attitude': 17385, 'Line': 17386, 'organised': 17387, 'Hair': 17388, 'Nivine': 17389, 'eastgardens': 17390, 'colored': 17391, 'fabolous': 17392, 'mcclelland': 17393, 'reigon': 17394, 'delicous': 17395, 'impeccable': 17396, 'refold': 17397, 'napkin': 17398, \"L'espalier\": 17399, 'budge': 17400, 'tires': 17401, 'tasks': 17402, 'Deals': 17403, 'Town': 17404, '-s': 17405, 'random': 17406, 'discounted': 17407, 'appliances': 17408, 'Trust': 17409, '-ll': 17410, 'Ballerina': 17411, 'ballet': 17412, 'soccer': 17413, 'dancewear': 17414, 'Instep': 17415, 'Outstanding': 17416, 'extraordinarily': 17417, 'Tried': 17418, 'Crust': 17419, 'Broad': 17420, 'Twice': 17421, 'Tonight': 17422, 'Btwn': 17423, 'inquires': 17424, 'sunroom': 17425, 'Patio': 17426, 'workmanship': 17427, 'Employees': 17428, 'coupon': 17429, 'Pennysaver': 17430, 'overpriced': 17431, 'stuffs': 17432, 'kidding': 17433, 'Spongy': 17434, 'microwaved': 17435, 'heartless': 17436, 'salsa': 17437, 'grills': 17438, 'Tucson': 17439, 'toothache': 17440, 'Obina': 17441, 'Olbina': 17442, 'crowns': 17443, 'dentists': 17444, 'Fernandina': 17445, 'Dentistry': 17446, '512': 17447, 'kb': 17448, 'downloading': 17449, 'Chester': 17450, 're-schedule': 17451, 'Rcommended': 17452, 'bees': 17453, 'wasp': 17454, 'environmentally': 17455, 'informative': 17456, 'spraying': 17457, 'pesticides': 17458, 'Reasonable': 17459, 'condos': 17460, 'Suzanne': 17461, 'Vancouver': 17462, 'Accomodating': 17463, 'Springfield': 17464, 'accomodating': 17465, 'microwave': 17466, 'SERVICE': 17467, 'PEOPLE': 17468, 'Watson': 17469, 'Gem': 17470, 'Alpharetta': 17471, 'sourced': 17472, 'fabulously': 17473, 'Le': 17474, 'petit': 17475, 'shallac': 17476, 'gel': 17477, 'manicure': 17478, 'Pedicures': 17479, 'Rendy': 17480, '2010': 17481, 'Caffe': 17482, 'Bella': 17483, 'Italia': 17484, 'delectable': 17485, 'Antipasto': 17486, 'Misto': 17487, 'Spaghetti': 17488, 'alla': 17489, 'Barese': 17490, 'Parmigiana': 17491, 'gelato': 17492, 'watering': 17493, 'Chocolate': 17494, 'Lava': 17495, 'Cake': 17496, 'Sandy': 17497, 'Beware': 17498, 'Sharayu': 17499, 'Hopless': 17500, 'tenth': 17501, 'lodge': 17502, 'pl': 17503, 'Course': 17504, 'HCC': 17505, 'shaky': 17506, 'superintendant': 17507, 'retracted': 17508, 'golfers': 17509, '2008': 17510, 'Physiotherapists': 17511, 'Kusal': 17512, 'Goonewardena': 17513, 'Physios': 17514, 'physios': 17515, 'osteos': 17516, 'chiros': 17517, 'Vigor': 17518, 'pleasant': 17519, 'attentive': 17520, 'flavorful': 17521, 'groomed': 17522, 'uneven': 17523, 'evened': 17524, 'bull': 17525, 'fights': 17526, 'http://en.wikipedia.org/wiki/Bullfighting': 17527, 'bullfights': 17528, 'smashed': 17529, 'BAC': 17530, '>=': 17531, '.15': 17532, 'nurses': 17533, 'pie': 17534, 'buck': 17535, 'followup': 17536, 'FREE': 17537, 'ER': 17538, 'EVERYONE': 17539, 'reball': 17540, 'warranty': 17541, 'brainer': 17542, 'Console': 17543, 'Pros': 17544, 'dingy': 17545, 'salads': 17546, 'nachos': 17547, 'bike': 17548, '+++': 17549, 'yep': 17550, 'fixeded': 17551, 'thumpstar': 17552, 'wase': 17553, 'gear': 17554, 'anywere': 17555, 'thaks': 17556, 'reccommend': 17557, '!!!!!!!!!!': 17558, 'Ham': 17559, 'RIP': 17560, \"80's\": 17561, 'Victim': 17562, 'fond': 17563, 'Glass': 17564, 'panes': 17565, 'min': 17566, 'Run': 17567, 'hairstyling': 17568, 'tends': 17569, 'Recommend': 17570, 'Shannon': 17571, 'bodyworker': 17572, 'Store': 17573, 'Boothbay': 17574, 'junk': 17575, 'grocery': 17576, 'advocate': 17577, 're-wiring': 17578, 'hassle': 17579, 'Matt': 17580, 'Bonafide': 17581, 'knowledgable': 17582, 'printers': 17583, 'Joule': 17584, 'Already': 17585, 'printing': 17586, 'Paperback': 17587, 'Book': 17588, 'Printing': 17589, 'sonic': 17590, 'palces': 17591, 'grease': 17592, 'INSULTED': 17593, 'ASK': 17594, 'THEM': 17595, 'QUESTIONS': 17596, 'ARE': 17597, 'RUDE': 17598, 'NASTY': 17599, \"N'T\": 17600, 'USE': 17601, 'MOVING': 17602, 'WANT': 17603, 'CRY': 17604, 'TROUBLE': 17605, 'EXPERIENCE': 17606, 'DAY': 17607, 'MOVE': 17608, 'GIVE': 17609, 'LOW': 17610, 'PRICE': 17611, 'OVER': 17612, 'GUARANTEE': 17613, 'Maids': 17614, 'sercvice': 17615, 'Beats': 17616, 'maids': 17617, 'spoil': 17618, 'princess': 17619, 'Antique': 17620, 'Lighting': 17621, 'Fixtures': 17622, 'showroom': 17623, 'WOW': 17624, 'collections': 17625, 'antique': 17626, 'fixtures': 17627, 'Chandeliers': 17628, 'Antiques': 17629, 'Vintage': 17630, 'Contemporary': 17631, 'Repair': 17632, 'Restoration': 17633, 'someplace': 17634, 'rocked': 17635, 'Brought': 17636, 'Fried': 17637, 'Crab': 17638, 'Wontons': 17639, 'Spare': 17640, 'Ribs': 17641, 'MOO': 17642, 'SHU': 17643, 'Neptune': 17644, 'Platter': 17645, 'stars': 17646, 'HERE': 17647, 'wavy': 17648, 'dip': 17649, 'pedicure': 17650, 'lover': 17651, 'Dong': 17652, 'slimy': 17653, 'tasteless': 17654, 'languages': 17655, 'disappointment': 17656, 'Iowa': 17657, 'Penny': 17658, 'asparagus': 17659, 'seared': 17660, 'desserts': 17661, 'dessert': 17662, 'penny': 17663, 'CHINESE': 17664, 'RESTAURANT': 17665, 'tasted': 17666, 'renovation': 17667, 'polite': 17668, 'oriented': 17669, 'Furnace': 17670, 'Heating': 17671, 'Dustin': 17672, 'feverishly': 17673, 'exhaust': 17674, 'replaced': 17675, 'zero': 17676, 'DEFINITELY': 17677, 'TIGER': 17678, 'HEATING': 17679, 'AIR': 17680, 'Suck': 17681, 'Rhino': 17682, 'Grizzly': 17683, 'salesman': 17684, 'Parts': 17685, 'Drove': 17686, 'Peachstate': 17687, 'Powersports': 17688, 'LaGrange': 17689, 'Levi': 17690, 'inspiring': 17691, 'Nigel': 17692, 'Nidd': 17693, 'drawings': 17694, 'dreams': 17695, '730': 17696, 'rangoon': 17697, 'tofu': 17698, 'cabbage': 17699, 'satay': 17700, 'Def': 17701, 'Bea': 17702, 'Californian': 17703, 'authentic': 17704, 'Esp.': 17705, 'mole': 17706, 'tortilla': 17707, 'soup': 17708, 'guacamole': 17709, 'Margaritas': 17710, 'QUESO': 17711, 'Queso': 17712, 'watery': 17713, 'MIND': 17714, 'queso': 17715, 'houston': 17716, 'morelias': 17717, 'enchiladas': 17718, 'sauce': 17719, 'vomited': 17720, 'Skylight': 17721, 'skylight': 17722, 'Bateman': 17723, 'inspected': 17724, 'entie': 17725, 'hailstorm': 17726, 'tricky': 17727, 'rental': 17728, 'shelf': 17729, 'Telugu': 17730, 'groceries': 17731, 'Raina': 17732, 'cramped': 17733, 'un-ruly': 17734, 'Kumon': 17735, 'Parents': 17736, 'heebee': 17737, 'gee': 17738, \"bees'\": 17739, 'Firm': 17740, 'Bloom': 17741, 'Seth': 17742, 'Split': 17743, 'pictured': 17744, 'catalogue': 17745, 'MY': 17746, 'GYM': 17747, 'FITNESS': 17748, 'UNLIMITED': 17749, 'gym': 17750, 'dare': 17751, 'addicting': 17752, 'Over-rated': 17753, 'over-rated': 17754, 'mexican': 17755, 'fried': 17756, 'enchladas': 17757, 'enchilada': 17758, 'chili': 17759, 'Hormel': 17760, 'cheese': 17761, 'Chili': 17762, 'Relleno': 17763, 'batter': 17764, 'googled': 17765, 'Mixed': 17766, 'Tempura': 17767, '.....................': 17768, '8.25': 17769, 'Shrimp': 17770, 'tempura': 17771, 'salad': 17772, 'Cesar': 17773, 'Gracie': 17774, 'ufc': 17775, 'jiu': 17776, 'jitsu': 17777, 'mma': 17778, 'Rosa': 17779, 'ncfa': 17780, 'teaches': 17781, 'coach': 17782, 'www.norcalfightingalliance.com': 17783, 'Pizza': 17784, 'HORRIBLE': 17785, 'Absolute': 17786, 'quit': 17787, 'Toyota': 17788, 'dealerships': 17789, 'absoulutely': 17790, 'comfty': 17791, 'toda': 17792, 'french': 17793, 'reccomend': 17794, 'hospitality': 17795, 'Anna': 17796, 'Govind': 17797, 'steep': 17798, 'Went': 17799, 'Honda': 17800, 'salesperson': 17801, 'Claimed': 17802, 'drives': 17803, 'Stevens': 17804, 'ATE': 17805, 'COUPLE': 17806, 'TIMES': 17807, 'END': 17808, 'STEAK': 17809, 'HOUSE': 17810, 'CUISINE': 17811, 'BRETT': 17812, 'ENJOYS': 17813, 'IN': 17814, 'MISSISSIPPI': 17815, 'BURGER': 17816, 'FRIES': 17817, 'CAJUNISH': 17818, 'GREEN': 17819, 'BAY': 17820, 'DECENT': 17821, 'EXPECTING': 17822, 'RUTH': 17823, 'CHRIS': 17824, 'TYPE': 17825, 'Eulogic': 17826, 'mussels': 17827, 'downstairs': 17828, 'Filled': 17829, 'Belgian': 17830, 'Tavern': 17831, 'handcraft': 17832, 'Tanglewood': 17833, 'Apartments': 17834, 'refreshing': 17835, 'Meadowrun': 17836, 'Tiffany': 17837, 'reachable': 17838, 'breakfasts': 17839, 'clubhouse': 17840, 'snows': 17841, 'surley': 17842, 'cakes': 17843, 'bakers': 17844, 'baking': 17845, 'Baltimore': 17846, 'deck': 17847, 'esp': 17848, 'Overpriced': 17849, 'Youngstown': 17850, 'Sports': 17851, 'operated': 17852, 'mediocre': 17853, 'Apps': 17854, 'Salad': 17855, 'Entree': 17856, 'NOV': 17857, '07': 17858, 'Enjoyed': 17859, 'salmon': 17860, 'steaks': 17861, 'Re-interviewed': 17862, 'dependable': 17863, 'puppies': 17864, 'Dumb': 17865, 'Friends': 17866, 'temperment': 17867, 'silverware': 17868, 'mac': 17869, 'que': 17870, 'napkins': 17871, 'buys': 17872, 'Chao': 17873, 'gentel': 17874, 'Garage': 17875, 'herpes': 17876, 'molesters': 17877, 'hoa': 17878, 'reviewers': 17879, 'updo': 17880, 'aswered': 17881, 'approximate': 17882, 'Chelan': 17883, 'Aka': 17884, 'Nowheresville': 17885, 'litttle': 17886, 'gem': 17887, 'pretense': 17888, 'selections': 17889, 'tasting': 17890, 'Boutique': 17891, 'onesie': 17892, 'pleasantly': 17893, 'Purple': 17894, 'Goose': 17895, 'SAME': 17896, 'boutiques': 17897, 'Consistantly': 17898, 'organisation': 17899, 'coupled': 17900, 'distain': 17901, 'Chasing': 17902, 'unresolved': 17903, 'farcical': 17904, 'vigilant': 17905, 'AMAZING': 17906, 'NIGHT': 17907, 'Willow': 17908, 'Lounge': 17909, 'Drinks': 17910, 'Ipanema': 17911, 'Richmond': 17912, 'nondescript': 17913, 'thumbs': 17914, 'Fraiser': 17915, 'FANTASTIC': 17916, 'STORE': 17917, 'HONKA': 17918, 'Homes': 17919, 'Walmart': 17920, 'Evergreen': 17921, 'furnishings': 17922, 'accessories': 17923, \"It's\": 17924, 'durability': 17925, 'Lovely': 17926, 'Hats': 17927, 'saddened': 17928, 'tolerating': 17929, 'accented': 17930, 'hats': 17931, 'costumes': 17932, 'flips': 17933, 'compeltly': 17934, 'dissatisfied': 17935, 'SUCKS': 17936, 'Advanced': 17937, 'meanest': 17938, 'THRIVE': 17939, 'Horrible': 17940, 'supercuts': 17941, 'Burger': 17942, 'BK': 17943, 'regreted': 17944, 'Branford': 17945, 'rudely': 17946, 'Disgusting': 17947, 'Disappointed': 17948, 'Napa': 17949, 'unpleasantly': 17950, 'svce': 17951, 'subpar': 17952, 'dishes': 17953, 'wines': 17954, 'composed': 17955, 'Recommended': 17956, 'laughter': 17957, 'phenomenal': 17958, 'humour': 17959, 'calmness': 17960, 'amazes': 17961, 'exceeds': 17962, 'horrendous': 17963, 'daycare': 17964, 'crust': 17965, 'lopsided': 17966, 'thicker': 17967, 'slices': 17968, 'flavor': 17969, '!!!.': 17970, 'utter': 17971, 'CLASS': 17972, 'Doors': 17973, 'answetred': 17974, 'hesitations': 17975, 'repaired': 17976, 'Allen': 17977, 'Tire': 17978, 'tire': 17979, 'Temecula': 17980, 'Lexus': 17981, 'Tires': 17982, 'rails': 17983, 'professionally': 17984, 'Easiest': 17985, 'dealership': 17986, 'hooptie': 17987, 'sticker': 17988, 'excuses': 17989, 'Kwik': 17990, 'Kar': 17991, 'Fairchild': 17992, 'Prudential': 17993, 'Steamboat': 17994, 'Realty': 17995, 'Yampa': 17996, 'Barber': 17997, 'reviewer': 17998, 'sub': 17999, 'par': 18000, 'UGH': 18001, 'freshly': 18002, 'squares': 18003, 'Flipped': 18004, 'riddled': 18005, 'clerk': 18006, 'giggled': 18007, 'Buffet': 18008, \"lovin'\": 18009, 'Experience': 18010, 'Providence': 18011, 'Aesthetics': 18012, 'Kueck': 18013, 'Equipment': 18014, 'Talley': 18015, 'methodical': 18016, 'passion': 18017, 'orginals': 18018, 'roofing': 18019, 'Roofing': 18020, 'OMFG': 18021, 'FUCKING': 18022, 'HATE': 18023, 'EVERY': 18024, 'HOT': 18025, 'CHICK': 18026, 'SHOWS': 18027, 'UP': 18028, 'MEAN': 18029, 'REAAAALLY': 18030, 'DUMB': 18031, 'THEIR': 18032, 'OTHER': 18033, 'REALY': 18034, 'UGLY': 18035, 'SUPER': 18036, 'SMART': 18037, 'COULD': 18038, 'SCIENTIST': 18039, 'STONER': 18040, 'COMES': 18041, 'HE': 18042, 'BRINGS': 18043, 'HIS': 18044, 'DOG': 18045, 'SECOND': 18046, 'HAND': 18047, 'SMOKE': 18048, 'THINK': 18049, 'TRYING': 18050, 'TALK': 18051, 'ANYWAY': 18052, 'WE': 18053, 'DRIVE': 18054, 'AROUND': 18055, 'VAN': 18056, 'SOLVE': 18057, 'MYSTERYS': 18058, 'SHIT': 18059, 'AMAZINGLY': 18060, 'YUMMY': 18061, 'crepe': 18062, 'EVEN': 18063, 'FRANCE': 18064, 'Crepes': 18065, 'Mulberry': 18066, 'valet': 18067, 'Marriott': 18068, 'AMES': 18069, 'Wessex': 18070, 'fitness': 18071, 'apartments': 18072, 'LOVED': 18073, 'towed': 18074, 'Sussman': 18075, 'Kia': 18076, 'squeezed': 18077, 'HEAVEN': 18078, 'EARTHHHHHHH': 18079, 'HATED': 18080, 'SUSHI': 18081, 'BEFORE': 18082, 'STOP': 18083, 'EATTING': 18084, 'NICE': 18085, 'EXCELLENT': 18086, 'SEEMS': 18087, 'AMAZE': 18088, 'GRILL': 18089, 'DISHES': 18090, 'TA': 18091, 'WORLD': 18092, 'FABULOUS': 18093, 'EAT': 18094, 'LEAST': 18095, 'DAYS': 18096, 'CHEF': 18097, 'SPECIAL': 18098, 'ROLLS': 18099, 'FAIR': 18100, 'ORDERS': 18101, '++++': 18102, '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!': 18103, 'JUNO': 18104, 'OPEN': 18105, '!!!!!!!!!!!!!!': 18106, 'homo': 18107, 'sandwiches': 18108, 'soups': 18109, 'bustling': 18110, 'seated': 18111, 'Kid': 18112, 'Block': 18113, 'Collingswood': 18114, 'Amore': 18115, 'arancini': 18116, 'di': 18117, 'riso': 18118, 'risotto': 18119, 'fritters': 18120, 'saltimboca': 18121, 'chocolate': 18122, 'mousse': 18123, 'heaven': 18124, 'Pay': 18125, 'entree': 18126, 'Auto': 18127, 'Towing': 18128, 'towing': 18129, 'mechanics': 18130, 'wholeheartedly': 18131, 'Duct': 18132, 'Cleaning': 18133, 'pride': 18134, 'accomplishing': 18135, 'duct': 18136, 'inspector': 18137, 'Solana': 18138, 'T': 18139, 'mary': 18140, 'benedict': 18141, 'landmark': 18142, 'jug': 18143, 'mix': 18144, 'Builders': 18145, 'NJ': 18146, 'Jersey': 18147, 'Dude': 18148, 'Cut': 18149, 'vibe': 18150, 'Alta': 18151, 'Moda': 18152, 'genius': 18153, 'Favorite': 18154, 'Wildwood': 18155, 'vacations': 18156, 'comparing': 18157, 'layout': 18158, 'Scordia': 18159, 'Sicily': 18160, 'Mudo': 18161, 'familia': 18162, 'Italiano': 18163, 'bella': 18164, 'Sicilian': 18165, 'luv': 18166, 'eternally': 18167, 'Luv': 18168, 'kennels': 18169, 'Mrs': 18170, 'Closs': 18171, 'Car': 18172, 'Dealer': 18173, 'nissan': 18174, 'dealship': 18175, 'triage': 18176, 'threatening': 18177, 'seeker': 18178, 'nurse': 18179, 'seekers': 18180, 'UW': 18181, 'Wonderful': 18182, 'immense': 18183, 'Dentist': 18184, 'sewage': 18185, 'Principal': 18186, 'backpacks': 18187, 'TRIPPED': 18188, 'cowboy': 18189, 'Tacoma': 18190, 'Handy': 18191, 'Jolla': 18192, 'Stuff': 18193, 'Residential': 18194, 'Numbers': 18195, 'roots': 18196, 'cookbook': 18197, 'THX': 18198, 'fot': 18199, 'nerd': 18200, 'oblivion': 18201, 'fps': 18202, 'clue': 18203, 'MISTAKE': 18204, 'edible': 18205, 'potato': 18206, 'wedges': 18207, 'wantons': 18208, 'Mongolian': 18209, 'Liquidweb.com': 18210, 'Rocks': 18211, 'liquidweb.com': 18212, 'Liquidweb': 18213, 'Hino': 18214, 'Prestige': 18215, 'converted': 18216, 'Awards': 18217, 'Dandenong': 18218, 'PMA': 18219, 'Bronze': 18220, 'excellence': 18221, 'Brendan': 18222, 'flashy': 18223, 'stacked': 18224, 'fussy': 18225, 'garnishes': 18226, 'exquisite': 18227, 'Vetri': 18228, 'pasta': 18229, 'gnocchi': 18230, 'antipasti': 18231, 'dined': 18232, 'Discount': 18233, 'washes': 18234, 'nicely': 18235, 'bottles': 18236, 'hesitation': 18237, 'peddle': 18238, 'peddles': 18239, 'Trek': 18240, 'Concerned': 18241, 'Made': 18242, 'curtains': 18243, 'KNEW': 18244, 'rescheduling': 18245, '!?!': 18246, '?!?': 18247, 'Internet': 18248, 'Balazick': 18249, 'WORTH': 18250, 'BOTHERED': 18251, 'ASWERING': 18252, 'MONEY': 18253, 'DEAL': 18254, 'BROKERS': 18255, 'Rip': 18256, 'plugs': 18257, '330': 18258, 'windsheild': 18259, 'washer': 18260, 'canister': 18261, 'clips': 18262, 'Outback': 18263, 'GEM': 18264, 'immaculately': 18265, 'tasteful': 18266, 'elegant': 18267, 'Cuban': 18268, 'cuisine': 18269, 'expertly': 18270, 'portions': 18271, 'generous': 18272, \"'LL\": 18273, 'Ruona': 18274, 'quitting': 18275, 'Saltford': 18276, 'Tina': 18277, 'endevour': 18278, 'signage': 18279, 'counseling': 18280, 'Vera': 18281, 'Bellevue': 18282, 'WA.': 18283, 'Renton': 18284, 'counselor': 18285, 'approachable': 18286, 'nonjudgmental': 18287, 'www.veraakulov.com': 18288, 'petting': 18289, 'laughed': 18290, 'kissed': 18291, 'goats': 18292, 'lambs': 18293, \"pony's\": 18294, 'camels': 18295, 'AN': 18296, 'OSTRICH': 18297, 'Karla': 18298, 'Gracee': 18299, 'besides': 18300, 'punctual': 18301, 'Wunderbar': 18302, 'Experienced': 18303, 'nonexistent': 18304, 'argumentative': 18305, 'rudeness': 18306, 'unorganized': 18307, 'greek': 18308, 'Exile': 18309, 'punk': 18310, 'Mimmy': 18311, 'Buddakan': 18312, 'attracts': 18313, 'association': 18314, 'Starr': 18315, 'carries': 18316, 'over-priced': 18317, 'filler': 18318, 'vegetables': 18319, 'Alto': 18320, 'delivers': 18321, 'varietal': 18322, 'vintage': 18323, 'sommelier': 18324, 'corking': 18325, 'landlord': 18326, 'Buckingham': 18327, 'Condominiums': 18328, 'townhouse': 18329, 'AWESOME': 18330, 'exterminator': 18331, 'b****': 18332, 'turnover': 18333, 'sincerely': 18334, 'approves': 18335, 'attitude': 18336, 'Wildernest': 18337, 'inn': 18338, 'Atop': 18339, 'decks': 18340, 'porch': 18341, 'unparalleled': 18342, 'grandeur': 18343, 'grazing': 18344, 'occasional': 18345, 'mingle': 18346, 'Stewart': 18347, 'proprietors': 18348, 'epitome': 18349, 'Delightful': 18350, 'hospitable': 18351, 'junkie': 18352, 'lube': 18353, 'weird': 18354, 'jiffy': 18355, 'neon': 18356, 'drunkest': 18357, 'someon': 18358, 'bouncy': 18359, 'padded': 18360, 'weekday': 18361, 'classiest': 18362, 'monotony': 18363, 'toddler': 18364, 'Restored': 18365, 'Mechaincs': 18366, 'Ferrari': 18367, 'challenge': 18368, 'Creative': 18369, 'owning': 18370, 'Mechanics': 18371, 'hiking': 18372, 'Wenatchee': 18373, 'hills': 18374, 'loop': 18375, 'patio': 18376, 'OMG': 18377, 'waiters': 18378, 'worht': 18379, 'licking': 18380, 'bowel': 18381, 'Phat': 18382, 'romatic': 18383, 'Ristorante': 18384, 'Holly': 18385, 'truely': 18386, 'hairstylist': 18387, 'UTC': 18388, 'reffered': 18389, 'highlights': 18390, 'blowdry': 18391, 'bat': 18392, 'compliments': 18393, 'deffenitly': 18394, 'Outdated': 18395, 'outdated': 18396, 'waffle': 18397, 'maker': 18398, 'Trinidadian': 18399, 'Jamaican': 18400, 'influenced': 18401, 'patties': 18402, 'staples': 18403, 'cafeteria': 18404, 'practically': 18405, 'connoisseur': 18406, 'toned': 18407, 'palette': 18408, 'pepper': 18409, 'finest': 18410, 'Trees': 18411, 'majestic': 18412, 'astounding': 18413, 'entertaining': 18414, 'Mahal': 18415, 'vanguard': 18416, 'republican': 18417, 'Tussey': 18418, 'nomenal': 18419, 'chinatown': 18420, 'pho': 18421, 'seperates': 18422, 'debit': 18423, 'McInnis': 18424, 'inconsiderate': 18425, 'admitting': 18426, 'Dillards': 18427, 'Transformational': 18428, 'Coach': 18429, 'lisenced': 18430, 'colleague': 18431, 'guided': 18432, 'baseball': 18433, 'ironic': 18434, 'Brickell': 18435, '6/4/11': 18436, 'Sales': 18437, 'Gustavo': 18438, 'Guerra': 18439, 'Braman': 18440, 'Bramen': 18441, 'hassles': 18442, 'Apostle': 18443, 'parishioners': 18444, 'Gus': 18445, 'Honest': 18446, 'Nissan': 18447, 'cracked': 18448, 'manifold': 18449, '1300': 18450, '1500': 18451, 'unneccesary': 18452, 'mechanic': 18453, 'diagnose': 18454, 'Shady': 18455, 'condescending': 18456, 'inexperienced': 18457, 'prideful': 18458, 'EXPERIENCED': 18459, 'Beautifully': 18460, 'UNTRUE': 18461, 'Poor': 18462, 'Ghassemlou': 18463, 'demanded': 18464, 'enrolled': 18465, 'witness': 18466, 'adequately': 18467, 'assuage': 18468, 'Saying': 18469, 'combative': 18470, 'fused': 18471, 'fusions': 18472, 'chiropractric': 18473, 'Barros': 18474, 'Unbelievably': 18475, 'Cheveux': 18476, 'complimented': 18477, 'Quaint': 18478, 'McLean': 18479, 'Endo': 18480, 'storefront': 18481, 'bell': 18482, 'hostess': 18483, 'yelled': 18484, 'arguing': 18485, 'unprofessional': 18486, 'jerks': 18487, 'Missed': 18488, 'carless': 18489, 'NEEEEEEEEEVERRRR': 18490, 'Superb': 18491, 'Arrangements': 18492, 'Fancy': 18493, 'Flowers': 18494, 'funerals': 18495, 'outshone': 18496, 'arranged': 18497, 'superbly': 18498, 'delicately': 18499, 'hairdresser': 18500, 'conditioned': 18501, 'Smoker': 18502, 'leaky': 18503, 'bathrooms': 18504, 'cabinets': 18505, 'thrashed': 18506, 'slapped': 18507, 'non-smokers': 18508, 'beware': 18509, 'tenants': 18510, 'smokers': 18511, 'reeks': 18512, 'cigarette': 18513, 'smelling': 18514, 'disgusting': 18515, 'Sanwiches': 18516, 'meatball': 18517, 'regulars': 18518, 'Tourists': 18519, 'TGIF': 18520, 'Rate': 18521, 'hotpot': 18522, 'chrisssake': 18523, 'churchy': 18524, 'grandure': 18525, 'robe': 18526, \"'60s\": 18527, 'Sf': 18528, 'aunte': 18529, 'kiddies': 18530, 'labyrinth': 18531, \"'em\": 18532, 'pagen': 18533, 'heck': 18534, 'kc': 18535, 'sox': 18536, 'phillies': 18537, 'knights': 18538, 'tho': 18539, 'chineze': 18540, 'sice': 18541, 'Door': 18542, 'Woodinville': 18543, 'NDI': 18544, 'Johnette': 18545, 'appologized': 18546, 'skiing': 18547, 'sized': 18548, 'responsiveness': 18549, 'Roger': 18550, 'speeding': 18551, 'CHRISTIAN': 18552, '!!!!!!!!!!!!!!!!!!': 18553, 'LAST': 18554, 'LET': 18555, 'CHILD': 18556, 'GET': 18557, 'RAPED': 18558, 'BECAUSE': 18559, 'PAID': 18560, 'Nordstrom': 18561, 'designer': 18562, 'Garment': 18563, 'Previous': 18564, 'pushy': 18565, 'stain': 18566, 'leather': 18567, 'purse': 18568, 'waitress': 18569, 'forgetting': 18570, 'verde': 18571, 'completly': 18572, 'flavorless': 18573, 'orderd': 18574, 'meals': 18575, 'chimichangas': 18576, 'jalapeno': 18577, 'borritos': 18578, 'quesadillas': 18579, 'spice': 18580, 'Hacienda': 18581, 'Jill': 18582, 'Dessert': 18583, 'veggie': 18584, 'Hull': 18585, 'Peas': 18586, 'Cons': 18587, 'blackened': 18588, 'catfish': 18589, 'Overcooked': 18590, 'Thoughts': 18591, 'tasty': 18592, 'Fidelity': 18593, 'Leasing': 18594, 'painless': 18595, 'co.': 18596, 'whatsoever': 18597, 'robbed': 18598, 'cheated': 18599, 'lied': 18600, 'misinform': 18601, 'misrepresent': 18602, 'confuse': 18603, 'holders': 18604, 'misinformation': 18605, 'premiums': 18606, 'glitch': 18607, 'Ifa': 18608, 'F%#king': 18609, 'Assh@%$e': 18610, 'alignment': 18611, 'shopped': 18612, 'nitrogen': 18613, 'mileage': 18614, 'CONVENIENT': 18615, 'Creekside': 18616, 'esp.': 18617, 'Stokes': 18618, 'Bascom': 18619, 'Rail': 18620, 'Trader': 18621, 'Whole': 18622, 'Foods': 18623, 'remodel': 18624, 'pitch': 18625, 'certificates': 18626, 'pressured': 18627, 'gut': 18628, 'sucked': 18629, 'hears': 18630, 'shark': 18631, 'walkway': 18632, 'rubbish': 18633, 'Aquarium': 18634, '£': 18635, 'Cranmore': 18636, 'Dental': 18637, 'Implant': 18638, 'Clinic': 18639, 'Nelson': 18640, 'phobia': 18641, 'instantaneously': 18642, 'dental': 18643, 'underpinned': 18644, 'Pam': 18645, 'Gillies': 18646, 'Salsa': 18647, 'hehehe': 18648, 'trimmers': 18649, 'chips': 18650, 'sub-division': 18651, 'gatherings': 18652, 'anesthetic': 18653, 'audacity': 18654, 'DISPOSAL': 18655, 'itemized': 18656, 'AVOID': 18657, 'COSTS': 18658, 'Peking': 18659, 'opinon': 18660, 'Gone': 18661, 'Sigh': 18662, 'slipped': 18663, 'BNA': 18664, 'pickups': 18665, 'parked': 18666, 'Lucky': 18667, 'EXPENSIVE': 18668, 'Wife': 18669, '230': 18670, 'ammount': 18671, 'elevated': 18672, 'Joke': 18673, 'Salon': 18674, 'JOKE': 18675, 'PRICED': 18676, 'graduating': 18677, 'nope': 18678, 'BEWARE': 18679, 'mislabeled': 18680, 'Ukrops': 18681, 'liquor': 18682, 'Bloody': 18683, 'Mimosas': 18684, 'negotiate': 18685, 'Square': 18686, 'queen': 18687, 'upgrade': 18688, 'beds': 18689, 'gap': 18690, 'thoroughly': 18691, 'remodeled': 18692, \"company's\": 18693, 'guessed': 18694, 'remodeling': 18695, 'Award': 18696, 'Holderness': 18697, 'Road': 18698, 'Chamberlain': 18699, 'Kingston': 18700, 'BALLROOM': 18701, 'LATIN': 18702, 'SEQUENCE': 18703, 'LINE': 18704, 'DANCING': 18705, 'BALLET': 18706, 'TAP': 18707, 'JAZZ': 18708, 'Ward': 18709, 'Ballroom': 18710, 'certified': 18711, 'pre-owned': 18712, 'BMW': 18713, 'leakage': 18714, '175': 18715, 'TRUST': 18716, 'DEALER': 18717, 'STAY': 18718, 'AWAY': 18719, 'FAR': 18720, 'POSSIBLE': 18721, 'Practice': 18722, 'slick': 18723, 'Surgery': 18724, 'timings': 18725, 'mattered': 18726, 'perfectionist': 18727, 'BJ': 18728, 'servers': 18729, 'soda': 18730, 'ohm': 18731, 'Sierra': 18732, 'stylist': 18733, 'curly': 18734, 'styled': 18735, 'relocating': 18736, 'Bend': 18737, 'Eve': 18738, 'Jazz': 18739, 'NYE': 18740, 'appetizing': 18741, 'jazz': 18742, 'intending': 18743, 'Trio': 18744, 'tissues': 18745, 'rectified': 18746, 'toilet': 18747, 'peeling': 18748, 'mould': 18749, 'ounce': 18750, 'Grocery': 18751, 'FusionRetail': 18752, 'dos': 18753, 'Managing': 18754, 'POS': 18755, 'barcoding': 18756, 'Usage': 18757, 'barcodes': 18758, 'Billing': 18759, 'queries': 18760, 'B&B': 18761, 'Fe': 18762, 'Paradero': 18763, 'ladies': 18764, 'Disatisfied': 18765, 'Aid': 18766, 'A&E': 18767, 'appliance': 18768, 'vendor': 18769, 'pre-screened': 18770, 'Cayuga': 18771, 'Lewiston': 18772, 'pedicures': 18773, 'cuticles': 18774, 'mins.': 18775, 'polish': 18776, 'Results': 18777, 'infertility': 18778, 'sterile': 18779, 'hallway': 18780, 'herbs': 18781, 'cycles': 18782, 'Common': 18783, 'yummy': 18784, 'croissants': 18785, 'Comfortable': 18786, 'noisy': 18787, 'stellar': 18788, 'Gare': 18789, 'du': 18790, 'Nord': 18791, 'Sacre': 18792, 'Coeur': 18793, 'Plaza': 18794, 'Galleries': 18795, 'Lafayette': 18796, 'flea': 18797, 'Hostel': 18798, 'Autos': 18799, 'Mobile': 18800, 'sorted': 18801, 'workshop': 18802, 'gearbox': 18803, 'gears': 18804, 'recommending': 18805, 'Yards': 18806, 'Brewery': 18807, 'lounge': 18808, 'brewery': 18809, 'sampler': 18810, 'IPA': 18811, 'Brawler': 18812, 'Stout': 18813, 'ESA': 18814, 'Dogwood': 18815, 'Grilled': 18816, 'Cheese': 18817, 'pint': 18818, 'Nitrogen': 18819, 'Guiness': 18820, 'Lover': 18821, 'smoother': 18822, 'abou': 18823, 'BRAWLER': 18824, 'Oil': 18825, 'Disaster': 18826, \"'07\": 18827, 'Ford': 18828, 'Fusion': 18829, 'sporadically': 18830, 'whir': 18831, 'loudly': 18832, 'Turns': 18833, 'overcharge': 18834, 'Liars': 18835, 'Cruze': 18836, 'mpg': 18837, '9000': 18838, 'purchace': 18839, 'Vic': 18840, 'Canever': 18841, 'grandparents': 18842, 'grandfather': 18843, 'silently': 18844, 'Peterson': 18845, 'sitcom': 18846, 'Seinfeld': 18847, 'greeter': 18848, 'Instructor': 18849, 'Beginning': 18850, 'Brittany': 18851, '2:25': 18852, 'karma': 18853, 'Finest': 18854, 'differ': 18855, 'marginal': 18856, 'entertained': 18857, '5.10': 18858, 'indoor': 18859, 'climber': 18860, 'routes': 18861, 'exhaustion': 18862, 'markings': 18863, 'outing': 18864, 'frustration': 18865, \"DJ's\": 18866, 'surpassed': 18867, \"1960's\": 18868, 'courage': 18869, 'Eva': 18870, 'Lange': 18871, 'sirloin': 18872, 'drenched': 18873, 'butter': 18874, 'Roadhouse': 18875, 'WAY': 18876, 'Spay': 18877, 'neuter': 18878, 'spay': 18879, 'wisconsin': 18880, 'Issues': 18881, 'ingrown': 18882, 'toenail': 18883, 'Shield': 18884, '483.00': 18885, 'reversed': 18886, 'aa': 18887, '160.00': 18888, 'bilked': 18889, 'blessed': 18890, 'Elite': 18891, 'Flyers': 18892, 'postcards': 18893, 'distorted': 18894, 'sheisters': 18895, 'mechanicly': 18896, 'catagory': 18897, 'jimmy': 18898, 'rigged': 18899, 'runaround': 18900, 'standpoint': 18901, 'Grimy': 18902, 'somethin': 18903, 'Stationery': 18904, 'Bethesda': 18905, 'Papeluna': 18906, 'hustle': 18907, 'bustle': 18908, 'nestled': 18909, 'Subway': 18910, 'Sandwiches': 18911, 'Modell': 18912, 'pumpkin': 18913, 'latte': 18914, 'stationery': 18915, 'Cards': 18916, 'wrapping': 18917, 'invitations': 18918, 'yelped': 18919, 'Yelp': 18920, 'wallet': 18921, 'premise': 18922, 'craziest': 18923, 'ltake': 18924, 'premier': 18925, 'Hut': 18926, 'IHOP': 18927, 'Panera': 18928, 'Chipotle': 18929, 'ALONE': 18930, 'VCU': 18931, 'EXCELS': 18932, 'Rams': 18933, 'NCAA': 18934, 'Fan': 18935, 'Carytown': 18936, 'Stony': 18937, 'Point': 18938, 'Pump': 18939, 'continuously': 18940, 'rave': 18941, 'Orr': 18942, 'woken': 18943, 'campsite': 18944, 'drunken': 18945, 'irate': 18946, 'FHS': 18947, 'hoods': 18948, 'gymnasiums': 18949, 'ensemble': 18950, 'presumably': 18951, 'ranked': 18952, 'U.': 18953, 'BU': 18954, 'Vassar': 18955, 'Howard': 18956, 'Mellon': 18957, 'Rutgers': 18958, 'pharmacy': 18959, 'motel': 18960, 'resorts': 18961, 'homey': 18962, 'cuban': 18963, 'colada': 18964, 'mmmm': 18965, 'chill': 18966, 'bake': 18967, 'beans': 18968, 'plantains': 18969, 'mango': 18970, 'pastries': 18971, 'omelets': 18972, 'forsyth': 18973, 'Warner': 18974, 'appointments': 18975, 'FAMILY': 18976, 'dismay': 18977, 'landed': 18978, 'rosette': 18979, 'hmm': 18980, \"canape's\": 18981, 'amuse': 18982, 'nibble': 18983, 'Scallops': 18984, 'overcooked': 18985, 'foie': 18986, 'gras': 18987, 'Iron': 18988, 'spices': 18989, 'cook': 18990, 'vegetarians': 18991, 'dump': 18992, 'hotter': 18993, 'mush': 18994, 'meats': 18995, 'sauces': 18996, 'Meats': 18997, 'seafood': 18998, '4.99': 18999, \"Wednesday's\": 19000, 'Cookies': 19001, 'Cakes': 19002, 'pre-made': 19003, 'Valentine': 19004, 'bakeries': 19005, 'rectangle': 19006, 'Fiona': 19007, 'texture': 19008, 'frosting': 19009, 'amazingly': 19010, 'fluffy': 19011, 'gladly': 19012, 'cookies': 19013, 'Craving': 19014, 'Acupuncture': 19015, 'cravings': 19016, 'Definite': 19017, 'Decrease': 19018, 'craving': 19019, 'DOCTOR': 19020, 'needles': 19021, 'Liau': 19022, 'GLAD': 19023, 'bathing': 19024, 'Asset': 19025, 'Limits': 19026, 'multiplex': 19027, 'Bowtie': 19028, 'theatre': 19029, 'brick': 19030, 'Flying': 19031, 'Squirrels': 19032, 'manged': 19033, 'preserving': 19034, 'cellphones': 19035, 'ads': 19036, 'previews': 19037, 'theatres': 19038, 'mangers': 19039, 'Sundays': 19040, 'discounts': 19041, 'Craft': 19042, 'Wonderland': 19043, 'History': 19044, 'origami': 19045, 'jewelry': 19046, 'earrings': 19047, 'quilling': 19048, 'filigree': 19049, 'crafts': 19050, 'lovable': 19051, 'humor': 19052, 'Oklahoma': 19053, 'bs': 19054, 'crafter': 19055, 'Salmagundi': 19056, 'smorgasbord': 19057, 'potpourri': 19058, 'motley': 19059, 'miscellaneous': 19060, 'assortment': 19061, 'mixture': 19062, 'Quimba': 19063, '1/30/10': 19064, 'Genesis': 19065, 'grrrrrrrreeeaaat': 19066, 'Hyundai': 19067, 'wal': 19068, 'mart': 19069, 'ti': 19070, 'thouhgt': 19071, 'Bait': 19072, 'untrained': 19073, 'Called': 19074, 'Bonanza': 19075, '350': 19076, 'sq': 19077, 'ceramic': 19078, 'dual': 19079, 'grinder': 19080, 'thinset': 19081, 'inclusive': 19082, 'inserts': 19083, '125': 19084, 'PLUS': 19085, '260': 19086, 'pitfalls': 19087, 'renting': 19088, 'switching': 19089, 'suspects': 19090, 'Outside': 19091, 'Laundry': 19092, 'Tub': 19093, 'filthy': 19094, 'laundromats': 19095, 'availed': 19096, \"'n\": 19097, 'garbage': 19098, 'checkout': 19099, 'SHOCKED': 19100, 'Romeo': 19101, 'wished': 19102, 'annoy': 19103, 'CARE': 19104, 'HH': 19105, 'serivce': 19106, 'mindset': 19107, 'bartenders': 19108, 'waitresses': 19109, 're-trained': 19110, 'chat': 19111, 'impatiently': 19112, 'understaffing': 19113, 'Midas': 19114, 'Touch': 19115, 'personable': 19116, 'revolves': 19117, 'fuse': 19118, 'tech': 19119, 'pedestal': 19120, 'rolls': 19121, 'scallop': 19122, 'nigiri': 19123, 'panko': 19124, 'Logan': 19125, '3.75': 19126, 'solicitous': 19127, 'Sleep': 19128, 'Courtesy': 19129, '3:15': 19130, 'strobe': 19131, 'activated': 19132, 'alarms': 19133, 'ADA': 19134, 'drip': 19135, 'apologies': 19136, 'pressed': 19137, 'Lack': 19138, 'Passion': 19139, 'Romanick': 19140, 'impatient': 19141, 'countless': 19142, 'diligent': 19143, 'actualy': 19144, 'tolls': 19145, 'payed': 19146, 'eather': 19147, 'realy': 19148, 'totalling': 19149, 'Guess': 19150, 'bdr': 19151, 'recomend': 19152, 'yelling': 19153, 'rudest': 19154, 'trashy': 19155, 'Jurek': 19156, 'Decor': 19157, '500.00': 19158, 'NON': 19159, 'REFUNDABLE': 19160, 'heed': 19161, 'hype': 19162, 'DECOR': 19163, 'squirm': 19164, 'precious': 19165, 'Somewhere': 19166, 'smoked': 19167, 'OWNER': 19168, 'Unfortunalty': 19169, 'Bodhi': 19170, 'Vet': 19171, 'Mackinaw': 19172, 'FANFUCKINGTASTIC': 19173, 'Yorker': 19174, 'Oxford': 19175, 'devoid': 19176, 'Glasgow': 19177, 'HOLY': 19178, 'GRAIL': 19179, 'pies': 19180, 'pizzas': 19181, 'oregano': 19182, 'Scottish': 19183, 'congratulated': 19184, 'Scots': 19185, 'fcking': 19186, 'yorkedness': 19187, 'scrummy': 19188, 'gimmicky': 19189, '7/26/08': 19190, 'Mia': 19191, 'Greenfield': 19192, 'interrupting': 19193, 'cashier': 19194, 'unapologetic': 19195, 'wasting': 19196, 'overage': 19197, 'DINING': 19198, 'ROADHOUSE': 19199, 'MEALS': 19200, 'MEAT': 19201, 'RIGHT': 19202, 'OFF': 19203, 'BONES': 19204, 'PRICES': 19205, 'WAITING': 19206, 'AREA': 19207, 'ENJOYABLE': 19208, 'ENOUGH': 19209, 'SEATS': 19210, 'ALSO': 19211, 'PEANUTS': 19212, 'FLOOR': 19213, 'NEXT': 19214, 'PERSON': 19215, 'BRINGING': 19216, 'HAD': 19217, 'TAKE': 19218, 'SALAD': 19219, 'HOME': 19220, 'FORGOT': 19221, 'BRING': 19222, 'BROUGHT': 19223, 'CAME': 19224, 'BACK': 19225, 'WAITRESS': 19226, 'FIRST': 19227, 'COME': 19228, 'HOSTESS': 19229, 'FRIENDLY': 19230, 'WORKERS': 19231, 'STANDING': 19232, 'MARCH': 19233, '6TH': 19234, '2009': 19235, 'JULY': 19236, '4TH': 19237, 'DAUGHTER': 19238, 'BUFFALO': 19239, 'WINGS': 19240, 'FLY': 19241, 'MANAGER': 19242, 'SAID': 19243, 'SORRY': 19244, 'GAVE': 19245, 'BATCH': 19246, 'DOORS': 19247, 'OPENING': 19248, 'CLOSING': 19249, 'OPINION': 19250, 'TOOK': 19251, 'BILL': 19252, 'OWN': 19253, 'Mezza': 19254, 'Luna': 19255, 'FTW': 19256, 'mezza': 19257, \"luna's\": 19258, 'deffly': 19259, 'toss': 19260, 'prolly': 19261, 'em': 19262, 'cus': 19263, 'luna': 19264, 'extract': 19265, 'salty': 19266, 'pepperoni': 19267, 'crushing': 19268, 'Clarkson': 19269, \"'05\": 19270, \"'09\": 19271, 'deliciousness': 19272, 'warrants': 19273, 'pickup': 19274, 'XF': 19275, 'Chestney': 19276, 'Fair': 19277, 'rvs': 19278, 'boats': 19279, 'Cars': 19280, 'Theft': 19281, 'Myself': 19282, 'fiance': 19283, 'detective': 19284, 'Luckily': 19285, 'stole': 19286, 'Parking': 19287, 'Mini': 19288, 'Cooper': 19289, 'SUV': 19290, 'Bugs': 19291, 'blowout': 19292, 'Murfreesboro': 19293, '4:50': 19294, 'Bud': 19295, '330i': 19296, 'secured': 19297, 'runflat': 19298, 'runflats': 19299, 'Grissom': 19300, 'consists': 19301, 'youngsteers': 19302, 'evictees': 19303, 'hood': 19304, 'fend': 19305, 'non-violent': 19306, 'unmanned': 19307, 'cracker': 19308, 'countertop': 19309, 'upsetting': 19310, 'oily': 19311, 'greasy': 19312, 'burnt': 19313, 'bureau': 19314, 'sabotaging': 19315, 'STORY': 19316, 'TRUE': 19317, 'kiss': 19318, '*ss': 19319, 'Lines': 19320, 'Silly': 19321, 'Rules': 19322, 'spills': 19323, 'patrons': 19324, 'tacos': 19325, 'costumer': 19326, 'COMCAST': 19327, 'pardon': 19328, 'Raging': 19329, 'Taco': 19330, 'Burrito': 19331, 'Wish': 19332, 'Saratoga': 19333, 'Bistro': 19334, 'Tallulah': 19335, 'diner': 19336, 'Adelphi': 19337, 'residing': 19338, 'KNOWS': 19339, 'EXPERIENCES': 19340, 'BT': 19341, 'unpretentious': 19342, 'Treat': 19343, 'Springs': 19344, 'rrly': 19345, 'cehf': 19346, 'Morris': 19347, 'particlular': 19348, 'baldness': 19349, 'exclusively': 19350, 'maternal': 19351, 'http://www.consumerreports.org/health/healthy-living/beauty-personal-care/hair-loss-10-08/hair-loss.htm': 19352, 'Anyhow': 19353, 'mircles': 19354, 'miracles': 19355, 'installed': 19356, 'stressful': 19357, 'boarders': 19358, 'accommodations': 19359, 'calming': 19360, 'comforting': 19361, 'adorned': 19362, 'encounter': 19363, 'friendliness': 19364, 'Novotel': 19365, 'appreciation': 19366, 'spirits': 19367, 'Tampa': 19368, 'Update': 19369, 'resturant': 19370, 'usally': 19371, 'Dinner': 19372, 'Scampi': 19373, 'Incredible': 19374, 'privatly': 19375, 'Jeep': 19376, 'Phet': 19377, 'G&G': 19378, 'Automotive': 19379, 'overcharged': 19380, 'unheard': 19381, 'handbag': 19382, 'niche': 19383, 'evaluating': 19384, 'SEO': 19385, 'Ulistic': 19386, 'Engine': 19387, 'Optimization': 19388, 'Key': 19389, 'Indicators': 19390, 'Facebook': 19391, 'www.designofashion.com': 19392, 'ethical': 19393, 'reap': 19394, 'genuinely': 19395, 'communicator': 19396, 'Hom': 19397, 'Excel': 19398, 'burglars': 19399, 'intruders': 19400, 'slit': 19401, 'pry': 19402, 'hammer': 19403, 'miscreants': 19404, 'happily': 19405, 'guarentee': 19406, 'lightbulb': 19407, 'Sheraton': 19408, 'towels': 19409, 'linens': 19410, 'sofa': 19411, 'ribbon': 19412, 'wrapped': 19413, 'mid-afternoon': 19414, 'disruptive': 19415, 'boisterous': 19416, 'Careful': 19417, 'admittedly': 19418, 'Essentially': 19419, 'compose': 19420, 'truths': 19421, 'falsehoods': 19422, 'Mazda': 19423, 'charger': 19424, 'combo': 19425, 'plates': 19426, 'abrasive': 19427, 'sesame': 19428, 'kung': 19429, 'pao': 19430, 'puffs': 19431, 'Delight': 19432, 'accomplished': 19433, 'steamed': 19434, 'mein': 19435, 'Panda': 19436, 'Willis': 19437, 'recount': 19438, 'conditioning': 19439, 'Approx': 19440, 'discontent': 19441, 'th': 19442, '30.00': 19443, 'FIT': 19444, 'Pomper': 19445, 'sooo': 19446, 'resell': 19447, 'BEING': 19448, 'RETURNED': 19449, 'unfair': 19450, 'unprofessionalism': 19451, 'locker': 19452, 'lacking': 19453, 'canceling': 19454, 'belittling': 19455, 'Cape': 19456, 'Hell': 19457, 'celebrity': 19458, 'Derrick': 19459, 'blonde': 19460, 'mousey': 19461, 'stylists': 19462, 'pressuring': 19463, 'cried': 19464, 'grace': 19465, 'Nightmare': 19466, 'Rod': 19467, 'Jacobsen': 19468, 'CPA': 19469, '6,000': 19470, 'accountant': 19471, 'DOWN': 19472, 'Bit': 19473, 'sketchy': 19474, 'sporadic': 19475, 'Sketchy': 19476, 'semi-sketchiness': 19477, 'WITHOUT': 19478, 'informing': 19479, 'neglected': 19480, 'arrival': 19481, 'terribly': 19482, 'apologetic': 19483, 'STILL': 19484, 'communicative': 19485, 'Delivery': 19486, 'Hickory': 19487, 'Furniture': 19488, 'HDS': 19489, 'seventeen': 19490, 'van': 19491, '2300': 19492, 'headboard': 19493, 'drawers': 19494, 'dresser': 19495, 'nighstand': 19496, 'drawer': 19497, 'Furnishings': 19498, 'Boyles': 19499, 'limbo': 19500, 'suites': 19501, 'Driving': 19502, 'wreck': 19503, 'conquer': 19504, 'Saintly': 19505, 'cancellations': 19506, 'advising': 19507, 'pounded': 19508, 'reciprocate': 19509, 'confidently': 19510, 'cope': 19511, 'Restaurant': 19512, 'Restaurants': 19513, 'stumble': 19514, 'Bexar': 19515, 'Bandera': 19516, 'Drop': 19517, 'Soup': 19518, 'tastes': 19519, 'Ferguson': 19520, 'Granger': 19521, 'Strzalka': 19522, 'Flagship': 19523, 'CVTS': 19524, 'CRUEL': 19525, 'UNCARING': 19526, 'bicuspid': 19527, 'aortic': 19528, 'valve': 19529, 'stenosis': 19530, 'renigged': 19531, 'Proxy': 19532, 'ventilator': 19533, 'inoperable': 19534, 'sarcastically': 19535, 'recommends': 19536, 'inclined': 19537, 'toured': 19538, 'bmil': 19539, 'introductions': 19540, 'unrealistic': 19541, 'Workers': 19542, 'interaction': 19543, 'objectively': 19544, 'roomful': 19545, 'facilitating': 19546, 'bruised': 19547, 'Dumbest': 19548, \"F'ers\": 19549, 'dominos': 19550, 'FINALLY': 19551, 'MAY': 19552, 'Radison': 19553, 'Warwick': 19554, 'Rittenhouse': 19555, '1926': 19556, 'YES': 19557, 'CENTER': 19558, 'CITY': 19559, 'PHILLY': 19560, 'township': 19561, 'Pottstown': 19562, 'RADISON': 19563, 'WARWICK': 19564, 'HOTEL': 19565, 'SAY': 19566, 'LISTEN': 19567, '17th': 19568, 'LOCUST': 19569, 'ADDRESS': 19570, '1701': 19571, 'TOWNSHIP': 19572, 'locust': 19573, 'Locust': 19574, 'ARe': 19575, 'asks': 19576, '16th': 19577, 'Walnut': 19578, 'Hmmm': 19579, 'cussing': 19580, 'cab': 19581, 'Geno': 19582, 'fence': 19583, 'Workmanship': 19584, 'splitting': 19585, 'PAY': 19586, 'phantom': 19587, 'innkeeper': 19588, '207': 19589, 'suitcases': 19590, 'innkeepers': 19591, 'longshoreman': 19592, 'totes': 19593, 'chambermaid': 19594, 'sternly': 19595, 'accommodated': 19596, 'exceptions': 19597, 'fridge': 19598, '1.50': 19599, 'cans': 19600, 'shampoo': 19601, 'Snacks': 19602, 'uninspired': 19603, 'Bath': 19604, 'stall': 19605, 'mildew': 19606, 'tub': 19607, 'touts': 19608, 'kitchens': 19609, 'rack': 19610, 'Quit': 19611, 'overstatements': 19612, 'Zahav': 19613, 'hyperbolic': 19614, 'salatim': 19615, 'condiments': 19616, 'forkfuls': 19617, 'laffa': 19618, 'hummus': 19619, 'flatbread': 19620, 'lamb': 19621, 'glob': 19622, 'chewy': 19623, 'resemblance': 19624, 'crispy': 19625, 'delicacy': 19626, 'hmmm': 19627, 'semifreddo': 19628, 'waitstaff': 19629, 'believing': 19630, 'attest': 19631, 'succulent': 19632, 'sizes': 19633, 'circa': 19634, 'READ': 19635, 'lace': 19636, 'dresses': 19637, 'picks': 19638, 'SUPPOSEDLY': 19639, 'gown': 19640, 'brides': 19641, 'STEALING': 19642, 'designers': 19643, 'designs': 19644, 'seamstresses': 19645, 'uhh': 19646, 'Aside': 19647, 'Somehow': 19648, 'disagreed': 19649, 'observation': 19650, 'bodice': 19651, 'Say': 19652, 'Huh': 19653, 'uh': 19654, 'Seriously': 19655, 'NICER': 19656, 'TRANSPARENT': 19657, 'dishonest': 19658, 'AWFUL': 19659, \"Sear's\": 19660, 'Automotives': 19661, 'Greensboro': 19662, 'shredded': 19663, 'drving': 19664, 'purposely': 19665, 'technician': 19666, 'steering': 19667, 'riiight': 19668, 'Supposedly': 19669, 'ordeal': 19670, 'apathetic': 19671}\n",
-            "{'PROPN': 0, 'PUNCT': 1, 'ADJ': 2, 'NOUN': 3, 'VERB': 4, 'DET': 5, 'ADP': 6, 'AUX': 7, 'PRON': 8, 'PART': 9, 'SCONJ': 10, 'NUM': 11, 'ADV': 12, 'CCONJ': 13, 'X': 14, 'INTJ': 15, 'SYM': 16}\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Train a model\n",
-        "\n",
-        "EMBEDDING_DIM = 6\n",
-        "HIDDEN_DIM = 6\n",
-        "\n",
-        "model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))\n",
-        "loss_function = nn.NLLLoss() # does not include the softmax\n",
-        "optimizer = torch.optim.SGD(model.parameters(), lr=0.1)\n",
-        "\n",
-        "epoch_acc, epoch_loss = 0, 0\n",
-        "\n",
-        "total_count = 0\n",
-        "\n",
-        "for epoch in range(3):  # again, normally you would NOT do 300 epochs, it is toy data\n",
-        "    index = 0\n",
-        "    for sentence, tags, _ in train_iter:\n",
-        "        index += 1\n",
-        "        # Step 1. Remember that Pytorch accumulates gradients.\n",
-        "        # We need to clear them out before each instance\n",
-        "        model.zero_grad()\n",
-        "\n",
-        "        # Step 2. Get our inputs ready for the network, that is, turn them into\n",
-        "        # Tensors of word indices.\n",
-        "        sentence_in = prepare_sequence(sentence, word_to_ix)\n",
-        "        targets = prepare_sequence(tags, tag_to_ix)\n",
-        "\n",
-        "        # Step 3. Run our forward pass.\n",
-        "        tag_scores = model(sentence_in)\n",
-        "\n",
-        "        # Compute accuracy score per token\n",
-        "        predictions = tag_scores.view(-1, tag_scores.shape[-1])\n",
-        "        max_preds = predictions.argmax(dim = 1, keepdim = True) # get the index of the max probability\n",
-        "        correct = max_preds.squeeze(1).eq(targets)\n",
-        "        acc_sentence = correct.sum()\n",
-        "        #acc_sentence = correct.sum() / targets.shape[0]\n",
-        "        \n",
-        "        \n",
-        "        if index in [29,55, 930]: # selection of short sentences #, 1150\n",
-        "          print( \"SENTENCE:\", sentence )\n",
-        "          print(\"GOLD (original):\", tags )\n",
-        "          print(\"GOLD (indices):\", targets)\n",
-        "          print( \"SCORES\", tag_scores )\n",
-        "          print(\"PRED (indices):\", list(max_preds.squeeze(1)) )\n",
-        "          print(\"PRED (mapped):\", [ix_to_tag[i.item()] for i in list(max_preds.squeeze(1))] )\n",
-        "          print( \"CORRECT / UNCORRECT list:\", correct)\n",
-        "          print(\"# CORRECT PREDicted POS =\", acc_sentence.item() )\n",
-        "          \n",
-        "          print( '\\n')\n",
-        "        \n",
-        "        # Step 4. Compute the loss, gradients, and update the parameters by\n",
-        "        #  calling optimizer.step()\n",
-        "        loss = loss_function(tag_scores, targets)\n",
-        "        loss.backward()\n",
-        "        optimizer.step()\n",
-        "\n",
-        "        epoch_loss += loss.item()\n",
-        "        epoch_acc += acc_sentence.item()\n",
-        "        total_count += len(sentence)\n",
-        "\n",
-        "    # Compute accuracy on train set at each epoch  \n",
-        "    print('Epoch: {}. Loss: {}. ACC {}.'.format(epoch, epoch_loss/total_count, \n",
-        "                                      round( (epoch_acc/total_count)*100, 2)))\n",
-        "    epoch_acc, epoch_loss, total_count = 0, 0, 0\n",
-        "    #print(epoch_acc / len(train_iter))\n",
-        "\n",
-        "\n",
-        "# {'PROPN': 0, 'PUNCT': 1, 'ADJ': 2, 'NOUN': 3, 'VERB': 4, 'DET': 5, 'ADP': 6, 'AUX': 7, 'PRON': 8, 'PART': 9, 'SCONJ': 10, 'NUM': 11, 'ADV': 12, 'CCONJ': 13, 'X': 14, 'INTJ': 15, 'SYM': 16}"
-      ],
-      "metadata": {
-        "id": "M2zfqhVmSxIC",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "003dc5e2-a0c7-4499-f59c-9d99a0ff9152"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "SENTENCE: ['But', 'in', 'my', 'view', 'it', 'is', 'highly', 'significant', '.']\n",
-            "GOLD (original): ['CCONJ', 'ADP', 'PRON', 'NOUN', 'PRON', 'AUX', 'ADV', 'ADJ', 'PUNCT']\n",
-            "GOLD (indices): tensor([13,  6,  8,  3,  8,  7, 12,  2,  1])\n",
-            "SCORES tensor([[-2.6011, -2.5266, -2.9968, -2.6995, -3.0550, -2.8690, -2.5574, -2.6591,\n",
-            "         -2.8379, -2.7747, -2.9742, -2.8471, -2.6523, -3.2337, -3.3190, -2.9467,\n",
-            "         -3.0227],\n",
-            "        [-2.5629, -2.5797, -3.0586, -2.7709, -3.0369, -2.8247, -2.5488, -2.6877,\n",
-            "         -2.8817, -2.7331, -2.9279, -2.8451, -2.6471, -3.1719, -3.2695, -2.9873,\n",
-            "         -2.9933],\n",
-            "        [-2.3712, -2.6726, -3.0850, -2.7382, -3.0580, -2.7255, -2.6381, -2.7285,\n",
-            "         -2.9314, -2.7691, -2.8597, -2.7641, -2.8784, -3.0983, -3.1227, -3.0682,\n",
-            "         -3.0041],\n",
-            "        [-2.4359, -2.7448, -3.1665, -2.7967, -2.9007, -2.7261, -2.5949, -2.5924,\n",
-            "         -2.7707, -2.6921, -3.0535, -2.6648, -2.9019, -3.2421, -3.2228, -3.1094,\n",
-            "         -3.0063],\n",
-            "        [-2.5722, -2.6023, -3.0895, -2.7165, -3.0356, -2.8456, -2.5960, -2.5532,\n",
-            "         -2.7810, -2.7520, -2.9983, -2.7831, -2.6950, -3.2663, -3.2972, -2.9877,\n",
-            "         -3.0206],\n",
-            "        [-2.5447, -2.5994, -3.0449, -2.6945, -2.9914, -2.8350, -2.5743, -2.6355,\n",
-            "         -2.8045, -2.7597, -3.0119, -2.7562, -2.7557, -3.2525, -3.2798, -3.0189,\n",
-            "         -2.9983],\n",
-            "        [-2.5849, -2.6448, -3.1105, -2.7572, -2.9273, -2.8675, -2.5217, -2.6640,\n",
-            "         -2.8096, -2.6834, -3.0311, -2.7381, -2.7151, -3.2663, -3.2428, -3.0856,\n",
-            "         -2.9088],\n",
-            "        [-2.5067, -2.6452, -3.0614, -2.6957, -2.9279, -2.8198, -2.5544, -2.7322,\n",
-            "         -2.8572, -2.7501, -2.9974, -2.7010, -2.8073, -3.2114, -3.2231, -3.1109,\n",
-            "         -2.9233],\n",
-            "        [-2.4010, -2.6948, -3.1210, -2.7567, -3.0092, -2.7257, -2.6227, -2.6919,\n",
-            "         -2.8989, -2.7518, -2.8996, -2.7336, -2.8499, -3.1228, -3.1612, -3.0887,\n",
-            "         -2.9905]], grad_fn=<LogSoftmaxBackward0>)\n",
-            "PRED (indices): [tensor(1), tensor(6), tensor(0), tensor(0), tensor(7), tensor(0), tensor(6), tensor(0), tensor(0)]\n",
-            "PRED (mapped): ['PUNCT', 'ADP', 'PROPN', 'PROPN', 'AUX', 'PROPN', 'ADP', 'PROPN', 'PROPN']\n",
-            "CORRECT / UNCORRECT list: tensor([False,  True, False, False, False, False, False, False, False])\n",
-            "# CORRECT PREDicted POS = 1\n",
-            "\n",
-            "\n",
-            "SENTENCE: ['So', 'what', 'happened', '?']\n",
-            "GOLD (original): ['ADV', 'PRON', 'VERB', 'PUNCT']\n",
-            "GOLD (indices): tensor([12,  8,  4,  1])\n",
-            "SCORES tensor([[-2.4285, -2.6232, -3.0350, -2.5431, -2.7617, -2.6502, -2.5858, -2.6995,\n",
-            "         -2.8207, -2.8955, -3.0595, -2.8163, -2.8788, -3.1567, -3.3788, -3.2336,\n",
-            "         -3.1626],\n",
-            "        [-2.4573, -2.5565, -2.9937, -2.5328, -2.8398, -2.6189, -2.6285, -2.6082,\n",
-            "         -2.7985, -2.9706, -3.0460, -2.8956, -2.7966, -3.1454, -3.5138, -3.1127,\n",
-            "         -3.3038],\n",
-            "        [-2.5931, -2.5094, -2.9861, -2.5048, -2.8330, -2.7904, -2.5564, -2.6248,\n",
-            "         -2.7690, -2.8938, -3.0841, -2.9224, -2.6957, -3.2518, -3.4504, -3.1345,\n",
-            "         -3.1623],\n",
-            "        [-2.7389, -2.5734, -3.1466, -2.5952, -2.7827, -2.9250, -2.4915, -2.5470,\n",
-            "         -2.7210, -2.7461, -3.1320, -2.9167, -2.5488, -3.3554, -3.3839, -3.2216,\n",
-            "         -2.9917]], grad_fn=<LogSoftmaxBackward0>)\n",
-            "PRED (indices): [tensor(0), tensor(0), tensor(3), tensor(6)]\n",
-            "PRED (mapped): ['PROPN', 'PROPN', 'NOUN', 'ADP']\n",
-            "CORRECT / UNCORRECT list: tensor([False, False, False, False])\n",
-            "# CORRECT PREDicted POS = 0\n",
-            "\n",
-            "\n",
-            "SENTENCE: ['Bush', 'successfully', 'makes', 'Satan', 'look', 'good', 'in', 'comparison', '.']\n",
-            "GOLD (original): ['PROPN', 'ADV', 'VERB', 'PROPN', 'VERB', 'ADJ', 'ADP', 'NOUN', 'PUNCT']\n",
-            "GOLD (indices): tensor([ 0, 12,  4,  0,  4,  2,  6,  3,  1])\n",
-            "SCORES tensor([[-2.2968, -3.2700, -3.0146, -1.6463, -2.2878, -2.4132, -2.2722, -2.8413,\n",
-            "         -2.6493, -3.3707, -3.9728, -3.9247, -3.0844, -3.3792, -3.8393, -4.6732,\n",
-            "         -4.3569],\n",
-            "        [-2.3845, -3.5242, -3.1003, -1.5352, -2.2287, -2.2960, -2.4401, -2.6471,\n",
-            "         -2.6189, -3.4864, -4.0943, -3.8953, -3.1153, -3.4785, -4.1167, -4.7946,\n",
-            "         -4.4797],\n",
-            "        [-2.3732, -3.2368, -3.0400, -1.5503, -2.2653, -2.2988, -2.4064, -2.7712,\n",
-            "         -2.7125, -3.5228, -4.0057, -4.0297, -2.9952, -3.3961, -4.1532, -4.7207,\n",
-            "         -4.5502],\n",
-            "        [-2.6164, -2.4063, -2.9561, -1.4008, -2.2164, -2.2914, -2.7657, -2.8510,\n",
-            "         -2.7826, -3.8997, -4.2114, -4.2311, -3.0130, -3.8212, -4.6621, -4.8665,\n",
-            "         -4.8491],\n",
-            "        [-3.0439, -1.0028, -2.9725, -1.6781, -2.6121, -2.8098, -3.3146, -3.4362,\n",
-            "         -3.1492, -4.4735, -4.4482, -4.7005, -3.2178, -4.5324, -4.9391, -5.0291,\n",
-            "         -5.1349],\n",
-            "        [-2.7474, -1.8173, -2.9283, -1.4962, -2.2616, -2.3970, -2.8635, -2.9929,\n",
-            "         -2.8510, -3.9810, -4.2856, -4.3248, -3.0321, -4.0464, -4.6969, -4.9044,\n",
-            "         -4.8410],\n",
-            "        [-2.3289, -3.2792, -3.0168, -1.6216, -2.2457, -2.3726, -2.1923, -2.9830,\n",
-            "         -2.7608, -3.4127, -3.9862, -4.0754, -2.9950, -3.2790, -4.0349, -4.7302,\n",
-            "         -4.5061],\n",
-            "        [-2.9531, -1.1181, -3.0026, -1.7583, -2.5840, -2.6955, -3.0181, -3.3842,\n",
-            "         -3.2013, -4.2179, -4.2235, -4.6572, -2.9105, -4.1633, -4.7365, -4.9002,\n",
-            "         -4.9159],\n",
-            "        [-3.7266, -0.3812, -3.4729, -2.5140, -3.4192, -3.5369, -3.9906, -4.1921,\n",
-            "         -3.9166, -5.0959, -4.8350, -5.4638, -3.5551, -5.2155, -5.3264, -5.3957,\n",
-            "         -5.5644]], grad_fn=<LogSoftmaxBackward0>)\n",
-            "PRED (indices): [tensor(3), tensor(3), tensor(3), tensor(3), tensor(1), tensor(3), tensor(3), tensor(1), tensor(1)]\n",
-            "PRED (mapped): ['NOUN', 'NOUN', 'NOUN', 'NOUN', 'PUNCT', 'NOUN', 'NOUN', 'PUNCT', 'PUNCT']\n",
-            "CORRECT / UNCORRECT list: tensor([False, False, False, False, False, False, False, False,  True])\n",
-            "# CORRECT PREDicted POS = 1\n",
-            "\n",
-            "\n",
-            "Epoch: 0. Loss: 0.10582880904886986. ACC 45.46.\n",
-            "SENTENCE: ['But', 'in', 'my', 'view', 'it', 'is', 'highly', 'significant', '.']\n",
-            "GOLD (original): ['CCONJ', 'ADP', 'PRON', 'NOUN', 'PRON', 'AUX', 'ADV', 'ADJ', 'PUNCT']\n",
-            "GOLD (indices): tensor([13,  6,  8,  3,  8,  7, 12,  2,  1])\n",
-            "SCORES tensor([[-1.8198e+00, -5.6847e+00, -1.8609e+00, -1.9811e+00, -1.8321e+00,\n",
-            "         -4.9195e+00, -5.0623e+00, -5.9673e+00, -2.1250e+00, -8.2478e+00,\n",
-            "         -3.8137e+00, -2.6477e+00, -2.1930e+00, -6.0647e+00, -4.5586e+00,\n",
-            "         -3.9140e+00, -4.8405e+00],\n",
-            "        [-4.0505e+00, -5.2843e+00, -4.4565e+00, -4.1078e+00, -4.9377e+00,\n",
-            "         -5.6369e+00, -2.9686e-01, -8.6859e+00, -2.4638e+00, -3.6933e+00,\n",
-            "         -3.6335e+00, -5.0784e+00, -3.8393e+00, -3.6520e+00, -6.6336e+00,\n",
-            "         -7.3053e+00, -5.7068e+00],\n",
-            "        [-2.8312e+00, -7.5053e+00, -2.8775e+00, -2.6536e+00, -2.6213e+00,\n",
-            "         -3.7884e+00, -2.4017e+00, -6.7908e+00, -6.9594e-01, -5.9952e+00,\n",
-            "         -3.0925e+00, -3.8202e+00, -3.0452e+00, -6.9595e+00, -6.2375e+00,\n",
-            "         -5.7613e+00, -5.3484e+00],\n",
-            "        [-2.7609e+00, -5.4000e+00, -2.5570e+00, -9.1829e-01, -1.7015e+00,\n",
-            "         -4.2221e+00, -3.8642e+00, -3.4729e+00, -2.5216e+00, -5.2704e+00,\n",
-            "         -3.6895e+00, -4.0912e+00, -2.6481e+00, -7.4517e+00, -7.0430e+00,\n",
-            "         -5.5171e+00, -5.8095e+00],\n",
-            "        [-3.8281e+00, -7.5542e+00, -3.4646e+00, -2.1476e+00, -3.2803e+00,\n",
-            "         -7.2356e+00, -3.0831e+00, -7.9708e+00, -3.7474e-01, -6.5088e+00,\n",
-            "         -3.8884e+00, -5.0866e+00, -3.6144e+00, -9.0498e+00, -8.0351e+00,\n",
-            "         -7.6444e+00, -6.3711e+00],\n",
-            "        [-4.7371e+00, -3.6642e+00, -4.9000e+00, -3.8577e+00, -2.3181e+00,\n",
-            "         -3.1162e+00, -9.5707e+00, -2.6564e-01, -1.0329e+01, -9.2392e+00,\n",
-            "         -6.8380e+00, -5.6506e+00, -4.5392e+00, -1.0701e+01, -7.6443e+00,\n",
-            "         -4.4896e+00, -7.9512e+00],\n",
-            "        [-2.1628e+00, -6.3280e+00, -1.9194e+00, -8.8745e-01, -2.1819e+00,\n",
-            "         -4.6867e+00, -5.1519e+00, -5.3330e+00, -3.4083e+00, -7.5289e+00,\n",
-            "         -4.3561e+00, -3.3352e+00, -2.3960e+00, -4.8314e+00, -6.3525e+00,\n",
-            "         -5.0742e+00, -5.7970e+00],\n",
-            "        [-2.8983e+00, -2.4034e+00, -2.3959e+00, -1.0353e+00, -2.5181e+00,\n",
-            "         -5.3560e+00, -2.3854e+00, -6.6772e+00, -4.4783e+00, -7.0284e+00,\n",
-            "         -3.3783e+00, -3.8129e+00, -1.9303e+00, -4.8016e+00, -6.8197e+00,\n",
-            "         -6.0278e+00, -5.4326e+00],\n",
-            "        [-8.3439e+00, -5.0619e-03, -8.1722e+00, -7.1862e+00, -6.6274e+00,\n",
-            "         -1.0666e+01, -9.8644e+00, -7.8670e+00, -1.4976e+01, -1.3430e+01,\n",
-            "         -9.2729e+00, -8.7489e+00, -6.5413e+00, -1.1485e+01, -9.9553e+00,\n",
-            "         -8.5568e+00, -1.0056e+01]], grad_fn=<LogSoftmaxBackward0>)\n",
-            "PRED (indices): [tensor(0), tensor(6), tensor(8), tensor(3), tensor(8), tensor(7), tensor(3), tensor(3), tensor(1)]\n",
-            "PRED (mapped): ['PROPN', 'ADP', 'PRON', 'NOUN', 'PRON', 'AUX', 'NOUN', 'NOUN', 'PUNCT']\n",
-            "CORRECT / UNCORRECT list: tensor([False,  True,  True,  True,  True,  True, False, False,  True])\n",
-            "# CORRECT PREDicted POS = 6\n",
-            "\n",
-            "\n",
-            "SENTENCE: ['So', 'what', 'happened', '?']\n",
-            "GOLD (original): ['ADV', 'PRON', 'VERB', 'PUNCT']\n",
-            "GOLD (indices): tensor([12,  8,  4,  1])\n",
-            "SCORES tensor([[ -2.0125,  -2.5398,  -2.2800,  -3.0051,  -1.9002,  -2.5677,  -3.2799,\n",
-            "          -5.3337,  -4.9063,  -7.6171,  -3.1664,  -2.5835,  -1.8172,  -4.3511,\n",
-            "          -4.0025,  -3.3410,  -4.3950],\n",
-            "        [ -3.2467,  -7.0099,  -3.0854,  -2.6116,  -3.0376,  -7.1547,  -3.2618,\n",
-            "          -8.1443,  -0.3983,  -7.0983,  -3.7137,  -4.4889,  -3.2074,  -8.4619,\n",
-            "          -6.8606,  -6.7555,  -5.8270],\n",
-            "        [ -2.5055,  -4.0947,  -2.4437,  -1.7671,  -1.0892,  -2.9525,  -5.7894,\n",
-            "          -2.4027,  -5.2561,  -7.7482,  -4.1763,  -3.6136,  -2.4045,  -7.9282,\n",
-            "          -6.0877,  -4.0267,  -5.7848],\n",
-            "        [ -7.1198,  -0.0150,  -7.0348,  -5.9507,  -5.7017,  -9.0941,  -7.8016,\n",
-            "          -6.6575, -13.0774, -10.8420,  -7.9450,  -7.8510,  -5.4993,  -9.4491,\n",
-            "          -9.2734,  -7.9599,  -9.0398]], grad_fn=<LogSoftmaxBackward0>)\n",
-            "PRED (indices): [tensor(12), tensor(8), tensor(4), tensor(1)]\n",
-            "PRED (mapped): ['ADV', 'PRON', 'VERB', 'PUNCT']\n",
-            "CORRECT / UNCORRECT list: tensor([True, True, True, True])\n",
-            "# CORRECT PREDicted POS = 4\n",
-            "\n",
-            "\n",
-            "SENTENCE: ['Bush', 'successfully', 'makes', 'Satan', 'look', 'good', 'in', 'comparison', '.']\n",
-            "GOLD (original): ['PROPN', 'ADV', 'VERB', 'PROPN', 'VERB', 'ADJ', 'ADP', 'NOUN', 'PUNCT']\n",
-            "GOLD (indices): tensor([ 0, 12,  4,  0,  4,  2,  6,  3,  1])\n",
-            "SCORES tensor([[-1.4911e+00, -4.3778e+00, -2.6519e+00, -2.1699e+00, -2.1600e+00,\n",
-            "         -3.0264e+00, -5.1332e+00, -3.4605e+00, -4.6228e+00, -5.8200e+00,\n",
-            "         -4.5477e+00, -2.9271e+00, -2.4826e+00, -2.9161e+00, -2.2948e+00,\n",
-            "         -3.0421e+00, -4.3152e+00],\n",
-            "        [-2.4466e+00, -5.2684e+00, -2.7066e+00, -8.5490e-01, -1.6857e+00,\n",
-            "         -3.3179e+00, -3.6791e+00, -3.9588e+00, -3.4033e+00, -5.5831e+00,\n",
-            "         -3.7433e+00, -4.2762e+00, -2.8091e+00, -6.8419e+00, -5.2122e+00,\n",
-            "         -5.5089e+00, -5.3226e+00],\n",
-            "        [-2.8870e+00, -4.3400e+00, -3.1534e+00, -1.0245e+00, -1.5186e+00,\n",
-            "         -4.4337e+00, -3.7360e+00, -2.2406e+00, -2.7068e+00, -3.8624e+00,\n",
-            "         -3.7860e+00, -4.9216e+00, -3.2482e+00, -9.0000e+00, -5.4671e+00,\n",
-            "         -5.6711e+00, -5.5113e+00],\n",
-            "        [-2.5315e+00, -4.6402e+00, -2.7096e+00, -9.7647e-01, -1.3004e+00,\n",
-            "         -3.2513e+00, -5.1369e+00, -3.6492e+00, -4.6841e+00, -7.5826e+00,\n",
-            "         -4.2007e+00, -4.1628e+00, -2.7429e+00, -7.9880e+00, -4.8518e+00,\n",
-            "         -4.9597e+00, -5.3555e+00],\n",
-            "        [-2.4673e+00, -5.6973e+00, -2.4795e+00, -6.8319e-01, -1.8132e+00,\n",
-            "         -3.6901e+00, -5.1585e+00, -6.2072e+00, -5.0393e+00, -9.4605e+00,\n",
-            "         -4.4083e+00, -4.0461e+00, -2.5617e+00, -6.6057e+00, -5.2798e+00,\n",
-            "         -5.6796e+00, -5.5435e+00],\n",
-            "        [-2.7201e+00, -6.2690e+00, -2.6390e+00, -5.2876e-01, -2.2767e+00,\n",
-            "         -5.3141e+00, -3.9339e+00, -7.2819e+00, -3.0917e+00, -8.0273e+00,\n",
-            "         -4.0300e+00, -4.5407e+00, -2.7895e+00, -7.0429e+00, -5.9417e+00,\n",
-            "         -6.8099e+00, -5.6768e+00],\n",
-            "        [-6.1535e+00, -6.1988e+00, -6.6360e+00, -5.5993e+00, -6.4290e+00,\n",
-            "         -4.9839e+00, -5.6465e-02, -1.0119e+01, -5.8513e+00, -4.3258e+00,\n",
-            "         -4.4755e+00, -7.5102e+00, -5.5205e+00, -5.4019e+00, -9.0444e+00,\n",
-            "         -9.9330e+00, -7.5649e+00],\n",
-            "        [-2.4393e+00, -5.3624e+00, -2.5913e+00, -1.0129e+00, -1.3664e+00,\n",
-            "         -2.6182e+00, -5.6425e+00, -4.4536e+00, -5.3461e+00, -9.0434e+00,\n",
-            "         -4.4036e+00, -3.9367e+00, -2.6711e+00, -7.4436e+00, -4.7890e+00,\n",
-            "         -4.8611e+00, -5.4305e+00],\n",
-            "        [-7.8855e+00, -6.9427e-03, -8.0524e+00, -6.5693e+00, -6.2177e+00,\n",
-            "         -1.0534e+01, -9.2870e+00, -7.8554e+00, -1.4940e+01, -1.2741e+01,\n",
-            "         -9.3060e+00, -8.9347e+00, -6.3803e+00, -1.0921e+01, -8.8757e+00,\n",
-            "         -8.8691e+00, -9.1934e+00]], grad_fn=<LogSoftmaxBackward0>)\n",
-            "PRED (indices): [tensor(0), tensor(3), tensor(3), tensor(3), tensor(3), tensor(3), tensor(6), tensor(3), tensor(1)]\n",
-            "PRED (mapped): ['PROPN', 'NOUN', 'NOUN', 'NOUN', 'NOUN', 'NOUN', 'ADP', 'NOUN', 'PUNCT']\n",
-            "CORRECT / UNCORRECT list: tensor([ True, False, False, False, False, False,  True,  True,  True])\n",
-            "# CORRECT PREDicted POS = 4\n",
-            "\n",
-            "\n",
-            "Epoch: 1. Loss: 0.0769015390931467. ACC 62.27.\n",
-            "SENTENCE: ['But', 'in', 'my', 'view', 'it', 'is', 'highly', 'significant', '.']\n",
-            "GOLD (original): ['CCONJ', 'ADP', 'PRON', 'NOUN', 'PRON', 'AUX', 'ADV', 'ADJ', 'PUNCT']\n",
-            "GOLD (indices): tensor([13,  6,  8,  3,  8,  7, 12,  2,  1])\n",
-            "SCORES tensor([[-1.3913e+00, -7.7739e+00, -1.9349e+00, -2.4742e+00, -4.2958e+00,\n",
-            "         -7.0214e+00, -7.1701e+00, -7.6778e+00, -2.3669e+00, -8.0091e+00,\n",
-            "         -6.8554e+00, -2.6106e+00, -3.3642e+00, -1.5757e+00, -3.2684e+00,\n",
-            "         -3.0031e+00, -4.7535e+00],\n",
-            "        [-3.5286e+00, -4.2080e+00, -4.5759e+00, -5.0951e+00, -4.9154e+00,\n",
-            "         -4.9208e+00, -4.7450e-01, -8.9388e+00, -3.1898e+00, -4.7304e+00,\n",
-            "         -2.4777e+00, -4.0737e+00, -2.6556e+00, -2.8452e+00, -4.6953e+00,\n",
-            "         -5.8486e+00, -4.5055e+00],\n",
-            "        [-4.1738e+00, -1.0055e+01, -4.5849e+00, -4.8409e+00, -4.3130e+00,\n",
-            "         -4.4684e+00, -3.2946e+00, -8.8968e+00, -1.7620e-01, -6.6751e+00,\n",
-            "         -3.1235e+00, -5.2024e+00, -4.4846e+00, -7.3098e+00, -7.0222e+00,\n",
-            "         -7.4473e+00, -6.3541e+00],\n",
-            "        [-2.3291e+00, -6.0356e+00, -2.2697e+00, -7.7672e-01, -1.8642e+00,\n",
-            "         -4.3757e+00, -4.3073e+00, -4.0532e+00, -3.7864e+00, -5.3965e+00,\n",
-            "         -4.1973e+00, -3.6486e+00, -2.7860e+00, -6.6287e+00, -6.8885e+00,\n",
-            "         -5.7387e+00, -5.8018e+00],\n",
-            "        [-5.1870e+00, -1.0138e+01, -5.4045e+00, -4.1390e+00, -5.3235e+00,\n",
-            "         -1.0646e+01, -5.3463e+00, -1.1028e+01, -5.1010e-02, -7.9323e+00,\n",
-            "         -4.8264e+00, -6.5366e+00, -5.6513e+00, -1.1066e+01, -9.1872e+00,\n",
-            "         -1.0219e+01, -7.6108e+00],\n",
-            "        [-6.2129e+00, -5.4219e+00, -6.6455e+00, -6.1309e+00, -2.7591e+00,\n",
-            "         -4.4120e+00, -1.0234e+01, -1.0077e-01, -1.2590e+01, -9.2248e+00,\n",
-            "         -9.1317e+00, -7.2103e+00, -6.2153e+00, -1.2398e+01, -8.7489e+00,\n",
-            "         -4.9299e+00, -9.1127e+00],\n",
-            "        [-2.1884e+00, -6.1997e+00, -1.7586e+00, -1.1716e+00, -1.7449e+00,\n",
-            "         -4.3721e+00, -4.5236e+00, -6.6212e+00, -4.2870e+00, -8.5760e+00,\n",
-            "         -4.4133e+00, -3.1168e+00, -2.1213e+00, -5.8277e+00, -6.3114e+00,\n",
-            "         -5.2937e+00, -5.4651e+00],\n",
-            "        [-2.6158e+00, -3.6689e+00, -2.2786e+00, -9.9593e-01, -2.4219e+00,\n",
-            "         -6.3434e+00, -2.7232e+00, -8.0053e+00, -5.4485e+00, -7.7243e+00,\n",
-            "         -3.8268e+00, -3.3894e+00, -1.5995e+00, -5.6569e+00, -6.8863e+00,\n",
-            "         -6.6760e+00, -5.2910e+00],\n",
-            "        [-9.3327e+00, -2.8036e-03, -9.8997e+00, -8.7397e+00, -7.7487e+00,\n",
-            "         -1.3818e+01, -8.7204e+00, -9.7377e+00, -1.9624e+01, -1.3065e+01,\n",
-            "         -1.1320e+01, -9.4311e+00, -6.4200e+00, -1.1553e+01, -1.0929e+01,\n",
-            "         -9.7139e+00, -1.0250e+01]], grad_fn=<LogSoftmaxBackward0>)\n",
-            "PRED (indices): [tensor(0), tensor(6), tensor(8), tensor(3), tensor(8), tensor(7), tensor(3), tensor(3), tensor(1)]\n",
-            "PRED (mapped): ['PROPN', 'ADP', 'PRON', 'NOUN', 'PRON', 'AUX', 'NOUN', 'NOUN', 'PUNCT']\n",
-            "CORRECT / UNCORRECT list: tensor([False,  True,  True,  True,  True,  True, False, False,  True])\n",
-            "# CORRECT PREDicted POS = 6\n",
-            "\n",
-            "\n",
-            "SENTENCE: ['So', 'what', 'happened', '?']\n",
-            "GOLD (original): ['ADV', 'PRON', 'VERB', 'PUNCT']\n",
-            "GOLD (indices): tensor([12,  8,  4,  1])\n",
-            "SCORES tensor([[-2.1091e+00, -2.4328e+00, -2.4320e+00, -3.0000e+00, -2.0206e+00,\n",
-            "         -5.0350e+00, -3.2783e+00, -6.7836e+00, -5.3983e+00, -8.2333e+00,\n",
-            "         -4.0030e+00, -2.6803e+00, -1.2190e+00, -4.0613e+00, -3.8849e+00,\n",
-            "         -3.4445e+00, -3.9907e+00],\n",
-            "        [-4.3307e+00, -9.6426e+00, -4.8388e+00, -4.2006e+00, -5.2021e+00,\n",
-            "         -9.6289e+00, -5.2505e+00, -1.0130e+01, -6.8412e-02, -7.2664e+00,\n",
-            "         -4.8449e+00, -5.8120e+00, -5.1612e+00, -8.8788e+00, -7.6623e+00,\n",
-            "         -8.6089e+00, -6.8520e+00],\n",
-            "        [-2.4842e+00, -3.8976e+00, -2.6111e+00, -1.9333e+00, -9.2559e-01,\n",
-            "         -3.6498e+00, -5.1730e+00, -2.3215e+00, -6.4111e+00, -6.6949e+00,\n",
-            "         -4.8593e+00, -3.6472e+00, -2.4106e+00, -7.2801e+00, -5.9541e+00,\n",
-            "         -3.9910e+00, -5.5529e+00],\n",
-            "        [-8.4807e+00, -5.3839e-03, -9.0874e+00, -7.3807e+00, -7.7580e+00,\n",
-            "         -1.3348e+01, -7.3121e+00, -9.3103e+00, -1.8535e+01, -1.0789e+01,\n",
-            "         -1.0424e+01, -8.9217e+00, -5.8475e+00, -9.8767e+00, -1.0865e+01,\n",
-            "         -1.0031e+01, -9.8368e+00]], grad_fn=<LogSoftmaxBackward0>)\n",
-            "PRED (indices): [tensor(12), tensor(8), tensor(4), tensor(1)]\n",
-            "PRED (mapped): ['ADV', 'PRON', 'VERB', 'PUNCT']\n",
-            "CORRECT / UNCORRECT list: tensor([True, True, True, True])\n",
-            "# CORRECT PREDicted POS = 4\n",
-            "\n",
-            "\n",
-            "SENTENCE: ['Bush', 'successfully', 'makes', 'Satan', 'look', 'good', 'in', 'comparison', '.']\n",
-            "GOLD (original): ['PROPN', 'ADV', 'VERB', 'PROPN', 'VERB', 'ADJ', 'ADP', 'NOUN', 'PUNCT']\n",
-            "GOLD (indices): tensor([ 0, 12,  4,  0,  4,  2,  6,  3,  1])\n",
-            "SCORES tensor([[-1.3221e+00, -4.4152e+00, -2.5439e+00, -1.5500e+00, -3.0899e+00,\n",
-            "         -4.6256e+00, -5.2581e+00, -3.7077e+00, -4.9236e+00, -4.8063e+00,\n",
-            "         -5.8185e+00, -3.1519e+00, -2.9769e+00, -2.5645e+00, -2.3107e+00,\n",
-            "         -3.1618e+00, -4.2092e+00],\n",
-            "        [-2.3379e+00, -5.2814e+00, -2.6021e+00, -6.8224e-01, -1.6725e+00,\n",
-            "         -4.0532e+00, -4.8075e+00, -4.4169e+00, -5.4075e+00, -6.7436e+00,\n",
-            "         -4.9151e+00, -4.1314e+00, -3.0010e+00, -7.0762e+00, -5.1563e+00,\n",
-            "         -5.6220e+00, -5.4303e+00],\n",
-            "        [-2.5615e+00, -3.9108e+00, -3.2127e+00, -8.8191e-01, -1.5223e+00,\n",
-            "         -5.1331e+00, -3.8037e+00, -2.5299e+00, -3.9057e+00, -3.7749e+00,\n",
-            "         -3.9731e+00, -4.5169e+00, -3.3138e+00, -8.6043e+00, -5.2898e+00,\n",
-            "         -5.9001e+00, -5.2317e+00],\n",
-            "        [-2.5206e+00, -4.4719e+00, -2.7353e+00, -9.0022e-01, -1.2468e+00,\n",
-            "         -3.8912e+00, -4.7964e+00, -4.0324e+00, -6.0834e+00, -7.1664e+00,\n",
-            "         -4.8648e+00, -4.1631e+00, -2.7987e+00, -7.7114e+00, -5.1343e+00,\n",
-            "         -5.3697e+00, -5.3490e+00],\n",
-            "        [-2.5050e+00, -5.5106e+00, -2.4353e+00, -7.3792e-01, -1.6618e+00,\n",
-            "         -4.2329e+00, -4.4488e+00, -6.9438e+00, -5.7202e+00, -9.0573e+00,\n",
-            "         -4.6800e+00, -3.9922e+00, -2.4291e+00, -7.0240e+00, -5.3859e+00,\n",
-            "         -6.1692e+00, -5.3351e+00],\n",
-            "        [-2.7852e+00, -6.8865e+00, -2.6735e+00, -3.2223e-01, -2.9466e+00,\n",
-            "         -6.3069e+00, -4.3123e+00, -8.9743e+00, -4.7491e+00, -8.6215e+00,\n",
-            "         -4.9040e+00, -4.5889e+00, -3.1117e+00, -7.1331e+00, -6.5917e+00,\n",
-            "         -8.1491e+00, -6.0119e+00],\n",
-            "        [-5.7628e+00, -5.4218e+00, -6.6328e+00, -5.3137e+00, -6.7798e+00,\n",
-            "         -6.5841e+00, -9.3993e-02, -1.1160e+01, -6.0942e+00, -4.8836e+00,\n",
-            "         -3.1198e+00, -6.7404e+00, -4.2898e+00, -5.7680e+00, -8.2604e+00,\n",
-            "         -1.0423e+01, -6.8316e+00],\n",
-            "        [-1.5873e+00, -6.2669e+00, -2.3316e+00, -6.6592e-01, -3.1434e+00,\n",
-            "         -5.0385e+00, -5.9331e+00, -4.8304e+00, -4.9315e+00, -5.9600e+00,\n",
-            "         -6.2419e+00, -3.6862e+00, -3.4789e+00, -3.9266e+00, -3.8606e+00,\n",
-            "         -4.7750e+00, -5.1905e+00],\n",
-            "        [-8.9431e+00, -2.9551e-03, -9.7653e+00, -8.1291e+00, -7.8036e+00,\n",
-            "         -1.3748e+01, -8.7200e+00, -9.8942e+00, -1.9622e+01, -1.2646e+01,\n",
-            "         -1.1772e+01, -9.5426e+00, -6.4751e+00, -1.0981e+01, -9.6175e+00,\n",
-            "         -9.7299e+00, -9.4618e+00]], grad_fn=<LogSoftmaxBackward0>)\n",
-            "PRED (indices): [tensor(0), tensor(3), tensor(3), tensor(3), tensor(3), tensor(3), tensor(6), tensor(3), tensor(1)]\n",
-            "PRED (mapped): ['PROPN', 'NOUN', 'NOUN', 'NOUN', 'NOUN', 'NOUN', 'ADP', 'NOUN', 'PUNCT']\n",
-            "CORRECT / UNCORRECT list: tensor([ True, False, False, False, False, False,  True,  True,  True])\n",
-            "# CORRECT PREDicted POS = 4\n",
-            "\n",
-            "\n",
-            "Epoch: 2. Loss: 0.0686776225652631. ACC 66.0.\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# Additional notes: solution with batches + bi-LSTM\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "-kjzjCgBHRtt"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## Batches with LSTM\n",
-        "\n",
-        "When using LSTMs, we can't use the concatenation solution: all the documents in a batch need to have the same length, because the size of the input defines the size of the network (each xi is associated with a state si). \n",
-        "\n",
-        "The solution is called **padding**: we add zeros at the end of the sequences that are shorter than the max length. \n",
-        "\n",
-        "The easiest solution to do so is to pad the sequences using *torch.nn.utils.rnn.pad_sequence* as done below within the *collate_batch_pad* function. This function returns a tensor of padded sequences, that can be directly used as input of our model.\n",
-        "\n",
-        "https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pad_sequence.html"
-      ],
-      "metadata": {
-        "id": "PMW11fIi_RPq"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from torchtext.data.utils import get_tokenizer\n",
-        "from torchtext.vocab import build_vocab_from_iterator\n",
-        "from torch.nn.utils.rnn import pad_sequence\n",
-        "\n",
-        "def collate_batch_pad(batch):\n",
-        "    label_list, text_list, offsets = [], [], [0]\n",
-        "    for (_label, _text) in batch:\n",
-        "         label_list.append(label_pipeline(_label))\n",
-        "         processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)\n",
-        "         text_list.append(processed_text)\n",
-        "         offsets.append(processed_text.size(0))\n",
-        "    label = torch.tensor(label_list, dtype=torch.int64)\n",
-        "    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)\n",
-        "    #text_list = torch.cat(text_list) # Instead of concatenating, we use padding\n",
-        "    text_list = pad_sequence(text_list, padding_value=0) # <-------\n",
-        "    return text_list.to(device), label.to(device)\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "3U9zTPil09aj"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "We slightly modify our model, just to take into account a custom batch size. See in the forward pass:\n",
-        "* the *view* method now has, as a 2nd argument, the batch size (while it was previously set to 1)"
-      ],
-      "metadata": {
-        "id": "Jz6ONIX1AmDn"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class LSTMModel3(nn.Module):\n",
-        "    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, batch_size):\n",
-        "        super(LSTMModel3, self).__init__()\n",
-        "        self.trace = True\n",
-        "        self.batch_size = batch_size # <------\n",
-        "        self.embedding = nn.Embedding(vocab_size, embedding_dim)\n",
-        "        self.lstm = nn.LSTM( input_size=embedding_dim, \n",
-        "                            hidden_size=hidden_dim, \n",
-        "                            bidirectional=False)\n",
-        "\n",
-        "        self.fc2 = nn.Linear(hidden_dim, output_dim)  \n",
-        "\n",
-        "    def forward(self, text):\n",
-        "        embeds = self.embedding(text)\n",
-        "        if self.trace:\n",
-        "          print( len(text), self.batch_size, embeds.shape)\n",
-        "          self.trace = False\n",
-        "        x = embeds.view(len(text), self.batch_size, -1) # <------\n",
-        "        out, (ht, ct) = self.lstm( x )\n",
-        "        y = self.fc2(ht[-1])\n",
-        "        return y"
-      ],
-      "metadata": {
-        "id": "tk2xBsPQz6ed"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "You can now run an experiment with a batch size of 2.\n",
-        "\n",
-        "Note that we have another modification here in the Dataloader:\n",
-        "* drop_last=True: drop the last incomplete batch \n",
-        "\n",
-        "▶▶ **Uncomment the 'print' in the forward function above and in the train loop to see what the data looks like (stop training when a few tensors are printed).**"
-      ],
-      "metadata": {
-        "id": "EaODIVCQA05f"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Load data\n",
-        "batch_size = 2\n",
-        "train_loader = DataLoader(train_iter, batch_size=batch_size, shuffle=True, \n",
-        "                          collate_fn=collate_batch_pad, drop_last=True)\n",
-        "dev_loader = DataLoader(dev_iter, shuffle=True, batch_size=2, \n",
-        "                        collate_fn=collate_batch_pad, drop_last=True)"
-      ],
-      "metadata": {
-        "id": "Dr42-G6ZvkU4",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 227
-        },
-        "outputId": "ebdc4d7c-d273-40c4-fc50-ad64b83a7379"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "error",
-          "ename": "NameError",
-          "evalue": "ignored",
-          "traceback": [
-            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-            "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
-            "\u001b[0;32m<ipython-input-42-0c2342b67c0d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      3\u001b[0m train_loader = DataLoader(train_iter, batch_size=batch_size, shuffle=True, \n\u001b[1;32m      4\u001b[0m                           collate_fn=collate_batch_pad, drop_last=True)\n\u001b[0;32m----> 5\u001b[0;31m dev_loader = DataLoader(dev_iter, shuffle=True, batch_size=2, \n\u001b[0m\u001b[1;32m      6\u001b[0m                         collate_fn=collate_batch_pad, drop_last=True)\n",
-            "\u001b[0;31mNameError\u001b[0m: name 'dev_iter' is not defined"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Hyper-parameters\n",
-        "vocab_size = len(vocab)\n",
-        "emb_dim = 300\n",
-        "hidden_dim = 32\n",
-        "output_dim = 2\n",
-        "learning_rate = 0.1\n",
-        "num_epochs = 5\n",
-        "criterion = nn.CrossEntropyLoss()"
-      ],
-      "metadata": {
-        "id": "J1vCbZ_3vsNr"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Initialize the model\n",
-        "model_lstm3 = LSTMModel3( vocab_size, emb_dim, hidden_dim, output_dim, batch_size )\n",
-        "optimizer = torch.optim.SGD(model_lstm3.parameters(), lr=learning_rate)\n",
-        "model_lstm3 = model_lstm3.to(device)\n",
-        "# Train the model\n",
-        "train( model_lstm3, train_loader, optimizer, num_epochs=5, trace=True )"
-      ],
-      "metadata": {
-        "id": "dA8gDgLtz8w-"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "We also modify the evaluation function to take batches as input."
-      ],
-      "metadata": {
-        "id": "M5uK8jLoFyxp"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "def evaluate_batch( model, dev_loader ):\n",
-        "    predictions = []\n",
-        "    gold = []\n",
-        "    with torch.no_grad():\n",
-        "        for input, label in dev_loader:\n",
-        "            input = input.to(device)\n",
-        "            label = label.to(device)\n",
-        "            probs = model(input)\n",
-        "            # print( probs)\n",
-        "            # print( torch.argmax(probs, dim=1).cpu().numpy())\n",
-        "            # predictions.append( torch.argmax(probs, dim=1).cpu().numpy()[0] )\n",
-        "            predictions.extend( torch.argmax(probs, dim=1).cpu().numpy() ) # <-----\n",
-        "            # gold.append( int(label) )\n",
-        "            gold.extend([int(l) for l in label])  # <-----\n",
-        "    print(classification_report(gold, predictions))\n",
-        "    return gold, predictions\n",
-        "\n",
-        "\n",
-        "# Evaluate on dev\n",
-        "gold, pred = evaluate_batch( model_lstm3, dev_loader )"
-      ],
-      "metadata": {
-        "id": "LgfhrZ7L08RY"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [],
-      "metadata": {
-        "id": "yLzmQOaKUY86"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## bi-GRU (or bi-LSTM)\n",
-        "\n",
-        "▶▶ **Modify the code to implement a bi-directional GRU. Hint: what is the size of the output of a bi-RNN?**"
-      ],
-      "metadata": {
-        "id": "IyQiRBv_3_Y5"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "class BiGRUModel(nn.Module):\n",
-        "    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, batch_size):\n",
-        "        super(BiGRUModel, self).__init__()\n",
-        "        self.trace = True\n",
-        "        self.batch_size = batch_size\n",
-        "\n",
-        "        self.embedding = nn.Embedding(vocab_size, embedding_dim)\n",
-        "\n",
-        "        ## -- SOLUTION: here a parameter to change \n",
-        "        self.gru = nn.GRU( input_size=embedding_dim, \n",
-        "                            hidden_size=hidden_dim, \n",
-        "                            bidirectional=True)\n",
-        "        ## -- SOLUTION: don t forget that we have two vectors concatenated \n",
-        "        self.fc2 = nn.Linear(hidden_dim*2, output_dim)  \n",
-        "\n",
-        "    def forward(self, text):\n",
-        "        embeds = self.embedding(text)\n",
-        "        #print( len(text), self.batch_size, embeds.shape)\n",
-        "        x = embeds.view(len(text), self.batch_size, -1)\n",
-        "        output, hn = self.gru(x )\n",
-        "        # torch.Size([2, 2, 32]) : Direction, Batch, Hidden\n",
-        "        if self.trace:\n",
-        "          print( \"Size hidden:\", hn.shape ) \n",
-        "          self.trace = False\n",
-        "        # -- SOLUTION: here we need to keep backward and for ward hidden states\n",
-        "        hidden = torch.cat((hn[-2], hn[-1]), dim = 1) #same as torch.cat((hn[-2,:,:], hn[-1,:,:]), dim = 1)\n",
-        "        y = self.fc2(hidden)\n",
-        "        return y"
-      ],
-      "metadata": {
-        "id": "n6AqVPfA4A2f"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "batch_size=2\n",
-        "\n",
-        "dataloader = DataLoader(train_iter, batch_size=batch_size, shuffle=False, \n",
-        "                        collate_fn=collate_batch_pad, drop_last=True)"
-      ],
-      "metadata": {
-        "id": "MnP_uLrv4GZh"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Hyper-parameters\n",
-        "vocab_size = len(vocab)\n",
-        "emb_dim = 300\n",
-        "hidden_dim = 32\n",
-        "output_dim = 2\n",
-        "\n",
-        "learning_rate = 0.1\n",
-        "num_epochs = 5\n",
-        "\n",
-        "criterion = nn.CrossEntropyLoss()"
-      ],
-      "metadata": {
-        "id": "rqOmLUQm4IgQ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "model_bigru = BiGRUModel(vocab_size, emb_dim, hidden_dim, output_dim, batch_size)\n",
-        "optimizer = torch.optim.SGD(model_bigru.parameters(), lr=learning_rate)\n",
-        "model_bigru = model_bigru.to(device)"
-      ],
-      "metadata": {
-        "id": "rzHXdyVo4KkB"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Start training\n",
-        "for epoch in range(num_epochs):\n",
-        "    train_loss, total_acc, total_count = 0, 0, 0\n",
-        "    for text, label in dataloader:\n",
-        "        text = text.to(device)\n",
-        "        label = label.to(device)\n",
-        "\n",
-        "        # Clear gradients w.r.t. parameters\n",
-        "        optimizer.zero_grad()\n",
-        "\n",
-        "        # Forward pass to get output/logits\n",
-        "        outputs = model_bigru( text )\n",
-        "        #print(text)\n",
-        "\n",
-        "        # Calculate Loss: softmax --> cross entropy loss\n",
-        "        loss = criterion(outputs, label)\n",
-        "\n",
-        "        # Getting gradients w.r.t. parameters\n",
-        "        loss.backward()\n",
-        "\n",
-        "        # Updating parameters\n",
-        "        optimizer.step()\n",
-        "\n",
-        "        # Accumulating the loss over time\n",
-        "        train_loss += loss.item()\n",
-        "        total_acc += (outputs.argmax(1) == label).sum().item()\n",
-        "        total_count += label.size(0)\n",
-        "\n",
-        "    # Compute accuracy on train set at each epoch\n",
-        "    print('Epoch: {}. Loss: {}. ACC {} '.format(epoch, train_loss/count_train, total_acc/count_train))\n",
-        "        \n",
-        "    total_acc, total_count = 0, 0\n",
-        "    train_loss = 0"
-      ],
-      "metadata": {
-        "id": "cxg_n6fw4N3I"
-      },
-      "execution_count": null,
-      "outputs": []
-    }
-  ]
-}
\ No newline at end of file
diff --git "a/notebooks/TP6_masterLiTL_transformers_explicabilit\303\251__2223.ipynb" "b/notebooks/TP6_masterLiTL_transformers_explicabilit\303\251__2223.ipynb"
deleted file mode 100644
index dfcca8341ecad22a188f24bcad5f93c5270d8fd7..0000000000000000000000000000000000000000
--- "a/notebooks/TP6_masterLiTL_transformers_explicabilit\303\251__2223.ipynb"
+++ /dev/null
@@ -1,1712 +0,0 @@
-{
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "-bb49S7B50eh"
-      },
-      "source": [
-        "# TP 6: Transformers, transfert de modèles, explicabilité et biais\n",
-        "\n",
-        "Dans cette séance, nous verrons comment : \n",
-        "\n",
-        "   - Part 1: utiliser la librairie Transformers de HuggingFace et des modèles pré-entraînés\n",
-        "   - Part 2: utiliser un modèle pré-entrainé pour l'adapter à une nouvelle tâche (transfert)\n",
-        "   - Part 3: analyser les prédictions du modèle pour comprendre les résultats/analyser les erreurs\n",
-        "   - Part 4: chercher les biais éventuels du modèle lié aux données d'entrainement (de la tâche ou du modèle préentrainé)\n",
-        "\n",
-        "Nous nous intéresserons encore à la tâche d'analyse de sentiments, sur les données françaises AlloCine et anglaises IMDB.\n",
-        "Il s'agit d'une tâche de classification de séquences de mots. \n",
-        "Nous nous appuierons sur la librairie HuggingFace et les modèles de langue Transformer (i.e. BERT).  \n",
-        "- https://huggingface.co/ : une librairie de NLP open-source qui offre une API très riche pour utiliser différentes architectures et différents modèles pour les problèmes classiques de classification, sequence tagging, generation ... N'hésitez pas à parcourir les démos et modèles existants : https://huggingface.co/tasks/text-classification\n",
-        "- Un assez grand nombre de jeux de données est aussi accessible directement via l'API, pour le texte ou l'image notamment cf les jeux de données https://huggingface.co/datasets et la doc pour gérer ces données : https://huggingface.co/docs/datasets/index\n",
-        "\n",
-        "Le code ci-dessous vous permet d'installer :    \n",
-        "- le module *transformers*, qui contient les modèles de langue https://pypi.org/project/transformers/ \n",
-        "- le module *transformers_interpret* : un outil pour l'explicabilité des modèles (qui fonctionne avec le module précédent) https://pypi.org/project/transformers-interpret/\n",
-        "- la librairie de datasets pour accéder à des jeux de données\n",
-        "- la librairie *evaluate* : utilisée pour évaluer et comparer des modèles https://pypi.org/project/evaluate/"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "9UoSnFV250el"
-      },
-      "outputs": [],
-      "source": [
-        "!pip install -U transformers\n",
-        "!pip install transformers_interpret\n",
-        "!pip install datasets\n",
-        "!pip install evaluate\n",
-        "#%pip install -U sklearn"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Finally, if the installation is successful, we can import the transformers library:"
-      ],
-      "metadata": {
-        "id": "StClx_Hh9PDm"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "ZBQcA9Ol50en"
-      },
-      "outputs": [],
-      "source": [
-        "import transformers\n",
-        "from transformers_interpret import SequenceClassificationExplainer, TokenClassificationExplainer\n",
-        "from datasets import load_dataset\n",
-        "import evaluate\n",
-        "import numpy as np\n",
-        "import sklearn"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "3TIXCS5P50en"
-      },
-      "outputs": [],
-      "source": [
-        "from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
-        "from transformers import AutoModelForTokenClassification"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "vCLf1g8z50ep"
-      },
-      "outputs": [],
-      "source": [
-        "import pandas as pds\n",
-        "from tqdm import tqdm"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# Part 1: Transformers pipeline\n",
-        "\n",
-        "As seen during the course, the current state of the art for NLP is based on large language models trained using the Transformer architecture.\n",
-        "\n",
-        "In the next exercises, we will learn how to use pretrained models that are available in the HuggingFace library, starting with Trnasformers pipelines."
-      ],
-      "metadata": {
-        "id": "uGZBOXpTXA72"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from transformers import pipeline"
-      ],
-      "metadata": {
-        "id": "Od8TVRnQJ8TH"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1 Fill-mask: identifying biases\n",
-        "\n",
-        "Un modèle pré-entraîné type BERT est un modèle de langue construit avec une tâche spécifique, non supervisée, permettant d'apprendre des associations entre les mots, et donc des représentations des mots dépendantes de leur contexte. \n",
-        "Dans le cas de ce modèle, l'apprentissage se fait en masquant un certain nombre de mots que le modèle doit apprendre à retrouver. \n",
-        "\n",
-        "On peut tester la capacité de ce modèle à deviner un mot manquant dans une phrase. \n",
-        "Dans HuggingFace, des pipelines permettent d'exécuter certaines tâches comme celle-ci très facilement, cf le code ci-dessous. \n",
-        "\n",
-        "https://huggingface.co/docs/transformers/main_classes/pipelines"
-      ],
-      "metadata": {
-        "id": "mgZLir27AJhe"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### ▶▶ **Exercice : fill-mask**  \n",
-        "- Faire tourner le code ci-dessous et vérifier que vous comprenez la sortie affichée. \n",
-        "- Est-ce que les sorties proposées font sens à vos yeux ?"
-      ],
-      "metadata": {
-        "id": "HwRF_nyRiH2I"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Chosing the pre-trained model\n",
-        "# - distilBERT: specific, faster and lighter version of BERT\n",
-        "# - base vs large\n",
-        "# - uncased: ignore upper case\n",
-        "base_model = \"distilbert-base-uncased\""
-      ],
-      "metadata": {
-        "id": "DztvpOSXNIrx"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker = pipeline('fill-mask', model=base_model)\n",
-        "unmasker(\"Hello I'm a [MASK] model.\")"
-      ],
-      "metadata": {
-        "id": "Rz3VKNRWxZVK"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.2 Biais dans les données\n",
-        "\n",
-        "Comme identifié dans la littérature, ces modèles contiennent des biais dépendants de leurs données d'entraînement.\n",
-        "\n",
-        "- Article e.g. *The Woman Worked as a Babysitter: On Biases in Language Generation*, Sheng et al, EMNLP, 2019  https://aclanthology.org/D19-1339/ \n",
-        "\n",
-        "#### ▶▶ Exercice : Identifier les biais\n",
-        " \n",
-        "Ajoutez des tests pour identifier des biais en vous inspirant des exemples ci-dessous : quel type de biais pouvez-vous identifier ?\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "txdDbcvAiYGv"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The man with a college degree worked as a [MASK].\")"
-      ],
-      "metadata": {
-        "id": "djn2WiRdi-vL"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The black man with a college degree worked as a [MASK].\")"
-      ],
-      "metadata": {
-        "id": "CjZcX8TUjLsP"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "ieScrUcNqXsM"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "Chm4MGKqqXu7"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "HTz0g8r3qXx5"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "cVwX7ORDqX0l"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "YJeymafjqX3I"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "bzpdNkZjqX5h"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "-mowb7lHqX8C"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "4fQy5qv9qX-2"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3 Sentiment analysis with a pretrained model \n",
-        "\n",
-        "Many NLP tasks are made easy to perform within HuggingFace using the Pipeline abstraction.\n",
-        "\n",
-        "Useful resource: course made available on HuggingFace website, e.g. part on pipelines: https://huggingface.co/course/chapter1/3?fw=pt#working-with-pipelines\n",
-        "\n",
-        "\n",
-        "For example for text classification, we can very simply have access to pretrained models for varied tasks, included sentiment analysis:\n",
-        "https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.TextClassificationPipeline\n",
-        "\n",
-        "Let's try!"
-      ],
-      "metadata": {
-        "id": "4avqXNnF73M0"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 1.3.1 ▶▶ Exercise: Default model\n",
-        "\n",
-        "You can test pipelines by simply specifying the task you want to perform, a model is chosen by default.\n",
-        "\n",
-        "Run the code below:\n",
-        "* what is the name of the chosen pretrained model?\n",
-        "* what language?\n",
-        "* run the next lines and look at the predictions of the model, does it seem alright? Can you produce an example that is not well predicted?"
-      ],
-      "metadata": {
-        "id": "TxAzsZLjA6P_"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier = pipeline(\"sentiment-analysis\")"
-      ],
-      "metadata": {
-        "id": "y-Y4a8Dn_6n7"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier(\"This movie is disgustingly good !\")"
-      ],
-      "metadata": {
-        "id": "nRDF7Sd4ArdG"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier(\"This movie is not as good as expected !\")"
-      ],
-      "metadata": {
-        "id": "iNcy1YsjArko"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "O9ZL4YKMD4ra"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "XadsLGxUD4uM"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "_DerR4loD4w1"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 1.3.2 Specifying a pretrained model for English \n",
-        "\n",
-        "You can specify the pretrained model you want to use. \n",
-        "HuggingFace makes available tons of models for NLP (and other domains).\n",
-        "You can browse them on this page, here restricted to English model for Text classification tasks: https://huggingface.co/models?language=en&pipeline_tag=text-classification&sort=downloads\n",
-        "\n",
-        "then, you specify the pretrained model you want to use, here it's a variation of BERT (lighter). \n",
-        "Then, you can directly use this pretrained model for predicting on a new example. "
-      ],
-      "metadata": {
-        "id": "ipX_Nwxi_q9D"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier = pipeline(model=\"distilbert-base-uncased-finetuned-sst-2-english\")\n",
-        "classifier(\"This movie is disgustingly good !\")"
-      ],
-      "metadata": {
-        "id": "Wa6rS_po72mT"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3.3 ▶▶ Exercise: use a pretrained model for French\n",
-        "\n",
-        "Now, take a look at the models page and find a suitable model for the task in French: we want to try an adapted version of **FlauBERT**. \n",
-        "\n",
-        "* Find the model in the database, look at the documentation: how has been built this model? \n",
-        "* load it. You will need to install sacremoses library using ```!pip install sacremoses```\n",
-        "* Then try it on a few examples."
-      ],
-      "metadata": {
-        "id": "dQo8pS93BJKf"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "2Y6xkAGyqd_l"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "HuHALZEwqeB_"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "PIxDlSw3qeEu"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "vRbJi0VsqeHW"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "pY335zYIqeJ6"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "g4Ses251qeMq"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3.4 Using our own dataset for evaluation\n",
-        "\n",
-        "Here, we're simply going to load our dataset and evaluate a pretrained language model on it.\n",
-        "\n",
-        "HuggingFace has a library dedicated to datasets:\n",
-        "* 'load_dataset' can load data from a tsv/csv file, see the code below \n",
-        "* it directly creates the training/validation/test sets from the dictionary of input files.\n",
-        "\n",
-        "https://huggingface.co/course/chapter5/2?fw=pt\n",
-        "https://huggingface.co/docs/datasets/tabular_load#csv-files\n",
-        "https://huggingface.co/docs/datasets/v2.8.0/en/package_reference/loading_methods#datasets.load_dataset.split"
-      ],
-      "metadata": {
-        "id": "-xFvKUiFBnL1"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from datasets import load_dataset\n",
-        "\n",
-        "file_dict = {\n",
-        "  \"train\" : \"allocine_train.tsv\",\n",
-        "  \"dev\"  : \"allocine_dev.tsv\", \n",
-        "  \"test\" : \"allocine_test.tsv\"\n",
-        "}\n",
-        "\n",
-        "dataset = load_dataset(\n",
-        "  'csv', #type of files\n",
-        "  data_files=file_dict, #input files\n",
-        "  delimiter='\\t', # delimiter in the csv format\n",
-        "  column_names=['movie_id', 'user_id', 'sentiment', 'review'], #column names in the csv file\n",
-        "  skiprows=1, #skip the first line\n",
-        ")\n",
-        "\n",
-        "print(dataset[\"train\"])\n",
-        "\n",
-        "# Print a few examples\n",
-        "sample = dataset[\"train\"].shuffle(seed=42).select(range(1000))\n",
-        "# Peek at the first few examples\n",
-        "sample[:3]\n"
-      ],
-      "metadata": {
-        "id": "gb5KqKSYJmW3"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### ▶▶ Exercise: evaluate the pretrained model on your data\n",
-        "\n",
-        "* Using the model FlauBERT for sentiment analysis for French and the *pipeline* method, make predictions on some examples in the dataset \n",
-        "* Take a look at the predictions: do you understand the output? \n",
-        "* Write a piece of code to compute the score obtained by this pretrained model on your validation / dev set. Hint: no need for anything from the HuggingFace library, just compare the gold and predicted labels."
-      ],
-      "metadata": {
-        "id": "n1kbUmQ3H3H9"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "AX93xGTtAS91"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "pKOnuKynqieg"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "2psFHCZZqihV"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "qG_kSu-7qikH"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "k1E5ZStiqimE"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "3WpAzHa5qio7"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# Part 2 - Transfert / fine-tuning : analyse de sentiment\n",
-        "\n",
-        "Dans cette partie, nous allons fine-tuner / affiner un modèle de langue pré-entraîné (agnostique) pour l'adapter à la tâche d'analyse de sentiment.\n",
-        "\n",
-        "On travaillera sur des données en anglais (corpus IMDb, que l'on peut directement charger depuis HuggingFace). "
-      ],
-      "metadata": {
-        "id": "HUx1kHH8eUjE"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.1 Charger un modèle pré-entraîné : DistilBERT\n",
-        "\n",
-        "Ici on ne va pas passer par la pipeline, pour pouvoir plus simplement gérer les éléments du modèle : le modèle et le tokenizer associé.\n",
-        "\n",
-        "On utilise ici le modèle DistilBERT, une version plus petite et rapide du modèle transformer BERT. \n",
-        "\n",
-        "Plus d'info ici: https://huggingface.co/distilbert-base-uncased.\n"
-      ],
-      "metadata": {
-        "id": "c40x3RDbB3Qo"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Chosing the pre-trained model\n",
-        "# - distilBERT: specific, faster and lighter version of BERT\n",
-        "# - base vs large\n",
-        "# - uncased: ignore upper case\n",
-        "base_model = \"distilbert-base-uncased\""
-      ],
-      "metadata": {
-        "id": "UtdppwkoB3Qp"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2 Tokenizer \n",
-        "\n",
-        "Notez que la librairie HuggingFace définit des *Auto Classes*: elles permettent d'inférer directement l'architecture requise selon le type de modèle spécifié en argument.\n",
-        "* Par exemple ici, le tokenizer est spécifique au modèle DistilBERT, plus précisément il est identique à celui de BERT, et hérite beaucoup de méthodes de la classe *PreTrainedTokenizerFast*.\n",
-        "* On utilise la classe *class transformers.AutoModelForSequenceClassification* pour un modèle d'étiquetage de séquence. \n",
-        "\n",
-        "Le tokenizer est en charge de préparer les données d'entrée, et notamment dans le cas de BERT, de découper les tokens en sous-tokens, mais aussi d'assigner des ids à chaque sous-token, de permettre le mapping dans un sens et dans l'autre...\n",
-        "\n",
-        "- Les *Auto Classes*: https://huggingface.co/docs/transformers/model_doc/auto\n",
-        "- Les Tokenizer dans HuggingFace: https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/tokenizer\n",
-        "- *Bert tokenizer*: https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/bert#transformers.BertTokenizer\n",
-        "- Classe *PreTrainedTokenizerFast*: https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/tokenizer#transformers.PreTrainedTokenizerFast"
-      ],
-      "metadata": {
-        "id": "NUus9JUNB3Qq"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "9XwH5If4B3Qq"
-      },
-      "outputs": [],
-      "source": [
-        "# Defining the tokenizer using Auto Classes \n",
-        "tokenizer = AutoTokenizer.from_pretrained(base_model)\n",
-        "model = AutoModelForSequenceClassification.from_pretrained(base_model)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### ▶▶ Exercice: Tester le tokenizer\n",
-        "\n",
-        "**Utiliser le tokenizer pour :**\n",
-        "- encoder une phrase (en anglais) : \n",
-        "- convertir dans l'autre sens : d'une liste d'ids de tokens en texte\n",
-        "  * que se passe-t-il dans le cas de mots longs ? \n",
-        "  * de mots inconnus ? \n",
-        "  * Que répresentent les éléments entre crochets ?\n",
-        "\n",
-        "\n",
-        "Hint: regardez les méthodes 'encode' et 'decode' dans la doc https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/tokenizer (et éventuellement 'convert_ids_to_tokens()')."
-      ],
-      "metadata": {
-        "id": "V8C5djpXB3Qr"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "ukq_0ptxqnqf"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "Uh5viYQxqoH2"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.3 Load new data for transfer\n",
-        "\n",
-        "On charge ici l'ensemble de données IMDB qui correspond à de l'analyse de sentiment sur des reviews de films (en anglais). \n",
-        "On va utiliser ces données pour affiner notre modèle pré-entraîné (agnostique) sur la tâche d'analyse de sentiments. "
-      ],
-      "metadata": {
-        "id": "8lt8MjqYIZCl"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "Xndj4mU-Ib8Q"
-      },
-      "outputs": [],
-      "source": [
-        "dataset = load_dataset(\"imdb\")"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "C6LVL237Ib8R"
-      },
-      "outputs": [],
-      "source": [
-        "dataset"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.4 Tokenization des données\n",
-        "\n",
-        "Le code ci-dessous permet d'obtenir une version tokenisée du corpus."
-      ],
-      "metadata": {
-        "id": "SbjUad2-tecl"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### ▶▶ Exercice Tokenisation :\n",
-        "\n",
-        "Regardez la doc pour vérifier que vous comprenez la fonction des paramètres utilisées : https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/tokenizer#transformers.PreTrainedTokenizer. \n",
-        "\n",
-        "- à quoi sert le padding ? \n",
-        "- à quoi correspond le paramètre 'truncation' ?\n",
-        "\n",
-        "Note: pour plus de détails sur la fonction *Map()* https://huggingface.co/docs/datasets/process et aussi https://huggingface.co/docs/datasets/v2.7.1/en/package_reference/main_classes#datasets.Dataset.map"
-      ],
-      "metadata": {
-        "id": "HY-5WQapfCTV"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "-Kj0bW3_50et"
-      },
-      "outputs": [],
-      "source": [
-        "def tokenize_function(examples):\n",
-        "    return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True)\n",
-        "\n",
-        "\n",
-        "tokenized_datasets = dataset.map(tokenize_function, batched=True)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Notez que le tokenizer retourne deux éléments:\n",
-        "\n",
-        "- input_ids: the numbers representing the tokens in the text.\n",
-        "- attention_mask: indicates whether a token should be masked or not.\n",
-        "\n",
-        "Plus d'info sur les datasets: https://huggingface.co/docs/datasets/use_dataset "
-      ],
-      "metadata": {
-        "id": "ATFZVbiYwD34"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "tokenized_datasets"
-      ],
-      "metadata": {
-        "id": "TKTi2eO8d-JJ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 2.5 Entraînement / Fine-tuning \n",
-        "\n",
-        "Pour l'entraînement du modèle, on définit d'abord \n",
-        "- une configuration via la classe *TrainingArguments*.\n",
-        "- un niveau de 'verbosité'\n",
-        "- une métrique d'évaluation"
-      ],
-      "metadata": {
-        "id": "HYws35k8xCq0"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from transformers import TrainingArguments, Trainer\n",
-        "training_args = TrainingArguments(output_dir=\"test_trainer\",\n",
-        "                                  no_cuda=False, # sur ordi perso sans bon GPU\n",
-        "                                  per_device_train_batch_size=4,\n",
-        "                                  #evaluation_strategy=\"steps\",\n",
-        "                                  #eval_steps=100,\n",
-        "                                  num_train_epochs=5,\n",
-        "                                  do_eval=True )"
-      ],
-      "metadata": {
-        "id": "uLVIKxZcgOpb"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "JUtftrdy50ev"
-      },
-      "outputs": [],
-      "source": [
-        "from transformers.utils import logging\n",
-        "\n",
-        "logging.set_verbosity_error()"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "F8O_Jmcx50ew"
-      },
-      "outputs": [],
-      "source": [
-        "metric = evaluate.load(\"accuracy\")"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "UZk65ZKH50ew"
-      },
-      "outputs": [],
-      "source": [
-        "def compute_metrics(eval_pred):\n",
-        "    logits, labels = eval_pred\n",
-        "    predictions = np.argmax(logits, axis=-1)\n",
-        "    return metric.compute(predictions=predictions, references=labels)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### Trainer\n",
-        "\n",
-        "Une instance de la classe *Trainer* correspond à une boucle d'entraînement classique, basée sur les éléments définis précédemment. \n",
-        "\n",
-        "https://huggingface.co/docs/transformers/main_classes/trainer"
-      ],
-      "metadata": {
-        "id": "8FEJYEhDxoCp"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "On va sélectionner un sous-ensemble des données ici, pour que l'entraînement soit un peu moins long. "
-      ],
-      "metadata": {
-        "id": "4QUvGEbOvRTH"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "Dgfoqbx950eu"
-      },
-      "outputs": [],
-      "source": [
-        "small_train_dataset = tokenized_datasets[\"train\"].shuffle(seed=42).select(range(1000))\n",
-        "small_eval_dataset = tokenized_datasets[\"test\"].shuffle(seed=42).select(range(100))"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "uX2nBPnk50ew"
-      },
-      "outputs": [],
-      "source": [
-        "trainer = Trainer(\n",
-        "    model=model,\n",
-        "    args=training_args,\n",
-        "    train_dataset=small_train_dataset,\n",
-        "    eval_dataset=small_eval_dataset,\n",
-        "    compute_metrics=compute_metrics,\n",
-        ")"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### Lancer l'entraînement\n",
-        "\n",
-        "Et on peut lancer l'entraînement en utilisant la méthode *train()*."
-      ],
-      "metadata": {
-        "id": "GhGLiCEVx-8v"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "IN58_eaV50ex"
-      },
-      "outputs": [],
-      "source": [
-        "import os\n",
-        "os.environ[\"WANDB_DISABLED\"] = \"true\"\n",
-        "trainer.train(  )"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.6 Evaluation "
-      ],
-      "metadata": {
-        "id": "MgJpr49WySMd"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### Evaluation sur un exemple\n",
-        "\n",
-        "On teste le modèle sur un exemple de l'ensemble d'évaluation. "
-      ],
-      "metadata": {
-        "id": "2bE7kBlEH4es"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "ex_eval = small_eval_dataset[1][\"text\"]\n",
-        "input = tokenizer(ex_eval, return_tensors=\"pt\")\n",
-        "input_ids = input.input_ids.to(\"cuda\")\n",
-        "print(input_ids.shape)\n",
-        "output = model(input_ids)\n",
-        "\n",
-        "print(\"gold\", small_eval_dataset[1][\"label\"])\n",
-        "\n",
-        "print(output)"
-      ],
-      "metadata": {
-        "id": "uyky-X_bzGpS"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "output[\"logits\"]"
-      ],
-      "metadata": {
-        "id": "JDcpli3k2d_f"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "pred = np.argmax(output[\"logits\"].cpu().detach().numpy(), axis=-1)\n",
-        "print(\"Pred\", pred)"
-      ],
-      "metadata": {
-        "id": "3DeTwx2oz-Ek"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "print(tokenizer.tokenize(ex_eval))"
-      ],
-      "metadata": {
-        "id": "HsgQ6Ekd21IP"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### ▶▶ Exercice : Analyse d'erreurs\n",
-        "\n",
-        "Affichez les exemples sur lesquels le modèle a fait une erreur de prédiction. \n",
-        "Pour chaque exemple, affichez le label gold, le label prédit et le texte de l'exemple correspondant.\n",
-        "\n",
-        "\n",
-        "Doc de Trainer https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Trainer\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "A-cx4sdZGcz2"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "\n",
-        "if training_args.do_eval:\n",
-        "        prob_labels,_,_ = trainer.predict( test_dataset=small_eval_dataset)\n",
-        "        pred_labels = [ np.argmax(logits, axis=-1) for logits in prob_labels ]\n",
-        "        #print( pred_labels)\n",
-        "        gold_labels = [ inst[\"label\"] for inst in small_eval_dataset]\n",
-        "\n",
-        "        for i in range( len( small_eval_dataset ) ):\n",
-        "          ## -- Print pred label, gold label and text\n",
-        "          "
-      ],
-      "metadata": {
-        "id": "L9phpmPnII-O"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "On affiche finalement le score du modèle sur l'ensemble d'évaluation."
-      ],
-      "metadata": {
-        "id": "VaBD1-jaoR3w"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "if training_args.do_eval:\n",
-        "        metrics = trainer.evaluate(eval_dataset=small_eval_dataset)\n",
-        "        print(metrics)"
-      ],
-      "metadata": {
-        "id": "3IdSk-1XHiVK"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "kj5C4zon50ey"
-      },
-      "source": [
-        "# Part 4 - Interprétabilité\n",
-        "\n",
-        "Dans cette partie nous allons tester une méthode \"d'attribution\" qui observe certains valeurs du modèle pour repérer les parties importantes de l'input dans la décision du modèle. \n",
-        "\n",
-        "Nous utiliserons le package *transformers_interpret*, qui est une surcouche de la librairie plus générale *captum*.\n",
-        "\n",
-        "- Captum library: https://captum.ai/"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "rKUWY_xh50ey"
-      },
-      "source": [
-        "## 3.1 Classification de phrases: sentiment"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "L_90kDt150ey"
-      },
-      "outputs": [],
-      "source": [
-        "# pour utiliser un modèle existant répertorié sur huggingface.co\n",
-        "#model_name = \"distilbert-base-uncased-finetuned-sst-2-english\"\n",
-        "#model = AutoModelForSequenceClassification.from_pretrained(model_name)\n",
-        "#tokenizer = AutoTokenizer.from_pretrained(model_name)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### ▶▶ Exercice : Afficher les attributions pour un exemple correctement prédit\n",
-        "\n",
-        "Utiliser le *cls_explainer* défini ci-dessous pour afficher les attributions pour chaque mot pour : \n",
-        "- un exemple correctement prédit (récupérer un exemple à partir de son indice à partir de l'exercice précédent)\n",
-        "- un exemple correspondant à une erreur du modèle\n",
-        "Utilisez eégalement la fonction de visualisation des attributions.\n",
-        "\n",
-        "Aidez-vous de l'exemple sur cette page : https://pypi.org/project/transformers-interpret/"
-      ],
-      "metadata": {
-        "id": "xUh2_lqxho0n"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "cls_explainer = SequenceClassificationExplainer(\n",
-        "    model,\n",
-        "    tokenizer)"
-      ],
-      "metadata": {
-        "id": "3Rhdx2dwrAEf"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# récupérer un exemple / le texte correctement  predit\n"
-      ],
-      "metadata": {
-        "id": "rMwNHgpLrAV6"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Recuperer les attributions\n",
-        "# word_attributions =  ...\n"
-      ],
-      "metadata": {
-        "id": "Gb5FWVPErAg2"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Afficher les attributions\n"
-      ],
-      "metadata": {
-        "id": "dEAXFtClrArU"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### Visualisation\n",
-        "\n",
-        "Le code ci-après vous permet de visualiser les attributions pour un exemple."
-      ],
-      "metadata": {
-        "id": "LLYt2uH7pUuX"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "QC80GMPn50ez"
-      },
-      "outputs": [],
-      "source": [
-        "cls_explainer.predicted_class_name"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "0mmp7RCi50e0"
-      },
-      "outputs": [],
-      "source": [
-        "table = pds.DataFrame(word_attributions,columns=[\"tokens\",\"score\"])"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "GP_QnEAf50e0"
-      },
-      "outputs": [],
-      "source": [
-        "table.iloc[::-1].plot(x=\"tokens\",y=\"score\",kind=\"barh\",figsize=(15,15))"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "5I9SdaWY50e0"
-      },
-      "outputs": [],
-      "source": [
-        "html = cls_explainer.visualize()"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### ▶▶ Exercice : Afficher les attributions pour un exemple mal prédit\n",
-        "\n",
-        "Recommencer les étapes précédentes pour un exemple correspondant à une erreur du système."
-      ],
-      "metadata": {
-        "id": "IMOLP2uCpf2V"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# récupérer un exemple / le texte mal predit"
-      ],
-      "metadata": {
-        "id": "VNGfQ2zarFYQ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Recuperer les attributions\n",
-        "# word_attributions =  ..."
-      ],
-      "metadata": {
-        "id": "lBIhStLFrFpB"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Afficher les attributions"
-      ],
-      "metadata": {
-        "id": "4wb-vPFRrFzJ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "ihl4bskfrF9v"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Code pour visualiser :"
-      ],
-      "metadata": {
-        "id": "JnBbxAYUaxqI"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "49KjhvdWigjG"
-      },
-      "outputs": [],
-      "source": [
-        "cls_explainer.predicted_class_name"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "1O-1eD6CigjH"
-      },
-      "outputs": [],
-      "source": [
-        "table = pds.DataFrame(word_attributions,columns=[\"tokens\",\"score\"])"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "f4m-PqhaigjH"
-      },
-      "outputs": [],
-      "source": [
-        "table.iloc[::-1].plot(x=\"tokens\",y=\"score\",kind=\"barh\",figsize=(15,15))"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "3mRIFciFigjI"
-      },
-      "outputs": [],
-      "source": [
-        "html = cls_explainer.visualize()"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### ▶▶ Exercice : chercher les termes corrélés à chaque classe (code given)\n",
-        "\n",
-        "- Appliquer le modèle appris sur l'éval de imdb\n",
-        "- Appliquer l'interprétation sur un ensemble d'instances (100 puis 1000) et relever les termes avec les attributions les plus fortes, dans un sens ou dans l'autre. Réduisez la taille des phrases des reviews à 30 tokens.\n",
-        "- Trouvez les éventuels biais du jeu de données \n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "23--_RYHjq-e"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### --- CORRECTION"
-      ],
-      "metadata": {
-        "id": "S3402Fm7ju91"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "def get_topk(attributions,k=5,threshold=None):\n",
-        "    \"\"\"recup des k tokens les plus positifs + k tokens les plus négatifs\"\"\"\n",
-        "    table = pds.DataFrame(word_attributions,columns=[\"tokens\",\"score\"])\n",
-        "    high = table.nlargest(k,\"score\")\n",
-        "    low = table.nsmallest(k,\"score\")\n",
-        "    return high,low"
-      ],
-      "metadata": {
-        "id": "G4cN9FVNumeH"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "get_topk(word_attributions)"
-      ],
-      "metadata": {
-        "id": "waGGZz-3wSVg"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "def cut_sentence(sent,threshold):\n",
-        "  toks = sent.split()[:threshold]\n",
-        "  return \" \".join(toks)\n",
-        "\n",
-        "one = small_eval_dataset[0][\"text\"]\n",
-        "cut_sentence(one,50)"
-      ],
-      "metadata": {
-        "id": "EjKCi-pvxN_a"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "maxseqlength = 30\n",
-        "small_eval_dataset_text = [cut_sentence(one[\"text\"],maxseqlength) for one in small_eval_dataset]"
-      ],
-      "metadata": {
-        "id": "CzVhne2S5typ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "all_pos = []\n",
-        "all_neg = []\n",
-        "\n",
-        "for sentence in tqdm(small_eval_dataset_text[:100]): \n",
-        "    word_attributions = cls_explainer(sentence)\n",
-        "    label = cls_explainer.predicted_class_name\n",
-        "    high,low = get_topk(word_attributions)\n",
-        "    if label == \"LABEL_1\": \n",
-        "      all_pos.append(high)\n",
-        "    else:\n",
-        "      all_neg.append(high)\n",
-        "    "
-      ],
-      "metadata": {
-        "id": "hP28_7GwuC23"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "df_high = pds.concat(all_pos)\n",
-        "df_low = pds.concat(all_neg)\n",
-        "df_high"
-      ],
-      "metadata": {
-        "id": "Kp0V1zKl6TNo"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "df_high_avg = df_high.groupby(\"tokens\").mean()\n",
-        "df_low_avg = df_low.groupby(\"tokens\").mean()"
-      ],
-      "metadata": {
-        "id": "becpniSG6jDr"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "df_high_avg.nlargest(20,\"score\")"
-      ],
-      "metadata": {
-        "id": "BRh3UR5Y61nX"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "df_low_avg.nlargest(20,\"score\")"
-      ],
-      "metadata": {
-        "id": "szxynupe7LBV"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "-XRoTAe-50e1"
-      },
-      "source": [
-        "## 3.2 Classification de tokens : entités nommées  (code given)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### ▶▶ Exercice : Explication de modèle de reconnaissance d'entités nommées\n",
-        "\n",
-        "On définit ci-dessous un modèle de reconnaissance d'entités nommées.\n",
-        "Utilisez l'outil d'explicabilité pour une tâche de classification de token, et affichez les attributions pour un exemple."
-      ],
-      "metadata": {
-        "id": "jwvarY88mHD4"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "s881ijMF50e1"
-      },
-      "outputs": [],
-      "source": [
-        "model_name = 'dslim/bert-base-NER'\n",
-        "model = AutoModelForTokenClassification.from_pretrained(model_name)\n",
-        "tokenizer = AutoTokenizer.from_pretrained(model_name)"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "gIBA1tnP50e1"
-      },
-      "outputs": [],
-      "source": [
-        "ner_explainer = TokenClassificationExplainer(model=model, tokenizer=tokenizer)"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "D7f05OD550e1"
-      },
-      "outputs": [],
-      "source": [
-        "instance = \"New-York City is a place full of celebrities, like Donald Trump.\""
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "Z4ep0_VL50e2"
-      },
-      "outputs": [],
-      "source": [
-        "attributions = ner_explainer(instance, ignored_labels=['O'])"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "5i5qiujC50e2"
-      },
-      "outputs": [],
-      "source": [
-        "attributions"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "dm58uxm_50e2"
-      },
-      "outputs": [],
-      "source": [
-        "html = ner_explainer.visualize()"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "VSn32SrQ50e3"
-      },
-      "outputs": [],
-      "source": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# Additional notes about HuggingFace dataset"
-      ],
-      "metadata": {
-        "id": "-bUnXTbbGp5e"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### Available corpora\n",
-        "\n",
-        "Note that many corpora are available directly from HuggingFace, for example for text classification tasks:\n",
-        "https://huggingface.co/models?pipeline_tag=text-classification&sort=downloads\n",
-        "\n",
-        "\n",
-        "In particular you can directly load the full AlloCine corpus:\n",
-        "https://huggingface.co/datasets/allocine"
-      ],
-      "metadata": {
-        "id": "bsbgcxgTJsW2"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### Some preprocessing\n",
-        "\n",
-        "The library allows to perform some preprocessing directly on the Dataset object, very easily.\n",
-        "Take alook at the doc: https://huggingface.co/course/chapter5/3?fw=pt \n",
-        "\n",
-        "For example here we can compute the lenght of each review and filter our dataset to excluse outliers, e.g. reviews with too few words."
-      ],
-      "metadata": {
-        "id": "FLvU5EYUCnVK"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "def compute_review_length(example):\n",
-        "    return {\"review_length\": len(example[\"review\"].split())}\n",
-        "\n",
-        "dataset = dataset.map(compute_review_length) #Add the column review_lenght\n",
-        "# Inspect the first training example\n",
-        "dataset[\"train\"][0]"
-      ],
-      "metadata": {
-        "id": "SgeXPXp6JmZU"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Some review are very short... Dataset.filter() can be used to remove some examples."
-      ],
-      "metadata": {
-        "id": "6fL34GWd53ij"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "dataset[\"train\"].sort(\"review_length\")[:3]"
-      ],
-      "metadata": {
-        "id": "56Lv3xpAJmb5"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "filtered_dataset = dataset.filter(lambda x: x[\"review_length\"] > 10)\n",
-        "print(filtered_dataset.num_rows)"
-      ],
-      "metadata": {
-        "id": "UuDpP1JyF-6a"
-      },
-      "execution_count": null,
-      "outputs": []
-    }
-  ],
-  "metadata": {
-    "kernelspec": {
-      "display_name": "visual",
-      "language": "python",
-      "name": "visual"
-    },
-    "language_info": {
-      "codemirror_mode": {
-        "name": "ipython",
-        "version": 3
-      },
-      "file_extension": ".py",
-      "mimetype": "text/x-python",
-      "name": "python",
-      "nbconvert_exporter": "python",
-      "pygments_lexer": "ipython3",
-      "version": "3.9.5"
-    },
-    "colab": {
-      "provenance": [],
-      "collapsed_sections": [
-        "-XRoTAe-50e1"
-      ],
-      "toc_visible": true
-    },
-    "accelerator": "GPU",
-    "gpuClass": "standard"
-  },
-  "nbformat": 4,
-  "nbformat_minor": 0
-}
\ No newline at end of file
diff --git "a/notebooks/TP6_masterLiTL_transformers_explicabilit\303\251__2223_CORRECT.ipynb" "b/notebooks/TP6_masterLiTL_transformers_explicabilit\303\251__2223_CORRECT.ipynb"
deleted file mode 100644
index 8772d20f24908277e126b826ccbb12f04ee6fb47..0000000000000000000000000000000000000000
--- "a/notebooks/TP6_masterLiTL_transformers_explicabilit\303\251__2223_CORRECT.ipynb"
+++ /dev/null
@@ -1,11714 +0,0 @@
-{
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "-bb49S7B50eh"
-      },
-      "source": [
-        "# TP 6: Transformers, transfert de modèles, explicabilité et biais\n",
-        "\n",
-        "Dans cette séance, nous verrons comment : \n",
-        "\n",
-        "   - Part 1: utiliser la librairie Transformers de HuggingFace et des modèles pré-entraînés\n",
-        "   - Part 2: utiliser un modèle pré-entrainé pour l'adapter à une nouvelle tâche (transfert)\n",
-        "   - Part 3: analyser les prédictions du modèle pour comprendre les résultats/analyser les erreurs\n",
-        "   - Part 4: chercher les biais éventuels du modèle lié aux données d'entrainement (de la tâche ou du modèle préentrainé)\n",
-        "\n",
-        "Nous nous intéresserons encore à la tâche d'analyse de sentiments, sur les données françaises AlloCine et anglaises IMDB.\n",
-        "Il s'agit d'une tâche de classification de séquences de mots. \n",
-        "Nous nous appuierons sur la librairie HuggingFace et les modèles de langue Transformer (i.e. BERT).  \n",
-        "- https://huggingface.co/ : une librairie de NLP open-source qui offre une API très riche pour utiliser différentes architectures et différents modèles pour les problèmes classiques de classification, sequence tagging, generation ... N'hésitez pas à parcourir les démos et modèles existants : https://huggingface.co/tasks/text-classification\n",
-        "- Un assez grand nombre de jeux de données est aussi accessible directement via l'API, pour le texte ou l'image notamment cf les jeux de données https://huggingface.co/datasets et la doc pour gérer ces données : https://huggingface.co/docs/datasets/index\n",
-        "\n",
-        "Le code ci-dessous vous permet d'installer :    \n",
-        "- le module *transformers*, qui contient les modèles de langue https://pypi.org/project/transformers/ \n",
-        "- le module *transformers_interpret* : un outil pour l'explicabilité des modèles (qui fonctionne avec le module précédent) https://pypi.org/project/transformers-interpret/\n",
-        "- la librairie de datasets pour accéder à des jeux de données\n",
-        "- la librairie *evaluate* : utilisée pour évaluer et comparer des modèles https://pypi.org/project/evaluate/"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "9UoSnFV250el",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "1e886970-910a-4601-8c81-918aa6a35113"
-      },
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
-            "Requirement already satisfied: transformers in /usr/local/lib/python3.8/dist-packages (4.26.0)\n",
-            "Requirement already satisfied: huggingface-hub<1.0,>=0.11.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (0.12.0)\n",
-            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (6.0)\n",
-            "Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (0.13.2)\n",
-            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (2022.6.2)\n",
-            "Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from transformers) (2.25.1)\n",
-            "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.8/dist-packages (from transformers) (4.64.1)\n",
-            "Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from transformers) (3.9.0)\n",
-            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (1.21.6)\n",
-            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (21.3)\n",
-            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (4.4.0)\n",
-            "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging>=20.0->transformers) (3.0.9)\n",
-            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2.10)\n",
-            "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (4.0.0)\n",
-            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2022.12.7)\n",
-            "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (1.26.14)\n",
-            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
-            "Requirement already satisfied: transformers_interpret in /usr/local/lib/python3.8/dist-packages (0.9.6)\n",
-            "Requirement already satisfied: ipython<8.0.0,>=7.31.1 in /usr/local/lib/python3.8/dist-packages (from transformers_interpret) (7.34.0)\n",
-            "Requirement already satisfied: captum>=0.3.1 in /usr/local/lib/python3.8/dist-packages (from transformers_interpret) (0.6.0)\n",
-            "Requirement already satisfied: transformers>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from transformers_interpret) (4.26.0)\n",
-            "Requirement already satisfied: torch>=1.6 in /usr/local/lib/python3.8/dist-packages (from captum>=0.3.1->transformers_interpret) (1.13.1+cu116)\n",
-            "Requirement already satisfied: numpy in /usr/local/lib/python3.8/dist-packages (from captum>=0.3.1->transformers_interpret) (1.21.6)\n",
-            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.8/dist-packages (from captum>=0.3.1->transformers_interpret) (3.2.2)\n",
-            "Requirement already satisfied: decorator in /usr/local/lib/python3.8/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (4.4.2)\n",
-            "Requirement already satisfied: jedi>=0.16 in /usr/local/lib/python3.8/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (0.18.2)\n",
-            "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.8/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (2.0.10)\n",
-            "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.8/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (0.1.6)\n",
-            "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.8/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (57.4.0)\n",
-            "Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.8/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (5.7.1)\n",
-            "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.8/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (4.8.0)\n",
-            "Requirement already satisfied: backcall in /usr/local/lib/python3.8/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (0.2.0)\n",
-            "Requirement already satisfied: pygments in /usr/local/lib/python3.8/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (2.6.1)\n",
-            "Requirement already satisfied: pickleshare in /usr/local/lib/python3.8/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (0.7.5)\n",
-            "Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from transformers>=3.0.0->transformers_interpret) (3.9.0)\n",
-            "Requirement already satisfied: huggingface-hub<1.0,>=0.11.0 in /usr/local/lib/python3.8/dist-packages (from transformers>=3.0.0->transformers_interpret) (0.12.0)\n",
-            "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.8/dist-packages (from transformers>=3.0.0->transformers_interpret) (4.64.1)\n",
-            "Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from transformers>=3.0.0->transformers_interpret) (2.25.1)\n",
-            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.8/dist-packages (from transformers>=3.0.0->transformers_interpret) (21.3)\n",
-            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from transformers>=3.0.0->transformers_interpret) (6.0)\n",
-            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.8/dist-packages (from transformers>=3.0.0->transformers_interpret) (2022.6.2)\n",
-            "Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.8/dist-packages (from transformers>=3.0.0->transformers_interpret) (0.13.2)\n",
-            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers>=3.0.0->transformers_interpret) (4.4.0)\n",
-            "Requirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.8/dist-packages (from jedi>=0.16->ipython<8.0.0,>=7.31.1->transformers_interpret) (0.8.3)\n",
-            "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging>=20.0->transformers>=3.0.0->transformers_interpret) (3.0.9)\n",
-            "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.8/dist-packages (from pexpect>4.3->ipython<8.0.0,>=7.31.1->transformers_interpret) (0.7.0)\n",
-            "Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.8/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython<8.0.0,>=7.31.1->transformers_interpret) (1.15.0)\n",
-            "Requirement already satisfied: wcwidth in /usr/local/lib/python3.8/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython<8.0.0,>=7.31.1->transformers_interpret) (0.2.5)\n",
-            "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (2.8.2)\n",
-            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (1.4.4)\n",
-            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.8/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (0.11.0)\n",
-            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (2.10)\n",
-            "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (1.26.14)\n",
-            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (2022.12.7)\n",
-            "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (4.0.0)\n",
-            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
-            "Requirement already satisfied: datasets in /usr/local/lib/python3.8/dist-packages (2.9.0)\n",
-            "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.8/dist-packages (from datasets) (2.25.1)\n",
-            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from datasets) (1.21.6)\n",
-            "Requirement already satisfied: pandas in /usr/local/lib/python3.8/dist-packages (from datasets) (1.3.5)\n",
-            "Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from datasets) (21.3)\n",
-            "Requirement already satisfied: multiprocess in /usr/local/lib/python3.8/dist-packages (from datasets) (0.70.14)\n",
-            "Requirement already satisfied: responses<0.19 in /usr/local/lib/python3.8/dist-packages (from datasets) (0.18.0)\n",
-            "Requirement already satisfied: xxhash in /usr/local/lib/python3.8/dist-packages (from datasets) (3.2.0)\n",
-            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.8/dist-packages (from datasets) (3.8.3)\n",
-            "Requirement already satisfied: pyarrow>=6.0.0 in /usr/local/lib/python3.8/dist-packages (from datasets) (9.0.0)\n",
-            "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.8/dist-packages (from datasets) (4.64.1)\n",
-            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from datasets) (6.0)\n",
-            "Requirement already satisfied: huggingface-hub<1.0.0,>=0.2.0 in /usr/local/lib/python3.8/dist-packages (from datasets) (0.12.0)\n",
-            "Requirement already satisfied: dill<0.3.7 in /usr/local/lib/python3.8/dist-packages (from datasets) (0.3.6)\n",
-            "Requirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.8/dist-packages (from datasets) (2022.11.0)\n",
-            "Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (2.1.1)\n",
-            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (22.2.0)\n",
-            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.3.1)\n",
-            "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (4.0.2)\n",
-            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.3.3)\n",
-            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (6.0.4)\n",
-            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.8.2)\n",
-            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0.0,>=0.2.0->datasets) (4.4.0)\n",
-            "Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0.0,>=0.2.0->datasets) (3.9.0)\n",
-            "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->datasets) (3.0.9)\n",
-            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (2.10)\n",
-            "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (1.26.14)\n",
-            "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (4.0.0)\n",
-            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (2022.12.7)\n",
-            "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas->datasets) (2.8.2)\n",
-            "Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas->datasets) (2022.7)\n",
-            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)\n",
-            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
-            "Requirement already satisfied: evaluate in /usr/local/lib/python3.8/dist-packages (0.4.0)\n",
-            "Requirement already satisfied: huggingface-hub>=0.7.0 in /usr/local/lib/python3.8/dist-packages (from evaluate) (0.12.0)\n",
-            "Requirement already satisfied: multiprocess in /usr/local/lib/python3.8/dist-packages (from evaluate) (0.70.14)\n",
-            "Requirement already satisfied: dill in /usr/local/lib/python3.8/dist-packages (from evaluate) (0.3.6)\n",
-            "Requirement already satisfied: xxhash in /usr/local/lib/python3.8/dist-packages (from evaluate) (3.2.0)\n",
-            "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.8/dist-packages (from evaluate) (4.64.1)\n",
-            "Requirement already satisfied: fsspec[http]>=2021.05.0 in /usr/local/lib/python3.8/dist-packages (from evaluate) (2022.11.0)\n",
-            "Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from evaluate) (21.3)\n",
-            "Requirement already satisfied: responses<0.19 in /usr/local/lib/python3.8/dist-packages (from evaluate) (0.18.0)\n",
-            "Requirement already satisfied: datasets>=2.0.0 in /usr/local/lib/python3.8/dist-packages (from evaluate) (2.9.0)\n",
-            "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.8/dist-packages (from evaluate) (2.25.1)\n",
-            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from evaluate) (1.21.6)\n",
-            "Requirement already satisfied: pandas in /usr/local/lib/python3.8/dist-packages (from evaluate) (1.3.5)\n",
-            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from datasets>=2.0.0->evaluate) (6.0)\n",
-            "Requirement already satisfied: pyarrow>=6.0.0 in /usr/local/lib/python3.8/dist-packages (from datasets>=2.0.0->evaluate) (9.0.0)\n",
-            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.8/dist-packages (from datasets>=2.0.0->evaluate) (3.8.3)\n",
-            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub>=0.7.0->evaluate) (4.4.0)\n",
-            "Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from huggingface-hub>=0.7.0->evaluate) (3.9.0)\n",
-            "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->evaluate) (3.0.9)\n",
-            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->evaluate) (2.10)\n",
-            "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->evaluate) (4.0.0)\n",
-            "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->evaluate) (1.26.14)\n",
-            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->evaluate) (2022.12.7)\n",
-            "Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas->evaluate) (2022.7)\n",
-            "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas->evaluate) (2.8.2)\n",
-            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.3.1)\n",
-            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.3.3)\n",
-            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (6.0.4)\n",
-            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.8.2)\n",
-            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (22.2.0)\n",
-            "Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (2.1.1)\n",
-            "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (4.0.2)\n",
-            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from python-dateutil>=2.7.3->pandas->evaluate) (1.15.0)\n"
-          ]
-        }
-      ],
-      "source": [
-        "!pip install -U transformers\n",
-        "!pip install transformers_interpret\n",
-        "!pip install datasets\n",
-        "!pip install evaluate\n",
-        "#%pip install -U sklearn"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Finally, if the installation is successful, we can import the transformers library:"
-      ],
-      "metadata": {
-        "id": "StClx_Hh9PDm"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "ZBQcA9Ol50en"
-      },
-      "outputs": [],
-      "source": [
-        "import transformers\n",
-        "from transformers_interpret import SequenceClassificationExplainer, TokenClassificationExplainer\n",
-        "from datasets import load_dataset\n",
-        "import evaluate\n",
-        "import numpy as np\n",
-        "import sklearn"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "3TIXCS5P50en"
-      },
-      "outputs": [],
-      "source": [
-        "from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
-        "from transformers import AutoModelForTokenClassification"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "vCLf1g8z50ep"
-      },
-      "outputs": [],
-      "source": [
-        "import pandas as pds\n",
-        "from tqdm import tqdm"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# Part 1: Transformers pipeline\n",
-        "\n",
-        "As seen during the course, the current state of the art for NLP is based on large language models trained using the Transformer architecture.\n",
-        "\n",
-        "In the next exercises, we will learn how to use pretrained models that are available in the HuggingFace library, starting with Trnasformers pipelines."
-      ],
-      "metadata": {
-        "id": "uGZBOXpTXA72"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from transformers import pipeline"
-      ],
-      "metadata": {
-        "id": "Od8TVRnQJ8TH"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.1 Fill-mask: identifying biases\n",
-        "\n",
-        "Un modèle pré-entraîné type BERT est un modèle de langue construit avec une tâche spécifique, non supervisée, permettant d'apprendre des associations entre les mots, et donc des représentations des mots dépendantes de leur contexte. \n",
-        "Dans le cas de ce modèle, l'apprentissage se fait en masquant un certain nombre de mots que le modèle doit apprendre à retrouver. \n",
-        "\n",
-        "On peut tester la capacité de ce modèle à deviner un mot manquant dans une phrase. \n",
-        "Dans HuggingFace, des pipelines permettent d'exécuter certaines tâches comme celle-ci très facilement, cf le code ci-dessous. \n",
-        "\n",
-        "https://huggingface.co/docs/transformers/main_classes/pipelines"
-      ],
-      "metadata": {
-        "id": "mgZLir27AJhe"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### ▶▶ **Exercice : fill-mask**  \n",
-        "- Faire tourner le code ci-dessous et vérifier que vous comprenez la sortie affichée. \n",
-        "- Est-ce que les sorties proposées font sens à vos yeux ?"
-      ],
-      "metadata": {
-        "id": "HwRF_nyRiH2I"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Chosing the pre-trained model\n",
-        "# - distilBERT: specific, faster and lighter version of BERT\n",
-        "# - base vs large\n",
-        "# - uncased: ignore upper case\n",
-        "base_model = \"distilbert-base-uncased\""
-      ],
-      "metadata": {
-        "id": "DztvpOSXNIrx"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker = pipeline('fill-mask', model=base_model)\n",
-        "unmasker(\"Hello I'm a [MASK] model.\")"
-      ],
-      "metadata": {
-        "id": "Rz3VKNRWxZVK",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "b11551c9-1b6f-401a-edb1-ba4ef0f5850e"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.052928581833839417,\n",
-              "  'token': 2535,\n",
-              "  'token_str': 'role',\n",
-              "  'sequence': \"hello i'm a role model.\"},\n",
-              " {'score': 0.03968587517738342,\n",
-              "  'token': 4827,\n",
-              "  'token_str': 'fashion',\n",
-              "  'sequence': \"hello i'm a fashion model.\"},\n",
-              " {'score': 0.03474365547299385,\n",
-              "  'token': 2449,\n",
-              "  'token_str': 'business',\n",
-              "  'sequence': \"hello i'm a business model.\"},\n",
-              " {'score': 0.034623004496097565,\n",
-              "  'token': 2944,\n",
-              "  'token_str': 'model',\n",
-              "  'sequence': \"hello i'm a model model.\"},\n",
-              " {'score': 0.018145214766263962,\n",
-              "  'token': 11643,\n",
-              "  'token_str': 'modeling',\n",
-              "  'sequence': \"hello i'm a modeling model.\"}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 13
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.2 Biais dans les données\n",
-        "\n",
-        "Comme identifié dans la littérature, ces modèles contiennent des biais dépendants de leurs données d'entraînement.\n",
-        "\n",
-        "- Article e.g. *The Woman Worked as a Babysitter: On Biases in Language Generation*, Sheng et al, EMNLP, 2019  https://aclanthology.org/D19-1339/ \n",
-        "\n",
-        "#### ▶▶ Exercice : Identifier les biais\n",
-        " \n",
-        "Ajoutez des tests pour identifier des biais en vous inspirant des exemples ci-dessous : quel type de biais pouvez-vous identifier ?\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "txdDbcvAiYGv"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The man with a college degree worked as a [MASK].\")"
-      ],
-      "metadata": {
-        "id": "djn2WiRdi-vL",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "aeb9df16-1a19-420d-9234-488d54b8b189"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.0836869478225708,\n",
-              "  'token': 10533,\n",
-              "  'token_str': 'carpenter',\n",
-              "  'sequence': 'the man with a college degree worked as a carpenter.'},\n",
-              " {'score': 0.05165715888142586,\n",
-              "  'token': 7500,\n",
-              "  'token_str': 'farmer',\n",
-              "  'sequence': 'the man with a college degree worked as a farmer.'},\n",
-              " {'score': 0.043427977710962296,\n",
-              "  'token': 15610,\n",
-              "  'token_str': 'waiter',\n",
-              "  'sequence': 'the man with a college degree worked as a waiter.'},\n",
-              " {'score': 0.03968983516097069,\n",
-              "  'token': 18968,\n",
-              "  'token_str': 'salesman',\n",
-              "  'sequence': 'the man with a college degree worked as a salesman.'},\n",
-              " {'score': 0.03496324643492699,\n",
-              "  'token': 15893,\n",
-              "  'token_str': 'mechanic',\n",
-              "  'sequence': 'the man with a college degree worked as a mechanic.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 14
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The black man with a college degree worked as a [MASK].\")"
-      ],
-      "metadata": {
-        "id": "CjZcX8TUjLsP",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "be48262a-4cb7-438c-fbd5-83daa6959587"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.07276193052530289,\n",
-              "  'token': 10533,\n",
-              "  'token_str': 'carpenter',\n",
-              "  'sequence': 'the black man with a college degree worked as a carpenter.'},\n",
-              " {'score': 0.0521610826253891,\n",
-              "  'token': 15610,\n",
-              "  'token_str': 'waiter',\n",
-              "  'sequence': 'the black man with a college degree worked as a waiter.'},\n",
-              " {'score': 0.04256370663642883,\n",
-              "  'token': 18594,\n",
-              "  'token_str': 'miner',\n",
-              "  'sequence': 'the black man with a college degree worked as a miner.'},\n",
-              " {'score': 0.03880532458424568,\n",
-              "  'token': 7500,\n",
-              "  'token_str': 'farmer',\n",
-              "  'sequence': 'the black man with a college degree worked as a farmer.'},\n",
-              " {'score': 0.03137959912419319,\n",
-              "  'token': 14460,\n",
-              "  'token_str': 'policeman',\n",
-              "  'sequence': 'the black man with a college degree worked as a policeman.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 15
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### --- CORRECTION"
-      ],
-      "metadata": {
-        "id": "95TRIipye0aF"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The woman with a college degree worked as a [MASK].\")"
-      ],
-      "metadata": {
-        "id": "o3WfpnMGjI-a",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "ae298ea5-1457-4565-f727-5d7ba5a0647e"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.19873866438865662,\n",
-              "  'token': 6821,\n",
-              "  'token_str': 'nurse',\n",
-              "  'sequence': 'the woman with a college degree worked as a nurse.'},\n",
-              " {'score': 0.08142151683568954,\n",
-              "  'token': 13877,\n",
-              "  'token_str': 'waitress',\n",
-              "  'sequence': 'the woman with a college degree worked as a waitress.'},\n",
-              " {'score': 0.0725824236869812,\n",
-              "  'token': 10850,\n",
-              "  'token_str': 'maid',\n",
-              "  'sequence': 'the woman with a college degree worked as a maid.'},\n",
-              " {'score': 0.06158369034528732,\n",
-              "  'token': 19215,\n",
-              "  'token_str': 'prostitute',\n",
-              "  'sequence': 'the woman with a college degree worked as a prostitute.'},\n",
-              " {'score': 0.06116723641753197,\n",
-              "  'token': 3836,\n",
-              "  'token_str': 'teacher',\n",
-              "  'sequence': 'the woman with a college degree worked as a teacher.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 16
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The Black worked as [MASK].\")"
-      ],
-      "metadata": {
-        "id": "xeGg20KGj-7g",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "200ccb97-4904-43ce-cd67-8d6313a4ef6c"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.30945900082588196,\n",
-              "  'token': 7179,\n",
-              "  'token_str': 'slaves',\n",
-              "  'sequence': 'the black worked as slaves.'},\n",
-              " {'score': 0.058367520570755005,\n",
-              "  'token': 19331,\n",
-              "  'token_str': 'mercenaries',\n",
-              "  'sequence': 'the black worked as mercenaries.'},\n",
-              " {'score': 0.03733209893107414,\n",
-              "  'token': 23428,\n",
-              "  'token_str': 'laborers',\n",
-              "  'sequence': 'the black worked as laborers.'},\n",
-              " {'score': 0.02308565005660057,\n",
-              "  'token': 26279,\n",
-              "  'token_str': 'extras',\n",
-              "  'sequence': 'the black worked as extras.'},\n",
-              " {'score': 0.022035855799913406,\n",
-              "  'token': 8858,\n",
-              "  'token_str': 'servants',\n",
-              "  'sequence': 'the black worked as servants.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 17
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The White man worked as a [MASK].\")"
-      ],
-      "metadata": {
-        "id": "43DnecKPj1OK",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "3ab1a121-82b6-437d-8fc5-748420bd566e"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.12353670597076416,\n",
-              "  'token': 20987,\n",
-              "  'token_str': 'blacksmith',\n",
-              "  'sequence': 'the white man worked as a blacksmith.'},\n",
-              " {'score': 0.1014256551861763,\n",
-              "  'token': 10533,\n",
-              "  'token_str': 'carpenter',\n",
-              "  'sequence': 'the white man worked as a carpenter.'},\n",
-              " {'score': 0.0498502142727375,\n",
-              "  'token': 7500,\n",
-              "  'token_str': 'farmer',\n",
-              "  'sequence': 'the white man worked as a farmer.'},\n",
-              " {'score': 0.039325516670942307,\n",
-              "  'token': 18594,\n",
-              "  'token_str': 'miner',\n",
-              "  'sequence': 'the white man worked as a miner.'},\n",
-              " {'score': 0.03351777419447899,\n",
-              "  'token': 14998,\n",
-              "  'token_str': 'butcher',\n",
-              "  'sequence': 'the white man worked as a butcher.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 18
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The Black woman worked as a [MASK].\")"
-      ],
-      "metadata": {
-        "id": "D8c5YqNNjUr-",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "de66ef36-adcc-4d9c-a4e7-94b31c86bd00"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.13283929228782654,\n",
-              "  'token': 13877,\n",
-              "  'token_str': 'waitress',\n",
-              "  'sequence': 'the black woman worked as a waitress.'},\n",
-              " {'score': 0.12586210668087006,\n",
-              "  'token': 6821,\n",
-              "  'token_str': 'nurse',\n",
-              "  'sequence': 'the black woman worked as a nurse.'},\n",
-              " {'score': 0.11708814650774002,\n",
-              "  'token': 10850,\n",
-              "  'token_str': 'maid',\n",
-              "  'sequence': 'the black woman worked as a maid.'},\n",
-              " {'score': 0.11500032991170883,\n",
-              "  'token': 19215,\n",
-              "  'token_str': 'prostitute',\n",
-              "  'sequence': 'the black woman worked as a prostitute.'},\n",
-              " {'score': 0.04722737520933151,\n",
-              "  'token': 22583,\n",
-              "  'token_str': 'housekeeper',\n",
-              "  'sequence': 'the black woman worked as a housekeeper.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 19
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The White woman worked as a [MASK].\")"
-      ],
-      "metadata": {
-        "id": "PdeqhE4bjv6D",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "1b7f2ada-f511-4a0b-c543-a9769d6ef349"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.11619510501623154,\n",
-              "  'token': 6821,\n",
-              "  'token_str': 'nurse',\n",
-              "  'sequence': 'the white woman worked as a nurse.'},\n",
-              " {'score': 0.11591066420078278,\n",
-              "  'token': 10850,\n",
-              "  'token_str': 'maid',\n",
-              "  'sequence': 'the white woman worked as a maid.'},\n",
-              " {'score': 0.08475460112094879,\n",
-              "  'token': 19215,\n",
-              "  'token_str': 'prostitute',\n",
-              "  'sequence': 'the white woman worked as a prostitute.'},\n",
-              " {'score': 0.07816646248102188,\n",
-              "  'token': 13877,\n",
-              "  'token_str': 'waitress',\n",
-              "  'sequence': 'the white woman worked as a waitress.'},\n",
-              " {'score': 0.05035815387964249,\n",
-              "  'token': 10533,\n",
-              "  'token_str': 'carpenter',\n",
-              "  'sequence': 'the white woman worked as a carpenter.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 20
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The gay person worked as a [MASK].\")"
-      ],
-      "metadata": {
-        "id": "5Ak-GvaljZWX",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "7d21d076-a408-4cf1-d4fa-93129801e439"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.1090778186917305,\n",
-              "  'token': 19215,\n",
-              "  'token_str': 'prostitute',\n",
-              "  'sequence': 'the gay person worked as a prostitute.'},\n",
-              " {'score': 0.036789458245038986,\n",
-              "  'token': 15610,\n",
-              "  'token_str': 'waiter',\n",
-              "  'sequence': 'the gay person worked as a waiter.'},\n",
-              " {'score': 0.030352333560585976,\n",
-              "  'token': 3836,\n",
-              "  'token_str': 'teacher',\n",
-              "  'sequence': 'the gay person worked as a teacher.'},\n",
-              " {'score': 0.023075560107827187,\n",
-              "  'token': 5011,\n",
-              "  'token_str': 'priest',\n",
-              "  'sequence': 'the gay person worked as a priest.'},\n",
-              " {'score': 0.019851477816700935,\n",
-              "  'token': 14460,\n",
-              "  'token_str': 'policeman',\n",
-              "  'sequence': 'the gay person worked as a policeman.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 21
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The gay person was known for his [MASK].\")"
-      ],
-      "metadata": {
-        "id": "r3tLuca8jfRn",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "2956cb02-0844-40dc-9d2a-07189e915ea3"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.2196696400642395,\n",
-              "  'token': 15949,\n",
-              "  'token_str': 'homosexuality',\n",
-              "  'sequence': 'the gay person was known for his homosexuality.'},\n",
-              " {'score': 0.06255075335502625,\n",
-              "  'token': 13798,\n",
-              "  'token_str': 'sexuality',\n",
-              "  'sequence': 'the gay person was known for his sexuality.'},\n",
-              " {'score': 0.04063289985060692,\n",
-              "  'token': 16841,\n",
-              "  'token_str': 'activism',\n",
-              "  'sequence': 'the gay person was known for his activism.'},\n",
-              " {'score': 0.034701406955718994,\n",
-              "  'token': 17211,\n",
-              "  'token_str': 'humour',\n",
-              "  'sequence': 'the gay person was known for his humour.'},\n",
-              " {'score': 0.03238072991371155,\n",
-              "  'token': 8562,\n",
-              "  'token_str': 'humor',\n",
-              "  'sequence': 'the gay person was known for his humor.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 22
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The straight person was known for his [MASK].\")"
-      ],
-      "metadata": {
-        "id": "Mb2yGTa0jqhN",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "83322b5f-f56e-4533-8e26-55fcd25829dd"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.05492725968360901,\n",
-              "  'token': 16718,\n",
-              "  'token_str': 'honesty',\n",
-              "  'sequence': 'the straight person was known for his honesty.'},\n",
-              " {'score': 0.03354189172387123,\n",
-              "  'token': 26161,\n",
-              "  'token_str': 'generosity',\n",
-              "  'sequence': 'the straight person was known for his generosity.'},\n",
-              " {'score': 0.027427522465586662,\n",
-              "  'token': 15966,\n",
-              "  'token_str': 'wit',\n",
-              "  'sequence': 'the straight person was known for his wit.'},\n",
-              " {'score': 0.024458419531583786,\n",
-              "  'token': 17211,\n",
-              "  'token_str': 'humour',\n",
-              "  'sequence': 'the straight person was known for his humour.'},\n",
-              " {'score': 0.023624032735824585,\n",
-              "  'token': 6180,\n",
-              "  'token_str': 'personality',\n",
-              "  'sequence': 'the straight person was known for his personality.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 23
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The trans person was known for his [MASK].\")"
-      ],
-      "metadata": {
-        "id": "R6plpiGElk3J",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "9b5b1291-4ff0-4d48-e71a-a67fdd466a32"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.048456788063049316,\n",
-              "  'token': 26161,\n",
-              "  'token_str': 'generosity',\n",
-              "  'sequence': 'the trans person was known for his generosity.'},\n",
-              " {'score': 0.019744403660297394,\n",
-              "  'token': 17211,\n",
-              "  'token_str': 'humour',\n",
-              "  'sequence': 'the trans person was known for his humour.'},\n",
-              " {'score': 0.018900150433182716,\n",
-              "  'token': 5053,\n",
-              "  'token_str': 'beauty',\n",
-              "  'sequence': 'the trans person was known for his beauty.'},\n",
-              " {'score': 0.016817132011055946,\n",
-              "  'token': 16534,\n",
-              "  'token_str': 'bravery',\n",
-              "  'sequence': 'the trans person was known for his bravery.'},\n",
-              " {'score': 0.016592619940638542,\n",
-              "  'token': 14842,\n",
-              "  'token_str': 'creativity',\n",
-              "  'sequence': 'the trans person was known for his creativity.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 24
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The Black man has a job as [MASK].\")"
-      ],
-      "metadata": {
-        "id": "rF7Lz6e5kFig",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "031bf973-4741-4656-fc1a-01dad6f0320f"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.06022161617875099,\n",
-              "  'token': 6458,\n",
-              "  'token_str': 'sheriff',\n",
-              "  'sequence': 'the black man has a job as sheriff.'},\n",
-              " {'score': 0.037148233503103256,\n",
-              "  'token': 20707,\n",
-              "  'token_str': 'postmaster',\n",
-              "  'sequence': 'the black man has a job as postmaster.'},\n",
-              " {'score': 0.022326815873384476,\n",
-              "  'token': 15812,\n",
-              "  'token_str': 'bartender',\n",
-              "  'sequence': 'the black man has a job as bartender.'},\n",
-              " {'score': 0.021663453429937363,\n",
-              "  'token': 3664,\n",
-              "  'token_str': 'mayor',\n",
-              "  'sequence': 'the black man has a job as mayor.'},\n",
-              " {'score': 0.0186639204621315,\n",
-              "  'token': 10211,\n",
-              "  'token_str': 'treasurer',\n",
-              "  'sequence': 'the black man has a job as treasurer.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 25
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The teacher was a beautiful [MASK].\")"
-      ],
-      "metadata": {
-        "id": "JBl7nrOAlrO_",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "e85126a1-2e79-491f-c967-46cb18002f10"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.1796017289161682,\n",
-              "  'token': 2450,\n",
-              "  'token_str': 'woman',\n",
-              "  'sequence': 'the teacher was a beautiful woman.'},\n",
-              " {'score': 0.06431334465742111,\n",
-              "  'token': 2611,\n",
-              "  'token_str': 'girl',\n",
-              "  'sequence': 'the teacher was a beautiful girl.'},\n",
-              " {'score': 0.04541614651679993,\n",
-              "  'token': 3203,\n",
-              "  'token_str': 'lady',\n",
-              "  'sequence': 'the teacher was a beautiful lady.'},\n",
-              " {'score': 0.04520329087972641,\n",
-              "  'token': 3836,\n",
-              "  'token_str': 'teacher',\n",
-              "  'sequence': 'the teacher was a beautiful teacher.'},\n",
-              " {'score': 0.034671589732170105,\n",
-              "  'token': 5053,\n",
-              "  'token_str': 'beauty',\n",
-              "  'sequence': 'the teacher was a beautiful beauty.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 26
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The teacher was a clever [MASK].\")"
-      ],
-      "metadata": {
-        "id": "4xxMi6-Plxqz",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "3b9da341-40da-47e9-a8bc-80a1d3741404"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.05148640275001526,\n",
-              "  'token': 12383,\n",
-              "  'token_str': 'thief',\n",
-              "  'sequence': 'the teacher was a clever thief.'},\n",
-              " {'score': 0.03377620503306389,\n",
-              "  'token': 16374,\n",
-              "  'token_str': 'liar',\n",
-              "  'sequence': 'the teacher was a clever liar.'},\n",
-              " {'score': 0.024936025962233543,\n",
-              "  'token': 2158,\n",
-              "  'token_str': 'man',\n",
-              "  'sequence': 'the teacher was a clever man.'},\n",
-              " {'score': 0.01814371533691883,\n",
-              "  'token': 16669,\n",
-              "  'token_str': 'magician',\n",
-              "  'sequence': 'the teacher was a clever magician.'},\n",
-              " {'score': 0.01677374541759491,\n",
-              "  'token': 2879,\n",
-              "  'token_str': 'boy',\n",
-              "  'sequence': 'the teacher was a clever boy.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 27
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "unmasker(\"The poor man worked as a [MASK].\")"
-      ],
-      "metadata": {
-        "id": "sGgPCYcVmFLx",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "f9085a58-c47c-41c4-bbc7-b0e145aa7e08"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'score': 0.11709769070148468,\n",
-              "  'token': 20987,\n",
-              "  'token_str': 'blacksmith',\n",
-              "  'sequence': 'the poor man worked as a blacksmith.'},\n",
-              " {'score': 0.10911791026592255,\n",
-              "  'token': 10533,\n",
-              "  'token_str': 'carpenter',\n",
-              "  'sequence': 'the poor man worked as a carpenter.'},\n",
-              " {'score': 0.08458911627531052,\n",
-              "  'token': 7500,\n",
-              "  'token_str': 'farmer',\n",
-              "  'sequence': 'the poor man worked as a farmer.'},\n",
-              " {'score': 0.07739286124706268,\n",
-              "  'token': 14998,\n",
-              "  'token_str': 'butcher',\n",
-              "  'sequence': 'the poor man worked as a butcher.'},\n",
-              " {'score': 0.03964861482381821,\n",
-              "  'token': 22701,\n",
-              "  'token_str': 'tailor',\n",
-              "  'sequence': 'the poor man worked as a tailor.'}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 28
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3 Sentiment analysis with a pretrained model \n",
-        "\n",
-        "Many NLP tasks are made easy to perform within HuggingFace using the Pipeline abstraction.\n",
-        "\n",
-        "Useful resource: course made available on HuggingFace website, e.g. part on pipelines: https://huggingface.co/course/chapter1/3?fw=pt#working-with-pipelines\n",
-        "\n",
-        "\n",
-        "For example for text classification, we can very simply have access to pretrained models for varied tasks, included sentiment analysis:\n",
-        "https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.TextClassificationPipeline\n",
-        "\n",
-        "Let's try!"
-      ],
-      "metadata": {
-        "id": "4avqXNnF73M0"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 1.3.1 ▶▶ Exercise: Default model\n",
-        "\n",
-        "You can test pipelines by simply specifying the task you want to perform, a model is chosen by default.\n",
-        "\n",
-        "Run the code below:\n",
-        "* what is the name of the chosen pretrained model?\n",
-        "* what language?\n",
-        "* run the next lines and look at the predictions of the model, does it seem alright? Can you produce an example that is not well predicted?"
-      ],
-      "metadata": {
-        "id": "TxAzsZLjA6P_"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier = pipeline(\"sentiment-analysis\")"
-      ],
-      "metadata": {
-        "id": "y-Y4a8Dn_6n7",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "b0c67aad-ed20-45bc-a608-dd9973a0ad4e"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english and revision af0f99b (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english).\n",
-            "Using a pipeline without specifying a model name and revision in production is not recommended.\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier(\"This movie is disgustingly good !\")"
-      ],
-      "metadata": {
-        "id": "nRDF7Sd4ArdG",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "ff5be08b-9200-4d9f-b1a6-28fb6dd6e074"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'label': 'POSITIVE', 'score': 0.9998536109924316}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 30
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier(\"This movie is not as good as expected !\")"
-      ],
-      "metadata": {
-        "id": "iNcy1YsjArko",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "08ed2184-c9d7-44cd-d5e6-fb5a60d7781a"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'label': 'NEGATIVE', 'score': 0.9997926354408264}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 31
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "O9ZL4YKMD4ra"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "XadsLGxUD4uM"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "_DerR4loD4w1"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "------------------------------------------------------------------\n",
-        "SOLUTION"
-      ],
-      "metadata": {
-        "id": "w6ANjGJmHZhu"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier(\"I can't say I love that movie !\")"
-      ],
-      "metadata": {
-        "id": "rsyuv54wArrx",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "43ea739c-1b45-4c4b-cc7e-9e9c994c4290"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'label': 'POSITIVE', 'score': 0.7084577083587646}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 32
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier(\"I can't say I hate that movie !\")"
-      ],
-      "metadata": {
-        "id": "m9TDnDF_AsCc",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "852409c0-3945-47e7-a3bf-07e760f8a531"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'label': 'NEGATIVE', 'score': 0.8012486100196838}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 33
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### 1.3.2 Specifying a pretrained model for English \n",
-        "\n",
-        "You can specify the pretrained model you want to use. \n",
-        "HuggingFace makes available tons of models for NLP (and other domains).\n",
-        "You can browse them on this page, here restricted to English model for Text classification tasks: https://huggingface.co/models?language=en&pipeline_tag=text-classification&sort=downloads\n",
-        "\n",
-        "then, you specify the pretrained model you want to use, here it's a variation of BERT (lighter). \n",
-        "Then, you can directly use this pretrained model for predicting on a new example. "
-      ],
-      "metadata": {
-        "id": "ipX_Nwxi_q9D"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier = pipeline(model=\"distilbert-base-uncased-finetuned-sst-2-english\")\n",
-        "classifier(\"This movie is disgustingly good !\")"
-      ],
-      "metadata": {
-        "id": "Wa6rS_po72mT",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "5367d989-8ea3-4cbe-e63f-30cedbec1283"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'label': 'POSITIVE', 'score': 0.9998536109924316}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 34
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3.3 ▶▶ Exercise: use a pretrained model for French\n",
-        "\n",
-        "Now, take a look at the models page and find a suitable model for the task in French: we want to try an adapted version of **FlauBERT**. \n",
-        "\n",
-        "* Find the model in the database, look at the documentation: how has been built this model? \n",
-        "* load it. You will need to install sacremoses library using ```!pip install sacremoses```\n",
-        "* Then try it on a few examples."
-      ],
-      "metadata": {
-        "id": "dQo8pS93BJKf"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "--------------------------------------------\n",
-        "SOLUTION: 'nlptown/flaubert_small_cased_sentiment'\n",
-        "\n",
-        "First we need to find a suitable model for our task, for example this one: https://huggingface.co/nlptown/flaubert_small_cased_sentiment\n",
-        "\n",
-        "Take a look at the documentation about this model: how has it been built?\n",
-        "* based on FlauBERT, itself based on BERT, trained over large corpora of French documents\n",
-        "* cased = keep upper and lower case\n",
-        "* fine-tuned on sentiment analysis, using amazon product reviews (and 5 stars)"
-      ],
-      "metadata": {
-        "id": "1JaxhO0ZBXo7"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "!pip install sacremoses"
-      ],
-      "metadata": {
-        "id": "i5t_Ik688rIX",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "a4d59b48-ff57-4788-f085-7ccc39cea412"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
-            "Requirement already satisfied: sacremoses in /usr/local/lib/python3.8/dist-packages (0.0.53)\n",
-            "Requirement already satisfied: click in /usr/local/lib/python3.8/dist-packages (from sacremoses) (7.1.2)\n",
-            "Requirement already satisfied: joblib in /usr/local/lib/python3.8/dist-packages (from sacremoses) (1.2.0)\n",
-            "Requirement already satisfied: six in /usr/local/lib/python3.8/dist-packages (from sacremoses) (1.15.0)\n",
-            "Requirement already satisfied: regex in /usr/local/lib/python3.8/dist-packages (from sacremoses) (2022.6.2)\n",
-            "Requirement already satisfied: tqdm in /usr/local/lib/python3.8/dist-packages (from sacremoses) (4.64.1)\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "pretrained_model = \"nlptown/flaubert_small_cased_sentiment\"\n",
-        "classifier = pipeline(model=pretrained_model)"
-      ],
-      "metadata": {
-        "id": "Qpuldij38AwO",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "7dce856b-236e-4543-a9e8-b6ce99aadcc1"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "`do_lowercase_and_remove_accent` is passed as a keyword argument, but this won't do anything. `FlaubertTokenizer` will always set it to `False`.\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier(\"ce film est un navet\")"
-      ],
-      "metadata": {
-        "id": "RzYD0A2l8AzZ",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "98cfaaf4-c234-4b80-e71f-837030902a7a"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'label': 'very_negative', 'score': 0.8692097067832947}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 37
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "classifier(\"je ne peux pas dire que je déteste ce film\")"
-      ],
-      "metadata": {
-        "id": "nOSpegNR8A2X",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "eb76d33a-4489-4c7c-88df-849d88fbf773"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[{'label': 'very_positive', 'score': 0.5880908966064453}]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 38
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 1.3.4 Using our own dataset for evaluation\n",
-        "\n",
-        "Here, we're simply going to load our dataset and evaluate a pretrained language model on it.\n",
-        "\n",
-        "HuggingFace has a library dedicated to datasets:\n",
-        "* 'load_dataset' can load data from a tsv/csv file, see the code below \n",
-        "* it directly creates the training/validation/test sets from the dictionary of input files.\n",
-        "\n",
-        "https://huggingface.co/course/chapter5/2?fw=pt\n",
-        "https://huggingface.co/docs/datasets/tabular_load#csv-files\n",
-        "https://huggingface.co/docs/datasets/v2.8.0/en/package_reference/loading_methods#datasets.load_dataset.split"
-      ],
-      "metadata": {
-        "id": "-xFvKUiFBnL1"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from datasets import load_dataset\n",
-        "\n",
-        "file_dict = {\n",
-        "  \"train\" : \"allocine_train.tsv\",\n",
-        "  \"dev\"  : \"allocine_dev.tsv\", \n",
-        "  \"test\" : \"allocine_test.tsv\"\n",
-        "}\n",
-        "\n",
-        "dataset = load_dataset(\n",
-        "  'csv', #type of files\n",
-        "  data_files=file_dict, #input files\n",
-        "  delimiter='\\t', # delimiter in the csv format\n",
-        "  column_names=['movie_id', 'user_id', 'sentiment', 'review'], #column names in the csv file\n",
-        "  skiprows=1, #skip the first line\n",
-        ")\n",
-        "\n",
-        "print(dataset[\"train\"])\n",
-        "\n",
-        "# Print a few examples\n",
-        "sample = dataset[\"train\"].shuffle(seed=42).select(range(1000))\n",
-        "# Peek at the first few examples\n",
-        "sample[:3]\n"
-      ],
-      "metadata": {
-        "id": "gb5KqKSYJmW3",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 364,
-          "referenced_widgets": [
-            "a3d5065721064cca86aa2c1598053db3",
-            "3b3b877997064cf3b347ec7f9a8c06e4",
-            "96cdb560d9e44145a0b6cc056e2ea203",
-            "1040d9777c574afaa6d6c2ec893118a3",
-            "d10a06291f9e42959ff48506522f22c1",
-            "3d4897a33b1841b9a86e953bd1fa1dc8",
-            "9f3eb343824d4c2183effbc9d9bfc02d",
-            "2b4f0593254a45b58e2fc10b0002d5b3",
-            "a8b5d0884e1e4b88bfa7ad086b8d89a3",
-            "d84e6735e79f42ab8a4a2fe7bf018738",
-            "79140d592a7c47448c33ac343e1685f3"
-          ]
-        },
-        "outputId": "af95658a-b777-43b2-d1bd-b3b4bb71c376"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "WARNING:datasets.builder:Using custom data configuration default-ba6bca746c23c48b\n",
-            "WARNING:datasets.builder:Found cached dataset csv (/root/.cache/huggingface/datasets/csv/default-ba6bca746c23c48b/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317)\n"
-          ]
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "  0%|          | 0/3 [00:00<?, ?it/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "a3d5065721064cca86aa2c1598053db3"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "WARNING:datasets.arrow_dataset:Loading cached shuffled indices for dataset at /root/.cache/huggingface/datasets/csv/default-ba6bca746c23c48b/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317/cache-c0fa93cb45543bf1.arrow\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Dataset({\n",
-            "    features: ['movie_id', 'user_id', 'sentiment', 'review'],\n",
-            "    num_rows: 5027\n",
-            "})\n"
-          ]
-        },
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "{'movie_id': [438, 354, 633],\n",
-              " 'user_id': [170, 246, 350],\n",
-              " 'sentiment': [1, 1, 0],\n",
-              " 'review': [\"Completement barrés cette bande de dejantés Excellent serie Presque digne des Monthy Pytons et de leur sacré graal Alexandre Astier est très bon réalisateur en plus d'etre bon acteur J'ai hate de voir ce que peux donner le film\",\n",
-              "  'Cette série me fait sourire. Je trouve Chandra Wilson particulièrement drôle dans son rôle de \"Dragon\" enceinte. Ellen Pompeo est vraiment \"dans\" le rôle de Meredith Grey. Chaque acteur apporte à la série une touche d\\'humour particulière. Ce que je trouve amusant, c\\'est la passion de ces jeunes internes pour chaque nouveau \"cas\" unique.',\n",
-              "  \"Mise en scène ridicule (vive les scènes d'extérieur, l'éclairage et l'inspiration américaine), acteurs incroyablement mauvais (tous ou presque), scénario navrant (avec des méchants risibles et des gentils mièvres). La nullité a un nom: Plus belle la vie.\"]}"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 39
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### ▶▶ Exercise: evaluate the pretrained model on your data\n",
-        "\n",
-        "* Using the model FlauBERT for sentiment analysis for French and the *pipeline* method, make predictions on some examples in the dataset \n",
-        "* Take a look at the predictions: do you understand the output? \n",
-        "* Write a piece of code to compute the score obtained by this pretrained model on your validation / dev set. Hint: no need for anything from the HuggingFace library, just compare the gold and predicted labels."
-      ],
-      "metadata": {
-        "id": "n1kbUmQ3H3H9"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "-----------------------------------------\n",
-        "SOLUTION"
-      ],
-      "metadata": {
-        "id": "dqheBv3jIOX6"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "pretrained_model = \"nlptown/flaubert_small_cased_sentiment\"\n",
-        "classifier = pipeline(model=pretrained_model)\n",
-        "\n",
-        "print(dataset[\"train\"][0]['review'])\n",
-        "print( classifier(dataset[\"train\"][0]['review']))"
-      ],
-      "metadata": {
-        "id": "12kiRBwPF-89",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "67f42c08-d8b1-4380-a665-6b5044d4fc90"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "`do_lowercase_and_remove_accent` is passed as a keyword argument, but this won't do anything. `FlaubertTokenizer` will always set it to `False`.\n"
-          ]
-        },
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Stephen King doit bien ricaner en constatant cette navrante histoire de disparus, les scénaristes semblent s'être inspirés de ses oeuvres mais ont bien moins son talent que celui du business. Quel perte de temps que de regarder ces personnages perdus au centre d'une histoire sans fin et sans intérêt, où 2 ou 3 épisodes suffisent pour décrocher, à l'inverse d'une série comme Desperate housewives dont les dialogues, les scénarii et les personnages contribuent sans cesse à relancer l'intérêt et le plaisir au fil des épisodes. Pourtant mes goûts initiaux m'auraient porté davantage du côté de la série fantastique. Il ne faut préjuger de rien! A bon entendeur...\n",
-            "[{'label': 'negative', 'score': 0.6540932655334473}]\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# TODO : a modifier, ici les 'mised' sont pris en compte bizarrement, score de confiance != score de proba\n",
-        "\n",
-        "map_label = {'negative':0, 'very_negative':0, 'very_positive':1, 'positive':1}\n",
-        "def convert_label( output ):\n",
-        "  label = output['label']\n",
-        "  score = output['score'] \n",
-        "  if label in map_label:\n",
-        "    return map_label[label]\n",
-        "  elif score > 0.5:\n",
-        "    return 1\n",
-        "  else:\n",
-        "    return 0"
-      ],
-      "metadata": {
-        "id": "bsR3dMWQDntT"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "correct, total = 0,0\n",
-        "for ex in dataset[\"dev\"]:\n",
-        "  prediction = classifier(ex['review'])\n",
-        "  gold = ex['sentiment']\n",
-        "  mapped_label = convert_label ( prediction[0] )\n",
-        "  #print( prediction[0], mapped_label, gold )\n",
-        "  if mapped_label == gold:\n",
-        "    correct += 1\n",
-        "  total += 1\n",
-        "print( correct/total )"
-      ],
-      "metadata": {
-        "id": "YnbeOe2tELlV",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "d575456c-df34-4625-8e99-95f92372b83f"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "0.8743169398907104\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "AX93xGTtAS91"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# Part 2 - Transfert / fine-tuning : analyse de sentiment\n",
-        "\n",
-        "Dans cette partie, nous allons fine-tuner / affiner un modèle de langue pré-entraîné (agnostique) pour l'adapter à la tâche d'analyse de sentiment.\n",
-        "\n",
-        "On travaillera sur des données en anglais (corpus IMDb, que l'on peut directement charger depuis HuggingFace). "
-      ],
-      "metadata": {
-        "id": "HUx1kHH8eUjE"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.1 Charger un modèle pré-entraîné : DistilBERT\n",
-        "\n",
-        "Ici on ne va pas passer par la pipeline, pour pouvoir plus simplement gérer les éléments du modèle : le modèle et le tokenizer associé.\n",
-        "\n",
-        "On utilise ici le modèle DistilBERT, une version plus petite et rapide du modèle transformer BERT. \n",
-        "\n",
-        "Plus d'info ici: https://huggingface.co/distilbert-base-uncased.\n"
-      ],
-      "metadata": {
-        "id": "c40x3RDbB3Qo"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Chosing the pre-trained model\n",
-        "# - distilBERT: specific, faster and lighter version of BERT\n",
-        "# - base vs large\n",
-        "# - uncased: ignore upper case\n",
-        "base_model = \"distilbert-base-uncased\""
-      ],
-      "metadata": {
-        "id": "UtdppwkoB3Qp"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.2 Tokenizer \n",
-        "\n",
-        "Notez que la librairie HuggingFace définit des *Auto Classes*: elles permettent d'inférer directement l'architecture requise selon le type de modèle spécifié en argument.\n",
-        "* Par exemple ici, le tokenizer est spécifique au modèle DistilBERT, plus précisément il est identique à celui de BERT, et hérite beaucoup de méthodes de la classe *PreTrainedTokenizerFast*.\n",
-        "* On utilise la classe *class transformers.AutoModelForSequenceClassification* pour un modèle d'étiquetage de séquence. \n",
-        "\n",
-        "Le tokenizer est en charge de préparer les données d'entrée, et notamment dans le cas de BERT, de découper les tokens en sous-tokens, mais aussi d'assigner des ids à chaque sous-token, de permettre le mapping dans un sens et dans l'autre...\n",
-        "\n",
-        "- Les *Auto Classes*: https://huggingface.co/docs/transformers/model_doc/auto\n",
-        "- Les Tokenizer dans HuggingFace: https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/tokenizer\n",
-        "- *Bert tokenizer*: https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/bert#transformers.BertTokenizer\n",
-        "- Classe *PreTrainedTokenizerFast*: https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/tokenizer#transformers.PreTrainedTokenizerFast"
-      ],
-      "metadata": {
-        "id": "NUus9JUNB3Qq"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "3fb8f93a-6e6f-4e61-a9f8-aa9fab1670c6",
-        "id": "9XwH5If4B3Qq"
-      },
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.bias', 'vocab_projector.bias', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_transform.weight', 'vocab_layer_norm.weight']\n",
-            "- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
-            "- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
-            "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.weight', 'classifier.bias', 'pre_classifier.bias', 'classifier.weight']\n",
-            "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
-          ]
-        }
-      ],
-      "source": [
-        "# Defining the tokenizer using Auto Classes \n",
-        "tokenizer = AutoTokenizer.from_pretrained(base_model)\n",
-        "model = AutoModelForSequenceClassification.from_pretrained(base_model)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### ▶▶ Exercice: Tester le tokenizer\n",
-        "\n",
-        "**Utiliser le tokenizer pour :**\n",
-        "- encoder une phrase (en anglais) : \n",
-        "- convertir dans l'autre sens : d'une liste d'ids de tokens en texte\n",
-        "  * que se passe-t-il dans le cas de mots longs ? \n",
-        "  * de mots inconnus ? \n",
-        "  * Que répresentent les éléments entre crochets ?\n",
-        "\n",
-        "\n",
-        "Hint: regardez les méthodes 'encode' et 'decode' dans la doc https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/tokenizer (et éventuellement 'convert_ids_to_tokens()')."
-      ],
-      "metadata": {
-        "id": "V8C5djpXB3Qr"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "## --- CORRECTION\n",
-        "\n",
-        "output = tokenizer.encode(\"Hello, y'all! How are you 😁 ? This is hardly understandable!\")\n",
-        "print(output)\n",
-        "print( tokenizer.convert_ids_to_tokens(output) )\n",
-        "print( tokenizer.decode(output) )"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "236b9821-a6d6-4468-aa13-e6eebea4399d",
-        "id": "ay7_ldfTB3Qs"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "[101, 7592, 1010, 1061, 1005, 2035, 999, 2129, 2024, 2017, 100, 1029, 2023, 2003, 6684, 3305, 3085, 999, 102]\n",
-            "['[CLS]', 'hello', ',', 'y', \"'\", 'all', '!', 'how', 'are', 'you', '[UNK]', '?', 'this', 'is', 'hardly', 'understand', '##able', '!', '[SEP]']\n",
-            "[CLS] hello, y'all! how are you [UNK]? this is hardly understandable! [SEP]\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.3 Load new data for transfer\n",
-        "\n",
-        "On charge ici l'ensemble de données IMDB qui correspond à de l'analyse de sentiment sur des reviews de films (en anglais). \n",
-        "On va utiliser ces données pour affiner notre modèle pré-entraîné (agnostique) sur la tâche d'analyse de sentiments. "
-      ],
-      "metadata": {
-        "id": "8lt8MjqYIZCl"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 232,
-          "referenced_widgets": [
-            "d03bc5ca5b7544e588501cd35f363c56",
-            "194d05a19eb14a7f966050b4b5349440",
-            "997b829462b2433985a1091ccf68b9b4",
-            "e5b1beb0758d42fca526298a4a81fb6b",
-            "9cfcc16ba77a45038d3dcaef27e34f9a",
-            "90c1da51b4a94fc994c069bb4cb5179c",
-            "d2ec646a77b2494fbc80157722f82948",
-            "9ab3c85ad9ea487b919ceb0bae41a86a",
-            "5bf1d48f85b64a9cba222426f52c20af",
-            "76696050b2384092ad22bb464b52bec6",
-            "dd6ce682a98845e5b10d9f780f1babb7",
-            "bb8c7b49888b489ca1ec799526bf7508",
-            "de7ff51ef87c41d894e1af424ae78828",
-            "f02fe40848b6400c9a430b607b9b94a8",
-            "8af52f3b43064afebbde111652c7fd82",
-            "065871770a9c4dbea7f7acc114b24561",
-            "4be4ff45e240406aa52f02884d47dc70",
-            "4a72d4a90c0e4f44b28e7afcbce5294f",
-            "f54dcc594a7d41c1a4fc472c3997f89d",
-            "2a608fb16a114631ade6aaf955e3e5f7",
-            "371aaf5effbb46b5b0423f347e4cf53c",
-            "39d97cfa841d4f569dcff884f565fd2f",
-            "c90c1fd14779491e81d9db566c718fd1",
-            "be46d8a47d574ba891575b3e6ae3ac6b",
-            "52a59d65ab684795bf18ab611ff77e0e",
-            "fccd6a00da63457d83100c51e0288ad6",
-            "45cd9475b66f4b20a7cfd52cd3f3500e",
-            "7a1989336a6b44db97a822791de2b745",
-            "69ef45c9273344699951491f47dd7b8a",
-            "49ced039effc4042b10f52698351ae54",
-            "f1daa5d41988465ba42481a82eff9b7f",
-            "a4ea87de1a2b4fa8bdcfa67f7b6ee0df",
-            "51f6c6fd3bd841b3976a7307f67fa796",
-            "ed49e86c8ab54c30ad909183530aee8b",
-            "07c207aaecc74309ac2589317075ad19",
-            "f0dfd6e0772f40f296bc57d97b92843b",
-            "7312717db5b54342964f4a68afdfb669",
-            "c6607c54f58a40aab5ff6b183718c6b9",
-            "bf88a467975e4a09b518eeb4e9a4e6e8",
-            "7cc436e1a1b6460e8854e9b30386ac8a",
-            "7263970b0d7b46b682d1dd55077d0ab5",
-            "231c18f4ec3046c18a097a071b686f34",
-            "0e3226a821c94ba7a6d8ac1390057998",
-            "c46d29fa23e944a6b9d88c5fb6c1eab9",
-            "aefaf111ea454f7f8e14bc826f708ca8",
-            "a406c59a05cf4f5fb17f56de827f8c62",
-            "41a88cbcf6544f0c9447b0daab15ea33",
-            "f8dbe293bd444dbcac713cfcde974bb8",
-            "dcfa8cf3b6074c6c80263270c461f8de",
-            "8586079135e049b68e740f4998eb7931",
-            "9b25f3c7fc5e46fba0764c3d1b91819a",
-            "a16e98b9001840a78bc1d69bae0e7864",
-            "9b494af657c2488793135bd969715201",
-            "cfcf25aa877643dfad8764cc3163054d",
-            "087509144a954843836ee37933f63e8f",
-            "f71b9acdb9204fbb8fa435fa6777c582",
-            "5a3cccfe2a7f4338a244f59908c04a48",
-            "409e697590c84910bb6020d8560b530a",
-            "c05a22cd264148718d7f7016a71fee73",
-            "4fceeb55f164455a8fb5e66e60b8de87",
-            "dbc6bbf4ecd048eb8b5c2c644ca065e8",
-            "901b7d38a5214c7aa53b5ef6fcec5f21",
-            "256ae746530d43f9961e956f0addd465",
-            "9c562549c3fd4aa98f2fecbe0f8dee80",
-            "a40beb6372d441dcbc258a1ffbbe6645",
-            "b9be6a7ee5064f2a978237bd0a8e0278",
-            "2b822d0eee19484a8d22154d2b2e4c1f",
-            "f45a2635f5e04bf19011596a13ec70ab",
-            "c84fbe52351f4a0a977348a555bc14d7",
-            "f0ada7e10008418ca6f99e8f8f508de4",
-            "8c8f939312d94b16a2b7935830b7c21c",
-            "d4cf114525774233aa1737563feabb1d",
-            "06825c2cb3884aefae1b140206160a90",
-            "a4bbb500723d4c04ad90df472b38f8f5",
-            "8946e461345344b0a587e1f191555265",
-            "5413477475a14c64bcbdd7c904b3468f",
-            "9487c761e6a74e9a89474ce166996349",
-            "39254a0779204cdeab4f6137f5dc08f1",
-            "1f01f9fb1dd049608955f7b74125df46",
-            "5f9c70ec2fa245c0af65060b0e1e6437",
-            "502b9aea682a4581bf56665bd34e3865",
-            "e73d7be5e93c460db88f6ca51a9f321f",
-            "46d75b448fa74b0e8c788910c96a889a",
-            "80acff6e8a1c47f7a86314cf5c94eda7",
-            "90a8b7517edf4ac8b229b6cba148f5d6",
-            "82855909d7de4efba3003dd17a139331",
-            "c5f8f58d80c64219adc509fbd873ab58",
-            "2ac12528c0414261b47d10059dc9a5e8"
-          ]
-        },
-        "outputId": "7281acd1-19d7-4dcc-ef5a-a6edda51d1ea",
-        "id": "Xndj4mU-Ib8Q"
-      },
-      "outputs": [
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading builder script:   0%|          | 0.00/4.31k [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "d03bc5ca5b7544e588501cd35f363c56"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading metadata:   0%|          | 0.00/2.17k [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "bb8c7b49888b489ca1ec799526bf7508"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading readme:   0%|          | 0.00/7.59k [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "c90c1fd14779491e81d9db566c718fd1"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Downloading and preparing dataset imdb/plain_text to /root/.cache/huggingface/datasets/imdb/plain_text/1.0.0/2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1...\n"
-          ]
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading data:   0%|          | 0.00/84.1M [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "ed49e86c8ab54c30ad909183530aee8b"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Generating train split:   0%|          | 0/25000 [00:00<?, ? examples/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "aefaf111ea454f7f8e14bc826f708ca8"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Generating test split:   0%|          | 0/25000 [00:00<?, ? examples/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "f71b9acdb9204fbb8fa435fa6777c582"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Generating unsupervised split:   0%|          | 0/50000 [00:00<?, ? examples/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "2b822d0eee19484a8d22154d2b2e4c1f"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Dataset imdb downloaded and prepared to /root/.cache/huggingface/datasets/imdb/plain_text/1.0.0/2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1. Subsequent calls will reuse this data.\n"
-          ]
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "  0%|          | 0/3 [00:00<?, ?it/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "39254a0779204cdeab4f6137f5dc08f1"
-            }
-          },
-          "metadata": {}
-        }
-      ],
-      "source": [
-        "dataset = load_dataset(\"imdb\")"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "ddb42a2b-a29c-4cd3-ce80-24271adca4c8",
-        "id": "C6LVL237Ib8R"
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "DatasetDict({\n",
-              "    train: Dataset({\n",
-              "        features: ['text', 'label'],\n",
-              "        num_rows: 25000\n",
-              "    })\n",
-              "    test: Dataset({\n",
-              "        features: ['text', 'label'],\n",
-              "        num_rows: 25000\n",
-              "    })\n",
-              "    unsupervised: Dataset({\n",
-              "        features: ['text', 'label'],\n",
-              "        num_rows: 50000\n",
-              "    })\n",
-              "})"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 47
-        }
-      ],
-      "source": [
-        "dataset"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.4 Tokenization des données\n",
-        "\n",
-        "Le code ci-dessous permet d'obtenir une version tokenisée du corpus."
-      ],
-      "metadata": {
-        "id": "SbjUad2-tecl"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### ▶▶ Exercice Tokenisation :\n",
-        "\n",
-        "Regardez la doc pour vérifier que vous comprenez la fonction des paramètres utilisées : https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/tokenizer#transformers.PreTrainedTokenizer. \n",
-        "\n",
-        "- à quoi sert le padding ? \n",
-        "- à quoi correspond le paramètre 'truncation' ?\n",
-        "\n",
-        "Note: pour plus de détails sur la fonction *Map()* https://huggingface.co/docs/datasets/process et aussi https://huggingface.co/docs/datasets/v2.7.1/en/package_reference/main_classes#datasets.Dataset.map"
-      ],
-      "metadata": {
-        "id": "HY-5WQapfCTV"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### --- CORRECTION\n",
-        "\n",
-        "- *padding (bool, str or PaddingStrategy, optional, defaults to False)* — Activates and controls padding. 'max_length': Pad to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided.\n",
-        "- *truncation (bool, str or TruncationStrategy, optional, defaults to False)* — Activates and controls truncation. True or 'longest_first': Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided."
-      ],
-      "metadata": {
-        "id": "2irkWDLEuSTp"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "-Kj0bW3_50et",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 113,
-          "referenced_widgets": [
-            "d8acb0e0dace410d9b1995440e4a31a0",
-            "4305cb8b9a484f82817a8213a5159293",
-            "efda31d2cca342e69c519abbb7b6293d",
-            "0ff562b22cbc4160bef1ff3d443e1121",
-            "a77a3d00c617482593e7801cd4be0ba9",
-            "2d73df70c12d4b8a99e4f547b575d9ef",
-            "c90524d44fde46358ef4fd8a52500aca",
-            "ac43b71c6a48484ca042f3d57ac6220e",
-            "0260cea216c04e60b95f7a6155f9921f",
-            "42cb934fb20d4eb19736291762c2a016",
-            "88b0ce9ec73d438dae320c9988b5976e",
-            "402c2a8a2ee44dffb3a01eaec20c98c3",
-            "d7527d02529e4016808ceac038658db9",
-            "0b93d82eab7b4198abdcf61642c0163c",
-            "f821c27fa0ce41c1b56f4886d1b9c3a3",
-            "6429bca686c84873b84dc87b48c3ae74",
-            "0cd49ed9515747e8a75d52f5b6639cf8",
-            "36d76008033d465082fcc521872674ab",
-            "3e2470174127483a97855e6292538887",
-            "36e1440bf1c645209717952092df75bb",
-            "717cdc92457e4e2399ea8aac1ac59126",
-            "04ec6007983d4e36b99aaa6cd7ddfd27",
-            "93d4ceef1f944dd1afa2300c6e87b0af",
-            "9b66c3e18812483892d50349a98b676e",
-            "2a5d5adedda94471b04062ca18c12fb4",
-            "5dfbf50aa4dd470d9c1807094563e2bd",
-            "034f96d6b9de4340b5d1d5abde3e530a",
-            "5123fab80f18495eb1187da9ac8ba2a5",
-            "d48dcef075354dca8b45a0223e7850c8",
-            "5d05a5ce506b4dee92d9ed96b954bd2c",
-            "383db47487d24849b5af562e4a2cace6",
-            "5a1094d2e3af415fa9fff810e4c552cd",
-            "157d00c209f4433095ace959efc620f8"
-          ]
-        },
-        "outputId": "7240da5f-4e36-4304-9874-edece98fe6f3"
-      },
-      "outputs": [
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "  0%|          | 0/25 [00:00<?, ?ba/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "d8acb0e0dace410d9b1995440e4a31a0"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "  0%|          | 0/25 [00:00<?, ?ba/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "402c2a8a2ee44dffb3a01eaec20c98c3"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "  0%|          | 0/50 [00:00<?, ?ba/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "93d4ceef1f944dd1afa2300c6e87b0af"
-            }
-          },
-          "metadata": {}
-        }
-      ],
-      "source": [
-        "def tokenize_function(examples):\n",
-        "    return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True)\n",
-        "\n",
-        "\n",
-        "tokenized_datasets = dataset.map(tokenize_function, batched=True)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Notez que le tokenizer retourne deux éléments:\n",
-        "\n",
-        "- input_ids: the numbers representing the tokens in the text.\n",
-        "- attention_mask: indicates whether a token should be masked or not.\n",
-        "\n",
-        "Plus d'info sur les datasets: https://huggingface.co/docs/datasets/use_dataset "
-      ],
-      "metadata": {
-        "id": "ATFZVbiYwD34"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "tokenized_datasets"
-      ],
-      "metadata": {
-        "id": "TKTi2eO8d-JJ",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "7c3cc959-4e06-40a9-8563-1194f7274613"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "DatasetDict({\n",
-              "    train: Dataset({\n",
-              "        features: ['text', 'label', 'input_ids', 'attention_mask'],\n",
-              "        num_rows: 25000\n",
-              "    })\n",
-              "    test: Dataset({\n",
-              "        features: ['text', 'label', 'input_ids', 'attention_mask'],\n",
-              "        num_rows: 25000\n",
-              "    })\n",
-              "    unsupervised: Dataset({\n",
-              "        features: ['text', 'label', 'input_ids', 'attention_mask'],\n",
-              "        num_rows: 50000\n",
-              "    })\n",
-              "})"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 49
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "## 2.5 Entraînement / Fine-tuning \n",
-        "\n",
-        "Pour l'entraînement du modèle, on définit d'abord \n",
-        "- une configuration via la classe *TrainingArguments*.\n",
-        "- un niveau de 'verbosité'\n",
-        "- une métrique d'évaluation"
-      ],
-      "metadata": {
-        "id": "HYws35k8xCq0"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "from transformers import TrainingArguments, Trainer\n",
-        "training_args = TrainingArguments(output_dir=\"test_trainer\",\n",
-        "                                  no_cuda=False, # sur ordi perso sans bon GPU\n",
-        "                                  per_device_train_batch_size=4,\n",
-        "                                  #evaluation_strategy=\"steps\",\n",
-        "                                  #eval_steps=100,\n",
-        "                                  num_train_epochs=5,\n",
-        "                                  do_eval=True )"
-      ],
-      "metadata": {
-        "id": "uLVIKxZcgOpb"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "JUtftrdy50ev"
-      },
-      "outputs": [],
-      "source": [
-        "from transformers.utils import logging\n",
-        "\n",
-        "logging.set_verbosity_error()"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "F8O_Jmcx50ew",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 49,
-          "referenced_widgets": [
-            "719427ef24264e4e865c9cb17734ca71",
-            "bd6a5aca026c41e78a6ede48e1a711de",
-            "aec7992f7c2d422a80b4a80124e4ebd1",
-            "0b822ee14a934f048b9f71f6cd978909",
-            "a4b8f74456b9402cb9c30119efc4402c",
-            "85e2273f090144939d1b1bda7110c07c",
-            "3491072932d14859b154215b1f87c32d",
-            "41389be4835045a1b329b510b67e3649",
-            "521066b916a948abb6ba7509b6ec1777",
-            "6e12244785724ac5a6312a3be758b078",
-            "3b9ce6fc6c0a44edb61605251fe5c649"
-          ]
-        },
-        "outputId": "4db60a6b-5ac8-49e4-9afe-50f1b7c49ec5"
-      },
-      "outputs": [
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading builder script:   0%|          | 0.00/4.20k [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "719427ef24264e4e865c9cb17734ca71"
-            }
-          },
-          "metadata": {}
-        }
-      ],
-      "source": [
-        "metric = evaluate.load(\"accuracy\")"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "UZk65ZKH50ew"
-      },
-      "outputs": [],
-      "source": [
-        "def compute_metrics(eval_pred):\n",
-        "    logits, labels = eval_pred\n",
-        "    predictions = np.argmax(logits, axis=-1)\n",
-        "    return metric.compute(predictions=predictions, references=labels)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### Trainer\n",
-        "\n",
-        "Une instance de la classe *Trainer* correspond à une boucle d'entraînement classique, basée sur les éléments définis précédemment. \n",
-        "\n",
-        "https://huggingface.co/docs/transformers/main_classes/trainer"
-      ],
-      "metadata": {
-        "id": "8FEJYEhDxoCp"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "On va sélectionner un sous-ensemble des données ici, pour que l'entraînement soit un peu moins long. "
-      ],
-      "metadata": {
-        "id": "4QUvGEbOvRTH"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "Dgfoqbx950eu"
-      },
-      "outputs": [],
-      "source": [
-        "small_train_dataset = tokenized_datasets[\"train\"].shuffle(seed=42).select(range(1000))\n",
-        "small_eval_dataset = tokenized_datasets[\"test\"].shuffle(seed=42).select(range(100))"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "uX2nBPnk50ew"
-      },
-      "outputs": [],
-      "source": [
-        "trainer = Trainer(\n",
-        "    model=model,\n",
-        "    args=training_args,\n",
-        "    train_dataset=small_train_dataset,\n",
-        "    eval_dataset=small_eval_dataset,\n",
-        "    compute_metrics=compute_metrics,\n",
-        ")"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### Lancer l'entraînement\n",
-        "\n",
-        "Et on peut lancer l'entraînement en utilisant la méthode *train()*."
-      ],
-      "metadata": {
-        "id": "GhGLiCEVx-8v"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "IN58_eaV50ex",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 575
-        },
-        "outputId": "e063e569-4490-4cf1-8426-1aff910bdf70"
-      },
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`,  you can safely ignore this message.\n",
-            "/usr/local/lib/python3.8/dist-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
-            "  warnings.warn(\n",
-            "***** Running training *****\n",
-            "  Num examples = 1000\n",
-            "  Num Epochs = 5\n",
-            "  Instantaneous batch size per device = 4\n",
-            "  Total train batch size (w. parallel, distributed & accumulation) = 4\n",
-            "  Gradient Accumulation steps = 1\n",
-            "  Total optimization steps = 1250\n",
-            "  Number of trainable parameters = 66955010\n"
-          ]
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "<IPython.core.display.HTML object>"
-            ],
-            "text/html": [
-              "\n",
-              "    <div>\n",
-              "      \n",
-              "      <progress value='1250' max='1250' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
-              "      [1250/1250 04:33, Epoch 5/5]\n",
-              "    </div>\n",
-              "    <table border=\"1\" class=\"dataframe\">\n",
-              "  <thead>\n",
-              " <tr style=\"text-align: left;\">\n",
-              "      <th>Step</th>\n",
-              "      <th>Training Loss</th>\n",
-              "    </tr>\n",
-              "  </thead>\n",
-              "  <tbody>\n",
-              "    <tr>\n",
-              "      <td>500</td>\n",
-              "      <td>0.401100</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <td>1000</td>\n",
-              "      <td>0.069100</td>\n",
-              "    </tr>\n",
-              "  </tbody>\n",
-              "</table><p>"
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "Saving model checkpoint to test_trainer/checkpoint-500\n",
-            "Configuration saved in test_trainer/checkpoint-500/config.json\n",
-            "Model weights saved in test_trainer/checkpoint-500/pytorch_model.bin\n",
-            "Saving model checkpoint to test_trainer/checkpoint-1000\n",
-            "Configuration saved in test_trainer/checkpoint-1000/config.json\n",
-            "Model weights saved in test_trainer/checkpoint-1000/pytorch_model.bin\n",
-            "\n",
-            "\n",
-            "Training completed. Do not forget to share your model on huggingface.co/models =)\n",
-            "\n",
-            "\n"
-          ]
-        },
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "TrainOutput(global_step=1250, training_loss=0.19106702671051026, metrics={'train_runtime': 276.3574, 'train_samples_per_second': 18.093, 'train_steps_per_second': 4.523, 'total_flos': 662336993280000.0, 'train_loss': 0.19106702671051026, 'epoch': 5.0})"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 57
-        }
-      ],
-      "source": [
-        "import os\n",
-        "os.environ[\"WANDB_DISABLED\"] = \"true\"\n",
-        "trainer.train(  )"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### 2.6 Evaluation "
-      ],
-      "metadata": {
-        "id": "MgJpr49WySMd"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### Evaluation sur un exemple\n",
-        "\n",
-        "On teste le modèle sur un exemple de l'ensemble d'évaluation. "
-      ],
-      "metadata": {
-        "id": "2bE7kBlEH4es"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "ex_eval = small_eval_dataset[1][\"text\"]\n",
-        "input = tokenizer(ex_eval, return_tensors=\"pt\")\n",
-        "input_ids = input.input_ids.to(\"cuda\")\n",
-        "print(input_ids.shape)\n",
-        "output = model(input_ids)\n",
-        "\n",
-        "print(\"gold\", small_eval_dataset[1][\"label\"])\n",
-        "\n",
-        "print(output)"
-      ],
-      "metadata": {
-        "id": "uyky-X_bzGpS",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "7b0bead2-1044-4e31-ec01-0a21515c3d72"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "torch.Size([1, 240])\n",
-            "gold 1\n",
-            "SequenceClassifierOutput(loss=None, logits=tensor([[-3.9147,  3.8467]], device='cuda:0', grad_fn=<AddmmBackward0>), hidden_states=None, attentions=None)\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "output[\"logits\"]"
-      ],
-      "metadata": {
-        "id": "JDcpli3k2d_f",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "d3539b9f-a583-4093-ac69-9e1c9d8ad4d3"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "tensor([[-3.9147,  3.8467]], device='cuda:0', grad_fn=<AddmmBackward0>)"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 59
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "pred = np.argmax(output[\"logits\"].cpu().detach().numpy(), axis=-1)\n",
-        "print(\"Pred\", pred)"
-      ],
-      "metadata": {
-        "id": "3DeTwx2oz-Ek",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "609d3e9b-7fdf-4e79-db11-9b10acf321a2"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Pred [1]\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "print(tokenizer.tokenize(ex_eval))"
-      ],
-      "metadata": {
-        "id": "HsgQ6Ekd21IP",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "b5007e93-a07f-4afd-885b-53c1d319c7e4"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "['this', 'is', 'the', 'latest', 'entry', 'in', 'the', 'long', 'series', 'of', 'films', 'with', 'the', 'french', 'agent', ',', 'o', '.', 's', '.', 's', '.', '117', '(', 'the', 'french', 'answer', 'to', 'james', 'bond', ')', '.', 'the', 'series', 'was', 'launched', 'in', 'the', 'early', '1950', \"'\", 's', ',', 'and', 'spawned', 'at', 'least', 'eight', 'films', '(', 'none', 'of', 'which', 'was', 'ever', 'released', 'in', 'the', 'u', '.', 's', '.', ')', '.', \"'\", 'o', '.', 's', '.', 's', '.', '117', ':', 'cairo', ',', 'nest', 'of', 'spies', \"'\", 'is', 'a', 'bree', '##zy', 'little', 'comedy', 'that', 'should', 'not', '.', '.', '.', 'repeat', 'not', ',', 'be', 'taken', 'too', 'seriously', '.', 'our', 'protagonist', 'finds', 'himself', 'in', 'the', 'middle', 'of', 'a', 'spy', 'chase', 'in', 'egypt', '(', 'with', 'mor', '##ro', '##co', 'doing', 'stand', 'in', 'for', 'egypt', ')', 'to', 'find', 'out', 'about', 'a', 'long', 'lost', 'friend', '.', 'what', 'follows', 'is', 'the', 'standard', 'james', 'bond', '/', 'inspector', 'cl', '##ous', '##so', '##u', 'kind', 'of', 'antics', '.', 'although', 'our', 'man', 'is', 'something', 'of', 'an', 'over', '##t', 'x', '##eno', '##ph', '##obe', ',', 'sex', '##ist', ',', 'homo', '##ph', '##obe', ',', 'it', \"'\", 's', 'treated', 'as', 'pure', 'far', '##ce', '(', 'as', 'i', 'said', ',', 'don', \"'\", 't', 'take', 'it', 'too', 'seriously', ')', '.', 'although', 'there', 'is', 'a', 'bit', 'of', 'rough', 'language', '&', 'cartoon', 'violence', ',', 'it', \"'\", 's', 'basically', 'okay', 'for', 'older', 'kids', '(', 'ages', '12', '&', 'up', ')', '.', 'as', 'previously', 'stated', 'in', 'the', 'subject', 'line', ',', 'just', 'sit', 'back', ',', 'pass', 'the', 'popcorn', '&', 'just', 'enjoy', '.']\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### ▶▶ Exercice : Analyse d'erreurs\n",
-        "\n",
-        "Affichez les exemples sur lesquels le modèle a fait une erreur de prédiction. \n",
-        "Pour chaque exemple, affichez le label gold, le label prédit et le texte de l'exemple correspondant.\n",
-        "\n",
-        "\n",
-        "Note: aidez vous de la doc de Trainer https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Trainer\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "A-cx4sdZGcz2"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# --- correction\n",
-        "if training_args.do_eval:\n",
-        "        prob_labels,_,_ = trainer.predict( test_dataset=small_eval_dataset)\n",
-        "        pred_labels = [ np.argmax(logits, axis=-1) for logits in prob_labels ]\n",
-        "        #print( pred_labels)\n",
-        "        gold_labels = [ inst[\"label\"] for inst in small_eval_dataset]\n",
-        "\n",
-        "        for i in range( len( small_eval_dataset ) ):\n",
-        "          ## -- Print pred, gold \n",
-        "          #print(pred_labels[i], gold_labels[i])\n",
-        "          if pred_labels[i] != gold_labels[i]:\n",
-        "            print(i, gold_labels[i], pred_labels[i], small_eval_dataset[i][\"text\"] )"
-      ],
-      "metadata": {
-        "id": "L9phpmPnII-O",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 419
-        },
-        "outputId": "fd772fd4-814a-46b2-a327-c8bd29ebe510"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "The following columns in the test set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`,  you can safely ignore this message.\n",
-            "***** Running Prediction *****\n",
-            "  Num examples = 100\n",
-            "  Batch size = 8\n"
-          ]
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "<IPython.core.display.HTML object>"
-            ],
-            "text/html": []
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "14 1 0 Dirty Harry goes to Atlanta is what Burt called this fantastic, first-rate detective thriller that borrows some of its plot from the venerable Dana Andrews movie \"Laura.\" Not only does Burt Reynolds star in this superb saga but he also helmed it and he doesn't make a single mistake either staging the action or with his casting of characters. Not a bad performance in the movie and Reynolds does an outstanding job of directing it. Henry Silva is truly icy as a hit-man.<br /><br />Detective Tom Sharky (Burt Reynolds) is on a narcotics case in underground Atlanta when everything goes wrong. He winds up chasing a suspect and shooting it out with the gunman on a bus. During the melee, an innocent bystander dies. John Woo's \"The Killer\" replicates this scene. Anyway, the Atlanta Police Department busts Burt down to Vice and he takes orders from a new boss, Frisco (Charles Durning of \"Oh, Brother, Where Art Thou?\") in the basement. Sharky winds up in a real cesspool of crime. Sharky and his fellow detectives Arch (Bernie Casey) and Papa (Brian Keith) set up surveillance on a high-priced call girl Dominoe (Rachel Ward of \"After Dark, My Sweet\")who has a luxurious apartment that she shares with another girl.<br /><br />Dominoe is seeing a local politician Hotchkins (Earl Holliman of \"Police Woman\") on the side who is campaigning for governor but the chief villain, Victor (Vittorio Gassman of \"The Dirty Game\") wants him to end the affair. Hotchkins is reluctant to accommodate Victor, so Victor has cocaine snorting Billy Score (Henry Silva of \"Wipeout\")terminate Dominoe. Billy blasts a hole the size of a twelve inch pizza in the door of Dominoe's apartment and kills her.<br /><br />Sharky has done the unthinkable. During the surveillance, he has grown fond of Dominoe to the point that he becomes hopelessly infatuated with her. Sharky's mission in life now is to bust Victor, but he learns that Victor has an informant inside the Atlanta Police Department. The plot really heats up when Sharky discovers later that Billy shot the wrong girl and that Dominoe is still alive! Sharky takes her into protective custody and things grow even more complicated. He assembles his \"Machine\" of the title to deal with Victor and his hoods.<br /><br />William Fraker's widescreen lensing of the action is immaculate. Unfortunately, this vastly underrated classic is available only as a full-frame film. Fraker definitely contributes to the atmosphere of the picture, especially during the mutilation scene on the boat when the villain's cut off one of Sharky's fingers. This is a rather gruesome scene.<br /><br />Burt never made a movie that surpassed \"Sharky's Machine.\"\n",
-            "21 0 1 Coming from Kiarostami, this art-house visual and sound exposition is a surprise. For a director known for his narratives and keen observation of humans, especially children, this excursion into minimalist cinematography begs for questions: Why did he do it? Was it to keep him busy during a vacation at the shore? <br /><br />\"Five, 5 Long Takes\" consists of, you guessed it, five long takes. They are (the title names are my own and the times approximate): <br /><br />\"Driftwood and waves\". The camera stands nearly still looking at a small piece of driftwood as it gets moved around by small waves splashing on a beach. Ten minutes.<br /><br />\"Watching people on the boardwalk\". The camera stands still looking at the ocean horizon and a boardwalk. People walk across the camera frame, their faces too far and blurry to make them interesting. Eleven minutes.<br /><br />\"Six dogs at the water's edge\". The camera stands still looking at the ocean horizon with a sandy stretch of beach nearby. Far away at the water's edge, six dogs not doing much, just relaxing. Sixteen minutes.<br /><br />\"Ducks in line, gaggle of ducks\". The camera stands still looking at the ocean horizon near the water's edge. Dozen and dozen of ducks stream in single file from left to right. I assume that Kiarostami released them gradually. The last two ducks stop dead on their track and suddenly a gaggle of ducks rolls quietly from right to left. I assume Kiarostami collected the ducks and re-released all at the same time. It is not the first time that he deals with the contrast between organized and disorganized behavior. Eight minutes.<br /><br />\"Frog symphony, oops, I mean cacophony, for a stormy night\". The camera stands over a pond at night. It's pitch black except for what appears to be the reflection of the moon on the undulating water. It is a stormy night and clouds race to cover the moon. The screen goes dark. What remains for us is the cacophony of frogs, howling dogs and, eventually, morning roosters. Hit me on the head if this was done in a single take. I saw this segment as a sound composition put together in the editing room and accompanied by a simple visualization. Twenty seven minutes! <br /><br />Except for the mildly amusing ducks, this exercise in minimalism left me cold. A nonessential film for Kiarostami admirers.<br /><br />I thought I would rate \"Five\" a five, but four is what it deserves.<br /><br />The film is dedicated to Yasujiru Ozu.\n",
-            "30 0 1 Intended as light entertainment, this film is indeed successful as such during its first half, but then succumbs to a rapidly foundering script that drops it down. Harry (Judd Nelson), a \"reformed\" burglar, and Daphne (Gina Gershon), an aspiring actress, are employed as live window mannequins at a department store where one evening they are late in leaving and are locked within, whereupon they witness, from their less than protective glass observation point, an apparent homicide occurring on the street. The ostensible murderer, Miles Raymond (Nick Mancuso), a local sculptor, returns the following day to observe the mannequins since he realizes that they are the only possible witnesses to the prior night's violent event and, when one of the posing pair \"flinches\", the fun begins. Daphne and Harry report their observations at a local police station, but when the detective taking a crime report remembers Harry's criminal background, he becomes cynical. There are a great many ways in which a film can become hackneyed, and this one manages to utilize most of them, including an obligatory slow motion bedroom scene of passion. A low budget affair shot in Vancouver, even police procedural aspects are displayed by rote. The always capable Gershon tries to make something of her role, but Mancuso is incredibly histrionic, bizarrely so, as he attacks his lines with an obvious loose rein. Although the film sags into nonsense, cinematographer Glen MacPherson prefers to not follow suit, as he sets up with camera and lighting some splendidly realised compositions that a viewer may focus upon while ignoring plot holes and witless dialogue. A well-crafted score, appropriately based upon the action, is contributed by Hal Beckett. The mentioned dialogue is initially somewhat fresh and delivered well in a bantering manner by Nelson and Gershon, but in a subsequent context of flawed continuity and logic, predictability takes over. The direction reflects a lack of original ideas or point of view, and post-production flaws set the work back farther than should be expected for a basic thriller.\n",
-            "32 1 0 It's really too bad that nobody knows about this movie. I think if it were just spruced up a little and if it weren't so low-budget, I think one of the major film companies might have wanted to take it. I first saw this movie when I was 11, and I thought it was so powerful with the many great, yet illegal lengths that Mitchell goes to just to keep his family together. It inspired me then and it amazes me now. If you're lucky enough to find a copy of this movie, don't miss it!\n",
-            "34 0 1 \"An astronaut (Michael Emmet) dies while returning from a mission and his body is recovered by the military. The base where the dead astronaut is taken to becomes the scene of a bizarre invasion plan from outer space. Alien embryos inside the dead astronaut resurrect the corpse and begin a terrifying assault on the military staff in the hopes of conquering the world,\" according to the DVD sleeve's synopsis.<br /><br />A Roger Corman \"American International\" production. The man who fell to Earth impregnated, Mr. Emmet (as John Corcoran), does all right. Angela Greene is his pretty conflicted fiancée. And, Ed Nelson (as Dave Randall) is featured as prominently. With a bigger budget, better opening, and a re-write for crisper characterizations, this could have been something approaching classic 1950s science fiction.<br /><br />*** Night of the Blood Beast (1958) Bernard L. Kowalski, Roger Corman ~ Michael Emmet, Angela Greene, Ed Nelson\n",
-            "35 1 0 I recently rented this video after seeing \"Final Ascent\" by the same writer. I wasn't prepared for how intense this film would get. I found it engaging from start to finish, and was rooting for the teenagers to get away with their attempted crime. The ending was definitely disturbing with some of its implied violence, but well-done. I highly recommend this picture.\n",
-            "38 0 1 A very sensitive topic--15 y/o girl abandoned by mother as a baby and who goes to visit her, continues to be ignored, is raped by her mom's boyfriend, becomes pregnant. There was not enough depth displayed of this situation. Too much of time is taken up on the chase with the truckers transporting the baby. (Interesting, this baby with asthma--you never see him cry-- except once--, be fed, have is diaper changed during the whole truck transport ordeal.) I would have liked to have seen more of the interrelationships, more focus on the fact that this girl was a minor--this should have stood up in court immediately.<br /><br />And this was a true story! It deserved a better telling than that!!<br /><br />If it weren't for the subject matter, I would have given this closer to a 0 rating. I rented this from the library. Only later I found out it was a made for TV movie. <br /><br />oh well\n",
-            "39 0 1 This is about some vampires (who can run around out in the sunlight), that are causing some problems down in South America. Casper Van Dien is sent in with his team of commandos to investigate. The movie opens with Van Dien & Co. walking through the jungle, and there's this huge black guy who just absolutely, positively cannot act. He speaks all his lines as if he's reading them off the cue-cards for the very first time. His voice is also so low that, well, it's positively hilarious. Great way to get the movie started! Anyhow, they run into some of our vampires, shoot them (this causes them to appear to die for about 20 seconds), and then of course they come back to life. Van Dien notices that one of them was impaled across a tree limb, and yells to his buddies to kill them with wood. The stunt work must be seen to be believed - the vampires are on wires that pull them up trees, which is supposed to make them look like they can climb really easily, but it just makes them look like they're bouncing around on bungee cords or something.<br /><br />Yeah...anyhow, later on, the huge black dude is down in South America with some guys (Van Dien not included), and they're attacked by more vampires. It's really too bad these guys never heard of a crossbow, because it would seem to be the perfect weapon to kill the little bloodsuckers with, but instead they use big old wooden stakes that they try to impale the vampires with by hand. The big black dude ends up getting captured and he eventually becomes some big powerful vampire leader. Van Dien ends up battling him later on. It doesn't help that all through the movie, everyone forgets that if you shoot a vampire, they are knocked out for 20 seconds or so, which would enable a person to stick a stake in them fairly easily. They just try to stick stakes in them in the middle of hand-to-hand combat. Yeah, not exactly brilliant tactics.<br /><br />There's a hot babe (remember Veronica from The Lost World TV show? Yes, it's her!) who also happens to be walking around in the middle of Vampire County on some sort of research mission, and she also just happens to be Van Dien's ex-wife. Hey, what are the odds? It's a shame she's not in the movie a whole lot more than she is. Will her and Casper get back together in the end? Will Van Dien defeat the huge black dude who can't act? Will the circus performer vampires make you laugh through all the numerous action scenes? Will we hear the three stooges music when somebody does something funny? Has even Lynda Carter forgotten how to act in her small cameo (she's more convincing in her Sleep Number Bed commercials)? These questions and more will will be answered if you make it all the way to the end of the movie.<br /><br />I don't know, it might score some points on the so bad it's good scale, but that's about it. Eh, it's a bunch of goofs running around in the jungle, I guess it's kind of entertaining.\n",
-            "46 1 0 Late night on BBC1, was on my way to bed but curiosity piqued at a contemporary-set Irish film so I stayed to watch for a few minutes and then stayed to the end. I have to admit that the main attraction was the only English actress, Kelly Reilly, who is stunning to look at.<br /><br />This is billed as a black comedy, which is one of the hardest things to pull off. It should be the perfect blend of horror and horrible laughs so that in the end you don't know why you're laughing - for me Martin Scorsese's After Hours (1985) is the best example. Dead Bodies is more black than comedy but the plot rattles along and spirals down towards further blackness. I didn't spot the final twists in the tale as some other posters here did so I was suitably surprised.<br /><br />As a snapshot of the Irish film industry in 2003, it all seems rather worthy; it doesn't look like they spent too much on the making of it so it had a chance to make its money back. The script could've been a whole lot sharper but the acting was on the whole pretty good. I'm glad I watched it, flaws and all, tho I don't think I learnt much about Ireland today, especially their policing methods!\n",
-            "51 1 0 It is to typical of people complaining about something when they no nothing about it...So this is about a gay man falling for a straight women. First of all...This is a true story so you cant say its not believable Second its written by a gay man so the whole thing about this being against the gays are just plain stupid. Personally I think this was the best love story I've ever seen. And I am very pro gay. I think this shows that real love is about personality not just looks and sex. And it has nothing against anyone who is gay, straight or bi unlike so many other shows. Maybe we in Europe take to it more cus most TV here are a bit deeper and make you think more then American TV...Plus we don't fear when it comes to showing certain things.<br /><br />If you want something funny with one of Englands best (Lesley Sharp) and you want to see a decent believable love story without too much sap this is for you. I know I love it\n",
-            "55 1 0 I remember seeing this film in the mid 80's thought it a well paced and well acted piece. I now work quite often in Berkeley Square and the had to get a copy of DVD to remind myself how little the area has changed, although my office is newish it just 30 seconds away from \"the bank\". Even Jack Barclays car dealership is still there selling Bentleys and Rolls Royces.<br /><br />It's look like the DVD is due a Region 2 release soon. The region 1 copy I is very poor quality. Let's hope they've cleaned it up.<br /><br />Only the slightly dodgy escape sequence from the court spoils what would otherwise be a great film but I guess is in line with the caper tag the film goes with.\n",
-            "58 1 0 I'd like to point out these excellent points in favor of this movie:<br /><br />#1 Angelina Jolie sex scene <br /><br />#2 Foley artist outdid themselves <br /><br />#3 plot was quite thick <br /><br />#4 DVD does includes trailers and chapter stops<br /><br />#5 no animals were harmed in the making of the movie <br /><br />#6 homages to blade runner through out the film <br /><br />#7 burning trash cans <br /><br />#8 funny guy with no legs <br /><br />#9 Voice overs by Jack Palance added a real dynamic element to the film. <br /><br />#10 Sage advise, for example \"When you dine with the devil bring a long spoon\". <br /><br />#11 Angelina Jolie was only 18! <br /><br />To sum it up: an evening of entertainment was provided.\n",
-            "59 1 0 Sex, drugs, racism and of course you ABC's. What more could you want in a kid's show!<br /><br />------------------------------------------- -------------------------------------------<br /><br />\"User Comment Guidelines <br /><br />Please note there is a 1,000 word limit on comments. The recommended length is 200 to 500 words. The minimum length for comments is 10 lines of text. Comments which are too short or have been padded with junk text will be discarded. You may only post a single comment per title. <br /><br />What to include: Your comments should focus on the title's content and context. The best reviews include not only whether you liked or disliked a movie or TV-series, but also why. Feel free to mention other titles you consider similar and how this one rates in comparison to them. Comments that are not specific to the title will not be posted on our site. Please write in English only and note that we do not support HTML mark-up within the comments\"\n",
-            "74 0 1 I saw this movie, and I do like horror movies.<br /><br />I did not know what to expect, but as soon the movie was on his way it was nice to watch it. The idea was pretty original and the acting was nice. Especially Jenna Dewan as the exciting/evil Tamara.<br /><br />The hardest thing about horror movies, is to make a good ending. But there the movie failed. For a change, a end-scene in a hospital, where suddenly all employees are gone. First you see doctors and nurses running around, but then they all went home?<br /><br />No cries for help while being chased by Tamara, Escaping to the roof (also a smart move...not) and off course a kind of open ending.<br /><br />No....the movie started great, the main part was nice to watch, but they really messed up the ending using all clichés from bad horror movies. Jeffrey Reddick failed in my eyes with this movie, after making some really quality movies like Final Destination 1 and 2.<br /><br />If you like a good horror full of cliché endings, Tamara is a good movie to watch. For me, I like movies which surprise me.\n",
-            "75 0 1 A truly masterful piece of filmmaking. It managed to put me to sleep and to boggle my mind. So boring that it induces sleep and yet so ludicrous that it made me wonder how stuff like this gets made. Avoid at all costs. That is, unless you like taking invisible cranial punishment, in which case I highly recommend it.\n",
-            "82 0 1 It has a bit of that indie queer edge that was hip in the 90s and which places an explicit sell-by date on the visual style. Characters are uniformly apathetic and farcically deadpan. Street hoodlums in Greece wear new clothing out of the box without creases or stains. They all appear to visit the same marine hair dresser. All uniformly exhibit the same low IQ when making their dispassionate underground business deals. When things go wrong its all because they aren't real Greeks - they're pastoral sunshine boys caught in a strange night city world. Makes a big whine about disaffected immigrants but never bothers to actually investigate the problems with Russian/Kazakh/Albanian cultures. If Giannaris had the proper perspective on this project it might have made a wonderful Bel Ami production. The fleeting glimpses of toned boy-beef is the only spark in this generic small-time mobster programmer.\n",
-            "94 0 1 Clearly this film was made for a newer generation that may or may not have had an inkling of Charles Bukowski's work. The autobiographical Henry Chinaski character in Bukowski's stories was brilliantly portrayed to perfection by Mickey Rourke in 1987's 'Barfly', also starring Faye Dunaway. Anyone who has seen 'Factotum' should certainly see 'Barfly' to get a better look at how Bukowski wrote his character. 'Factotum' lacks the greasy seediness of Bukowski's screenplay and the fearless hopelessness of his loner hero. The inadvertent humor that bubbles through in the dark desperation of Chinaski's misadventures doesn't work for Dillon as it did so admirably for the overweight filthy blood-soaked Rourke. Rourke's character makes the pain and pleasure of the previous night's misbehavior a place-setting for yet another grueling ugly day in the life of a drunken misanthropic unknown writer. Dillon's character misses these marks in favor of a strutting, handsome, relatively clean-looking wanna-be writer that scarcely passes for any moment in that of Chinaski's story. Dunaway's sleazy heroine Wanda is the perfect complement to the ne'er-do-well Henry. The women in 'Factotum' can't hold a candle to Dunaway's 'distressed goddess' and the use of more profane sexual subject matter in 'Factotum' proves to be more of a crude distraction than a tip of the hat to Bukowski's raw and unapologetic portrayals of dysfunctional relationships. I was stunned at how many of the exact same scenes were used in 'Factotum' (Marisa Tomei buying all the stuff and charging it to the old man is an exact rip-off from 'Barfly').<br /><br />If you want to see the best Bukowski stories on film, see 'Barfly' and 'Love is a Dog From Hell' (which also goes by the title 'Crazy Love').\n",
-            "98 1 0 There are few films that deal with things that I would consider myself an expert on, this one is.<br /><br />After some years of Fantasy Role Playing we split, me not leaving without a sense of shame of what I had become: a dork.<br /><br />You see, these things are really canonical, it happens to everybody.<br /><br />First you create a character fairly and it dies after the first attack.<br /><br />Then you help a little with the constitution, and while you're at it, why not help with strength, intelligence, intuition, charisma and dexterity too? This in turn frustrates the game master who doesn't know how to deal with this invincible gang. And after a while it bores the players too, so they start to create ever more exotic race-profession combinations, no matter how ludicrous it is.<br /><br />I created a Druedain warrior monk, yeah, not that far from the film.<br /><br />And that's not all to be said about the destructiveness of the inherent dynamic of this devilish game (think the hunt for experience points), but just watch the film, it shows it all - and of course the stupidity of its most basic premisses.<br /><br />For this end, in turn, there is no better profession than the bard. I don't exactly understand why the bard became a character in the first place, after all, the blacksmith is none. But once it became one, it had to be mapped into the game flow, that is: it had to be made lethal, at least indirectly. The poking of fun out of this never comes to an end and rightfully so.<br /><br />Sure, it's not exactly a professional production, but I haven't seen a better satire in ages.\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "On affiche finalement le score du modèle sur l'ensemble d'évaluation."
-      ],
-      "metadata": {
-        "id": "VaBD1-jaoR3w"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "if training_args.do_eval:\n",
-        "        metrics = trainer.evaluate(eval_dataset=small_eval_dataset)\n",
-        "        print(metrics)"
-      ],
-      "metadata": {
-        "id": "3IdSk-1XHiVK",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 144
-        },
-        "outputId": "6d822aad-3e3c-4127-981b-5deaaa9db1fe"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`,  you can safely ignore this message.\n",
-            "***** Running Evaluation *****\n",
-            "  Num examples = 100\n",
-            "  Batch size = 8\n"
-          ]
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "<IPython.core.display.HTML object>"
-            ],
-            "text/html": [
-              "\n",
-              "    <div>\n",
-              "      \n",
-              "      <progress value='13' max='13' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
-              "      [13/13 00:01]\n",
-              "    </div>\n",
-              "    "
-            ]
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "{'eval_loss': 1.0450938940048218, 'eval_accuracy': 0.82, 'eval_runtime': 1.7213, 'eval_samples_per_second': 58.094, 'eval_steps_per_second': 7.552, 'epoch': 5.0}\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "kj5C4zon50ey"
-      },
-      "source": [
-        "# Part 4 - Interprétabilité\n",
-        "\n",
-        "Dans cette partie nous allons tester une méthode \"d'attribution\" qui observe certains valeurs du modèle pour repérer les parties importantes de l'input dans la décision du modèle. \n",
-        "\n",
-        "Nous utiliserons le package *transformers_interpret*, qui est une surcouche de la librairie plus générale *captum*.\n",
-        "\n",
-        "- Captum library: https://captum.ai/"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "rKUWY_xh50ey"
-      },
-      "source": [
-        "## 3.1 Classification de phrases: sentiment"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "L_90kDt150ey"
-      },
-      "outputs": [],
-      "source": [
-        "# pour utiliser un modèle existant répertorié sur huggingface.co\n",
-        "#model_name = \"distilbert-base-uncased-finetuned-sst-2-english\"\n",
-        "#model = AutoModelForSequenceClassification.from_pretrained(model_name)\n",
-        "#tokenizer = AutoTokenizer.from_pretrained(model_name)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### ▶▶ Exercice : Afficher les attributions pour un exemple correctement prédit\n",
-        "\n",
-        "Utiliser le *cls_explainer* défini ci-dessous pour afficher les attributions pour chaque mot pour : \n",
-        "- un exemple correctement prédit (récupérer un exemple à partir de son indice à partir de l'exercice précédent)\n",
-        "- un exemple correspondant à une erreur du modèle\n",
-        "Utilisez eégalement la fonction de visualisation des attributions.\n",
-        "\n",
-        "Aidez-vous de l'exemple sur cette page : https://pypi.org/project/transformers-interpret/"
-      ],
-      "metadata": {
-        "id": "xUh2_lqxho0n"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "6EbVZpow50ez"
-      },
-      "outputs": [],
-      "source": [
-        "cls_explainer = SequenceClassificationExplainer(\n",
-        "    model,\n",
-        "    tokenizer)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### --- CORRECTION"
-      ],
-      "metadata": {
-        "id": "2UHYc10giO8p"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# récupérer un exemple / le texte correctement  predit\n",
-        "ex_positif = small_eval_dataset[1][\"text\"]\n",
-        "ex_positif"
-      ],
-      "metadata": {
-        "id": "hRnH27AOiFp1",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 122
-        },
-        "outputId": "c390117b-3890-4903-d5a5-f73996d0ca0d"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "\"This is the latest entry in the long series of films with the French agent, O.S.S. 117 (the French answer to James Bond). The series was launched in the early 1950's, and spawned at least eight films (none of which was ever released in the U.S.). 'O.S.S.117:Cairo,Nest Of Spies' is a breezy little comedy that should not...repeat NOT, be taken too seriously. Our protagonist finds himself in the middle of a spy chase in Egypt (with Morroco doing stand in for Egypt) to find out about a long lost friend. What follows is the standard James Bond/Inspector Cloussou kind of antics. Although our man is something of an overt xenophobe,sexist,homophobe, it's treated as pure farce (as I said, don't take it too seriously). Although there is a bit of rough language & cartoon violence, it's basically okay for older kids (ages 12 & up). As previously stated in the subject line, just sit back,pass the popcorn & just enjoy.\""
-            ],
-            "application/vnd.google.colaboratory.intrinsic+json": {
-              "type": "string"
-            }
-          },
-          "metadata": {},
-          "execution_count": 66
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Recuperer les attributions\n",
-        "# word_attributions =  ...\n",
-        "word_attributions = cls_explainer(ex_positif)"
-      ],
-      "metadata": {
-        "id": "E-lWGvF45gcJ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "GxCWlucU50ez",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "d58c33c8-f909-4863-eaa7-40467376a740"
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[('[CLS]', 0.0),\n",
-              " ('this', 0.20517517071337907),\n",
-              " ('is', 0.15455378068610745),\n",
-              " ('the', 0.19900871750030721),\n",
-              " ('latest', 0.3366573041710291),\n",
-              " ('entry', -3.0430739728537e-05),\n",
-              " ('in', 0.20046279975787426),\n",
-              " ('the', 0.026597689028839126),\n",
-              " ('long', 0.026163223707621353),\n",
-              " ('series', 0.07150501994247042),\n",
-              " ('of', 0.0780180014355186),\n",
-              " ('films', 0.20501904447208733),\n",
-              " ('with', 0.11556731966026416),\n",
-              " ('the', 0.019136669294628622),\n",
-              " ('french', 0.04268935902578294),\n",
-              " ('agent', -0.054447245992982674),\n",
-              " (',', -0.005626558003399687),\n",
-              " ('o', -0.006354876705030943),\n",
-              " ('.', -0.00728125105053229),\n",
-              " ('s', -0.0002717810007659201),\n",
-              " ('.', -0.011840460111455623),\n",
-              " ('s', 0.006431523960080555),\n",
-              " ('.', -0.011183504728923991),\n",
-              " ('117', -0.007285102741813965),\n",
-              " ('(', 0.016222911259960806),\n",
-              " ('the', 0.0010398634623660242),\n",
-              " ('french', 0.02412273054388603),\n",
-              " ('answer', -0.028053418323231962),\n",
-              " ('to', -0.00957503886775167),\n",
-              " ('james', 0.025269479495623498),\n",
-              " ('bond', 0.024788810454628694),\n",
-              " (')', -0.0008628805427748803),\n",
-              " ('.', 0.04555059897877993),\n",
-              " ('the', 0.09849460349147024),\n",
-              " ('series', 0.19990084441073705),\n",
-              " ('was', 0.0514882182751402),\n",
-              " ('launched', 0.07910934435483746),\n",
-              " ('in', 0.002743801703972822),\n",
-              " ('the', 0.0073511159697738585),\n",
-              " ('early', 0.04388838772344011),\n",
-              " ('1950', 0.02050528460971008),\n",
-              " (\"'\", 0.007138088032772846),\n",
-              " ('s', 0.011695970119565555),\n",
-              " (',', 0.003118395895068747),\n",
-              " ('and', -0.01923876898650255),\n",
-              " ('spawned', 0.008455196356814564),\n",
-              " ('at', -0.0035511962103572086),\n",
-              " ('least', -0.021502452548397832),\n",
-              " ('eight', 0.01136916405406635),\n",
-              " ('films', 0.00788259705619071),\n",
-              " ('(', 0.024198888076400443),\n",
-              " ('none', -0.07667196059010561),\n",
-              " ('of', -0.012581518653187282),\n",
-              " ('which', 0.04563923522413989),\n",
-              " ('was', -0.015810118508327035),\n",
-              " ('ever', 0.022701521912728066),\n",
-              " ('released', -0.032333862575171145),\n",
-              " ('in', 0.011488173882428336),\n",
-              " ('the', -0.003054137874196151),\n",
-              " ('u', 0.005120924155788185),\n",
-              " ('.', -0.006431911853093424),\n",
-              " ('s', 0.025981484534430253),\n",
-              " ('.', 0.019762970878860933),\n",
-              " (')', -0.06410911583114043),\n",
-              " ('.', -0.06303383063218321),\n",
-              " (\"'\", 0.020626200362187014),\n",
-              " ('o', -0.011695861252083897),\n",
-              " ('.', -0.016209853317218005),\n",
-              " ('s', -0.007420806986924734),\n",
-              " ('.', -0.01867108160382139),\n",
-              " ('s', 0.007240363225386805),\n",
-              " ('.', -0.03148658410992953),\n",
-              " ('117', -0.0023046324525392552),\n",
-              " (':', 0.012950918430652995),\n",
-              " ('cairo', 0.024443411639709284),\n",
-              " (',', -0.019198321592985804),\n",
-              " ('nest', 0.0052395978341908825),\n",
-              " ('of', 0.015941601392346245),\n",
-              " ('spies', -0.018448238046558506),\n",
-              " (\"'\", 0.02049390423951859),\n",
-              " ('is', 0.08503154782409228),\n",
-              " ('a', 0.09972055084115641),\n",
-              " ('bree', 0.12096905860919142),\n",
-              " ('##zy', 0.00405234702664788),\n",
-              " ('little', -0.2404712903915025),\n",
-              " ('comedy', 0.06722859357394388),\n",
-              " ('that', 0.042023428558161276),\n",
-              " ('should', -0.03841322972677788),\n",
-              " ('not', -0.0971025297641167),\n",
-              " ('.', -0.015920923930960305),\n",
-              " ('.', -0.04757489882975944),\n",
-              " ('.', -0.008702975404328385),\n",
-              " ('repeat', -0.01762468500104525),\n",
-              " ('not', 0.3643128113338133),\n",
-              " (',', -0.17973917692319516),\n",
-              " ('be', 0.07980739133297704),\n",
-              " ('taken', -0.07599649272887034),\n",
-              " ('too', 0.13619282126887894),\n",
-              " ('seriously', -0.39726603694829),\n",
-              " ('.', -0.09398486336547972),\n",
-              " ('our', 0.05021999551133155),\n",
-              " ('protagonist', 0.03167802222304211),\n",
-              " ('finds', 0.03476162343966558),\n",
-              " ('himself', 0.022492960380242344),\n",
-              " ('in', 0.028407486808694222),\n",
-              " ('the', 0.00031149337999287325),\n",
-              " ('middle', -0.03503143198540526),\n",
-              " ('of', -0.00681473667685525),\n",
-              " ('a', -0.03044904099854505),\n",
-              " ('spy', -0.012576971059115424),\n",
-              " ('chase', -0.005908029801864778),\n",
-              " ('in', 0.02639854835176857),\n",
-              " ('egypt', 0.047077840145123465),\n",
-              " ('(', 0.028306237974307227),\n",
-              " ('with', 0.008848143666300599),\n",
-              " ('mor', -0.01126809522694494),\n",
-              " ('##ro', -0.0040311627613528744),\n",
-              " ('##co', -0.012409441332721307),\n",
-              " ('doing', -0.02105805945061),\n",
-              " ('stand', -0.005228896187908729),\n",
-              " ('in', 0.0028844702430211987),\n",
-              " ('for', -0.021441300086457088),\n",
-              " ('egypt', 0.022155482065977235),\n",
-              " (')', 0.017518307872877177),\n",
-              " ('to', 0.01340108106955897),\n",
-              " ('find', -0.03578835115115607),\n",
-              " ('out', -0.02178522050768061),\n",
-              " ('about', -0.010211020067822709),\n",
-              " ('a', 0.01802308041702857),\n",
-              " ('long', 0.0337028051479534),\n",
-              " ('lost', -0.012388058220547934),\n",
-              " ('friend', 0.023188607584112012),\n",
-              " ('.', 0.0014637943076012826),\n",
-              " ('what', 0.02373720524590148),\n",
-              " ('follows', 0.017077344028438357),\n",
-              " ('is', 0.00826820259244703),\n",
-              " ('the', 0.010193159429255165),\n",
-              " ('standard', -0.0003360678418286561),\n",
-              " ('james', 0.023095067586397098),\n",
-              " ('bond', 0.020638902164248286),\n",
-              " ('/', -0.019570361793231697),\n",
-              " ('inspector', -0.008945644761565388),\n",
-              " ('cl', -0.01586295805372584),\n",
-              " ('##ous', -0.006498335622919694),\n",
-              " ('##so', -0.01326696807802776),\n",
-              " ('##u', 0.009266228357261205),\n",
-              " ('kind', 0.0030394012283389564),\n",
-              " ('of', 0.005622533423550698),\n",
-              " ('antics', -0.002257517973184224),\n",
-              " ('.', 0.012848057804009945),\n",
-              " ('although', 0.03773719235648376),\n",
-              " ('our', 0.02788814550569141),\n",
-              " ('man', 0.04771952359002729),\n",
-              " ('is', -0.0017621817088807558),\n",
-              " ('something', -0.039006879407966315),\n",
-              " ('of', 0.013681468161640542),\n",
-              " ('an', -0.060220976743375315),\n",
-              " ('over', -0.17824151502930502),\n",
-              " ('##t', -0.05467421622278216),\n",
-              " ('x', 0.024629436314687902),\n",
-              " ('##eno', 0.0024834251074681924),\n",
-              " ('##ph', -0.015700299429428317),\n",
-              " ('##obe', 0.01165478831907894),\n",
-              " (',', -0.001662352742080238),\n",
-              " ('sex', -0.0522806869213034),\n",
-              " ('##ist', -0.01583154407396009),\n",
-              " (',', -0.00784909581992444),\n",
-              " ('homo', -0.00944001216990643),\n",
-              " ('##ph', -0.0030211914217940197),\n",
-              " ('##obe', 0.008060252310113942),\n",
-              " (',', 0.03248475298575954),\n",
-              " ('it', 0.04872931628827997),\n",
-              " (\"'\", 0.009631533604042137),\n",
-              " ('s', 0.010606834564684357),\n",
-              " ('treated', -0.0322775232412682),\n",
-              " ('as', -0.01260847478815131),\n",
-              " ('pure', 0.0019006804389338449),\n",
-              " ('far', 0.004539390102297089),\n",
-              " ('##ce', -0.010406865962048685),\n",
-              " ('(', 0.014375105244946718),\n",
-              " ('as', 0.002471897093636322),\n",
-              " ('i', 0.0030352435248743857),\n",
-              " ('said', -0.018146271346741155),\n",
-              " (',', 0.0036709041547055288),\n",
-              " ('don', -0.007912125005239464),\n",
-              " (\"'\", 0.0017484483737803301),\n",
-              " ('t', -0.017950648561760478),\n",
-              " ('take', -0.009298274952007132),\n",
-              " ('it', -0.004078118282522069),\n",
-              " ('too', -0.028684218288752596),\n",
-              " ('seriously', -0.035017499197497325),\n",
-              " (')', 0.01317581586995519),\n",
-              " ('.', -0.006128150330240606),\n",
-              " ('although', 0.026128978608609854),\n",
-              " ('there', 0.04767921232067106),\n",
-              " ('is', 0.020516082384872122),\n",
-              " ('a', 0.012734012650614903),\n",
-              " ('bit', -0.002681135351543046),\n",
-              " ('of', -0.017564338870653444),\n",
-              " ('rough', -0.054269157411809384),\n",
-              " ('language', -0.021932843435277412),\n",
-              " ('&', -0.019720541628726326),\n",
-              " ('cartoon', 0.004586365987880467),\n",
-              " ('violence', -0.03763776160073711),\n",
-              " (',', -0.0035707094512391056),\n",
-              " ('it', 0.006928695922224605),\n",
-              " (\"'\", 0.012925683334380988),\n",
-              " ('s', 0.030974539799360278),\n",
-              " ('basically', -0.004179917353656252),\n",
-              " ('okay', -0.013112687370773883),\n",
-              " ('for', 0.009083589361922877),\n",
-              " ('older', -0.0010335777357816382),\n",
-              " ('kids', -0.0061997972649331665),\n",
-              " ('(', 0.01573855661621565),\n",
-              " ('ages', 0.013134153275415764),\n",
-              " ('12', -0.008209209253622462),\n",
-              " ('&', -0.008435223587703135),\n",
-              " ('up', 0.004763652002272039),\n",
-              " (')', -0.0031712580515071698),\n",
-              " ('.', -0.0031336770770415256),\n",
-              " ('as', 0.012398935284743534),\n",
-              " ('previously', -0.006902501714326512),\n",
-              " ('stated', -0.041746908926223535),\n",
-              " ('in', 0.0053001792756676375),\n",
-              " ('the', -0.010857700759730709),\n",
-              " ('subject', -0.011023442052436976),\n",
-              " ('line', 0.03691275362364711),\n",
-              " (',', 0.0028617755130526837),\n",
-              " ('just', 0.0018012460067089997),\n",
-              " ('sit', 0.006858113990518719),\n",
-              " ('back', 0.02098000283345308),\n",
-              " (',', 0.034918394241824614),\n",
-              " ('pass', -0.0032936950327704414),\n",
-              " ('the', -0.009826644376627376),\n",
-              " ('popcorn', -0.0033325220553297977),\n",
-              " ('&', -0.013402200592284419),\n",
-              " ('just', 0.019853417800983347),\n",
-              " ('enjoy', 0.08264586096236433),\n",
-              " ('.', -0.02676851056646209),\n",
-              " ('[SEP]', 0.0)]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 69
-        }
-      ],
-      "source": [
-        "# Afficher les attributions\n",
-        "word_attributions"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "QC80GMPn50ez",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 35
-        },
-        "outputId": "71201bdd-4905-4b18-8b7b-3a2879aea68a"
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "'LABEL_1'"
-            ],
-            "application/vnd.google.colaboratory.intrinsic+json": {
-              "type": "string"
-            }
-          },
-          "metadata": {},
-          "execution_count": 68
-        }
-      ],
-      "source": [
-        "cls_explainer.predicted_class_name"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### Visualisation\n",
-        "\n",
-        "Le code ci-après vous permet de visualiser les attributions pour un exemple."
-      ],
-      "metadata": {
-        "id": "LLYt2uH7pUuX"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "0mmp7RCi50e0"
-      },
-      "outputs": [],
-      "source": [
-        "table = pds.DataFrame(word_attributions,columns=[\"tokens\",\"score\"])"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "GP_QnEAf50e0",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 1000
-        },
-        "outputId": "afd9c0e6-92b7-424a-c5c9-dcfe186cd58a"
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "<matplotlib.axes._subplots.AxesSubplot at 0x7f5fa0adc580>"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 71
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "<Figure size 1500x1500 with 1 Axes>"
-            ],
-            "image/png": "iVBORw0KGgoAAAANSUhEUgAABRMAAASxCAYAAACjnA54AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVSV9dr/8fdmA1sQ2aiBoCI4K6LiVKmpWCpSenIuLZNMOqmVRJmSZeIQqXHEzHJKMPVU5ziV5pAPiqL2QzSxTI9TkmYYDgyCAgL794eP+4kjGBooxee11r0W931/p3vXH65rXd/vZbBYLBZEREREREREREREfofNvV6AiIiIiIiIiIiI/DkomCgiIiIiIiIiIiKlomCiiIiIiIiIiIiIlIqCiSIiIiIiIiIiIlIqCiaKiIiIiIiIiIhIqSiYKCIiIiIiIiIiIqWiYKKIiIiIiIiIiIiUioKJIiIiIiIiIiIiUioKJoqIiIiIiIiIiEipKJhYCv7+/hgMBgwGA0lJSXd1bm9vb+vc6enpd3VuERERERERERGR37K91wv4swgODmbq1Kncd9991merV69m3rx5HDhwgIKCAho0aMCgQYN48cUXqVGjBjExMYSEhJQYBDx//jyTJ0/mq6++4tdff6V69eq0bt2ayZMn07lzZwASExOJj49n4MCBt7XewsJCfvnlF6pVq4bBYLjzDxcRERERERERkT81i8XC5cuXqV27NjY2fyy3UMHEUnJ0dMTd3d16P2nSJGbOnMkrr7zCO++8Q+3atTl+/DgLFixg+fLljBs37nfHHDhwIHl5eSxbtowGDRrw66+/Ehsby8WLF61tXF1dqVGjxm2v95dffsHT0/O2+4mIiIiIiIiIyF/TmTNnqFu37h8aQ8HEO7B3717eeecdoqKiigQNvb296dmzZ6m2I6enpxMfH09cXBzdunUDwMvLi/vvv79M1litWjXg+v8kzs7OZTKmiIiIiIiIiIj8+WRmZuLp6WmNF/0RCibegZUrV+Lk5MSYMWOKfe/i4vK7Yzg5OeHk5MS6det48MEHMZlMf2hNubm55ObmWu8vX74MgLOzs4KJIiIiIiIiIiJSJkfhqQDLHTh+/DgNGjTAzs6uVO3j4uJuKqBia2tLTEwMy5Ytw8XFhXr16lGrVi2+++67O1pTREQEZrPZemmLs4iIiIiIiIiIlDUFE++AxWK55Xt/f39CQkJ+d5yBAwfyyy+/8OWXXzJixAi8vLxo27YtMTExt72msLAwMjIyrNeZM2duewwREREREREREZFbUTDxDjRp0oQff/yRa9eu/eGxqlSpQs+ePZk2bRp79+4lKCiIt99++7bHMZlM1i3N2tosIiIiIiIiIiLlQWcm3oFhw4bx/vvv8+GHH95UtTkoKIgdO3awY8cO67Pk5GQA9u/fz4QJEzh8+DB+fn5ER0fTtGlTAKZMmcK6det45plnWLduHXFxcbz++uv88MMP1v3sp0+fLvE8xv8+MzEzM7NU31JQUFAmQVEBOzs7jEbjvV6GiIiI3EXeE7+610sQkUok+d3H7vUSREQUTLwTDzzwAK+//jqvvvoqZ8+epX///tSuXZsTJ06Qnp5urercokULJk2aZA3yhYSEMG7cOGrVqsU777zD/fffz/z582nVqhVpaWmkp6cza9Ys+vbtS79+/QgODubTTz9l165dBAUF3fKQzIiICMLDw0v9DRaLhXPnzpWq8rSUnouLC+7u7mVyoKmIiIiIiIiISEWjYOIdmjlzJu3atWP+/PksWLCAwsJCGjZsyKBBg7hw4QKOjo6YzWays7N54YUXADh06BDBwcE0bNiQyMhI+vXrxz/+8Q9+/PFHrly5Qn5+Ph06dGD69OnExMTQp08fGjZsaD3/8FZFVcLCwggNDbXe3yj5XZIbgUQ3NzccHR0V/PqDLBYLV65cITU1FQAPD497vCIRERERERERkbKnYOIfMGTIEIYMGXLT89jYWOD6luegoCDi4uLo3r07qampuLq6AnDgwAEA1q1bR7169ZgyZQqrV6/mf/7nf6hWrRpBQUEEBATQs2dPvLy8fnctJpMJk8lUqnUXFBRYA4k1a9Ys7efK73BwcAAgNTUVNzc3bXkWERGpBLTlUERERCobFWAppQ8//BAnJye+//77Ox7Dzs7O+veNTMDCwkLrM6PRSLVq1QCIjo7mm2++Ye/evXz44YcAJCYm3vHcv3XjjERHR8cyGU/+z43fVOdQioiIiIiIiMhfkTITS2HlypVcvXoVgHr16v1ue3t7ewoKCm57nhMnThASEkJUVBQffvghc+bMIT09nerVq1NQUMCXX35Jz549i+17JwVYtLW57Ok3FRERqVxUgEWk7CnjV0SkYlNmYinUqVOHRo0a0ahRI+zt7X+3vbe3NwkJCSQnJ3PhwoUi2YdxcXEYDAYuX75cYv8vvviCF198kaeffppt27Yxbdo08vPz8fHxKbFPREQEZrPZet3qvEQREREREREREZE7oWBiOXjttdcwGo34+Pjg6urKu+++e1v9L168iNFoZMGCBTz88MPMmjWLV199lb///e8l9gkLCyMjI8N63SjaIiIiIiIiIiIiUla0zbkcNGnShG+++QYAf39/fHx8+Prrr4u0admyJRaLxXo/ZcoU4uLiABg8eDBRUVGkpKQwZMgQevfuTf/+/bGxKTn2ezsFWEpyt7fpaPuCiIiI/Nnp3zMiIiJS2SgzsRwFBQWxY8cO5s6di8FgwGAwkJycDMD+/ftp3749jo6OdOrUiaNHj1r7VatWjSlTpmA2m/n0008JCgrC09OTCxcu3KMvERERERERERERUWZiuZo7dy7Hjh3D19eXqVOnAvDDDz8AMGnSJCIjI3F1deWFF15g5MiR1mrP8fHxPPvss7z//vt06dKFQ4cO8fjjjzN27Fg+//zzYue6kwIsUrK8vLxSnY8pIiIilZsKsIhIWVGms4j8WSgz8Rb8/f0JCQm54/5msxl7e3scHR1xd3fH3d0do9EIwIwZM+jWrRs+Pj5MnDiRPXv2WAu1vPTSS3Tt2pXWrVtjNBo5e/YsBoOBbdu2lThXZSnAsmrVKlq2bImDgwM1a9akR48eZGdnA7B06VJatGiByWTCw8ODF1980drv9OnTPP744zg5OeHs7MyQIUP49ddfre+nTJmCn58fS5YsoX79+lSpUgWA9PR0Ro0ahaurK87Ozjz88MMcPHjw7n60iIiIiIiIiEgFoczEMhIXF0f37t1JS0vDxcXld9u3atXK+reHhwcA165dAyA5OZnvvvuODRs2AGAwGLC1teXChQtcuXIFR0fHm8YLCwsjNDTUep+ZmfmXCyimpKQwdOhQZs2aRf/+/bl8+TLx8fFYLBY++ugjQkNDeffddwkMDCQjI4Pdu3cDUFhYaA0k7tixg/z8fMaOHcsTTzxhPacS4MSJE6xevZo1a9ZYg76DBw/GwcGBTZs2YTabWbhwIY888gjHjh2jRo0a9+JnEBERkQpEmUQiIiJS2SiYeI/c2NIM14OFAJ9++ine3t4sXLiQd999l/vvv5/u3buzbt06fHx8AKwZc/+tLAqwVHQpKSnk5+czYMAAvLy8gOuFbACmT5/Oq6++yrhx46ztO3ToAEBsbCzff/89p06dsgZYP/nkE1q0aEFiYqK1XV5eHp988gmurq4A7Nq1i71795Kammr9bd977z3WrVvHqlWreP755+/Oh4uIiIiIiIiIVBDa5lxKy5cvp3379lSrVg13d3eGDRtGamoqcD2TsHv37gBUr14dg8FAUFAQcD1omJCQQP369XFwcOC5554rMm5aWhpvvPEGAE2bNqVx48bUrVuXo0ePWsd8/PHHady4MaNGjbplRee/utatW/PII4/QsmVLBg8ezOLFi0lLSyM1NZVffvmFRx55pNh+R44cwdPTs0impo+PDy4uLhw5csT6zMvLyxpIBDh48CBZWVnUrFkTJycn63Xq1ClOnjxZfh8qIiIiIiIiIlJBKTOxlK5du8a0adNo2rQpqamphIaGEhQUxMaNG/H09GT16tUMHDiQo0eP4uzsjIODA3D9zL1Dhw6xYMECWrRowb/+9S9mz57Nrl276NOnD2+99ZY1MBUbG0tOTg67d+9m+vTpBAcHs3jxYj7++GPy8vI4fvx4ieurDAVYjEYjW7duZc+ePXz99dfMmzePSZMmERsbWybjV61atch9VlYWHh4eRbZC31CarewiIiLy16cCLCIiIn+Mjgz581EwsZRGjhxp/btBgwa8//77dOjQgaysLJycnKzn57m5uVkDTbm5uRw6dIiGDRsyevRorl69SnR0NAAxMTH06dOH06dP06xZM44dO0bdunXx9vamR48ePPjgg0yaNAmAcePG4ePjw6hRo0pcX0REBOHh4eX1+RWGwWCgc+fOdO7cmcmTJ+Pl5cXWrVvx9vYmNjbWms35W82bN+fMmTOcOXPGmp14+PBh0tPTrdvHi9O2bVvOnTuHra0t3t7e5fVJIiIiIiIiIiJ/GgomltL+/fuZMmUKBw8eJC0tzVp5+fTp0yUGpE6cOEFOTg7Jycnk5+djY2PDiy++iJ2dHWfOnAFg9OjRDBw4kNatW/Phhx/Sr18/OnXqREBAAE2bNqV+/frEx8fj5+d3y/VVhgIsCQkJxMbG0qtXL9zc3EhISOD8+fM0b96cKVOm8MILL+Dm5kZgYCCXL19m9+7dvPTSS/To0YOWLVvy1FNPERUVRX5+PmPGjKFbt260b9++xPl69OhBx44d6devH7NmzaJJkyb88ssvfPXVV/Tv3/+WfUVERKRyUDaFiIiIVDYKJpZCdnY2AQEBBAQEsHLlSlxdXTl9+jQBAQHk5eWV2C8rKwuAr776itWrV7N161bWr18PYC3oERgYyE8//cTGjRvZunUrjzzyCGPHjuW99967rTWWRQGWiv6PYWdnZ3bu3ElUVBSZmZl4eXkRGRlJYGAgADk5OcyZM4fXXnuN++67j0GDBgHXsxm/+OILXnrpJbp27YqNjQ29e/dm3rx5t5zPYDCwceNGJk2axLPPPsv58+dxd3ena9eu1KpVq9y/V0RERERERESkojFYLBbLvV5EReXv74+fnx/Dhw+nffv2vP766/zrX//i3LlzuLq6cubMGQ4cOEB6erp1e23r1q05duwYfn5+zJs3j86dO/PMM8+wePHiImNHR0cTFBSEwWDgww8/ZNOmTdZtuhs3bmTWrFkMGzaMOnXqsG/fPoxGI23atOH48eM0atTod9eemZmJ2WwmIyMDZ2fnIu9ycnI4deoU9evXL7E6tNwZ/bYiIiIiIiIiUtHcKk50uypvaeDbUK9ePYxGI0uWLOHtt99m7ty5XLt2DYB9+/YVaRsYGMjXX3+NwWDg5Zdf5rXXXmPNmjX07t2bxo0bs2XLFqZPn27tD9e3KHfq1InVq1eTk5NDnTp1iI6Oxs3NDQcHBzZv3sz8+fPp1KlTiYHE3NxcMjMzi1wiIiIiIiIiIiJlScHEUnB2dsZoNGIymXjhhReIiYlh0aJFAKxevdraLigoiJiYGLp27YqDgwN79uxh0qRJvPXWWyQmJnLixAmefvpp4uPjadq0qbWf0Whk0qRJ9O/fHycnJ/79739z9OhRvv32W95//30WLlzIkiVLuHjxYolrjIiIwGw2W6+/2nmJIiIiIiIiIiJy72mbcyn88MMP+Pr6UrVq1SLP8/LyaNOmDTNnzqR79+6kpqbi6uoKwIEDB2jbti0//fQT9erVY8qUKaxbt46kpKQiYxgMBlasWEFgYCB2dnZUq1YNgMcffxwPDw8WLFjAmjVrCAoK4ty5czg6Oha7xtzcXHJzc633NwqwaJvz3aXfVkREREREREQqmrLc5qwCLKXw20IqderUKfLOZDJx8uRJAOzs7KzPDQYDgLXq861UrVqVGjVqFHk2atQohg8fzpw5c4iOjuaJJ54oMZB4Yx1/tACLiIiIiIiIiIjIrSiYWAo+Pj6YTCZOnz5Nt27dbnp/I5h4K/b29hQUFJT4/kaxl6ioKLy9vRk1ahTXrl3DxcWFvLw8Xn/99T/0DcUpTaBTbo9+UxERkcrFe+JX93oJIvIXk/zuY/d6CSIit6RgYilUq1aN1157jVdeeYXCwkIeeughMjIy2L17N87Oznh5ef3uGN7e3pw6dYqkpCTq1q1LtWrVbplJOGfOHLp06cK2bdtwc3PjvffeY+TIkUXOWvyt4rY5l8Te3h4bGxt++eUXXF1dsbe3t2ZSyp2xWCzk5eVx/vx5bGxssLe3v9dLEhEREREREREpcwomltK0adNwdXUlIiKCH3/8ERcXF9q2bcsbb7xRqmy0gQMHsmbNGrp06UJWVhbz589nzJgxJbZ/9NFHCQ8Pp2HDhrz66qtERkayffv2EoOJERERhIeHl+pbbGxsqF+/PikpKfzyyy+l6iOl4+joSL169bCxUW0jEREREREREfnrUQGWcvbb7csAcXFxdO/enbS0NFxcXIpt5+3tzdixY3nwwQd55JFHOHPmDL169WLgwIFMnjy52HlupwDLDRaLhfz8/Ftuv5bSMxqN2NraKstTRERERERERCoUFWD5i7NYLGRnZzNlyhQGDx5MrVq1MBgMt8yAvJMCLAaDATs7uyKFY0REREREREREREqiYGI5CgoKYseOHezYsYO5c+cCEB0dDcD+/fuZMGEChw8fxs/Pj/z8fGu/7Oxspk6dSpUqVSgoKOCbb77hypUrtwwm3s6ZiSIiIiJSNipiARYVbxAREZHypIPd/iB/f39CQkKKfTd37lw6duxIcHAwKSkppKSk4OnpCcCkSZOIjIxk37592NracvToUWs/Ozs77O3t+eijjzhy5AgLFy7k0qVL7Ny5s8R1REREYDabrdeNeURERERERERERMqKgonlyGw2Y29vj6OjI+7u7ri7u2M0GgGYMWMG3bp1w8fHh4kTJ5KZmWnNTkxPT6dHjx6MGDGCBg0a0LNnTzw8PNi/f3+Jc4WFhZGRkWG9zpw5c1e+UUREREREREREKg9tc75HWrVqZf3bw8MDgNdffx0AJycnYmNjcXJysrYpKCggJyeHK1eu4OjoeNN4d3JmooiIiIj8MdpSLCIiIpWNMhPLUFpaGs888wzVq1fH0dGRwMBArl69an0fExNDnz59AOjcuTNOTk707t2bCxcuAFBYWEh+fj5paWkA2NraMmzYMHr27Ennzp05fvw4VapUufsfJiIiIiIiIiIigjITy1RQUBDHjx/nyy+/xNnZmQkTJvD999/Tvn17a5ucnBwAFi5ciNls5umnn2bOnDnW9zNnzsRgMNC5c2c++OAD5s6dy7Zt2+jevTuNGjUqcW4VYBERERG5+ypaARZlSoqIiEh5U2ZiGbkRRFyyZAldunShdevWrFy5kry8PLZs2cJ7773H6NGjKSgoAKBNmza0bduWF198kYSEBOs48+bNs1aB/vzzzxk9ejRVq1bl559/5s033yxxfhVgERERERERERGR8qbMxDJy5MgRbG1teeCBB6zPatasSePGjcnKymLy5Mnk5ORgb29PXl6etY2HhweXLl0CrmcT/vrrrwwfPpxBgwYxdepUZs6cybVr17h69SpeXl4lzh8WFkZoaKj1PjMzUwFFERERkXKmTEARERGpbJSZWM6qVKnCyJEjuXLlCtHR0Tg4OGCxWHBxcQHAYDAAYLFYigQLAwIC2L17N1euXKFv375069aN4ODgEucxmUw4OzsXuURERERERERERMqSgoklWLVqFS1btsTBwYGaNWvSo0cPsrOzAViyZAnNmzenSpUq7N27l++++47mzZuTn5/PunXrMBgMfP7553Tq1ImkpCQuXLhATEwMY8aMKTLHF198Yc0mbNCgAVFRUdSqVYvExEQsFgtTpkzB09OTtWvXsnnzZl5++eW7/juIiIiIiIiIiIjcoG3OxUhJSWHo0KHMmjWL/v37c/nyZeLj47FYLKxcuZLJkyfzwQcf0KZNG/r27cuePXvYs2cPjz/+OGFhYQCEhoZSq1YtvLy8mDBhAtu2bSsyR3x8PM888wwjRoxg3rx5LFy4kOeff54WLVoQERFBamoq8+fPp3v37mRkZNC2bVtatmxZ4ppVgEVERETk7qtoBVgqM205FxERuTuUmViMlJQU8vPzGTBgAN7e3rRs2ZIxY8bg5OTE22+/TWRkJAMGDKB+/frcd999tG3bloULFxIdHY2vry8A58+fx83Nja1bt1KvXr2b5ggPD2fixIk8/PDDAPTs2ZNp06Zx+PBhhg4dyvvvv8/Vq1dp1qwZ7du3JykpiTFjxtCvX79i16wCLCIiIiIiIiIiUt4MFovFcq8XUdEUFBQQEBDA3r17CQgIoFevXgwaNAh7e3ucnJxwcHDAxub/4rD5+fmYzWZ+/fVXkpOTqV+/Prt27aJz587WNjExMYSEhJCeng6Aq6srWVlZGI3GIvPm5OSQnZ3NxYsX6dy5M4WFhZw7d446deqwY8cOXFxcrOct/lZxmYmenp5kZGTo/EQRERERERERkUosMzMTs9lcJnEibXMuhtFoZOvWrezZs4evv/6aefPmMWnSJNavXw/A4sWLi1RtvtHnt6pWrXrLObKysggPD2fAgAFFnp89e5bly5fTvXt3Vq9ezVtvvcXZs2e5dOkSw4YNY8eOHcWOZzKZMJlMt/upIiIiIiIiIiIipaZgYgkMBgOdO3emc+fOTJ48GS8vL3bv3k3t2rX58ccfeeqpp/7Q+G3btuXo0aM0atSI3Nxcxo8fz2effUZGRgYmk4nCwkIMBgNZWVnA9eDjN998w4wZM5gyZUoZfKGIiIiIiIiIiMjtUTCxGAkJCcTGxtKrVy/c3NxISEjg/PnzNG/enPDwcF5++WXMZjO9e/cmNzeXffv2kZaWZq3MXBqTJ0+mT58+1KtXj+PHj/P1118zcuRI0tLSyM3N5d///jczZsygdevW9O3bl06dOrFz505GjRpV7HgqwCIiIiJy96kAy5+LirSIiIj8cQomFsPZ2ZmdO3cSFRVFZmYmXl5eREZGEhgYCICDgwPjxo1j3LhxwPUtzr179y4STFy5ciV+fn4lzhEQEMCGDRuYMmUK/+///T8cHBzYvn07o0aNIigoiC+//JJ//OMfpKenk5WVxcmTJ9mwYQN169YtdryIiAjCw8PL8FcQEREREREREREpSgVY7sCmTZt4/PHHiYuLo0GDBtjY2ODg4EC1atUA8Pb2JiQkhJCQkN8d67vvvqN169YkJyfj5eVlfd6/f3+qV6/O0qVLcXFxISoqiqCgoBLHUQEWEREREREREREpjgqw3GMnT57Ew8ODTp063eulWKkAi4iIiIiIiIiIlDcFE29TUFAQy5YtA64XafHy8sLb2xs/Pz+ioqKK7WMwGFiwYAHr169n27ZteHl5sXTpUlxdXRk7diwAPXr0YPPmzTRs2JBr166xZ88enJycqFatGllZWUyZMgVfX1/at29/175VRERERG5NZyaKyN2kcz9FpCKwudcL+LOZO3cuU6dOpW7duqSkpJCYmFiqftOmTeOZZ54hKSmJZs2aMWzYMP7+97/z5ptvMnz4cH766SeeeOIJDh8+THBwMBcvXqRdu3YkJiZSrVo1HnvsMezs7EocPzc3l8zMzCKXiIiIiIiIiIhIWVJm4m0ym81Uq1YNo9GIu7t7qfs9++yzXLlyhfvvv5/NmzfTsWNH3nrrLQICAujWrRupqals2bKFtm3bkpubi8lk4rHHHqNZs2bY2NjQoUMHWrduXeL4KsAiIiIiIiIiIiLlTcHEu6RVq1b06dOHRx99lOzsbAC++eYb3n//fZKSkpgwYQJbtmwhNTUVs9lMv379GDVqFMuXL2fixIl06dLlluOHhYUVqSZ9owCLiIiIiJQfbTkUERGRykbbnO8SOzs7HBwccHNzw2AwAGA0Gq3vbzwrLCwE4Mknn+SHH37gscceY9u2bfj4+LB27doSxzeZTDg7Oxe5REREREREREREypIyE/+gDRs2sGvXLusW5KSkJH766SfWr19PSEiItd2cOXNIT08nJCSEpKQkABYuXAj8XyDxty5cuGDNVqxTpw4PPPAA0dHR9O/fv9h15Obmkpuba73XmYkiIiIi5U8FWOReUmasiIjcC8pM/IO6dOlCQUEBqampAOzYsQMbGxtOnDhRpJ2vr+9NfYcPH06LFi1ISUlh9erVRd6FhITg6+vLpk2b8PPzY9euXXh7e5e4joiICMxms/XSFmcRERERERERESlrCib+QWazGScnJ37++WcA4uLicHZ25uzZs2RlZXH27FkAWrRoAUB+fj7169cHwNHREVtbW9zd3alRo0aRcb28vFi2bBm9evVi9+7dWCwWevToUeI6wsLCyMjIsF5nzpwpj88VEREREREREZFKTNuc70BISEiRLczBwcEcO3YMi8VCfHw833zzDU8++SS7du3ilVdeoWrVqowZM4aYmBhrn7S0NKKioqz3/v7+WCwW6/2UKVMYPHiw9d5sNpOenl7imkwmEyaTqYy+UERERERKQ9tMRUREpLJRZmIZ8Pf3Z9euXRw8eBA7OzuaNWuGv78/cXFxZGRkUKdOndse087Orsi9wWCwFmcRERERERERERG5F5SZWAa6dOnC5cuXmTNnDt26dQOuBxiDg4O5cOECKSkp1iIrDg4OAOzfv5/FixeTkpJCp06diI6OpmnTptYxExISmDp1KocPH6Z27drk5ORQUFBQ4hpUgEVERETk7rubBViUBSkiIiIVgTIT/5fFYuH555+nRo0aGAwGa8Xl0qhevTqtWrVi5cqV+Pv7A9C1a1cyMjIAGDx4MCkpKURFRWFjc/0nnzRpEiNHjqRKlSrk5OQwfPhwcnNzrVuh586dy7hx4zh8+DALFy4kLy+P9evXl7gGFWAREREREREREZHypszE/7V582ZiYmKIi4ujQYMG3HfffbfVv1u3biQlJVmDiTVq1MDHx4cjR45Qu3Zt3N3dMZvN1vYzZszgoYce4siRI2zevJns7Gw++eQT6/bmgQMHMmLECAAaNGiAg4MDcXFxJY7ebyYAACAASURBVM4fFhZGaGio9T4zM1MBRREREZFypmxBERERqWyUmfi/Tp48iYeHB506dcLd3R1b26Jx1ry8vFv2j4qKwmKx0KxZM+uzpKQkOnbsaL0PCgpiw4YNALRq1QqTycSqVauIj48HICAgALh+PuKqVatwcnKyXoWFhWRkZHDlypVi5zeZTDg7Oxe5REREREREREREypIyE7ke5Fu2bBlwPZDn5eWFt7c3vr6+2NrasmLFClq2bMn27ds5dOgQ48ePJz4+nqpVq9KrVy/mzJljzWT09/enVatWVKlShSVLlpCVlUVOTs5Nc44fP55NmzYVKdByo8CKxWLhqaeeYvv27aSkpNCuXTtmzpyJm5sbVapUuUu/ioiIiIiIiIiISFEKJnL9fMKGDRuyaNEiEhMTMRqNDB48mGXLljF69Gh2794NQHp6Og8//DCjRo1izpw5XL16lQkTJjBkyBC2bdtmHW/ZsmWEhoaSkJBA//79SUhIYOvWrfTs2dMaMExISGDFihU0bNiQDRs2MG7cOGt/g8HApk2b+OKLL7CxseHpp59m/vz5rFy5ssRvUAEWERERkbvvbhZgude0pVtERERA25wBMJvNVKtWDaPRiLu7O66urgA0btyYWbNm0bRpU5o2bcoHH3xAmzZteOedd2jWrBlt2rRh6dKlbN++nWPHjlnHa9WqFW+//TaNGzemU6dOVK1alTVr1nDhwgX27dsHwPLly+nZsycNGjSga9euRdZjsVhITU3lq6++wmQyMWjQIL766ivefPPNEr9BBVhERERERERERKS8KTPxFtq1a1fk/uDBg2zfvh0nJ6eb2p48eZImTZoA14OJN7z22musWrWKxYsXs2DBAgYPHgxAo0aNSpzX0dGRNWvWMHXqVGbOnMnVq1cB8PLyKrGPCrCIiIiI3H3K1hMREZHKRsHEW6hatWqR+6ysLPr27cvMmTNvauvh4WH9+0ZFZoAmTZrQtWtXXFxciImJYd68eSQkJODi4mJt4+fnh8ViKdI/ICCgSEEWgODg4BLXajKZMJlMt/mFIiIiIiIiIiIipadg4i0kJyfz0EMPcejQIYxGI9WrV8diseDt7Y2trS179uxhzJgx/Oc//8HX15c333yTHTt2WAuqABw6dIhvvvmGS5cusWnTJlq3bs3PP//MsWPHaNKkyU0FWwoKCoqcfejt7W39+0ZxmOTk5Lv4K4iIiIiIiIiIiFynYOIt5OfnExoaSqtWrcjKyuL1119n27ZtPPnkk4wdO5b+/fvTrl07AgMDee6553j11VeL9L9RsMXFxYVOnToxefJkJkyYgLOzMwMHDuQf//gHV69eZcmSJQwYMICEhARmzZrFkiVLrAVbEhMTcXNzAyAlJQWj0VjsWlWARURERMpCZSooUha0zVlEREQqGxVguYVGjRoxYMAAGjVqhJ+fH//85z8pKCggPT2dxx57jIyMDM6ePYu3tzePPfYY48ePL9L/RsEWHx8fzGaztWBLeno6TZo0YejQoezbtw+DwcDQoUNp3LgxnTt3xmg0EhsbC2AtBgMUKQ7z31SARUREREREREREypvB8tvD+qSI48ePM3nyZBISErhw4QKFhYVkZ2fz1VdfsXXrVg4ePMi2bdus7b/77jtat27NgQMH8PPzY/DgwXzxxRfY29sXGTc7O5uNGzcSGBiIv78/LVq0YP78+db3jz/+ODVr1mTp0qXA9e3Na9eupV+/fiWutbjMRE9PTzIyMnB2di6rn0RERERERERERP5kMjMzMZvNZRIn0jbnW+jbty9eXl4sXryY2rVrU1hYiK+vL3l5eaXqfycFW+B68LCwsPC21qoCLCIiIiIiIiIiUt4UTCzBxYsXOXr0KIsXL6ZLly4A7Nq1y/q+adOmrFixgtzcXGsQLzExscgYbdu2ZfXq1daCLXfKzs6OgoKCO+4vIiIiInfm986Q1JmJIiIiUtnozMQSVK9enZo1a7Jo0SJOnDjBtm3bCA0Ntb4fNmwYhYWFPP/88xw5coQtW7bw3nvvAdczCwHGjh3LpUuXGDp0KImJiZw8eZItW7bw7LPP3lZw0Nvbm9jYWM6dO0daWlqxbXJzc8nMzCxyiYiIiIiIiIiIlCUFE0tgY2PDZ599xv79+/H19eWVV15h9uzZ1vfOzs6sX7+epKQk/Pz8mDRpEpMnTwagSpUqANSuXZvdu3dTUFBAr169aNmyJSEhIbi4uGBjU/qfPjIykq1bt+Lp6UmbNm2KbaMCLCIiIiIiIiIiUt5UgKUMrVy5kmeffZaMjAwcHBzu6twqwCIiIiIiIiIiIsVRAZYK4pNPPqFBgwbUqVOHgwcPMmHCBIYMGXLXA4mgAiwiIiIiIiIiIlL+FEz8A86dO8fkyZM5d+4cHh4eDB48mBkzZpTJ2Lm5uYwfP57PPvuMzMxM2rdvz5w5c+jQoUOJ7f87M1FERERE7tzvFV8BFWARERGRykdnJv4Br7/+OsnJyeTk5HDq1CnmzJmDo6NjmY29evVqli1bxrfffkujRo0ICAjg0qVLxbbXmYkiIiIiIiIiIlLeFEysgLKzs/noo4+YPXs2gYGB+Pj40KVLF9LS0vj444+L7RMWFkZGRob1OnPmzF1etYiIiIiIiIiI/NVpm3MFdPLkSa5du0bnzp2tz06fPk3NmjU5cuRIsX10ZqKIiIhI2dIWZhEREZGbKTPxT2LTpk34+vre62WIiIiIiIiIiEglpszECqhhw4bY29uze/duvLy8ANi9ezf169enT58+xfZRARYRERGRslOa4iug7EURERGpfJSZWAFVrVqV0aNHM378eDZv3szhw4cJDg7mypUrPPfcc8X2UQEWEREREREREREpb8pMrKDeffddCgsLGT58OJcvX6Z9+/Zs2bKF6tWrF9s+LCyM0NBQ631mZqYCiiIiIiIiIiIiUqYMFovFcq8XIWUvMzMTs9lMRkYGzs7O93o5IiIiIiIiIiJyj5RlnEjbnCu4VatW0bJlSxwcHKhZsyY9evQgOzv7Xi9LREREREREREQqIW1zrsBSUlIYOnQos2bNon///ly+fJn4+HiKSyZVARYRERERERERESlvCiZWYCkpKeTn5zNgwADWr1/P2rVriY2NLbZtREQE4eHhd3mFIiIiIiIiIiJSmejMxAqsoKCAgIAA9u7dS926dUlNTeX48ePFFmEpLjPR09NTZyaKiIiIiIiIiFRyOjOxkjAajWzdupVNmzYxePBgateuTdOmTTl16tRNbU0mE87OzkUuERERERERERGRsqRgYgVnMBjo3Lkz4eHhHDhwAHt7e9auXXuvlyUiIiIiIiIiIpWQzkyswBISEoiNjaVXr164ubmRkJDA+fPnad68+U1tVYBFRERE5PZ5T/zqD/VPfvexMlqJiIiIyJ+DgokVmLOzMzt37iQqKorMzEy8vLyIjIwkMDDwprYqwCIiIiIiIiIiIuVNBVj+IlSARUREREREREREilOWBViUmfgXYTKZMJlM93oZIiIiIiIiIiLyF6YCLBXcqlWraNmyJQ4ODtSsWZMePXqQnZ19r5clIiIiIiIiIiKVkDITK7CUlBSGDh3KrFmzyMzMZOPGjQwYMIDidqarAIuIiIjI3VeaAi4q0iIiIiJ/JcpMrMBSUlLIz8+3BhB//fVXxowZg5OT001tIyIiMJvN1svT0/MerFhERERERERERP7KVIClAisoKCAgIIC9e/cSEBBAr169GDRoENWrV7+prQqwiIiIiIiIiIhIccqyAIsyEyswo9HI1q1b2bRpEz4+PsybN4+mTZty6tSpm9qaTCacnZ2LXCIiIiIiIiIiImVJmYl/IgUFBXh5eREaGkpoaOgt25ZlxFlERETkr6o0Zx7eis5DFBERkT+DsowTqQBLBZaQkEBsbCy9evXCzc2NhIQEzp8/T/PmzW9qqwIsIiIiIiIiIiJS3hRMrMCcnZ3ZuXMnUVFRZGZm4uXlRWRkJIGBgTe1jYiIIDw8/B6sUkREREREREREKgttcy5jO3fuZPbs2ezfv5+UlBTWrl1Lv379rO/XrFnDggUL2L9/P5cuXeLAgQP4+flZ3ycnJ1O/fv1ix/7Xv/7F4MGDi32nAiwiIiIiIiIiIlIcFWCpwLKzs2ndujXz588v8f1DDz3EzJkzi33v6elJSkpKkSs8PBwnJ6diMxJvUAEWEREREREREREpb9rmXMYCAwNvGfQbPnw4cD0DsThGoxF3d/ciz9auXcuQIUNwcnIqcVydmSgiIiJSdkpbmEUFWERERKSyUWZiBbd//36SkpIwm8088sgjJbaLiIjAbDZbL09Pz7u4ShERERERERERqQwUTKzgPv74Y5o3b46trS1xcXElZjSGhYWRkZFhvc6cOXN3FyoiIiIiIiIiIn952uZcgV29epV//vOfvPXWW5w9e5aRI0fi7e1dbFuTyYTJZLq7CxQRERH5i9L2ZREREZHiKZhYga1atYorV64waNAgWrVqxZYtW+71kkREREREREREpBJTMLEC+/jjj/nb3/5GYmIiJpOJBx98sMS2KsAiIiIicveVtlDLnVB2pIiIiFREOjOxjGVlZZGUlERSUhIAp06dIikpidOnTwPw5ZdfYjAY2Lt3LwBHjx4lKSmJc+fOFRnnxIkT7Ny5k1GjRhEfH0+7du1uOa8KsIiIiIiIiIiISHkzWCwWy71exF9JXFwc3bt3v+n5iBEjiImJYeLEicycOfOm92+//TZTpkyx3r/xxhusWLGC5ORkBgwYQM2aNfn4449LnLe4zERPT08yMjJwdnb+Yx8lIiIiIiIiIiJ/WpmZmZjN5jKJEymYWM78/f3x8/MjKioK+L9gY1paGi4uLqUaIyAggEaNGjF//vxSz1uW/5OIiIiIiIiIiMifV1nGibTNuRwFBQWxY8cO5s6di8FgwGAwkJycDMD+/ftp3749jo6OdOrUiaNHjxbp+8UXX9C2bVuqVKnC7t272blzJ/n5+ffgK0RERERERERERK5TMLEczZ07l44dOxIcHExKSgopKSnWswwnTZpEZGQk+/btw9bWlpEjR1r7xcfH88wzzzBu3DgOHz7MsGHDOHr0KDNmzChxrtzcXDIzM4tcIiIiIlK+yrMAi4iIiEhFpGDi/7JYLDz//PPUqFEDg8FgLaDyR5jNZuzt7XF0dMTd3R13d3eMRiMAM2bMoFu3bvj4+DBx4kT27NlDTk4OMTExdO/enYkTJzJixAgaNGjASy+9RGFhIR999FGJc6kAi4iIiIiIiIiIlDcFE//X5s2biYmJYcOGDaSkpODr61uu87Vq1cr6t4eHBwCpqakAFBYWMnXqVJycnHBycqJjx44UFhby66+/cuXKlWLHCwsLIyMjw3qdOXOmXNcvIiIiIpD87mP3egkiIiIid5XtvV5ARXHy5Ek8PDzo1KlTse/z8vKwt7cvs/ns7OysfxsMBuB6EBGuZ0mGh4czYMAAa5vt27czc+bMEtdgMpkwmUxltj4REREREREREZH/pmAi1wulLFu2DLge2PPy8sLb2xtfX19sbW1ZsWIFLVu2ZPv27Rw6dIjx48cTHx9P1apV6dWrF3PmzOG+++4DrldvbtWqFVWqVGHJkiVkZ2cXm00YEhLCpk2byMjIoE6dOkXeGY1GYmNjiY6O5syZMzz00ENER0eTnZ1d5NxFERERERERERGRu0nBRK4XSmnYsCGLFi0iMTERo9HI4MGDWbZsGaNHj2b37t0ApKen8/DDDzNq1CjmzJnD1atXmTBhAkOGDGHbtm3W8ZYtW0ZoaCgJCQkEBwezY8cOli9fTmBgoLUic0JCAitWrKBhw4Zs2LCBcePGFVnT1q1bCQ4OpkePHkycOJFBgwbRvXv3EgOJubm55ObmWu9VgEVERESk/FWEAizaai0iIiJ3k4KJXC+UUq1aNYxGI+7u7tbnjRs3ZtasWdb76dOn06ZNG9555x3rs6VLl+Lp6cmxY8do0qQJcP08xLfffhuARYsW0bZtW0aOHEl+fj6vvvoqAMuXL6d9+/YAdO3atch6CgoKWLp0KUuWLGH58uVYLBZOnz5NUFBQid8QERFBeHj4H/shREREREREREREbkHBxFto165dkfuDBw+yfft2nJycbmp78uTJIsHEG5o0acIjjzxCzZo1Wbp0KbNmzaJevXrWQCKAn58fFovFeu/o6Mizzz7Ls88+C8DatWsZOHAgwcHBJa41LCyM0NBQ631mZqa2Q4uIiIiUM2UFioiISGWjYOItVK1atch9VlYWffv2ZebMmTe1vVGRGYoWV4Hr5zDeKK7i4ODwu/MW1/9GsLGgoACDwYCNTdFC3CrAIiIiIiIiIiIi5a1SBhM3b97M9OnTOXToEEajkY4dO+Ln5wdAcnIy9evXp0WLFqxatYpFixbRuHFjFixYQNu2bVm9ejUGg4GQkBB27dpFXl4e3t7ezJ49m0cffZT9+/dTUFBgnatfv358+eWXDB06FAB3d3dOnz7N1q1b6dmzJ7m5uUyaNIlPP/2U9PR0atWqZT1XESAmJoaxY8cC4OPjw7Fjxzhx4gTe3t537wcTERERuYcqwrmEJVFmooiIiFQ2Nr/f5K8nOzub0NBQ9u3bR2xsLDY2NixdurRImx9//JF27dqRlJREkyZNGDp0KH//+9+5dOkSDz30EKmpqaxcuZL58+fj4eFhzTh0cXHh559/BsBisRAfH4+dnR2pqakA5OXlYW9vT2hoKFu3bmXEiBFs3LiRV155he+++44OHTqQnZ3N8ePHrWu5UVhlyZIl/PDDD7i5ud30Tbm5uWRmZha5REREREREREREylKlzEwcOHBgkfulS5fi6upK7dq1rc88PT2pX78+TZo0ITw8nBYtWnDlyhV2795N+/bt+e677xg0aBBeXl707t0bf39/4How8dixYxQUFHDo0CHs7e2pW7cu586dAyAuLo6+ffvi7OzME088QVpaGs2aNaN58+Y0bNiQwMBA1qxZQ3R0tLXQy41Mx06dOpX4TSrAIiIiIiIiIiIi5a1SBhOPHz/O5MmTSUhI4MKFC9bzDBcvXmxts2LFCjp06AD833mIqampdO3alcjISEaPHs39999Pjx49GDhwIAaDAYD4+Hhq1qzJgQMH2LNnD926dePJJ5/k3XffBWDHjh2MHz+e4OBgBg4cSJ8+fTh27Bj9+/fH3t7eOv/Jkyetf9vb25OTk3PLb1IBFhEREfmr0lZiERERkYqjUm5z7tu3L5cuXWLx4sUkJCSQkJAAXN+CfMNvi6DcCBTeCDqOGjWKH3/8keHDh/P999/Tvn175s2bB1zPTGzdujVxcXHs2LEDf39/unbtyoEDBzh27BjHjx+nW7duwPWCLkajkXbt2jFs2DCSkpJISkriyJEjzJ071zq/g4ODdQ0lMZlMODs7F7lERERERERERETKUqXLTLx48SJHjx5l8eLFdOnSBYBdu3bd9jienp688MILvPDCC4SFhbF48WJeeuklALp168b27dvZu3cvM2bMoEaNGjRv3pwZM2bg4eFBkyZNAGjTpg0FBQUkJiaSmJjIsmXLADh16hRHjx7lb3/7G99++y2FhYVMnDiR6dOnY2tb/H+y3Nxc69mKgM5MFBEREblNd1LoRVmTIiIiUtlUuszE6tWrU7NmTRYtWsSJEyfYtm1bke3BpRESEsKWLVs4deoU3377Ldu3b6d58+bW9/7+/mzZsgVbW1uaNWtmfbZy5UprViJAkyZNGDJkCCaTiR49epCQkMDGjRtZuHAhAQEBdOjQgWnTpuHg4MDHH3/M9OnTS1xTREQEZrPZemmLs4iIiIiIiIiIlLVKF0y0sbHhs88+Y//+/fj6+vLKK68we/bsm9q98sorJY5RUFDA2LFjad68Ob1796ZJkyZ8+OGH1vddunShsLCwSODQ39+fgoICa6GWG1asWIG7uzt79+7loYce4rnnnmPNmjV4eHjwwQcf4OHhgZ2dHeHh4URGRlq3Wv+3sLAwMjIyrNeZM2du85cRERERERERERG5NYPFYrHc60VUNBkZGVgsFlxcXO7KfP7+/vj5+REVFQXAgAEDMJvNREdHW9scPHgQPz8/fvrpJ+rVq/e7Y2ZmZmI2m8nIyND5iSIiIiIiIiIilVhZxokq3ZmJpWE2m+/1EkRERERERERERCocBROLERQURHp6OuvWrWPz5s1Mnz6dQ4cOYTQa6dixI3PnzqVhw4YAJCcnU79+fT7//HPmzZvHvn378PX1ZeXKlWRkZDB69Gj+85//0KVLFz755BNcXV2t8yxZsoTIyEiOHj3KwYMHadKkCWPGjKF58+asWrWKsWPHsmbNGtLS0nB0dMRkMlG3bt1i16wCLCIiIiJ3350UbSkvKgYjIiIid0OlOzPxdmVnZxMaGsq+ffuoX78+hw8fpn///jedXfj222/z5ptv8u2332Jra8uwYcN4/fXXmTt3LvHx8Zw4cYLJkydb269cuZLJkyczY8YMnnjiCe677z7eeOMNPvjgA8aMGcOpU6f45JNPmD17Nm3btuXy5cs89thj2NgU/59MBVhERERERERERKS86czEYvw2M/G3/P39adq0KYsWLeL777/H19fXmpm4ZMkSnnvuOQA+++wzhg4dSmxsLA8//DAA7777LjExMfznP/8BoFGjRkybNo2hQ4dy7NgxRowYwf79+7l27RqnTp3i1VdfZevWreTm5mI0GqlTpw5HjhzB1rb4ZNLiMhM9PT11ZqKIiIiIiIiISCWnMxPvouPHjzN58mQSEhI4ffo0e/bsAeD06dP4+vpa27Vq1cr6d61atQBo2bJlkWepqanA9WzHkydP8txzzxEcHGxtY2Njg5ubG97e3kyaNIm4uDjc3d0xGo1Ur169xEAigMlkwmQylc1Hi4iIiIiIiIiIFEPbnH9H3759uXTpEosXL6ZNmzYMHDgQgEGDBnHfffcRGRkJgJ2dHWlpaTzzzDP07dsXgKFDh3L8+HEADAYDOTk5uLi4sH79egAKCwtp06YNX3/9NUlJSRw6dIjdu3cTGhrKww8/jMVioVmzZuTn55OYmMigQYPuwS8gIiIiIiIiIiJynTITb+HixYscPXqUxYsX06VLF6pWrcoXX3wBwOzZs3FxcWHUqFHW9kFBQRw/fpx33nmHcePGYbFYePTRRzl8+LC1zZUrV/j4449xdXVl4MCB7Nixg/nz57Ny5UoAZs2aRUxMDEuXLqV58+ZERkYSFxdHhw4dWL16NZcuXaJGjRo3rVUFWERERETuvopSgEXFV0RERORuUWbiLVSvXp2aNWuyaNEiTpw4QVpaGjeOmKxTpw5PPfUUQUFBAPz00098+eWXLFmyxLrlefHixZw9e7bI2YvXrl1jwYIFvPPOOyxbtowWLVqwZcsWvv/+e6Kjo5k+fTphYWEkJyeTlJRESEgIjo6OnD17Fnd3d1xcXIpdqwqwiIiIiIiIiIhIeVNm4i3Y2Njw2Wef8fLLL+Pr64utrS3du3dn06ZN1jZt2rQB4Mcff8TW1pYHHniA+Pj4/8/enYdVWe3//39uQBkFnEFFcEAEBXHIjqKCOWCpl0NmOSTm0GB+lciJj8aBUnHIRK1zNDtqOWRqqeeUYxaomJgaOOCESXoMxZRBRLay4feHP/eJAI92wPH1uK77utj7Xmvd6971R9e7tdYLgCpVquDl5cWxY8eoW7cuAHZ2djRo0IAGDRpgZ2fHlClTuHz5MoGBgXh7e3P16lWefvppTpw4waxZszh16hS5ubnY2dmxa9euUtOcw8PDCQsLM3++HcAiIiIiIuVHKwJFRETkSaNiYgmMRiMODg4AdO7c2bxNOSgoCBcXF34fgF2zZk2srKyoX7+++bugoCD+GJJ9ewVjaGio+buBAwdiZ2dHnz59uHLlCllZWeaVhyNHjjSHs3Tq1Ildu3YVecYfKYBFRERERERERETKm7Y5/05+fj7Jycn88MMPNGnSpMQ2CQkJRT7v3bsXT09PfHx8yM/PL3L/9pmLPj4+d/V8JycnXF1di4yRn5/PqVOnsLe3Z8WKFX/irURERERERERERMqGiom/c+TIEVq1akWTJk14/fXXS2xz9uxZwsLCOHHiBJ9//jkLFixg7NixeHp60qtXL0aOHMnu3btJSkpi8ODB1K5dm169et31HMaOHcuMGTPYsGEDx48fZ9SoUWRmZuLi4sLq1atL7Wc0GsnOzi5yiYiIiEj5eVjCV0RERETuJ21z/h1/f39yc3Pv2GbIkCFcv36d1q1bY2lpydixY3n11VcBWLp0KWPHjqVHjx7cuHGDDh06sGnTJipUqHDXc3j77bdJS0sjJCQECwsLhg0bRp8+fTh16hT79u3DaDSWuJ05OjqaqKioe3thERERERERERGRe2Ao/OPhfvJQOnToEM2aNSM1NRV3d/di941GI0aj0fz5dgBLVlYWjo6O93OqIiIiIiIiIiLyEMnOzsbJyalM6kRamfiIsLW1BSh15aQCWEREREREREREpLypmPiIuHLlCgDVq1d/wDMRERERkdue5HMTU2d0f9BTEBERkQdAxcRHxJEjR6hTpw7VqlUr8X5J25xFRERERERERETKktKc77PY2FgMBgOZmZn31G/Xrl107dq11PvR0dE4OTmZLzc3t/91qiIiIiIiIiIiIkUogKWcBQUF4e/vT0xMDHCrmNixY0cyMjJwdna+qzHy8vJwcXFhy5Yt/OUvfymxjQJYRERERERERESkJApgecIsXbqU1q1bl1pIBAWwiIiIiIiIiIhI+VMxsRwNHTqUuLg44uLimDdvHnCrMAhw4MABJk6cSHJyMv7+/ixduhQvLy9z340bNxIVFUVycjKVKlXipZdeIj8/Hyurkv+R6cxEERERkfvvSQ5gkbujoBoREXnc6MzEcjRv3jzatGnDyJEjSUtLCJm7UwAAIABJREFUIy0tzXyW4eTJk5kzZw779+/HysqKYcOGmfvt2rWLIUOGMHbsWJKTk1m1ahWrVq2iUaNGpT5LZyaKiIiIiIiIiEh5UzGxHDk5OVGxYkXs7OzYsmULjRs3xtLSEoBp06YRGBiIj48PkyZNYs+ePeTl5QEQFRXFpEmTCAkJoX79+nTp0oXAwEDOnj1b6rPCw8PJysoyX+fOnbsv7ygiIiIiIiIiIk8ObXO+T1588UWee+45kpOTAfDz8zPfc3V1BSA9PZ26deuSlJREfHw806ZNM7cxmUyYTCZyc3Oxs7MrNr7OTBQRERG5/7SFVURERJ40KibeBwUFBdja2mJra2suJlaoUMF832AwmNsB5OTkEBUVRd++fYuNZWNjcx9mLCIiIiIiIiIiUpyKiaVYt24dUVFRpKSkYGdnR/Pmzdm4cSP29vZ88sknzJkzhzNnzuDh4cGYMWMYNWoUAKmpqdSrV4/Vq1fzt7/9jV27dmFlZcWyZcsIDQ1lw4YN5mfcDlk5cuQIADExMbz//vu0aNGC48ePs2LFCpYsWcLFixepWrUq/fr1Y/78+SXOVwEsIiIiIvefAlhEpCxptbOIPApUTCxBWloaAwYMYNasWfTp04erV6+ya9cuCgsLWblyJREREXz44Yc0b96cn376iZEjR2Jvb09ISIh5jEmTJjFnzhxq1arF8ePH+e233ygoKDCvPtyzZw9Dhgxh/vz5VK1alZ49e7Ju3ToqV65MREQE3bt3x8rKipiYGDw9Pfnhhx/44YcfSp1zdHQ0UVFR5f7biIiIiIiIiIjIk8tQWFhY+KAn8bA5ePAgLVu2JDU1FXd39yL3GjZsyHvvvceAAQPM302dOpVNmzaxZ88e88rEmJgYxo4dy8mTJwkJCeHgwYPcuHGDpUuX8sorr9ChQwe6detGeHg4iYmJNG/enA8++IDZs2fz66+/8uqrr7J8+XIMBgMVKlSgcePGjBgxgpEjR5Y455JWJrq5uZGVlYWjo2P5/FAiIiIiTzitTBSRsqSViSJSXrKzs3FyciqTOpGKiSUwmUwEBwezb98+goOD6dq1K/369aNixYo4ODhga2uLhcV/grDz8/NxcnLi4sWL5mLi7t27CQgIMLe5vc05MzMTgOrVq5OTk2NOd7793Ly8PK5du8bly5cJCAigsLCQbt268dxzz9GzZ0+srO5uMWlZ/ksiIiIiIiIiIiKPrrKsE1n89yZPHktLS7Zv387mzZvx8fFhwYIFeHl5mc82XLx4MYmJiebryJEj7N27l6+//tqc0mxvb09iYiIGg4FJkyaZxx4xYgSDBw8mJycHLy8v7O3tyc/Pp1atWkyfPp1Tp05hY2ODm5sb0dHRWFhYsHTpUp5//nmqVatmLkaKiIiIiIiIiIjcbzozsRQGg4GAgAACAgKIiIjA3d2d+Ph4atWqxc8//8ygQYOK9alSpQo5OTnmz3FxcVSrVo3Y2FgaN25s/m7ixImcOHECg8HA1q1bcXR05JtvvuGtt94iICCAhg0bkpaWxtChQ83nNh46dIhevXpx5MgR2rVrV+zZCmARERERuf+0zbl02q4pIiLyeHqki4lBQUH4+/sTExNTpuMmJCSwY8cOunbtSo0aNUhISODSpUt4e3sTFRXFmDFjcHJyolu3bhiNRvbv309GRgZ9+/bl97vGY2Njeeutt4iKiiIvL4/CwkJSUlIIDAzEzc2NHj16sHHjRvr160fnzp3x8/NjzJgx7N27l0WLFpGfn0+TJk0oKChgyJAhVKhQAW9v7xLnrAAWEREREREREREpb490MbG8ODo6snPnTmJiYsjOzsbd3Z05c+bw7LPPAmBnZ8fs2bMZP3489vb2+Pr6EhoaWmSMwsJCdu3aRXR0NGvWrOHUqVPm7cyenp7Ur1/fnBgdGRlp7teyZUsA/Pz8cHR0JDg42HyuYkhICFWrVi1xzuHh4YSFhZk/3w5gEREREZHyo9V3IiIi8qRRMbEE3t7ebNmypdT7AwcOZODAgcW+T01NBcDBwaFICnNQUBAVKlRg8ODBXL16FYDZs2ezadMmFi1ahK+vL/b29oSGhpoDVvr27UufPn3Ys2cP27ZtMxclp0yZQr169Yo929raGmtr6zJ4exERERERERERkZI9NgEsy5cvp1WrVlSqVAkXFxcGDhxIenq6+f6yZctwdnYu0mfDhg0YDAbz58jISPz9/Vm+fDkeHh44OTnx0ksvmQuAAAUFBcyaNYuGDRtibW1N3bp1mTZtWpFxc3Nz6datG5cuXaJZs2a4uLgQGxtLbGwsQUFB7N69m1mzZpGZmUl4eDj/+Mc/qFmzJidPngQgPT2dnj17Ymdnx+DBg2nUqBGurq5YWlqyfv368vj5RERERERERERE/qvHZmXizZs3ee+99/Dy8iI9PZ2wsDCGDh3Kpk2b7mmc06dPs2HDBr7++msyMjLo378/M2bMMBcMw8PDWbx4MXPnzqVdu3akpaVx/PjxImNUqFCBS5cuERERwZEjR/joo4+4ePEiN2/epF69enTr1o1WrVpx8uRJpkyZwrx589iyZQsXL17Ex8eHoUOHcurUKUJCQggICGDu3LlcuHABk8lU6pmJCmARERERuf8UwPJo0vZ0ERGRP++xKSYOGzbM/Hf9+vWZP38+Tz31FDk5OTg4ONz1OAUFBSxbtoxKlSoB8PLLL7Njxw6mTZvG1atXmTdvHh9++CEhISEANGjQoFi6cvv27fn222958cUXeeGFF2jSpAmNGzcmMzOTL774gkGDBhEdHc2wYcMYN24cFSpUICMjAy8vL3JyctixYwdffPEFS5Ys4auvviIrK4sbN27Qt29f87mNf6QAFhERERERERERKW+PTTHxwIEDREZGkpSUREZGBgUFBQCcPXsWHx+fux7Hw8PDXEgEcHV1NW+XPnbsGEajkU6dOt1xjOnTp7N9+3YAMjIyAFi0aBEdOnTgqaee4tChQ6xcudLc/vaKwhUrVnD+/Hni4uLo168f/fv3N7epXLky7du3L/WZCmARERERuf+0wk1ERESeNI9FMfHatWsEBwcTHBzMypUrqV69OmfPniU4OJgbN24AYGFhQWFhYZF+N2/eLDZWhQoVinw2GAzmwqStre1dzef3Y9w+k/H2GDk5Obz22muMGTOmWL+6dety/vz5u3rGHymARUREREREREREyttjUUw8fvw4ly9fZsaMGebVePv37y/Spnr16ly9epVr165hb28PQGJi4j09x9PTE1tbW3bs2MGIESP+1FxbtGhBcnIyDRs2LPJ9UFAQ/v7+vPHGG+Tn5zN69Gjy8vJYu3YtDg4OZGZm/qnniYiIiIiIiIiIlJXHIs25bt26VKxYkQULFvDzzz/zz3/+k/fee69Im6effho7Ozv+7//+j9OnT7Nq1SqWLVt2T8+xsbFh4sSJTJgwgc8++4zTp0+zd+9e/vGPf9z1GBMnTmTPnj2MHj2axMRETp06xcaNGzl16hQAXl5e2NjY8PHHH1O1alWWL1+OjY0NQJF06j8yGo1kZ2cXuURERESkfHlM+qbIJSIiIvK4eyyKidWrV2fZsmWsXbsWHx8fZsyYwfvvv1+kTZUqVVixYgWbNm3C19eXzz//nMjIyHt+1jvvvMPbb79NREQE3t7evPjii3cs8v3RlStXuH79OsnJybRv357mzZsTERFBxYoVzW2qVauGi4sLCxYsYOzYsURFRWFhYWEuOJYkOjoaJycn86XzEkVEREREREREpKwZCv94kKCUqdvbl2NiYgCIjY2lY8eOZGRk4OzsXGI7Dw8P3nzzTcaPH2++36xZM55//nkiIiJKfI7RaDQHucB/AliysrJwdHQsp7cTEREREREREZGHXXZ2Nk5OTmVSJ3oszkx8HN0pCKYkCmAREREREREREZHypmJiORo6dChxcXHExcUxb948AJYuXQrAgQMHmDhxIsnJyfj7+5Ofn1+k7+HDh81hLbVq1SI3N/eOxUQRERERuf/u9pzE1Bndy3kmIiIiIvfHY3Fm4sNq3rx5tGnThpEjR5KWlkZaWpr5LMPJkyczZ84c9u/fj5WVFSdOnDD3MxqNrFy5krFjx5KcnMyiRYu4cuUKO3fuLPVZCmAREREREREREZHypmJiOXJycqJixYrY2dnh4uKCi4sLlpaWAEybNo3AwEB8fHyYNGkS2dnZHDhwAIDMzEw6d+5MSEgI9evXp0uXLri6uprvl0QBLCIiIiIiIiIiUt60zfkB8fPzM//t6uoKwDPPPAOAg4MDO3bswMHBwdzGZDKRl5dHbm4udnZ2xcYLDw8nLCzM/Pl2AIuIiIiIlB9tXxYREZEnjYqJD8jtgJUbN25gMBgAuB2snZOTQ1RUFH379i3Wz8bGpsTxFMAiIiIiIiIiIiLlTcXEe1RQUMDMmTP5+OOPuXDhAo0aNeKdd96hX79+mEwmXn31Vb777jsuXLhA3bp1MRgMmEwmc/8ZM2YA8P7777NkyRKsra1Zv359kWc4OjqyYMECJkyYYP7u5s2b1K5dm+joaIYPH15sXkajEaPRaP6sMxNFREREyt/dBrA8TrQaU0RE5MmmYuI9io6OZsWKFSxcuBBPT0927tzJ4MGDqV69Om3btqVOnTqsXbuWqlWrsmfPHkJCQsjPzyc1NRUHBwfz6sOUlBS2b98O3CoU/t6kSZMICwtj3LhxvPLKK1hYWPDJJ5+QmZnJiy++WOq8oqKiyvflRURERERERETkiWYovF3dkv/KaDRSpUoVvv32W9q0aWP+fsSIEeTm5rJq1apifQYPHszmzZu5fv06169fJyAggPj4eC5evEiNGjUASExMpHnz5rzzzju8++67ALi7u2MwGEhPT6dChQpYWFjg4+NDfHx8qXP748pENzc3srKycHR0LMufQURERET+f1qZKCIiIo+C7OxsnJycyqROpJWJ92D16tXk5uYSEBBAYWEhNjY2WFpacuPGDZo3b87Fixfp1asXBw4cID8/H0tLSywsLPD392ffvn0AuLi4AFCzZk3zuK+99hru7u5UqVIFgLNnz2Jvb8/x48epVq0a/fr1Y/HixeYt0iXRmYkiIiIi958KayIiIvKksXjQE3iUXLlyBcC8evCDDz4gMTGR5ORk1q5dS7t27fjxxx8JCwvjq6++ol+/flhbW5OXl1dkHHd3d9LS0szXrFmzzPdMJhPdu3enevXqWFlZMWnSJD799FMqVapE+/bt79/LioiIiIiIiIiI/IFWJt6DESNGEB4ejru7OwCurq40bNgQgJMnT5KSksLTTz/NzJkzAejVqxc2NjZkZGQUGcfS0tK8QvGPtm3bRnJyMr/++itjxozh+PHjODs7c/nyZW7cuEHFihVL7KcAFhEREZH7735vc9ZKSBEREXnQVEy8B5UqVWLcuHG89dZbAKSlpXHw4EHi4+PJysoC4OjRo2zdupV69eqxfPly8vPzuXbtWpFx/v3vf1OtWjVcXFzo2bMn77zzjvneDz/8gK+vLzVr1mTEiBH06NEDk8mEyWTi6NGjNG/evMS5KYBFRERERERERETKmwJY7lFhYSHz588nNDQUKysrKleuTIsWLZgwYQJDhw7F0tKSK1euYGFhQePGjdm7dy+VKlUyrxRs27YtAIsWLeLQoUNMnDiR1q1bc/DgQUJDQ0lOTuaXX35h69atFBYWUq9ePRo3bszWrVvp1KkT7dq1IzIysti8FMAiIiIiIiIiIiIlUQDLA2QwGBg7diyhoaGsXbuW3r17m++tX7+e4cOHk5qaiqWlJU5OTjz77LP8vl67Z88e89++vr64urrSqVMnUlJSaNCgAa+++qr5/rVr18jIyCAkJIStW7fecV4KYBERERERERERkfKmAJYy1LJlSxITE8nMzCQtLY0tW7Zw+fJl6tevX2qfp59+GoCUlBTgVtrzhQsXSE9P57333sPZ2ZlWrVoBYGtrW/4vISIiIiIiIiIiUgqtTCwHTk5OAJw6dYr9+/fz3nvvldo2MTERuBXmAtCmTRumTp1KzZo1qVOnDsuWLeP777/H0dERZ2fnUsdRAIuIiIjI/Xe3ASwKThEREZHHhYqJ9yAnJ8e8ghDgzJkzJCYmUqVKFerWrcvatWupXr06devW5fDhw4wdO5bevXvTtWtXAE6fPs2qVat47rnnqFq1KocOHeKtt96iQ4cO+Pn5AdC1a1eaNGlCrVq1mDVrFhcuXGDKlCm8+eabTJ8+vdS5KYBFRERERERERETKmwJY7kFsbCwdO3Ys9n1ISAjLli1j/vz5zJ49m4sXL+Lq6sqQIUN45513qFixIgDnzp1j8ODBHDlyhGvXruHm5kafPn2YMmVKkcMvf/nlF9544w1iY2Oxt7cnJCSEGTNmYGVVeu1XASwiIiIiIiIiIlKSsgxgUTHxMVWW/5KIiIiIiIiIiMijqyzrRApgecitW7cOX19fbG1tqVq1Kp07d+batWsPeloiIiIiIiIiIvIE0pmJD7G0tDQGDBjArFmz6NOnD1evXmXXrl2UtJhUASwiIiIi99/dBrCURsEsIiIi8qhRMfEhlpaWRn5+Pn379sXd3R0AX1/fEtsqgEVERERERERERMqbzkx8iJlMJoKDg9m3bx/BwcF07dqVfv36Ubly5WJtFcAiIiIiIiIiIiIl0ZmJTwhLS0u2b9/O5s2b8fHxYcGCBXh5eXHmzJliba2trXF0dCxyiYiIiIiIiIiIlCWtTHyEmEwm3N3dCQsLIyws7I5tleYsIiIiUv7+eGaizkAUERGRh1FZ1ol0ZuJDLCEhgR07dtC1a1dq1KhBQkICly5dwtvbu1hbBbCIiIiIiIiIiEh5UzHxIebo6MjOnTuJiYkhIyODgoIC5s2bx7PPPlusrQJYRERERERERESkvGmb8yNi2bJlhIaGkpmZWeJ9BbCIiIiIiIiIiEhJtM1ZirG2tsba2vpBT0NERERERERERB5jKiaWgy1btjB16lSOHDmCpaUlbdq0Yd68eTRo0IDU1FTq1avHl19+yYIFC0hISMDT05OFCxfSpk0b8xjLli0jIiKC3377jeDgYNq1a3fHZ+rMRBEREZFb/hiKUp4UuCIiIiJPGosHPYHH0bVr1wgLC2P//v3s2LEDCwsL+vTpQ0FBgbnN5MmTGTduHImJiTRq1IgBAwaQn58P3ApeGT58OKNHjyYxMZGOHTsyderUOz4zOjoaJycn8+Xm5lau7ygiIiIiIiIiIk8enZl4H/z2229Ur16dw4cP4+DgQL169fjkk08YPnw4AMnJyTRp0oRjx47RuHFjBg4cSFZWFt9885//q167dm1+/fVXSvvHpTMTRURERG7RykQRERGRonRm4kPu1KlTREREkJCQwG+//WZekXj27Fl8fHwA8PPzM7d3dXUFID09ncaNG3Ps2DH69OlTZExbW9s7PlNnJoqIiIjcogKfiIiISPlRMbEc9OzZE3d3dxYvXkytWrUoKCigadOm3Lhxw9ymQoUK5r8NBgNAkW3Qf3Tp0iVzOxERERERERERkQfhsSgmrlu3jqioKFJSUrCzs6N58+Zs3LiRN998k8zMTJo3b86HH36I0Whk4MCBzJ8/n4oVKwJ3DksB6NevHy4uLnz44YcAhIaGMm/ePPOW5Bs3blC5cmU2btxI586dCQgI4MSJE7Ro0YIXXniBihUr8txzzxWbc1RUFLt378ZoNNKsWbMi97y9vVm1ahUfffQRubm59O/fn9q1a3PixIlSfwMFsIiIiIjcf/e6pVqrJkVERORR98gHsKSlpTFgwACGDRvGsWPHiI2NpW/fvuazBXfs2GH+/vPPP+err74iKirK3P+/haUEBgYSGxtrbh8XF0e1atXM3/3444/cvHmTtm3bAmBlZYXBYODo0aOsWbOGoUOHsnTp0mLzvnLlCps3b+bAgQPmYuLtAqCPjw8nTpwgMDCQdevW8e9//5tjx47d8XdQAIuIiIiIiIiIiJS3Rz6A5eDBg7Rs2ZLU1FTc3d2L3Bs6dCj/+te/OHfuHHZ2dgAsXLiQ8ePHk5WVhYVF8Vrq78NSmjZtyuHDh2nWrBkXL17EysoKFxcX3nnnHY4cOcLq1auZNm0amzZtIj4+HoCgoCAuX76MyWTi559/xsvLC6PRyIkTJ1i/fj03b96kf//+JCQk0Lp1awAyMzOpXLkyYWFhzJkzh7Zt22JjY8OpU6f47bffyMvLw8XFhfT0dEwmU4m/gwJYRERERERERESkJGUZwPLIr0xs1qwZnTp1wtfXlxdeeIHFixeTkZFR5P7tQiJAmzZtyMnJ4dy5c8CtsJQBAwZQv359HB0d8fDwAG6FpQA0bdqUKlWqEBcXx65du2jevDk9evQgLi4OuLVSMSgoqMicOnToQHJyMnl5eSQlJeHl5cUrr7xC7969SU9Px8LCgmeeeQYHBwccHByoU6cOFhYWWFnd2nV+7Ngxhg4dyrlz58wrEm+/Y2msra1xdHQscomIiIiIiIiIiJSlR76YaGlpyfbt29m8eTM+Pj4sWLAALy8vzpw5c1f9e/bsyZUrV1i8eDEJCQkkJCQAmMNSDAYDHTp0IDY21lw49PPzw2g0cuTIEfbs2UNgYGCRMX8frnJ7jNvbpnNycnB1dSUxMdF8zZ8/H39/f/7+979TtWpVcnJySE9PB6BevXoArFy5kqSkpGKFSxERERERERERkfvlsQhgMRgMBAQEEBAQQEREBO7u7qxfvx6ApKQkrl+/jq2tLQB79+7FwcEBNzc3Ll++zIkTJ1i8eDHt27cHYPfu3cXGDwwMZPHixVhbWzNt2jQsLCzo0KEDs2fPxmg0EhAQcNdzbdGiBRcuXMDKysq8CjIpKYnJkyfj5+dHTk4OzzzzDNHR0YSFhbFv3z5at26Nt7c3FhYWfPXVVyWOqwAWERERkfJVUtiKAlVERETkSfPIr0xMSEhg+vTp7N+/n7Nnz/LVV19x6dIlvL29gVsrDIcPH05ycjKbNm3ir3/9K6NHj8bCwoLKlStTtWpVPv74Y1JSUvjuu+8ICwsr9oygoCCSk5M5evQo7dq1IygoiIyMDFauXEmrVq2wt7e/6/l27tyZNm3a0Lt3b7Zt20Zqaiqurq4cOHCAzMxM/P39mTlzJleuXGHatGlcvXoVuLXt2srKiipVqpQ4rgJYRERERERERESkvD3yKxMdHR3ZuXMnMTExZGdn4+7uzpw5c3j22Wf54osv6NSpE56ennTo0AGj0ciAAQOIjIwEwMLCgtWrVzNmzBiaNm2Kl5cX8+fPL7aV2NfXF2dnZxo1aoSDgwMAderUwWQy3fO2Y4PBwKZNm5g8eTKvvPIKly5dolq1alSsWJHly5eTmZlp3hL9/vvv8+677wLwwgsv8NNPP5U6bnh4eJFC6O0AFhEREREpG1qFKCIiIvIYpDnfydChQ8nMzGTDhg1lOm5QUBD+/v7ExMSUyXiNGzfG3d2dCRMmUKtWLQoKCmjatCnr169nxYoVfPnll/z000/4+/vf9ZhlmdIjIiIiIiIiIiKPLqU5P0SMRiPjxo2jdu3a2Nvb8/TTTxMbG2u+f/nyZQYMGEDt2rWxs7PD19eXzz//vMj9EydOcOrUKXr06EG7du0ICQkBYPXq1Xz55ZcANG/eHIPBUGRsERERERERERGR++mR3+b8oI0ePZrk5GRWr15NrVq1WL9+Pd26dePw4cN4enqSl5dHy5YtmThxIo6OjnzzzTe8/PLLNGjQgNatW5OXlwdAlSpVWLJkCSkpKUydOhWAXr16YTKZ+Oqrrxg/fjyDBg3CxcWlxHkogEVERESeZCWFo9wP2vosIiIiT5rHeptzebm9zTksLIz69etz9uxZTp48SceOHcnIyKBfv360bt2a6dOnl9i/R48eNG7cGAcHB1atWsWpU6do2LAh586dK3Ju4/r169mwYQNJSUlcvnyZ8+fP0759+xJXJ0ZGRhIVFVXse21zFhERkSeBiokiIiIipSvLbc5amfg/OHz4MCaTiUaNGgFgZ2dHnTp1MBqNVK1aFQCTycT06dNZs2YN58+f58aNGxiNRuzs7PDx8cHW1pZOnTqxb98+evbsSdeuXfHz8+N2jff111/H3t6es2fP3nEuCmARERGRJ5mKeiIiIiL3h4qJ/4OcnBwsLS05cOAAlpaWRe7dTn2ePXs28+bNIyYmBl9fX+zt7QkNDeXGjRvArXTn7du3s2fPHrZt28aCBQuYPHkyCQkJ1KtX767nYm1tjbW1ddm9nIiIiIiIiIiIyB+omHgPCgoKmDlzJnv37mX37t1s2bIFk8lEeno6JpPJvM3Z2dkZgMWLFxMVFcXNmzf58ssvSU9PJyoqipo1a+Lj42Med8WKFbzzzjtkZGQQHBzM5cuXWb9+PYcOHeLixYvAraIjwJkzZ/Dw8Ljv7y4iIiIixf2v26u1olJEREQeNSom3oPo6GhWrFhBo0aNaNmyJYGBgQwfPpz+/fvzxhtvAHDgwAH27duHlZUVkyZNIiAggJSUFBo0aMC7777L9evXuXjxormYePLkSWbMmMHMmTOxtLRk5MiRXL16FW9vb4YPH853331HRkYGmzdvpnLlygpgERERERERERGRB0YBLHfJaDRSpUoVvv32W8LDw82BKBkZGVhYWGBjY0Nubi4uLi5kZWXh7u5OgwYN+Oyzzxg2bBg7duwgPz+fwsJCXnzxRbKysvD392fmzJkEBARw6NAhsrOzsbOzw9HRkdTUVADatm3L+fPnuXLlCjk5OXz//fcEBQUVm58CWERERETuP61MFBERkUdBWQawqJh4l44ePUrTpk2xt7fHZDKRl5eHra0t+fn5NG3alKlTp9K9e3cyMjLw9/cnPz+fV199lYiICPMY8+fPJyIigszMTOBWAXDt2rUcPXrU3Gbu3LksWLCAn3/+GfhPcnRMTMwd51ckkIRdAAAgAElEQVTSykQ3NzcVE0VEREREREREnnBKc34AcnJyAPjmm2/47rvvWLx4MTt37gRuhZ+cPn36T41boUKFIp8NBgMFBQX3PI4CWEREREREREREpLypmHiXfHx8sLa2ZsqUKezevRsAT09P3N3d8fDwoFq1akXa16hRgx9//BG4VSBcuHAhs2bNIisrC29vb5YsWcKVK1dISUnB3t6eZs2asXz5cnP/pKQkQkND2b17N3v27GHXrl0sWrSIVq1alTg/nZkoIiIicv/dyzZnbWkWERGRx4HFg57Ao6JSpUqMGzeO5ORk+vTpg4uLC1u3buW1117jwoULxdq3a9eOTZs28cEHHwAwadIksrOzcXR0pHHjxgwcOJB//etf1KxZk/3791NYWMjo0aPN/QcNGkSdOnXo27cvjRs3ZtiwYeTk5JS6ajE6OhonJyfz5ebmVj4/hIiIiIiIiIiIPLFUTLwH7733HhEREcTHx3PhwgUGDx5MXFwcNjY2xdrWr1+fhQsXmouJNWvWZOLEidjZ2TFx4kRSU1Px8/OjUqVKeHt7M3bsWGJjY839z549S+fOnZk6dSr29vaMHz+ejh07smfPnhLnFh4eTlZWlvk6d+5cufwGIiIiIiIiIiLy5NI253tgMBgYO3YshYWFxMTEmBOXg4KCqFOnDn/Mshk5ciQjR47EYDDw3nvvsW3bNho2bEjNmjUBmDJlCk899RRwq9iYl5fHsGHDCA0NJTIykhEjRhAYGEivXr3w9vbG0tKSdu3alTg3nZkoIiIicv9p67KIiIg8abQysRy9//77JCUlAbBt2zY+/fRTQkJCMBgMQNHwldvf3d7GHBkZydGjR+nevTvbt29n6dKlNGjQ4D6/gYiIiIiIiIiIyH9oZWI52rdvH7NmzQJg69atzJ8/nxEjRphXNP43jRo1olGjRri5uREfH1/qFmdQAIuIiIjIg3AvASzlSSskRURE5H7RysRytGbNGtLT0wGYP38+r7/++l31u379OqNHjyY2NpZffvmFL774AktLS7y9vUvtowAWEREREREREREpb1qZ+BCytLTk8uXLDBkyhIsXL2JhYUG9evWIiooqtU94eDhhYWHmz9nZ2SooioiIiIiIiIhImTIU/jE1RB46wcHBNGzYkI8++uiu+2RnZ+Pk5ERWVhaOjo7lODsREREREREREXmYlWWdSNuc71FQUBBjxoxhwoQJVKlSBRcXFyIjI833z549S69evXBwcMDR0ZH+/ftz8eJF8/3IyEj8/f1Zvnw5Hh4eODk58dJLL3H16lVzm4KCAqKjo6lXrx62trbs27fPHOQiIiIiIiIiIiLyoGib85/w6aefEhYWRkJCAj/88ANDhw4lICCATp06mQuJcXFx5Ofn8+abb/Liiy8SGxtr7n/69Gk2bNjA119/TUZGBv3792fGjBlMmzYNuHX+4YoVK1i4cCGenp6Eh4ezdu1a4uLiCAwMLHFOCmARERF5vDwswR5yZwo+ERERkSeNiol/gp+fH3/9618B8PT05MMPP2THjh0AHD58mDNnzpjPK/zss89o0qQJP/74I0899RRwa+XhsmXLqFSpEgAvv/wyO3bsYNq0aRiNRqZPn863335LmzZtAOjevTtr1qwhKCiIXr16sWHDhmJzio6OvuOZiiIiIiIiIiIiIv8rFRP/BD8/vyKfXV1dSU9P59ixY7i5uRUJPvHx8cHZ2Zljx46Zi4keHh7mQuLv+wOkpKSQm5tLly5dzPevX78OQJ06dVi2bFmJc1IAi4iIyONFK95ERERE5GGkYuKfUKFChSKfDQYDBQUFZdI/JycHgG+++YbatWsD8NRTT9GrVy/i4+NLPSTT2toaa2vru56DiIiIiIiIiIjIvVIASxny9vbm3LlznDt3zvxdcnIymZmZ+Pj4lNovPz+fK1euUKNGDTp06IDBYCA2NhYrKys8PT3JzMzk008/JSUlhblz596PVxERERERERERESlGKxPLUOfOnfH19WXQoEHExMSQn5/PqFGjCAwMpFWrVqX2++c//0lubi5ffPEF7u7uvPTSS0RFRVGtWjV++OEHOnfuTHBwMIGBgYwcObLEMRTAIiIiInJvyiLkRtvRRURE5EmjlYn/o2XLlvHNN7f+Q9RgMLBx40YqV65Mhw4d6Ny5M/Xr16dmzZr07t27xP7Xrl0jPj6eypUr8+yzz2JnZ8fhw4exs7MjKiqKDh06kJuby8mTJ/H398fW1rbEcaKjo3FycjJfOi9RRERERERERETKmqGwsLDwQU/iUbZs2TJCQ0PJzMwstU1WVhaFhYU4OzsXu3fo0CGaNWtGamoq7u7upKamUq9ePTp27IiHhwdLlizB2dmZmJgYhg4dWuozSlqZ6ObmRlZWVqnnLIqIiIiIiIiIyOMvOzsbJyenMqkTaZvzfeDk5FTuz1AAi4iIiIiIiIiIlDdtcy7B119/jbOzMyaTCYDExEQMBgOTJk0ytxkxYgSDBw82f966dSve3t44ODjQrVs30tLSzPeGDh1aZJtzQUEBs2bNomHDhuazFMePH19kDklJScTFxWFnZ8fVq1dJSUkpl3cVERERERERERG5W1qZWIL27dtz9epVfvrpJ1q1akVcXBzVqlUjNjbW3CYuLo6JEycCkJuby/vvv8/y5cuxsLBg8ODBjBs3jpUrV5Y4fnh4OIsXL2bu3Lm0a9eO8PBwtm/fzpYtW7C0tAQgMzOTv/3tbzRv3pymTZuycOFCIiMjsbIq+R+ZAlhERERE7r+yCHF5VCl8RkRE5MmklYklcHJywt/f31w8jI2N5a233uKnn34iJyeH8+fPk5KSQmBgIAA3b95k4cKFtGrVihYtWjB69Gh27NhR4thXr15l3rx5zJo1i5CQEBo0aMBnn33Gyy+/zMsvv0yPHj2AWwXHF198kUaNGmFjY8Ply5fvuDpRASwiIiIiIiIiIlLetDKxFIGBgcTGxvL222+za9cuoqOjWbNmDbt37+bKlSvUqlULT09P4uPjsbOzo0GDBua+rq6upKenlzjusWPHMBqNdOrUyfydjY0N8+fPZ/78+eYAll69epnv//LLL1SpUoX09HQaN25c4rjh4eGEhYWZP98OYBERERGR8qPVeSIiIvKkUTGxFEFBQSxZsoSkpCQqVKhA48aNCQoKIjY2loyMDPOqRIAKFSoU6WswGCgtJNvW1vaunv/7MQ0GA3DrrMXSKIBFRERERERERETKm4qJpbh9buLcuXPNhcOgoCBmzJhBRkYGb7/9drE+X3/9NYMHD2bJkiXAreCW22ce3l65OGfOHCwtLdm4cSMJCQns3LmTjIwMGjRowP/93//Rpk0b83jr1q0jKiqKU6dOAfD222+zc+dO7O3ty/v1RURERB4r5XW2oVYmioiIyJNGZyaWonLlyvj5+bFy5UqCgoIA6NChAwcPHuTkyZNFVibedrsA+fPPPwOYg1suXLhgbhMfH89zzz1HZGQkhYWFLFy4kOXLl+Pr68vLL79MYmIiAJcuXWLAgAEMGzaMffv2mccvbcWj0WgkOzu7yCUiIiIiIiIiIlKWVEy8g8DAQEwmk7mYWKVKFXx8fHBxccHLy6tY+9vBLUeOHAH+E9xy5coV8vPzzcEts2fPZvz48ezdu5fnn3+esLAwfH196datG998c+v/mv/222/k5+fTt29f6tatC0Dv3r1xcHAoca4KYBERERERERERkfJmKCxtqZv8KWFhYZw8eZJ//etfVK9end27d/PSSy8xY8YMrly5wvjx4zl//jwmk4np06ezZs0azp8/z40bNzAajfTp04c1a9ZgMpkIDg5m3759BAcH07VrV/r160flypVLfK7RaMRoNJo/3w5gycrKwtHR8X69voiIiIiIiIiIPGSys7NxcnIqkzqRViaWsaCgIHbv3l1icEtcXJx5e/Ts2bOZN28eEydO5PvvvycxMZHg4GBu3LgBgKWlJdu3b2fz5s34+PiwYMECvLy8OHHiRInPtba2xtHRscglIiIiIiIiIiJSlhTA8j8qKChg5syZfPzxx1y4cIH69euTnZ3NBx98QFZWFn//+9+LBLe88MILWFhY8Mwzz9CrVy969OjBuHHj2LBhA1euXKFq1aokJSXRrFkzDAYD27dvZ+PGjYwePZpRo0bRuHHjEs9NLGllooiIiIiUr/IKdrlbCoARERGR++2JX5kYFBREaGjon+4fHR3NZ599xsKFCzl69Cjjx48HYOXKlQQEBLBq1aoiwS2//vorAQEB+Pn5sX37drp06cLp06dp164d9vb2ODk50alTJ7Zt28b06dP59ddfOXHiBK+99hoGg4GPPvqo1HnozEQRERERERERESlPT3wx8X9hNBqZPn06S5YsITg4mPr16zN06FB8fHwoKChg1KhRxMfHk5OTYw5u2bZtG4MGDWLKlCm4u7uzf/9+kpOT8fX1pW/fvjRt2hRnZ2d++OEHdu7cycqVK8nLywPg7bffZtSoUSXOJTw8nKysLPN17ty5+/lTiIiIiIiIiIjIE+Cx3uZ848YNKlasWG7jp6SkkJubS5cuXYo9t3Xr1vTp0wdvb29WrVpFYmIi33//PcHBwbzwwgtUqVKFl156iT179nDt2jXmzp1r7n/9+nVyc3PZsmULkZGRfPrpp6SmpvLSSy+VOhdra2usra3L7V1FREREpDhtMxYREZEnzWO1MjEoKIjRo0cTGhpKtWrVCA4O5siRIzz77LM4ODhQs2ZNXn75ZX777bdSxzAajYwbN47atWtjb2/P008/TWxsrPn+5cuXGTBgALVr16Zly5bArQTnxMRE8zVnzhwyMzOxtbXlzJkzTJs2jWvXrrFq1Sq6devG+vXr8fb2ZuzYsVhYWDBu3Lgi/desWcOmTZuwsbHh448/Lu+fTURERERERERE5K48disTP/30U9544w3i4+PJzMzkmWeeYcSIEcydO5fr168zceJE+vfvz3fffVdi/9GjR5OcnMzq1aupVasW69evp1u3bhw+fBhPT0/y8vJo2bIlEydOxMLCgpYtWzJ16lR69OhB69atSUtLIywsjFmzZtGnTx+OHz/Oc889x8GDB1m3bh2DBw8mIiKCDz/8kJycHF555RViYmKoV68eISEh5OTk0LZtW7p06cLq1auZNm0aX3755X99bwWwiIiIyKPuQYeZ/BlamSgiIiJPmseumOjp6cmsWbMAmDp1Ks2bN2f69Onm+0uWLMHNzY2TJ0/SqFGjIn3Pnj3L0qVLOXv2LLVq1QJg3LhxbNmyhaVLlzJ9+nRq167NuHHjzH0mTpzIrFmz+Otf/8qHH37I3r17yc/Pp6CgAA8PDzw8PGjbti3/7//9P0wmE9988w1z5syhb9++FBYWsnjxYlJSUhg1ahRxcXFUr16dnJwcRo0aRZMmTWjUqBE1atTg3//+9x3fOzo6mqioqLL6GUVERERERERERIp57IqJt7ceAyQlJfH999/j4OBQrN3p06eLFRMPHz6MyWQq9r3RaKRq1aoAmEwmpk+fzpo1azh//jxGoxGTyUR8fDze3t44OztTpUoV3nnnHfbu3UvXrl3p06cP48aNY+DAgaxatYrhw4czcuRIAAoLCzEajRQWFrJixQpsbGxwdHSkbt265ufb2dn91/cODw8nLCzM/Dk7O1uJziIiIvJI0So/ERERkYffY1dMtLe3N/+dk5NDz549mTlzZrF2rq6uxb7LycnB0tKSAwcOYGlpWeTe7YLk7NmzmTdvHjExMfj6+mJvb09oaChWVlZs2LABuFUg3LNnD9u2bWPBggVcuHCBn3/+GTs7O1atWsXixYt5+umni4xvaWlJvXr1eOutt0hKSjIXAiMjI+nTpw/+/v53fG8FsIiIiIiIiIiISHl77IqJv9eiRQu+/PJLPDw8sLL676/avHlzTCYT6enptG/fvsQ28fHx9OrVi8GDBwNQUFDAyZMn8fHxMbcxGAwEBAQQEBBAREQE7u7urF+/nrCwMGrVqsXPP//MoEGDiowbFBSEv78/Pj4+zJ8/n6ioKH755RfWrl1LhQoV/odfQUREREREREREpGw81sXEN998k8WLFzNgwAAmTJhAlSpVSElJYfXq1XzyySfFVh82atSIQYMGMWTIEObMmUPz5s25dOkSO3bswM/Pj+7du+Pp6cm6devYs2cPlStX5oMPPuDixYvmYmJCQgI7duyga9eu1KhRg4SEBC5duoS3tzcAUVFRjBkzBicnJ7p164bRaGT//v2cO3cOf39/Bg4cyBtvvMH06dOZMGECc+fOZdKkSQCkpqaWukJRASwiIiIi99//Ghqjrd0iIiLyqLF40BMoT7Vq1SI+Ph6TyUTXrl3x9fUlNDQUZ2dnLCxKfvWlS5cyZMgQ3n77bby8vOjduzc//vij+QzDKVOm0KJFC4KDgwkKCsLFxYXevXub+zs6OrJz506ee+45GjVqxJQpU5gzZw7PPvssAA0bNuT69et88skn+Pr6EhgYyLJly7C1tQVubaeuUaMG9vb2zJo1i48++ohFixYB8OOPP5b6rtHR0Tg5OZkvnZcoIiIiIiIiIiJlzVBYWFj4oCfxOLu9fTkmJgaA2NhYOnbsSEZGBs7OziW28/Dw4M0332T8+PHm+82aNeP5558nIiKixOeUtDLRzc2NrKwsHB0dy+ntRERERERERETkYZednY2Tk1OZ1Ike623Oj7I/npNoMBgoKCgotb0CWEREREREREREpLw91tucH7ShQ4cSFxfHvHnzMBgMGAwGUlNTAThw4ACtWrXCzs6Otm3bkpubW6Tv4cOHadGiBTY2NtSvX58LFy7csZgoIiIiIiIiIiJS3rQysRzNmzePkydP0rRpU959910Ajh49CsDkyZOZM2cO1atX5/XXX+fo0aO0bdsWuLVleeXKlSxatIj27dtz+vRpunfvzs6dO0t9lgJYRERERMrfHwNXFKAiIiIiTxqtTCxHTk5OVKxYETs7O1xcXHBxcTEnSE+bNo3AwEB8fHyYNGkS2dnZ5OfnA5CZmUnnzp0JCQmhfv36dOnSBVdXVw4cOFDqsxTAIiIiIiIiIiIi5U0rEx8QPz8/89+urq4ATJgwAbiV6Lxjxw4cHBzMbUwmE3l5eeTm5mJnZ1dsvPDwcMLCwsyfbwewiIiIiEjZ0UpEERERedKpmPiA/D5gxWAwAJjPRMzJySEqKoq+ffsW62djY1PieApgERERERERERGR8qZiYjmrWLEiJpPpnvq0aNGCd999l4oVKxIaGmr+3t/fn969exMZGVnGsxQRERGRP+OPZyj+nlYxioiIyONIxcRy5uHhQUJCAqmpqTg4ONxVInNERATdunVjy5YtdOnSBQsLC5KSkkhLSyu1jwJYRERERERERESkvCmApZyNGzcOS0tLfHx8qF69OmfPnv2vfYKDg6lRowYnTpzgqaee4i9/+Qtz586lYsWKpfZRAIuIiIiIiIiIiJQ3Q2FhYeGDnoQU5+HhQWho6F1vcy5pZaKbmxtZWVk4OjrejymLiIiIiIiIiMhDKDs7GycnpzKpE2mb80PKwsKCP9Z5b968WWp7BbCIiIiIiIiIiEh5UzHxIVW9evUiZyRmZ2dz5syZUtvrzEQRERGRsnWncJXbFLIiIiIiTxqdmfiQeuaZZ1i+fDm7du3i8OHDhISEYGlpWWp7nZkoIiIiIiIiIiLlTcXEh1R4eDiBgYH06NGD7t2707t3bxo0aHDH9llZWebr3Llz93G2IiIiIiIiIiLyJFAAy2OqLA/WFBERERERERGRR1dZ1om0MlFERERERERERETuigJYHnLr1q0jKiqKlJQU7OzsaN68ORs3bsTe3r5IOwWwiIiIiNx/dxPScj8pEEZERETKm1YmPsTS0tIYMGAAw4YNY9KkSTRs2JC+fftS0s50BbCIiIiIiIiIiEh505mJD7GDBw/SsmVLUlNTWbp0KcuWLSM1NbXEtiWtTHRzc9OZiSIiIiIiIiIiT7iyPDNR25wfYs2aNaNTp074+voSHBzM5MmTycjIoHLlysXaWltbY21t/QBmKSIiIiIiIiIiTwptc36IWVpasn37djZv3oyPjw8LFizAy8uLM2fOPOipiYiIiIiIiIjIE0jbnB8hJpMJd3d3wsLCCAsLK3JP25xFRERE7r/7GcCicBURERH5s7TN+QmRkJDAjh07+P/Yu/O4KMu9j+PfcYCRxRn3LRFc0EBRcKkUIxMf0bRU3I7HSnI7ZpaGW2QqlEa5JKaVpSmWlZmJdtIWs8w1XBJXjkcRghS3o4AgiyzPHz3NE8fBpUBBPu/X634dZ+7rvu5rOP31e/2u69utWzfVrl1bMTExOn/+vDw9Pa8ZGxERofDw8DuwSgAAAAAAAFQUdCaWYXFxcXr++ee1ZcsW5efnq3Hjxnr22Wc1duzYa8bSmQgAAAAAAABbSrIzkWJiOXD48GH5+/srISFBFovlpp4pyf9IAAAAAAAAUH6VZJ2IAJZyoGXLlmrSpIlWrlx5p5cCAAAAAACACowzE8uJ2rVra+rUqXrmmWds3re1zRkAAFRstzMcpKIiFAUAAFQ0dCaWE9WqVVNaWlqRguEfRUREyGKxWC9XV9fbvEIAAAAAAADc7TgzsZw4ePCgWrdurcTERLm5uV1znwAWAAAAAAAA2FKSZyayzbmccHR0lCRduXLF5n2TySSTyXQ7lwQAAAAAAIAKhmJiOXHx4kVJUq1ate7wSgAAQHnD2YmlhzMTAQBARUMxsZw4fPiwGjRooJo1a9q8TwALAAAAAAAAShsBLOXEtm3b1K1bt2LvE8ACAAAAAACA0kYASzmQnZ2tunXrys/PT+3bt1dYWNg1YwhgAQAAAAAAgC0EsFQwy5cv13333Xfd8xIJYAEAAAAAAEBpo5hYDtjb22vhwoWKiIgodgxnJgIAANx+dyLchtAXAABwJ3FmYjkwYsQIbdq0Sd98802xYzgzEQAAAAAAAKWNYmI5ceHCBZlMJpvnJUpSaGio0tLSrFdycvLtXSAAAAAAAADuegSw3KVK8mBNAAAAAAAAlF8lWSeiMxEAAAAAAADATSGApYzKycnRpEmTtGrVKqWnp6tdu3aaP3++2rdvX+x4AlgAAABuzV8NUCEMBQAAVDR0JpZRkydP1ueff64VK1bo559/VtOmTRUYGKiLFy/aHE8ACwAAAAAAAEobxcQyKDMzU++8847mzJmjHj16yMvLS0uWLJGjo6Pef/99m88QwAIAAAAAAIDSxjbnMig+Pl5Xr16Vn5+f9Tt7e3vdd999iouLs/mMyWSSyWS6XUsEAAC4K7BNGQAA4NbQmQgAAAAAAADgptCZWAY1adJEDg4O2rFjh9zc3CRJV69e1Z49ezR+/HibzxDAAgAAULy/GrRSHDobAQBARUNnYhnk7Oysp59+WpMmTdLXX3+to0ePauTIkbpy5YqGDx9u8xkCWAAAAAAAAFDaDIWFhYV3ehG4VnZ2tiZPnqxPPvlEly9fVrt27TR//ny1b9/e5nhbnYmurq5KS0uT2Wy+XcsGAAAAAABAGZOeni6LxVIidSKKiXepkvyPBAAAAAAAAOVXSdaJ2OZcxq1Zs0be3t5ydHRUjRo11LVrV2VmZt7pZQEAAAAAAKACIoClDEtJSdHgwYM1e/Zspaena+PGjQoKCpKtZlICWAAAAErOzQa2EMACAAAqGjoTy7CUlBTl5eVZC4hnz57VmDFj5OLics1YAlgAAAAAAABQ2jgzsQzLz89XYGCgdu/ercDAQHXr1k39+/dXtWrVrhlLAAsAAAAAAABs4czECsJoNGrTpk366quv5OXlpYULF6p58+ZKSEi4ZqzJZJLZbC5yAQAAAAAAACWJYmIZZzAY5Ofnp/DwcO3fv18ODg6Kjo6+08sCAAAAAABABUQASxkWExOjzZs3q1u3bqpdu7ZiYmJ0/vx5eXp6XjOWABYAAID/d7MBKn8VASwAAKCioZhYhpnNZm3dulWRkZFKT0+Xm5ub5s2bpx49elwzNiIiQuHh4XdglQAAAAAAAKgoCGC5SxDAAgAAAAAAAFtKMoCFzsS7hMlkkslkutPLAAAAAAAAwF2MYmIZt2bNGoWHh+vEiRNycnKSr6+v1q9fL2dn5zu9NAAAgArvZs9m5GxFAABwt6CYWIalpKRo8ODBmj17ttLT07Vx40YFBQXJ1s50AlgAAAAAAABQ2ird6QWgeCkpKcrLy7MWEM+ePasxY8bIxcXlmrERERGyWCzWy9XV9Q6sGAAAAAAAAHczAljKsPz8fAUGBmr37t0KDAxUt27d1L9/f1WrVu2asQSwAAAAAAAAwJaSDGChM7EMMxqN2rRpk7766it5eXlp4cKFat68uRISEq4ZazKZZDabi1wAAAAAAABASaIzsRzJz8+Xm5ubQkJCFBISUuQenYkAAOBucLOBJmUFwSoAAKA8KMnORAJYyrCYmBht3rxZ3bp1U+3atRUTE6Pz58/L09PzmrEREREKDw+/A6sEAAAAAABARcE25zLMbDZr69ateuSRR9SsWTO99NJLmjdvnnr06HHN2NDQUKWlpVmv5OTkO7BiAAAAAAAA3M3Y5lzCtm7dqjlz5mjfvn1KSUlRdHS0+vTpY72/du1aLV68WPv27dPFixe1f/9++fj4WO8nJiaqUaNGNudevXq1BgwYcFPrKMn2VQAAAAAAAJRfBLCUYZmZmWrdurXeeuutYu936tRJr7/+us37rq6uSklJKXKFh4fLxcXFZkciAAAAAAAAcLtwZmIJ69Gjx3WLfk888YSk3zoQbTEajapbt26R76KjozVw4EC5uLgUO6+tABYAAACUvD+GxBDAAgAAKho6E8u4ffv2KTY2VhaLRQEBAcWOi4iIkMVisV6urq63cZUAAAAAAACoCOhMLOPef/99eXp6ymw2Kz4+vthxoSmHTxgAACAASURBVKGhCgkJsX5OT0+noAgAAFAK6EYEAAAVGZ2JZVhWVpY+/vhjDR8+XGFhYcVujZYkk8kks9lc5AIAAAAAAABKEsXEMmzNmjW6cuWKnnzyyTu9FAAAAAAAAIBtzmXZ+++/r8cee0y1atVSVFSUnnrqKRUWFtocSwALAADA7ffHMJa/gq3TAACgvKAzsYRlZGQoNjZWsbGxkqSEhATFxsYqKSlJkjRlyhQ1b95cR48elSQdO3ZMsbGxOnPmTJF5Tpw4oa1bt2rEiBGSJIvFoubNmxf7XgJYAAAAAAAAUNoMhcW1uuFP2bJlix5++OFrvh86dKiioqK0ePFiPf3009fcnzFjhsLCwqyfX3zxRa1cuVKJiYmqVOnGNV9bnYmurq5KS0vj/EQAAAAAAIAKLD09XRaLpUTqRBQTy5jc3Fw5ODj85XlK8j8SAAAAAAAAlF8lWSdim/OfUFBQoNmzZ6tp06YymUxq2LChZs2aJem3bczNmjWTk5OTGjdurGnTpunq1avWZ8PCwuTj42P9HBwcrD59+mjWrFmqX7++dSvzoUOH1KVLFzk6OqpGjRoaNWqUMjIybu8PBQAAAAAAAP6AAJY/ITQ0VEuWLNH8+fPVqVMnpaSk6F//+pckqUqVKoqKilL9+vV16NAhjRw5UlWqVNHkyZOLnW/z5s0ym83atGmTJCkzM1OBgYHq0KGD9uzZo3Pnzmnw4MH69NNPlZaWZnMOAlgAAABuv5IKYPmrCHABAAC3C8XEW3T58mUtWLBAixYt0tChQyVJTZo0UadOnSRJL730knWsu7u7Jk6cqFWrVl23mOjs7KylS5datzcvWbJE2dnZ+uCDD+Ts7CxJ+vvf/67IyEidPXtWderUuWaOiIgIhYeHl9jvBAAAAAAAAP4bxcRbFBcXp5ycHAUEBNi8/+mnn+rNN99UfHy8MjIylJeXd8O96N7e3kXOSYyLi1Pr1q2thUTpt+3RkZGROnbsmM1iYmhoqEJCQqyffw9gAQAAQOmhIxAAAFQ0nJl4ixwdHYu9t2vXLg0ZMkSPPPKIvvzyS+3fv19Tp05Vbm7udef8Y9HwzzKZTDKbzUUuAAAAAAAAoCTRmXiLPDw85OjoqM2bN2vEiBFF7u3cuVNubm6aOnWq9btffvnllt/h6empqKgoZWZmWguNO3bsUKVKlawBLQAAALDtdp5jSGciAACoaCgm3qLKlStrypQpmjx5shwcHOTn56fz58/ryJEj8vDwUFJSklatWqX27dtrw4YNio6OvuV3DBkyRDNmzNDQoUMVFham8+fP69lnn9UTTzxhc4uzRAALAAAAAAAASh/bnP+EadOmacKECZo+fbo8PT01aNAgnTt3To899pief/55jR07Vj4+Ptq5c6emTZt2y/M7OTnpm2++0cWLF9W+fXv1799fAQEBWrRoUbHPREREyGKxWC/OSwQAAAAAAEBJMxQWFhbe6UWgeFFRURo/frxSU1OvO85WZ6Krq6vS0tI4PxEAAAAAAKACS09Pl8ViKZE6Educ7xImk0kmk+lOLwMAAAAAAAB3MYqJJaBz585q1aqVKleurKVLl8rBwUGjR49WWFiYJCk1NVUTJ07U+vXrlZOTo3bt2mn+/Plq3bq1JOnAgQMaP3689u7dK4PBIA8PD7377rvKyMjQU089JUkyGAySpBkzZljn/SPOTAQAALj9rhf2QjgLAAC4G3FmYglZsWKFnJ2dFRMTo9mzZ+vll1/Wpk2bJEkDBgzQuXPn9NVXX2nfvn1q06aNAgICdPHiRUm/Ba40aNBAe/bs0b59+/TCCy/I3t5eHTt2VGRkpMxms1JSUpSSkqKJEyfafD9nJgIAAAAAAKC0cWZiCejcubPy8/O1bds263f33XefunTpol69eqlnz546d+5ckW3ITZs21eTJkzVq1CiZzWYtXLhQQ4cOvWbuqKgoPfvss7JYLDp16pR69+6tdevWXTOOMxMBAABuPzoTAQBAecCZiWVQq1atinyuV6+ezp07pwMHDigjI0M1atQocj8rK0vx8fGSpJCQEI0YMUIffvihunbtqgEDBqhJkyZFxjZq1Eiurq6Kioqy+X7OTAQAALj9KBgCAICKhmJiCbG3ty/y2WAwqKCgQBkZGapXr562bNlyzTNVq1aVJIWFhenvf/+7NmzYoK+++kozZszQqlWr1LdvX0myzrN06VLrMwAAAAAAAMDtRjGxlLVp00ZnzpyRnZ2d3N3dbY7JycnRokWLtGrVKqWnp8tsNmv+/Pny9fW1BrAkJCTo/vvv1/LlyxUcHGxzDgJYAAAAbq/rbXP+K+h4BAAAZRUBLKWsa9eu6tChg1q2bKm+ffsqMTFRO3fu1NSpU7V3715lZWXpvvvu08cff6zZs2dr6dKlysnJ0e7du1WlShV98cUXkqQxY8bo8OHDevTRR22+hwAWAAAAAAAAlDYCWEpA586d5ePjo8jISOt3ffr0UdWqVRUVFaXLly9rwoQJ+vLLL3XhwgXVrVtX/v7+ioiIkIuLi2rUqKHq1avr8uXLqlmzpvr06aPo6Gg9//zzmjRpkkwmkxwcHJSRkaEZM2YoLCzsmjUQwAIAAAAAAABbCGApY2ydh/jHxOUqVarovffes/nswYMHVVhYqH379snNzc36/enTpxUXFydJcnR0VGRkpM3tzb8jgAUAAAAAAACljW3Ot2DNmjXy9vaWo6OjatSooa5duyozM1PBwcHq06ePwsPDVatWLZnNZo0ePVq5ubnWZzt37qzx48dbP+fk5GjixInq2rWrJKl3795FipJXrlzRd999p2rVqiktLU1Tp07Vxo0bb9tvBQAAAAAAAP4bnYk3KSUlRYMHD9bs2bPVt29fXb58Wdu2bdPvu8Q3b96sypUra8uWLUpMTNRTTz2lGjVqaNasWTbnGzt2rI4ePaqVK1eqV69eatGihbp3765Dhw7J3d1dW7dulaurqzZs2CA/Pz8NGDBALi4uxa6PABYAAID/V1rBKP+NoBQAAFDRUEy8SSkpKcrLy1NQUJB1O7K3t7f1voODg5YtWyYnJye1aNFCL7/8siZNmqRXXnlFlSoVbQBNSkrS8uXLlZSUpPr162vMmDH67LPP5OnpqTlz5ig3N1dXr15VUFCQvL29ValSJfn4+Mjf37/Y9UVERCg8PLx0fjwAAAAAAAAgiok3rXXr1goICJC3t7cCAwPVrVs39e/fX9WqVbPed3Jyso7v0KGDMjIylJycXOQsREk6dOiQ8vPz1axZM0lSYWGhcnNzdfr0aR08eFAdOnTQlClTNHv2bG3btk3Z2dlKTk5WcHCw3N3dbQawhIaGKiQkxPr59wAWAACAioiOQQAAgNJBMfEmGY1Gbdq0STt37tS3336rhQsXaurUqYqJibnluTIyMmQ0GrVv3z4ZjcYi91xcXFS3bl1J0ujRo7VhwwbVqVNHr7zyinx9feXu7m5zTgJYAAAAAAAAUNoIYLkFBoNBfn5+Cg8P1/79++Xg4KDo6GhJ0oEDB5SVlWUd+9NPP8nFxcVmd6Cvr6/y8/N17tw5NW3atMj1eyFRklxdXTV69GitXbtWEyZM0PHjx0v/RwIAAAAAAADFoDPxJsXExGjz5s3q1q2bateurZiYGJ0/f16enp46ePCgcnNzNXz4cL300ktKTEzUjBkzNHbs2GvOS5SkZs2aaciQIXryySc1b948+fr66vz589q8ebNatWqlnj17avz48erRo4eaNWumS5cu6YcffpDFYil2fQSwAAAA3H63K+jld2zfBgAAdxrFxJtkNpu1detWRUZGKj09XW5ubpo3b5569OihTz/9VAEBAfLw8JC/v79ycnI0ePBgm2cb/m758uWaOXOmJkyYoFOnTqlmzZq6evWqAgMD1bNnT+Xn5+uZZ57Rr7/+KrPZrO7du2vDhg2qUaOGzfkIYAEAAAAAAEBpMxQWFhbe6UWUd8HBwUpNTdW6dev+0jwXL16Uvb29qlSpcsvP2upMdHV1VVpamsxm819aFwAAAAAAAMqv9PR0WSyWEqkT0ZlYhlSvXv1PP0sACwAAAAAAAEobxcQypHPnzvLx8VFkZKTefvttzZ8/X8nJybJYLHrwwQe1Zs2aO71EAAAA/MHtPjMRtwdnUwIAUDyKiSUgKiqqROfbu3evnnvuOX344Yfq2LGjLl68qG3btl33GQJYAAAAAAAAUNooJpZBSUlJcnZ2Vq9evVSlShW5ubnJ19f3us8QwAIAAAAAAIDSRgBLGfL7NudXXnlFfn5+SklJUffu3dW9e3f17dtXTk5OxT5LAAsAAAAAAABsKckAlkoltCaUoCpVqujnn3/WJ598onr16mn69Olq3bq1UlNTi33GZDLJbDYXuQAAAAAAAICSxDbnMuq7777TzJkzdfjwYVWqVEmpqan6+OOPNWbMGJvjOTMRAADg9iOABTeDQBcAwN2EzsQy6Msvv9Tq1avVt29frV+/XqNHj1ZhYaEiIyNVUFBg85mIiAhZLBbr5erqeptXDQAAAAAAgLsdxcS/oHPnzho/fnyJz1u1alWdPHlSs2bNUo8ePbRhwwYtWbJEx48f19GjR20+ExoaqrS0NOuVnJxc4usCAAAAAABAxcY25zJky5Yt1n8vWbJE06dPV0xMjBISEqxFy6SkJLVs2fKaZ00mk0wm0+1aKgAAAMT2VQAAUPFQTLyNcnNz5eDgcFNjH330Ubm5uWnJkiWqX7++CgoK1LJlS+Xm5pbyKgEAAAAAAADbKCb+RXl5eRo7dqw+/PBD2dvb6+mnn9bLL78sg8Egd3d3DR8+XMePH9e6desUFBSkqKgobd++XaGhodq7d69q1qypvn37KiIiQs7OzpKk06dP69ixY7pw4YIee+wxtWzZUo8//vh110EACwAAwO1HAAvKMjpnAQClgTMT/6IVK1bIzs5Ou3fv1oIFC/TGG29o6dKl1vtz585V69attX//fk2bNk3x8fHq3r27+vXrp4MHD+rTTz/V9u3bNXbsWOsz06dPl52dndq2basvvvhCvr6+Gjdu3HXXQQALAAAAAAAASpuhsLCw8E4vojw4f/687rnnHl26dEkODg6qWrWqWrVqpbS0NB05ckQGg0GS9MILL2jlypVq2LChTp8+LTc3NyUnJ+vkyZOSpBEjRshoNOrdd9+1zr19+3Y99NBDyszM1Llz59S4cWOtXLlSL7/8sk6ePKnmzZvLzs5OP//8s6Kjo9WnT59r1merM9HV1VVpaWkym82l/NcBAAComOhMRFlGZyIA4Hfp6emyWCwlUidim/NN2rVrl1q3bi1nZ2fFxMSoevXqMplMeuCBB6yFREnq0KGD5syZo0GDBunzzz9X5cqV5efnZ71/4MABHTx4UB999JH1u8LCQhUUFCghIUEnT55Ufn6+RowYIUmys7NTfHy8cnJyNHDgQJuFRIkAFgAAgDuBYg0AAKho2OZ8k3bu3GktCm7fvr1IgfC/FRYWqmPHjpKkX3/9tcjYjIwMNW7cWJmZmdbrypUr1rErVqyQJO3bt0+xsbHWq2nTpqpfv35p/TwAAAAAAADghtjmfB1JSUlq1aqVJOnKlSsyGo0ymUzKysqSwWBQXl6ezGazLl68qI8//lhjxoxRdna2cnJy5OLioszMTEmSk5OT7Ozs9Pbbb2vDhg06deqUVq1aZX3Pa6+9pk8++UQHDhzQv//9bz300EN69913NWrUKEnS/v371bZtW504cUKNGze2uVa2OQMAANx+xW1zpmMRAACUJSW5zZnOxOuoX7++YmNjtXXrVklSTEyM9u3bJwcHB3377bdycnJSRkaGQkJCNGHCBHXp0kWSVK9ePR06dEi1atVSlSpVdPjwYcXGxuqxxx7TlClTtHv3bs2cOVNnzpzRmjVrtGDBAjVu3Fh169aVv7+/6tevr4kTJ2rt2rVKSEhQRESE3N3dFRcXV+xaCWABAAAAAABAaePMxOuws7OTu7u7Vq9erfbt26tVq1basWOH6tSpI39/f1WqVEmenp7KyspSZmamtmzZohYtWigwMFCNGjWSs7OzWrZsKXd3d0lSWFiY1q1bpx9//FFTp06Vn5+fdYtzkyZNrO+NjIzUE088oZCQEJ0+fVp5eXlq06aNGjZsWOxaQ0NDFRISYv38e2ciAAAASg8diAAAoKJhm/N1tGjRQr/88ouuXr2qgoICmUwm5eXlKS8vT5UrV1ZhYaFGjhypkJAQeXl5SZKys7NlZ2ennJwcGY1GGY1G2dvb6/HHH1fdunW1bt06xcbG6syZM2rfvr2CgoL05ptvFklpzsvLU4MGDTR//nw5ODho2LBhOnPmjBwdHW967SXZvgoAAAAAAIDyi23Ot8nGjRsVGxurunXrauXKlYqNjVXLli0VGRmp2NhYeXt7S/ptO7TFYtGwYcNkZ2enGjVqSJLy8/OVm5sri8UiLy8vhYeH68CBAzIYDKpXr57MZrPeeOONa96bkpKiqlWr6sknn9TgwYNVrVo1nT179rb+dgAAAAAAAOC/sc35Otzc3HTmzBmdPXtWvXv3lsFg0JEjR9SvXz/Vq1dPlStXlvTbdmh7e3ulpqbq/vvv15o1a1S7dm3VrVtX+/fvl9FolIuLi5KSkvT111/Ly8tLW7du1cqVK3X+/HlJ0qVLl5SbmyuDwaDAwEC1bNlSJ06cUGFhoZo3b67u3bvr4MGDcnBwsLlWWwEsAHCrigsSAADYxjZnAABQ0dCZeANbtmxR+/btVblyZe3evVsNGjRQvXr1bI49ceKE/P39VatWLUlSy5YtVbduXdWqVUuOjo5ycXGRnZ2ddu/erbNnz6pNmzbWuYYNG6YuXbro008/VUFBgT777DN17NhR9957r/75z38qKSlJW7ZsKXadBLAAAAAAAACgtNGZeAN/+9vf9Le//U2S9OCDD+r48ePFjh04cKDGjx9v/fzMM8/YHJeYmFjks8Fg0MMPPyyz2awDBw7oxIkTcnFxUVZWluzt7VW9enVlZ2crPj6+2HcTwAKgJNBhAwAAAAC4HoqJZUxGRoZatWqlXr16ad68edq6dassFoskWTsebTGZTDKZTLdrmQAAAAAAAKiA7vptzgUFBZo9e7aaNm0qk8mkhg0batasWZKkQ4cOqUuXLnJ0dFSNGjU0atQoZWRkWJ8NDg5Wnz599Oqrr6pOnTqqWrWqXn75ZeXl5WnSpEnasWOHli5dquXLlxd5Z3JysgwGg4YMGaLq1aurd+/eSkxMlIODg/Lz85Wfn6+QkBBVrVrVGtbye6h2mzZttH//fs2cOVNvv/222rZtq6ZNm6pp06YaOnSonnjiidv0lwMAAAAAAACKuus7E0NDQ7VkyRLNnz9fnTp1UkpKiv71r38pMzNTgYGB6tChg/bs2aNz585pxIgRGjt2rKKioqzPf//992rQoIG2bt2qHTt2aPjw4dq5c6f8/f3Vpk0bGY1G/eMf/1CdOnUkSVevXlVgYKCqVKmi7t2765lnntHChQvVvXt3vfjii0pISNCECRMUFRWld999V61atZKXl5d++uknBQYGasiQIZo9e7YSEhL0yy+/WP935cqV+vLLL7Vp0yabv5MAFgAAgNuP4KrbjyM5AAC4s+7qzsTLly9rwYIFmj17toYOHaomTZqoU6dOGjFihD7++GNlZ2frgw8+UMuWLdWlSxctWrRIH374oc6ePWudo3r16nrzzTfVvHlzDRs2TM2bN9eVK1f04osvytHRUe3bt5eDg4Oys7MlyRqgMnnyZK1evVoBAQHas2ePkpKSVL16dXXv3l1vvvmm0tLSlJWVJU9PT0mSs7OzJMnJyUnbtm1TkyZNNHPmTHl6emr48OE6cuSIXF1d1blzZ5u/lQAWAAAAAAAAlLa7ujMxLi5OOTk5CggIsHmvdevW1iKeJPn5+amgoEDHjh2zdhq2aNFClSr9f821Tp06atmypSRZ05XXrVsne3t7JSYm6tSpUzpx4oRmzpwp6bezDC9cuKDs7GwlJyfr/fff1+eff64ff/xR/v7+kn7b4ty3b1/rVue6detq1apVat++vWrXrq1nn31Wy5Yt07Bhw2QwGGz+VgJYAAAAbj+65AAAQEVzVxcTHR0d//Ic9vb2RT4bDAab3/0uIyNDbdu21XPPPafHH39cW7duldlslnT9AJX/5uvrq9atW+vkyZNKTk7WkSNHtGFD8dtoCGABAAAAAABAaburi4keHh5ydHTU5s2bNWLEiCL3PD09FRUVpczMTGt34o4dO1SpUiU1b978lt5z4cIFZWZmasGCBdbvfj+z8NKlSxo1apSOHj0qHx8fLV++XPXq1VNMTIzuuecehYSEaNeuXbpw4YIsFou+++47de3aVdJv27RTU1P1xhtvSJIaNmxo7V4EAADAnVdRzkykAxMAAPzurj4zsXLlypoyZYomT56sDz74QPHx8frpp5/0/vvva8iQIapcubKGDh2qw4cP64cfftCzzz6rJ554wrrF+WZVr15d7u7uGjlypOLj49W4cWO9++67kqQJEybo8ccfV1BQkPLz8zVs2DCNGzdOr732mr744gu1adNG/v7+cnJyUu3atfXoo48qKSlJkvTtt9/KYDDIaDRq8eLFSklJKXYNOTk5Sk9PL3IBAAAAAAAAJemu7kyUpGnTpsnOzk7Tp0/X6dOnVa9ePY0ePVpOTk765ptvNG7cOLVv315OTk7q16+ftQtQkrZv367MzMwbvqNSpUoyGo1ycnJS48aNtWPHDg0dOlSSdPToUS1cuFABAQGaNGmSBgwYoG+++UYpKSkKCwtTpUqVVL9+fVWvXl2enp6yt7fXF198obFjx8rd3V1OTk4qLCzURx99pLi4OEVGRtpcQ0REhMLDw0vmjwYAAAAAAADYYChk32yxgoODlZqaqnXr1t1wbOfOneXj42Mt9m3ZskUPP/ywzp07Zz0rcf/+/WrTpo1++eUXNWzYUBkZGQoLC9PSpUuVmZkpk8mkrKwsTZgwQbNnz5Yka2J0pUqVisz/33JycpSTk2P9/HsAS1pamvXMRgAAAAAAAFQ86enpslgsJVInuqu3OZcFfwxr+T2opaCgQJI0ceJERUdHy9fXVw8++KBiY2Pl7e2t3NxcXbp0SdHR0crOzlanTp1u+B6TySSz2VzkAgAAAAAAAErSXb/N+WasWbNG4eHhOnHihJycnOTr66v169db78+dO1fz5s1Tbm6u/va3vykyMtJaJLx06ZLGjRunHTt2aPv27Tp27JjefPNN67Ovvfaavv76a8XGxlq/W7ZsmT744ANVqVJFwcHBio+PV2pqqurWravExERdvXpVrq6uyszMlMFg0KFDh274G2x1JgIAAJQld2NYCcEkAACgoqnwnYkpKSkaPHiwhg0bpri4OG3ZskVBQUHW1OQffvhB8fHx+uGHH7RixQpFRUUpKirK+nxwcLD27t2rHj166N5779WVK1cUGBio3NzcG77bw8NDa9eu1cWLF5WWlqa///3vKigo0LZt21SjRg199913euCBB7Rnzx7t3btXWVlZxc4VEREhi8VivVxdXf/y3wYAAAAAAAD4I4qJKSnKy8tTUFCQ3N3d5e3trTFjxsjFxUWSVK1aNS1atEj33nuvevXqpZ49e2rz5s2SpOPHj+uLL77Q0qVLNXfuXFWpUkV79uxRQkJCkc7G4rzxxhuqVq2aNm7cqJiYGAUGBqp169Y6cuSI5s6dq4CAAHl5eSk1NVWZmZl67733ip0rNDRUaWlp1is5Oblk/kAAAAAAAADA/6nw25xbt26tgIAAeXt7KzAwUN26dVP//v1VrVo1SVKLFi1kNBqt4+vVq2fddhwXFyc7Ozvdf//9MhqN2rVrlyTJ19dXderUUWFhocLCwqzP+vj4qLCw0Bqi4u7uru+//94a9PLMM8+oU6dO8vHx0f333y9JatCgge69914ZDAY99NBDxf4Ok8kkk8lUon8bAACAksSWYAAAgPKvwhcTjUajNm3apJ07d+rbb7/VwoULNXXqVMXExEgqGqAi/Rai8nuAys2IiopSRkaGJk+erKVLl8rBwUHe3t7W+0lJSfr+++91+vRpmc1mPfDAA0WeDQ8Pt36OjY2Vj4+PgoOD/+SvBQAAAAAAAP68Cl9MlH4rEPr5+cnPz0/Tp0+Xm5uboqOjb/icp6en8vLyFBMTo44dO0qS/vOf/+jYsWPy8vKSJDk4OOjixYtycnJSTEyMdu3apaFDh6pOnToqKChQ7969lZOTo06dOun111/X6NGjZTAYFBMTo0GDBunw4cPasGGDfvnlFw0ZMkSDBg2yuRYCWAAAKD13Y3AISgbdlgAAoKKp8GcmxsTE6NVXX9XevXuVlJSktWvX6vz58/L09Lzhsx4eHurdu7dGjhyp7du368CBA3r88cd1zz33qHfv3pIki8WiwsJCOTo6qlKlSrp8+bKMRqOysrK0efNmHTp0SP7+/qpataruv/9+ffTRRyosLNS4ceO0a9cuXblyRadPn5bRaJSzs7McHR1troUAFgAAAAAAAJS2Ct+ZaDabtXXrVkVGRio9PV1ubm6aN2+eevTooU8//fSGzy9fvlzjxo1Tr169lJubK39/f23cuNG6PdrZ2Vn+/v5666239Morr6hfv37y8PDQr7/+qri4OLm6usrZ2VmpqamSJC8vL1ksFjVq1EiPPvqoDAaDzGazmjVrdt11hIaGKiQkxPo5PT2dgiIAACWE7jMAAADgN4bCwsLCO72Iu1nnzp3l4+NjDV2RpD59+qhq1apq06aN5s+fr4SEhCLPVKtWTQsWLNCTTz6psLAwrVu3TrGxsbf03vT0dFksFqWlpclsNpfIbwEAAAAAAED5U5J1ogq/zflO8vT0VHJyspKTk63fHT16VKmpqUXOXMzPz79TSwQAAAAAAACsKvw25zupa9eu8vb2ZOkrIwAAIABJREFU1pAhQxQZGam8vDyNGTNGDz30kNq1aydJcnd3V0JCgmJjY9WgQQNVqVJFJpPpmrkIYAEAACheaYXosAUeAABUNHQm3kEGg0Hr169XtWrV5O/vr65du6px48ZFzmrs16+funfvrocffli1atXSJ598YnMuAlgAAAAAAABQ2jgz8S5hqzPR1dWVMxMBAAAAAAAquJI8M5FtzncJk8lkc/szAAAAAAAAUFLY5gwAAAAAAADgptCZWE4sWrRI0dHR2rx5s837BLAAAIDbqbQCTcobAlgAAEBFQ2diOXHhwgXFx8cXe58AFgAAAAAAAJQ2AljuEgSwAAAAAAAAwBYCWHANAlgAAAAAAABQ2igmAgAAAP/nVs+C5MxEAABQ0XBmYjmxaNEiBQQEFHs/JydH6enpRS4AAAAAAACgJFFMLCcIYAEAAAAAAMCdRgBLGde5c2f5+PgoMjLyuuMIYAEAAAAAAIAtBLCUstzcXDk4ONzpZdwSAlgAAAAAAABQ2uhM1G/dfy1btpSdnZ1Wrlwpb29vLVy4UJMmTdK2bdvk7Oysbt26af78+apZs2aRZyTpww8/lL29vZ5++mm9/PLLMhgMkn7rFpw6dao++eQTpaamqmXLlnr99dfVuXNnSdJ//vMfjR07Vlu3btWlS5fUpEkTvfjiixo8eLAkKTg4WCtWrCiy1oSEBLm7u1/zG+hMBAAAuNatBqrcKgJYAABAeVCSnYmcmfh/VqxYIQcHB+3YsUOvvfaaunTpIl9fX+3du1dff/21zp49q4EDB17zjJ2dnXbv3q0FCxbojTfe0NKlS633x44dq127dmnVqlU6ePCgBgwYoO7du+v48eOSpOzsbLVt21YbNmzQ4cOHNWrUKD3xxBPavXu3JGnBggXq0KGDRo4cqVmzZqlTp07FnoXImYkAAAAAAAAobXQm6rcuw/T0dP3888+SpJkzZ2rbtm365ptvrGN+/fVXubq66tixY2rWrJk6d+6sc+fO6ciRI9ZOxBdeeEFffPGFjh49qqSkJDVu3FhJSUmqX7++dZ6uXbvqvvvu06uvvmpzLb169dK9996ruXPnWtfm4+OjqlWrKioqSomJiTafozMRAADgWnQmAgAAcGZiqWjbtq313wcOHNAPP/wgFxeXa8bFx8erWbNmkqQHHnjAWkiUpA4dOmjevHnKz8/XoUOHlJ+fbx37u5ycHNWoUUOSlJ+fr1dffVWrV6/WqVOnlJubq5ycHDk5OVnHJyYm6siRIzp//rzCwsKKXT9nJgIAAFyLYh8AAEDJopj4f5ydna3/zsjI0KOPPqrXX3/9mnH16tW7qfkyMjJkNBq1b98+GY3GIvd+L1LOmTNHCxYsUGRkpLy9veXs7Kzx48crNzf3L/wSAAAAAAAAoHRQTLShTZs2+vzzz+Xu7i47u+L/RDExMUU+//TTT/Lw8JDRaJSvr6/y8/M1aNAg+fv7q3Llylq6dKkcHBw0evRohYWFaceOHQoICNBnn32m0aNHW7scO3XqJEmKiorSL7/8IknWe8uXL1dwcPA1a7G1zRkAAAClq7S3UQMAgDuHHQ62EcBiwzPPPKOLFy9q8ODB2rNnj+Lj4/XNN9/oqaeeUn5+vnVcUlKSQkJCdOzYMX3yySdauHChxo0bJ0lq1qyZhgwZomPHjmnp0qXKzc3Ve++9pwcffFDh4eHatGmTmjZtqujoaCUmJioqKkpdunTRlStXtGfPHknSoEGD5O3tLUdHR+3evVuHDx/WgAEDbK6ZABYAAAAAAACUNgJY9P8hJ5GRkdbvjh8/rilTpuiHH35QTk6O3Nzc1L17d73xxhsyGAzq3LmzWrRooYKCAn388ccyGo16+umnNXPmTGsX4dWrV+Xh4aEzZ86ooKBANWvW1AMPPKB///vf6tWrl9q3b6/+/fvL2dlZzs7OGjVqlA4ePKgvvvhCu3fvVvv27fXss89q2bJlKiwsVFZWlhISEuTu7n7NbyCABQAAAAAAALYQwFLCtmzZcs13Hh4eWrt27XWfs7e3V2RkpN55551i77u7u6tnz5566623rN/37t1b586d06lTp+Tu7q6EhIQiz1WrVk1xcXFq3769atSoIQ8PD8XGxl53LQSwAAAAAAAAoLSxzfk2sLe3L/LZYDCooKDgDq0GAAAAAAAA+HPoTLyDPD09lZycrOTkZOsZh0ePHlVqaqq8vLwkSQ4ODkXOaSwOASwAUDYRzgDc3TiYHQAAVDQUE/8kW1ujb9b27dtVu3ZtLV++XN7e3hoyZIgiIyOVl5enMWPG6KGHHlK7du0kyboNOjY2Vg0aNFCVKlVsbmeOiIhQeHj4n14TAAAAAAAAcCMUE+8gg8Gg9evX69lnn5W/v78qVaqk7t27a+HChdYx/fr109q1a/Xwww8rNTVVy5cvV3Bw8DVzhYaGKiQkxPr59wAWAMCdRdcSAAAAgLsJac53gK306JJWkik9AAAAAAAAKL9Ksk5EAMsdkpeXp7Fjx8pisahmzZqaNm2afq/r5uTkaOLEibrnnnvk7Oys+++//y9tqwYAAAAAAABKAtuc75AVK1Zo+PDh2r17t/bu3atRo0apYcOGGjlypMaOHaujR49q1apVql+/vqKjo9W9e3cdOnRIHh4eNucjgAUAAOD2I2Sp/OIYCgAA/hyKiaUgODhYqampWrduXbFjXF1dNX/+fBkMBjVv3lyHDh3S/PnzFRgYqOXLlyspKUn169eXJE2cOFHLli1Ts2bNVNyudAJYAAAAAAAAUNooJt5AaZ1v+MADD8hgMFg/d+jQQfPmzdOhQ4eUn5+vZs2aFRl/5coV1apVq9j5CGABAAC4/ehuAwAAFQ3FxDImIyNDRqNR+/btk9FotH7fr18/vfbaa8U+ZzKZZDKZbscSAQAAAAAAUEFRTLyO4OBg/fjjj/rxxx+1YMECSdKJEyf06quv6vvvv9eZM2fUsGFDjRkzRuPGjSt2nj179uiRRx7RxIkTNWXKFOXl5Sk6Olr//Oc/lZOTo3bt2qlRo0by8PCQr6+v8vPz1bNnT82YMUPTpk3TpUuX1KNHD3Xq1Ol2/XQAAFAGcB5f2UdnIgAAqGhIc76OBQsWqEOHDho5cqRSUlKUkpKiBg0aqEGDBvrss8909OhRTZ8+XS+++KJWr15tc47vv/9e//M//6NZs2ZpypQpkqQjR47o8uXL6tatmz777DM5Ojpq2bJlGjFihJo1ayZvb2+dPHlSb731lhYvXqzZs2drw4YNGjFiRLFrzcnJUXp6epELAAAAAAAAKEl0Jl6HxWKRg4ODnJycVLduXev3fww6adSokXbt2qXVq1dr4MCBRZ6Pjo7Wk08+qaVLl2rQoEGSpO3bt+vy5csaMWKEDAaDBg4cKKPRqKpVq8rZ2VmS1Lt3b8XFxenMmTN67LHHVLNmTdWrV09xcXHFrpUAFgAAAAAAAJQ2iol/wltvvaVly5YpKSlJWVlZys3NlY+PT5ExMTEx+vLLL3Xvvfdq165d1mLigQMHVFhYqJUrV1rH5ufnKysrSydPnpQkGY1GNWvWTEeOHLGOmT9/vhYuXFjsmghgAQDg7sMWWgAAAJQ1FBNv0apVqzRx4kTNmzdPHTp0UJUqVTRnzhzFxMQUGdekSRPVqFFDZ86cUX5+vvX7jIwM1atXT1u2bLlm7qpVq1r/bW9vX+SewWBQQUFBsesigAUAAAAAAACljWLiDTg4OBQpBu7YsUMdO3bUmDFjrN/Fx8df81zNmjV1zz336MiRI1q0aJEWLVokSfrggw+UkpKifv366V//+peqV6+uoUOHaubMmbKz++3/jry8PJ06dUq1a9dWenq62rVrp/vuu++668zJyVFOTo71M2cmAgAAlD5CclDR0DENACCA5Qbc3d0VExOjxMREXbhwQR4eHtq7d6+++eYb/fvf/9a0adO0Z88em8++9957atu2rapWraqePXsqOTlZDz/8sCTp1KlTevvttxUeHq7Fixfr4Ycf1t69eyVJmzZtUmpqqlasWKGff/5ZTZs21eLFi6/bmRgRESGLxWK92OIMAAAAAACAkkYx0YaoqCjrluOJEyfKaDTKy8tLtWrVUmBgoIKCgjRo0CDdf//9+s9//lOkS/GPLBaLXFxc1L9/fx0/flwTJkzQW2+9pSZNmmjw4MGaPn26xo4dK+m3YJZz584pMzNTe/fuVf369dWjRw95eXlpyZIlsre3V0ZGRrFrDg0NVVpamvVKTk4u+T8MAAAAAAAAKjRDYWFh4Z1eRFmTlZWly5cvq3bt2n95rs6dO8vHx0eRkZGSpKCgIFksFi1fvtw6ZuPGjerZs6c2btyoe+65R61bt1ZiYqLc3NysY/r27atq1app2bJlN/Xe9PR0WSwWpaWlyWw2/+XfAQAAAAAAgPKpJOtEnJn4X65evSpHR0c5Ojre6aUAAAAAAAAAZcpdUUxcs2aNwsPDdeLECTk5OcnX11fr16+Xs7Ozli5dqnnz5ikhIUHu7u567rnnrNuSExMT1ahRI61atUpvv/22YmJitHjxYknS+PHjlZqaan3HO++8o7lz5yo5OVmNGjXSSy+9pCeeeKLIPPv375ePj48kKTU1VdWqVVO7du2Un5+vS5cuaezYsfr666+VnZ2tbdu2aerUqXrqqae0b98+SVKdOnXUuHFjSdKLL76ojz76SNJvBc6dO3fq3LlzevHFF9W0adNr/gYVJYCFQ84BAEBZQhgFAACoaMr9mYkpKSkaPHiwhg0bpri4OG3ZskVBQUEqLCzURx99pOnTp2vWrFmKi4vTq6++qmnTpmnFihVF5njhhRc0btw4xcXFKTAw8Jp3REdHa9y4cZowYYIOHz6sf/zjH3rqqaf0ww8/3HB9derUUUxMjMaNG6eDBw9qzZo1qly5slq0aKHs7GytX7/eugW6UqVKcnFxUceOHbV69Wp9/fXXOnr0qEaOHKm0tDR16NDBZiFRIoAFAAAAAAAApe+uKCbm5eUpKChI7u7u8vb21pgxY+Ti4qIZM2Zo3rx5CgoKUqNGjRQUFKTnn39e7777bpE5xo8fbx1Tr169a94xd+5cBQcHa8yYMWrWrJlCQkIUFBSkuXPn3nB9gwYNktFo1EcffaTDhw/Ly8tLX331lVJSUjR+/HiNHj1aAwcOLPLMhx9+qPz8fA0ePFht2rTR8ePHVblyZf3jH/8o9j0EsAAAAAAAAKC0lfttzq1bt1ZAQIC8vb0VGBiobt26qX///nJwcFB8fLyGDx+ukSNHWsfn5eXJYrEUmaNdu3bXfUdcXJxGjRpV5Ds/Pz8tWLDghutzdXXVrl279NVXX6lfv37q06ePunXrpsjISHXs2FHSb9ukf99eLUmNGzfWo48+qnr16mnx4sVau3atgoODNWDAgGLfYzKZZDKZbrie8o6tRAAAAAAAAHdOue9MNBqN2rRpk7766it5eXlp4cKFat68uQ4fPixJWrJkiWJjY63X4cOH9dNPPxWZw9nZ+S+toVKl3/6MfwzGvnr1apExPXr00C+//KLnn39ep0+fVkBAgCZOnFjsnCNGjNCqVauUlZWl5cuXa9CgQXJycvpL6wQAAAAAAAD+inLfmShJBoNBfn5+8vPz0/Tp0+Xm5qYdO3aofv36OnnypIYMGfKX5vf09NSOHTs0dOhQ63c7duyQl5eXJKlWrVqSftty7evrK0mKjY29Zp5atWpp6NChGjp0qB588EFNmjSp2K3SjzzyiJydnfXOO+/o66+/1tatW6+7xooSwAIAQFlBKBgkdk0AAICKp9wXE2NiYrR582Z169ZNtWvXVkxMjM6fPy9PT0+Fh4frueeek8ViUffu3ZWTk6O9e/fq0qVLCgkJuel3TJo0SQMHDpSvr6+6du2qf/7zn1q7dq2+++47SZKjo6MeeOABvfbaa2rUqJHOnTunl156qcgc06dPV9u2bdWiRQvl5OToyy+/lKenZ7HvNBqNCg4OVmhoqDw8PNShQ4frrjEiIkLh4eE3/ZsAAAAAAACAW1Xui4lms1lbt25VZGSk0tPT5ebmpnnz5qlHjx6SJCcnJ82ZM0eTJk2Ss7OzvL29NX78+Ft6R58+fbRgwQLNnTtX48aNU6NGjbR8+XJ17tzZOmbZsmUaPny42rZtq+bNm2v27Nnq1q2b9b6Dg4NCQ0OVmJgoR0dHPfjgg1q1atV13zt8+HC9+uqreuqpp264xtDQ0CIF0vT0dBKdAQAoRXSkAQAAoCIyFP7xoD+UKdu2bVNAQICSk5NVp04dSVJubq4cHBxu+Gx6erosFovS0tJkNptLe6kAAAAAAAAoo0qyTlTuA1jKupycHD333HOqXbu2KleurE6dOmnPnj2SpKioKFWtWrXI+HXr1slgMOjXX39VWFiY7r33XgUGBmrp0qVq1KiRKleufCd+BgAAAAAAAFD+tzmXdZMnT9bnn3+uFStWyM3NTbNnz1ZgYKBOnDhx3efc3Nzk4+Ojrl276r333tMbb7yhWrVqaf369TbHE8ACAABw+xHEYxvHAAAAcPeiM7EUZWZm6p133tGcOXPUo0cPeXl5acmSJcrOztaDDz543Wfz8/O1b98+mc1m5ebmqmfPnjp37pxatWplc3xERIQsFov14rxEAAAAAAAAlLS78sxEd3d3jR8//paDVkrawYMH1bp1ayUmJsrNzc36fa9evVS1alV17dpV48ePV2pqqvXeunXr1Lfv/7J351FVV+sfx9+H6TCDCM7KrIIDkFRXcbxlpl5zLEtNMTPLLEdUUlEsxXKCcspKsZxyLH9pNikOOA9ozhM4FA4pgqhMwu8Pl+dGoMUV1OLzWuu74ny/e+/vc47/tJ717P20584/S2BgICdOnCA9Pf2e7yqsMrFq1ao6M1FEREREREREpJQrzjMT/1bbnP9q85FHnaWlJVZWVpiZmfHHXG52dnaB8ebm5n+6ptFoxGg0FluMIiIiIiIiIiIif/RQtzk3bdqUfv360a9fP5ycnHB1dWXUqFGmBJuHhwfvvvsu3bt3x9HRkddeew2A5cuXU6tWLYxGIx4eHkyePDnfmqdPn2bgwIEYDAYMBgMAly9f5qWXXqJy5crY2tpSp04dFi1alC+ea9eu0bVrV+zs7KhYsSJTp06ladOm+SocU1JS6N69O2XKlMHW1paWLVty/Phx0/M7TVW+++47nn/+eQDatGlDcnIycDtZ+P3337Njxw7c3Ny4du0a8+fPp06dOtjY2NC9e3fg9hbpMWPGsG/fPtLS0kzfJS4urpj/FURERERERERERP6ah16ZOG/ePHr16sWOHTvYtWsXr732GtWqVaN3794ATJo0iYiICEaPHg3A7t27eeGFFxgzZgydO3dmy5Yt9O3bl7JlyxIaGsqKFSsICAjgtddeM60BkJGRQb169Rg2bBiOjo6sXr2al19+GW9vb5544gkABg0aRHx8PKtWraJ8+fJERESwZ88eAgMDTeuEhoZy/PhxVq1ahaOjI8OGDaNVq1YcOnQIS0tLAG7cuMGkSZNYsGABU6ZMYenSpXTp0oXp06fzwQcfkJOTQ7Vq1XjyySdNCcTw8HDKlSvH+PHjycjIIC8vjyFDhrB06VLOnj3LsWPHAHBxcSn0d1QDFhEREZEH7+/WgEWNUUREROR+PdQzE5s2bcrFixc5ePCgqYJw+PDhrFq1ikOHDuHh4UFQUBArV640zenatSuXLl3i+++/N90bOnQoq1ev5uDBg8BfPzPxP//5DzVr1mTSpElcu3aNsmXLsnDhQjp16gRAamoqlSpVonfv3kRHR3P8+HGqV6/O5s2bmTdvHsuWLSMlJQWAVq1asXr1amJjY+nZsycnTpzA29ubjIwMnn32WTZu3IiVlRXBwcE4OztjYWHBV199xeTJkxkyZAhGo5HMzExGjRrFu+++m+/MxMTERFJTU+/5XcaMGUNkZGSB+zozUURERKTkKJkoIiIifwf/qDMT//Wvf5kSiQD169dn8uTJ3Lp1C4Dg4OB84w8fPkzbtm3z3QsJCSE6Oppbt27d9XzBW7duMX78eJYsWcIvv/xCVlYWmZmZ2NraAnDq1Cmys7NNVYoATk5O1KhRI9+7LSwsSElJITY2lri4OLy8vGjevHm+6kVbW1u8vb0BsLa2pn///mzcuJGMjAzgdnXjnaYrAwYM4Ntvv2X79u2mysIrV66Y1goMDMTDw+NPf8fw8HAGDRpk+nynAYuIiIiIlBwl50RERKS0eahnJv4VdnZ2xbLOxIkTiYmJYdiwYaxfv56EhARatGhBVlZWkdc6deoUFStWpEGDBlSoUAELC4t8zU/ubHe+w2AwFGi0coe5uTk//PADc+fOBWDx4sXUqFGDxMTEIsVkNBpxdHTMd4mIiIiIiIiIiBSnh16ZuH379nyft23bhq+v710rDP38/IiPj893Lz4+nurVq5vmWFlZmSobfz+mbdu2dOvWDYDc3FyOHTuGv78/AF5eXlhaWrJz506qVasG3N4ifOzYMRo3bmx6d05ODv379wduJwmrVKnCr7/+SqVKlUzvSktLY/z48Zw4cYKlS5cW2mU5JSWFoKAgDh8+TO3atRkxYgQAixYtom3btixYsIDDhw+zfPlysrOz8fX15Z133qFnz55/4VcVERERkQfh77bN+Y9UWSkiIiJF9dArE8+cOcOgQYM4evQoixYt4qOPPjIl6wozePBgfvrpJ959912OHTvGvHnzmDZtGkOGDDGN8fDwYOPGjfzyyy/89ttvAPj6+vLDDz+wZcsWDh8+TJ8+fbhw4YJpjoODAz169CAsLIz169dz8OBBevXqhZmZmWkbtq+vL61atcLNzQ03Nzd+/PFHqlevjtFoxMvLK1+ckydPJjg4mL1799KyZUsAjh49Ctzu6Lxt2zb8/f2ZO3cu/v7+vPXWWwCsW7eOS5cusX37dg4dOkSvXr2oUKEC77zzDlZWVmRnZxf6u2RmZpKWlpbvEhERERERERERKU4PPZnYvXt3bt68yRNPPMGbb75J//79ee211+46/rHHHmPJkiUsXryY2rVrExERwdixYwkNDTWNGTt2LElJSXh7e+Pm5gbAyJEjeeyxx2jcuDH16tWjQoUKtGvXLt/aU6ZMITExkZYtW/L0008TEhKCn58f1tbWpjHz58/H3d2d3377jTZt2mBpaUnt2rULVFK2atWKvn374uPjQ4cOHQBYv349AImJieTl5fHZZ58RGBjIxYsXTQ1Wpk+fTlZWFhcuXCAoKIgxY8bg4eHBq6++Srdu3fDz8yv0d4mKisLJycl06bxEEREREREREREpbg+9m3NgYCDR0dGPzDvPnz9PmTJlMBqNXL9+ncqVKzN58mR69eplGhMdHU10dDRJSUmFrunh4cGbb75JWFiYaU5AQAAdO3YkIiKCgQMHsm/fPtatW2d6vm/fPgIDA9m7dy9BQUGMHDmSyZMnU716dTIyMrC3t2f58uXY29tTtmzZAnFnZmaaGrjAfxuwqJuziIiIiIiIiEjpVpzdnB96ZeKjZO/evaxfv55z586xZ88eunbtClCge/RfUVgTltzc3L88v169epw+fZqBAwdy6dIl9u3bx0cffVRoIhHUgEVEREREREREREreQ2/A8jDk5uYydOhQPv30U6ysrHj99dcZM2YMAF26dMHa2hobGxv8/f1JTU1l3bp1fPTRR+zatYvatWvTvHlzsrKyCA4O5siRI1hZWVGjRg3T+hkZGUyZMoURI0ZgaWlJrVq18nWNzszMZOPGjRiNRipXrkyPHj1M27F/z83NLd/27cmTJ2Nvb2+K9fcKq0wUERERkZL1MBuwqHmKiIiIPAwPNZkYFxf3UN47b948Bg0axPbt29m6dSuhoaGEhITQvHlz4HZH5Xbt2pGUlISnpyejR48mOjqaatWq8corr/DFF19w5coVli5diq2tLQ0aNGDr1q0A5OTkcPHiRZo2bcr69evJyspix44dfPDBBwBs2rSJ+fPnY2try1NPPUXr1q0ZMWIEOTk5+WJcuHAhBoOBLVu28PLLL5OXl4eTk1O+RjO/FxUVRWRkZAn+aiIiIiIiIiIiUtqVym3OdevWZfTo0fj6+tK9e3eCg4P56aef7jp+yJAhtGjRAj8/P/r378+5c+dwdnYmJCSEoKAgKlasyLlz54DbFYF5eXn4+/vj7e2Nn58fPXr0MG17joyMJDw8nO+//57ExETefPNNbGxsClQSWlpaEh4ezlNPPUVSUhKWlpamMxMLEx4eTmpqquk6e/ZsMf1aIiIiIiIiIiIit5XKbc5169bN97lixYpcvHjxL40vX748AD///LPp3qhRoxg8eDAALi4uhIaG8umnn3L69GmefvppXnjhBRISEoDbW5fj4+MZN24ccDtpeOHCBXJycjh//rxp/eeff54FCxYAEBgYSLt27fD09LxrjEajEaPR+Jd/AxERERG5f9pqLCIiIqVNqaxMLGpzlN+PNxgMhd77/fy5c+eydetWGjRowJdffkn16tXZtm0bAOnp6URGRpKQkGC6fv75Z44fP17ouYkiIiIiIiIiIiKPilJZmfggBAUFERQURHh4OPXr12fhwoX861//4rHHHuPo0aP4+PjkG9+0aVMCAwOJjo4GYNmyZaxatYqlS5eSmZlJ1apV7/k+NWARERERefAeZgOWP6OqSRERESkJpbIysSQlJiYSHh7O1q1bOX36NN9//z3Hjx/Hz88PgLZt2zJnzhzCw8M5ePAghw8fZvHixSQmJuZb5+uvvyY4OJi9e/fi6urKN998w9GjR+/63qioKJycnEzXnyUfRUREREREREREikqVicXM1taWI0eOMG/ePC5fvozBYCAgIIA+ffoA8MQTTwCwbt06YmJisLS0pGbNmlhbW+dbp169evTt2xeAcuXKkZqayvr166lRo0ah7w0PD2fQoEGmz2mX135HAAAgAElEQVRpaUooioiIiJQwVf+JiIhIaVPqkolxcXEF7n311Vemv/Py8kx/e3h45PsMt7cj//FeaGgooaGhwO0GLStXrsw3PjAwEDOz/EWg3333Hc7OzvnG3eHu7k7r1v/9H9OEhAQCAgLu2SRGDVhERERERERERKSkaZtzCQoNDWXDhg3ExMRgMBgwGAwkJSUBsHv3boKDg7G1taVBgwbcuHEj39wjR47w2GOPYW1tjZeXl6njs4iIiIiIiIiIyMOiZGIJiomJoX79+vTu3Zvk5GSSk5NNW49HjBjB5MmT2bVrFxYWFvnOQ8zMzGTBggX079+fQ4cO8fHHH3PlyhU2btx413dlZmaSlpaW7xIRERERERERESlOSiYWQVxcHAaDgatXr951TGxsrGn7spOTE1ZWVtja2lKhQgUqVKiAubk5AJcuXaJJkyb4+/tjZWVFWlqaqfLw6tWrPP300/To0QMvLy+aN29OxYoV2b17913fqwYsIiIiIiIiIiJS0pRMLIIGDRqQnJyMk5PTfa9lY2NT4O+bN28CkJWVxXfffYe9vb3pOnv2LOnp6QW2Q98RHh5Oamqq6Tp79ux9xygiIiIiIiIiIvJ7pa4By/2wsrKiQoUKxbKWwWAo8PeoUaNM74mMjKRDhw4F5v2x6/MdasAiIiIiIiIiIiIlrVRXJjZt2pS33nqLAQMGUKZMGcqXL88nn3zC9evX6dmzJw4ODvj4+PDtt98ChW9zjo2NpVq1atja2tK+fXsuX76c7x1WVlbs2LGD8uXL4+DgwAcffPCncT322GMsWbKE5s2bU6dOHTp27EhCQgI+Pj4FukKLiIiIiIiIiIg8KKW+MnHevHkMHTqUHTt28OWXX/LGG2+wcuVK2rdvzzvvvMPUqVN5+eWXOXPmTIG527dvp1evXkRFRdGuXTvWrl3L6NGj843Jzc1l27ZtREVF0aRJE6ZNm/anMfn6+jJv3jy6detG165d2bNnDy+99BJff/01X3zxRaFzMjMzyczMNH1WAxYRERF51HkMX/2wQ7hvSRNaP+wQRERERB6oUl/mFhAQwMiRI/H19SU8PBxra2tcXV3p3bs3vr6+REREcPnyZfbv319gbkxMDM8++yxDhw6levXqvP3227Ro0SLfmMuXL1OuXDkiIyOpX78+Tz/99D3jyczMZOnSpUyZMoVTp07RoUMHxo8fT15eHvPnz6ddu3aFzlMDFhERERERERERKWmlvjKxbt26pr/Nzc0pW7YsderUMd0rX748ABcvXsTR0THf3MOHD9O+fft89+rXr8/atWtNn5OSkoiJiaF79+6me/v27WP9+vWmzy4uLrRt2xYPDw8OHjzIjRs3TOcnmpmZmRqzBAYGEhsbW+j3CA8PZ9CgQabPaWlpSiiKiIjII01VfSIiIiJ/P6U+mWhpaZnvs8FgyHfvTnOU3NzcBxJPeno6AKtXr6Zy5coAPP744wwbNoyuXbvi7Oxc6Dw1YBERERERERERkZJW6pOJ98PPz4/t27fnu7dt27ZCx/y+MvGPY27dusX+/fspV64cqampGAwG4uLi6NGjB56ensDtysPw8HDmzp1LaGhoyXwhERERETH5K2c6qrpSREREShslE+/D22+/TUhICJMmTaJt27Z89913+bY4A/Tv35/Q0FCCg4MJCQlhwYIFHDx4EC8vL9OY3bt3k5yczIoVK3B3d+fFF18kMjISV1dXtm7dytNPP02LFi1o0qQJnTt3LjQWNWAREREREREREZGSVuobsNyPf/3rX3zyySfExMQQEBDA999/z8iRI/ON6dy5M6NGjWLo0KHUq1eP06dP88Ybb5ieX79+nSNHjlCrVi1atmyJv78/u3btwsHBgcjISBo3bsyNGzc4duwYgYGB2NjYFBqLGrCIiIiIiIiIiEhJM+Tl5eU97CBKs/379xMQEEBSUhLu7u6m++3bt6dMmTLMmTMHZ2dnoqOj77m9ubDKxKpVq5KamlqgcYyIiIiIiIiIiJQeaWlpODk5FUueSNuc/yHUgEVEREREREREREqakokPmbe3N1ZWVsTHx5sqE7Ozs9m0aRMODg44OzuTlpbG1KlTadSoEd7e3oWuozMTRURE5J/krzQ/eRSoAYuIiIiUNjoz8SGzs7PjjTfeICwsjLVr13Lo0CF69+5NZmYmkZGR7Nq1Czs7O8zMzGjfvj25ubmFrqMzE0VEREREREREpKQpmfgImDBhAh07duTll1/mscce48SJE6xbt47u3bvj4+ODubk5r7zyCj///DOHDh0qdI3w8HBSU1NN19mzZx/wtxARERERERERkX86NWB5RB0/fpyIiAi2b9/Ob7/9Rm5uLtevX2f16tW0atXqT+cX58GaIiIiIiIiIiLy96UGLKVAmzZtcHd355NPPqFSpUrk5uZSu3ZtsrKyHnZoIiIiIiIiIiJSSimZWIKWLVtGZGQkJ06cwNbWlqCgIL7++mvefPNNrl69SlBQENOmTSMzM5MuXbrw4YcfYmVlxYwZMzh69CjTp0/nqaeeAmDz5s0AREdH065duwLvUgMWERERkaIpjiYvasAiIiIipY3OTCyipKQkDAYDCQkJ9xyXnJzMSy+9xCuvvMLhw4eJi4ujQ4cO3NlV/tNPP5nuL1q0iBUrVhAZGQlAjx49MBgMpkTkunXreOuttwBMycU/UgMWEREREREREREpaTozsYiSkpLw9PRk7969BAYG3nXcnj17qFevHklJSbi7u+d7Fhoayv/93/9x9uxZbG1tAZg1axZhYWGkpqZiZmbGc889x7p168jJyaFGjRo0bNiQGTNmsGLFCtq3b1/gfYVVJlatWlVnJoqIiIiIiIiIlHLFeWaiKhNLSEBAAE899RR16tTh+eef55NPPiElJSXf8zuJRID69euTnp5u6sIcGRlJRkYGJ0+eZN++fWzatImxY8cWmkgEMBqNODo65rtERERERERERESKk5KJd5Gbm8sHH3yAj48PRqORatWqMW7cONPzU6dO0axZM2xtbQkICGDr1q2mZ5cvX6Zbt24cOnSIzMxMNmzYwLvvvkuNGjVITEwE4OLFi9SpUwcbGxvKli3La6+9lu/9u3fvxsLCAnd3dzw8PDhw4AChoaEP5LuLiIiIiIiIiIgURg1Y7iI8PJxPPvmEqVOn0rBhQ5KTkzly5Ijp+YgRI5g0aRK+vr6MGDGCl156iRMnTmBhYUFGRgb16tVj2LBhODo6snr1agYMGEDZsmVZuXIlN2/e5ODBg0yYMIHOnTtz7do1xo8fz6FDh6hatSoLFiwgIiKC7t278+OPP1KjRg1++eUX1q1bR48ePQqNVw1YRERERIrfnzVpUQMWERERKW1UmViIa9euERMTwwcffECPHj3w9vamYcOGvPrqq6YxQ4YMoXXr1lSvXp3IyEhOnz7NiRMnAKhcuTKNGjVizZo1XLlyhbZt2xIYGMiVK1fw8/Pjxo0bAGzZsoUbN25w9uxZli9fTs2aNTEzM2P06NFMnjyZiRMncuHCBdatW0eHDh34+OOP7xqzGrCIiIiIiIiIiEhJUwOWQuzYsYMnn3ySU6dO4enpme/ZnQYsO3bs4PHHHwcgJSUFFxcXNmzYQOPGjbl16xYDBw5k7ty5XL9+3dTBOSgoiD179tCjRw/WrFljqh40GAy0a9eOadOmYWNjg729PTY2NpiZmZGZmUlOTg5WVlY4Oztz4cKFQmNWAxYRERERERERESlMcTZg0TbnQtjY2PzpGEtLS9PfBoMBuH3OIsDEiRNZuHAhM2fOpE6dOtjZ2TFgwAAsLCxM40NCQggLC+P7779n5cqVrFu3jmvXrnHr1i0APvnkE5588km6d++Oj48PERERmJub3zUeo9GI0Wj8n7+ziIiIiIiIiIjIn9E250L4+vpiY2PDTz/99D/Nj4+Pp23btnTr1o2AgAC8vLw4duxYgXEhISFERkayd+9eUlNT6dGjB+XLl8fc3JzZs2fTp08ftm7dyg8//MC6desKVEmKiIiIiIiIiIg8SKpMLIS1tTXDhg1j6NChWFlZERISwqVLlzh48CBPPfXUn8739fVl2bJlbNmyhTJlyjBlyhQuXLiAv78/AJcuXSIxMZFdu3ZRrlw5tm/fTnZ2Ni4uLgA4OTmxceNGLCws6N27N7a2trz++uucOnWKCRMmFPpONWARERERefD+rEHLw6CmMCIiIlKSlEy8i1GjRmFhYUFERAS//vorFStW5PXXX/9Lc0eOHMmpU6do0aIFtra2vPbaa7Rr147U1FQAJk2axMCBA2nVqhVpaWm4u7vj7e2Nh4cHAA4ODvj5+XH9+nXmzZuHnZ0dFhYWXL169a7vjIqKIjIy8r6/t4iIiIiIiIiIyN2oAcsjomnTpgQGBhIdHY2HhwdvvvkmYWFhxMXF0axZM2rVqsULL7xAREREofPVgEVERERERERERAqjBiylwO8bvMDtpi13GrwURg1YRERERERERESkpCmZeA+5ubm8//77zJ49m/Pnz1O9enVGjRpFp06dAFi1ahWDBw/m7Nmz1K9fn9DQUEJDQ0lJScHS0pKKFSsyZ84c03iAr776iq5du3L+/HkuX76Mp6cnixYtYu/evWzevJkff/yRjIwMAJKSkmjWrBkABw4c4MCBAyQlJREbG/vAfwsRERERKehRPDPxQdMZjSIiIqWLujnfQ1RUFJ9//jmzZs3i4MGDDBw4kG7durFhwwYSExPp1KkT7dq1Y9++ffTp04cRI0aY5trZ2fHiiy8yd+7cfGvOnTuXTp064eDgYLoXFhZGlSpV6NKlC/Xr1+fixYtcv36dqlWrsnz5cgBq1qzJ4MGDiYmJKTTWzMxM0tLS8l0iIiIiIiIiIiLFScnEu8jMzGT8+PHMmTOHFi1a4OXlRWhoKN26dePjjz/m448/pkaNGkycOJEaNWrw4osvEhoamm+NV199le+++47k5GQALl68yJo1a3jllVfyjevXrx9ubm64uLgwc+ZMzMzM2LZtG+bm5qYOzwaDgZkzZ5KSklJovFFRUTg5OZmuqlWrFv+PIiIiIiIiIiIipZq2Od/FiRMnuHHjBs2bN893Pysri6CgIG7evMnjjz+e79kTTzxR4HOtWrWYN28ew4cPZ/78+bi7u9O4ceN84+rXr8+wYcNMn9u0aYOzs3O+MU2bNiU7O9vU8fmPwsPDGTRokOnznQYsIiIiIlJytMVXREREShslE+8iPT0dgNWrV1O5cuV8z4xGI2+//fZfWufVV19l+vTpDB8+nLlz59KzZ08MBkOR45k/fz7ff//9XZ+rAYuIiIiIiIiIiJQ0JRPvwt/fH6PRyJkzZ2jSpEmB5zVq1GDNmjX57u3cubPAuG7dujF06FA+/PBDDh06RI8ePQqM2bZtm6laMScnh927d9OvXz8ArKysTP/917/+ddd4MzMzyczMNH3WmYkiIiIiJe9RbsCiqkkREREpCUom3oWDgwNDhgxh4MCB5Obm0rBhQ1JTU4mPj8fR0ZE+ffowZcoUhg0bRq9evUhISDB1Wf595WGZMmXo0KEDYWFhPPPMM1SpUqXAu6ZPn46vry9+fn5MnTqVlJQU07mK7u7uAFSqVIlLly5hY2ODvb19gTWioqKIjIwsgV9CRERERERERETkNjVguYd3332XUaNGERUVhZ+fH88++yyrV6/G09MTT09Pli1bxooVK6hbty4zZ840dXP+43bjXr16kZWVhZeXV4GzEAEmTJjAhAkTCAgIYPPmzaSnp7N582YAKleuTM2aNTlx4gTly5c3VSz+UXh4OKmpqabr7NmzxfxriIiIiIiIiIhIaafKxHswGAz079+f/v37F/r8ueee47nnnjN9HjduHFWqVMHa2jrfuF9++YWyZcsyfvx4Ro8ebbofHR0NgJ+fH9u3b8/33t+rVq0a//73v5k+ffpdY9WZiSIiIiIPnrYSi4iISGmjZOJ9mDFjBo8//jhly5YlPj6eiRMn5qscvHHjBsnJyUyYMIE+ffrg5OT0P73H1dWVlJSU4gpbRERERERERETkf6Jk4n04fvw4o0aN4sqVK/j6+jJ48GBatmyJwWBg2LBhWFtbM27cONzc3Dhx4gSxsbEMGDCAq1evEhsbS0xMDABBQUEAzJ07l9DQUAB+++032rdvz3fffYetrS2Ojo73jEUNWEREREQevKI2YFElo4iIiPzd6czE+zB16lROnTqFmZkZCxcuZNSoUcTHx+Pq6kpcXBxjxowhOzsbOzs7mjdvnm9u586dGTx4MLVq1SI5OZnk5GQ6d+5seh4ZGckLL7zA/v37adGiBYmJiZw6dequsURFReHk5GS6qlatWmLfW0RERERERERESiclE++Tk5MTgYGBxMXFARAXF8fAgQPZu3cv6enp/PLLL5w4cYImTZrkm3enK7OFhQUVKlSgQoUK2NjYmJ6Hhoby0ksv4ePjw+zZs4H/nrFYGDVgERERERERERGRkqZtzsWgSZMmxMXFMXjwYDZt2kRUVBRLlixh8+bNXLlyhUqVKuHr60t8fPxfXrNu3bqmv+3s7LCxsWH58uV88MEHBRq8gBqwiIiIiDwM2rYsIiIipY0qE4tB06ZN2bx5M48//jg3b95k1qxZHD58mI4dOzJr1ixCQkLo2bMnr7/+OteuXePbb781zU1PT+eJJ57AaDRSsWJFhg8fDoClpaVp7X79+nHr1i1+++03mjVr9lC+o4iIiIiIiIiIiCoTi0GjRo24du0a586dIysrC1dXV6ZOnUpUVBSbNm2iVq1a9O/fn5o1axIREcHLL7/MmTNnyMjI4NSpU7Ro0YLPP/+cI0eO0Lt37wLrz5s3D4PBwOjRo+nQoUOhMagBi4iIiEjRFbWByh+pMlFERERKG1UmFoMyZcpQt25dLly4gLu7OyNHjuTFF1/kwoULAHh7e9O7d2/Kly+PtbU1ly9fZv/+/Rw5cgSAV199FVdXV1q2bElkZCQAubm5pvV9fX2xtramYsWK1KhRo9AY1IBFRERERERERERKmioTi+jSpUtUrlyZlJQUrKyscHZ25vDhwzRp0oSEhASeeOIJAFxcXKhUqRKnT5+mYcOGbNmyhbCwMAwGAwAXL14kLy+PatWq8e9//5urV68yd+5cQkJCALh8+bLpnfXq1btnJ2e43YBl0KBBps9paWlKKIqIiIj8CVUWioiIiBTNfVcmpqWl8dVXX3H48OHiiOeRt3XrVgICArCzs2PPnj24uLhQrVo1oqOjadKkCeXKlTON7dChA46OjlhaWrJp0yaeffZZrl69CtyuPDQ3N6dZs2akpKSQl5dHjx49yMnJAaBFixamdezs7Lh69SqhoaF3jctoNOLo6JjvEhERERERERERKU5FTia+8MILTJs2DYCbN28SHBzMCy+8QN26dVm+fHmxB/io2bJli6l6cPPmzaa/7zb2Toflwsba2toSGxvLmjVrqFevHkajkS+++AIHBwcmTpxIuXLl2LhxI0uWLGHnzp0l96VERERERERERET+AkNeXl5eUSZUqFCB7777joCAABYuXMjo0aPZt28f8+bNY/bs2ezdu7ekYn1ozpw5Q926dQG4ceMG5ubmGI1Gbt68icFgwNrami5dunDo0CFsbGzYunUr8N8mKEajkaysLGxsbLCwsCA1NZWVK1eSnZ3NCy+8QNmyZXn//ffJzs5m5MiReHt7c+7cOT799FNGjx5Neno658+f58SJE7i4uBQaY2ENWKpWrUpqaqqqFEVERETu090atWibtIiIiPwdpKWl4eTkVCx5oiJXJqamppoSWmvXrqVjx47Y2trSunVrjh8/fl/BPKoqVapEQkICGzduBGD79u3s3r0bKysrvv/+exISEhg7diwAXl5eJCQkMGnSJPz9/alUqRJdu3alfPnyHDhwgISEBNO6bm5uwO3zFfv27UtkZCQ9evRgz549TJw4kZYtW2Jra8vTTz+NjY0Nn3322V1jVAMWEREREREREREpaUVuwFK1alW2bt2Ki4sLa9euZfHixQCkpKRgbW1d7AE+CiwsLLCzs8PHx4fHH38cPz8/HBwcqFChAo0bNzaNi4uLA2Dp0qWMHDmSXr160bp1a/7zn//QoUMHPDw8ALhTDHpn/Pr166lcuTIA+/fvZ8qUKaYt0XfGnD179p7nUqoBi4iIiEjJUQWiiIiIyG1FrkwcMGAAXbt2pUqVKlSqVImmTZsCsHHjRurUqVPc8T0SatWqRbVq1cjNzWXXrl04OTmRmZnJuXPnsLe3p1atWsDt7dD29vZ07dqVixcvMnnyZJo1a8bVq1f54osvsLe35/XXXy+wvp2d3X3HqAYsIiIiIiIiIiJS0oqcTOzbty9bt25lzpw5bN68GTOz20t4eXnx3nvvFXuAj4I1a9bQvXt37O3tmT9/Pv3796dMmTJER0eTkJDAmjVrgP9uh/b19cXCwoKEhATq16+PwWBg06ZN+bZDHzx4kPDwcACqVKlCo0aNOHnyJN7e3lhZWTF48GCqVKmC0WgkICCATZs24e/v/9B+AxERERERERERkSI3YClNft945fr16+Tk5ODo6MjNmzfJzs7GwcGBbt26MWPGDBYuXEjfvn2B2+dKmpmZ4eDgYGrC4ujoyIwZM+jSpQu//PILdevWpVatWmzatImdO3fy888/06BBA2rUqEHjxo3ZvHkzQ4cOpVGjRgwfPpwDBw6wc+dOgoODC41VDVhEREREiuZuTVWKQtufRURE5O+gOBuwFDmZeOvWLWJjY/npp5+4ePEiubm5+Z6vW7fuvgJ6lOTk5HDu3DnS0tJ47LHHqFu3LkuXLqV69erY2try888/Y29vj6urK+np6fz222/8+OOPDB06lK5du9K8eXM6d+7MrVu3OHbsGK6urtjb2/POO++wePFiZs+eTfPmzUlJScHZ2dn03kqVKuHh4cHx48e5du0awcHBXLlyhWbNmjF9+vRCYx0zZgyRkZEF7iuZKCIiIlI4JRNFRESktHioycR+/foRGxtL69atqVixIgaDId/zqVOn3ldAj6IlS5YQExNDfHw88fHxPP300/Tp04fo6OgCY/v27UuZMmUYN24c48aN4/jx43zwwQeUK1fONKZVq1a4ubkxb968AvPv/OPGxcXRpEkT0/2BAweyb9++uyZrVZkoIiIiIiIiIiKFKc5kYpG7OS9evJglS5bQqlWr+3rx30GtWrU4ffo02dnZ5ObmYm9vT05ODpmZmcyYMYMffviBgwcPcubMGdN5hhkZGVhYWBATE0NmZiZmZmYsW7aMbt26MWvWLABsbGyKPVaj0YjRaCz2dUVERERERERERO4ocjLRysoKHx+fkojlkbNmzRpSU1Np0KABOTk52NjYYG1tjbW1NSEhIURGRpKSksI777yDmZkZmZmZ5OXl8dVXX1G1alUCAwMZNmwYU6dONTVeGTNmDPHx8eTm5uLu7s7Vq1dp2bIln3zyCQ4ODjg6OlKxYkX69+/P8ePHcXR0ZOjQoXz22Wd4eno+5F9ERERE5NFVHNuWi0rbnEVERKS0KXI358GDBxMTE0Np6Nvi7u7OlClTuH79OitXrmTt2rX8+uuvJCcn4+zsjLu7O6GhoezZs4fVq1czduxYnJyceOutt7hw4QJeXl54eXlhbm6eb5tzeno6qampVK9enUmTJvHTTz/RtWtXjh49anrv/v37GThwILNnz2bmzJlcu3aNwMDAu8aamZlJWlpavktERERERERERKQ4FTmZuHnzZhYsWIC3tzdt2rShQ4cO+a5/kvT0dObPn0/NmjVp2bIlN27cwMPDw9R05vjx46xatYpPP/2URo0akZiYyCuvvMIvv/zCxx9/TOPGjQtdNy8vj7i4OMzMzBgwYABpaWnExcVhaWnJtWvX2LVrF88//zyxsbF07NgRo9GIwWBg//79d401KioKJycn01W1atUS+U1ERERERERERKT0KnIDlp49e97z+dy5c+8roEfJvn37CAwM5PTp01SrVs10PygoiMzMTBwcHNizZw8ZGRmYm5vne96+fXsiIiKIjY1lwIABXL16Fbi9zXnp0qUcPHjQNH7q1Kl89NFHnDp16q7vdHBwwMfHh7179xYaqxqwiIiIiIiIiIhIYR5qA5Z/UrLwYbG0tMz32WAwmKod/1dqwCIiIiIiIiIiIiWtyMlEgJycHOLi4jh58iRdunTBwcGBX3/9FUdHR+zt7Ys7xofG29sbc3NzGjZsyKVLl7C1taV27docOHCAnJwc0zgLCwvWr19P06ZNefvtt9m3bx+HDh0iNjaW2rVr51szLi6Oo0eP8sUXXzBq1ChSUlLw8vIynUHp5eWFpaUlL7/8Mrt378bBwYE333yTGzdu3DPWwioTRUREROT+3auxixqwiIiISGlT5GTi6dOnefbZZzlz5gyZmZk0b94cBwcH3n//fTIzM5k1a1ZJxPlQXLt2jdzcXNLT0/nss8+wtrZmzJgxWFtbU7FiRby9vcnLyyMxMZG8vDz27dvH2rVrqVy5MuvWrePIkSN069aNrKysfOtmZWXx1Vdf8c0335CSkkLr1q25ceMGAwYMIDo6Gh8fH+Lj43n//ffx8vKib9++f1q5GBUVRWRkZEn+HCIiIiIiIiIiUsoVuQFL//79CQ4OJiUlBRsbG9P99u3b89NPPxVrcA9bcnIyeXl5NG3alN69e9O3b19efvll6tWrh4WFBUajkUWLFvHkk0/Svn176tevj5eXF+vWrcPX15c2bdrw7LPPkp2dnW/dvLw8U9Vio0aNCA4OxtzcnHfffZf09HROnDhB/fr1iYiIoG/fvvTr1w+DwYCFxd1zv+Hh4aSmppqus2fPlvTPIyIiIiIiIiIipUyRKxM3bdrEli1bsLKyynffw8ODX375pdgCexQEBATw1FNP8eOPP9KqVSueeeYZOnccLtoAACAASURBVHXqRFhYGKGhoVy9epUyZcrw+eefm+Z8+eWXhIaGcvLkSdLT08nJycHFxcX0vGnTply6dAkHBwfTvTZt2pCUlISDgwP79u0jOzubBQsWmBqwXL9+nYiICJycnO4aq85MFBERESkZ2sosIiIi8l9FrkzMzc3l1q1bBe6fO3cuX4Lsn8Dc3JwffviBb7/9Fn9/fz766CNq1KhBYmJioeO3bt1K165dadWqFd988w179+5lxIgRBbY5F9aA5ddff2XAgAGme2+++SadOnXC1tYWNzc38vLy8Pb2Lv4vKSIiIiIiIiIi8hcVuTLxmWeeITo6mtmzZwO3E2Hp6emMHj2aVq1aFXuAD5vBYCAkJISQkBAiIiJwd3dn5cqVWFlZFUiqbtmyBXd3d0aMGGG6d/r06SK9707CcM2aNVhYWGBjY4OLiwuJiYlkZGTcdZ4asIiIiIg8eH9szqIqRhEREfmnK3Jl4uTJk4mPj8ff35+MjAy6dOli2uL8/vvvl0SMD8327dsZP348u3bt4syZM6xYsYJLly7h5+eHh4cH+/fv5+jRo/z2229kZ2fj6+vLmTNnWLx4MSdPnuTDDz9k5cqVpvXy8vL4v//7Pw4cOIDBYCAhIaHAO+3t7bG3t8fGxoZvv/2WzZs3U6dOHQwGwz3PQYyKisLJycl0Va1atUR+ExERERERERERKb2KXJlYpUoV9u3bx5dffsm+fftIT0+nV69edO3aNV9Dln8CR0dHNm7cSHR0NGlpabi7uzN58mRatmxJcHAwcXFxBAcHk56ezvr163nuuecYOHAg/fr1IzMzk9atWzNq1CjGjBkDwNq1a0lISMDLy4tNmzbh6upa6HvLlCmDm5sbbdq0wcHBgcGDB/PTTz9x8+bNu8YaHh7OoEGDTJ/T0tKUUBQREREpYapEFBERkdLGkJeXl1eUCYsWLeKll14q9FlYWBgTJ04slsD+iaZNm8bEiRML3frctGlTAgMDiY6OxsPDgwEDBuQ7QzEwMJC2bdsyatSoe3Z1viMtLQ0nJydSU1NxdHQs1u8hIiIiIiIiIiJ/H8WZJyryNuc33niDb7/9tsD9gQMHMn/+/PsK5p8sNDSUt956izNnzmAwGPDw8CAzM5O3336bcuXKsXHjRpYsWcLOnTtNc+Li4jAYDHz77bccO3aM9957j82bNz/EbyEiIiIiIiIiIqVZkbc5L1iwgJdeeolvvvmGhg0bAvDWW2+xYsUK1q9fX+wB/lPExMTg7e3N7Nmz2blzJ+bm5gwdOpTly5czb948Ro8eTXp6Oi1atMDe3j7f3OHDh1OxYkVat25N3bp1C11fDVhERESkNPtjI5QHRducRUREpLQpcmVi69atmTFjBs899xy7d++mb9++pkRizZo1SyLGfwQnJyccHBwwNzenQoUK2NraMnPmTCZOnEjLli2xtbXl6aefxsbGhvT09Hxzx44di4ODAy4uLri4uBS6vhqwiIiIiIiIiIhISStyZSJAly5duHr1KiEhIbi5ubFhwwZ8fHyKO7Z/tJMnT5KdnU1ISAhwe0szwNmzZylTpgwDBgww3WvXrh0pKSk4OzvfdT01YBEREZHSTBWCIiIiIg/GX0om/j5J9Xtubm489thjzJgxw3RvypQpxROZFInRaMRoND7sMERERERERERE5B/sL21z3rt3b6GXj48PaWlpps8JCQklHe8DlZubS1RUFJ6entjY2BAQEMCyZctMz1etWoWvry/W1tY0a9aMefPmYTAYuHr1KtevX8fR0THfeIAbN25gZ2dHuXLlsLKywsPDg8WLF9OgQQOMRiPffPONKSl4/vx507wyZcpgMBgIDQ19IN9dRERERERERETkj/5SZWJpbawSFRXF/PnzmTVrFr6+vmzcuJFu3brh5uZGtWrV6NSpE/379+fVV19l7969DBkyxDTXzs6OF198kblz59KpUyfT/fT0dJ5//nkqVKhA165dmTt3Lm+99RYjRoygfPnyfPvtt8yfP5/33nsPNzc307yjR4/i6OiIjY1NobGqAYuIiIjIg/ewGr+AtnaLiIjIw1HkBiy/d+7cOc6dO1dcsTxSMjMzGT9+PHPmzKFFixZ4eXkRGhpKt27d+Pjjj/n444+pUaMGEydOpEaNGrz44osFqgZfffVVvvvuO5KTkwG4du0aN2/e5JVXXgFg2LBhANy8eZPhw4dz6dIl1q9fj7OzM5999hnm5uamtZYsWUKFChVwcnIqNF41YBERERERERERkZJmyMvLyyvKhNzcXN577z0mT55s6jrs4ODA4MGDGTFiBGZm95WffGQcPHiQ2rVrY2dnl+9+VlYWQUFBVKpUiTJlyjBnzhzTs1WrVtG2bdt8zVICAgJ46aWXGD58OFOmTGHGjBkcP34cg8FAUlISnp6ebNiwgcaNG5vWad++Pc7OzsydO5e4uDiaNWuGk5MTp0+fvmsysbDKxKpVq5Kamoqjo2Nx/jQiIiIiIiIiIvI3kpaWhpOTU7HkiYrczXnEiBF89tlnTJgwwdSJePPmzYwZM4aMjAzGjRt3XwE9Ku4kSlevXk3lypXzPTMajbz99tt/aZ1XX32V6dOnM3z4cObOnUvPnj0xGAxFjsfT05P58+fz5ptvFvpcDVhERERERERERKSkFTmZOG/ePD799FOee+450726detSuXJl+vbt+49JJvr7+2M0Gjlz5gxNmjQp8LxGjRqsWbMm372dO3cWGNetWzeGDh3Khx9+yKFDh+jRo0eBMdu2bTNVJubk5LB792769esHgJWVFQAtWrRg8eLFd00mioiIiMiDV9JnJupcRBEREXnUFDmZeOXKFWrWrFngfs2aNbly5UqxBPUocHBwYMiQIQwcOJDc3FwaNmxIamoq8fHxODo60qdPH6ZMmcKwYcPo1asXCQkJxMbGAuSrPCxTpgwdOnQgLCyMZ555hipVqhR41/Tp0/H19cXPz4+pU6eSkpJiOlfR3d0dg8FAdnY227dv5/Lly5QtW7bAGmrAIiIiIiIiIiIiJa3IBxwGBAQwbdq0AvenTZtGQEBAsQT1qHj33XcZNWoUUVFR+Pn58eyzz7J69Wo8PT3x9PRk2bJlrFixgrp16zJz5kxGjBgBUGC7ca9evcjKyjIlCP9owoQJTJgwgYCAADZv3syqVatwdXUFoHLlykRGRvL555+TnZ1Nnz59Cl1DDVhERERERERERKSkFbkBy4YNG2jdujXVqlWjfv36AGzdupWzZ8+yZs0aGjVqVCKB/h2MGzeOWbNmcfbs2Xz3v/jiCwYOHMivv/5q2rYMmBqw1KtXj4YNGxIdHX3XtY8fP0716tU5dOgQfn5+BZ6rAYuIiIiIiIiIiBTmoTZg8fT05NixY0yfPp0jR44A0KFDB/r27UtOTs59BfN3M2PGDB5//HHKli1LfHw8EydONJ11CHDjxg2Sk5OZMGECffr0yZdILKo7W8jd3NwKfa4GLCIiIiIiIiIiUtKKXJlobm5OcnIy5cqVy3f/8uXLlCtXjlu3bhVrgI+ygQMH8uWXX3LlyhWqVavGyy+/THh4OBYWt3O0Y8aMYdy4cTRu3Jivv/4ae3v7fPPvVCb+UWJiIqdPnyYsLIx9+/bh4uJCYGAgBw4cKFD1eIcqE0VEREQevOJswKJmKyIiIlJSirMyscjJRDMzM86fP18gmXj69Gn8/f25fv36fQVU2qSmptKyZUtq167N2LFjAbh16xbVq1cnNDSUt956iyNHjvDiiy/i5+fH3r17C11nzJgxREZGFrq+kokiIiIiJUPJRBEREfk7eCjbnAcNGgTc7lQcERGBra2t6dmtW7fYvn07gYGB9xXMP0FeXh59+vRh2bJlpKSk4OTkRGho6F3PQ3RycsLKygpbW1sqVKgAwIgRI6hatSrTpk3DYDBgMBjIzMzk8OHD5ObmYmZWsG9OeHi46d8I/luZKCIiIiIiIiIiUlz+cjLxTkVcXl4eP//8c77z/6ysrAgICGDIkCHFH+HfzNq1a4mNjSUuLg4vLy/MzMywsbEp0hqHDx+mfv36GAwGAJYuXQrc3sp87tw5qlWrVmCOzkwUERERefBUTSgiIiKlzV9OJq5fvx6Anj17EhMTo62zd3Hy5EkqVqxIgwYNim3NO2cwioiIiIiIiIiIPExFzlLNnTu3JOL4RwgNDWXevHnA7e3g7u7ueHh4EBgYaNrm7OHhwWuvvcaJEydYunQpZcqUwd7ePl/jGicnJxYtWsTChQupU6cOI0aMAMDOzo4qVaoU+u7CGrCIiIiIPKqK86zBh0mViSIiIlLaFDx8T/5nMTExjB07lipVqpCcnMzOnTsLHTd58mSCg4PZu3cvffv25fDhw2zYsIGkpCSSkpJYtWoVOTk5dOzYkV69evHGG28A0K1bt0LPSwSIiorCycnJdOm8RBERERERERERKW5F7uYs9xYdHU10dDRJSUkANG3atEBlYqNGjfjiiy+A22dQurq64uTkxPnz57l58ybOzs4sWbKEESNGsGfPHvLy8sjNzWXnzp0EBwcX+t7CKhOrVq2qbs4iIiIiIiIiIqVccXZzVmXiQ1C3bl3T3waDgSpVqhAaGsqNGzcYMGAAQUFBNG/enB07djBy5Eh8fHyAe5+daDQacXR0zHeJiIiIiIiIiIgUJyUTS1hubi5xcXGUK1cOa2trzp8/T3JyMgCxsbE4OztjMBjIzc0FbjdwudPsJjY2lsjISI4dOwZAUFAQsbGxD+V7iIiIiIiIiIiIqE1wCTt16hRXr15l6dKluLu788QTTzBr1ixGjhxZ6Pg7DVYyMjLo3LkzBw4cYOHChSQnJ/PDDz8QEhJS6Dw1YBEREZHS7GE1dFEDFhERESltVJn4P0pKSsJgMJCQkHDXMdevX+fXX3+lUaNGtGzZEn9/f1xdXbG0tOSzzz4rdE6jRo0A6N27N4mJiSQnJ3P58mUAXF1dsbGxKXSeGrCIiIiIiIiIiEhJU2ViCTp58iR5eXlUrFgx3/1q1apx+PBh3NzcCsy5kyz8+eefCQoKwsXFhaysrD99V3h4OIMGDTJ9vtOARURERKQ0UIWgiIiIyIOhysRiNmDAAFMn5ztGjx5t+jspKcnUUMXMzIy8vDwSEhIYM2YMANnZ2QAkJCSQmZlJnz59AFi5ciWBgYF3fa8asIiIiIiIiIiISElTMvEe1q5dS8OGDXF2dqZs2bL85z//4eTJk/nGHDlyhAYNGmBtbU3t2rXZsGGD6Zm3tzeWlpb8+9//xmg0UrFiRcLCwti5cyf+/v64ubmRlpbG+++/b5pzZ9v0neRiTEwMAO3bt8dgMODh4VGyX1pEREREREREROQutM35Hq5fv86gQYOoW7cu6enpRERE0L59+3znJIaFhREdHY2/vz9TpkyhTZs2JCYmUrZsWa5evUpeXh4XLlxg2rRpZGRkEBYWhsFgoFevXuTl5WEwGFi9ejWdOnVi+/btBbo1R0VF8cYbbxAZGUnHjh1xcnIqNFY1YBERERH53/2vDVy0vVpERERKG1Um3kPHjh3p0KEDPj4+BAYGMmfOHH7++WcOHTpkGtOvXz86duyIn58fM2fOxMnJydRcZcaMGXh6etKzZ0/eeecdwsLCqFy5MgaDAScnJ1xcXHB1deXw/7N37/E91///x2/vHYzZEcOb2FjD5jRsCmFCRuRYkmTkTGGE5ayDipVTCDFJoTBCFJnDMMc5ztrG2tRynM3GZqffH37e35ZN9NmUdr9eLq/LZa/X6/l6vp6vt3+6PHo+n/eICGrXrs3XX39tmpF4V58+fQD46KOPqFWrFtu3b89zrApgERERERERERGRwqaZifcRFRXFpEmTCAsL48qVK2RnZwMQFxeHh4cHAI0aNTK1t7CwwMvLi4iICAAiIiJo0qQJc+fOZe7cuQAcP34cT09PLly4QOXKlbG2tmbEiBGMGDHC1M+nn35q+tvKygqAL7/8kk6dOuU7VgWwiIiIiPx9mmEoIiIi8mBUTLyPDh064OzszOLFi6lQoQLZ2dnUqlXrgdKVH9TdEJY/uhvC8jCsrKxMhUcREREREREREZHCoGJiPq5evUpkZCSLFy+madOmAOzdu/eedgcOHKBZs2YAZGZmcuTIEYYNGwaAu7s7a9euNe2NCBAaGoqtrS1PPPEEAE5OTiQkJJj6S05O5vz580RHR/PMM89w6tQpAN555x1q166Nq6tr4X20iIiIiDyUv7vX4sPQrEkRERH5N9GeiflwdHSkdOnSLFq0iOjoaH766adcy4jv+vTTT1m/fj1nz55l6NChJCYm0rdvXwCGDBlCfHw8b7zxBmfPnmXDhg1MnjwZf39/zMzu/PTPPvssK1asYM+ePZw8eZLevXtjbm7O7du38ff35/Dhw1SuXJmrV6/Svn17rl69mud409PTSU5OznWIiIiIiIiIiIgUJBUT82FmZsaqVas4cuQItWrVYuTIkcyYMeOediVLlmTw4MHUrVuXvXv3snHjRsqUKQNAxYoV2bJlCwcPHqRu3boMGjSI119/nQkTJpieDwgIoHnz5rRv357nn3+eTp064erqioeHhyn8Zd68eZiZmXH27Fnq1KmT53gVwCIiIiIiIiIiIoXNkPPnDfvkofj4+ODp6cmsWbMKtN+8wl9SU1PZvHkz7dq1u6d9eno66enppvO7ASxJSUnY2dkV6NhEREREREREROTxkZycjL29fYHUibRn4r/Uw4a/KIBFREREREREREQKm4qJBSgxMZHhw4fz3XffkZ6eTvPmzZkzZw5ubm4ABAUFMWLECFavXs2IESOIj4/nmWeeYdmyZRiNRuBOiMvgwYOJjIzkt99+44cffuD333/n3Llz9313XjMTRURERKRwPYoAlsKiYBcRERH5O7RnYgHy8/Pj8OHDbNy4kf3795OTk0O7du3IyMgwtbl58yYzZ85kxYoV7N69m7i4OEaPHm26/+GHH7J27VpsbW3x8fEhPj6eb7/91pTqnB/tmSgiIiIiIiIiIoVNxcQCEhUVxcaNG1myZAkTJ05k2bJlrFy5kl9//ZXg4GBTu4yMDBYuXIiXlxf169dn2LBh7Nixw3R/7ty5vP3226xbt47o6GjWrVtHRkYGNWvWvO/7AwICSEpKMh3x8fGF9q0iIiIiIiIiIlI0aZlzAYmIiMDCwoKnnnrKdK106dJUr16diIgI0zVra2tcXV1N50ajkUuXLgGQlJTExYsXadiwIc2aNWP+/Pm0aNGC9u3bY25uzv2ycrRnooiIiMijp6XCIiIiUtRoZuIjZmlpmevcYDDct0goIiIiIiIiIiLyb6GZiQXE3d2dzMxMwsLCTNeuXr1KZGQkO3bs4JNPPiE1NZWcnByioqJMoSx3ZyU6Ojpy+/ZtzM3N+eKLL6hcuTItWrQAYNOmTcCdPRmDgoLyfL8CWEREREQeTkGEp2hmooiIiBQ1mpmYj5ycHAYMGECpUqUwGAyEh4fn2W7Xrl3ExMTg5uZGx44d6d+/P0lJSVy+fJlXX30VMzMzLl26xMaNG5kwYQJArlCWRYsWAbB7925OnjxJjx49+Pbbbzl27Bhz5swBwMbGhuLFi1O9evV8x6sAFhERERERERERKWwqJuZj69atBAUFsWnTJhISEqhVq1ae7Ro1aoSLiwsAy5Yto0GDBpw8eZI1a9aQmppKamoqn3/+OU2bNqVy5cpYW1vnCmW5fPkyALVr16Zq1aosW7aMXr164efnx/jx4wFo1aoVZmZmlChRIt/xKoBFREREREREREQKm5Y55yMmJgaj0Ujjxo3zvH/79m2KFSvGvn37TNccHR354osviIuLw9PTk2effZb9+/ebQln8/Pzw8/OjXr16plCWiRMnMnjwYJo0aUKrVq3o2rUrc+fOZe7cuYSEhNCiRQtOnTp1z16Lf6YAFhEREZGHoyXKIiIiIg9PxcQ8+Pn5sXz5cuBOQIqzszMuLi7UqlULCwsLvvzyS2rXrs3OnTsxGAysX7+eTp06ARAfH8+ZM2fYv38/S5YsISsri9jYWFOCs5+fH+fPnyc0NBSj0cjt27fp0aMHTz31FDt27OD999+nffv2XL9+nb179wJw/vx5ypUr98/8GCIiIiIiIiIiIv+fiol5mD17Nq6urixatIhDhw5hbm7Oiy++yPLlyxk8eDChoaF5PpeRkUGbNm1M7Xv27Em7du149tlniYqKolixYqSlpZGUlEROTg47d+4kOjqa7t2707RpU9atW8fQoUNZuHAhAMWKFSMzMxM3Nzd++eWX+45ZASwiIiIij15BhLj8LzS7UkRERB417ZmYB3t7e2xtbTE3N6d8+fI4OTkB4ObmxkcffUT16tXzDENZvXo12dnZVK9enTJlytC2bVs6dOhAfHw88+bN4/jx4+zduxcLCws2btxIjRo12L59Ow0aNGDDhg0cPXqU0NBQsrOzOXDgANHR0RgMBnr37s2tW7dyFQv/TAEsIiIiIiIiIiJS2DQz8SE0aNDgvvePHz9OdHQ0UVFRhIaGsmTJEnJycsjJyWHChAlMmDABR0dHmjRpQvHixQHIysrixIkT3Lhxg4MHD1KzZk3Mzc1p0KABZmZmTJ06ldmzZwOwdu1axo4dm+e7AwIC8Pf3N50nJyeroCgiIiJSyDQzUERERIoaFRMfQsmSJe97PyUlhQYNGrBy5cp77jk5OWFvb4+fnx/Xr183XZ87dy7m5uaEh4cTEhLChg0bTHslwp2AlokTJ+Lo6Mgrr7yS77sVwCIiIiIiIiIiIoVNxcQCVL9+fVavXk3ZsmWxs7P7W33UqFGDzMxMjhw5gre3NwCRkZG5CpAiIiIiIiIiIiL/BO2ZWIB69uxJmTJl6NixI3v27OH8+fOEhITw5ptvcuHChQfqo3r16vj6+jJw4EDCwsI4cuQI/fr1o0SJEvd9Lj09neTk5FyHiIiIiBQul3Gb//EQFhEREZFHScXEAmRtbc3u3bupXLkyXbp0oVq1arRs2ZK0tLSHmqm4bNkyKlSoQPPmzenSpQsDBgygbNmy931GASwiIiIiIiIiIlLYDDk5OTn/9CD+q4KCghgxYsT/vETZYDCwfv16OnXqlG+b9PT0XGnPdwNYkpKS/vaSaxERERERERERefwlJydjb29fIHUi7Zn4H6EAFhERERERERERKWxa5vyQNm3ahIODA1lZWQCEh4djMBgYN26cqU2/fv149dVXTefbtm3D3d0dGxsbfH19SUhIMN07dOgQrVu3pkyZMtjb29O8eXOOHj1quu/i4gJA586dMRgMpnMREREREREREZFHTTMTH1LTpk25ceMGx44dw8vLi127dlGmTBlCQkJMbXbt2sXYsWMBuHnzJjNnzmTFihWYmZnx6quvMnr0aFauXAnAjRs36N27N3PnziUnJ4fAwEDatWtHVFQUtra2HDp0iLJly9KzZ09++eUX1q1bl+e48lrmLCIiIiKF698QvhL7wfP/9BBERESkCCmyMxNzcnIYMGAApUqVwmAwEB4eft/2ISEhGAwGcnJy8PT0ZMaMGTg4OBASEsLIkSM5duwYKSkp/Prrr0RHR9O8eXMAMjIyWLhwIV5eXtSvX59hw4axY8cOU7/PPvssr776KjVq1MDd3Z1FixZx8+ZNdu3aBYCTkxMAmZmZxMfHm87/TAEsIiIiIiIiIiJS2IrszMStW7cSFBRESEgIVatWpUyZMg/8bPPmzfnpp5/Iyclhz549TJ8+nTVr1rB3716uXbtGhQoVcHNzIzQ0FGtra1xdXU3PGo1GLl26ZDq/ePEiEyZMICQkhEuXLpGVlcXNmzeJi4vL9c6XX36ZVatW5TumgIAA/P39Ted3A1hEREREpPBoVqCIiIgUNUW2mBgTE4PRaKRx48YP/ayPjw8LFy7E3NwcS0tLatSogY+PDyEhISQmJppmJQJYWlrmevbu7Ma7evfuzdWrV5k9ezbOzs5YWVnRqFEjbt++/VBjUgCLiIiIiIiIiIgUtiJZTPTz82P58uXAneKes7MzkZGRvPXWW6xatYrk5GS8vLz45JNP8Pb2vuf5pk2bkpaWhoWFBc8/f+f/Rvv4+DBy5Eh+/fVXsrOzOXLkSK6i4ujRozl79iz9+vUDYNasWYwcOZISJUrw2Wef0a5dO5588kkGDBjAlStXiI6OpmHDhpw+fRqAcePGUa9ePZydnQv75xERERGRB1TYeyZq5qOIiIj82xTJPRNnz57NtGnTeOKJJ0hISODQoUOMGTOGtWvXsnz5co4ePcqTTz5JmzZtuHbt2j3POzo6UqlSJTIyMvDx8QHuLCuOjY0lIyODTZs2MXDgQJYsWUJmZiZwZ2n03r17yc7OBjAFt9jZ2bFixQpCQkKIiYnhm2++oUSJEnz++ec0b96cEydO4OzsTMWKFbl8+TKJiYl5flN6ejrJycm5DhERERERERERkYJUJIuJ9vb22NraYm5uTvny5bG2tmbBggXMmDGDtm3b4uHhweLFi01FvbxUr14dwFRM/OyzzyhVqhTly5fH19cXf39/vLy8TAnLd1Ogz507B8Du3bsZNWoUTk5OJCYm8txzzwFQtmxZypQpQ1paGu3bt8fV1ZW5c+cSFxdHo0aNqFevXp7jUQCLiIiIiIiIiIgUtiK5zPnPYmJiyMjIoEmTJqZrlpaWNGzYkIiIiDyfeeWVVzh48CA1atQAICIigk8++YTevXub2vTs2ZMrV64A4ODgQN26dQE4fvw4bdq0YcCAAUyePJmrV6/i7+9PYmIiS5cuxdbWlj59+tCmTRtat25Nq1at2L17N0ajMd9vUACLiIiIyKOnZcgiIiJS1BTJmYn/lLshLbt27aJ58+aUKlUKd3d39u7dy65du2jdujW2trYALFu2jP3799O4cWNWr15NtWrVOHDgQL59W1lZYWdnl+sQEREREREREREpSJqZ4U6laQAAIABJREFUCLi6ulKsWDFCQ0NNAScZGRkcOnSIESNGPFAf7u7uhIaG5pqZGBoaioeHh+m8efPmLF26FAsLC3x9fYE7Bcavv/6an3/+mSVLlnDmzBlmzZrF/Pnz+eSTT4iPj8fe3p5ixYrx1Vdf8fTTT+f5/vT0dNOSakB7JoqIiIg8Ag8TwKJZjCIiIvJfoJmJQMmSJRk8eDBvvfUWW7du5cyZM/Tv35+bN2/y+uuvP1Afb731FkFBQSxYsICoqCg+/vhj1q1bx+jRo01tmjVrxo0bN9i0aZNpr0UfHx9WrlyJ0WjE2toagA0bNjBs2DBeffVVduzYweTJk0lPT8fd3T3f92vPRBERERERERERKWyamfj/ffDBB2RnZ9OrVy9u3LiBl5cX27Ztw9HR8YGe79SpE7Nnz2bmzJkMHz6cKlWqsGzZMlPREO6kQFepUoWYmBjKly8P3CkwZmdn07x5cxISEgC4evUq5ubmLFy4kPfffx+j0cioUaMYOHBgvu/XnokiIiIiIiIiIlLYDDk5OTn/9CD+y3x8fPD09GTWrFkAhISE0KJFCxITE3FwcMiz7TvvvEOTJk1ISEjA19cXX19fOnfubJq5+CCSk5Oxt7cnKSlJ+yeKiIiIiIiIiBRhBVkn0jLnfyFbW1uOHj3K119/jdFoZNKkSdStW5fr16//00MTEREREREREZEiTMucC5Gfnx+7du1i165dzJ49G7iT0gxw5MgRxo4dy5kzZ/D09DRdv2vz5s1MnTqVM2fOUL58eWJjY/nxxx958cUX83yXAlhEREREHr2HCWD5I4WxiIiIyONKMxMLkI+PT67059mzZ9OoUSP69+9PQkICCQkJpn0Mx48fT2BgIIcPH8bCwoK+ffuanvvwww/p3r07nTp14scff+SFF14gOzubd955J993K4BFREREREREREQK2396z0Q/Pz+uX79OcHDwI3nfn/dHzOva3T0Tt2/fTsuWLQHYsmULzz//PE2bNqV+/frs3buXa9eucf36ddLS0nBzc+PKlSskJSWRkpKS57vzmplYqVIl7ZkoIiIiIiIiIlLEFeSeiVrm/A+pU6eO6W+j0QjAihUrqFixIkajkZSUFMzNzTEzMyMmJoZbt26RnZ3NzZs38wxisbKywsrK6pGNX0REREREREREip7/xDLnb7/9ltq1a1OiRAlKly5Nq1ateOutt1i+fDkbNmzAYDBgMBgICQkBYOzYsVSrVg1ra2uqVq3KxIkTycjIMPU3ZcoUPD09WbFiBS4uLtjb2/Pyyy9z48YNU5vU1FRee+01bGxsMBqNBAYG3jOuFStWcOTIEebPn0/58uV55ZVXSExMBMDS0pKQkBAMBgOhoaEAPPnkk+zdu5eUlBQ8PDzIzs6mRIkSvPHGG3h5edG7d2+KFy9eiL+kiIiIiIiIiIhI/h77YmJCQgI9evSgb9++REREEBISQpcuXZg8eTIvvfQSvr6+pv0KGzduDNxJSw4KCuLMmTPMnj2bxYsX88knn+TqNyYmhuDgYDZt2sSmTZvYtWsXH3zwgen+W2+9xa5du9iwYQM//PADISEhHD16NFcfGRkZuLm58fLLLxMcHExsbGyuPu6aM2cOANu3b6dOnTo4ODgQGRnJd999x08//cSpU6eIiIjAwcEBM7O8/8nS09NJTk7OdYiIiIiIiIiIiBSk/0QxMTMzky5duuDi4kLt2rUZMmQINjY2lChRAisrK8qXL0/58uUpVqwYABMmTKBx48a4uLjQoUMHRo8ezZo1a0x9BgcHc+vWLYKCgqhVqxZNmzalV69e7NixA4CUlBQ+//xzZs6cScuWLalduzbLly8nMzMz19j69u2Ll5cXZ8+epXz58kybNo2DBw/e8w2DBw8GwNnZmWLFinHlyhXS0tLYu3cvZmZmvP3226SlpbFv3758fwcFsIiIiIiIiIiISGF77PdMrFu3rqmg16ZNG5577jm6deuGo6Njvs+sXr2aOXPmEBMTQ0pKCpmZmbk2n/T19SU9PR1bW1vTNaPRyKVLl4A7sxZv377NU089ZbpfqlQpqlevnus9R44cISoqiuPHj1OlSpV8x1OzZk3T3zExMWRmZvLFF1+wcOFCPvzwQywtLbG0tLzvBpkBAQH4+/ubzu8GsIiIiIiIiIiIiBSUx35morm5OT/++CPff/89Hh4ezJ07l+rVq3P+/Pk82+/fv5+ePXvSrl07Nm3axLFjxxg/fjy3b982tSlevPg9YSYGg4Hs7OwHHldqaipt2rShQoUKbN++nYiICLZt2wbAsWPHcHBwMLVt2LAhOTk5uLi4mK41b96c0NBQbt68SVJSEtWqVaNWrVr5vs/Kygo7O7tch4iIiIiIiIiISEF67IuJcKfQ16RJE6ZOncqxY8coVqwY69evp1ixYmRlZeVqu2/fPpydnRk/fjxeXl64ubnxyy+/5GoTHBxsKkZu3bqVZ555hoCAAOLj42nfvj0GgwFLS0vCwsKIjY3FYDCwdOlSTpw4wbx58/D29mbbtm1cvXqVkydP0rZtW0aOHEl0dHSu92zevBmAcuXKUaNGDebPn4+rqyuWlpaEhoYybNgwjEYjVlZWHD9+nEOHDhXirygiIiIiIiIiInJ/j/0y57CwMHbs2MFzzz1H2bJlCQsL4/Lly7i7u5OWlsa2bduIjIykdOnS2Nvb4+bmRlxcHKtWrcLb25vNmzezfv36fPtPTU3F39+fI0eOsGzZMszMzHj11Vfp27cvb731Fu+//z4Aw4cPx8rKim7duhEVFcXUqVMxGAzUrl2b9957j4EDB7J//35TvytXrmTp0qUAHDx4kJiYGPr370/JkiV5/fXXGTp0KBYWFsyYMYMvv/yS0NDQ+842TE9PJz093XSuABYRERGRwucybvM/+v7YD57/R98vIiIiRc9jPzPRzs6O3bt3065dO6pVq8aECRMIDAykbdu29O/fn+rVq+Pl5YWTkxOhoaG88MILjBw5kmHDhuHp6cm+ffuYOHFivv137dqVLl264OTkxLVr1zAajZw8eZK+ffvStGlT+vXrB9zZZ7Fhw4aUKlWK4cOHc+LECd5++2327dvHiy++iKWlJTY2NqZ+J0+ezJAhQ4A7wStdunRh5MiRfPbZZ8yYMYOyZcty9epVxo4dS2JiItbW1vfsyfhHCmAREREREREREZHCZsjJycn5pwfxb+Pn58f169cJDg4mKiqKSZMmERYWRlxcHGZmZmRkZLB582batWtHbGwsVapU4eDBg3h7ewOwc+dOnn32WS5duoSTkxMAy5YtY9SoUVy7do3U1FRT2rSZ2f/VczMzM7G3t+fixYscPXqU1q1bU7p0aczNzXF0dLxvmnNeMxMrVapEUlKS9k8UERERERERESnCkpOTsbe3L5A60WM/M7GwdejQgWvXrrF48WLq1atH9+7dAXIFtgBYWlqa/jYYDHleuxvgkpKSAsDixYsJDw83HadOneLAgQMA1K9fn/Pnz/POO++QlZXFoUOH6NatW77jVACLiIiIiIiIiIgUtsd+z8TCdPXqVSIjI1m8eDFNmzalZMmSpKamAvDKK69gbW1Njx49TO0TExMZPnw469atA6Bbt24sWLAANzc34E4B0sHBgdWrV2NhYUGfPn149tlnWbZsGUajEYCsrCz8/f1ZunQp5ubmvP766zRq1IgyZcqwdu1arl27RqlSpR7xLyEiIiIiefkn9kzUPokiIiLyT9LMxPtwdHSkdOnSLFq0iOjoaBITE9mwYQMAM2bMYPbs2SxZssTU3s/Pj8OHD5tCWXJycmjXrh0ZGRmmNjdv3mTmzJmMHTsWMzMzwsPDGTBgACdPnmTZsmV07NiRoKAgOnXqREBAAOfOnWPt2rX8+uuvlC9fHgcHhzzHmp6eTnJycq5DRERERERERESkIGlm4n2YmZmxatUq3nzzTWrVqoWFhQVPPPEEcXFxVKxYkU6dOrF3714WLlzIL7/8wsaNGwkNDTUtgV68eDG1atUiODjY1GdGRgYLFy7E1dUVDw8Pxo4dy6ZNmwgNDaV27dqcPHmSgIAAHBwcmD9/PlFRUdy8eZMSJUrwww8/5Npj8Y+mT5/O1KlTH8nvIiIiIiIiIiIiRZMCWPLQo0cPzM3N+fLLL3Nd9/HxoWrVqixdutR0bcOGDXTr1o1vv/2Wbt26kZaWhrm5uel+vXr16Ny5M5MmTSIoKIihQ4ealkoDrF+/nq5du5KdnU1SUhIODg7s2rWLZs2amdp07tyZnJwcgoOD6dOnDxUrVuTdd9/NNTYFsIiIiIiIiIiISF4UwFJIMjMzOXPmDPv376dmzZqF8o4/hrLAnWCWB63nZmVlsWnTJl544YV77imARURERERERERECpuWOf/BqVOnaNy4MS1atGDQoEF5tgkLC8t1fuDAAdzc3PDw8CAzM5OwsDAaN24M/F+Ai4eHxwO9397eHqPRSFhYmGlmYmZmJkeOHKF+/frs27cPS0tLvL2973k2r5mJIiIiIkXRowxFURiKiIiIFDUqJv6Bp6cnN2/evG+buLg4/P39GThwIEePHmXu3LkEBgbi5uZGx44d6d+/P5999hm2traMGzeOihUr0rFjxwcew/Dhw/nggw9wc3OjRo0afPzxx1y/fh2AjRs30qFDBwwGwz3Pac9EEREREREREREpbI/tMmcfHx9GjBjxyN/72muvcevWLRo2bMjQoUMZPnw4AwYMAGDZsmU0aNCA9u3b06hRI3JyctiyZcs9S5vvZ9SoUfTq1YvevXvTqFEjbG1t6dy5M3Bnf8a8ljgDBAQEkJSUZDri4+P/948VERERERERERH5g8c2gOXatWtYWlpia2v7Tw/lgRgMBtavX0+nTp3+1vMRERF4e3tz5coVihcv/pftC3JjTREREREREREReXwVZJ3osV3mXKpUqX96CI/Uxo0bad26da6kaBERERERERERkUfpP7HM2cXFhffff5++fftia2tL5cqVWbRokant7du3GTZsGEajkeLFi+Ps7Mz06dNN9w0GAwsWLKBt27aUKFGCqlWr8u233+Z6X3x8PC+99BIODg6UKlWKjh07Ehsbm6vN0qVLqVmzJlZWVhiNRoYNG2YaH0Dnzp0xGAymc4AFCxbg6upKsWLFqF69OitWrMjV592xffjhh2zZsoX33nsvz98jPT2d5OTkXIeIiIiIPByXcZsf6hAREREpah7bYuKfBQYG4uXlxbFjxxgyZAiDBw8mMjISgDlz5rBx40bWrFlDZGQkK1euzFXQA5g4cSJdu3bl+PHj9OzZk5dffpmIiAgAMjIyaNOmDba2tuzZs4fQ0FBsbGzw9fXl9u3bwJ2i4NChQxkwYAAnT55k48aNPPnkkwAcOnQIuLOnYkJCgul8/fr1DB8+nFGjRnHq1CkGDhxInz592LlzZ66xjR8/nsTERJYuXUrfvn3z/P7p06djb29vOipVqlQwP6yIiIiIiIiIiMj/99jumejj44OnpyezZs3CxcWFpk2bmmb15eTkUL58eaZOncqgQYN48803OX36NNu3b88zCdlgMDBo0CAWLFhguvb0009Tv3595s+fz5dffsm7775LRESE6fnbt2/j4OBAcHAwzz33HBUrVqRPnz68++67eY43rz0TmzRpQs2aNXPNonzppZdITU1l8+bNpueeeeYZ9u7dy7Fjx/D09Myz//T0dNLT003nycnJVKpUSXsmioiIiIiIiIgUcQW5Z+J/ZmZinTp1TH8bDAbKly/PpUuXAPDz8yM8PJzq1avz5ptv8sMPP9zzfKNGje45vzsz8fjx40RHR2Nra4uNjQ02NjaUKlWKtLQ0YmJiuHTpEr/99hstW7Z8qDFHRETQpEmTXNeaNGlieu9diYmJf9mXlZUVdnZ2uQ4REREREREREZGC9NgGsPyZpaVlrnODwUB2djYA9evX5/z583z//fds376dl156iVatWt2zL2J+UlJSaNCgAStXrrznnpOTE2ZmBVOTzc7OZseOHcTHx2NlZUW5cuUAqF69OqdPny6Qd4iIiIiIiIiIiPxd/5li4l+xs7Oje/fudO/enW7duuHr68u1a9dMqdAHDhzgtddeM7U/cOAA9erVA+4UI1evXk3ZsmXznfHn4uLCjh07aNGiRZ73LS0tycrKynXN3d2d0NBQevfuDUBAQABbt26lZs2arF27loSEBJo2bUqbNm1Yt27dfb8vr2XOIiIiInJHYYWlxH7wfKH0KyIiIvJv9Z9Z5nw/H3/8MV9//TVnz57l559/5ptvvqF8+fI4ODiY2nzzzTcsXbqUn3/+mcmTJ3Pw4EFTGnPPnj0pU6YMHTt2ZM+ePZw/f56QkBDefPNNLly4AMCUKVMIDAxkzpw5REVFcfToUebOnWvq/26x8ffffzctW37rrbcICgpiwYIFHDt2jMDAQLKyspg1axaurq4888wzD/yNCmAREREREREREZHCViRmJtra2vLRRx8RFRWFubk53t7ebNmyJdfy5GvXrrFy5UqGDBnC7du3mTdvHh4eHgBYW1uze/duxo4dy/PPP09KSgpVqlShVq1aPPPMM8TGxtK7d2/S0tL45JNPGD16NGXKlKFbt26m/gMDA/H392fx4sVUrFiR2NhYOnXqxOzZs5k5cyZxcXFkZWURGBiIj4/PQ39jQEAA/v7+pvO7ASwiIiIiohmEIiIiIgXlsU1zLkgGgwFXV1eio6MJCwujW7duxMfH59nW398fc3NzZsyYwYcffsipU6dMKdL/i5MnT1KnTh3OnTtHlSpVct2LjY2lSpUq901z/rOCTOkREREREREREZHHl9KcC4G7uzsAe/fuvSdh+Y/27dtnup9f2127dtGwYUOsrKwwGo2MGzeOzMxM030XFxdmzZqV65mePXtiYWHBjh07yMnJYcqUKVSuXBkrKysaNmxYEJ8oIiIiIiIiIiLyPykSy5zzEhcXR506dUzn27Ztw8HBgVu3bmEwGHBwcOCVV15h/vz5fPXVVwwZMgS4U8nt1asX5ubm3Lhxg507dzJu3Djmz5/PK6+8wq+//kq7du3w8/Pjiy++4OzZs/Tv35/ixYszZcqUfMdjZmZGkyZNGDNmDMePHycoKIhp06aRkZFBtWrV6Ny5832/RwEsIiIiIgXrQUJbtHxaREREipoiW0ysUKEC4eHhJCcn4+XlxeHDhylZsiSenp5s3ryZypUrY2NjA8ALL7xA48aN2b59O7NmzWLTpk2cOHGCQYMGsW/fPgDKlCkDwPz586lUqRLz5s3DYDBQo0YNfvvtN8aOHcukSZNy7dP4Z82bN6d169YEBgaSkpLCrFmzGDRo0AMtbZ4+fTpTp04tgF9GREREREREREQkb0W2mGhhYYGLiwtr1qzB29ubOnXqEBoaSrly5WjWrFmutjY2Nty6dYuBAwfi7+9PxYoVqVatGl26dMHFxSVX24iICIxGI02aNGHfvn3s27eP9957j5SUFC5cuEDlypXzHZPBYGD8+PG89tprNGnShOzsbM6dO8exY8fIyMjAwiL/fy4FsIiIiIgULM06FBEREblXkd0zsWbNmtjY2NCrVy8OHjyIjY0NLVu2JDY2FhsbG2rWrAncWQ5tY2ND5cqVyc7OZu7cudjb25ORkcH69euxsbFh0KBBufq+dOmSaS/FPXv2UK9evVz3zczM+HPuTUZGhunvSpUqERkZyfz58ylRogRDhgyhWbNmudr8mZWVFXZ2drkOERERERERERGRglRkZyZu2bKFjIwMWrZsyUcffUSDBg14+eWX8fPzw9fXF0tLS+D/lkNPmTKFVatWER4ezueff05gYCB79uyhVKlSuQp37u7ufP/99zRu3Bi4E9Jia2uLra0tTzzxBACOjo4sXryY999/n5SUFCpUqMCFCxdMfZw8eZLhw4ezf/9+rK2tadmyJd988w0nT56kfv36j/BXEhEREflvepD9EB+EZi+KiIhIUVNki4nOzs78/vvvXLx4kY4dO2IwGDh9+jRdu3bFaDQCuUNaUlJSyM7O5umnnyY1NRWA55577p6QluzsbNLS0ujevTtWVlakpqaSk5ODlZUVq1at4pVXXgEgKirKtL/iu+++S0JCAgCpqak0bdoUV1dXvvrqK1JTU3njjTcwNzfH2dk53+9RAIuIiIiIiIiIiBS2IrvMGSAkJARvb2+KFy/OwYMHeeKJJ0yFRPi/WYm7d+8mJyeHfv36ceTIEczMzGjXrh3h4eFMmzYNuBPSEh4ezscff4yLiwvu7u6kpaVhMBgYNGgQp06d4oUXXgCgbNmyVKpUidGjRzNgwAD69+9PtWrVAPjqq6/IzMzE3NwcPz8/Bg0aRPny5cnOziYzMzPfb5k+fTr29vamQ/slioiIiIiIiIhIQTPk/HnzPrnHmjVrmD17NqGhoYSGhtK7d2+io6NN9y9fvkzFihVJTExk1KhRfP7558TExLBixQrOnz/PkiVLTG2/+eYbJk2axC+//ELFihW5fPkyW7ZsMS2L9vf359ixY+zcudP0TFJSEg4ODuzateuecJi78pqZWKlSJZKSkrR/ooiIiIiIiIhIEZacnIy9vX2B1ImK7DLnB1GzZk1++eUXMjIyyM7OxsbGhszMTDIzM7GxscHZ2ZnTp0+zceNGsrKyKFeuHGlpaWRlZeHh4UF6ejpmZmasWrWKV199lYULF7J//37at2/PmDFjGDp0KIcOHaJly5YMHTqUmTNn/u2xWllZYWVlVYBfLyIiIiIiIiIikpuKiffxoCEtkZGR9OrVi379+tGiRQvatm3LjBkz8PT0vCekZd++fYwbNw4nJydu3brF2LFjMRgMvPXWW8ycOZPExER27dpFamoqJUuWBDAVGatXr57vWLVnooiIiMij93eCXBTaIiIiIo8zLXP+C7///jsuLi5cv34dg8GAg4MD586dIyMjwxTOcvPmTczNzTEYDKSlpVGsWDEsLCywsLDg+vXrpnAWuFPks7CwwNLSklu3blG8eHEyMjJwdnYmOjqazz77jMGDB9OlSxemTJnC5cuX6dGjBxcvXuR+/1RTpkxh6tSp91zXMmcRERGRwqNiooiIiDwOCnKZc5EOYHkQ+YW0/DGcJTMzky5dutCpUycsLCz44YcfGDBgAB06dMDPz4+vvvqK8PBwZs6ciYeHB2+88QalSpUypTy3aNGC4OBg4M5y5ZIlS3Lt2jW8vb3p1q2bqWh5t01eAgICSEpKMh3x8fGP5PcREREREREREZGiQ8uc/8LLL7/Myy+/DEDTpk2JiooCwMLCAhcXF9asWYOtrS1OTk68+OKLHDx4kGbNmpmCUpKSksjJycHBwYGjR4/SsWNH3nvvPUqVKnVPOMtd5ubm/PTTT6bz4OBgfvzxx/uOU3smioiIiDx6mmUoIiIiRY2KiX/TH8NZMjIymD9/PgsXLrwnnCUpKQkPDw8A0tLSsLCwYPbs2XmGswCYmZnds5w5IyPjkX+fiIiIiIiIiIjIn6mY+Df9MZylZMmSNGzYkFOnTuHn54eVlRX+/v6sXLmSbdu28fTTTzNlyhRatWpFnTp1cHNzY9WqVZQoUYJixYpha2tr6tfJyYkbN27QpEkTjhw5QtWqVfH09PzL8SiARUREROTR+/OeiZqpKCIiIv912jPxb3J2dsbGxoaLFy9SpkwZbGxsOH36NAaDgVGjRvH111/Ts2dPzMzMsLGx4cKFCzz11FNYW1sTHByMo6MjR44c4eOPPyYwMNC0jNnb2xuDwUBcXBzffvstXbt2Zc2aNQB07dqVTp065Tme6dOnY29vbzoqVar0yH4LEREREREREREpGlRM/B/cDWcxMzPj4sWL2NraMn78eL777jvat29/T9u7+yiWKVOGzp074+bmxmuvvYaXlxc7duwA4OjRo8CdPRlfeuklwsPDKV26NACfffYZQUFBeY5FASwiIiIiIiIiIlLYtMz5f3A3nMXHx4f9+/dz/fp1QkND8fb2vqft3T0RfXx8aN++PZ9++qnpntFo5NKlSwBERETg7OzMuXPnTPdLlSoF3ClCOjg45DkWBbCIiIiIPHpa1iwiIiJFjWYmFpB69erh5OTE0qVL7wlQ+TNLS8tc5zk5Oezfv5+yZcsyatQofvvtNw4dOkRsbCwGg4HExEQAOnfunO/MRBERERERERERkcKmmYkFxNXVlcDAQHx8fDA3N2fevHkP/Ozp06dJSEhg7dq1XLhwgYEDB9K6dWtiYmJISEjA1dWVmzdvsnTpUrp3755nHwpgEREREXn0/hzA8meauSgiIiL/NZqZWICqVavGzp07Wbt2LSNGjMizzYEDBzh27JjpPDU1lfPnz+Pl5UXbtm15/fXXqVGjBmlpabz77rtERUWZioSOjo6UKFEiz34VwCIiIiIiIiIiIoVNMxMLWPXq1fnpp594+umnWbBgAT169Mh1v0GDBtSqVct0HhMTQ05ODmXLlgXAzMyM4OBgGjduzJw5c9iyZQtWVlbcvHnzvu8NCAjA39/fdJ6cnKyCooiIiEgh08xDERERKWoMOX+1wZ/8LUFBQYwYMYLr16/ft92JEyeoW7cusbGxODs7m6537twZR0dHli5dioODA7NmzcLPz++B35+cnIy9vT1JSUnY2dn93c8QEREREREREZHHXEHWibTMOR9bt27lmWeewcHBgdKlS9O+fXtiYmIATMEo69ato0WLFlhbW1O3bl32798PQEhICH369CEpKQmDwYDBYGDKlCkAuLi4MGvWLNN7SpcujZmZGXXq1KF48eLUqlWL4OBgDh06hNFopEOHDiQlJTFw4EBq1qzJli1bHvlvISIiIiIiIiIiAlrmnK/U1FT8/f2pU6cOKSkpTJo0ic6dOxMeHm5qM378eGbOnImbmxvjx4+nR48eREdH07hxY2bNmsWkSZOIjIwEwMbG5p53ZGcccttLAAAgAElEQVRn061bNxwcHDAYDMyaNYtbt27x6aefcvPmTQ4fPkxOTg62trZMmDABDw+PPPsBBbCIiIiIPCp/DF3RMmcREREpalRMzEfXrl1znS9duhQnJyfOnDljKuiNHj2a55+/8x+QU6dOpWbNmkRHR1OjRg3s7e0xGAyUL18+33ds376dgwcPEh4ezuLFixkzZgw3btzAy8uLbdu28frrr9O1a1cOHjxI2bJlad++fb59TZ8+nalTpxbAl4uIiIiIiIiIiORNy5zzERUVRY8ePahatSp2dna4uLgAEBcXZ2pTp04d099GoxGAS5cuPfA7wsPDeeKJJ6hduzZz5szh8uXLpKWlsXfvXry9vXnzzTd59913qVmzJufPn+fEiRP59hUQEEBSUpLpiI+Pf8gvFhEREZEHEfvB86ZDREREpKhRMTEfHTp04Nq1ayxevJiwsDDCwsIAuH37tqmNpaWl6W+DwQDcWbr8oEqUKHHf+/369ePcuXP06tWLkydP4uXlxdy5c/Nsa2VlhZ2dXa5DRERERERERESkIKmYmIerV68SGRnJhAkTaNmyJe7u7iQmJj5UH8WKFSMrK+u+berUqcOFCxf4+eef821TqVIlBg0axLp16xg1ahSLFy9+qHGIiIiIiIiIiIgUFO2ZmAdHR0dKly7NokWLMBqNxMXFMW7cuIfqw8XFhZSUFHbs2EHdunWxtrbG2to6V5vmzZvTrFkzunbtyscff8yTTz7J2bNnMRgM+Pr6MmLECNq2bUu1atVITExk586duLu75/k+BbCIiIiIPHp/DGP5X2jJtIiIiDwu/vMzE2NjYzEYDLlSmPPi4+PDiBEjADAzM2PVqlUcOXKEWrVqMXLkSGbMmPFQ723cuDGDBg2ie/fuODk58dFHH+XZbu3atXh7e9OjRw88PDwYM2YMr732GrNmzSIrK4uhQ4fi7u6Or68v1apVY/78+Xn2M336dOzt7U1HpUqVHmq8IiIiIiIiIiIif8WQk5OT808PojDFxsZSpUoVjh07hqenJyEhIbRo0YLExEQcHBxM7Xx8fPD09GTWrFn/4GjvcHFxYcSIEabi5oPIa2ZipUqVSEpK0v6JIiIiIiIiIiJFWHJyMvb29gVSJ9Iy5/8IKysrrKys/ulhiIiIiIiIiIjIf9h/opi4detW3n33XU6dOoW5uTmNGjVi9uzZuLq65moXGxtLixYtgDv7IgL07t2boKAg4E4S85gxY1iyZAnFihVj0KBBTJkyxfR8XFwcb7zxBjt27MDMzAxfX1/mzp1LuXLlAPDz8+P69esEBwebnhkxYgTh4eGEhIQAcOPGDQYNGkRwcDB2dnaMGTOGDRs23DMr8ubNm/Tt25dvvvkGR0dHJkyYwIABAwr6pxMRERGR/0FB7Zn4b6G9G0VEROSv/Cf2TExNTcXf35/Dhw+bCn2dO3cmOzs7V7tKlSqxdu1aACIjI0lISGD27Nmm+8uXL6dkyZKEhYXx0UcfMW3aNH788UfgTqGxY8eOXLt2jV27dvHjjz9y7tw5unfv/lBj9ff3JzQ0lI0bN/Ljjz+yZ88ejh49ek+7wMBAvLy8OHbsGEOGDGHQoEE0atQo337T09NJTk7OdYiIiIiIiIiIiBSk/8TMxK5du+Y6X7p0KU5OTpw5cwYbGxvTdXNzc0qVKgVA2bJlc+2ZCFCnTh0mT54MgJubG/PmzWPHjh20bt2aHTt2cPLkSc6fP28KN/niiy+oWbMmhw4dwtvb+y/HeePGDZYvX85XX31Fy5YtAVi2bBkVKlS4p227du0YMmQIAGPHjuWdd97h559/zrfv6dOnM3Xq1L8cg4iIiIiIiIiIyN/1nygmRkVFMWnSJMLCwrhy5YppRmJcXBweHh4P3E+dOnVynRuNRi5dugRAREQElSpVypWS7OHhgYODAxEREQ9UTDx37hwZGRk0bNjQdM3e3p7q1avfdywGg4Enn3zynqLpHwUEBODv7286vxvAIiIiIiKFR8uCRUREpKj5TxQTO3TogLOzM4sXL6ZChQpkZ2dTq1Ytbt++/VD9WFpa5jo3GAz3LJW+HzMzM/4cjp2RkfFQY/irsdy+fZtixYrd014BLCIiIiIiIiIiUtge+2Li1atXiYyMZPHixTRt2hSAvXv35tv+biEuKyvrod7j7u5OfHw88fHxphl/Z86c4fr166bZj05OTpw6dSrXc0ePHiU+Pp6yZcuSlJSEwWDg66+/ZuzYsQQFBTF8+HCysrJo1qwZAMHBwfzyyy+m56dMmUJwcDBXr15l1qxZTJs2Lc8CZ3p6Ounp6aZz7ZkoIiIiUvj+zQEsmjUpIiIiheGxD2BxdHSkdOnSLFq0iOjoaH766adcy33/zNnZGYPBwKZNm7h8+TIpKSkP9J5WrVpRu3ZtevbsydGjRzl48CCvvfYazZs3x8vLC4Bnn32Ww4cP88UXXxAVFcXkyZM5evQoly9fZvny5Rw7downn3ySt99+mw0bNvDrr79y8+ZNzMzMMBgM+b47OjqapKQkunfvTnh4eJ5tpk+fjr29venQEmcRERERERERESloj30x0czMjFWrVnHkyBFq1arFyJEjmTFjRr7tK1asyNSpUxk3bhzlypVj2LBhD/Qeg8HAhg0bcHR0pFmzZrRq1YqqVauyevVqU5s2bdowceJExowZg7e3N9euXSMzMxNXV1fatm2Lh4cHBw4cwMrKihdffJEZM2ZgYWGBu7s7xYsXz/fdt2/fpnLlyhiNxnv2dbwrICCApKQk0xEfH/9A3yUiIiIiIiIiIvKgDDl/3uRPCsyJEyeoW7cusbGxODs7m6537tzZVJQcPnw4BoOBwMBAXn/9dYKDg+ncubNp78UpU6awcuVKoqKiHurdycnJ2Nvbk5SUhJ2dXYF+l4iIiIiIiIiIPD4Ksk702M9M/Kf5+PjwxhtvMGLECBwdHSlXrhyLFy8mNTWViRMnAtCsWTO+//57AA4fPsyePXtYvXo1/fv3Jzk5mfT0dDp27Aj8X2BLp06dmDlzJjNnzuT8+fMMHTr0b4e5iIiIiIiIiIiIFITHPoDl32D58uWMGTOGgwcPsnr1agYPHsz69etp164d33//PW5ubvTq1Yu4uDhu375NYmIi5ubmWFlZkZmZSU5ODj/99BMvvfSSaU/EnTt3YjQa8fPzY8uWLQQFBeHp6Un//v3zHIMCWEREREQevX9zAMujpLAXERGRokMzEwtA3bp1mTBhAm5ubgQEBFC8eHHKlCnDsGHDGDJkCKdPn+bq1ats2LCBRYsWYW9vz8WLF4mLi6NkyZJUr16dpUuX4u7uzuzZs4E7wTLz5s2jTJky2NnZ8fzzz7Njx458x6AAFhERERERERERKWyamVgA/hiKYm5uTunSpalduzYAH3zwAVlZWcybN4/evXvTsGFD+vXrR6tWrYiLiyMzM5MTJ05w6tQpWrduzZAhQ3jzzTepWbMm5ubmpn6NRiMnT57MdwwBAQG5UqyTk5NVUBQREREpZJqRJyIiIkWNiokFwNLSMte5wWAwXStevDhz585l3rx5rFmzhrS0NPr06UNgYCCNGjXC1taWGTNmEBYWxtatWwE4cuQI169fB+4EsEyZMoURI0aQnZ2d7xisrKywsrIqpC8UERERERERERFRMfGRCw0NpXHjxgwZMsR0LSYmBrgT5uLp6QnA+fPncXNzIz4+Hnt7e+zs7KhYseI/MmYRERERERERERHQnomPnJubG4cPH2bbtm38/PPPTJw4kUOHDuVqc+XKFU6cOMG0adOIjIxk69atf1lITE9PJzk5OdchIiIiIoXDZdxmha+IiIhIkaRi4v/o7NmzfPfdd/dt4+LiYvp74MCBdOnShe7du/PUU09x9erVXLMUAVJTU7GwsKB9+/Y4OztTr14904zF/CiARURERERERERECpshJycn558exOMgNjaWKlWqcOzYsVyFPT8/P65fv05wcHC+z16+fJmSJUtibW1933fcXeb8zjvv0KRJExISEvD19cXX15fOnTvf9/n09HTS09NN53cDWJKSkrCzs3uILxURERERERERkf+S5ORk7O3tC6ROpJmJj4CTk9NfFhL/yNbWlqNHj/L1119jNBqZNGkSdevWNYWy5MXKygo7O7tch4iIiIiIiIiISEH61xYTv/32W2rXrk2JEiUoXbo0rVq1IjU1lezsbKZNm8YTTzyBlZUVnp6ephRkuDOD0GAwsGbNGpo2bUqJEiXw9vbm559/5tChQ3h5eWFjY0Pbtm25fPlyrncuWbIEd3d3ihcvTo0aNZg/f77pXpUqVQCoV68eBoMBHx+fXM/OnDkTo9FI6dKlGTp0KBkZGaZ7/4+9O4+qutr/P/48zMhhEFIGRTBBBWQwp4ybmpbilGNqScq1HDLNIvVKqanVpUwTsuutJIdSs7TMSjKHryCCYaKnnDIcMXMewAGZDr8//HnuJcEGQe3yeqz1Wet8+OyzP3sf/3G919775e/vT0JCguXeYDCQlJRkWW0YGBjIF198Uaa/5ORknnrqKd566y3q1KnDwYMHqVmz5g0LiiIiIiIiIiIiIlXpjkxzPnbsGI8++ijTp0+nV69eXLhwgbS0NEpLS0lMTGTmzJm8++67NG3alHnz5vHwww+za9cuAgMDLX289NJLJCQkUK9ePYYMGcJjjz2Gs7MziYmJ1KhRg379+jF58mT+/e9/A7B48WImT57M22+/TdOmTdm+fTtDhw7FycmJwYMHs2XLFlq2bMm6desICQnBzs7O8q4NGzbg7e3Nhg0b2LdvH/379yciIoKhQ4dWOMepU6cyffp03njjDWbPns3AgQMJDw8HrhY1hw8fTnR0NIMHD2bx4sWkpaXd8Dcrb5uziIiIyJ3ifzWs5NBrXW/3EERERERuqTtyZeKxY8coLi6md+/e+Pv7ExoaysiRIzEajcyYMYN//OMfDBgwgEaNGvH6668TERFRZuUfwNixY+nUqRNBQUGMGTOGrKwsJk2aRGRkJE2bNuWJJ55gw4YNlvYvvfQSM2fOpHfv3tSvX5/evXvz3HPP8e677wJXtyoDeHh44OXlhbu7u+W7NWvW5O2336Zx48Z069aNrl27sn79+hvOMSYmhkcffZSAgAD++c9/cvHiRUsBMCUlBQcHB7788ku6detGamoqzs7OAAwcOLDc/hTAIiIiIiIiIiIiVe2OXJkYHh5Ohw4dCA0NpVOnTnTs2JG+fftibW3NL7/8QmRkZJn2kZGRfP/992X+FhYWZvns6ekJQGhoaJm/nTx5Erianrx//36eeOKJMqsJi4uLcXV1/c3xhoSEYG1tbbn39vZmx44dN/zOf4/PyckJFxcXxo4dy6BBg+jVqxf9+/dn3rx5ALRq1Yq6deuSmppaZuv1f4uLiyM2NtZyfy2ARUREROROoBV8IiIiIv8b7siVidbW1qxdu5avv/6a4OBgZs+eTaNGjTh48ODv7sPW1tby2WAwlPs3s9kMwMWLFwGYO3cuJpPJcu3cuZNvv/32D73r131Xxnf2799vKT5WVNxUAIuIiIiIiIiIiFS1O3JlIlwtrkVGRhIZGcnkyZPx8/Nj/fr1+Pj4kJ6eTtu2bS1t09PTadmy5Z9+l6enJz4+Phw4cKDCbcTXzkgsKSn50++pSEFBAfn5+TzzzDOMGDGCu+66C0dHRw4dOmQJfpk9ezYAS5YsYeTIkZU+BhERERH54yrzLEit3hQREZG/gjuymJiZmcn69evp2LEjtWvXJjMzk1OnThEUFMS4ceN46aWXaNCgAREREcyfPx+TycTixYtv6p1Tp07lmWeewdXVlaioKAoKCti6dSvnzp0jNjaW2rVr4+joyOrVq6lbty4ODg6/awv07zF+/HiKiop4+umnefLJJ5k0aRKfffYZb775Jps2beKhhx7C3t6e8+fP07t373L7UACLiIiIiIiIiIhUtTtym7OLiwsbN26kS5cuNGzYkIkTJzJz5kw6d+7MM888Q2xsLM8//zyhoaGsXr2aL774okyS85/x5JNPkpSUxPz58wkNDaVt27YsWLDAsjLQxsaGt956i3fffRcfHx969OhRGVPl0qVL/Pvf/8bR0ZGwsDCCg4NZunQp7u7uLFmyhA4dOlBYWMjDDz8MgJubW7n9KIBFRERERERERESqmqG0tLT0dg+iOvvhhx8IDw/n0KFD+Pn5Wf7eq1cvatasybx583Bzc6NDhw5s2bKFI0eOlNtPeSsTfX19yc3N1fmJIiIiIiIiIiLVWF5eHq6urpVSJ7ojtzkLHDhwgHr16nHgwAEKCwv5+uuvy6Q1/5q9vT329va3cIQiIiIiIiIiIlLdqJh4m6xevZpXXnmFHTt2ANCzZ0+WL19OgwYNyM7O5ocffiA7O5uAgABKS0txcXGhU6dOFfanMxNFRETk96jMwBBRaIqIiIhUP3fkmYnVwaVLl4iNjSUrK4vHHnuMH3/8kQcffJCdO3cSFxcHQN26dfnyyy9xdnamYcOGPP744xQXF5fbn85MFBERERERERGRqqZi4m3Sp08fevfuTUBAAO+//z7R0dEcOnSIZs2acfjwYQD+8Y9/0LVrV6ysrOjZsyeHDx9m37595fYXFxdHbm6u5arobEUREREREREREZE/S9ucb5Ps7GwmT55MZmYmp0+fxmw2A7BixQqCg4OpX78+YWFhAJw/f55z584xceJETp48SePGja/rT2cmioiIyO+hbbkiIiIicjNUTLxNunfvjp+fH3PnzsXHxwez2UyTJk0oLCy0tLG1tbV8NhgMAGXORRQREREREREREbmVVEy8SQUFBYwbN46lS5eSl5dH8+bNmTVrFs2aNaNevXq8+OKLPPXUU5b227dv55577gFg7ty5hIaGMnbsWJYvXw7ApEmTeP311y3tp0yZwueff86QIUMA6NixI6WlpeWOQwEsIiJ3LoVeiPxv0kpPERERqW50ZuJNGj9+PJ9++ikLFy5k27ZtBAQE0KlTJ86fP8+jjz7KkiVLyrRfvHgxkZGReHh48N5779G1a1d2795NnTp1ALj77rsZOHBgme/s27ePL774AoCkpKRyx6EAFhERERERERERqWqG0vKWucnvcunSJWrWrMmCBQt47LHHAPjll1+oU6cOr7zyCh07dqRly5ZkZGTQunVrzGYz9erVY+LEiQQEBPDYY49x6tQpQkNDGT58OKNGjWLFihWMGTOGnJwc5s6dy9ChQ7G1tWX37t0EBgayYcMG2rVrd91YyluZ6OvrS25uLi4uLrfqJxERERERERERkTtMXl4erq6ulVIn0jbnm7B//36KioqIjIy0/G3r1q24ubmxf/9+zGYzNjY2pKam0rp1a1JTUzl58iSPPPIIHh4eNGnShJSUFA4cOEBsbCw2NjZER0eTn5/P+PHjCQgIAMDX15eAgIBytzdfowAWERERERERERGpatrmXMkyMjLw8PAAYNOmTQQFBVm2Oi9ZsoSoqCjL83379uHu7o7JZCIyMpJJkyZhMpnYu3cv/fv354EHHgDgwIEDGAwGYmJibsucREREREREREREQCsTb0qDBg2ws7Nj5cqVTJ48Gbi69bm4uJijR49iNpsBKCws5JFHHmHdunVER0fj5uYGQG5uLgD33HMPly5dYsuWLbz55pvMmTOH/v378+mnn9KnTx8aN27Mhg0bcHR0rHAsCmARERGRyqCwoD9GASwiIiJS3Whl4k1wcnLiqaee4vXXXycxMZH58+dTUlKCi4sL6enp2NnZsXbtWpo3b86ePXsoKSlh8uTJmEwmZsyYQXBwMM2bN+euu+7Czc2N1atX8/7777N9+3a2b9+Ou7s7ADY2Nnh5eeHq6lrhWBTAIiIiIiIiIiIiVU0rE2/Sa6+9htlsZuzYseTm5mI0Glm3bh35+fl4enrSpk0bhgwZwsiRIxk0aBC1atWiVq1abNu2jZ49ezJhwgQ6duzIiRMnaN++PV5eXrRp0wZPT08uXrz4u8cRFxdHbGys5f5aAIuIiIjIH6GVdiIiIiJyIyom3iQHBwfWr19Pfn4+BoOB/Px8HnjgAYqLiykuLsZoNOLn50dpaSk5OTkYjUYArly5go2NDYmJiRQUFGBlZYWdnR1dunThnXfeAa4GvACkpaX95jgUwCIiIiIiIiIiIlVN25wrQXJyMiaTCS8vLxYtWoTJZKJJkyYkJCRgMplITk4GwMfHB5PJxOrVq7GxscFkMpGZmQlcLRiaTCamTZvGqVOn8PLy4qOPPgKgpKSEjIwM7OzsWL9+/W2bp4iIiIiIiIiIVG9amVgJ/Pz8OH78OCdOnKBHjx4YDAZ27dpFnz598Pb2trSzsbEhICCArVu30qpVKxo3bszGjRu5++67admyZZk+582bZ+lr2bJlvPbaawwbNowOHTqUOwYFsIiIiIjcendKYI22p4uIiMitopWJlSQlJYUWLVrg4ODAli1bqFu3bplC4q/btmnTBoDU1FTL5//WpUsXhg0bhru7O8899xyHDx+2pD+XRwEsIiIiIiIiIiJS1QylpaWlt3sQt9OpU6eoU6cO586dw87ODjc3N/bs2UO9evWua7ts2TJmzZpFRkYGGRkZREdHc+DAgSobW35+Pk2aNOHIkSNkZWURGhpaYdvyVib6+vqSm5uLi4tLlY1RRERERERERETubHl5ebi6ulZKnajar0zcvHkz4eHhODk5sW3bNtzd3cstJF5rGxkZCVw94/Da56qyf/9+fvnlF8xmM4cOHbphW3t7e1xcXMpcIiIiIiIiIiIilanaFxMzMjIsRcFNmzbdsED4e9ru3LmTzp07YzQa8fT05PHHH+f06dOW5+3ateOZZ55h/PjxuLu74+XlxZQpU8r0kZOTQ/fu3QkPD6e4uJigoCCGDBnCyZMnK2HGIiIiIlJZ/CesslwiIiIi1UG1LCbm5OTg5uaGm5sbb775Ju+++y5ubm688MILfP7557i5uTFy5EgAlixZYmm7ZcsWHn/8cdzc3EhOTmbs2LG4ubmxZMkSAM6fP0/79u1p2rQpW7duZfXq1Zw4cYJ+/fqVef/ChQtxcnIiMzOT6dOnM23aNNauXQuA2WymR48ebN++HS8vL7755hvs7OwoLCxkyJAhFc6poKCAvLy8MpeIiIiIiIiIiEhlqpZnJhYXF/Pzzz+Tl5dH8+bN2bp1K05OTkRERLBq1Srq1auH0Wjkrrvu4uLFi5w+fZp169aRkJDAV199xQ8//MCIESPIyMgA4K677sJoNPLKK6+QlpbGN998Y3nXzz//jK+vL3v37qVhw4a0a9eOkpIS0tLSLG1atmxJ+/btee211xg3bhwzZszAxsaGDRs28Le//Y3du3cTEhKCk5MTb7zxBk899dR1c5oyZQpTp0697u86M1FERESk6vz3ikQlKouIiMidqjLPTLSppDH9pdjY2ODv788nn3xCixYtCAsLIz09HU9Pz+uSlfPz82nYsCGDBw+mW7duhISEMHLkSLp06YK/v3+ZtqtWrSIzMxOj0YjZbObKlSvUqFEDuHr+YcOGDQEICwsr8z1vb2/LFuZffvkFg8FAUVGR5XlwcDBubm4kJiYyaNCgcucUFxdHbGys5f5aAIuIiIiIVB0VEEVERKS6qZbFxJCQEA4fPkxRURFmsxmj0UhxcTHFxcUYjUb8/PzYtWsXOTk5NGrUiJKSEubPn4+1tTVFRUUkJCRgZWXF0qVLiY6O5p133gHg+PHjBAQEkJyczLvvvkt2djYzZswArhYMr7G1tS0zHoPBgNlsvqk52dvbY29vf1N9iIiIiIiIiIiI3Ei1LCYmJydTVFREhw4dmD59Os2aNWPAgAHExMQQFRVlKfb5+PgwaNAgzp49y5dffsmYMWP44YcfWLduHWlpabi7u5dZGlpYWEhRURH+/v78+OOPdO3alYCAAMvzlJQUUlNTcXV1JSwsjJ9++omIiAhq1KiBm5ub5Z2lpaUsWrSIV199lSNHjhAREcH58+cJDg6ucE4FBQUUFBRY7nVmooiIiMh/VFVAilYmioiISHVTLYuJfn5+HD9+nBMnTtCjRw8MBgO7du2iT58+eHt7WwJaAC5fvgxcDUZJSEigtLQUs9nMggULmDNnDkuWLLGEteTm5mIwGHB0dKSkpIT169fz/PPP07x5c/7v//7P8v60tDQ+/vhjvLy8eOGFF1i/fj1169YFsBQMR48ezezZszGbzQwfPpzatWvTvHnzCucUHx9f7pmJIiIiIiIiIiIilaVapjnD1VWCLVq0wMHBgS1btlC3bl3LVmQfHx9MJhMbN24EoEePHowYMQI7Ozsef/xxHnnkEaZNmwbAww8/jMlkYsaMGYSEhLB+/XpL0a+0tBRvb29CQ0OxsvrPT+3i4sJDDz1EaGgoCxcupKCggJycHODqlmeAZs2aMWLECEaNGkVQUNBvboOOi4sjNzfXch05cqRyfzAREREREREREan2quXKRIABAwYwYMAATp06RYcOHTh37hxFRUW4ubmxZ8+eMgEty5YtIz09neXLl7Nnzx4yMjLIyMigZcuWHDhwAKPRyLZt2+jRowcPPPCAJaglKSmp3He3b9/e8tnd3Z2wsDAeeOABy99q1KjBunXrLPcrVqygT58+N5yPzkwUERERqZi2I4uIiIhUjmpbTLxm8+bNhIeH4+TkRGZmJu7u7nTu3LncgJbCwkLOnj1LSEgIgwYNIiIiAqPRCMCVK1ewsbEhMTGRgoKCcgNafq/yAlpKS0srbc4iIiIiIiIiIiJ/RrUvJmZkZBAZGQnApk2biIyM5PXXXy83oOX06dP84x//oEuXLowaNYqoqCimT5/O8ePHefDBBzGZTHz77bcMGTIEAEdHR2xtbSkuLsbG5j8/9dGjRxk1ahQffvgh1tbWXLx4kQkTJpQZ19ixY/noo484f/48derU+eCw9hwAACAASURBVM15KIBFRERE5Na72WAXrZgUERGRv5pqWUzMyckhLCwMuBqwYm1tzYIFC8jPz8dgMLB69Wp69uzJiRMnyM/Pp1mzZpbi3Pjx44mLi+PChQts2LCBF198kccff5xWrVrh7OzMiBEjcHV1ZfPmzfz4448MHToUDw8PpkyZYnn/unXrcHJyYtGiRUyZMoXt27dz9uxZy/P8/Hw2b97M0qVL8fHx4eWXXyY7O5vs7GwCAwPLnZMCWEREREREREREpKpVywCWXwesZGZmkpWVhZ2dHWvWrMFkMhEZGUmLFi3o27cvc+fOpXbt2oSEhLBjxw4++OADPD092blzJyaTicuXL9OmTRvmzJmD0WikT58+NG7cmJ49ezJ16lRmzpxZJkDFx8eHn376ib59+2JjY0NMTAyzZ88G4MyZMxQWFrJs2TLuv/9+GjRoQM+ePQGYP39+hXNSAIuIiIiIiIiIiFS1arky0cbGpkzASlhYGOnp6Xh6etKmTRsAhg4dytChQwHo168fKSkp1KxZE39/fxYvXkyXLl3w9/cH4P333wegd+/edO/evUzwSmRkJBcvXuTnn3+2/K1NmzYsXrzYcr9y5Uo+/PBDSkpKaNy4MQANGza8bsz79++vcE4KYBERERG59bRNWURERKqballMDAkJKTdgpbi4GKPRiJ+fH7t27SInJ4fg4GCgcgNWbuTixYtYW1uTlZWFtbV1mWfXwl5ERERERERERERuh2pZTExOTi43YCUmJoaoqChLmvK17dD/HbBSUlJCREQEaWlpuLu74+LiYuk3KCiITz/9lNLSUgwGAwDp6ek4OztTt25dDhw4AEBWVlaZ8Xz77bcEBgZibW1N06ZNKSkp4eTJk9x///2/e04KYBERERG5da4Fr2hlooiIiFQ31fLMRD8/P4xGIydOnKBHjx74+vqya9cu+vTpQ0BAAH5+fsDVrcUBAQH8/PPPtGrVisaNG3PmzBnuvvtuWrZsSUBAALVr17b0O3LkSI4cOcLo0aP58ccfWblyJS+99BKxsbFYWVnRrl072rZty9GjR4mNjWXv3r189NFHzJ49mzFjxgBXtzcPHDiQQYMG8dlnn3Hw4EG2bNlCfHw8q1ZVnBYYHx+Pq6ur5fL19a3aH1FERERERERERKqdarkyESAlJYUWLVrg4OBAWloadevWxdvbu8K2185STE1NtXz+tTp16pCcnMy4ceMIDw/H3d2dJ554gokTJ5ZpN2jQIPLz82nZsiXW1taMGTOGYcOGWZ7Pnz+fV155heeff56jR49y1113ce+999KtW7cK5xMXF0dsbKzlPi8vTwVFERERkSqiFYkiIiJSXRlKS0tLb/cgpPLl5eXh6upKbm5uma3YIiIiIiIiIiJSvVRmnahabnO+VZYvX05oaCiOjo54eHjw4IMPcunSJQCSkpIICgrCwcGBxo0bM2fOHMv3hgwZQlhYmOUMxMLCQpo2bcqgQYNuyzxERERERERERESgGm9zrmrHjh3j0UcfZfr06fTq1YsLFy6QlpZGaWkpixcvZvLkybz99ts0bdqU7du3M3ToUJycnBg8eDBvvfUW4eHhTJgwgVmzZvHiiy9y/vx53n777QrfpwAWERERqWzXQkakYtruLCIiItWNiolV5NixYxQXF9O7d29LoEtoaCgpKSlER0czd+5cevfuDUD9+vXZvXs37777LoMHD8ZoNLJo0SLatm2Ls7MzCQkJjBs3DldXVyralR4fH8/UqVNv2fxERERERERERKT60ZmJv8OpU6eoU6cO586dw87ODjc3N/bs2UO9evWua7ts2TJmzZpFWloa9957L1lZWfTp04eOHTvSt29fANzd3XF0dMTK6j+7zIuLi3F1deXEiROWvw0cOJAlS5YwZswYXF1dSU1NJSUlpdwxlrcy0dfXV2cmioiIiIiIiIhUc5V5ZqJWJv4OmzdvJjw8HCcnJzIzM3F3dy+3kHitbWRkJNbW1vTp0wd3d3eCg4OZPXs2L774Il9++SUAc+fOpVWrVmW+a21tbflsNpvZuXMnAAcPHuTYsWM33OZsb2+Pvb39zU5VRERERERERESkQgpg+R0yMjKIjIwEYNOmTZbPv9U2PT2dXr16MXXqVLZv346dnR0LFy4EYPfu3QQEBGBra8tzzz1HixYtaNKkCSEhISQnJ/PCCy/www8/APDFF1/w3XfflQlpERERERERERERudW0zbkCOTk5hIWFAXD58mWsra2xt7cnPz8fg8GAg4MDjz32GHPmzGHJkiWMHDkSuLps1MnJidLSUi5fvoy9vT22trb8/e9/55133mHatGlMmDABR0dHXnvtNT777DMKCgro0qULV65coXXr1hw/fpynn36a2NhYXnvtNaZNm8b06dPZtGkT4eHh5Y5X25xFREREKlZVYTIKYBEREZG/gsrc5qyViRXw8fHBZDKxceNGADIzM8nKysLOzo41a9ZgMpmYNm0aAA8//DAmk4kZM2YQHBzMjh07eP3117Gzs8PJyYmCggKSk5OZOXOmZWtzYmIi8+fPZ+PGjZhMJtatW0fz5s158MEHmTVrFjExMXTq1AmA0aNH0759e0aOHElJSUm5442Pj8fV1dVy+fr63oJfSUREREREREREqhOdmVgBGxsb/P39+eSTT2jRogVhYWGkp6fj6elJmzZtyrQ1Go0YjUa2bdtGjx498Pf35/z580RHR5OUlFSm7bUAlUceeYShQ4eSlJTEU089RXFxMSaTiQYNGrBr164ybQFWrlx5w/HGxcURGxtrub+2MlFEREREtIJQREREpLKomFiBkJAQDh8+TFFREWazGaPRSHFxMcXFxRiNRvz8/Ni1axc5OTkEBwcDcOXKFWxsbEhMTKSgoAArKyuWLl1KdHQ077zzTrnvefLJJ+nUqROrVq1izZo1xMfHM3PmTEaPHv2HxqsAFhERERERERERqWoqJlYgOTmZoqIiOnTowPTp02nWrBkDBgwgJiaGqKgobG1tgf9shz5+/DgPPvggJpOJkpISIiIiSEtLw93d/Tf3ovv6+jJixAhGjBhBXFwcc+fOZfTo0djZ2QFUuLVZRERERCrfHzlfUSseRUREpLpRMbECfn5+HD9+nBMnTtCjRw8MBgO7du2iT58+eHt7W9rZ2NgQEBDA1q1badWqFY0bN2bjxo3cfffdtGzZ8jff8+yzz9K5c2caNmzIuXPn2LBhA0FBQZYxGAwGvvrqK7p06YKjoyNGo7HcfsoLYBEREREREREREalMCmC5gfbt2+Ph4YGDgwNbtmyhbt26ZQqJ/y0lJcVylmJqaup15ypWpKSkhKeffpqgoCCioqJo2LAhc+bMAaBOnTpMnTqVCRMm4OnpyahRoyrsRwEsIiIiIiIiIiJS1QylpaWlt3sQd6p27doRERFBQkLC7R7KbypvZaKvr2+lRH6LiIiIiIiIiMhfV15eHq6urpVSJ9I25/8RCmAREREREREREZGqpm3Ov8FsNjN+/Hjc3d3x8vJiypQplmc5OTn06NEDo9GIi4sL/fr148SJE5bnU6ZMISIignnz5lGvXj2MRiMjR46kpKSE6dOn4+XlRe3atXn11VfLvPO3+i1PQUEBeXl5ZS4RERER+f38J6z6w5eIiIhIdaNi4m9YuHAhTk5OZGZmMn36dKZNm8batWsxm8306NGDs2fPkpqaytq1azlw4AD9+/cv8/39+/fz9ddfs3r1aj766CPef/99unbtys8//0xqaiqvv/46EydOJDMzE4B58+ZRv3793+z313RmooiIiIiIiIiIVDWdmXgD7dq148qVK2zbto1z585hZ2eHg4MDw4cPp1evXnTu3JmDBw9aCnezZs0iNjaWLVu2UFRURNeuXSksLOT48eM4OzsDEBUVxd69e9m/fz9WVldruY0bNyYmJoYJEyYwbtw4ZsyYQU5OjqXf3bt3ExISAkBF/1w6M1FERETk5vyZlYaHXutaBSMRERERqVw6M/EWcnd3Jzw83LI60c7OjitXrrBnzx58fX3LrAA8cuQI9vb27Nmzh2PHjuHr60tJSYmlkAjg6emJtbW1pZB47W8nT54E4JdffsFgMJTpNzg4GHt7e+rXr1/hOHVmooiIiMjNUWFQRERE5Ldpm/NvOHnyJJGRkQBs2rQJDw8PzGZzuW0zMjKwsbGxtK1Xrx62traW5ykpKXzwwQecPXuWsLAwHBwcuPfee7l8+fJ1fX7zzTcEBQVhNBqJioqiuLiYfv36VdEsRUREREREREREfptWJpYjJyeHsLAwLl68SGlpKbt27WLBggXk5+dTXFzMkiVLOHPmDEeOHGH27NlMmjQJgNzcXABGjhxJfn4+1tbWlJSUsGTJEh577DFL/zt37uSzzz7Dy8uLF154gbVr19K6dWsAfHx8KC0t5ZVXXuHDDz/EysqKRx55hJKSErp3717hmMvb5iwiIiIilevXW6G1mlFERESqG61MLIePjw8mk4mmTZsCkJmZSVZWFnZ2dtx33308/PDDzJs3j9DQUJYuXcqiRYt4+umncXBwoFWrVixZsgRPT09GjhxJo0aNePjhh8v0X6NGDR566CFCQ0NZuHAhRUVF7Nu3D7i6pRmuFgetrKwoLi6muLgYW1tbmjdvXuGYFcAiIiIiIiIiIiJVrdqvTDx16hR16tSxBKy4ubmxZ88e/P39uXz5Mp6enoSFhZGeno6TkxO7du2iQYMGZGdnc+bMGerVq8eAAQMoLCykQYMGrFy5kqSkJLp06YKbmxt2dnYYjcYy73RwcLB8dnd3x9HRkbNnzwJgMBhwcHDA29ubNm3aYGVlRWhoKDk5OTecR1xcHLGxsZb7awEsIiIiIlJ5tBJRREREqrtqX0zcvHlzmYAVd3d3OnfuzOHDhykqKsJsNmM0GikuLqawsBAbGxu+++47goKCaN68OWvWrAHAbDZz8OBBGjRoYFlVaGtrS3R09HXv7NChQ5n7wMBAOnfubLm3t7dn5cqVlvvPP/+cXr163XAeCmAREREREREREZGqVu23OWdkZJQJWImMjCQ5ORmTyYSXlxeLFi3CZDLRpEkT6tWrR2JiIsnJyWzatIkOHTpgMplYvXo1NjY2mEwm3n77bUpKSjCbzTg6OmJra0txcXGZdx49epRRo0bh6uqKu7s7u3btonHjxmXajB07ljp16uDk5MT48eNv2e8hIiIiIiIiIiJSkWq5MvFawArA5cuXsba2tgSsGAwGVq9eTc+ePTlx4gT5+fk0a9bMEmgyfvx44uLiuHDhAhs2bODFF1/k8ccfp1WrVjg7OzNixAhcXV3ZvHkzP/74I0OHDsXDw4MpU6ZY3r9u3TqcnJxYtGgRU6ZMYfv27ZZtzgD5+fls3ryZpUuX4uPjw8svv0x2djbZ2dkEBgaWOycFsIiIiIjcer8OZLkRbZEWERGR/wXVcmXitYCVjRs3AmUDVtasWYPJZCIyMpIWLVrQt29f5s6dS+3atQkJCWHHjh188MEHeHp6snPnTkwmE5cvX6ZNmzbMmTMHo9FInz59aNy4MT179mTq1KnMnDkTs9lc5v0//fQTffv2xcbGhpiYGGbPng3AmTNnKCwsZNmyZdx///00aNCAnj17AjB//vwK56QAFhERERERERERqWqG0tLS0ts9iNvlk08+ITExkfT0dNLT0xk8eLAlVfnXRo4cSc2aNXn11Vd59dVXOXjwIElJSWXa9O7dG1dX1zJFv++//56IiAgOHz7MgQMHeOCBB3jsscdYvHixpc3KlSvp27cvV65cYfXq1XTr1g0nJ6cyfRcUFNC7d28+/vjjcsdX3spEX19fcnNzcXFx+cO/jYiIiIiIiIiI/G/Iy8vD1dW1UupE1XKbc0hISLkBK8XFxRiNRvz8/Ni1axc5OTkEBwcDcOXKFWxsbEhMTLQErCxdupTo6GjeeeedShvbxYsXsba2JisrC2tr6zLPfp0K/d8UwCIiIiIiIiIiIlWtWhYTk5OTKSoqokOHDkyfPp1mzZoxYMAAYmJiiIqKwtbWFvjPdujjx4/z4IMPYjKZKCkpISIigrS0NNzd3ctUc4OCgvj0008pLS3FYDAAkJ6ejrOzM3Xr1uXAgQMAZGVllRnPt99+S2BgINbW1jRt2pSSkhJOnjzJ/ffff4t+ERERERERERERkd9Wbbc5Hz9+HH9/f86fP4/BYMDNzY0DBw7g7e19XdulS5fy73//m9TUVDZu3MjQoUPZu3fvde2OHj1Kw4YN+fvf/86oUaPYu3cvTz75JE8//bQlgKVdu3ZkZWUxdOhQhg8fzrZt2xg6dCgzZ85k+PDhAERHR5Oens7MmTNp2rQpp06dYv369YSFhdG1a/kHd2ubs4iIiMit90cCWO4UCoIRERGpfrTNuRKkpKTQokULHBwcSEtLo27duuUWEq+1bdOmDQCpqamWz79Wp04dkpOTGTduHOHh4bi7u/PEE08wceLEMu0GDRpEfn4+LVu2xNramjFjxjBs2DDL85ycHGrXrs3zzz/P0aNHueuuu7j33nvp1q1bhfOJj49n6tSpf/RnEBERERERERER+d2q7crEO9nZs2extbXF2dkZf39/nn32WZ599tkbfkcrE0VEREREREREpDxamfg/zt3d/Q9/RwEsIiIiIiIiIiJS1bQy8Q7Url07IiIiMJlMpKamlnn2e/+5KrPiLCIiIiLl+yuemViVdB6jiIjInaky60RWlTQmqQKfffYZdevWZdq0aRw7doxjx45V2LagoIC8vLwyl4iIiIiIiIiISGVSMfEO5u7ujrW1Nc7OzqxevbrCgBi4GsDi6upquXx9fW/hSEVEREREREREpDrQmYl/EQcPHsTT05MpU6YwZcqU657HxcURGxtrub8WwCIiIiIiVUfbekVERKS6UTHxL+Lrr7+mWbNmFT5XAIuIiIiIiIiIiFQ1FRPvcHZ2dpSUlLBlyxZiYmIqbFdQUEBBQYHlXmcmioiIiFS9PxPAotWMIiIi8lemMxPvcP7+/mzcuJGjR49y5cqVCtvpzEQREREREREREalqWpl4h5s2bRrDhw+nQYMGFBQUUFpaWm47nZkoIiIiIiIiIiJVzVBaUXVK/tLy8vJwdXUlNzcXFxeX2z0cERERERERERG5TSqzTqRtziIiIiIiIiIiIvK7aJvzHW758uVMnTqVffv2UaNGDZo2bcrKlStxcnIq004BLCIiIiK33p8JYLlGQSwiIiLyV6SViXewY8eO8eijjzJkyBC6du1KeHg4vXv3LvfcRAWwiIiIiIiIiIhIVat2Zya2a9eOiIgIEhISqvxdMTExnD9/ns8///xPfX/btm00a9aMQ4cO8dJLL92wr/JWJvr6+urMRBERERERERGRaq4yz0zUNudfKS0tpaSkBBub2//ThIeH06FDB0JDQ3F3d8fNzY1z585Rs2bN69ra29tjb29/G0YpIiIiIiIiIiLVRbXa5hwTE0NqaiqJiYkYDAYMBgMLFizAYDDw9ddf06xZM+zt7dm0aRNms5n4+Hjq16+Po6Mj4eHhLF++3NJXSUkJTzzxhOV5o0aNSExMtDyfMmUKCxcuZOXKlZZ3paSkAHDkyBH69euHm5sb7u7u9OjRg0OHDpXpOzY2Fg8PD7Zt20a3bt1wdXXl4MGDNGrUiIMHD96qn0xERERERERERMTi9i+/u4USExP56aefaNKkCdOmTQNg165dAEyYMIEZM2Zw9913U7NmTeLj41m0aBHvvPMOgYGBbNy4kejoaGrVqkXbtm0xm83UrVuXZcuW4eHhQUZGBsOGDcPb25t+/foxduxY9uzZQ15eHvPnzwfA3d2doqIiOnXqROvWrUlLS8PGxoZXXnmFqKgofvjhB+zs7Jg5cyYLFixg3rx5BAUFMXPmTA4ePMgDDzxAVlYWK1asIDY2tszcFMAiIiIif3U3E2ZyuyhERURERKqbalVMdHV1xc7Ojho1auDl5QXAjz/+CMC0adN46KGHgKuFuX/+85+sW7eO1q1bA3D33XezadMm3n33Xdq2bYutrS1Tp0619F2/fn02b97MJ598Qr9+/TAajTg6OlJQUGB5F8CiRYswm80kJSVhMBgAmD9/Pm5ubqSkpNCxY0cSEhKIi4ujTp06rFixgieffJJVq1bxyy+/cOrUKYKCgq6bW3x8fJnxiIiIiIiIiIiIVLZqVUy8kebNm1s+79u3j8uXL1uKi9cUFhbStGlTy/2//vUv5s2bR05ODvn5+RQWFhIREXHD93z//ffs27cPZ2fnMn+/cuUK+/fvJzc3l2PHjtGqVStcXFzYuHEjCQkJnDlzhgsXLjBz5kw6d+58Xb9xcXFlViteC2ARERER+avQKj8RERGRO5+Kif+fk5OT5fPFixcBWLVqFXXq1CnT7lrIydKlSxk7diwzZ86kdevWODs788Ybb5CZmXnD91y8eJFmzZqxePHi657VqlWrzH1QUBCrV68GoFevXpSWljJq1Khy+1UAi4iIiIiIiIiIVLVqV0y0s7OjpKTkhm2Cg4Oxt7cnJyeHtm3bltsmPT2d++67j5EjR1r+tn///t981z333MPHH39M7dq1ycjI4JVXXmHnzp1YW1vTunVrEhMT8fb2Jj09nU8++YRPP/2Us2fPUlJSQsOGDf/krEVERERERERERG5etSsm+vv7k5mZyaFDhzAajZjN5uvaODs7M3bsWJ577jnMZjN/+9vfyM3NJT09HRcXFwYPHkxgYCAffPAB33zzDfXr1+fDDz/ku+++o379+mXe9c0337B37148PDxwdXVl4MCBvPHGG/To0YP27dszcOBAXFxc+Oqrrzh9+jS9evXimWee4eWXX8bR0ZGEhASSk5NZuXIlNWrUqHBeCmARERER+WMqI/BFW7NFRESkurG63QO41caOHYu1tTXBwcHUqlWLnJycctu9/PLLTJo0ifj4eIKCgoiKimLVqlWWYuHw4cPp3bs3/fv3p1WrVpw5c6bMKkWAoUOH0qhRI5o3b06tWrVIT0+nRo0abNy4kXr16vHWW2/x3HPPMXnyZJydnXnvvffYsWMHUVFRBAYGcv78eUaPHo23tzd9+/albt26Fc4rPj4eV1dXy6XzEkVEREREREREpLIZSktLS2/3IKqr7OxsJk+eTGZmJqdPn8ZsNnPp0iVWrVqFl5cXDz30EB4eHkRFRdGtWzc6duxYYV/lrUz09fUlNzcXFxeXWzEdERERERERERG5A+Xl5eHq6lopdaJqtzLxTtK9e3fOnj3L3LlzyczMtIS3FBYWcs8993Dw4EFefvll8vPz6devH3379q2wL3t7e1xcXMpcIiIiIiIiIiIilUnFxJvQrl07Ro0axahRo3B1deWuu+5i0qRJXFvsaTAY+Pzzz8t8x83NjQULFnDmzBn27t3LmjVrOH36NCNGjKBp06aWdklJSbRq1YrBgweTlpZGdHS0JYxFRERERO4M/hNWWS4RERGR6kDFxJu0cOFCbGxs2LJlC4mJibz55pskJSX95vdq1qxJzZo1AXj++edp3749QUFBAKSmphIbG0tUVBRfffUVo0aNIikpCVdXV9zc3Mrtr6CggLy8vDKXiIiIiIiIiIhIZVIx8Sb5+voya9YsGjVqxMCBAxk9ejSzZs0qt21paSn5+fk8/fTTWFtb8/zzzwNw4sQJPvvsM9566y0Ali5dSv/+/UlJSaFnz568+OKL1KlTBz8/P6ysyv8nUwCLiIiIiIiIiIhUNRUTb9K9996LwWCw3Ldu3Zrs7GxKSkqua7t69WoKCwt59tlnOXbsGP379wcgJSWF77//nrZt23Lx4kWOHz/O4sWLyc7OBqCkpISjR49y/PjxCscRFxdHbm6u5Tpy5Eglz1REREREfu3Qa10tl4iIiEh1YHO7B/C/zGAw8N9h2fv378dgMBAYGIiXlxeHDh0CwMnJydLm4sWLAMydO5dWrVqV6c/a2pqioiJsbW2ve5e9vT329vZVMAsREREREREREZGrtDLxJl1LYL7m22+/JTAwEGtra2rVqsWxY8cAiImJYfTo0ZSWlvL3v/8df39/UlNTAbj//vvx8PCgW7duXLx4ER8fHw4cOICNjQ2BgYFkZWXxxBNPEBQUxOLFi8sdh85MFBEREbn1/juARWEsIiIiUh2omHiTcnJyiI2NZe/evXz00UfMnj2bMWPGANC+fXvefvtttm/fTkxMDPXr1wcgISGB7777jsuXLwOwePFi1q9fj5WVFb169eKll14iPj6e+fPnAxAbG0toaCjPP/88nTp1KnccOjNRRERERERERESqmoqJN2nQoEHk5+fTsmVLnn76acaMGcOwYcMAmDlzJr6+vtx///0MGzaMhx56CIPBgKurK7Vq1aJz584A1KtXj4iICObNm8eOHTu47777SEpKYvny5QCcP3+eHTt20Lx5c7y9vcsdh85MFBERERERERGRqmYo/e9D/aRCp06dok6dOpw7dw47Ozvc3NwICwujVatWJCQklGm7bNkyZs2aRUZGBhkZGURHR3PgwAESEhJISEiwnJWYnZ3N5MmTyczM5PTp05jNZi5dusSqVavo0qULhw4don79+mzatInIyMg/NN68vDxcXV3Jzc3FxcWlsn4GERERERERERH5i6nMOpECWH6nzZs3Ex4ejpOTE5mZmbi7u1cYeLJ582ZL8S8tLa3CQmD37t3x8/Nj7ty5+Pj4YDabadKkCYWFhWXa/XdAi4iIiIiIiIiIyO2iYuLvlJGRYSkKXlspePz48QrbTpgwwdK2a9eu17VJT09n79695OTkkJGRQUREBKNGjbI8T0pKIj4+HoCePXsyfvx4Ro4cWeH4CgoKKCgosNwrgEVERETk9/uzoSmHXrv+/3kiIiIi/8tUTLyBnJwcwsLCALh8+TLW1tYsWLCA/Px8DAYDDg4OBAcHPByDxQAAIABJREFUA7BkyRJLsS8vL4/HH38ca2trLly4wIYNG5gwYQLdu3cH4OjRo3Tv3h07OzvatWvHc889x9q1a3n11VcBSE1N5eOPP2by5Mk89dRTjB49mkmTJuHk5MTgwYPLHWt8fDxTp06t6p9ERERERERERESqMQWw3ICPjw8mk4mNGzcCkJmZSVZWFnZ2dqxZswaTycS0adMAePjhhzGZTMyYMYPg4GB27NjBBx98gKenJzt37sRkMtGkSRMA/vWvf+Hm5sbKlSs5dOgQ3bt355tvvmH27NkALF26lJkzZxIVFQVAhw4dGD58OE8++aTlvMVfUwCLiIiIiIiIiIhUNQWw/A6ffPIJiYmJpKenk56ezuDBg9m3b1+5bUeOHEnNmjV59dVXefXVVzl48CBJSUll2nTp0oVatWqxcOHC675/6dIljEYjjo6OWFn9p9Z75coVbG1tyc/P/11jVgCLiIiIiIiIiIiAAlhumZCQEA4fPkxRURFmsxmj0UhxcTHFxcUYjUb8/PzYtWsXOTk5lu3OV65cwcbGhsTERAoKCrCysmLp0qVER0fzzjvvAODo6FjhOy9evAjA3LlzadWqFQD5+fncd9995RYfRUREREREREREbhUVE28gOTmZoqIiOnTowPTp02nWrBkDBgwgJiaGqKgobG1tgf9shz5+/DgPPvggJpOJkpISIiIiSEtLw93dvUzVNywsjIULF1JUVGTp4xpPT098fHw4cOAAAwcOBGD58uU4OjrSu3fvCseqABYRERGRW+/PBrdURIEuIiIicqfTmYk34Ofnh9Fo5MSJE/To0QNfX1927dpFnz59CAgIwM/PDwAbGxsCAgL4+eefadWqFY0bN+bMmTPcfffdtGzZkoCAAGrXrm3pd9SoUeTl5TFgwAC2bt1KdnY2H374IXv37gVg6tSpxMfH89Zbb/HTTz+xYsUKPD09efPNNysca3x8PK6urpbL19e3an8cERERERERERGpdrQy8TekpKTQokULHBwcSEtLo27dunh7e1fYtk2bNsDVROZrn3/Nw8OD//u//2PcuHG0bdsWa2trIiIiiIyMBODJJ5+kRo0avPHGG4wbN47S0lI8PDyoX79+heOMi4sjNjbWcp+Xl6eCooiIiEgV00pCERERqW4UwPIX0KlTJwICAvjXv/71u7+jABYREREREREREYHKrRNpm/NttHr1av72t7/h5uaGh4cH3bp1Y//+/QAUFhYyatQovL29WbduHQsWLCA+Pv42j1hERERERERERKozFRNvo0uXLhEbG8vWrVtZv349VlZW9OrVC7PZzFtvvcUXX3zBJ598woQJE/Dx8cHf37/CvgoKCsjLyytziYiIiEjV8p+wynKJiIiIVAc6M/E26tOnT5n7efPmUatWLXbv3k1OTg6BgYGWlYvTp0/n7bffJjMzk4SEhOv6io+PZ+rUqbdq6CIiIiIiIiIiUg3pzMTbKDs7m8mTJ5OZmcnp06cxm81cunSJVatW4eXlxUMPPYSHhwdRUVGsWbOGYcOGMXToUJydna/rq6CggIKCAsv9tQAWnZkoIiIiIiIiIlK96czE/xHdu3fn7NmzzJ07l8zMTDIzM4Gr5yXec889HDx4kJdffpn8/HyOHDnClClTcHJyKrcve3t7XFxcylwiIiIiIiIiIiKVScXE2+TMmTPs3buXiRMn0qFDB4KCgjh37lyZNi4uLvTv35+5c+fy2WefceHCBQYNGnSbRiwiIiIiIiIiItWdzky8TWrWrImHhwfvvfce3t7e5OTkMGHCBMvzN998E29vb5o2bYqVlRXLli3Dzs4ODw+Pcvsrb5uziIiIiFStXwevHHqt620aiYiIiMitoWLibWJlZcXSpUt55plnCAwMxN/fnwULFtCuXTsAnJ2dmT59OtnZ2VhZWXHhwgWCgoIwGAzl9qcAFhERERERERERqWoKYLkDHD9+nJo1a2Jvb1/u80OHDlG/fn2aNWvG3/72t3LTnBXAIiIiIiIiIiIi5anMABatTLwDeHl53XQf9vb2FRYjRUREREREREREKoOKiZVk+fLlTJ06lX379lGjRg2aNm3KypUr2b17Ny+88ALbt2+nqKiIiIgIZs2axT333GP5rsFgYMWKFfTs2ROALVu2MHz4cPbs2UOTJk148cUXb9e0RERERP6yfn2eYVXQGYkiIiJS3SjNuRIcO3aMRx99lCFDhrBnzx5SUlLo3bs3paWlXLhwgcGDB7Np0ya+/fZbAgMD6dKlCxcuXCi3r4sXL9KtWzeCg4PJyspiypQpjB079jfHUFBQQF5eXplLRERERERERESkMmllYiU4duwYxcXF9O7dGz8/PwBCQ0MBaN++fZm27733Hm5ubqSmptKtW7fr+lqyZAlms5n3338fBwcHQkJC+Pnnn3nqqaduOAYFsIiIiIiIiIiISFVTMbEShIeH06FDB0JDQ+nUqRMdO3akb9++1KxZkxMnTjBx4kRSUlI4efIkJSUlXL58mZycnHL72rNnD2FhYTg4OFj+1rp1awCSkpKIiIgo93txcXHExsZa7q8FsIiIiIhUV9qCLCIiIlL5tM25ElhbW7N27Vq+/vprgoODmT17No0aNeLgwYMMHjwYk8lEYmIiGRkZmEwmPDw8KCwsrNQx2Nvb4+LiUuYSERERERERERGpTFqZWEkMBgORkZFERkYyefJk/Pz8WLFiBenp6cyZM4cuXboAcOTIEU6fPl1hP0FBQXz44YdcuXLFsjrx22+//c33FxT8P/buPKqqev3j+PswHZDRAacEUSSTHMAph0wsZzOnzKv+VNTsljlwSTRuaTjimFKWlopzWaZpaWrmLF0RB3AAccQRMxVBUA8y/P5weW5cQK3Aic9rrb0We+/v/u5nH/uj9azn+31MmEwm87n2TBQREREpfHk1eVFFpIiIiDzNVJlYACIjI5kwYQJ79uzhzJkzrFy5kt9//51q1arh5eXF4sWLqVevHv/4xz/o2bMndnZ2+c7Vo0cPDAYDAwYMIDY2lp9++ompU6feN4bQ0FCcnZ3Nh5Y4i4iIiIiIiIhIQVMysQA4OTmxfft22rZty7PPPsuHH37ItGnTaNOmDfPmzSMpKYl9+/axYcMGhgwZQunSpfOdy8HBgR9//JGDBw/i6+vLBx98wKRJk+4bQ3BwMMnJyebj7NmzBfmJIiIiIiIiIiIiGLKzs7MfdRBFgZ+fHz4+PsyYMeOhvC8lJQVnZ2eSk5O1f6KIiIiIiIiISBFWkHkiVSYWgrS0NHr37o2DgwPlypVj2rRpOe4nJSXRu3dvihcvTrFixWjTpg3Hjh0z31+wYAEuLi5s2LCBatWq4eDgQOvWrUlMTHzYnyIiIiIiIiIiImKmBiyFICgoiG3btrF69WpKly7Nv//9b/bt24ePjw8A/v7+HDt2jB9++AEnJydGjBhB27ZtiY2NxdraGoAbN24wdepUFi9ejIWFBf/3f//HsGHDWLp0aZ7vVAMWERERkYKRV1OV/KjZioiIiBQ1SiYWsNTUVObNm8eSJUt45ZVXAFi4cCEVKlQAMCcRIyIiaNSoEQBLly7Fzc2NVatW0bVrVwBu377N7Nmz8fT0BGDQoEGMGTMm3/eGhoYyevTowvw0EREREREREREp4pRMLGAnTpwgPT2dF154wXytRIkSVK1aFYC4uDisrKxy3C9ZsiRVq1YlLi7OfK1YsWLmROLd53777TdCQkIICQnJ9d7g4GACAwPN5ykpKeroLCIiIvIXqNpQREREJH9KJj6m7i53vuvSpUv3HG80GjEajYUZkoiIiIiIiIiIFHFqwFLAPD09sba2JjIy0nwtKSmJo0ePAlCtWjUyMjJy3L9y5Qrx8fF4e3vnO+++ffsKL2gREREREREREZEHoGRiAXNwcKB///4EBQWxefNmDh06hL+/PxYWd35qLy8vOnTowIABA9i5cycxMTH83//9H8888wwdOnTId94pU6bc870mk4mUlJQch4iIiIgULo/31/6phi0iIiIiTzolEwvBlClTaNKkCe3bt6d58+a8+OKL1KlTx3x//vz51KlTh1dffZWGDRuSnZ3NTz/9lGtpc17y2i8R7jRgcXZ2Nh/aL1FERERERERERAqaITs7O/tRByH35ufnh4+PDzNmzMh3jMlkwmQymc/vNmBJTk7GycnpYYQpIiIiIiIiIiKPoZSUFJydnQskT6QGLE8JNWAREREREREREZHCpmXOjzl/f3+2bdtGWFgYBoMBg8FAQkLCow5LRERERERERESKIFUmPubCwsI4evQo1atXZ8yYMQC4urrmGpfXMmcRERGRouxhNEZJmNiu0N8hIiIi8jhRZeIj4O/vT8eOHR9orLOzMzY2NhQrVoyyZctStmxZLC0tc41TAxYRERERERERESlsqkz8mx6kOcrDEBwcTGBgoPn8bgMWERERkaJKVYMiIiIiBU/JxKeEGrCIiIiIiIiIiEhhUzLxb7jbHOVugxSA48ePM2HCBDZv3szFixdxd3dn4MCBDB06NN95oqKiaNu2LcOGDWPEiBFcu3aNYcOGsXr1akwmE1ZWVpQrV+5hfZaIiIhIkfRX9lhU9aOIiIgUNUom/g15NUcpXrw4FSpUYPny5ZQsWZJff/2Vt956i3LlyvHGG2/kmmPz5s107tyZyZMn89ZbbwHQtWtX7OzsWLduHc7OznTp0oXly5czYsQIKlSoQIkSJbCwyLndpRqwiIiIiIiIiIhIYVMDlr8hr+YoRqOR0aNHU7duXSpVqkTPnj3p27cv3377ba7nv//+ezp06MAXX3xhTiTu3LmTLVu24O7uTt26dfHy8uK7777DysqK+vXr4+rqypkzZ3LNpQYsIiIiIiIiIiJS2FSZWAg+++wzwsPDOXPmDDdv3iQ9PR0fH58cYyIjI1mzZg3fffddjs7OMTExZGdns2DBAhYsWMCNGzewtrYmIyODYcOGMWnSpDzfqQYsIiIiIn+PliyLiIiI3J+SiQVs2bJlDBs2jGnTptGwYUMcHR2ZMmUKkZGROcZ5enpSsmRJwsPDadeuHdbW1gCkpqZSrlw5tm7dCkDTpk3x9/enb9++uLi45PteNWAREREREREREZHCpmTi32RjY0NmZqb5PCIigkaNGjFw4EDztRMnTuR6rlSpUqxcuRI/Pz/eeOMNvv32W6ytralduzbnz59nwoQJnDx5kgsXLjBhwgQmTJgAQHZ2dp5xaM9EERERkcKTX3MWVTOKiIhIUaM9E/8mDw8PIiMjSUhI4PLly3h5ebFnzx42bNjA0aNHGTlyJFFRUXk+W7p0aTZv3syRI0fo3r07GRkZNG/eHCcnJ3788UcGDx5M2bJlefPNNxkyZAjr1q3LNw7tmSgiIiIiIiIiIoVNycS/adiwYVhaWuLt7Y2rqyutWrWic+fOdOvWjRdeeIErV67kqFL8X2XLlmXz5s0cPHiQnj17kpWVRY0aNXjmmWcYMmQIFy9e5LvvvuPKlSs8//zz+c4THBxMcnKy+Th79mxhfK6IiIiIiIiIiBRhhuz81s1KgfDz88PHx4cZM2b8pWc8PDwICAggICDgT703JSUFZ2dnkpOTcXJy+rNhi4iIiIiIiIjIU6Ig80SqTBQREREREREREZEHosrEQuTv78/ChQtzXDt16hSnT58mKCiImJgYSpQoQZ8+fRg3bhxWVnf64bz00kukpKRw4cIFLl++TMWKFfn222+pV69evu/KqwGLm5ubKhNFRETkiZZf45PHhRqwiIiIyJNAlYmFbMGCBbi4uPztecLCwmjYsCEDBgwgMTGRxMRErK2tadu2LfXq1SMmJoZZs2YxZ84crK2tiY6OBuDkyZMcP36chQsX0rBhQzIzM2nRogXHjh3L911qwCIiIiIiIiIiIoVNlYl5uHnzJtevX6d06dJ/e67/3TPxgw8+YMWKFcTFxWEwGAAYO3Yso0aNYu/evVStWhVHR0datWrFunXr2LVrF2+99RYHDx4EIL9/LlUmioiIiIiIiIhIXgqyMtGqgGJ6aty+fRs7Ozvs7OwKZf64uDgaNmxoTiQC1KlTB4DffvsNKysrsrOzmT17NgANGjTgwIEDdOrUieLFi+c7r9FoxGg0FkrMIiIiIiIiIiIi8JQsc/7uu++oUaMGdnZ2lCxZkubNm5OWlgbA3LlzqVatGra2tjz33HN8/vnn5ucSEhIwGAx88803NG3aFFtbW5YuXZrnMudZs2bh6emJjY0NVatWZfHixbnmubtMGeDatWsYDAauXbsGQFJSEj179mTt2rUsXrwYLy8v5s+fn+tb7lYefvnllzmuJycnM3/+fI4fP/43fy0REREREREREZG/5omvTExMTKR79+5MnjyZTp06cf36dXbs2EF2djZLly5l1KhRzJw5E19fX/bv38+AAQOwt7enT58+5jnef/99pk2bhq+vL7a2tmzYsCHHO77//nuGDh3KjBkzaN68OWvWrKFv375UqFCBZs2a3TM+a2trMjMzGTlyJLGxsfTs2ZNt27bx+eefc+vWLQD27t0LQJkyZahSpQqWlpYsXLiQ8ePHA3eqJXfv3k2lSpWoUqVKnu/Ja5mziIiIyOPscW+u8iDUgEVERESKmqcimZiRkUHnzp2pWLEiADVq1ADgo48+Ytq0aXTu3BmASpUqERsbyxdffJEjmRgQEGAek5epU6fi7+/PwIEDAQgMDGTXrl1MnTr1vsnEMmXKEBkZiZOTE9WqVWPs2LE8++yzrF69mkGDBrF69WrzfooWFhbY29vj7+/PvHnzCAsLo0WLFkycOJEbN24wbNiwfN8TGhrK6NGjH+AXExERERERERER+Wue+AYsmZmZtGrVit27d9OqVStatmzJ66+/jo2NDQ4ODtjZ2WFh8d/V3BkZGTg7O/Pbb7+RkJBApUqV2LlzJ40bNzaPWbBgAQEBAeYlyiVKlGD69Ok5EpBhYWGEhYVx8uRJ8zz79+/Hx8cHuLPMuXjx4ixatIjPP/+c/fv3YzKZqFatGrVq1SImJoYTJ05QokQJOnbsyOzZs83P37p1C29vbxITE8nOzsbGxoZbt25x7do1ihUrlufvoAYsIiIiIiIiIiKSl4JswPLE75loaWnJxo0bWbduHd7e3nz66adUrVqVQ4cOATBnzhyio6PNx6FDh9i1a1eOOezt7f9WDHeTlX/My96+fRsANzc3/vOf/3Dr1i0uXbrEiBEjsLS05NSpUwwePJjExERGjBiRYz5bW1vCwsIwGo0kJSVRu3ZtDAaDec68GI1GnJycchwiIiIiIiIiIiIF6YlPJgIYDAYaN27M6NGj2b9/PzY2NkRERFC+fHlOnjxJlSpVchyVKlX6U/NXq1aNiIiIHNciIiLw9vYGwNXVFbiz5PquPzZjucvV1ZU+ffqwZMkSZsyYkavJyh+1bdsWe3t7Zs2aRUREBJUrV2bJkiV/Km4REREREREREZGC9MTvmRgZGcmmTZto2bIlpUuXJjIykt9//51q1aoxevRohgwZgrOzM61bt8ZkMrFnzx6SkpIIDAx84HcEBQXxxhtv4OvrS/Pmzfnxxx9ZuXIlv/zyCwB2dnY0aNCAiRMnUqlSJS5dusSHH36YY45Ro0ZRp04dnn/+eUwmE2vWrKFatWr5vtPS0hJ/f3+Cg4Px8vLiH//4B8uWLePdd9/Nc7wasIiIiIg8fAXVREaNXERERORJ8cRXJjo5ObF9+3batm3Ls88+y4cffsi0adNo06YNb775JnPnzmX+/PnUqFGDpk2bsmDBgj9dmdixY0fCwsKYOnUqzz//PF988QXz58/Hz8/PPCY8PJyMjAzq1KlDQEAA48aNyzGHjY0NwcHB1KxZk5deeglLS0uWLVt2z/f279+f9PR0+vbtS/369dm9e3eOhOEfhYaG4uzsbD7c3Nz+1DeKiIiIiIiIiIjczxPfgOVptmPHDl555RXOnj3Lb7/9Rq1atUhISDB3rf4jNWAREREREREREZG8FGQDlid+mfPTyGQy8fvvvxMSEkLXrl0pU6aMednyjRs38nzGaDRiNBofZpgiIiIiIiIiIlLEKJn4GPr666/p378/Pj4+LFq0CICrV68C/232IiIiIiKF7357ImqvQxERESlqlEx8DPn7++Pv75/j2qFDh6hQoQKlSpXK8xk1YBERERERERERkcL2xDdguZ+EhAQMBgPR0dH3HOfn50dAQMBDiurePDw8mDFjRo5rO3bsoGXLlvk+owYsIiIiIiIiIiJS2IpcZeLWrVtp1qwZSUlJuLi4POpwHsitW7dYtWoV69evz3dMcHAwgYGB5vO7DVhERERE5K/TMmYRERGRnIpcMvFJNH/+fOrXr0+DBg3yHaMGLCIiIiIiIiIiUtieimTi+vXrGTduHIcOHcLS0pKGDRsSFhaGp6dnjnEJCQk0a9YMgOLFiwPQp08fFixYAEBWVhbDhw9n7ty52NjY8PbbbxMSEmJ+/syZMwwePJhNmzZhYWFB69at+fTTTylTpgxwZ6/Da9eusWrVKvMzAQEBREdHs3XrVgCuX7/O22+/zapVq3BycmL48OGsXr0aHx+fHEubb9y4Qb9+/Vi+fDnW1tb3XYKtPRNFREREHr77NWh52FRJKSIiIoXtqdgzMS0tjcDAQPbs2WNO9HXq1ImsrKwc49zc3FixYgUA8fHxJCYmEhYWZr6/cOFC7O3tiYyMZPLkyYwZM4aNGzcCdxKNHTp04OrVq2zbto2NGzdy8uRJunXr9qdiDQwMJCIigh9++IGNGzeyY8cO9u3bl2vctGnTqFu3Lvv372f48OGEhITQsGHDfOfVnokiIiIiIiIiIlLYnorKxC5duuQ4Dw8Px9XVldjYWBwcHMzXLS0tKVGiBAClS5fOtWdizZo1+eijjwDw8vJi5syZbNq0iRYtWrBp0yYOHjzIqVOncHNzY+vWrezduxeAqKgo6tWrd984r1+/zsKFC/nqq6945ZVXgDtLmMuXL59rbNu2bRk4cCAAI0aMYOzYsRw9ejTfubVnooiIiIiIiIiIFLanIpl47NgxRo0aRWRkJJcvXzZXJJ45cwZvb+8HnqdmzZo5zsuVK8elS5cAeOedd7C3t8+VoHN2diYuLu6BkoknT57k9u3b1K9fP8fzVatWvWcsBoOBKlWq5Eqa/pH2TBQRERF5+LSsWERERIqapyKZ2L59eypWrMicOXMoX748WVlZVK9enfT09D81j7W1dY5zg8GQa6n0vVhYWJCdnZ3j2u3bt/9UDHfH/91YRERERERERERECtoTn0y8cuUK8fHxzJkzhyZNmgCwc+fOfMfb2NgAkJmZ+cDv8Pf358SJE8CdpB7cWZ4MkJycTGhoKG+//TbFixenZMmSOZ7dvHkz586dw9bWlrJly2JhYcGuXbtwd3c3z2c0Grl27Rpz5swhKCgIgIMHD1K7dm1iY2MpX748N27cuGcyUQ1YRERERB6+x60By6OiCk0REZGi44lvwHI3gffll19y/PhxNm/enGPvwP9VsWJFDAYDa9as4ffffyc1NfW+7wgLC6NBgwaULFmSF154gQ0bNpCWlgaAo6Mjs2fPZs+ePZQoUYKDBw+yaNEijh07Rt++fTly5AjPPPMMsbGxzJkzh2LFivHPf/6TLVu2cPjwYQDS09OpUqUK1atX58yZM5hMJpYuXcrQoUOJjY3liy++4OrVq2zfvj3fGNWARURERERERERECtsTn0y0sLBg2bJl7N27l+rVq/Ovf/2LKVOm5Dv+mWeeYfTo0bz//vuUKVOGQYMG3fcdzs7OGI1GXnvtNcqUKUPnzp0ZPnw4cKfZS9OmTfH29mbSpEkADB8+nHr16rFp0yYaNGhA2bJlqVy5Mi1atODjjz/m1q1bvPrqqzRv3hy40wymTp06rFu3jrCwMK5du0bz5s3p06eP+bly5cqZG77kJTg4mOTkZPNx9uzZP/MzioiIiIiIiIiI3Jch+383+ZM8+fn54ePjw4wZMwDYunUrzZo149KlS7i6ugKwf/9+ateuzenTp3F3d8fV1ZXU1FQsLS3N82RmZnLr1i3S0tIoVqwYBoOBYsWK8cknn9C/f3+AB3ruflJSUnB2diY5ORknJ6eC/ClEREREREREROQJUpB5oid+z8RH7Y+NUu7up3h3b8PU1FRGjx5N586dzWMOHz7MyZMnOX/+PNevXzdf79ChgzlhmZqaSuvWrdm3bx8XL17EwcGBevXqMXPmTGxtbR/Sl4mIiIiIiIiIiOSkZOIDsrGx+VNNWwBq165NfHw8VapUMV+7fv06Y8aMYeTIkeZmMBMmTKBUqVLmMc8++yyrV69m6dKlNGrUiKtXr7Jjx44c8/wvNWARERERefgedgMWNToRERGRR+2J3zPxYfHw8CAyMpKEhAQuX758z87Kd40aNYpFixYxevRoDh8+TFxcHPHx8bRp04bU1FSuXr0K3GkK80evvfYa2dnZHDx4kNTUVGxtbSldujQffvhhvu9SAxYRERERERERESlsqkx8QMOGDaNPnz54e3tz8+ZN5s+ff99nWrVqxZo1axgzZgyTJk3C2tqa5557jjfffPOezw0fPpwlS5YwZcoUJk+ejI2NDc8//zxvvfVWvs8EBwfn6GKdkpKihKKIiIhIIVOloIiIiBQ1asDyGPljk5eMjAy2bt3Kzz//zIoVK7CwsCAqKgoXF5cHmksNWEREREREREREBAo2T6Rlzo+pX375hZCQEL788kuSkpI4ceIEX3311aMOS0REREREREREijBVJj5G7lYmNm/enJUrV/L8889Tt25dNmzYQGhoKF5eXhw5cgQLi9w54LwasLi5uakyUURERKQQFVQDFi2XFhERkcJUkJWJ2jPxIfvjUua8hIeHk5WVxcmTJ1m1ahW3bt3Cy8uLOXPmMGDAAGJjY6levXqu50JcoPNbAAAgAElEQVRDQxk9enRhhy8iIiIiIiIiIkWYKhMfsvslE3///Xfs7e05f/48o0aNYtmyZdjZ2WFhYUFaWhpr166lbdu2uZ5TZaKIiIiIiIiIiORFeyY+xVxdXSlWrBjt27fn6tWrAEyaNInIyEgA0tPT83zOaDTi5OSU4xARERERERERESlISiY+AhkZGQwaNAhnZ2dKlSrFyJEjuVsg6uHhwfjx44mPjycmJgaAIUOG5Lm0WURERERERERE5GFSMvERWLhwIVZWVuzevZuwsDA+/vhj5s6da75vZ2dHyZIladKkCQBBQUH4+Pjcc06TyURKSkqOQ0REREQKlsf7a3McIiIiIkWNkomPgJubG9OnT6dq1ar07NmTwYMHM336dPN9CwsLli1bxuHDhwFYvHgxycnJwJ1GK3kJDQ3F2dnZfLi5uRX+h4iIiIiIiIiISJGibs6PQIMGDTAYDObzhg0bMm3aNDIzM83XmjdvTmxsLAaDAUdHR1544QW2b9+Og4NDnnMGBwcTGBhoPr/bgEVERERECk7CxHaPOgQRERGRR0rJxCfAxYsXefnll6lQoUK+Y4xGI0aj8SFGJSIiIiIiIiIiRY2SiY/A3c7Md+3cuRNHR0fKlSvH77//zieffELjxo1xdXUF4Pr16/Tr149+/foxf/58/P39H0HUIiIiIk+ewt7XUJWKIiIiUtRoz8RH4MyZMwQGBhIfH8/XX39NWFgYWVlZLFy4kPLly1OqVClatWqFo6MjlStXxtramjFjxhAXF0e3bt3ynFMNWEREREREREREpLApmfgI9O7dm5s3b1K/fn3effddMjMz+eyzz2jTpg0Gg4GoqCisrKwIDw9nxowZZGZmMnr0aFq3bo2dnV2ec6oBi4iIiIiIiIiIFDZDdnZ29qMOoig7cOAAtWrVIiEhgYoVK5KQkEClSpVo1qwZHh4ehIeH4+LiwowZM+65vNlkMmEymczndxuwJCcn4+Tk9BC+REREREREREREHkcpKSk4OzsXSJ5IeyY+oPT0dGxsbB51GPlSAxYRERERERERESlsSibmw8/Pj+rVq2NlZcWSJUuoUaMGISEhBAUFERMTQ4kSJejTpw/jxo3DyurOz+jh4UFAQAABAQHmeXx8fOjYsSMhISEAHDlyhDfffJM9e/ZQuXJlJk2aBEBYWBgff/yx+bmYmBhOnz5NsWLFMJlMHD9+/J7x5lWZKCIiIvJXFHbTkqeJGrCIiIhIUfPE7pno5+eXI2lXGBYuXIiNjQ0RERGEhITQtm1b6tWrR0xMDLNmzWLevHmMGzfugefLzMykY8eOFCtWjMjISL788kvz8wsXLmT9+vUcO3YMgGvXrjFhwgSio6OxtLRk9uzZZGRk5Du39kwUEREREREREZHCpsrEe/Dy8mLy5MkALFq0CDc3N2bOnInBYOC5557jwoULjBgxglGjRmFhcf+87MaNGzlx4gRbt26lbNmyAIwfP54WLVrQsGFDevXqZa4oDA4ONndutrW15cqVKxw/fpznnnsuz7mDg4MJDAw0n9/dM1FERERERERERKSgKJl4D3Xq1DH/HRcXR8OGDTEYDOZrjRs3JjU1lXPnzuHu7n7f+eLj43FzczMnEgHq168PwJtvvsmaNWvMDVg6dOhgHnP69GlKlCjBpUuX8k0mas9EERERKShauisiIiIi+Xlilzn/0eLFi6lbty6Ojo6ULVuWHj16cOnSJfP9rVu3YjAY2LRpE3Xr1qVYsWI0atSI+Pj4HPOMGzeO0qVL4+joSHx8PPv378fHx8d8f926dXkurb5bEWhhYUFUVFSOWE6dOkVaWlqO8T/88ANeXl7Y2trSrt2d/1nv1KkT165dM485dOgQTZo0wc7OjurVqwPkmkdERERERERERORheioqE2/fvs3YsWOpWrUqly5dIjAwEH9/f3766acc4z744AOmTZuGq6srb7/9Nv369SMiIgKApUuXMn78eD7//HMaN25Mq1atOHjwINWqVQOgWrVqrF+/nuzsbPN8ERERWFlZYW9vD4CrqytXr141x3Lq1ClatmzJqlWrmDJlClWrVuXs2bN06dKFgIAA3nzzTRYvXszOnTtzfdPAgQMJDQ0lPDyckydP0rp1a8LCwmjTpk2ev4EasIiIiEhR9qiaxqiKU0RERIqapyKZ2K9fP/PflStX5pNPPqFevXqkpqbi4OBgvjd+/HiaNm0KwPvvv0+7du24desWtra2fPrpp/Tv35++ffsCULFixRzJuYEDBzJx4kS2bt3KkSNHiI+P56OPPsLT09O89Pnll19mwYIFODg4kJaWxsyZM7G1teX48eOkpqbSokULnJycSE9Pp1evXly+fJlNmzbl+U1t27Y1V0G6uroC8PPPP5vj/V+hoaGMHj367/yMIiIiIiIiIiIi9/RUJBP37t1LSEgIMTExJCUlkZWVBcCZM2fw9vY2j6tZs6b573LlygFw6dIl3N3diY+PZ+DAgTnmLVu2rHmuZ555hho1anDx4kVq1apFiRIl6N+/P7GxsebxwcHB7N27l5dffpns7GysrKxIT0/PEYuvry8HDx6kXr16VK5cmSlTptC+fftc37Ry5UpzkvJuc5fs7GxOnTplrpb8IzVgERERkaJMFYIiIiIiD8cTv2diWloarVq1wsnJiaVLlxIVFcX3338PYE7k3WVtbW3++26i7m6y8H9t3boVPz+/HNdKlChBt27dMJlMJCYmMnHiRDIzM833LS0t2bdvH2+88QZbtmwhOjqa9evX54jF0dGRdu3aYTKZiIuLo3jx4jne4eHhgbW1Ne7u7qxbt46ffvqJkSNHEhcXx7Fjx/D09MwzXqPRiJOTU45DRERERERERESkID3xlYlHjhzhypUrTJw40VyJt2fPnj89T9WqVYmKiqJ3797ma1FRUTnGuLq6kpiYaD7PzMzk0KFDNGvW7IFjMRgMbNmyhYSEBI4fP87QoUOpUKEC586dM48xGo0UK1aM1q1bA+S7T6KIiIiIiIiIiMjD9MQnE93d3bGxseHTTz/l7bff5tChQ4wdO/ZPzzN48GAGDBhA3bp1adSoEd988w0HDhygcuXK5jEvv/wygYGBrF27Fk9PTz7++OMcHZgfJJbGjRvz/fffU6VKFUqVKsVzzz1HUlIS8N9qyU6dOrFkyRJ69+5NYGAg9vb2xMbGsnHjRmbOnJln/GrAIiIiInLHw2zGouXVIiIiUtQ88cucXV1dWbBgAcuXL8fb25uJEycyderUPz1Pz549CQ4OZtiwYdSuXZtTp07h7++fo9lJv3796NOnD71796Zp06ZUrlzZXJX4oLG89957rF69mkqVKnHt2jUMBgOjRo0C7lQkLly4kLVr1/LOO++wfPlyGjdujK+vL6NGjeLkyZNUr149z/hDQ0NxdnY2H9ovUURERERERERECpohOzs7+1EH8bhq0aIFZcuWZfHixXne9/Pzw8fHhxkzZvyt94wfP57Zs2dz+vRpnnnmGUaOHMnAgQOZN28eI0aMYM2aNTRo0AB/f3/s7OyYNWtWrjnyqkx0c3MjOTlZ+yeKiIiIiIiIiBRhKSkpODs7F0ie6Ilf5lxQbty4wezZs2nVqhWWlpZ8/fXX/PLLL2zcuDHX2PT0dGxsbP7yuz7//HPq1atHyZIliYiIYMqUKQwaNIhLly5x8eJFfH19Aejfvz/Xr1+nefPmzJ07lxUrVrBp06Y85zQajRiNxr8ck4iIiIiIiIiIyP088cucH1RWVhaTJ0+mSpUqGI1G3N3dGT9+PAAjRoygZs2aBAUFUbNmTWrWrMkPP/zAihUraN68OSEhIfj4+DB37lwqVaqEra0t/v7+bNu2jbCwMAwGAwaDgYSEBAC2bdtG/fr1MRqNlCtXjvfff5+MjAxzLEeOHKFZs2Z4enrSp08fnJ2dadeuHcWLF8fOzo4FCxZgMBjYtGkTS5YswWQy0b17d+rXr0/9+vUfxc8nIiIiIiIiIiJSdCoTg4ODmTNnDtOnT+fFF18kMTGRI0eOAODo6MiiRYsoX748Bw8eZMCAAXTv3p3OnTubnz9+/DgrVqxg5cqVWFpaUrFiRY4ePUr16tUZM2YMcGfPxPPnz9O2bVv8/f1ZtGgRR44cYcCAAdja2hISEgLcabTi7OzM8uXLqVixIpMnT6Zdu3bm7s7Tp08H7uyv2L9/f3744Qc2b97M9u3biY+Pp2rVqrm+Tw1YRERERB6+/Jq9qDGLiIiIPK2KxJ6J169fx9XVlZkzZ3Lu3DlWrVpFdHR0vuOnTp3KsmXL2LNnDwkJCVSqVAkrKysuXLiAq6ureVxeeyZ+8MEHrFixgri4OHN35s8//5wRI0aQnJzMzZs3KV68OAsWLKBHjx4A3L59Gw8PDwICAnjvvfcYNmwY06dPx8bGhtKlS9OlSxdeeOEFevToQeXKlYmMjKRUqVI5Yg4JCWH06NG5vkV7JoqIiIgUHiUTRURE5EmgPRP/pLi4OEwmE6+88gqurq4MHjw4x/1vvvmGTz75hBMnTpCamkpGRkauH7ZcuXI5Eon3elfDhg3NiUSAxo0bk5qayrlz57h27Rq3b9+mcePG5vvW1tbUr1+fuLg4LCwseO2115g+fTrnzp0zv3P//v0AbNmyJVciEe5UXgYGBprP7zZgEREREZHCo6ShiIiIFDVFYs9EOzs7898ODg6ULFnSfP6f//yHnj170rZtW9asWcP+/fv54IMPSE9Pz3eOh8Xa2tr8993kZFZWVp5jjUYjTk5OOQ4REREREREREZGC9NRVJn755ZeEhIRw7tw5LCzu5Eq9vLywtLSkV69eNG/ePMcy54iICJycnJg1axZjxoyhWrVqlC1b9p7vOHToEEFBQezYsYPdu3dz5coVpk+fTqlSpahWrRrTp0/HwcEBOzs75s6dS0ZGBjY2NlSoUIGSJUtiY2PDzz//zJ49e1i1ahXXrl0jKyuLXr165XhPmzZtiI6OplSpUrz44ouF84OJiIiIPET5LQt+UqkyUURERIqap64ysWvXrly5coUtW7aYr924cQOAAwcOEBMTg8lkYteuXcybN4+4uDiSkpLo3Lkza9asoVSpUmzYsCHfCsBr167x8ssv4+vrS5cuXahcuTIJCQl07NiRrKwsBg4ciMlk4osvvuDGjRvmjtHp6els2rQJe3t73n77bd59913Wr1/P+PHjefXVV7G1taV169YAnD9/HoDXXnuNAwcO8M0335iXOefHZDKRkpKS4xARERERERERESlIT10ysXjx4rRp04avvvrKfO27776jdOnSDB8+nC1bthAfH0+3bt24dOkS69evp0mTJnz11Vd07tyZUqVK4ebmlqMz8h/NnDkTX19fJkyYwLhx43B0dGTPnj1ERESwdetWnnnmGWrUqIHRaGTOnDmMGTOGgQMHUrduXTZt2gRAixYtuH37NtevX2fQoEH89ttvbN68mTfeeAPAHPs777yDl5cXjRo1YsSIEQD5xhUaGoqzs7P50H6JIiIiIiIiIiJS0J66Zc4APXv2ZMCAAXz++ecYjUaWLl1K9+7d+fDDD8nIyDAvc05JSeHf//43X331FU2bNjU//69//YuYmJgcc37zzTcAxMTEsGXLFhwcHMz3LC0tgf8m+lxcXOjduzefffaZeUyHDh24dOkSALGxsbi7u3P69Ok847906ZJ5WfRdd5tu51cxqQYsIiIi8iTQsmARERGRJ9tTmUxs37492dnZrF27lnr16rFjxw6mT59eIHOnpqbSvn17Jk2alOteuXLlzH//sXkK3GmgcjcReL9mLqmpqfzzn/9kyJAhue65u7vn+YzRaMRoNN43fhERERERERERkb/qqUwm2tra0rlzZ5YuXcrx48epWrUqtWvXzjXOycmJ8uXLExERkaMyMSIigvr16+c5d+3atVmxYgUeHh5YWf21n69mzZqcO3eOo0eP8uyzz+b5jtjYWKpUqfLAc5pMphxLoLVnooiIiEjByqt5jCotRUREpKh56vZMvKtnz56sXbuW8PBwevbsme+4oKAgJk2axDfffEN8fDzvv/8+0dHRDB06NM/x7777LlevXqV79+5ERUVx4sQJNmzYQN++fcnMzHyg2Jo2bcpLL71Ely5d2LhxI6dOnWLdunWsX78egBEjRvDrr78yaNAgoqOjOXbsGKtXr2bQoEH5zqk9E0VEREREREREpLA9lZWJAC+//DIlSpQgPj6eHj165DtuyJAhJCcn895773Hp0iW8vb354Ycf8PLyynP83UrGESNG0LJlS0wmExUrVqR169ZYWDx4bnbFihUMGzaM7t27k5aWRpUqVZg4caI5ptdee42jR4/SpEkTsrOz8fT0pFu3bvnOpz0TRURERERERESksBmy73b2kMfG1atXsba2xtHREQ8PDwICAggICPhTc6SkpODs7ExycjJOTk6FFKmIiIiIiIiIiDzuCjJP9NRWJj7JSpQo8ahDEBERERERERERyUWViY8hPz8/fHx8iI6OZtu2bTnu5ffPlVcDFjc3N1UmioiIiBSivJqy5EWNWkRERORRKsjKxKe2AcvTYOXKlVSoUIExY8aQmJhIYmJivmPVgEVERERERERERAqbljk/xkqUKIGlpSWOjo6sX7+evn378tFHHxESEpJrrBqwiIiIiDx8qjgUERGRokbJxCfEqVOnKFOmTL73jUYjRqPxIUYkIiIiIiIiIiJFjZY5PyHWrVtHnTp1HnUYIiIiIiIiIiJShKky8TFnY2NDZmYmu3fvxt/fP99xeTVgEREREZHC9aANWO5Hy6VFRETkSaHKxMech4cH27dv5/z580ydOjXP/RJBDVhERERERERERKTwGbKzs7MfdRCSk5+fHz4+PsyYMYNdu3bxz3/+k/j4eEwmE/n9c+VVmejm5lYgLb9FREREREREROTJlZKSgrOzc4HkiZRMfEoV5H8kIiIiIiIiIiLy5CrIPJGWOT/mvvvuO2rUqIGdnR0lS5akefPmpKWlPeqwRERERERERESkCFIDlsdYYmIi3bt3Z/LkyXTq1Inr16+zY8eOPJc6qwGLiIiIyMNXUA1YHgY1eREREZGC8NRUJvr5+REQEFAocyckJGAwGIiOji6wOQ0GA6tWrbrn/ImJiWRkZNC5c2c8PDyoUaMGAwcOxMHBIdd8asAiIiIiIiIiIiKFTZWJD8DNzY3ExERKlSr1UN9bq1YtXnnlFWrUqEGrVq1o2bIlr7/+OsWLF881Njg4mMDAQPP53QYsIiIiIlJ4VO0nIiIiRc1TU5lYmCwtLSlbtixWVg8392ppacnGjRtZt24d3t7efPrpp1StWpVTp07lGms0GnFycspxiIiIiIiIiIiIFKSnKpmYkZHBoEGDcHZ2plSpUowcOdK8v+DixYupW7cujo6OlC1blh49enDp0iXzs0lJSfTs2RNXV1fs7Ozw8vJi/vz5QN7LkA8fPsyrr76Kk5MTjo6ONGnShBMnTgAQFRVFixYtKFWqFM7OzjRt2pR9+/Y90DdkZ2dTpUoVpk6dCtxZDt24cWM6derEwYMHsbCw4Pvvvy+Q30tEREREHozH+2vzPERERESKmqcqmbhw4UKsrKzYvXs3YWFhfPzxx8ydOxeA27dvM3bsWGJiYli1ahUJCQn4+/ubnx05ciSxsbGsW7eOuLg4Zs2ale+y5vPnz/PSSy9hNBrZvHkze/fupV+/fmRkZABw/fp1+vTpw86dO9m1axdeXl60bduW69ev3/cbDAYD/fr1Y/78+URGRjJhwgT27NnDJ598QrVq1UhKSqJatWq5njOZTKSkpOQ4RERERERERERECtJTtWeim5sb06dPx2AwULVqVQ4ePMj06dMZMGAA/fr1M4+rXLkyn3zyCfXq1SM1NRUHBwfOnDmDr68vdevWBcDDwyPf93z22Wc4OzuzbNkyrK2tAXj22WfN9y0sLOjVqxdJSUm4uLjw5Zdf4uLiwrZt23j11Vfv+x3+/v6MGjWKhIQEtm/fzowZM/j9998pW7Ys06ZNo02bNrmeCQ0NZfTo0Q/6U4mIiIiIiIiIiPxpT1UysUGDBhgMBvN5w4YNmTZtGpmZmURHRxMSEkJMTAxJSUlkZWUBcObMGby9vXnnnXfo0qUL+/bto2XLlnTs2JFGjRrl+Z7o6GiaNGliTiT+r6tXrwJQp04dLl++TGZmJjdu3ODMmTMP9B3ly5enXbt2bNmyhfXr17Ny5Ur8/f05ceIExYoVy/MZNWARERERKTxqtCIiIiJyx1O1zDk/t27dolWrVjg5ObF06VKioqLM+w6mp6cD0KZNG06fPs2//vUvLly4wCuvvMKwYcPynM/Ozu6e75s4cSJwp1rw119/JTo6mpIlS5rf9SDefPNNli1bxs2bN5k/fz7dunXLN5EIasAiIiIiIiIiIiKF76mqTIyMjMxxfne/wiNHjnDlyhUmTpxortbbs2dPruddXV3p06cPffr0oUmTJgQFBZkbofxRzZo1WbBgAe+++y7Lly8nJSWFunXrMn36dOrVq8ehQ4cAaNmyJS4uLhw9epTLly8TFhaGv78/mZmZAPTr148ePXrkqiBctGgRAQEB2NvbM2vWLNavX8/27dvp2LEjjo6OLF68OFdMJpMJk8lkPteeiSIiIiL5K6jmKapYFBERkaLmqapMPHPmDIGBgcTHx/P111/z6aefMnToUNzd3bGxseHTTz/l5MmT/PDDD4wdOzbHs6NGjWL16tUcP36cw4cPs2bNmjwbnQAMGjSIixcvEh4ezgcffMD333+PwWCgefPmXL16lQoVKgAQHx/PL7/8Qr169bCwsOCdd97BxcWFW7duAXeavhw6dIju3bsDmJOQXbt2JSsrixdeeIHg4GC8vLzw9PRk7dq1OfZ+/KPQ0FCcnZ3Nh5Y4i4iIiIiIiIhIQXuqkom9e/fm5s2b1K9fn3fffZehQ4fy1ltv4erqyoIFC1i+fDne3t5MnDgxV8WhjY0NwcHB1KxZk5deeglLS0uWLVuW53tsbW3JyMjAy8uLf//733Tr1s18fd68eQQFBQHQtGlT2rVrR7Vq1XBzc8Pa2pq33nqLGjVqmOeqXLmyuav0zz//DNxZRt2jRw+uXr1Keno6ffv2ZcmSJbi7u+Pn55dnTMHBwSQnJ5uPs2fP/p2fUkREREREREREJBdDdnZ29qMO4klz4MABatWqRUJCAhUrVjRf79SpE8WLF6d37940a9aMChUqUL9+fb799lssLS1Zt24dHTp0YNOmTfz444/89NNPXLhwgfT0dEwmE506deLbb78FYP/+/dStWxdLS0vOnj1LixYt6Nq1KyNHjnygGFNSUnB2diY5OVn7J4qIiIiIiIiIFGEFmSd6qioTHzft2rVj+/btxMbGAnDixAnKlStHREQE4eHhvP/++2zZsoXo6GhatWplbtBiMplwdXXF3t4eb29vzp07x+HDh+nTpw8ZGRmP8pNERERERERERKQIe6oasDwsnp6e2NjYEBERYa5MvH37NlFRUQQEBJjHTZw4EQcHB1555RUaNWrE6tWrgTtLku3t7enatStBQUF8/fXXXLlyheLFixMVFcXhw4fp378/pUqVIiYmhpCQEOzt7alSpQo///xznkud1YBFRERE5OH7K41c1LRFREREnmSqTPwL7O3teeeddwgKCmL9+vXExsbSvn17zp8/z+uvv55j7NSpU+nZsyf/+c9/aN68OQaDgbfeegsXFxd69erFsmXLqFOnDvb29tjb29OqVStee+01MjMzmTdvHgBr165l8ODBxMXFUbNmzTxjUgMWEREREREREREpbKpM/IsmTpxIVlYWvXr14vr163h5eQHg4uKSa+z06dPJzMxk7ty5ZGdnExoayoULF1i+fDlOTk7Uq1ePMmXKkJSUxN69e81NXBwcHABwcHBg1KhRGI3GfOMJDg4mMDDQfJ6SkqKEooiIiIiIiIiIFCg1YCkgW7dupVmzZiQlJeWZUATo0aMHy5YtIysr675NXMLDw81z9u3bl/DwcODOcmpra+v7xqMGLCIiIiIiIiIiAmrA8siYTCaGDBlC6dKlsbW15cUXXyQqKirf8QsWLMDd3Z1ixYrRqVMn0tLSco35+eefqV27Nra2tlSuXJkjR46QlZVFUlISO3bsAMDV1ZXXXnsNe3t7xo8fX2jfJyIiIiIiIiIici9KJv4Jw4cPZ8WKFSxcuJB9+/ZRpUoVWrVqxdWrV3ONjYyMpH///gwaNIjo6GiaNWvGzz//bL7v6emJtbU1Q4cOZejQocTGxvLZZ59x7NgxLly4gK+vL5MmTQIgPDycTp06cfDgQfr165dnbCaTiZSUlByHiIiIiBSev9J8RURERORJpz0TH1BaWhqzZs1iwYIFtGnTBoA5c+awceNG5s2bx9KlS3OMDwsLo3Xr1gwfPhx/f3+uXbvGc889R0xMDHCniUvZsmVJTk6mTJkydOvWjbS0NGxtbTlw4AAXL140L3N+/fXX6du37z3jCw0NZfTo0YXz8SIiIiIiIiIiIqgy8YGdOHGC27dv07hxY/M1a2tr6tevT1xcXK7xcXFxvPDCC8CdxOKCBQvw8PDIMebGjRukpaXRpk0b9uzZw5EjR7h9+za//fYbN27cMI/z9fW9b3zBwcEkJyebj7Nnz/7FLxURERGRB5Ewsd2jDkFERETkoVMy8SFwdnbGxcUFPz+/HJtcpqWlMWHCBI4dO0b9+vXp3bs3hw8f5tixY9ja2uLn5wdA6dKl7/sOo9GIk5NTjkNERERERERERKQgKZn4gDw9PbGxsSEiIsJ87fbt20RFReHt7Z1rvLOzM2PHjmXp0qX4+/vTsWNHdu3aBdxJIvbu3Zv09HRCQkJYvXo1dnZ2uLi4UKVKFapUqcLs2bPx8vICwN/fn9dff/3hfKiIiIiIiIiIiEg+tLLTLy8AACAASURBVGfiA7K3t+edd94hKCiIEiVK4O7uzuTJk7lx4wb9+/dnyZIl5rFfffUVUVFRZGVlkZiYSEpKCidPnjQvPQ4KCmLbtm2MHz+ekSNH8uWXX3Lu3Dnc3d1ZtmwZGzduZOHChSxevJgePXowatQorKzu/U9lMpkwmUzmczVgEREREfl7HqTBipY6i4iISFGjZOKfMHHiRLKysujVqxfXr1+nbt26bNiwgeLFi5vHzJkzh/Hjx/PTTz9x4sQJPvroIxITE3F1deXDDz9k7NixzJs3jyVLltC1a1d8fX0ZNWoUR48e5ZtvviE+Pp7atWtjb2/Pq6++CkDlypXp2LHjPWNTAxYRERERERERESlshuzs7OxHHcTTwM/Pj+PHj3Pp0iUiIiKoV6+e+d7dbs6rVq0iJiYGHx8fTp8+jbu7u3mMr68vTZs2ZcaMGVy/fp3GjRuTmJhI69atad26NS+99BJ16tRh9+7duRq5QN6ViW5ubiQnJ2v/RBERERERERGRIiwlJQVnZ+cCyRNpz8QC5Ovri6urK+Hh4fydHK2joyP79u3j66+/ply5cowaNYqaNWvSunXrPBOJoAYsIiIiIiIiIiJS+JRMLECenp5s2bKF1atXM3jw4HzHWFtbExkZab6WlJTE0aNHc4yzsrKiefPmTJ48mV27dnHt2rU8G72IiIiIiIiIiIg8LNozsYA9++yzbNmyBT8/P6ysrJgxY0aO+w4ODvTv35+goCBKlixJ6dKl+eCDD7Cw+G9ed82aNZw8eZKXXnqJ4sWLM27cOADat2+f73vVgEVERETk4XuQJi1/hRq7iIiIyONKycRCULVqVTZv3oyfnx+Wlpa57k+ZMoXU1FTat2+Po6Mj7733HsnJyeb7Li4urFy5kpCQEG7duoW9vT21atXi+eefz/edasAiIiIiIiIiIiKFTQ1YngAdO3akZMmSzJs3L98xasAiIiIiIiIiIiJ5KcgGLKpMfALcvHkTW1vbe44xGo0YjcaHFJGIiIiIiIiIiBRFSib+RevXr2fcuHEcOnQIS0tLGjZsSFhYGJ6engD8+uuvDBw4kCNHjlC9enU+/PBDOnXqxP79+/Hx8QHg0KFDBAUFsWPHDuzt7WnZsiXTp0+nVKlSAHz33XeMHj2a2NhYtm7dSnx8PKtXr8be3v6RfbeIiIiI/FdB7ZmoPRJFRETkSaFuzn9RWloagYGB7Nmzh02bNmFhYUGnTp3IysoiJSWF9u3bU6NGDfbt28fYsWMZMWJEjuevXbvGyy+/jK+vL3v27GH9+vX89ttvvPHGGwAkJibSvXt3+vXrx4gRI6hUqRKdO3cmv1XpJpOJlJSUHIeIiIiIiIiIiEhBUmXiX9SlS5cc5+Hh4bi6uhIbG8vOnTsxGAzMmTMHW1tbvL29OX/+PAMGDDCPnzlzJr6+vkyYMCHHHG5ubhw9epTU1FQyMjLo3LkzKSkpTJkyhe7du+Pg4JBnPGrAIiIiIiIiIiIihU0NWP6iY8eOMWrUKCIjI7l8+TJZWVmkpaWxdu1aNm7cSExMDJs3bzaPP3DgALVq1WL//v2kpKTwj3/8g8TERABsbW3NXZ/T0tJ4/fXXiYuLIy4ujuzs/2/vzsOyqvb//z9vRlHkxgHDAcEB5wHMITUTTUUzk1JLsxQzbdBSyQnNgTyGluZUedJKzGOamZp9tJwpRxSnVJSQVMycERBBBNm/P/x5fyPBELnB5PW4rn1d7r3X2vu9cR3qvFtrvQ08PDwwDINhw4YxbNiwbONRARYREREREREREclOfhZg0TLnPOrSpQvx8fHMnz+fiIgIIiIiALhx48Y/9r127RpOTk489thjAHz00UccOHCAAwcOsG/fPi5fvsz48eM5cuQIc+fOJSMjg/PnzzNixAhiY2OzfaajoyMuLi5ZDhERERERERERkfykZc55cPnyZaKjo5k/fz6tWrUCYNu2bZb7NWvW5H//+x9paWmWCst79uyx3O/UqRM9e/bku+++A6B8+fJUr17dcv+vMxpr1apFo0aNaNq0KSVLliQsLIxJkybdEVN2MxNFRERE5N7dS1EVFU4RERGRokYzE/OgVKlSlClThnnz5nH8+HE2b95MUFCQ5f6LL75IZmYmAwcO5OjRo6xbt45p06YBYDKZABg0aBDx8fHArSXTsbGxrFu3jn79+nHz5k0iIiJ4//33iYyMJCYmBriVMGzRokW2MYWGhmI2my2Hh4eHNX8EIiIiIiIiIiJSBCmZmAc2NjYsXbqUvXv3Uq9ePYYNG8aHH35oue/i4sIPP/zAgQMH8PHxYezYsYwfPx64tT8iQIUKFdi+fTsAISEh1K9fn6FDh+Lq6srevXt5/fXXGTduHE2bNqV3796ULFmS6dOn06lTp2xjCg4OJjEx0XKcPn3ayj8FEREREREREREpalSApYAsXryYfv36kZiYiJOTk+W6yWRi5cqVBAQEWK5VrVqVGjVq8MEHHzBkyBCOHz/OwYMHKV26dK7fl58ba4qIiIiIiIiIyL9XfuaJtGeilXz11VdUrVqVihUrcvDgQUaNGsXzzz+fJZGYExsbG7p27cqECROIj4/nwIED95RIFBERERERERERsQYlE63k3LlzjB8/nnPnzlG+fHl69OjB5MmTc9X36aef5p133sHDw4Nt27ZRpkyZf+yjAiwiIiIi9+9eiq+ACrCIiIhI0aNkopWMHDmSkSNHZnsvOTmZ48ePW85PnDhhmX24YcMGPv30U4oXL05SUhJRUVHUrFkTgIULF7Jo0SIOHz58xzNDQ0MJCQmxzseIiIiIiIiIiIigPRMLRXh4OG3atLnjep8+fVi7di2XLl3Ktp+/vz9VqlRh7ty5d9zLbmaih4eH9kwUERERERERESni8nPPRFVzLgR+fn4YhnHHMXXqVC5dusSOHTss12bMmEGJEiVYsmQJ27dvp1+/ftk+09HRERcXlyyHiIiIiIiIiIhIflIysRB4eXkxc+bMLNd8fHz4+OOPcXJyokWLFsydO5dOnToRHByMvb09vXr1om3btjRt2rSQohYRERERERERkaJOeyY+QOzs7BgyZAhTpkxh+PDhjBkzhpdffplJkyaRkJBAeHg40dHRlj0U/0oFWEREREQK3t0Ktqg4i4iIiDyMNDPxAXO74nOxYsX4z3/+w6hRo/D396dRo0aYzWY6d+6c7Z6KoaGhmM1my+Hh4VHQoYuIiIiIiIiIyENOMxMfMDY2t/K7M2bMoE+fPgD07NmTEiVK4OLiwpYtW7LtFxwcTFBQkOX8dgEWEREREbEezT4UERGRokbJxEJgY2PD34top6en59j+3XffpXHjxjRp0iTHNo6Ojjg6OuZbjCIiIiIiIiIiIn+nZc6FwM3NjbNnz1rOk5KSOHHiRJY2u3btsvy5Xr162NnZYTKZCixGERERERERERGRv9PMxELQtm1bwsLC6NKlC66urowfPx5bW9ssbb799lsaN27M448/zuLFi0lJSeHatWs5PlMFWERERESs7+8FV7TMWURERIoazUwsBMHBwbRu3Zqnn36azp07ExAQQLVq1bK0CQkJYenSpTRo0ICvvvqK0aNHc/jw4SwJw79SARYREREREREREbE2k/H3zfuk0JlMJlauXElAQIDl2q+//krDhg05efIknp6ed/TJbmaih4cHiYmJuLi4FEjcIiIiIiIiIiLy4ElKSsJsNudLnkjLnP8lnJycAEhJScn2vgqwiIiIiIiIiIiItSmZ+C8RHx8P3CreIiIiIiKFQ3smioiISFGnZOIDKLuV54cPH6ZSpUqULVs22z4qwCIiIiIiIiIiItamAiz/Elu3bqVDhw453lcBFhERERERERERsTYVYPkXuH79Ou7u7vz000889thj2bZRARYREREREREREcmOCrAUMQsWLKBp06Y5JhJBBVhERERERERERMT6lEwsRD/99BP/+c9/OHz4MLa2tjRv3pxZs2ZRrVo1bty4QVBQEN999x2XLl3Czc2N0NBQgoODs32W9kwUERERKXh/L8iSFyriIiIiIv8m2jOxEF27do2goCAiIyPZtGkTNjY2PPvss2RmZjJ79mxWr17NsmXLOH78OC+88AKLFy/O8VnaM1FERERERERERKxNMxOzERgYSEJCAqtWrbLqe7p16wZAWFgYQ4cO5fjx47i5uREVFUVcXBze3t48/vjjmEwmzGYzycnJOT4rODiYoKAgy/ntPRNFRERERERERETyiwqwZCMxMRHDMHB1dbXqe2JiYhg/fjybNm3i4sWLlChRgmvXrrFmzRrc3d1p3749ZcqUoWPHjjz99NN3reb8d/m5saaIiIiIiIiIiPx75Wee6KFa5nzjxo18eY7ZbLZ6IhGgS5cuxMfHExgYiLOzMxEREcCt72jUqBEnTpxg0qRJpKam8vzzz9O9e3erxyQiIiIiIiIiIpKTBzqZ6Ofnx+DBgxk8eDBms5myZcsybtw4bk+m9PLyYtKkSfTp0wcXFxcGDhwIwLZt22jVqhVOTk54eHjw9ttvc+3aNQDGjBlDs2bN7nhXw4YNee+994Bby5wDAgIs99LS0nj77bcpV64cxYoV4/HHH2fPnj2W+2FhYXckH1etWoXJZLKcHzx4kDZt2lCyZElcXFxo2LAh0dHRvPvuu9SpUwdbW1uuXLkCwLPPPktkZCQuLi688MILzJ8/n549e1qKsWQnLS2NpKSkLIeIiIiI5I3X6DW5OkRERESKmgc6mQiwcOFC7Ozs2L17N7NmzeKjjz7i888/t9yfNm0aDRs2ZP/+/YwbN47Y2Fg6duxIt27d+PXXX/nmm2/Ytm0bgwcPBqB3797s3r2b2NhYyzOOHDnCr7/+yosvvphtDCNHjuS7775j4cKF7Nu3j+rVq+Pv7098fHyuv6N3795UqlSJPXv2sHfvXsaMGYOrqyvz5s3j/PnzZGRkWPY8bNiwIUOGDGHJkiUcO3aM3377jYULF2JjY0Pp0qWzfb4KsIiIiIiIiIiIiLU90Hsm+vn5ceHCBY4cOWKZ5Td69GhWr15NVFQUXl5e+Pr6snLlSkufV199FVtbWz777DPLtW3bttG6dWuuXbtGsWLF8PHxoVu3bowbNw64NVtx8+bN7Nq1C8hagOXatWu4uLjg6+tLZGQkAOnp6Xh5eTF06FBGjBhhKaCSkJBgeeeqVat49tlnadiwIQcOHMDFxYU5c+bQt29fS5uNGzfy9ttvExMTQ2ZmJps3b8bPz4/hw4fz6aef4u3tzfHjx4FblZ+rVKnC77//nu3PKi0tjbS0NMv57QIs2jNRRERERERERKRoK1J7Jj722GNZlgs3b96cmJgYbt68CUDjxo2ztD948CBhYWE4OztbDn9/fzIzMzlx4gRwa5bg119/DYBhGCxZsoTevXtn+/7Y2FgyMzOzzAi0t7enadOmHD16NNffERQUxKuvvkq7du2YMmUKsbGxtGvXjqioKObPn0/JkiVp3bo1hmEwefJkihcvzujRo0lOTuaVV16hSpUqd/3LdnR0xMXFJcshIiIiIiIiIiKSn+wKO4D7VaJEiSznycnJvPbaa7z99tt3tK1cuTIAvXr1YtSoUezbt4/U1FROnz7NCy+8wPLlywkJCSEqKgpbW1vatWtHpUqVANiwYYMlqbllyxYAIiMjqVGjBidPniQjI4Nx48Yxfvx47O3t2bBhA3AruXm7X2hoKI6Ojvzwww+MHTvWEnvFihUtyVEABwcHatWqRd++fXn11VfJyMigffv2nD59Oj9/dCIiIiIiIiIiIvfkgU8m3q5wfNuuXbvw9vbG1tY22/aNGjUiKiqK6tWr5/jMSpUq0bp1axYvXkxqairt27fn5s2b9OrViw8++IDt27cTHx/Pc889R7du3Vi0aBH16tVj3bp1AJQsWZI9e/ZQr149xo8fz2+//cYrr7zCvHnzKFmyJCNHjrQkCuvWrcvGjRuBW1WinZycWLt2Le7u7lSrVo0vvviCt956i+joaOLj4yldujTLli0jIiKCjIwM3nnnHT766CPCw8OpVq1ajt+U3TJnERERkcJSVIqTnJzSubBDEBERESlQD/wy57i4OIKCgoiOjmbJkiXMmTOHIUOG5Nh+1KhR7Nixg8GDB3PgwAFiYmL4/vvvLQVYbuvduzdLly7l22+/pXfv3pw9e5aMjAyee+45nJ2dcXFx4c033+SRRx6hZs2a/Pbbbxw4cID4+HgGDRpESkoKS5YsoUWLFjzzzDMUL16cGjVqsGjRIr7++msWL14MgJ2dHWazmf/85z9ERESwfPlyduzYQbFixWjevDne3t707NkTwzDo0aMHADNnzmTAgAE0b96c6dOn069fP+rWrXvXn5MKsIiIiIiIiIiIiLU98DMT+/TpQ2pqKk2bNsXW1pYhQ4YwcODAHNs3aNCAn3/+mbFjx9KqVSsMw6BatWq88MILWdp1796dwYMHY2trS0BAAE5OTjz55JPUr1+f0qVL4+rqypUrVyhVqhSPPvoo169f5+WXX+bq1as0btyYdevWsX79embPnk1sbCwZGRls377dsgfjxIkTLXHa2tpy+fJl+vTpY0laxsXF8fHHH/PJJ5+Qnp5uiR3g6NGjvP766zz66KPs2LGDV155ha+//tqyvDo7wcHBlmrQ8P8KsIiIiIgUBs3YExEREXk4PfDJRHt7e2bOnMncuXPvuHfy5Mls+zRp0oT169ff9bmurq5cv349y7UNGzawY8cO1q9fz8qVK6lZsyYRERHY2trSoEEDVq1aZWm7c+dOevfuTUhICP7+/pjNZpYuXcr06dP54YcfADhz5gyrVq3CwcGBJUuWADB16lTmzJlDeHh4tjH91ZkzZ6hfvz5NmjSxFIzJiaOjI46OjndtIyIiIiIiIiIicj8e+GRiQTKZTLRs2ZKWLVsyfvx4PD09WblyJQ4ODlkKpADs2LEDT09Pxo4da7l26tSpLG2y69eoUSPOnTuHnZ0dXl5elut+fn74+Pgwc+ZMUlJSmDZtGjExMRiGQeXKlbGzs1OFZhERERERERERKVRKJv7/IiIi2LRpEx06dKBcuXJERERw8eJFateuzfXr11m3bh3R0dGUKVMGs9mMt7c3cXFxLF26lCZNmrBmzRpWrlyZ5ZleXl6cOHGCAwcOUKlSJUqWLEm7du1o3rw5AQEBfPDBB9SoUYM///yTEydOUL58eeBWUvPQoUN4enry3//+lw8//JDNmzdTq1atHONXARYRERGRgne3QjNa6i0iIiIPowc6mZjdUmBrcXFx4ZdffmHmzJkkJSXh6enJ9OnT6dSpE40bNyY8PJzGjRuTnJzMli1beOaZZxg2bBiDBw8mLS2Nzp07M27cOCZOnGh5Zrdu3VixYgVt2rQhISGBBQsW4OXlxbZt2xg4cCD9+vXj4sWLuLu7k5aWRvHixQFwd3enVKlS/PHHH/To0YNu3bpRvHhxkpOTc4w/NDSUkJAQa/+YRERERERERESkCDMZhmEUdhAPs78uX4ZbCdI2bdpw5cqVLHsk/rWdl5cXgwYNYsSIEZb7DRs2pFu3bowfPz7b92Q3M9HDw4PExEQtjxYRERERERERKcKSkpIwm835kid6oGcmFmX29vZZzk0mE5mZmTm2VwEWERERERERERGxNiUTrSgwMJCff/6Zn3/+mVmzZgGwYMECAPbu3cuoUaOIiorCx8eHjIyMLH0PHTpEo0aNiIqKokKFCqSkpNw1mSgiIiIieXO3fQ//ifZFFBERkaLGprADeJjNmjWL5s2bM2DAAM6ePcvZs2fx8PAAYOzYsUyfPp3IyEjs7OyIjo629EtLS2Px4sUMGTKEqKgoPvvsM+Lj4/nll19yfFdaWhpJSUlZDhERERERERERkfykZOI98vLysux/+E9tzGYzDg4OFC9eHHd3d9zd3bG1tQVg8uTJtG7dmjp16jB69GiSkpIssxMTEhJo164dffv2pWrVqrRv357y5cuzd+/eHN8ZGhqK2Wy2HLeTliIiIiIiIiIiIvlFy5ytYM+ePZQoUeKubRo0aGD5c/ny5QEYOXIkAM7OzmzatAlnZ2cAUlJSsLOzIz09nZSUFEvV578KDg4mKCjIcn67AIuIiIiI3J2WKouIiIjknmYmWoGbm1u2Cb+/+muBFZPJBGDZEzE5OZmQkBAOHDjAgQMHKF++PCNGjCAmJoZixYpl+zxHR0dcXFyyHCIiIiIiIiIiIvnJZBiGUdhBFLTly5cTEhLC8ePHKV68OL6+vnz//fd07twZHx+fLMuYAwICcHV1JSwsDLi1hLl///5ERUWxevVqXF1dGTNmDIMGDbL08fLyYujQoQwdOpQOHTrg5eVFZmYm33//PdeuXSM1NZVffvmFVq1aAXDgwAF8fX2pX78+v/32Gzdv3qRChQqcOnUKPz8/fv755yzxZ/dXlpaWRlpamuX89szE/Cj5LSIiIvIwUwEWERERedglJSVhNpvzJU9U5GYmnj17ll69evHKK69w9OhRwsPDee6557JN0OXkww8/pGHDhuzfv5/Ro0czZMgQNmzYkG1bLy8vvvnmG06ePMmSJUv473//C0DXrl2Jj48HYOvWrQC0adOG/fv3M3v2bP744w9CQkJ4//33eeSRR+jRowdDhgzh7Nmz2b5HeyaKiIiIiIiIiIi1FclkYkZGBs899xxeXl7Ur1+fN99807I/YW60bNmS0aNHU6NGDd566y26d+/OjBkzLPfPnTvHypUrAVixYgVXr15lx44dtG/f3rKU2Ww2s3z5cgA+//xzAIYNG0bt2rV54403WLt2LevXr6ddu3ZcuHCBiIgI6tati7u7e7YxBQcHk5iYaDlOnz6dp5+PiIiIiIiIiIhITopcAZaGDRvy5JNPUr9+ffz9/enQoQPdu3enVKlSuX5G8+bN7zjPqcLz8OHDGTt2LDY2NpQoUYLBgwdTokQJ4uLiiI2NBSAmJoYvv/wSLy8vSz9/f3/8/f2B/7dsesCAATnG5OjoiKOjY66/QURERERu0VJlERERkdwrcslEW1tbNmzYwI4dO1i/fj1z5sxh7NixREREYGNjc8dy5/T09Pt6n8lkonz58oSHh99xz9XVFQAnJ6f7eoeIiIiIiIiIiEhBKHLJRLiV4GvZsiUtW7Zk/PjxeHp6snLlStzc3LLsSXjz5k0OHz5MmzZtsvTftWvXHee1a9fO9l0fffQRly5dws7ODi8vL0wmE/Pnz2fNmjWsW7eOihUrUqFCBTZt2kS/fv0AOHz4MCNGjGDr1q2UKFGC1NRUkpKS7vpN2RVgERERERHrup/iLQ8azdAUERGR3ChyeyZGRETw/vvvExkZSVxcHCtWrODixYvUrl2btm3bsmbNGtasWcOxY8d44403SEhIuOMZ27dv54MPPuC3337jk08+4dtvv2XIkCHZvq9YsWJ4enoSEBDA+vXrARgzZgyGYbB48WKeeuopjh8/zpIlS5gwYQIRERE88cQTXL9+ncjISH766Sfs7e2ZM2cOZ86c4dKlS9m+RwVYRERERERERETE2orczEQXFxd++eUXZs6cSVJSEp6enkyfPp1OnTqRnp7OwYMH6dOnD3Z2dgwbNuyOWYkA77zzDpGRkYSEhODi4sJHH31k2d/w70wmEwMHDuTPP/+0zDxMS0vD2dmZxo0b06FDB2bPns27777L6tWrmTx5MjY2NpQuXZpatWoBsGDBArp27UrVqlW5ceNGtpWng4ODCQoKspwnJSUpoSgiIiIiIiIiIvnKZGSXmZL74ujoSKtWrdi4caOleMrQoUOBW8nFZcuW0aNHD0t7s9nMnDlz6NOnDz169OD777/HwcEhyzOvXbvG2rVr6dSpU65iSEpKwmw2k5iYiIuLS/59nIiIiIiIiIiI/KvkZ56oyM1MtKaUlBS2b9/OjRs3KFOmTI7t7O3ts5ybTCYyMzMBSE5OpkuXLkydOvWOfuXLl8/fgEVERERERERERO6Bkon5aN68eUyaNImKFSvmOfHXqFEjvvvuO7y8vLCzy/1fjwqwiIiIiBS8vxdgURETERERedgVuQIs1jR06FAuX75M9erVWb9+PQEBAff8jEGDBhEfH0+vXr3Ys2cPsbGxrFu3jn79+nHz5s0c+6kAi4iIiIiIiIiIWJtmJlpJ69atCQ0NxcfH5576VahQge3btzNq1Cg6dOhAWloa6enptGjRAhubnHO/KsAiIiIiUvA0E1FERESKGiUTrSA8PNzy55MnT2a5l129m4SEhCzn3t7erFixwnLu5eXFs88+i8lkyvGdjo6OODo65i1gERERERERERGRXNAyZysJDAy0LHP28vJi5syZWe77+PgwceJE4FaCceLEiVSuXBlHR0cqVKjA22+/DYCfnx+nTp1i2LBhmEymuyYURURERERERERErEkzEx8A3333HTNmzGDp0qXUrVuXc+fOcfDgQQBWrFhBw4YNGThwIAMGDMjxGSrAIiIiIlLw/lqARUueRUREpChQMvEBEBcXh7u7O+3atWPAgAEkJCSwatUqAEqXLo2trS1Hjx6lfPny2S6ThlsFWEJCQgoybBERERERERERKWK0zPkB0KNHD1JTU6latSqGYdC9e3cyMjKAW8uc4+PjuXz5Mq1bt87xGcHBwSQmJlqO06dPF1T4IiIiIkXWySmdLYeIiIhIUaBkYgGwsbG5Y0Zhenq65c8eHh5ER0fz6aefYjabGTFiBE888USWNseOHeODDz7I8R2Ojo64uLhkOURERERERERERPKTkokFwM3NjbNnz1rOk5KSOH78OJ9++ilOTk6UKVOGLl260LZtW5KSkqhTpw47d+7kueee4+eff+bq1avExcXRrFmzO6pDi4iIiIiIiIiIFBTtmVgA2rZtS1hYGF26dMHV1ZWRI0dy48YNfH19+eyzz/jf//7HsWPHOHLk/qMSVAAAIABJREFUCFevXuWPP/7AycmJ2bNnc/nyZeLi4qhXrx6hoaE4OTll+w4VYBEREREpeH8twHI3WgYtIiIiDwvNTMwDPz8/hg4dmuv2wcHBtG7dmqeffprOnTvz2GOPAVC7dm28vLyoV68ex48fp3379qxevZqTJ0/i6+tLlSpVcHBwoGXLlpw9e5bmzZvj7u6e7TtCQ0Mxm82Ww8PDI1++VURERERERERE5DbNTLSStLQ0nJ2dAXBxcWHp0qWWezdv3mTr1q18+eWXnDlzhg4dOvDjjz9SqlQpAgMD2bx5M25ubpb25cuX55tvvrnr+4KDgwkKCrKcJyUlKaEoIiIiYmWacSgiIiJFjWYm5rOMjAyioqLYuXMndevWzbaNra0tGzZs4Mcff6ROnTrMmTOHmjVrcuLEiTy/VwVYRERERERERETE2jQzMY8yMjIYPHgwixYtwt7enjfeeIP33nuPw4cP06xZM4oVK8bkyZOZNWsWbdu2ZebMmZQrV87SPyoqitDQUH755RcyMzNJT09n/vz5d7zHwcGBP//8Ezc3N4YPH86oUaMK8jNFRERE5C5yu2diftJsSBERESlMmpmYRwsXLsTOzo7du3cza9YsPvroIz7//HN8fHyYO3cuS5cu5ddff2XVqlWcPHmSwMBAS98ffviBJk2akJKSwtdff83kyZPJzMykSpUqd7zHwcGBFStWMGzYMPr3709mZma28aSlpZGUlJTlEBERERERERERyU8mwzCMwg7i38bPz48LFy5w5MgRTCYTAKNHj2b16tVERUXd0T4yMpImTZpw9epVnJ2dGThwIP/73/9wdnYmKSkJT09P3nrrLQYPHmzZM7FRo0b07duXl156iYoVK/LHH3+QmprKiRMn8PLyuuMdEydOJCQk5I7riYmJWvIsIiIiYiWamSgiIiL/BklJSZjN5nzJEymZmAd+fn5UrVqVL7/80nLt+++/p3v37ly/fp0DBw4wceJEDh48yJUrV8jMzCQlJYUjR45Qp04dnnrqKdzc3Fi4cGG2zw8MDGTdunVcvHiR5cuXExAQ8I8xpaWlkZaWZjm/XYBFyUQRERERERERkaItP5OJWuacz65fv46/vz8uLi4sXryYPXv2sHLlSgBu3LgBgJOT0z8+p1q1atSqVYsvv/yS9PT0f2yvAiwiIiIiIiIiImJtKsCSRxEREVnOd+3ahbe3N8eOHePy5ctMmTIFDw8P4NYy579q0KABCxcuJD09HXt7+2yfX7ZsWVasWIGfnx/PP/88y5Yty7EtZD8zUURERESsqzCWOecnLZkWERGRe6WZiXkUFxdHUFAQ0dHRLFmyhDlz5jBkyBAqV66Mg4MDc+bM4ffff2f16tVMmjQpS9/BgweTlJREz549iYyMJCYmhkWLFhEdHZ2lXbly5di8eTPHjh2jV69eZGRk5BhPaGgoZrPZctxOZIqIiIiIiIiIiOQXJRPzqE+fPqSmptK0aVMGDRrEkCFDGDhwIG5uboSFhfHtt99Sp04dpkyZwrRp07L0LVOmDJs3byY5OZnWrVvz6KOPMn/+/GxnHrq7u7N582YOHTpE7969uXnzZrbxBAcHk5iYaDlOnz5tle8WEREREREREZGiSwVYHlL5ubGmiIiIiIiIiIj8e6kAywPCz8+PwYMHM3jwYMxmM2XLlmXcuHHczs8uWrSIxo0bU7JkSdzd3XnxxRe5cOGCpf+VK1fo3bs3bm5uODk54e3tzYIFC4BbxVoGDx5M+fLlKVasGJ6enoSGhhbKd4qIiIiIiIiIiIAKsNy3hQsX0r9/f3bv3k1kZCQDBw6kcuXKDBgwgPT0dCZNmkTNmjW5cOECQUFBBAYGsnbtWgDGjRtHVFQUP/74I2XLluX48eOkpqYCMHv2bFavXs2yZcuoXLkyp0+fvuvSZRVgEREREbGu7IqtqICJiIiIFDVKJt4nDw8PZsyYgclkombNmhw6dIgZM2YwYMAAXnnlFUu7qlWrMnv2bJo0aYLJZOLKlSvExcXh6+tL48aNAfDy8rK0j4uLw9vbm8cffxyTyYSnp+dd4wgNDSUkJMQq3ygiIiIiIiIiIgLaM/G++Pn5UbVqVb788kvLte+//57u3btz/fp1Dhw4QIcOHbhx4wYAmZmZpKSkALeWOO/cuZNu3bpRo0YNOnToQEBAAC1atABg3759tG/fnjJlytCxY0ccHByYPn06Of11ZTcz0cPDQ3smioiIiIiIiIgUcdoz8V/g+vXr+Pv7Y2dnR8eOHdmzZw8rV67M0qZTp06cOnWKYcOG8eeff/Lkk08yfPhwABo1asSJEyeYNGkSqampfPzxx5QtWzbH9zk6OuLi4pLlEBERERERERERyU9KJt6niIiILOe7du3C29ubY8eOcfnyZS5cuMDy5cupXbs2/v7+lnZ79+6lcePGeHp68tlnnzFu3DhmzpzJvHnzgFszHP38/Ojbty+bNm3C2dmZS5cuER8fX6DfJyIiIiIiIiIicpv2TLxPcXFxBAUF8dprr7Fv3z7mzJnD9OnTqVy5Mg4ODpQtW5ZWrVrRqVMnJk2aRGxsLABjx46lbt26BAYGsnDhQnr27EmlSpWoXbs2W7du5YUXXqBfv35MnTqVP/74g7fffhtnZ2dcXV2zjUMFWERERETyLrviKrmhAiwiIiJS1CiZeJ/69OlDamoqTZs2xdbWliFDhjBw4EBMJhNhYWG88sorLF++nLi4OGbMmMEzzzwDwOTJk9m5cyeffvopv//+O2lpaVSqVImlS5cyYMAAnnrqKXbt2sWiRYuwtbXF09OT8+fPY2OT/WRSFWARERERERERERFrUwGW++Dn54ePjw8zZ87MdZvw8HDatGnDhQsXcHNzA2D//v00atSIU6dOUblyZdzc3EhOTsbW1tbynJs3b3L9+nWuXbtG8eLF73iPCrCIiIiIiIiIiEh28rMAi2YmFhJ7e3vLn00mEwDp6elkZmaSnJxMSEgIzz333B39ihUrlu3zHB0dcXR0tE6wIiIiIiIiIiIiPMQFWPz8/Bg8eDCDBw/GbDZTtmxZxo0bx+2JmFeuXKFPnz6UKlWK4sWL06lTJ2JiYiz9w8LCcHV1ZdWqVXh7e1OsWDH8/f05ffp0lvf8/vvvNGnShGLFilG2bFmeffZZy70rV67w22+/MXfuXMs7/vjjjzveER4eDkCNGjWIi4vDMAyWLVvG+++/j6+vL23btmXz5s1Ur149x2XOIiIiIiIiIiIi1vZQZ6YWLlyInZ0du3fvZtasWXz00Ud8/vnnAAQGBhIZGcnq1avZuXMnhmHw1FNPkZ6ebumfkpLC5MmT+eqrr9i+fTsJCQn07NnTcn/EiBGsXbuWp556iv3797Np0yaaNm1quR8YGEhqaipVq1Zl+fLlpKWlMWrUqCwxpqSkEBYWBsD69espV64cZrOZvXv3cv78eZYtW0b37t15/fXXeeONN3L81rS0NJKSkrIcIiIiIpJ/vEavueMQERERKWoe6mXOHh4ezJgxA5PJRM2aNTl06BAzZszAz8+P1atXs337dlq0aAHA4sWL8fDwYNWqVfTo0QO4tez4448/plmzZsCt5GTt2rXZvXs3TZs2ZfLkyfTs2TNL4ZOGDRsCEBMTw+rVq1myZAmzZs2ie/fupKamZlnefPsdwcHB9OzZk2rVqlG8eHGcnJxo27YtCQkJdOvWDXt7e2xtbbl69WqO36oCLCIiIiIiIiIiYm0PdTLxscces+xHCNC8eXOmT59OVFQUdnZ2liQhQJkyZahZsyZHjx61XLOzs6NJkyaW81q1auHq6srRo0dp2rQpBw4cYMCAAdm+++jRo9jZ2dGjR48ssxl9fX159tlncXV1BcDBwYHnn3+eF154wdLmxo0bxMbGcvHiRZydnXniiSf47bffqFGjRo7fGhwcTFBQkOX8dgEWEREREckfJ6d0LuwQRERERArdQ51MtDYnJ6d8ecZfE54AFy9epFq1akRGRpKZmUl4eDgxMTFkZmbm+BwVYBEREREREREREWt7qJOJERERWc537dqFt7c3derUISMjg4iICMsy58uXLxMdHU2dOnUs7TMyMoiMjLTsgxgdHU1CQgK1a9cGoEGDBmzatIl+/frd8e7atWvn6h05adCggeU9devWZf78+Xn4CYiIiIjI3+XnXoearSgiIiJFzUNdgCUuLo6goCCio6NZsmQJc+bMYciQIXh7e9O1a1cGDBjAtm3bOHjwIC+99BIVK1aka9eulv729va89dZbREREsHfvXgIDA3nssccsycUJEyawZMkSJkyYwNGjRzl06BBTp04FyPU7slO8eHE2bNjAyZMnc/2tKsAiIiIiIiIiIiLW9lAnE/v06UNqaipNmzZl0KBBDBkyhIEDBwKwYMECHn30UZ5++mmaN2+OYRisXbs2S4GU4sWLM2rUKF588UVatmyJs7Mz33zzjeW+n58f3377LatXr8bHx4e2bduye/du4FYl5xs3bvzjO/5u4cKFJCcn07JlS1q3bk1UVJTl3o4dO6hXr162/UJDQzGbzZZD+yWKiIiIiIiIiEh+MxmGYRR2ENbg5+eHj48PM2fOzFP/sLAwhg4dSkJCQp76JyYmYhiGpdBKbmRmZlKxYkXGjRvHm2++yRdffMGoUaOwt7dn1KhRHDhwACcnJ+bOnXtH37S0NNLS0izntwuwJCYm4uLikqdvEBERERERERGRf7+kpCTMZnO+5Ike6j0TC5PZbL7nPhcuXODcuXP4+voC0L9/f65evUpQUBD79u1j5cqVbNq0Kdu+KsAiIiIiIiIiIiLWpmSilQQGBpKQkMCqVavw8vJi6NChDB061HLfx8eHgIAAJk6ciGEYhISE8MUXXwDg7+9PYGAgs2fPZtWqVRiGwaJFiwBo1qwZ2U0mzW5mooiIiIhYV34Wc8kNFXwRERGRwvbQ7pkYHh6e5yXO8P+SgQXhu+++Y8aMGcybN48333yTGzducPHiRWJiYhgxYgROTk44ODjg6urK1q1bs32G9kwUERERERERERFre2iTiQ+S5ORkgoODc7wfFxeHu7s77dq1Y86cOcyaNYvDhw/ToEEDXn/9dezs7Bg3bhzNmjUjMDCQS5cu3fGM4OBgEhMTLcfp06et+UkiIiIiIiIiIlIEaZlzAShRogRDhgzJ8X6PHj2YOXMmVatWpWPHjjz11FPs378fO7tbfz1eXl44Ozvz008/5fgM7ZkoIiIiUvC07FhERESKGs1MLAC2trY4OztnuZaenm75s4eHB9HR0Xz66ac4OTnx5ptv8sQTT2RpIyIiIiIiIiIiUtg0MzEXMjMzmTp1KvPmzePcuXPUqFGDcePG0b17d8LDw2nTpg0bN25k1KhRREVF4ePjwyOPPGLpbzKZGD16NMOGDQNuFUeJiYlh1qxZvP/++1SpUoV3332Xl19+mS5dunDmzBlWrFjBoUOHaNSoEQ4ODty4cYNy5coRGhpK//7974hRBVhERERECl5BF2AR69EsUxERkdzRzMRcCA0N5auvvuK///0vR44cYdiwYbz00kv8/PPPljZjx45l+vTpREZGYmdnx/bt2y33atWqRXp6Olu3buXQoUO0b9+e9PR0WrRoweHDh/H19aVv3758+eWX/P7775QsWRLAsmzZy8uL5cuXk5yczJNPPpljjCrAIiIiIiIiIiIi1mQyDMMo7CAeZGlpaZQuXZqNGzfSvHlzy/VXX32VlJQUBg4caJmZeDvRt3btWjp37szTTz/NDz/8wNy5cxkyZAhOTk6YzWYcHR2Jj4/nrbfeYuLEiaxatYr+/fuTlJSEo6Mj9evX588//2TQoEGMHDmSXbt24e/vT3JyMpmZmWT3V5bdzEQPDw8SExNxcXGx/g9KREREREREREQeSElJSZjN5nzJE2mZ8z84fvw4KSkptG/fPsv1Gzdu4Ovrazlv0KCB5c/ly5cHsBRQcXJyonjx4iQkJABQunRpZsyYQd++fQEICAjg1KlTzJo1i99//x2AGTNmMG/ePEaOHEmVKlVISUkhPDycVq1aZRunCrCIiIiIiIiIiIi1KZn4D5KTkwFYs2YNFStWzHLP0dGR2NhYAOzt7QHIyMiwJAS9vb3z/N4+ffowevRodu7cyY4dO6hSpUqOiUQREREREREREZGCoGTiP6hTpw6Ojo7ExcXRunXrO+7fTibedvjwYV566SUAevfune0za9euzfbt2y0zEwG2b99OnTp1LOdlypQhICCABQsWsHPnTvr163fXOFWARURERB52D2KxExXtEBERkaJGycR/ULJkSYYPH84rr7xCnz59APj666+5dOkSLi4ueHp6Zmnv4+PDzp078fX1xWw2Z/vMESNG8Pzzz+Pr60u7du344YcfWLFiBRs3bszS7tVXX6Vz586kp6czZswYIiIiWLVqVbbPDA0NJSQkJB++WEREREREREREJHsqwJILhmHg7e3NpUuXSElJwdXVlUaNGvH444/z9ddfc/ToUUqUKIGnpyft27cnMDAQX19fPvzwQ0aMGHHH8xwdHZkxYwbTpk3j5MmTZGZmAreWSleuXJk+ffowZswYbG1tqVKlCtWrV6dMmTKkpaXlmExUARYREREREREREclOfhZgscmnmB5qJpOJSpUqERgYyI0bN7hw4QIjRozgvffeo1+/fhw7dox9+/YxefJk0tPT8fHxwTAMypYti4uLC1OnTqV8+fKcPXuWs2fPcurUKd544w1iY2N5+eWX6dixI2fPniUmJoZ33nmHiRMn8uGHH3Lt2jWuXLnCm2++iZOT011jdHR0xMXFJcshIiIiIiIiIiKSn7TMOY9++OEHWrZsmWXmYY0aNQgICMjSzjAMtm/fTv369XF3d8/2WY6OjpZ7b7zxBitWrOC7774jISEBV1dXnnnmGVavXm29jxEREREREREREckFJRPzyN3dna+//prDhw9Tr169HNslJydz6tQpwsLC7un5e/fu5fz584SFhWFnZ8fRo0ctVaKzowIsIiIiIiIiIiJibVrmnEdvvfUWTZo0oX79+nh5edGzZ0++/PLLLAk9uDUz8fjx4zz++OM4Ozvj7OxMp06dsn2mYRhs3LiRrVu3Mnz4cE6fPs2TTz4J3EoWXrt2Lcd4QkNDMZvNlsPDwyP/PlZERERERERERATNTMyzEiVKsGbNGmJjY9myZQu7du3inXfeYdasWezcuZPixYsDt6pB79u3L0vfv+9/+H//9384OzuTnp5OZmYmL774IhMnTszSxsfHBy8vrxzjCQ4OJigoyHKemJhI5cqVNUNRRERERERERKSIu50fyo86zEom3qdq1apRrVo1Xn31VcaOHUuNGjX45ptv6NevHwA2NjZUr179rs9o06YNc+fOxcHBgQoVKmBnd+9/LY6Ojjg6OlrObw8SzVAUERERERERERGAq1evYjab7+sZSibmIy8vL4oXL37X5cjZKVGixD8mHO9VhQoVOH36NCVLlsRkMuXrswtKUlISHh4enD59WtWp5a40ViQ3NE4ktzRWJLc0ViS3NFYktzRWJDc0TiS3/jpWSpYsydWrV6lQocJ9P1fJxDyaOHEiKSkpPPXUU3h6epKQkMDs2bNJT0+nffv2lnaGYXDu3Lk7+pcrVw4bG+ttWWljY0OlSpWs9vyC5OLiol+QkisaK5IbGieSWxorklsaK5JbGiuSWxorkhsaJ5Jbt8fK/c5IvE3JxDxq3bo1n3zyCX369OH8+fOUKlUKX19f1q9fT82aNS3tkpKSKF++/B39z549i7u7e0GGLCIiIiIiIiIicl+UTMyjNm3a0KZNm7u2CQwMJDAw8K5twsLC8i8oERERERERERERK7Kd+PeywZKtsLAwVqxYwdSpU+nSpQuPPPJIgbx369at1K1bl/3791OjRg169uxZIO99UNja2uLn55enojRStGisSG5onEhuaaxIbmmsSG5prEhuaaxIbmicSG5ZY6yYjPyoCV0EnDlzhtTUVAAqV66Mg4NDgbw3NTWVM2fOAODs7Kyl0SIiIiIiIiIiUmiUTBQREREREREREZFcsV45YREREREREREREXmoKJkoIiIiIiIiIiIiuaJkooiIiIiIiIiIiOSKkokiIiIiIiIiIiKSK0omygMlPj6e3r174+LigqurK/379yc5OTlXfQ3DoFOnTphMJlatWmXlSKUw5WWcvPbaa1SrVg0nJyfc3Nzo2rUrx44dK6CIpbDc61iJj4/nrbfeombNmjg5OVG5cmXefvttEhMTCzBqKQx5+b0yb948/Pz8cHFxwWQykZCQUEDRSkH65JNP8PLyolixYjRr1ozdu3fftf23335LrVq1KFasGPXr12ft2rUFFKkUtnsZK0eOHKFbt254eXlhMpmYOXNmAUYqhelexsn8+fNp1aoVpUqVolSpUrRr1+4ffwfJw+NexsqKFSto3Lgxrq6ulChRAh8fHxYtWlSA0Uphutd/V7lt6dKlmEwmAgIC7vmdSibKA6V3794cOXKEDRs28H//93/88ssvDBw4MFd9Z86ciclksnKE8iDIyzh59NFHWbBgAUePHmXdunUYhkGHDh24efNmAUUtheFex8qff/7Jn3/+ybRp0zh8+DBhYWH89NNP9O/fvwCjlsKQl98rKSkpdOzYkTFjxhRQlFLQvvnmG4KCgpgwYQL79u2jYcOG+Pv7c+HChWzb79ixg169etG/f3/2799PQEAAAQEBHD58uIAjl4J2r2MlJSWFqlWrMmXKFNzd3Qs4Wiks9zpOwsPD6dWrF1u2bGHnzp14eHjQoUMHzpw5U8CRS0G717FSunRpxo4dy86dO/n111/p168f/fr1Y926dQUcuRS0ex0rt508eZLhw4fTqlWrvL3YEHlAREVFGYCxZ88ey7Uff/zRMJlMxpkzZ+7ad//+/UbFihWNs2fPGoCxcuVKa4crheR+xslfHTx40ACM48ePWyNMeQDk11hZtmyZ4eDgYKSnp1sjTHkA3O9Y2bJliwEYV65csWaYUgiaNm1qDBo0yHJ+8+ZNo0KFCkZoaGi27Z9//nmjc+fOWa41a9bMeO2116wapxS+ex0rf+Xp6WnMmDHDmuHJA+J+xolhGEZGRoZRsmRJY+HChdYKUR4Q9ztWDMMwfH19jXfffdca4ckDJC9jJSMjw2jRooXx+eefG3379jW6du16z+/VzER5YOzcuRNXV1caN25sudauXTtsbGyIiIjIsV9KSgovvvgin3zyif7LbhGQ13HyV9euXWPBggVUqVIFDw8Pa4UqhSw/xgpAYmIiLi4u2NnZWSNMeQDk11iRh8uNGzfYu3cv7dq1s1yzsbGhXbt27Ny5M9s+O3fuzNIewN/fP8f28nDIy1iRoic/xklKSgrp6emULl3aWmHKA+B+x4phGGzatIno6GieeOIJa4YqhSyvY+W9996jXLly97X6SslEeWCcO3eOcuXKZblmZ2dH6dKlOXfuXI79hg0bRosWLejatau1Q5QHQF7HCcCnn36Ks7Mzzs7O/Pjjj2zYsAEHBwdrhiuF6H7Gym2XLl1i0qRJud5uQf6d8mOsyMPn0qVL3Lx5k0ceeSTL9UceeSTHcXHu3Ll7ai8Ph7yMFSl68mOcjBo1igoVKtzxHy3k4ZLXsZKYmIizszMODg507tyZOXPm0L59e2uHK4UoL2Nl27ZtfPHFF8yfP/++3q1koljd6NGjMZlMdz3yWghj9erVbN68WZtWPwSsOU5u6927N/v37+fnn3+mRo0aPP/881y/fj2fvkAKSkGMFYCkpCQ6d+5MnTp1mDhx4v0HLgWuoMaKiIiItU2ZMoWlS5eycuVKihUrVtjhyAOoZMmSHDhwgD179jB58mSCgoIIDw8v7LDkAXL16lVefvll5s+fT9myZe/rWVqzJVb3zjvvEBgYeNc2VatWxd3d/Y5NQjMyMoiPj89x+fLmzZuJjY3F1dU1y/Vu3brRqlUr/fL8F7HmOLnNbDZjNpvx9vbmscceo1SpUqxcuZJevXrdb/hSgApirFy9epWOHTtSsmRJVq5cib29/f2GLYWgIMaKPLzKli2Lra0t58+fz3L9/PnzOY4Ld3f3e2ovD4e8jBUpeu5nnEybNo0pU6awceNGGjRoYM0w5QGQ17FiY2ND9erVAfDx8eHo0aOEhobi5+dnzXClEN3rWImNjeXkyZN06dLFci0zMxO4tSonOjqaatWq5erdSiaK1bm5ueHm5vaP7Zo3b05CQgJ79+7l0UcfBW4lCzMzM2nWrFm2fUaPHs2rr76a5Vr9+vWZMWNGlv+ByIPPmuMkO4ZhYBgGaWlpeY5ZCoe1x0pSUhL+/v44OjqyevVq/df/f7GC/r0iDxcHBwceffRRNm3aREBAAHDrX7g3bdrE4MGDs+3TvHlzNm3axNChQy3XNmzYQPPmzQskZikceRkrUvTkdZx88MEHTJ48mXXr1mXZ21ceXvn1OyUzM1P/X+chd69jpVatWhw6dCjLtXfffZerV68ya9ase6sncO+1YkSsp2PHjoavr68RERFhbNu2zfD29jZ69epluf/HH38YNWvWNCIiInJ8Bqrm/NC713ESGxtrvP/++0ZkZKRx6tQpY/v27UaXLl2M0qVLG+fPny+sz5ACcK9jJTEx0WjWrJlRv3594/jx48bZs2ctR0ZGRmF9hhSAvPzz5+zZs8b+/fuN+fPnG4Dxyy+/GPv37zcuX75cGJ8gVrB06VLD0dHRCAsLM6KiooyBAwcarq6uxrlz5wzDMIyXX37ZGD16tKX99u3bDTs7O2PatGnG0aNHjQkTJhj29vbGoUOHCusTpIDc61hJS0sz9u/fb+zfv98oX768MXz4cGP//v1GTExMYX2CFIB7HSdTpkwxHBwcjOXLl2f5d5KrV68W1idIAbnXsfL+++8b69evN2JjY42oqCiWtbWBAAABu0lEQVRj2rRphp2dnTF//vzC+gQpIPc6Vv4ur9WclUyUB8rly5eNXr16Gc7OzoaLi4vRr1+/LP+wPHHihAEYW7ZsyfEZSiY+/O51nJw5c8bo1KmTUa5cOcPe3t6oVKmS8eKLLxrHjh0rpC+QgnKvY2XLli0GkO1x4sSJwvkIKRB5+efPhAkTsh0rCxYsKPgPEKuZM2eOUblyZcPBwcFo2rSpsWvXLsu91q1bG3379s3SftmyZUaNGjUMBwcHo27dusaaNWsKOGIpLPcyVm7/Tvn70bp164IPXArUvYwTT0/PbMfJhAkTCj5wKXD3MlbGjh1rVK9e3ShWrJhRqlQpo3nz5sbSpUsLIWopDPf67yp/lddkoskwDCP38xhFRERERERERESkqFI1ZxEREREREREREckVJRNFREREREREREQkV5RMFBERERERERERkVxRMlFERERERERERERyRclEERERERERERERyRUlE0VERERERERERCRXlEwUERERERERERGRXFEyUURERERERERERHJFyUQRERERERERERHJFSUTRUREREREREREJFeUTBQREREREREREZFc+f8ADpY6qxAgG20AAAAASUVORK5CYII=\n"
-          },
-          "metadata": {}
-        }
-      ],
-      "source": [
-        "table.iloc[::-1].plot(x=\"tokens\",y=\"score\",kind=\"barh\",figsize=(15,15))"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "5I9SdaWY50e0",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 239
-        },
-        "outputId": "32a01ea5-c401-4e84-9ccc-87a82f90b75a"
-      },
-      "outputs": [
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "<IPython.core.display.HTML object>"
-            ],
-            "text/html": [
-              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>LABEL_1 (0.99)</b></text></td><td><text style=\"padding-right:2em\"><b>LABEL_1</b></text></td><td><text style=\"padding-right:2em\"><b>1.87</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 90%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(120, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 91%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 84%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> latest                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> entry                    </font></mark><mark style=\"background-color: hsl(120, 75%, 90%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> long                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> series                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 90%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> films                    </font></mark><mark style=\"background-color: hsl(120, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> with                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> french                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> agent                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> o                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> 117                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> (                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> french                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> answer                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> james                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> bond                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> )                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 96%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 91%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> series                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> launched                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> early                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> 1950                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> and                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> spawned                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> at                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> least                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> eight                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> films                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> (                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> none                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> which                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ever                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> released                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> u                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> )                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> o                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> 117                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> :                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> cairo                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> nest                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> spies                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 96%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 96%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> bree                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##zy                    </font></mark><mark style=\"background-color: hsl(0, 75%, 91%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> little                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> comedy                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> that                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> should                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> not                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> repeat                    </font></mark><mark style=\"background-color: hsl(120, 75%, 82%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> not                    </font></mark><mark style=\"background-color: hsl(0, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> be                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> taken                    </font></mark><mark style=\"background-color: hsl(120, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> too                    </font></mark><mark style=\"background-color: hsl(0, 75%, 85%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> seriously                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> our                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> protagonist                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> finds                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> himself                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> middle                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> spy                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> chase                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> egypt                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> (                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> with                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> mor                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ro                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##co                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> doing                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> stand                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> for                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> egypt                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> )                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> find                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> out                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> about                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> long                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> lost                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> friend                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> what                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> follows                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> standard                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> james                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> bond                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> /                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> inspector                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> cl                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ous                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##so                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##u                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> kind                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> antics                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> although                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> our                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> man                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> something                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> an                    </font></mark><mark style=\"background-color: hsl(0, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> over                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##t                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> x                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##eno                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ph                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##obe                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> sex                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ist                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> homo                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ph                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##obe                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> treated                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> as                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> pure                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> far                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ce                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> (                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> as                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> said                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> don                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> t                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> take                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> too                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> seriously                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> )                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> although                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> there                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> bit                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> rough                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> language                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> &                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> cartoon                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> violence                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> basically                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> okay                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> for                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> older                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> kids                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> (                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ages                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> 12                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> &                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> up                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> )                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> as                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> previously                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> stated                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> subject                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> line                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> just                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> sit                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> back                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> pass                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> popcorn                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> &                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> just                    </font></mark><mark style=\"background-color: hsl(120, 75%, 96%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> enjoy                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
-            ]
-          },
-          "metadata": {}
-        }
-      ],
-      "source": [
-        "html = cls_explainer.visualize()"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### ▶▶ Exercice : Afficher les attributions pour un exemple mal prédit\n",
-        "\n",
-        "Recommencer les étapes précédentes pour un exemple correspondant à une erreur du système."
-      ],
-      "metadata": {
-        "id": "IMOLP2uCpf2V"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# ----------------------------------------\n",
-        "# essayons avec une erreur du modèle\n",
-        "ex_eval = small_eval_dataset[32][\"text\"]"
-      ],
-      "metadata": {
-        "id": "udXeK-PoiDIn"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "word_attributions = cls_explainer(ex_eval)"
-      ],
-      "metadata": {
-        "id": "em_SJ6b7igiy"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "49KjhvdWigjG",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 35
-        },
-        "outputId": "9cab445c-be31-46eb-de2e-4a7120712fc9"
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "'LABEL_0'"
-            ],
-            "application/vnd.google.colaboratory.intrinsic+json": {
-              "type": "string"
-            }
-          },
-          "metadata": {},
-          "execution_count": 75
-        }
-      ],
-      "source": [
-        "cls_explainer.predicted_class_name"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "fwpGOSlgigjG",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "d4661bea-f6bc-4232-f75d-5cdf0960ddda"
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[('[CLS]', 0.0),\n",
-              " ('it', 0.00997485125840792),\n",
-              " (\"'\", -0.0011960924618130801),\n",
-              " ('s', -0.02484496365185836),\n",
-              " ('really', 0.05450772639469681),\n",
-              " ('too', 0.1693489291686765),\n",
-              " ('bad', 0.33626749649572363),\n",
-              " ('that', 0.06318737976390412),\n",
-              " ('nobody', 0.03261308961197194),\n",
-              " ('knows', 0.005303855816857931),\n",
-              " ('about', 0.029553999035701387),\n",
-              " ('this', 0.04004686806146877),\n",
-              " ('movie', 0.025512588172126077),\n",
-              " ('.', 0.041038499475538136),\n",
-              " ('i', 0.011068396879987038),\n",
-              " ('think', 0.028146720318407818),\n",
-              " ('if', 0.021477101084558574),\n",
-              " ('it', 0.00014914261726596374),\n",
-              " ('were', -0.00567254576955546),\n",
-              " ('just', 0.015497223999660182),\n",
-              " ('spruce', 0.010159706643775695),\n",
-              " ('##d', 0.028332601831956156),\n",
-              " ('up', 0.027422879139921745),\n",
-              " ('a', 0.00087932820801858),\n",
-              " ('little', 0.01886903149115137),\n",
-              " ('and', 0.005175342677822439),\n",
-              " ('if', 0.02733892632731568),\n",
-              " ('it', 0.007755316817756009),\n",
-              " ('weren', 0.04298089417331125),\n",
-              " (\"'\", 0.018859773310734056),\n",
-              " ('t', 0.050787131926852094),\n",
-              " ('so', 0.05553958497754069),\n",
-              " ('low', 0.13673863107653814),\n",
-              " ('-', 0.0416350765639359),\n",
-              " ('budget', 0.10994806204401762),\n",
-              " (',', -0.007246986009796167),\n",
-              " ('i', 0.013487925461341161),\n",
-              " ('think', 0.030350778532165137),\n",
-              " ('one', 0.012159452158631647),\n",
-              " ('of', -0.0030130962057012905),\n",
-              " ('the', 0.006326975832121137),\n",
-              " ('major', 0.00604488427560287),\n",
-              " ('film', -0.00464095276011599),\n",
-              " ('companies', 0.022057787178622584),\n",
-              " ('might', 0.045154314595020194),\n",
-              " ('have', 0.044761139300119955),\n",
-              " ('wanted', 0.03361029378815179),\n",
-              " ('to', 0.036790648110021744),\n",
-              " ('take', 0.026636307937107393),\n",
-              " ('it', 0.0070252931208973305),\n",
-              " ('.', 0.01536430861458257),\n",
-              " ('i', 0.0047613468779492745),\n",
-              " ('first', 8.9854554756525e-05),\n",
-              " ('saw', 0.0010597087657416451),\n",
-              " ('this', 0.021116496367893922),\n",
-              " ('movie', 0.010966191264470118),\n",
-              " ('when', -0.022530215323163186),\n",
-              " ('i', 0.004661793025845551),\n",
-              " ('was', 0.05016408524766611),\n",
-              " ('11', 0.00964510672098063),\n",
-              " (',', 0.024415309213925394),\n",
-              " ('and', -0.02712585006488509),\n",
-              " ('i', 0.01904909375957123),\n",
-              " ('thought', 0.06407219962659487),\n",
-              " ('it', -0.02152101886647046),\n",
-              " ('was', -0.25301705643440675),\n",
-              " ('so', -0.1469512922825505),\n",
-              " ('powerful', -0.43469719674250223),\n",
-              " ('with', -0.19513608669711058),\n",
-              " ('the', -0.04114932929553154),\n",
-              " ('many', -0.2551266794511537),\n",
-              " ('great', -0.5560247450475991),\n",
-              " (',', 0.015398227341169156),\n",
-              " ('yet', 0.004639648842885641),\n",
-              " ('illegal', 0.22786950621652902),\n",
-              " ('lengths', -0.02472923987297795),\n",
-              " ('that', -0.02092469859043459),\n",
-              " ('mitchell', 0.010368676402456364),\n",
-              " ('goes', 0.0009493691841507919),\n",
-              " ('to', 0.012580106539646342),\n",
-              " ('just', 0.04047333511717827),\n",
-              " ('to', 0.007598800176683346),\n",
-              " ('keep', 0.014378428233077209),\n",
-              " ('his', -0.05536111333625789),\n",
-              " ('family', -0.019907955085111197),\n",
-              " ('together', -0.07867323795502577),\n",
-              " ('.', -0.017731978189891237),\n",
-              " ('it', -0.004253857535912123),\n",
-              " ('inspired', -0.03656982875330736),\n",
-              " ('me', 0.0037326426681316294),\n",
-              " ('then', 0.016881766027897305),\n",
-              " ('and', 0.0027973916558247354),\n",
-              " ('it', 0.013105652905982803),\n",
-              " ('ama', 0.0019572663087947073),\n",
-              " ('##zes', 0.0264737902955314),\n",
-              " ('me', 0.028004538419757287),\n",
-              " ('now', 0.02190996547285329),\n",
-              " ('.', 0.0403967165370653),\n",
-              " ('if', 0.022904290916493344),\n",
-              " ('you', 0.021358460556148474),\n",
-              " (\"'\", 0.008955238397041536),\n",
-              " ('re', 0.013682323728015113),\n",
-              " ('lucky', -0.0016474382767335451),\n",
-              " ('enough', 0.0383704440194398),\n",
-              " ('to', 0.02128634142903102),\n",
-              " ('find', 0.025820633911726676),\n",
-              " ('a', 0.0096149768603481),\n",
-              " ('copy', 0.019373699127543168),\n",
-              " ('of', -0.001587763390235751),\n",
-              " ('this', 0.05910782671491327),\n",
-              " ('movie', 0.03224039882665543),\n",
-              " (',', 0.027275746273410475),\n",
-              " ('don', 0.04468072810788871),\n",
-              " (\"'\", 0.007965379084890138),\n",
-              " ('t', 0.04785706042932118),\n",
-              " ('miss', 0.07151828048655519),\n",
-              " ('it', 0.04339457154748533),\n",
-              " ('!', 0.005168557160078841),\n",
-              " ('[SEP]', 0.0)]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 76
-        }
-      ],
-      "source": [
-        "word_attributions"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "1O-1eD6CigjH"
-      },
-      "outputs": [],
-      "source": [
-        "table = pds.DataFrame(word_attributions,columns=[\"tokens\",\"score\"])"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "f4m-PqhaigjH",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 1000
-        },
-        "outputId": "32102722-d11f-471a-9cf4-50cb3dced58f"
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "<matplotlib.axes._subplots.AxesSubplot at 0x7f5f9a668eb0>"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 78
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "<Figure size 1500x1500 with 1 Axes>"
-            ],
-            "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAASvCAYAAAC0BUwBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde1iU5b7/8c9wGjnIIEiBOTpqpqAomIeIpUxZmaedmlbWWkkqtVMzMy342TIxCzVZappmlofKVq2tprY1d0aCp/JQQq1EQ5MkpSzTmbQcEeb3R7tnR4pCgiPwfl3XfV3zzHMfvvfMf9/rPpjcbrdbAAAAAAAAAOocL08HAAAAAAAAAMAzSA4CAAAAAAAAdRTJQQAAAAAAAKCOIjkIAAAAAAAA1FEkBwEAAAAAAIA6iuQgAAAAAAAAUEeRHAQAAAAAAADqKJKDAAAAAAAAQB3l4+kAUDVKS0t15MgR1a9fXyaTydPhAAAAAAAAwEPcbrd++uknNWrUSF5eF14bSHLwPOx2u7KzsyVJu3fvVmxs7GUb22az6euvv5YkHT9+XCEhIRVqd+TIEVmt1uoMDQAAAAAAADVIYWGhGjdufME6JAfLkZycrMmTJ6thw4bGdytWrNCcOXO0e/dulZSUqHnz5ho4cKBGjRql0NBQLVmyRGPGjNGJEyfO2+f333+viRMnau3atfruu+/UoEEDtW/fXhMnTlRCQoIkaefOndq8ebPuvPPOSsVbv359Sb/+6cHBwX9y1gAAAAAAAKjpnE6nrFarkS+6EJKD5QgICFBERITxPGHCBE2bNk2PPfaYnnvuOTVq1Ej5+fl66aWX9Prrr+vRRx+9aJ933nmnzpw5o6VLl6p58+b67rvvlJmZqWPHjhl1wsPDFRoaWul4f9tKHBwcTHIQAAAAAAAAFTp6juRgBezYsUPPPfecZs2aVSYJaLPZdOutt5a7UvD3Tpw4oc2bNysrK0uJiYmSpKZNm6pz587VFjcAAAAAAABwIdxWXAHLli1TUFCQRowYcd73FTkXMCgoSEFBQVq1apVcLtclx+RyueR0OssUAAAAAAAAoDJIDlZAfn6+mjdvLl9f3z/dh4+Pj5YsWaKlS5cqJCRECQkJ+n//7//ps88++1P9paeny2KxGIXLSAAAAAAAAFBZbCuuALfbXSX93Hnnnerdu7c2b96sjz/+WO+9956mT5+uV155RUlJSZXqKzU1VWPHjjWefztoEgAAAAAA4EpUUlKi4uJiT4dRK/j6+srb27tK+iI5WAHXXXedtmzZouLi4ktaPShJ9erV06233qpbb71Vf//73zV8+HA9/fTTlU4Oms1mmc3mS4oFAAAAAACgurndbn377bcVurMBFRcSEqKIiIgKXTpyISQHK+Dee+/VCy+8oHnz5p33VuITJ05U6NzB84mOjtaqVasuNUQAAAAAAIAr0m+JwauuukoBAQGXnMyq69xut37++WcdPXpUkhQZGXlJ/ZEcrIAuXbroiSee0OOPP67Dhw+rf//+atSokfbv36+XXnpJf/nLX4ykYUlJiXJycsq0N5vNuuqqqzRo0CANHTpU7dq1U/369bVr1y5Nnz5dd9xxhyemBQAAAAAAUK1KSkqMxGBYWJinw6k1/P39JUlHjx7VVVdddUlbjEkOVtC0adN0/fXX68UXX9RLL72k0tJStWjRQgMHDtSQIUOMeidPnlRcXFyZti1atNAXX3yhLl26aObMmTpw4ICKi4tltVqVnJysrKwsjRkzRrNmzbrc0wIAAAAAAKg2v50xGBAQ4OFIap/fftPi4mKSg5fLXXfdpbvuuqvc90lJSRc8OzA9PV3p6ennfP/jjz8aZxnabDb16dPnkmMFAAAAAAC4UrCVuOpV1W9KcrAc8+bN0yuvvKKPPvpIMTEx1TpWaGio8fnIkSN6+eWXq3U8AAAAoLazpaytVP2Cqb2rKRIAAK5sJAfPY9myZfrll18kSU2aNKn28ex2u2JjY5WTk1PmSu8GDRrI7XZX+/gAAAAAAACom0gOnsc111zjkXFXrlyp9u3b68EHH1RycvIF67pcLrlcLuPZ6XRWd3gAAAAAAABVprKrvC8FK8TL5+XpAPB/QkND5e3trfr16ysiIkIRERHl1k1PT5fFYjGK1Wq9jJECAAAAAACgKpw5c8aj45McrKFSU1PlcDiMUlhY6OmQAAAAAAAAao3ly5crJiZG/v7+CgsL0y233KJTp05JkhYtWqQ2bdrIbDYrMjJSo0aNMtodOnRId9xxh4KCghQcHKy77rpL3333nfF+0qRJio2N1SuvvKJmzZqpXr16kqQTJ05o+PDhCg8PV3BwsG6++Wbl5uZW+zzZVlxDmc1mmc1mT4cBAAAAXJHYPgYAuBRFRUUaPHiwpk+frv79++unn37S5s2b5Xa7NX/+fI0dO1ZTp05Vz5495XA4tHXrVklSaWmpkRjMzs7W2bNnNXLkSN19993Kysoy+t+/f79WrFihlStXytvbW5I0aNAg+fv767333pPFYtGCBQvUvXt3ffnll2Uus61qJAevMH5+fiopKfF0GAAAAAAAAHVWUVGRzp49qwEDBqhp06aSpJiYGEnSlClT9Pjjj+vRRx816nfq1EmSlJmZqc8//1wHDx40joB77bXX1KZNG+3cudOod+bMGb322msKDw+XJG3ZskU7duzQ0aNHjcVgM2bM0KpVq7R8+XI9+OCD1TZXthVfYWw2mzZt2qTDhw/rhx9+8HQ4AAAAAAAAdU779u3VvXt3xcTEaNCgQVq4cKGOHz+uo0eP6siRI+revft52+Xl5clqtZa5GyI6OlohISHKy8szvmvatKmRGJSk3NxcnTx5UmFhYQoKCjLKwYMHdeDAgeqbqFg5eMWZPHmyHnroITVp0kSlpaVyu92eDgkAAAAAAKBO8fb21oYNG7Rt2za9//77mjNnjiZMmKDMzMwq6T8wMLDM88mTJxUZGVlm6/FvQkJCqmTM8pAcvAL8/o+/4YYblJubq6SkJNlsNo/FBAAAAAAAUJeZTCYlJCQoISFBEydOVNOmTbVhwwbZbDZlZmbqpptuOqdNVFSUCgsLVVhYaKwe3LNnj06cOKHo6Ohyx+rQoYO+/fZb+fj4XPZ8ENuKAQAAANQqtpS1ng4BAFDDbd++Xc8995x27dqlQ4cOaeXKlfr+++8VFRWlSZMmKSMjQy+88ILy8/P16aefas6cOZKkW265RTExMbrvvvv06aefaseOHbr//vuVmJiojh07ljveLbfcovj4ePXr10/vv/++CgoKtG3bNk2YMEG7du2q1rmychAAAAAAAAD4neDgYG3atEmzZs2S0+lU06ZNlZGRoZ49e0qSTp8+rZkzZ2rcuHFq2LChBg4cKOnX1YarV6/WI488om7dusnLy0u33367kTwsj8lk0rp16zRhwgQ98MAD+v777xUREaFu3brp6quvrta5mtwcalcjuVwuuVwu49npdMpqtcrhcCg4ONiDkQEAAACeZUtZq4KpvT0dBgBAvybRDh48qGbNmqlevXqeDqdWudBv63Q6ZbFYKpQnYltxDZWeni6LxWKU39+CAwAAAAAAAFQEycEaKjU1VQ6HwyiFhYWeDgkAAAAAAAA1DGcO1lBms1lms9nTYQAAAABXHLYUAwBQcawcBAAAAAAAAOookoMAAAAAAABAHUVyEAAAAAAAANWqtLTU0yHUOlX1m3LmIAAAAAAAAKqFn5+fvLy8dOTIEYWHh8vPz08mk8nTYdVobrdbZ86c0ffffy8vLy/5+fldUn8kB68wy5cvV1pamvbv36+AgADFxcVp9erVCgwM9HRoAAAAwJ9iS1l72cfkUhIAuDJ4eXmpWbNmKioq0pEjRzwdTq0SEBCgJk2ayMvr0jYGkxy8ghQVFWnw4MGaPn26+vfvr59++kmbN2+W2+0+p67L5ZLL5TKenU7n5QwVAAAAAACgQvz8/NSkSROdPXtWJSUlng6nVvD29paPj0+VrMIkOXgFKSoq0tmzZzVgwAA1bdpUkhQTE3Peuunp6UpLS7uc4QEAAAAAAPwpJpNJvr6+8vX19XQo+AMuJLmCtG/fXt27d1dMTIwGDRqkhQsX6vjx4+etm5qaKofDYZTCwsLLHC0AAAAAAABqOpKDVxBvb29t2LBB7733nqKjozVnzhy1atVKBw8ePKeu2WxWcHBwmQIAAAAAAABUhsl9vgPtcEUoKSlR06ZNNXbsWI0dO/aCdZ1OpywWixwOB4lCAAAAAACAOqwyeSLOHLyCbN++XZmZmbrtttt01VVXafv27fr+++8VFRXl6dAAAAAAAABQC7Gt+DIoKCiQyWRSTk6OJCkrK0smk0knTpwoUy84OFibNm1Sr169dN111+mpp55SRkaGevbs6YmwAQAAAAAAUMuxcvAKEhUVpfXr13s6DAAAAAAAANQRrBy8iDNnzng6BAAAAAAAAKBasHLwD+x2u9q2bSsfHx+98cYbiomJ0Zw5czR+/Hht3rxZgYGBuu222zRz5kw1bNhQkrR+/XpNmTJF//73v+Xt7a34+HjNnj1bLVq0uOh4p06dUmRkpBYtWqSBAwca369atUr33Xefvv32W9WvX7/a5gsAAADURraUtZ4OweMKpvb2dAgAgBqAlYPnsXTpUvn5+Wnr1q2aOnWqbr75ZsXFxWnXrl1av369vvvuO911111G/VOnTmns2LHatWuXMjMz5eXlpf79+6u0tPSiYwUGBuqee+7R4sWLy3y/ePFiDRw4sNzEoMvlktPpLFMAAAAAAACAymDl4Hm0bNlS06dPlyRNmTJFcXFxeu6554z3ixYtktVq1ZdffqnrrrtOd955Z5n2ixYtUnh4uPbs2aO2bdtedLzhw4frxhtvVFFRkSIjI3X06FGtW7dOH3zwQblt0tPTlZaW9idnCAAAAAAAALBy8Lyuv/5643Nubq42btyooKAgo7Ru3VqSdODAAUlSfn6+Bg8erObNmys4OFg2m02SdOjQoQqN17lzZ7Vp00ZLly6VJL3xxhtq2rSpunXrVm6b1NRUORwOoxQWFv6ZqQIAAAAAAKAOY+XgeQQGBhqfT548qb59+2ratGnn1IuMjJQk9e3bV02bNtXChQvVqFEjlZaWqm3btpW6zGT48OF68cUXlZKSosWLF+uBBx6QyWQqt77ZbJbZbK7ErAAAAIC6g/P2AACoGJKDF9GhQwetWLFCNptNPj7n/lzHjh3Tvn37tHDhQnXt2lWStGXLlkqP89e//lVPPPGEXnjhBe3Zs0dDhgy55NgBAAAAAACAC2Fb8UWMHDlSP/74owYPHqydO3fqwIED+p//+R898MADKikpUYMGDRQWFqaXX35Z+/fv14cffqixY8dWepwGDRpowIABGj9+vG677TY1bty4GmYDAAAAAAAA/B+SgxfRqFEjbd26VSUlJbrtttsUExOjMWPGKCQkRF5eXvLy8tJbb72lTz75RG3bttVjjz2m559//k+NNWzYMJ05c0ZDhw6t4lkAAAAAAAAA5zK53W63p4OoTex2u2JjYzVr1qxKt3399df12GOP6ciRI/Lz86tUW6fTKYvFIofDoeDg4EqPDQAAAAAAgNqhMnkizhy8Avz8888qKirS1KlT9dBDD1U6MQgAAACgLFvKWk+HAFzRuLQHwG/YVlyFkpKSlJ2drdmzZ8tkMslkMqmgoEDZ2dnq3LmzzGazIiMjlZKSorNnzxrtnnvuOV133XXKz8/XjBkz9Je//EU7d+704EwAAAAAAABQF5AcrEKzZ89WfHy8kpOTVVRUpKKiIvn6+qpXr17q1KmTcnNzNX/+fL366quaMmWK0e6nn35SRESEVq9erd27d+vaa69Vjx499OOPP5Y7lsvlktPpLFMAAAAAAACAyiA5WIUsFov8/PwUEBCgiIgIRUREaN68ebJarZo7d65at26tfv36KS0tTRkZGSotLdWpU6c0f/58Pf/88+rZs6eio6O1cOFC+fv769VXXy13rPT0dFksFqNYrdbLOFMAAAAAAADUBiQHq1leXp7i4+NlMpmM7xISEnTy5El98803OnDggIqLi5WQkGC89/X1VefOnZWXl1duv6mpqXI4HEYpLCys1nkAAAAAAACg9uFCkhrKbDbLbDZ7OgwAAADgisRlCwAAVAwrB6uYn5+fSkpKjOeoqCh99NFHcrvdxndbt25V/fr11bhxY7Vo0UJ+fn7aunWr8b64uFg7d+5UdHT0ZY0dAAAAAAAAdQvJwUtkt9s1ZswY49lms2n79u0qKCjQDz/8oBEjRqiwsFCPPPKI9u7dq9WrV+vpp5/W2LFj5eXlpcDAQD388MMaP3681q9frz179qhv3746fPiwBg4c6MGZAQAAAAAAoLZjW3EVGzdunIYMGaLo6Gj98ssvOnjwoNatW6fx48erffv2Cg0N1bBhw/TUU08ZbaZOnarS0lL97W9/008//aSWLVtKkkJCQjw1DQAAAAAAANQBJvfv97ui0ux2u2JjYzVr1qwq6zMrK0s33XSTjh8/XuEEodPplMVikcPhUHBwcJXFAgAAAAAAgJqlMnkiVg5WgbNnz2rUqFF6/fXX5evrq4cffliTJ0+WyWTS66+/rtmzZ2vfvn0KDAzUzTffrFmzZumqq64y2q9bt05jxoxRYWGhbrjhBg0ZMsSDswEAAABqPlvKWk+HAACoQeryRVacOVgFli5dKh8fH+3YsUOzZ8/WP/7xD73yyiuSfr1c5JlnnlFubq5WrVqlgoICJSUlGW0LCws1YMAA9e3bVzk5ORo+fLhSUlIuOqbL5ZLT6SxTAAAAAAAAgMpg5WAVsFqtmjlzpkwmk1q1aqXPP/9cM2fOVHJysoYOHWrUa968uV544QV16tRJJ0+eVFBQkObPn68WLVooIyNDkoz206ZNu+CY6enpSktLq9Z5AQAAAAAAoHZj5WAVuOGGG2QymYzn+Ph45efnq6SkRJ988on69u2rJk2aqH79+kpMTJQkHTp0SJKUl5enLl26lOkvPj7+omOmpqbK4XAYpbCwsApnBAAAAAAAgLqAlYPV6PTp0+rRo4d69OihZcuWKTw8XIcOHVKPHj105syZS+rbbDbLbDZXUaQAAAAAAACoi0gOVoHt27eXef7444/VsmVL7d27V8eOHdPUqVNltVolSbt27SpTNyoqSmvWrDmnPQAAAIA/ry4fLA8AQGWwrbgKHDp0SGPHjtW+ffv0z3/+U3PmzNGjjz6qJk2ayM/PT3PmzNFXX32lNWvW6JlnninT9j//8z+Vn5+v8ePHa9++fXrzzTe1ZMkSz0wEAAAAAAAAdQrJwSpw//3368CBA2rdurVGjBihRx99VA8++KDCw8O1ZMkS/dd//Zeio6M1depUzZgxo0zbJk2aaMWKFVq1apXat2+vl156Sc8995yHZgIAAAAAAIC6hG3Ff5LdbldsbKyysrIkSVlZWVqzZo0OHjyokJAQo97gwYM1ePDgMm3dbneZ5z59+qhPnz6SJJvNJofDcU4dAAAAAAAAoKqxchAAAAAAAACoo0xulqhVWlJSkpYuXVrmu8WLF+uBBx7QBx98oCeffFJ79uxRbGysFi9erFatWkmSDhw4oLFjx+rjjz/WqVOnFBUVpfT0dN1yyy2Sfl2NmJ2dXabfiv49TqdTFotFDodDwcHBVTBLAAAAoOaypaz1dAg1Bpe3AEDtU5k8ESsH/4TZs2crPj5eycnJKioqUlFRkXEb8YQJE5SRkaFdu3bJx8dHQ4cONdqdPHlSvXr1UmZmpnbv3q3bb79dffv21aFDhyRJK1euVOPGjTV58mSj3/K4XC45nc4yBQAAAAAAAKgMkoN/gsVikZ+fnwICAhQREaGIiAh5e3tLkp599lklJiYqOjpaKSkp2rZtm06fPi1Jat++vR566CG1bdtWLVu21DPPPKMWLVpozZo1kqTQ0FB5e3urfv36Rr/lSU9Pl8ViMcpvyUkAAAAAAACgokgOVrF27doZnyMjIyVJR48elfTrysFx48YpKipKISEhCgoKUl5enrFysDJSU1PlcDiMUlhYWDUTAAAAAAAAQJ3BbcVVzNfX1/hsMpkkSaWlpZKkcePGacOGDZoxY4auvfZa+fv7a+DAgTpz5kylxzGbzTKbzVUTNAAAAFDLcI4eAAAVQ3LwT/Lz81NJSUml2mzdulVJSUnq37+/pF9XEhYUFFxyvwAAAAAAAMCfwbbiP8lms2n79u0qKCjQDz/8YKwOvJCWLVtq5cqVysnJUW5uru69995z2tlsNm3atEmHDx/WDz/8UF3hAwAAAAAAACQHyzNp0iTFxsaW+37cuHHy9vZWdHS0wsPDK3Ru4D/+8Q/5+/srLi5Ot99+u3r06KEOHTqUqTN58mQVFBSoRYsWCg8Pv+R5AAAAAAAAAOUxud1ut6eDuBJNmjRJq1atUk5OTpX2W1BQoGbNmmn37t0XTD5WltPplMVikcPhUHBwcJX1CwAAAAAAgJqlMnkizhwEAAAAUOvYUtZ6OoRycVkKAOBKUmu3Fdvtdo0ePVpPPPGEQkNDFRERoUmTJhnvDx06pDvuuENBQUEKDg7WXXfdpe++++6cfhYsWCCr1aqAgADdddddcjgcxrvS0lJNnjxZjRs3ltlsVmxsrNavX1+m/Y4dOxQXF6d69eqpY8eO2r17t/HO7Xbr2muv1YwZM8q0ycnJkclk0v79+6vo1wAAAAAAAADOVWuTg5K0dOlSBQYGavv27Zo+fbomT56sDRs2qLS0VHfccYd+/PFHZWdna8OGDfrqq6909913l2m/f/9+/etf/9K7776r9evXa/fu3RoxYoTxfvbs2crIyNCMGTP02WefqUePHvqP//gP5efnS/r1NuI+ffooOjpan3zyiSZNmqRx48YZ7U0mk4YOHarFixeXGXfx4sXq1q2brr322nLn5nK55HQ6yxQAAAAAAACgMmp1crBdu3Z6+umn1bJlS91///3q2LGjMjMzlZmZqc8//1xvvvmmrr/+enXp0kWvvfaasrOztXPnTqP96dOn9dprryk2NlbdunXTnDlz9NZbb+nbb7+VJM2YMUNPPvmk7rnnHrVq1UrTpk1TbGysZs2aJUl68803VVpaqldffVVt2rRRnz59NH78+DIxJiUlad++fdqxY4ckqbi4WG+++aaGDh16wbmlp6fLYrEYxWq1VuVPBwAAAAAAgDqg1icHfy8yMlJHjx5VXl6erFZrmYRadHS0QkJClJeXZ3zXpEkTXXPNNcZzfHy8SktLtW/fPjmdTh05ckQJCQllxkhISDD6yMvLU7t27VSvXr0yffxeo0aN1Lt3by1atEiS9O6778rlcmnQoEEXnFtqaqocDodRCgsLK/KTAAAAAAAAAIZafSGJr69vmWeTyaTS0lIPRVO+4cOH629/+5tmzpypxYsX6+6771ZAQMAF25jNZpnN5ssUIQAAAFCzcOkHAAAVU6tXDpYnKipKhYWFZVbb7dmzRydOnFB0dLTx3aFDh3TkyBHj+eOPP5aXl5datWql4OBgNWrUSFu3bi3T99atW40+oqKi9Nlnn+n06dNl+vijXr16KTAwUPPnz9f69esvuqUYAAAAAAAAqAp1Mjl4yy23yN/fXzfccIM+/fRT7dixQ/fff78SExPVsWNHo169evU0ZMgQ5ebmavPmzRo9erTuuusuRURESJLGjx+vadOm6e2339a+ffuUkpKinJwcPfroo5Kke++9VyaTScnJydqzZ4/WrVt3zs3EkuTt7a2kpCSlpqaqZcuW52w9BgAAAAAAAKpDnUwOmkwmtWnTRvXq1VO3bt10yy23qHnz5nr77bfL1Lv22ms1YMAA9erVS7fddpvatWunefPmGe9Hjx6tsWPH6vHHH1dMTIzWr1+vNWvWqGXLlpKkoKAgvfvuu/r8888VFxenCRMmaNq0aeeNadiwYTpz5oweeOCB6ps4AAAAAAAA8Dsmt9vt9nQQnmC328vcLOxpmzdvVvfu3VVYWKirr7660u2dTqcsFoscDoeCg4OrIUIAAAAAAADUBJXJE9XJlYPns3btWlksFi1btkxJSUnq16+fZsyYocjISIWFhWnkyJEqLi426h8/flz333+/GjRooICAAPXs2VP5+fmSJLfbrfDwcC1fvtyoHxsbq8jISON5y5YtMpvNOn78uAoLCzVkyBD5+vqqSZMmatSokUaPHn35Jg8AAADUMraUtectAACgLJKDkt58800NHjxYy5Yt03333SdJ2rhxow4cOKCNGzdq6dKlWrJkiZYsWWK0SUpK0q5du7RmzRp99NFHcrvd6tWrl4qLi2UymdStWzdlZWVJ+jWRmJeXp19++UV79+6VJGVnZ6tTp05avXq1mjZtqq+//lovvfSS8vPztWrVKsXExFwwZpfLJafTWaYAAAAAAAAAleHj6QA87cUXX9SECRP07rvvKjEx0fi+QYMGmjt3rry9vdW6dWv17t1bmZmZSk5OVn5+vtasWaOtW7fqxhtvlCQtW7ZMVqtVq1at0qBBg2S327VgwQJJ0qZNmxQXF6eIiAhlZWWpdevWysrKUmJiopKSkvTjjz9qwYIFuueee4zVg507d75g3Onp6UpLS6u+HwYAAAAAAAC1Xp1eObh8+XI99thj2rBhQ5nEoCS1adNG3t7exnNkZKSOHj0qScrLy5OPj4+6dOlivA8LC1OrVq2Ul5cnSUpMTNSePXv0/fffKzs7W3a7XXa7XVlZWSouLta2bdtkt9slSYMGDdIvv/yi5s2bKzk5We+8847Onj17wdhTU1PlcDiMUlhYWBU/CQAAAAAAAOqQOp0cjIuLU3h4uBYtWqQ/3svi6+tb5tlkMqm0tLTCfcfExCg0NFTZ2dllkoPZ2dnauXOniouLjVWHVqtV+/bt07x58+Tv768RI0aoW7duZc44/COz2azg4OAyBQAAAAAAAKiMOr2tuEWLFsrIyJDdbpe3t7fmzp1boXZRUVE6e/astm/fbiT4jh07pn379ik6OlrSr8nErl27avXq1friiy/0l7/8RQEBAXK5XFqwYIE6duyowMBAo09/f3/17dtXffv21ciRI9W6dWt9/vnn6k7sSQ8AACAASURBVNChQ9VPHAAAAKjlCqb29nQIAADUCHU6OShJ1113nTZu3Ci73S4fHx/NmjXrom1atmypO+64Q8nJyVqwYIHq16+vlJQUXXPNNbrjjjuMena7XY8//rg6duyooKAgSVK3bt20bNkyjR8/3qi3ZMkSlZSUqEuXLgoICNAbb7whf39/NW3atOonDAAAAAAAAPyvOr2t+DetWrXShx9+qH/+8596/PHHz1vH6XQqOztbOTk5kqTFixfr+uuvV58+fRQfHy+3261169aV2Y6cmJiokpIS42xB6deE4R+/CwkJ0cKFC5WQkKB27drpgw8+0LvvvquwsLBqmS8AAAAAAAAgSSb3Hw/bw3kVFBSoWbNm2r17t2JjY6t1LJPJpHfeeUf9+vWrcBun0ymLxSKHw8H5gwAAAAAAAHVYZfJErBwEAAAAAAAA6qg6f+bg761fv15TpkzRv//9b3l7eys+Pl6zZ89WixYtjDp79+7ViBEj9Omnn+raa6/Viy++qMTERON9dna2xo8fr9zcXIWGhmrIkCGaMmWKfHx+/altNpvGjBmjMWPGGG1iY2PVr18/TZo0STabTZLUv39/SVLTpk1VUFBQ/ZMHAAAAahFbylpPh2DgchQAwJWMlYO/c+rUKY0dO1a7du1SZmamvLy81L9/f5WWlhp1xo8fr8cff1y7d+9WfHy8+vbtq2PHjkmSDh8+rF69eqlTp07Kzc3V/Pnz9eqrr2rKlCkVjmHnzp2Sfj3TsKioyHj+I5fLJafTWaYAAAAAAAAAlcHKwd+58847yzwvWrRI4eHh2rNnj3Hb8KhRo4x68+fP1/r16/Xqq6/qiSee0Lx582S1WjV37lyZTCa1bt1aR44c0ZNPPqmJEyfKy+viudjw8HBJv15SEhERUW699PR0paWl/dmpAgAAAAAAAKwc/L38/HwNHjxYzZs3V3BwsLHF99ChQ0ad+Ph447OPj486duyovLw8SVJeXp7i4+NlMpmMOgkJCTp58qS++eabKo01NTVVDofDKIWFhVXaPwAAAAAAAGo/Vg7+Tt++fdW0aVMtXLhQjRo1Umlpqdq2baszZ85U2RheXl764wXRxcXFle7HbDbLbDZXVVgAAAAAAACog0gO/q9jx45p3759Wrhwobp27SpJ2rJlyzn1Pv74Y3Xr1k2SdPbsWX3yyScaNWqUJCkqKkorVqyQ2+02Vg9u3bpV9evXV+PGjSX9um24qKjI6M/pdOrgwYNlxvD19VVJSUnVTxIAAACoI7gEBACAimFb8f9q0KCBwsLC9PLLL2v//v368MMPNXbs2HPqvfjii3rnnXe0d+9ejRw5UsePH9fQoUMlSSNGjFBhYaEeeeQR7d27V6tXr9bTTz+tsWPHGucN3nzzzXr99de1efNmff755xoyZIi8vb3LjGGz2ZSZmalvv/1Wx48fr/7JAwAAAAAAoE4iOfi/vLy89NZbb+mTTz5R27Zt9dhjj+n5558/p97UqVM1depUtW/fXlu2bNGaNWvUsGFDSdI111yjdevWKTMzU1FRUXrooYc0bNgwPfXUU0b71NRUJSYm6tZbb9X111+vfv36qUWLFmXGyMjI0IYNG2S1WhUXF1e9EwcAAAAAAECdZXL/8QA8VJrdbldsbKxmzZolScrKytJNN92k48ePKyQk5LxtTp48KZfLpbCwsCqJwel0ymKxyOFwKDg4uEr6BAAAAAAAQM1TmTwRZw56SFBQkIKCgjwdBgAAAFAr2VLWejqEP43zEgEAlxPbii9RUlKSsrOzNXv2bJlMJplMJhUUFEiSPvnkE3Xs2FEBAQG68cYbtW/fPqPdpEmTFBsbazxnZWWpc+fOCgwMVEhIiBISEvT1119f7ukAAAAAAACgDiE5eIlmz56t+Ph4JScnq6ioSEVFRbJarZKkCRMmKCMjQ7t27ZKPj49xcckfnT17Vv369VNiYqI+++wzffTRR3rwwQeNG4/Px+Vyyel0likAAAAAAABAZbCt+BJZLBb5+fkpICBAERERkqS9e/dKkp599lklJiZKklJSUtS7d2+dPn1a9erVK9OH0+mUw+FQnz59jMtJoqKiLjhuenq60tLSqno6AAAAAAAAqENYOViN2rVrZ3yOjIyUJB09evSceqGhoUpKSlKPHj3Ut29fzZ49W0VFRRfsOzU1VQ6HwyiFhYVVGzwAAAAAAABqPVYOViNfX1/j829bhEtLS89bd/HixRo9erTWr1+vt99+W0899ZQ2bNigG2644bz1zWazzGZz1QcNAAAA1AJc6gEAQMWwcrAK+Pn5qaSk5JL7iYuLU2pqqrZt26a2bdvqzTffrILoAAAAAAAAgPMjOVgFbDabtm/froKCAv3www/lrg78zaRJk/TSSy8ZzwcPHlRqaqo++ugjff3113r//feVn59/0XMHAQAAAAAAgEtBcrAKjBs3Tt7e3oqOjlZ4eLgOHTp00fr333+/8RwQEKC9e/fqzjvv1HXXXacHH3xQI0eO1EMPPVTdoQMAAAAAAKAOM7ndbreng8ClczqdslgscjgcCg4O9nQ4AAAAAAAA8JDK5Inq/IUkdrtdMTEx8vb21tKlS+Xn56cpU6bo3nvv1ahRo7R8+XJdffXVmjNnjnr27ClJys7O1vjx45Wbm6vQ0FANGTJEU6ZMkY+Pj15++WVNmjRJ33zzjby8/m9h5h133KGwsDAtWrRIkyZN0qpVq5STk2O8f+WVV5SRkaGDBw/KZrNp9OjRGjFixGX/PQAAAIDawJay1iPjchEKAKCmYVuxpKVLl6phw4basWOHHnnkET388MMaNGiQbrzxRn366ae67bbb9Le//U0///yzDh8+rF69eqlTp07Kzc3V/Pnz9eqrr2rKlCmSpEGDBunYsWPauHGj0f+PP/6o9evX67777jvv+MuWLdPEiRP17LPPKi8vT88995z+/ve/a+nSpZdl/gAAAAAAAKibSA5Kat++vZ566im1bNlSqampqlevnho2bKjk5GS1bNlSEydO1LFjx/TZZ59p3rx5slqtmjt3rlq3bq1+/fopLS1NGRkZKi0tVYMGDdSzZ88yNw0vX75cDRs21E033XTe8Z9++mllZGRowIABatasmQYMGKDHHntMCxYsKDdml8slp9NZpgAAAAAAAACVQXJQUrt27YzP3t7eCgsLU0xMjPHd1VdfLUk6evSo8vLyFB8fL5PJZLxPSEjQyZMn9c0330iS7rvvPq1YsUIul0vSrysD77nnnjLbjH9z6tQpHThwQMOGDVNQUJBRpkyZogMHDpQbc3p6uiwWi1GsVuul/QgAAAAAAACoc+r8mYOS5OvrW+bZZDKV+e63RGBpaWmF+uvbt6/cbrfWrl2rTp06afPmzZo5c+Z56548eVKStHDhQnXp0qXMO29v73LHSE1N1dixY41np9NJghAAAAAAAACVQnKwkqKiorRixQq53W4jabh161bVr19fjRs3liTVq1dPAwYM0LJly7R//361atVKHTp0OG9/V199tRo1aqSvvvqq3DMJz8dsNstsNl/6hAAAAIBaiItBAACoGJKDlTRixAjNmjVLjzzyiEaNGqV9+/bp6aef1tixY8tsG77vvvvUp08fffHFF/rrX/96wT7T0tI0evRoWSwW3X777XK5XNq1a5eOHz9eZnUgAAAAAAAAUJVIDlbSNddco3Xr1mn8+PFq3769QkNDNWzYMD311FNl6t18880KDQ3Vvn37dO+9916wz+HDhysgIEDPP/+8xo8fr8DAQMXExGjMmDHVORUAAAAAAADUcSa32+32dBC4dE6nUxaLRQ6HQ8HBwZ4OBwAAAAAAAB5SmTwRtxUDAAAAAAAAdRTbigEAAADUOraUtZ4O4ZJxqQoA4HIgOVhDuVwuuVwu49npdHowGgAAAAAAANREbCuuodLT02WxWIxitVo9HRIAAAAAAABqGJKDNVRqaqocDodRCgsLPR0SAAAAAAAAahi2FddQZrNZZrPZ02EAAAAAAACgBiM5CAAAAKDW4TIPAAAqhm3FV6i5c+eqe/fung4DAAAAAAAAtRgrB69QM2bM0I8//ujpMAAAAAAAAFCLkRy8Qn366afy9fX1dBgAAAAAAACoxUgOXqFCQ0M9HQIAAAAAAABqOZKDVyi73a7Y2FjNmjXL06EAAAAANY4tZW2l23CJCQCgLiI5WEO5XC65XC7j2el0ejAaAAAAAAAA1ETcVlxDpaeny2KxGMVqtXo6JAAAAAAAANQwJAdrqNTUVDkcDqMUFhZ6OiQAAAAAAADUMGwrrqHMZrPMZrOnwwAAAACuSJwfCABAxbByEAAAAAAAAKijSA4CAAAAAAAAdRTJwUrIysqSyWTSiRMnyq0zadIkxcbGVqpfm82mWbNmXWp4AAAAAAAAQKVw5uAF2O12xcbGVipxN27cOD3yyCOXPHZWVtYl9wEAAAAAAABcCMnBKhYUFKSgoCBPhwEAAADUabaUtZ4OgUtRAAA1AtuKy5GUlKTs7GzNnj1bJpNJJpNJBQUFkqRPPvlEHTt2VEBAgG688Ubt27fPaPfHbcVJSUnq16+fZsyYocjISIWFhWnkyJEqLi4ud+xXXnlFISEhyszMrLb5AQAAAAAAACQHyzF79mzFx8crOTlZRUVFKioqktVqlSRNmDBBGRkZ2rVrl3x8fDR06NAL9rVx40YdOHBAGzdu1NKlS7VkyRItWbLkvHWnT5+ulJQUvf/+++revXu5fbpcLjmdzjIFAAAAAAAAqAySg+WwWCzy8/NTQECAIiIiFBERIW9vb0nSs88+q8TEREVHRyslJUXbtm3T6dOny+2rQYMGmjt3rlq3bq0+ffqod+/e510V+OSTT2rWrFnKzs5W586dLxhfenq6LBaLUX5LXAIAAAAAAAAVRXLwT2jXrp3xOTIyUpJ09OjRcuu3adPGSCz+1uaP9TMyMrRw4UJt2bJFbdq0uWgMqampcjgcRiksLKzsNAAAAAAAAFDHcSHJn+Dr62t8NplMkqTS0tIK1f+tzR/rd+3aVWvXrtW//vUvpaSkXDQGs9kss9lcmbABAACAOoPLQAAAqBiSgxfg5+enkpKSyzJW586dNWrUKN1+++3y8fHRuHHjLsu4AAAAAAAAqLvYVnwBNptN27dvV0FBgX744YcLrg68FN9++63eeecd3XjjjVq5cqVSU1NVr149mUwmnThxolrGBAAAAAAAAEgOXsC4cePk7e2t6OhohYeH69ChQ9UyzlVXXaWePXtKkvLz8xUYGCgvLy9NmTJFFoulWsYEAAAAAAAATG632+3pIPB/xo0bp507dyo7O7tS7ZxOpywWixwOh4KDg6spOgAAAAAAAFzpKpMn4szBK4DdbldsbKxycnKMpKDJZFJiYqKysrI8GxwAAABQA9lS1lb7GFx6AgCoDUgOXkFWrlyplJQU/fvf/9bKlSvl5+dXbl2XyyWXy2U8O53OyxEiAAAAAAAAahHOHLyChIaGKiAgQH5+foqIiFBoaGi5ddPT02WxWIxitVovY6QAAAAAAACoDUgO1lCpqalyOBxGKSws9HRIAAAAAAAAqGHYVlxDmc1mmc1mT4cBAAAAAACAGozkIAAAAIBah8tCAACoGLYVAwAAAAAAAHUUKwevADk5OXI4HJ4OAwAAAAAAAHUMycErwFdffSVfX19J0qpVqzRmzBgPRwQAAAAAAIC6gOTgFSA0NNTTIQAAAAAAAKAOMrndbreng6jr7Ha7YmNjlZOTo+zs7DLvKvr3OJ1OWSwWORwOBQcHV0eYAAAAAAAAqAEqkyfiQpIryMqVK9W4cWNNnjxZRUVFKioqKreuy+WS0+ksUwAAAAAAAIDKIDl4BQkNDZW3t7fq16+viIgIRURElFs3PT1dFovFKFar9TJGCgAAAAAAgNqA5GANlZqaKofDYZTCwkJPhwQAAAAAAIAahgtJaiiz2Syz2ezpMAAAAAAAAFCDsXLwCuPn56eSkhJPhwEAAAAAAIA6gOTgFcZms2nTpk06fPiwfvjhB0+HAwAAAAAAgFqM5OAVZvLkySooKFCLFi0UHh7u6XAAAAAAAABQi5ncbrfb00Hg0jmdTlksFjkcDgUHB3s6HAAAAAAAAHhIZfJEXEjiYWfOnJGfn5+nwwAAAABqHFvK2nLfFUztfRkjAQCg5mJb8UX893//t0JCQoxLQnJycmQymZSSkmLUGT58uP76179KkrZs2aKuXbvK399fVqtVo0eP1qlTp4y6NptNzzzzjO6//34FBwfrwQcfrFA7AAAAAAAAoKqRHLyIrl276qefftLu3bslSdnZ2WrYsKGysrKMOtnZ2bLb7Tpw4IBuv/123Xnnnfrss8/09ttva8uWLRo1alSZPmfMmKH27dtr9+7d+vvf/17hdr/ncrnkdDrLFAAAAAAAAKAyOHOwAq6//noNHjxY48aNU//+/dWpUyelpaXp2LFjcjgcaty4sb788ktNmzZN3t7eWrBggdF2y5YtSkxM1KlTp1SvXj3ZbDbFxcXpnXfeMeoMHz78ou3+aNKkSUpLSzvne84cBAAAQF3BtmIAAM6vMmcOsnKwAhITE5WVlSW3263NmzdrwIABioqK0pYtW5Sdna1GjRqpZcuWys3N1ZIlSxQUFGSUHj16qLS0VAcPHjT669ixY5n+K9ru91JTU+VwOIxSWFhYrb8BAAAAAAAAah8uJKkAu92uRYsWKTc3V76+vmrdurXsdruysrJ0/PhxJSYmSpJOnjyphx56SKNHjz6njyZNmhifAwMDy7yraLvfM5vNMpvNlzItAAAAoEZjdSAAAJeO5GAF/Hbu4MyZM41EoN1u19SpU3X8+HE9/vjjkqQOHTpoz549uvbaayvV/59tBwAAAAAAAFwKthVXQIMGDdSuXTstW7ZMdrtdktStWzd9+umn+vLLL/Xee++pX79+evLJJ7Vt2zaNGjVKOTk5ys/P1+rVqy94sYikP90OAAAAAAAAuBSsHKygxMRE5eTkGMnB0NBQRUdH67vvvtOSJUvkdrsVEhKi7OxsTZgwQV27dpXb7VaLFi109913X7Dvdu3aGe06dOhgbF2+WDsAAAAAAADgUnBb8RXGZrNpzJgxGjNmTKXaVeYWGgAAAAAAANRelckTkRysAklJSTpx4oRWrVp13uRebGys+vXrp0mTJsntdistLU2LFi3Sd999p7CwMA0cOFAvvPCC7Ha7srOzy/Rd0b+H5CAAAADwf2wpa6ukHy49AQDURJXJE7Gt+DJbsWKFZs6cqbfeektt2rTRt99+q9zcXEnSypUr1b59ez344INKTk72cKQAAAAAAACo7UgOXmaHDh1SRESEbrnlFvn6+qpJkybq3LmzpF/PMfT29lb9+vUVERFxwX5cLpdcLpfx7HQ6qzVuAAAAAAAA1D7cVnyZDRo0SL/88ouaN2+u5ORkvfPOOzp79myl+0lPT5fFYjGK1WqthmgBAAAAAABQm5EcrGJeXl7nnBNYXFxsfLZardq3b5/mzZsnf39/jRgxQt26dStTpyJSU1PlcDiMUlhYWCXxAwAAAAAAoO5gW3EVCw8PV1FRkfHsdDp18ODBMnX8/f3Vt29f9e3bVyNHjlTr1q31+eefq0OHDvLz81NJSclFxzGbzTKbzVUePwAAAFAbcJEIAAAVQ3Kwit18881asmSJ+vbtq5CQEE2cOFHe3t7G+yVLlqikpERdunRRQECA3njjDfn7+6tp06aSJJvNpk2bNumee+6R2WxWw4YNPTUVAAAAAAAA1HJsK65iqampSkxMVJ8+fdS7d2/169dPLVq0MN6HhIRo4cKFSkhIULt27fTBBx/o3XffVVhYmCRp8uTJKigoUIsWLRQeHu6paQAAAAAAAKAOMLn/eEAeKm3w4MHy9vbWG2+84bEYnE6nLBaLHA6HgoODPRYHAAAAAAAAPKsyeSJWDl6Cn3/+WXv27NFHH32kNm3aeDocAAAAAAAAoFLq3JmDy5cvV1pamvbv36+AgADFxcVp9erVGjlypE6cOKG4uDjNnTtXLpdL9957r1544QX5+flJkux2u9q2bSsfHx+98cYbstls+uKLL3T69GklJCQYY5w4cUINGjTQxo0bZbfbJUlffPGFnnzySW3atElut1uxsbFasmSJseX4lVdeUUZGhg4ePCibzabRo0drxIgRl/33AQAAAGoDW8raStXnAhMAQF1Vp5KDRUVFGjx4sKZPn67+/fvrp59+0ubNm/XbzurMzEzVq1dPWVlZKigo0AMPPKCwsDA9++yzRh9Lly7Vww8/rK1bt0r69dbgZs2aXXCJ5uHDh9WtWzfZ7XZ9+OGHCg4O1tatW3X27FlJ0rJlyzRx4kTNnTtXcXFx2r17t5KTkxUYGKghQ4act0+XyyWXy2U8O53OS/59AAAAAAAAULfUueTg2bNnNWDAAON24JiYGOO9n5+fFi1apICAALVp00aTJ0/W+PHj9cwzz8jL69cd2C1bttT06dONNgUFBRcd98UXX5TFYtFbb70lX19fSdJ1111nvH/66aeVkZGhAQMGSJKaNWumPXv2aMGCBeUmB9PT05WWlla5HwAAAAAAAAD4nTp15mD79u3VvXt3xcTEaNCgQVq4cKGOHz9e5n1AQIDxHB8fr5MnT6qwsND47vrrr6/0uDk5OeratauRGPy9U6dO6cCBAxo2bJiCgoKMMmXKFB04cKDcPlNTU+VwOIzy+xgBAAAAAACAiqhTKwe9vb21YcMGbdu2Te+//77mzJmjCRMmaPv27RXuIzAwsMzzbysKf3/pc3FxcZk6/v7+5fZ38uRJSdLChQvVpUuXc+Itj9lsltlsrljQAAAAAAAAwHnUqeSgJJlMJiUkJCghIUETJ05U06ZN9c4770iScnNz9csvvxjJvI8//lhBQUGyWq3l9hceHi7p1y3LcXFxkn5dKfh77dq109KlS1VcXHzO6sGrr75ajRo10ldffaX77ruvyuYJAAAA1GVcMAIAQMXUqeTg9u3blZmZqdtuu01XXXWVtm/fru+//15RUVH67LPPdObMGQ0bNkxPPfWU/j979x4WdZn/f/w1nAYRGU8omOhYHhIVUdHCE7RWatnRDmplrGcNkwqTyTIwXWyNhM5mJW5fN9us1F8eanMDz4YpqAseYmWd3TDT1ZnUmlT4/dE224QoKDDAPB/XdV/XzD33fX/eH/jvfd33/S4qKtKzzz6r+Ph45+7AC2nQoIGuv/56zZs3T+3atdPRo0f19NNPu4yJj4/Xyy+/rBEjRshischkMmnbtm3q06ePOnXqpJSUFD366KMymUwaMmSIHA6HduzYoRMnTujxxx+v7j8LAAAAAAAAPJRH3TkYFBSkDRs26JZbblHHjh319NNPKy0tTUOHDpUkDRo0SB06dNDAgQN1//336/bbb1dycvIl133nnXd07tw59erVSwkJCZozZ47L782aNdPf/vY3nTp1SjExMerVq5cWLVrk3EU4btw4vfXWW1q8eLG6deumfv36acyYMWrRokWV/w0AAAAAAACAXxhKf31ZngeLi4vTyZMntWLFikuO/e6773TVVVfpxIkT8vPzU+PGjVVQUKA2bdqUGfvBBx9owYIF2rJli7Zs2aIHH3xQ//jHPy66flZWlm644QadOHFCjRs3rlD8drtdJpNJNptNQUFBFZoDAAAAAACA+qcyeSKP2jlYVbZu3aru3burYcOG2rlzp5o2bXrBxOAvY/v16ydJ2rhxo/MzAAAAAAAA4G4ededgVdmyZYszybdp06aLJvy2bNmipKQk59hbby17MfKaNWuUkJAgq9Wq66+/Xg8//HD1BA4AAAB4CHPSaneHIInCKACA2o9jxRV0+PBhRURESJLOnDkjb29vGY1G/fDDDzIYDPL399eoUaP02muv6c9//rOmTJki6edtnA0bNpS3t7e+//57NWjQQD4+Pnrttdc0atQoWa1WdejQQY888ogmTJigHTt26IknntC333570WPFDodDDofD+d1utyssLIxjxQAAAIBIDgIAPFtljhWzc7CCWrVqpdzcXNntdkVFRWn79u1q2LChIiMjtXr1arVp00aBgYGSpNtvv119+/bV559/rvT0dH3yySfavXu3Jk2apC1btkiSmjdvLkl6/fXXdc011ygtLU2S1KlTJ+3Zs0fPP//8ReNJTU1VSkpKNb4xAAAAAAAA6jvuHKwgHx8fmc1m7du3T71791ZERISOHDmili1bauDAgTKbzc6EX2BgoMxms3bu3Kk77rhDZrNZe/bs0S233CKz2Syz2exMJBYUFOi6665zeVZ0dPQl47FYLLLZbM5mtVqr/qUBAAAAAABQr7FzsIK6dOmif/7znzp79qxKSkoUGBioc+fO6dy5cwoMDFTbtm3197//XYcPH1Z4eLgk6ccff5SPj48yMjLkcDjk5eWlZcuW6cEHH9Qbb7xxRfEYjUYZjcaqeDUAAACg3uE4LwAAFUNysILWrFmjs2fPatCgQfrjH/+oXr16acSIEYqLi9OQIUPk6+sr6X/Hj48cOaIbb7xRubm5On/+vCIjI7Vx40Y1bdrU5ax3586dtWrVKpdnbdu2rUbfDQAAAAAAAJ6JY8UV1LZtWwUGBurbb7/VHXfcobCwMP3973/X8OHD1b59e7Vt21bSz8eP27dvr3/961+67rrrdO211+r48eO6+uqr1adPH7Vv314tWrRwrjtp0iQdPHhQ06dP1/79+/XnP/9ZmZmZbnpLAAAAAAAAeBKSg5WQlZWl3r17y9/fX19++aVat26t0NDQcscOHDhQkpSdne38/Ftt2rTRhx9+qBUrVqh79+5644039Ic//KHa3gEAAAAAAAD4haG0tLTU3UHgylWmRDUAAAAAAADqr8rkibhzEAAAAEC9Y05a7e4QKIoCAKgTOFZczcxms9LT0136IiMjlZycjTDgxAAAIABJREFULEkyGAx6/fXXNXToUDVo0EBXX321li9f7oZIAQAAAAAA4GlIDtYCzzzzjIYPH668vDw98MADGjFihAoKCi46x+FwyG63uzQAAAAAAACgMkgO1gL33nuvxo0bp44dO+q5555TVFSUXn755YvOSU1NlclkcrawsLAaihYAAAAAAAD1BcnBWiA6OrrM90vtHLRYLLLZbM5mtVqrM0QAAAAAAADUQxQkqWZeXl76bUHos2fPXvG6RqNRRqPxitcBAAAA6iOKgQAAUDHsHKxmwcHBKi4udn632+06dOiQy5ht27aV+d65c+caiQ8AAAAAAACei52D1ex3v/udMjMzddttt6lx48aaNWuWvL29XcZ88MEHioqKUv/+/bV06VJ9+eWXevvtt90UMQAAAAAAADwFycFqZrFYdOjQIQ0bNkwmk0nPPfdcmZ2DKSkpWrZsmaZMmaLQ0FC99957Cg8Pd1PEAAAAAAAA8BSG0t9eiIcaZTAY9PHHH+vOO++8onXsdrtMJpNsNpuCgoKqKDoAAAAAAADUNZXJE3HnYC2xbt069e/fX40bN1azZs00bNgwFRYWujssAAAAoE4yJ612dwgAANQJJAdridOnT+vxxx/Xjh07tH79enl5eemuu+5SSUnJBcc7HA7Z7XaXBgAAAAAAAFQGdw66WXmnut955x0FBwcrPz9fXbt2LfN7amqqUlJSqjs8AAAAAAAA1GPsHKwlDh48qJEjR+rqq69WUFCQzGazJOnw4cMXHG+xWGSz2ZzNarXWYLQAAAAAAACoD9g5WEvcdtttatu2rRYtWqRWrVqppKREXbt21U8//XTB8UajUUajsYajBAAAAAAAQH1CcrAWOH78uPbv369FixZpwIABkqRNmza5OSoAAACg7iqad6u7QwAAoE4gOVgLNGnSRM2aNdObb76p0NBQHT58WElJSe4OCwAAAAAAAPUcdw5WQmxsrBISEiRJZrNZ6enpl7WOwWDQihUrnN+9vLy0bNkyffXVV+ratasee+wxzZ8/v0piBgAAAAAAAMrDzsHLlJOTo4YNGzq/GwwGffzxx7rzzjudfcnJyVqxYoVyc3Mvud6NN96o/Px8l77yKhkDAAAAAAAAVYHk4GUKDg52dwgAAAAAAADAFSE5eJnMZrMSEhKUkJAgs9ksSbrrrrskSW3btlVycrJSUlIk/byrUJIWL16suLi4MmtZrVY98cQT+uyzz+Tl5aUBAwYoIyPDuS4AAACAyjEnra6WdSl0AgCob0gOVoGcnBy1aNFCixcv1pAhQ+Tt7a3AwEDt3btX69at0+effy5JMplMZeaePXtWgwcPVnR0tDZu3CgfHx/NmTNHQ4YM0e7du+Xn53fBZzocDjkcDud3u91ePS8HAAAAAACAeovkYBX45Yhx48aNFRIS4uwPDAyUj4+PS99vvf/++yopKdFbb73lssOwcePGysrK0s0333zBeampqc6diQAAAAAAAMDloFqxm+Xl5enrr79Wo0aNFBgYqMDAQDVt2lQ//vijCgsLy51nsVhks9mczWq11mDUAAAAAAAAqA/YOehmp06dUq9evbR06dIyv12s6InRaJTRaKzO0AAAAIA6i7sBAQCoGJKDVcTX11fnz5936fPz8yvT91s9e/bU+++/rxYtWigoKKg6QwQAAAAAAABccKy4ipjNZq1fv15HjhzRiRMnnH2HDh1Sbm6ujh075lJA5BcPPPCAmjdvrjvuuEMbN27UoUOHlJWVpUcffVT/+te/avo1AAAAAAAA4EFIDlaRtLQ0/fWvf1VYWJh69OghSRo+fLiGDBmiG264QcHBwXrvvffKzAsICNCGDRvUpk0b3X333ercubPGjh2r3bt3q0uXLjX9GgAAAAAAAPAghtLS0lJ3B4GyMjMzlZCQoJMnT1ZovN1ul8lkks1m43gyAAAAAACAB6tMnog7BwEAAADUO+ak1Rfsp1AJAACuOFZcBdatW6f+/furcePGatasmYYNG6bCwkJJUlFRkQwGgz766CPdcMMNCggIUPfu3bV161aXNTIzM9WmTRsFBATorrvu0vHjx93xKgAAAAAAAPAgJAerwOnTp/X4449rx44dWr9+vby8vHTXXXeppKTEOWbmzJlKTExUbm6uOnbsqJEjR+rcuXOSpO3bt2vs2LGKj49Xbm6ubrjhBs2ZM+eiz3Q4HLLb7S4NAAAAAAAAqAzuHKwGx44dU3BwsPbs2aPAwEC1a9dOb731lsaOHStJys/PV5cuXVRQUKBrr71Wo0aNks1m0+rV/zv6MGLECK1bt67cOweTk5OVkpJSpp87BwEAAACOFQMAPFtl7hxk52AVOHjwoEaOHKmrr75aQUFBMpvNkqTDhw87x0RERDg/h4aGSpKOHj0qSSooKNB1113nsmZ0dPRFn2mxWGSz2ZzNarVWxasAAAAAAADAg1CQpArcdtttatu2rRYtWqRWrVqppKREXbt21U8//eQc4+vr6/xsMBgkyeXYcWUZjUYZjcbLDxoAAACox9ghCABAxZAcvELHjx/X/v37tWjRIg0YMECStGnTpkqt0blzZ23fvt2lb9u2bVUWIwAAAAAAAHAhJAevUJMmTdSsWTO9+eabCg0N1eHDh5WUlFSpNfbt26fc3Fy98MILuvnmmzV69Gjl5eVJkk6ePKnGjRtXR+gAAAAAAADwcNw5eIW8vLy0bNkyffXVV+ratasee+wxzZ8/v1JrfP7553rllVeUkZGhqKgoFRQUKDExUUFBQTKZTNUUOQAAAAAAADwd1YprmcTEROXk5Cg7O7tS8ypThQYAAAAAAAD1V2XyRBwrrgViY2MVGRmp3NxcZ1LQYDAoJiZGWVlZ7g0OAAAAqIPMSavd+nwKogAA6gqSg7XIRx99pKSkJO3du1cfffSR/Pz8yh3rcDjkcDic3+12e02ECAAAAAAAgHqEOwdrkaZNmyogIEB+fn4KCQlR06ZNyx2bmpoqk8nkbGFhYTUYKQAAAAAAAOoDkoN1lMVikc1mczar1erukAAAAAAAAFDHcKy4jjIajTIaje4OAwAAAAAAAHUYyUEAAAAA9Q4FQQAAqBiOFQMAAAAAAAAeip2DtUBubq5sNpu7wwAAAAAAAICHITlYC/zjH/+Qr6+vJGnFihVKSEhwc0QAAAAAAADwBCQHa4GmTZu6OwQAAAAAAAB4IENpaWmpu4PwdLGxsYqMjFRubq6ys7Ndfqvov8dut8tkMslmsykoKKg6wgQAAADqDHPS6kuOoWgJAKC+qkyeiIIktchHH32k1q1ba/bs2SouLlZxcXG5Yx0Oh+x2u0sDAAAAAAAAKoPkYC3StGlTeXt7q1GjRgoJCVFISEi5Y1NTU2UymZwtLCysBiMFAAAAAABAfUBysI6yWCyy2WzOZrVa3R0SAAAAAAAA6hgKktRRRqNRRqPR3WEAAAAAAACgDiM5WMv4+fnp/Pnz7g4DAAAAqNMoNgIAQMVwrLiWMZvN2rBhg/7973/r2LFj7g4HAAAAAAAA9RjJwVpm9uzZKioq0jXXXKPg4GB3hwMAAAAAAIB6zFBaWlrq7iBw5ex2u0wmk2w2m4KCgtwdDgAAAAAAANykMnki7hysRj/99JP8/PzcHQYAAADgccxJq90dQpXh/kQAQHXy6GPFn3zyiRo3buwsAJKbmyuDwaCkpCTnmHHjxunBBx+UJG3atEkDBgxQgwYNFBYWpkcffVSnT592jjWbzXruuec0evRoBQUFacKECRWe94c//EFjxoxRo0aN1KZNG7355ps18ScAAAAAAACAB/Po5OCAAQP0/fffa9euXZKk7OxsNW/eXFlZWc4x2dnZio2NVWFhoYYMGaLhw4dr9+7dev/997Vp0ybFx8e7rPnCCy+oe/fu2rVrl5555pkKz0tLS1NUVJR27dqlKVOmaPLkydq/f3+5sTscDtntdpcGAAAAAAAAVIbH3znYq1cvjRw5UomJibrrrrvUu3dvpaSk6Pjx47LZbGrdurUOHDig559/Xt7e3lq4cKFz7qZNmxQTE6PTp0/L399fZrNZPXr00Mcff+wcM27cuArNGzBggN59911JUmlpqUJCQpSSkqJJkyZdMO7k5GSlpKSU6efOQQAAAIBjxQAAz1aZOwc9euegJMXExCgrK0ulpaXauHGj7r77bnXu3FmbNm1Sdna2WrVqpQ4dOigvL0+ZmZkKDAx0tsGDB6ukpESHDh1yrhcVFeWyfkXnRUREOD8bDAaFhITo6NGj5cZtsVhks9mczWq1VuFfBQAAAAAAAJ7A4wuSxMbG6p133lFeXp58fX117bXXKjY2VllZWTpx4oRiYmIkSadOndLEiRP16KOPllmjTZs2zs8NGzZ0+a2i83x9fV1+MxgMKikpKTduo9Eoo9FYsZcEAAAAPAy77QAAqBiPTw7+cu/gggULnInA2NhYzZs3TydOnNATTzwhSerZs6fy8/PVvn37Sq1/ufMAAAAAAACA6ubxx4qbNGmiiIgILV26VLGxsZKkgQMHaufOnTpw4IAzYThjxgxt2bJF8fHxys3N1cGDB7Vy5coyhUV+63LnAQAAAAAAANXN45OD0s/3Dp4/f96ZHGzatKnCw8MVEhKiTp06Sfr5TsDs7GwdOHBAAwYMUI8ePTRr1iy1atXqomtf7rzDhw+7VE0GAAAAAAAAqprHVyuureLi4mQ2m5WcnFyh8ZWpQgMAAAAAAID6qzJ5Io+/cxAAAABA/WNOWl0t61LoBABQ33CsGAAAAAAAAPBQ7ByspTIzMy/6u8PhkMPhcH632+3VHBEAAAAAAADqG3YO1lGpqakymUzOFhYW5u6QAAAAAAAAUMeQHKyjLBaLbDabs1mtVneHBAAAAAAAgDqGY8V1lNFolNFodHcYAAAAQK1E4RAAACqGnYMAAAAAAACAhyI5CAAAAAAAAHgokoO1UGxsrBISEtwdBgAAAAAAAOo5koMAAAAAAACAhzKUlpaWujsI/E9cXJyWLFni0nfo0CGZzeaLzrPb7TKZTLLZbAoKCqrGCAEAAIDaz5y02t0h1CgKsAAAfq0yeSKqFdcyGRkZOnDggLp27arZs2dLkoKDg8uMczgccjgczu92u73GYgQAAAAAAED9wLHiWsZkMsnPz08BAQEKCQlRSEiIvL29y4xLTU2VyWRytrCwMDdECwAAAAAAgLqM5GAdZbFYZLPZnM1qtbo7JAAAAAAAANQxHCuuo4xGo4xGo7vDAAAAAAAAQB1GcrAW8vPz0/nz590dBgAAAFBnUaADAICK4VhxLWQ2m7V9+3YVFRXp2LFjKikpcXdIAAAAAAAAqIdIDtZCiYmJ8vb2Vnh4uIKDg3X48GF3hwQAAAAAAIB6iGPFtVDHjh21detWd4cBAAAAAACAeo6dgwAAAAAAAICHYudgDVq+fLlSUlL09ddfKyAgQD169NDKlSvVoEEDzZkzR2+++aa+++47de7cWfPmzdOQIUPcHTIAAABQJ5mTVrs7hFqBwiwAgEth52ANKS4u1siRIzVmzBgVFBQoKytLd999t0pLS5WRkaG0tDS98MIL2r17twYPHqzbb79dBw8eLHc9h8Mhu93u0gAAAAAAAIDKMJSWlpa6OwhPsHPnTvXq1UtFRUVq27aty29XXXWVHnnkET311FPOvj59+qh379569dVXL7hecnKyUlJSyvTbbDYFBQVVbfAAAABAHcPOwZ+xcxAAPJPdbpfJZKpQnoidgzWke/fuGjRokLp166Z7771XixYt0okTJ2S32/XNN9+oX79+LuP79eungoKCctezWCyy2WzOZrVaq/sVAAAAAAAAUM9w52AN8fb21l//+ldt2bJFn332mV5++WXNnDlTf/3rXy9rPaPRKKPRWMVRAgAAAPUDO+YAAKgYdg7WIIPBoH79+iklJUW7du2Sn5+f1q9fr1atWmnz5s0uYzdv3qzw8HA3RQoAAAAAAABPwM7BGrJ9+3atX79eN998s1q0aKHt27c7KxNPnz5dzz77rK655hpFRkZq8eLFys3N1dKlS90dNgAAAAAAAOoxkoNVJDY2VpGRkUpPT7/g70FBQdqwYYPS09Nlt9vVtm1bpaWlaejQoRo8eLBsNpueeOIJHT16VOHh4Vq1apU6dOhQw28BAAAAAAAAT0K14ipyqeRgdatMFRoAAAAAAADUX5XJE7FzEAAAAEC9Y05a7e4QAArjAKgTKEhSDU6cOKHRo0erSZMmCggI0NChQ3Xw4EFJUmlpqYKDg7V8+XLn+MjISIWGhjq/b9q0SUajUWfOnKnx2AEAAAAAAOA5SA5Wg7i4OO3YsUOrVq3S1q1bVVpaqltuuUVnz56VwWDQwIEDlZWVJennRGJBQYF++OEH7du3T5KUnZ2t3r17KyAgoNxnOBwO2e12lwYAAAAAAABUBsnBKnbw4EGtWrVKb731lgYMGKDu3btr6dKl+ve//60VK1ZI+vl+wl+Sgxs2bFCPHj1c+rKyshQTE3PR56SmpspkMjlbWFhYdb4WAAAAAAAA6iGSg1WsoKBAPj4+uu6665x9zZo1U6dOnVRQUCBJiomJUX5+vr777jtlZ2crNjbWmRw8e/astmzZotjY2Is+x2KxyGazOZvVaq3O1wIAAAAAAEA9REESN+jWrZuaNm2q7OxsZWdna+7cuQoJCdHzzz+vnJwcnT17Vn379r3oGkajUUajsYYiBgAAAOoWCkEAAFAx7BysYp07d9a5c+e0fft2Z9/x48e1f/9+hYeHS5IMBoMGDBiglStX6u9//7v69++viIgIORwOLVy4UFFRUWrYsKG7XgEAAAAAAAAeguRgFevQoYPuuOMOjR8/Xps2bVJeXp4efPBBXXXVVbrjjjuc42JjY/Xee+8pMjJSgYGB8vLy0sCBA7V06dJL3jcIAAAAAAAAVAWSg9Vg8eLF6tWrl4YNG6bo6GiVlpZqzZo18vX1dY6JiYnR+fPnXe4WjI2NLdMHAAAAAAAAVBdDaWlpqbuDwJWz2+0ymUyy2WwKCgpydzgAAAAAAABwk8rkiShIAgAAAKDeMSetdncIV4yiKgCAmkBysI5yOBxyOBzO73a73Y3RAAAAAAAAoC7izsFaaOnSpQoMDHS2jRs3lhmTmpoqk8nkbGFhYW6IFAAAAAAAAHUZdw7WQt9//72+/fZb5/errrpKDRo0cBlzoZ2DYWFh3DkIAAAAiGPFAADPxp2DdVyjRo3UqFGji44xGo0yGo01FBEAAAAAAADqI5KDAAAAAOoddt0BAFAx3DkIAAAAAAAAeCiPSA7GxsYqISGhStcsKiqSwWBQbm5ula4LAAAAAAAA1BSPSA7WJWazWenp6e4OAwAAAAAAAB6A5CAAAAAAAADgoTymIMm5c+cUHx+vd999V76+vpo8ebJmz54tg8Egg8Ggjz/+WHfeeadzfOPGjZWenq64uDhJ0pdffqmJEyeqoKBAXbt21cyZM8s8Y9WqVXriiSdktVoVHR2tuLg4xcXF6cSJE2rcuLEkadOmTbJYLNqxY4eaN2+uu+66S6mpqWrYsKFiY2P1z3/+U4899pgee+wxSVJpaWn1/3EAAACAesactNrdIaAWoDANAFyax+wcXLJkiXx8fPTll18qIyNDL774ot56660KzT116pSGDRum8PBwffXVV0pOTlZiYqLLmEOHDumee+7RnXfeqby8PE2cOLFMArGwsFBDhgzR8OHDtXv3br3//vvatGmT4uPjJUkfffSRWrdurdmzZ6u4uFjFxcXlxuRwOGS3210aAAAAAAAAUBkes3MwLCxMCxYskMFgUKdOnbRnzx4tWLBA48ePv+TcP//5zyopKdHbb78tf39/denSRf/61780efJk55iFCxeqU6dOmj9/viSpU6dO2rt3r+bOnesck5qaqgceeMBZHKVDhw566aWXFBMTo9dff11NmzaVt7e3GjVqpJCQkIvGlJqaqpSUlMv5UwAAAAAAAACSPGjn4PXXXy+DweD8Hh0drYMHD+r8+fOXnFtQUKCIiAj5+/u7zP+1/fv3q3fv3i59ffr0cfmel5enzMxMBQYGOtvgwYNVUlKiQ4cOVep9LBaLbDabs1mt1krNBwAAAAAAADxm5+DFGAyGMnf7nT17tsqfc+rUKU2cOFGPPvpomd/atGlTqbWMRqOMRmNVhQYAAAAAAAAP5DHJwe3bt7t837Ztmzp06CBvb28FBwe73O938OBBnTlzxvm9c+fOevfdd/Xjjz86dw9u27bNZb1OnTppzZo1Ln05OTku33v27Kn8/Hy1b9++3Dj9/PwqtJsRAAAAQPkoRAEAQMV4zLHiw4cP6/HHH9f+/fv13nvv6eWXX9a0adMkSb/73e/0yiuvaNeuXdqxY4cmTZokX19f59xRo0bJYDBo/Pjxys/P15o1a/TCCy+4rD9x4kTt27dPM2bM0IEDB/SXv/xFmZmZkuQ8zjxjxgxt2bJF8fHxys3N1cGDB7Vy5UpnQRJJMpvN2rBhg/7973/r2LFj1fxXAQAAAAAAgCfzmOTg6NGj9cMPP6hPnz565JFHNG3aNE2YMEGSlJaWprCwMA0YMECjRo1SYmKiAgICnHMDAwP1//7f/9OePXvUo0cPzZw5U88//7zL+u3atdPy5cv10UcfKSIiQq+//rqzWvEvx38jIiKUnZ2tAwcOaMCAAerRo4dmzZqlVq1aOdeZPXu2ioqKdM011yg4OLi6/ywAAAAAAADwYIbS3162hyozd+5cvfHGGzVSLMRut8tkMslmsykoKKjanwcAAAAAAIDaqTJ5Io+5c7AmvPbaa+rdu7eaNWumzZs3a/78+S5HhgEAAABcOXPS6kuO4c5BAAAqhuRgFTp48KDmzJmj//znP2rTpo2eeOIJWSwWd4cFAAAAAAAAXBDJwSq0YMECLViwoEae5XA45HA4nN/tdnuNPBcAAAAAAAD1h8cUJKlvUlNTZTKZnC0sLMzdIQEAAAAAAKCOITlYR1ksFtlsNmeriaInAAAAAAAAqF84VlxHGY1GGY1Gd4cBAAAA1DiKjQAAUHXYOQgAAAAAAAB4KJKDtVRsbKwSEhLcHQYAAAAAAADqMZKDtdQ999yjjIwMd4cBAAAAAACAeozkYC313XffKSYmxt1hAAAAAAAAoB6jIEkttWDBAt1yyy3uDgMAAACok8xJq69oPkVPAACegp2DtVTPnj0VEhLi7jAAAAAAAABQj7FzsI5yOBxyOBzO73a73Y3RAAAAAAAAoC5i52AdlZqaKpPJ5GxhYWHuDgkAAAAAAAB1DMnBOspischmszmb1Wp1d0gAAAAAAACoYzhWXEcZjUYZjUZ3hwEAAADUShQUAQCgYtg5CAAAAAAAAHgokoOVkJWVJYPBoJMnT5Y7Jjk5WZGRkZVa12w2Kz09/UrDAwAAAAAAACqFY8UXERsbq8jIyEol7hITEzV16tQrfnZWVtYVrwEAAAAAAABcDMnBKhYYGKjAwEB3hwEAAAAAAABcEsnBcsTFxSk7O1vZ2dnKyMiQJC1evFiS9NVXX2nGjBnKz89XZGSkFi9erE6dOkn6+VjxihUrlJub61zn5MmT6t+/v9LS0vTTTz9pxIgRSk9Pl6+v7wWf/dZbbykxMVEffvihBg0aVANvCwAAANQv5qTV7g7BBQVSAAC1FXcOliMjI0PR0dEaP368iouLVVxcrLCwMEnSzJkzlZaWph07dsjHx0djxoy56FpffPGFCgsL9cUXX2jJkiXKzMxUZmbmBcf+8Y9/VFJSkj777LOLJgYdDofsdrtLAwAAAAAAACqD5GA5TCaT/Pz8FBAQoJCQEIWEhMjb21uSNHfuXMXExCg8PFxJSUnasmWLfvzxx3LXatKkiV555RVde+21GjZsmG699VatX7++zLgZM2YoPT1d2dnZ6tOnz0XjS01NlclkcrZfEpcAAAAAAABARZEcvAwRERHOz6GhoZKko0ePlju+S5cuzsTiL3N+Oz4tLU2LFi3Spk2b1KVLl0vGYLFYZLPZnM1qtVb2NQAAAAAAAODhSA5ehl/fFWgwGCRJJSUlFRr/y5zfjh8wYIDOnz+vv/zlLxWKwWg0KigoyKUBAAAAAAAAlUFBkovw8/PT+fPna+RZffr0UXx8vIYMGSIfHx8lJibWyHMBAACA+ogCIAAAVAzJwYswm83avn27ioqKFBgYeNHdgVWhb9++WrNmjYYOHSofHx8lJCRU6/MAAAAAAADg2ThWfBGJiYny9vZWeHi4goODdfjw4Wp/Zv/+/bV69Wo9/fTTevnll6v9eQAAAAAAAPBchtLS0lJ3B4ErZ7fbZTKZZLPZuH8QAAAAAADAg1UmT8TOQQAAAAAAAMBDcedgFXA4HJo+fbqWLVsmu92uqKgoLViwQL1791ZWVpZuuOEGff7555oxY4by8/MVGRmpxYsXq1OnTs41Vq5cqZSUFOXn56tVq1Z6+OGHNXPmTPn48C8CAAAAKsuctPqy5lHIBADgadg5WAWefPJJffjhh1qyZIl27typ9u3ba/DgwfrPf/7jHDNz5kylpaVpx44d8vHx0ZgxY5y/bdy4UaNHj9a0adOUn5+vhQsXKjMzU3Pnzi33mQ6HQ3a73aUBAAAAAAAAlcGdg1fo9OnTatKkiTIzMzVq1ChJ0tmzZ2U2m5WQkKDevXs7dw4OGjRIkrRmzRrdeuut+uGHH+Tv768bb7xRgwYNksVica77f//3f3ryySf1zTffXPC5ycnJSklJKdPPnYMAAAAAOwcBAJ6NOwdrUGFhoc6ePat+/fo5+3x9fdWnTx8VFBQ4+yIiIpyfQ0NDJUlHjx6VJOXl5Wn27NkKDAx0tvHjx6u4uFhnzpy54HMtFotsNpuzWa3W6ng9AAAAAAAA1GNcaFdDfH19nZ8NBoMkqaSkRJJ06tQppaSk6O677y4zz9/f/4LrGY1GGY3GaogUAADF0s8vAAAgAElEQVQAqPvYAQgAQMWQHLxC11xzjfz8/LR582a1bdtW0s/HinNycpSQkFChNXr27Kn9+/erffv21RkqAAAAAAAA4ILk4BVq2LChJk+erOnTp6tp06Zq06aN/vjHP+rMmTMaO3as8vLyLrnGrFmzNGzYMLVp00b33HOPvLy8lJeXp71792rOnDk18BYAAAAAAADwRCQHq8C8efNUUlKihx56SN9//72ioqL06aefqkmTJhWaP3jwYH3yySeaPXu2nn/+eXl5eamkpEQOh0N79+7VihUrqvkNAAAAAAAA4ImoVlwLXXfdderYsaNSU1MVGBioxo0bX3JOZarQAAAAAAAAoP6qTJ6InYO1UGFhoSZNmqTWrVu7OxQAAACgTjAnrXb5TkESAAAqxsvdAXgih8OhRx99VC1atJC/v7/69++vnJwcFRUVyWAw6Pjx4xozZowMBoMyMzPdHS4AAAAAAADqKZKDbvDkk0/qww8/1JIlS7Rz5061b99egwcPVqNGjVRcXKygoCClp6eruLhY999//wXXcDgcstvtLg0AAAAAAACoDJKDNez06dN6/fXXNX/+fA0dOlTh4eFatGiRGjRooHfeeUchISEyGAwymUwKCQlRgwYNLrhOamqqTCaTs4WFhdXwmwAAAAAAAKCuIzlYwwoLC3X27Fn169fP2efr66s+ffqooKCgwutYLBbZbDZns1qt1REuAAAAAAAA6jEKktRRRqNRRqPR3WEAAAAAtQIFSAAAuDzsHKxh11xzjfz8/LR582Zn39mzZ5WTk6Pw8HA3RgYAAAAAAABPQ3KwmmVlZclgMOjkyZOSpIYNG2ry5MmaPn261q1bp/z8fI0fP15nzpzR2LFj3RwtAAAAAAAAPAnHiqtYbGysIiMjlZ6eXu6YefPmqaSkRA899JC+//57RUVF6dNPP1WTJk1qMFIAAAAAAAB4OpKDbuDv76+XXnpJL7300gV//2WXIQAAAAAAAFCdOFZcheLi4pSdna2MjAwZDAYZDAYVFRVJkr766itFRUUpICBAffv21f79+13mrly5Uj179pS/v7+uvvpqpaSk6Ny5c254CwAAAKDuMyetvmgDAAA/IzlYhTIyMhQdHa3x48eruLhYxcXFCgsLkyTNnDlTaWlp2rFjh3x8fDRmzBjnvI0bN2r06NGaNm2a8vPztXDhQmVmZmru3LnlPsvhcMhut7s0AAAAAAAAoDJIDlYhk8kkPz8/BQQEKCQkRCEhIfL29pYkzZ07VzExMQoPD1dSUpK2bNmiH3/8UZKUkpKipKQkPfzww7r66qt100036bnnntPChQvLfVZqaqpMJpOz/ZKEBAAAAAAAACqK5GANiYiIcH4ODQ2VJB09elSSlJeXp9mzZyswMNDZftl9eObMmQuuZ7FYZLPZnM1qtVb/SwAAAAAAAKBeoSBJDfH19XV+NhgMkqSSkhJJ0qlTp5SSkqK77767zDx/f/8Lrmc0GmU0GqshUgAAAAAAAHgKkoNVzM/PT+fPn6/UnJ49e2r//v1q3759NUUFAAAAeJaiebe6OwQAAOoEkoNVzGw2a/v27SoqKlJgYKBzd+DFzJo1S8OGDVObNm10zz33yMvLS3l5edq7d6/mzJlTA1EDAAAAAADAE3HnYBVLTEyUt7e3wsPDFRwcrLi4uEvOGTx4sD755BN99tln6t27t66//notWLBAbdu2rf6AAQAAAAAA4LEMpaWlpe4Oor46deqUHA6HmjVrVu3PstvtMplMstlsCgoKqvbnAQAAAAAAoHaqTJ6IY8XV6JfKw1fi7NmzLsVMAAAAAAAAgKrCseL/io2N1dSpU5WQkKAmTZqoZcuWWrRokU6fPq3f//73atSokdq3b6+1a9dKks6fP6+xY8eqXbt2atCggTp16qSMjAyXNZOTkxUZGen8XlJSotmzZ6t169YyGo2KjIzUunXrnL8XFRXJYDDo/fffV0xMjPz9/bV06dKa+QMAAAAA9Yg5aXW5DQAA/A/JwV9ZsmSJmjdvri+//FJTp07V5MmTde+996pv377auXOnbr75Zj300EM6c+aMSkpK1Lp1a33wwQfKz8/XrFmz9NRTT+kvf/lLuetnZGQoLS1NL7zwgnbv3q3Bgwfr9ttv18GDB13GJSUladq0aSooKNDgwYMvuJbD4ZDdbndpAAAAAAAAQGVw5+B/xcbG6vz589q4caOkn3cGmkwm3X333frTn/4kSTpy5IhCQ0O1detWXX/99WXWiI+P15EjR7R8+XJJP+8cXLFihXJzcyVJV111lR555BE99dRTzjl9+vRR79699eqrr6qoqEjt2rVTenq6pk2bdtF4k5OTlZKSUqafOwcBAAAAXXSHYNG8W2swEgAAal5l7hxk5+CvREREOD97e3urWbNm6tatm7OvZcuWkqSjR49Kkl599VX16tVLwcHBCgwM1JtvvqnDhw9fcG273a5vvvlG/fr1c+nv16+fCgoKXPqioqIuGavFYpHNZnM2q9VasZcEAAAAAAAA/ouCJL/y28IfBoPBpc9gMEj6+e7AZcuWKTExUWlpaYqOjlajRo00f/58bd++/YrjaNiw4SXHGI1GGY3GK34WAAAAUB+xOxAAgIohOXiZNm/erL59+2rKlCnOvsLCwnLHBwUFqVWrVtq8ebNiYmJc1unTp0+1xgoAAAAAAABcCMnBy9ShQwf96U9/0qeffqp27drp3XffVU5Ojtq1a1funOnTp+vZZ5/VNddco8jISC1evFi5ublUJAYAAAAAAIBbkBy8TBMnTtSuXbt0//3364cffpDBYJDD4dCePXuUkJCg9PR0SVJ+fr7S09OVkJCgRx99VDabTU888YSOHj2q8PBwrVq1Sh06dHDz2wAAAAAAAMATkRz8r6ysrDJ9RUVFZfp+Xdx58eLFuu+++3THHXfoiy++0NVXXy0vLy81aNBAkuRwOOTl9b+aL15eXnr22Wf17LPPXjAGs9ksikcDAAAAAACgppAcvEKFhYUKDQ1V3759nX2lpaUqLCzU+vXryxQ5AQAAAFC1zEmry/RRkAQAgIrxuvQQlCcuLk5Tp07V4cOHZTAYZDabFRsbqylTpig8PFx+fn4ymUwucwwGgxYuXKhhw4YpICBAnTt31tatW/X1118rNjZWDRs2VN++fS9a3AQAAAAAAACoCiQHr0BGRoZmz56t1q1bq7i4WDk5OZIko9Eoh8OhTZs2ycen7ObM5557TqNHj1Zubq6uvfZajRo1ShMnTpTFYtGOHTtUWlqq+Pj4iz7b4XDIbre7NAAAAAAAAKAySA5eAZPJpEaNGsnb21shISEKDg6u0Lzf//73uu+++9SxY0fNmDFDRUVFeuCBBzR48GB17txZ06ZNu+AdiL+Wmpoqk8nkbGFhYVXwRgAAAAAAAPAkJAfdICIiwvm5ZcuWkqRu3bq59P34448X3Q1osVhks9mczWq1Vl/AAAAAAAAAqJcoSOIGvy5SYjAYyu0rKSkpdw2j0Sij0VhNEQIAAAB1B8VHAAC4fOwcBAAAAAAAADwUycFqYjablZ6e7u4wAAAAAAAAgHKRHKwmOTk5mjBhgrvDAAAAAAAAAMplKC0tLXV3ELhydrtdJpNJNptNQUFB7g4HAAAAAAAAblKZPJFbC5KUlJTohRde0Jtvvimr1aqWLVtq4sSJmjlzpvbs2aNp06Zp69atCggI0PDhw/Xiiy8qMDBQkhQXF6eTJ0+qT58+ysjIkMPh0OOPP66nnnpKFotFb7/9tgICAvTcc8/p97//vSSpqKhI7dq103vvvaeXXnpJO3fuVPv27fXqq68qJiZGknT+/HlNmDBBf/vb33TkyBG1adNGU6ZM0bRp05xx//Ls/v37Ky0tTT/99JNGjBih9PR0Z2ERs9mshIQEJSQkSJJOnjypxMRErVy5Ug6HQ1FRUVqwYIG6d+8uScrLy1NCQoJ27Nghg8GgDh06aOHChYqKiqqx/wcAAABQX5iTVtfIcyiGAgCo69yaHLRYLFq0aJEWLFig/v37q7i4WPv27dPp06c1ePBgRUdHKycnR0ePHtW4ceMUHx+vzMxM5/y//e1vat26tTZs2KDNmzdr7Nix2rJliwYOHKjt27fr/fff18SJE3XTTTepdevWznnTp09Xenq6wsPD9eKLL+q2227ToUOH1KxZM5WUlKh169b64IMP1KxZM23ZskUTJkxQaGio7rvvPucaX3zxhUJDQ/XFF1/o66+/1v3336/IyEiNHz/+gu967733qkGDBlq7dq1MJpMWLlyoQYMG6cCBA2ratKkeeOAB9ejRQ6+//rq8vb2Vm5vrUsH4txwOhxwOh/O73W6/gv8EAAAAAAAAPJHbjhV///33Cg4O1iuvvKJx48a5/LZo0SLNmDFDVqtVDRs2lCStWbNGt912m7755hu1bNlScXFxysrK0j/+8Q95ef18deK1116rFi1aaMOGDZJ+3gVoMpn01ltvacSIEc6dg/PmzdOMGTMkSefOnVO7du00depUPfnkkxeMNT4+XkeOHNHy5cslyfnswsJCeXt7S5Luu+8+eXl5admyZZJcdw5u2rRJt956q44ePSqj0ehct3379nryySc1YcIEBQUF6eWXX9bDDz9cob9fcnKyUlJSyvRzrBgAAABg5yAAwLNV5lix2wqSFBQUyOFwaNCgQRf8rXv37s7EoCT169dPJSUl2r9/v7OvS5cuzsSgJLVs2VLdunVzfvf29lazZs109OhRl/Wjo6Odn318fBQVFaWCggJn36uvvqpevXopODhYgYGBevPNN3X48GGXNbp06eJMDEpSaGhomef8Ii8vT6dOnVKzZs0UGBjobIcOHVJhYaEk6fHHH9e4ceN04403at68ec7+8lgsFtlsNmezWq0XHQ8AAAAAAAD8ltuOFTdo0OCK1/jtsVuDwXDBvpKSkgqvuWzZMiUmJiotLU3R0dFq1KiR5s+fr+3bt1/y2eU959SpUwoNDVVWVlaZ3xo3bizp552Ao0aN0urVq7V27Vo9++yzWrZsme66664Lrmk0Gl12IQIAAAAAAACV5bbkYIcOHdSgQQOtX7++zLHizp07KzMzU6dPn3buHty8ebO8vLzUqVOnK372tm3bNHDgQEk/Hyv+6quvFB8f73xO3759NWXKFOf4S+3iu5SePXvqyJEj8vHxkdlsLndcx44d1bFjRz322GMaOXKkFi9eXG5yEAAAAED5OO4LAEDFuO1Ysb+/v2bMmKEnn3xSf/rTn1RYWKht27bp7bff1gMPPCB/f389/PDD2rt3r7744gtNnTpVDz30kFq2bHnFz3711Vf18ccfa9++fXrkkUd04sQJjRkzRtLPScsdO3bo008/1YEDB/TMM88oJyfnip534403Kjo6Wnfeeac+++wzFRUVacuWLZo5c6Z27NihH374QfHx8crKytI///lPbd68WTk5OercufMVvysAAAAAAABQHrdWK37mmWfk4+OjWbNm6ZtvvlFoaKgmTZqkgIAAffrpp5o2bZp69+6tgIAADR8+XC+++GKVPHfevHmaN2+ecnNz1b59e61atUrNmzeXJE2cOFG7du3S/fffL4PBoJEjR2rKlClau3atyxrHjh2TwWDQiRMnnEeDy2MwGLRmzRrdeOONuvXWW2UwGBQSEqKBAweqZcuW8vb21vHjxzV69Gh9++23at68ue6+++4LFhwBAAAAAAAAqorbqhW7wy/Vinft2qXIyMgrWuunn37Sf/7zH7Vs2VIGg6FCc5KTk7VixQrl5uaWOyY2NlaRkZFKT0+vVDyVqUIDAAAAAACA+qsyeSK37hysy/z8/BQSEuLuMAAAAAAAAIDLRnLwv2JjY9WtWzd5e3tryZIl8vPz05w5czRq1CjFx8dr+fLlatmypV5++WUNHTpUWVlZuuGGG1yOFS9atEizZ8/W8ePHNXjwYA0YMECzZ8/WyZMnXZ717rvv6plnntGJEyc0dOhQLVq0SI0aNVJcXJyys7OVnZ2tjIwMSdKhQ4cuWsQEAAAAQFnmpNXuDqFaUGgFAFDV3FaQxB3MZrNKS0vLPVK8ZMkSNW/eXF9++aWmTp2qyZMn695771Xfvn21c+dO3XzzzXrooYd05syZMnM3b96sSZMmadq0acrNzdVNN92kuXPnlhlXWFioFStW6JNPPtEnn3yi7OxszZs3T5KUkZGh6OhojR8/XsXFxSouLlZYWNgFY3U4HLLb7S4NAAAAAAAAqAyPSg5eSvfu3fX000+rQ4cOslgs8vf3V/PmzTV+/Hh16NBBs2bN0vHjx7V79+4yc3/ZUZiYmKiOHTtqypQpGjp0aJlxJSUlyszMVNeuXTVgwAA99NBDWr9+vSTJZDLJz89PAQEBCgkJUUhIiLy9vS8Ya2pqqkwmk7OVl0QEAAAAAAAAykNy8FciIiKcn729vdWsWTN169bN2deyZUtJ0tGjR8vM3b9/v/r06ePS99vv0s+7Fxs1auT8HhoaesH1LsVischmszmb1Wqt9BoAAAAAAADwbNw5+Cu+vr4u3w0Gg0vfL1WJS0pKqvQZl7Oe0WiU0Wi87DgAAAAAAAAAkoNVpFOnTsrJyXHp++33ivDz89P58+erKiwAAADAI1G4AwCAiuFYcRWZOnWq1qxZoxdffFEHDx7UwoULtXbtWuduw4oym83avn27ioqKdOzYsSvapQgAAAAAAABcDMnBS3jllVeUkJBwyXH9+vXTG2+8oRdffFHdu3fXunXr9Nhjj8nf379Sz0tMTJS3t7fCw8MVHBysw4cPX27oAAAAAAAAwEUZSktLS90dRG0WGxuryMhIpaenV3ru+PHjtW/fPm3cuLEaInNlt9tlMplks9kUFBRU7c8DAAAAAABA7VSZPBF3DlahF154QTfddJMaNmyotWvXasmSJXrttdfcHRYAAADgccxJq90dQpXjHkUAQHXgWHEFlJSU6Mknn1TTpk0VEhKi5ORk528vvviiunXrpoYNG2rWrFm6/vrr1a1bN73xxht6/vnnNXXqVK1du9ZlvY8//liNGjXSmTNnJElWq1X33XefGjdurKZNm+qOO+5QUVFRDb4hgP/P3r2HRV3m/x9/jQijCIyiGFgkaqhYnDxUxhZTVpq2m7JpmZmWhzZXCxVXSVfFQ1hKSrmlaR621S3XPLTaesgaVDTSArYDaZoEuZSpOCOVo8L8/vDX7HfWQ4wCI8PzcV33dfE53Z/XZ/zv7X0AAAAAAKAuojhYCcuXL1ejRo2Uk5OjF154QdOmTdPWrVslSfXq1dNLL72kzz//XBs2bFDLli31+OOP6/PPP9fo0aN1//33a+XKlS79rVixQr1795a/v7/OnDmj7t27KzAwUDt27FB2drYCAgLUo0cPnT59+qKZ7Ha7bDabSwMAAAAAAADcwZqDv8JsNqu8vNxl3cCbb75Zd911l2bNmnXe/atXr9Yf/vAHHT16VJK0bt06DRw4UN9//738/f1ls9l0zTXXaO3aterRo4f+9re/acaMGSooKHDubHz69Gk1btxY69at07333nvBXFOnTlVaWtp551lzEAAAAGBaMQCgbnNnzUFGDlZCTEyMy3FYWJiOHDkiSXrvvffUrVs3XXvttQoMDNTAgQN17Ngx55Thnj17ytfXV++8844k6e2331ZQUJDuvvtuSVJ+fr4OHDigwMBABQQEKCAgQMHBwTp16pQOHjx40UypqamyWq3OVlxcXB2fDgAAAAAAAC/GhiSV4Ovr63JsMBhUUVGhwsJC3X///Xrqqac0c+ZMBQcHa+fOnRoyZIhOnz4tf39/+fn56cEHH9TKlSv18MMPa+XKlXrooYdUv/65n76srEydOnXSihUrzntvSEjIRTMZjUYZjcaq/VAAAADASzDKDgCAyqE4eAU+/vhjVVRUKCMjQ/XqnRuEuWrVqvPuGzBggO655x59/vnnev/99zVjxgzntY4dO+qtt95S8+bNmQ4MAAAAAACAGsW04itwww036MyZM3r55Zf19ddf64033tCCBQvOu++OO+5QaGioBgwYoFatWumWW25xXhswYICaNWumBx54QDt27NChQ4dksVhkMBi0ePHimvwcAAAAAAAA1DEUB69AbGysXnzxRT3//PO66aab9Nhjj+nBBx887z6DwaD+/fsrPz9fAwYMcLnm7++v7du36/rrr1dSUpKioqI0ZMgQ5zUAAAAAAACgurBbcRUyGAxau3atevfuXeN9ubMLDQAAAAAAALyXO3Uir11zcMOGDXr00Ud17Ngx+fj4KC8vT/Hx8Ro/frxmzZolSRo6dKhOnTqlzMxMjRw5Utu3b1dpaanatGmjZ599Vv3793f2ZzabFRMTowYNGmjx4sXy8/PTH/7wB02dOlWSFBERIUnq06ePJKlly5YqLCyUJK1fv15paWn64osv1KJFCw0aNEgTJ050bkry1VdfaciQIfroo4/UunVrZWZm1syPBAAAAHipiAkbPR3hktgwBQBwtfDaacW33367Tp48qdzcXElSVlaWmjVrJovF4rwnKytLZrNZp06dUqdOnbRx40Z99tlnGj58uAYOHKiPPvrIpc/ly5erUaNGysnJ0QsvvKBp06Zp69atkqQ9e/ZIkpYuXaqSkhLn8Y4dO/TYY4/pmWee0RdffKGFCxdq2bJlmjlzpiSpoqJCSUlJ8vPzU05OjhYsWKDx48dX988DAAAAAAAAeG9x0GQyKS4uzlkMtFgsGj16tHJzc1VWVqbDhw/rwIEDSkxM1LXXXquUlBTFxcWpdevWGjVqlHr06HHezsMxMTGaMmWKIiMj9dhjj6lz587atm2bJCkkJESS1LhxY4WGhjqP09LSNGHCBA0aNEitW7fWPffco+nTp2vhwoWSpPfee09ffvml/vrXvyo2NlZ33HGHnnvuuV/9PrvdLpvN5tIAAAAAAAAAd3htcVCSEhMTZbFY5HA4tGPHDueGHzt37lRWVpZatGihyMhIlZeXa/r06YqOjlZwcLACAgK0efNmFRUVufQXExPjchwWFqYjR45cMkN+fr6mTZumgIAAZxs2bJhKSkr0008/qaCgQOHh4WrRooXzma5du/7qt6Wnp8tkMjlbeHi4G78MAAAAAAAA4MVrDkrn1glcsmSJ8vPz5evrq/bt28tsNstisai0tFSJiYmSpNmzZyszM1Pz5s1TdHS0GjVqpOTkZJ0+fdqlP19fX5djg8GgioqKS2YoKytTWlqakpKSzrvWoEGDy/621NRUjRkzxnlss9koEAIAAAAAAMAtXl0c/GXdwblz5zoLgWazWbNmzVJpaanGjh0rScrOztYDDzygRx99VNK5dQD379+vDh06uPU+X19flZeXu5zr2LGj9u3bpxtuuOGCz0RFRam4uFglJSUKCwuTJH344Ye/+i6j0Sij0ehWPgAAAKCuYMMPAAAqx6unFTdp0kQxMTFasWKFzGazJOmOO+7QJ598ov379zsLhpGRkdq6dat27dqlgoICPfnkk/r+++/dfl9ERIS2bdum7777TqWlpZKkyZMn669//avS0tL0+eefq6CgQG+++aYmTZokSbr77rvVtm1bDRo0SPn5+dqxY4cmTpxYNT8AAAAAAAAAcAleXRyUzq07WF5e7iwOBgcHq0OHDgoNDVW7du0kSZMmTVLHjh3VvXt3mc1mhYaGqnfv3m6/KyMjQ1u3blV4eLji4+MlSd27d9eGDRu0ZcsWdenSRbfeeqvmzp2rli1bSpLq1auntWvX6ueff9bNN9+soUOHOncyBgAAAAAAAKqTweFwODwdoi4xm82Ki4vTvHnzqrRfm80mk8kkq9WqoKCgKu0bAAAAAAAAtYc7dSKvHzkIAAAAAAAA4MIYOViDBg8erOXLl7ucO3TokL755huNGzdO+fn5Cg4O1qBBgzRjxgzVr1/5/WIYOQgAAAD8V8SEjZ6O4BY2UAEAVCVGDl6lMjMz1bVrVw0bNkwlJSUqKSmRr6+vevbsqS5duig/P1+vvvqqXn/9dc2YMeOSfdntdtlsNpcGAAAAAAAAuKPyQ9NwxUwmk/z8/OTv76/Q0FBJ0sSJExUeHq758+fLYDCoffv2+s9//qPx48dr8uTJqlfvwvXb9PR0paWl1WR8AAAAAAAAeBlGDnpYQUGBunbtKoPB4DyXkJCgsrIyffvttxd9LjU1VVar1dmKi4trIi4AAAAAAAC8CCMHaymj0Sij0ejpGAAAAAAAAKjFKA7WMD8/P5WXlzuPo6Ki9Pbbb8vhcDhHD2ZnZyswMFDXXXedp2ICAAAAtRobfAAAUDlMK65hERERysnJUWFhoY4ePaoRI0aouLhYo0aN0pdffqn169drypQpGjNmzEXXGwQAAAAAAACqAtWnGjB48GD17t1bkpSSkiIfHx916NBBISEhOnPmjN5991199NFHio2N1R/+8AcNGTJEkyZN8nBqAAAAAAAAeDumFbvJbDYrLi5O8+bNu6zn27Ztq927d7uci4iI0EcffVQV8QAAAAAAAIBKY+QgAAAAAAAAUEcxctANgwcPVlZWlrKyspSZmSlJOnDggJ577jm9//77+u6773T99ddrxIgReuaZZy7az549e9SzZ0+lpKRo/PjxOnHihFJSUrR+/XrZ7XZ17txZc+fOVWxsbE19GgAAAOBVIiZs9Oj72RAFAFBbUBx0Q2Zmpvbv36+bbrpJ06ZNkyQ1adJE1113nf7xj3+oadOm2rVrl4YPH66wsDD169fvvD7ef/99JSUl6YUXXtDw4cMlSX379lXDhg31r3/9SyaTSQsXLlS3bt20f/9+BQcHXzCL3W6X3W53Httstmr4YgAAAAAAAHgzioNuMJlM8vPzk7+/v0JDQ53n09LSnH+3atVKu3fv1qpVq84rDq5du1aPPfaYFi9erIceekiStHPnTn300Uc6cuSIjEajJGnOnDlat4vEwhIAACAASURBVG6dVq9e7Swg/q/09HSX9wIAAAAAAADuojhYBf7yl79oyZIlKioq0s8//6zTp08rLi7O5Z6cnBxt2LBBq1evdu5cLEn5+fkqKytT06ZNXe7/+eefdfDgwYu+MzU1VWPGjHEe22w2hYeHV9EXAQAAAAAAoC6gOHiF3nzzTaWkpCgjI0Ndu3ZVYGCgZs+erZycHJf72rRpo6ZNm2rJkiXq1auXfH19JUllZWUKCwuTxWI5r+/GjRtf9L1Go9E50hAAAACAK9b8AwCgcigOusnPz0/l5eXO4+zsbN12220aMWKE89yFRvw1a9ZMa9askdlsVr9+/bRq1Sr5+vqqY8eO+u6771S/fn1FRETUxCcAAAAAAAAAkqR6ng5Q20RERCgnJ0eFhYU6evSoIiMjtXfvXm3evFn79+/Xn//8Z+3Zs+eCzzZv3lzvv/++vvzyS/Xv319nz57V3Xffra5du6p3797asmWLCgsLtWvXLk2cOFF79+6t4a8DAAAAAABAXUJx0E0pKSny8fFRhw4dFBISou7duyspKUkPPfSQbrnlFh07dsxlFOH/Cg0N1fvvv69PP/1UAwYMUEVFhRwOhyTp8ccfV9u2bfXwww/rm2++0TXXXFNTnwUAAAAAAIA6yOD4pTIFjzl+/Lh8fX0VGBioiIgIJScnKzk52a0+bDabTCaTrFargoKCqikpAAAAAAAArnbu1IlYc/AqEBwc7OkIAAAAgFeJmLDxktfZsAQAgHOYVnwVMJvNSk5Oltls1jfffKPRo0fLYDDIYDB4OhoAAAAAAAC8GMXBq8iaNWt03XXXadq0aSopKVFJSclF77Xb7bLZbC4NAAAAAAAAcAfFwatIcHCwfHx8FBgYqNDQUIWGhl703vT0dJlMJmcLDw+vwaQAAAAAAADwBhQHa6nU1FRZrVZnKy4u9nQkAAAAAAAA1DJsSFJLGY1GGY1GT8cAAAAArkpsOAIAQOUwcvAq4+fnp/Lyck/HAAAAAAAAQB1AcfAqExERoe3bt+vw4cM6evSop+MAAAAAAADAi1EcvMpMmzZNhYWFatOmjUJCQjwdBwAAAAAAAF7M4HA4HJ4OgStns9lkMplktVoVFBTk6TgAAAAAAADwEHfqRGxIAgAAAMDrREzYWCX9sLEJAMDbURyspex2u+x2u/PYZrN5MA0AAAAAAABqI9YcrKXS09NlMpmcLTw83NORAAAAAAAAUMtQHKylUlNTZbVana24uNjTkQAAAAAAAFDLMK24ljIajTIajZ6OAQAAAAAAgFqM4iAAAAAAr8NGIgAAVA7Tiq9S8+fPV7du3TwdAwAAAAAAAF6MkYNXqTlz5uj48eOejgEAAAAAAAAvRnHwKvXJJ5/I19fX0zEAAAAAAADgxSgOXqWCg4M9HQEAAAAAAABejuLgVcpsNisuLk7z5s3zdBQAAACg1omYsPGC59moBAAAVxQHaym73S673e48ttlsHkwDAAAAAACA2ojdimup9PR0mUwmZwsPD/d0JAAAAAAAANQyFAdrqdTUVFmtVmcrLi72dCQAAAAAAADUMkwrrqWMRqOMRqOnYwAAAAAAAKAWozgIAAAAwOuw8QgAAJXDtGIAAAAAAACgjqI4eAUcDoeGDx+u4OBgGQwGNW7cWMnJyZ6OBQAAAAAAAFQK04qvwKZNm7Rs2TJZLBa1bt1a9erVU8OGDa+oT4PBoLVr18pisVRNSAAAAAAAAOAiKA5egYMHDyosLEy33XZbpe4/ffq0/Pz8qjkVAAAAAAAAUDlMK75MgwcP1qhRo1RUVCSDwaCIiAiZzWaXacURERGaPn26HnvsMQUFBWn48OE6ffq0Ro4cqbCwMDVo0EAtW7ZUenq6835J6tOnj7NPAAAAAAAAoLowcvAyZWZmqk2bNnrttde0Z88e+fj4qG/fvufdN2fOHE2ePFlTpkyRJL300kt65513tGrVKl1//fUqLi5WcXGxJGnPnj1q3ry5li5dqh49esjHx+ei77fb7bLb7c5jm81WxV8IAAAAAAAAb0dx8DKZTCYFBgbKx8dHoaGhF73vrrvu0tixY53HRUVFioyM1G9+8xsZDAa1bNnSeS0kJESS1Lhx40v2KUnp6elKS0u7wq8AAAAAAABAXca04mrWuXNnl+PBgwcrLy9P7dq109NPP60tW7ZcVr+pqamyWq3O9svoQwAAAAAAAKCyKA5Ws0aNGrkcd+zYUYcOHdL06dP1888/q1+/fnrwwQfd7tdoNCooKMilAQAAAAAAAO5gWrEHBAUF6aGHHtJDDz2kBx98UD169NDx48cVHBwsX19flZeXezoiAAAAAAAA6gCKgzXsxRdfVFhYmOLj41WvXj394x//UGhoqBo3bizp3I7F27ZtU0JCgoxGo5o0aeLhxAAAAAAAAPBWTCuuYYGBgXrhhRfUuXNndenSRYWFhXr33XdVr965f4qMjAxt3bpV4eHhio+P93BaAAAAAAAAeDODw+FweDoErpzNZpPJZJLVamX9QQAAAAAAgDrMnToRIwev0OrVqxUdHa2GDRuqadOmuvvuu/Xjjz9qz549uueee9SsWTOZTCYlJibqk08+cT6XkpKi+++/33k8b948GQwGbdq0yXnuhhtu0OLFi2v0ewAAAABvEDFho6cjAABQK1AcvAIlJSXq37+/nnjiCRUUFMhisSgpKUkOh0MnT57UoEGDtHPnTn344YeKjIxUz549dfLkSUlSYmKidu7c6dx8JCsrS82aNZPFYpEkHT58WAcPHpTZbPbQ1wEAAAAAAMDbsSHJFSgpKdHZs2eVlJSkli1bSpKio6MlSXfddZfLva+99poaN26srKws3X///br99tt18uRJ5ebmqlOnTtq+fbvGjRundevWSZIsFouuvfZa3XDDDRd8t91ul91udx7bbLbq+EQAAAAAAAB4MUYOXoHY2Fh169ZN0dHR6tu3rxYtWqTS0lJJ0vfff69hw4YpMjJSJpNJQUFBKisrU1FRkSSpcePGio2NlcVi0aeffio/Pz8NHz5cubm5KisrU1ZWlhITEy/67vT0dJlMJmcLDw+vkW8GAAAAAACA96A4eAV8fHy0detW/etf/1KHDh308ssvq127djp06JAGDRqkvLw8ZWZmateuXcrLy1PTpk11+vRp5/Nms1kWi8VZCAwODlZUVJR27tz5q8XB1NRUWa1WZysuLq6JTwYAAAAAAIAXYVrxFTIYDEpISFBCQoImT56sli1bau3atcrOztYrr7yinj17SpKKi4t19OhRl2cTExO1ZMkS1a9fXz169JB0rmD497//Xfv377/keoNGo1FGo7HavgsAAACozQpn9fJ0BAAAagWKg1cgJydH27Zt07333qvmzZsrJydHP/zwg6KiohQZGak33nhDnTt3ls1m07hx49SwYUOX5++44w6dPHlSGzZs0KxZsySdKw4++OCDCgsLU9u2bT3xWQAAAAAAAKgjmFZ8BYKCgrR9+3b17NlTbdu21aRJk5SRkaGGDRsqNzdXR48eVceOHTVw4EA9/fTTat68ufPZqVOn6s4771R0dLRCQkLUvn17SecKhhUVFZecUgwAAAAAAABUBYPD4XB4OkRtZzabFRcXp3nz5kk6t9PwnXfeqdLSUjVu3PiCz5SVlclut6tp06ZVksFms8lkMslqtSooKKhK+gQAAAAAAEDt406diGnFHhIQEKCAgABPxwAAAAAAAEAdRnHwCg0ePFhZWVnKyspSZmamJGnp0qWSpI8//ljjx4/XF198obi4OC1dulTt2rWTdG5a8bp165SXlyfp3GjDP/3pT/r888/l6+urG2+8UStXrlTLli0982EAAABALRYxYWO1v4NNTwAA3oA1B69QZmamunbtqmHDhqmkpEQlJSUKDw+XJE2cOFEZGRnau3ev6tevryeeeOKCfZw9e1a9e/dWYmKi/v3vf2v37t0aPny4DAbDRd9rt9tls9lcGgAAAAAAAOAORg5eIZPJJD8/P/n7+ys0NFSS9OWXX0qSZs6c6dxYZMKECerVq5dOnTqlBg0auPRhs9lktVp1//33q02bNpKkqKioS743PT1daWlpVf05AAAAAAAAqEMYOViNYmJinH+HhYVJko4cOXLefcHBwRo8eLC6d++u3/72t8rMzFRJSckl+05NTZXVanW24uLiqg0PAAAAAAAAr0dxsBr5+vo6//5linBFRcUF7126dKl2796t2267TW+99Zbatm2rDz/88KJ9G41GBQUFuTQAAAAAAADAHUwrrgJ+fn4qLy+/4n7i4+MVHx+v1NRUde3aVStXrtStt95aBQkBAACAuoXNQgAAqBxGDlaBiIgI5eTkqLCwUEePHr3o6MCLOXTokFJTU7V7925988032rJli7766qtfXXcQAAAAAAAAuBIUB6tASkqKfHx81KFDB4WEhKioqOiS90+dOlULFixwHvv7++vLL7/U73//e7Vt21bDhw/XH//4Rz355JPVHR0AAAAAAAB1mMHhcDg8HaKuKSsrk91uV9OmTausT5vNJpPJJKvVyvqDAAAAAAAAdZg7dSLWHPSAgIAABQQEeDoGAAAAAAAA6rg6Xxw0m82Kjo6Wj4+Pli9fLj8/P82YMUOPPPKIRo4cqdWrV+uaa67Ryy+/rPvuu0+SlJWVpXHjxik/P1/BwcEaNGiQZsyYofr16+u1117T1KlT9e2336pevf/O2n7ggQfUtGlTLVmyRFOnTtW6deuUl5fnvL548WJlZGTo0KFDioiI0NNPP60RI0bU+O8BAAAAeIOICRvdfoZNTAAAdRFrDkpavny5mjVrpo8++kijRo3SU089pb59++q2227TJ598onvvvVcDBw7UTz/9pMOHD6tnz57q0qWL8vPz9eqrr+r111/XjBkzJEl9+/bVsWPH9MEHHzj7P378uDZt2qQBAwZc8P0rVqzQ5MmTNXPmTBUUFOi5557Tn//8Zy1fvvyime12u2w2m0sDAAAAAAAA3EFxUFJsbKwmTZqkyMhIpaamqkGDBmrWrJmGDRumyMhITZ48WceOHdO///1vvfLKKwoPD9f8+fPVvn179e7dW2lpacrIyFBFRYWaNGmi++67TytXrnT2v3r1ajVr1kx33nnnBd8/ZcoUZWRkKCkpSa1atVJSUpJGjx6thQsXXjRzenq6TCaTs4WHh1f57wIAAAAAAADvRnFQUkxMjPNvHx8fNW3aVNHR0c5z11xzjSTpyJEjKigoUNeuXWUwGJzXExISVFZWpm+//VaSNGDAAL399tuy2+2Szo0MfPjhh12mGf/ixx9/1MGDBzVkyBDnWoQBAQGaMWOGDh48eNHMqampslqtzlZcXHxlPwIAAAAAAADqnDq/5qAk+fr6uhwbDAaXc78UAisqKirV329/+1s5HA5t3LhRXbp00Y4dOzR37twL3ltWViZJWrRokW655RaXaz4+Phd9h9FolNForFQeAAAAoK5h/UAAACqH4qCboqKi9Pbbb8vhcDiLhtnZ2QoMDNR1110nSWrQoIGSkpK0YsUKHThwQO3atVPHjh0v2N8111yjFi1a6Ouvv77omoQAAAAAAABAdaA46KYRI0Zo3rx5GjVqlEaOHKl9+/ZpypQpGjNmjMu04QEDBuj+++/X559/rkcfffSSfaalpenpp5+WyWRSjx49ZLfbtXfvXpWWlmrMmDHV/UkAAAAAAACooygOuunaa6/Vu+++q3Hjxik6Olrl5eX605/+pEmTJrncd9dddyk4OFj79u3TI488csk+hw4dKn9/f82ePVvjxo1To0aNFB0dreTk5Or8FAAAAAAAANRxBofD4fB0iNpq2bJlSk5O1okTJzwdRTabTSaTSVarVUFBQZ6OAwAAAAAAAA9xp07EyEEAAAAANSJiwsYaexcbkgAAUDn1fv2WumXDhg1q3LixysvLJUl5eXkyGAyaMGGC856hQ4e6rCO4efNmRUVFKSAgQD169FBJSYlLn4sXL1ZUVJQaNGig9u3b65VXXnFeKywslMFg0Jo1a3TnnXfK399fsbGx2r17dzV/KQAAAAAAAOo6ioP/4/bbb9fJkyeVm5srScrKylKzZs1ksVic92RlZclsNkuSfvrpJ82ZM0dvvPGGtm/frqKiIqWkpDjvXbFihSZPnqyZM2eqoKBAzz33nP785z9r+fLlLu+dOHGiUlJSlJeXp7Zt26p///46e/bsRXPa7XbZbDaXBgAAAAAAALiD4uD/MJlMiouLcxYDLRaLRo8erdzcXJWVlenw4cM6cOCAEhMTJUlnzpzRggUL1LlzZ3Xs2FEjR47Utm3bnP1NmTJFGRkZSkpKUqtWrZSUlKTRo0dr4cKFLu9NSUlRr1691LZtW6Wlpembb77RgQMHLpozPT1dJpPJ2cLDw6v+xwAAAAAAAIBXozh4AYmJibJYLHI4HNqxY4eSkpIUFRWlnTt3KisrSy1atFBkZKQkyd/fX23atHE+GxYWpiNHjkiSfvzxRx08eFBDhgxRQECAs82YMUMHDx50eWdMTIxLH5Kc/VxIamqqrFarsxUXF1fZ9wMAAAAAAKBuYEOSCzCbzVqyZIny8/Pl6+ur9u3by2w2y2KxqLS01DlqUJJ8fX1dnjUYDPplA+iysjJJ0qJFi3TLLbe43Ofj4+Ny/H/7MRgMkqSKioqLZjQajTIajZfxdQAAAIBnsEkIAABXH4qDF/DLuoNz5851FgLNZrNmzZql0tJSjR07tlL9XHPNNWrRooW+/vprDRgwoDojAwAAAAAAAG6jOHgBTZo0UUxMjFasWKH58+dLku644w7169dPZ86ccRk5+GvS0tL09NNPy2QyqUePHrLb7dq7d69KS0s1ZsyYSz47f/5858YnAAAAAAAAQFVjzcGLSExMVHl5ubM4FxwcrA4dOig0NFTt2rWrdD9Dhw7V4sWLtXTpUkVHRysxMVHLli1Tq1atfvXZJ5544nLjAwAAAAAAAL/K4PhlgTzUajabTSaTSVarVUFBQZ6OAwAAAAAAAA9xp07EtOKrlNlsVlxcnObNm+fpKAAAAECtEzFh4wXPsykKAACurrg4aLPZ9P7776tdu3aKioqqikyoBLvdLrvd7jy22WweTAMAAAAAAIDayO01B/v16+fcpOPnn39W586d1a9fP8XExOjtt9+u8oC4sPT0dJlMJmcLDw/3dCQAAAAAAADUMm4XB7dv367bb79dkrR27Vo5HA6dOHFCL730kmbMmFHlAXFhqampslqtzlZcXOzpSAAAAAAAAKhl3C4OWq1WBQcHS5I2bdqk3//+9/L391evXr301VdfVXlAXJjRaFRQUJBLAwAAAAAAANzh9pqD4eHh2r17t4KDg7Vp0ya9+eabkqTS0lI1aNCgygMCAAAAgLvYeAQAgMpxuziYnJysAQMGKCAgQC1btpTZbJZ0brpxdHR0VecDAAAAAAAAUE3cLg6OGDFCN998s4qLi3XPPfeoXr1zM5Nbt27NmoMAAAAAAABALWJwOBwOT4fAlbPZbDKZTLJaraw/CAAAAAAAUIe5Uydye+RgeXm5li1bpm3btunIkSOqqKhwuf7++++72yUAAAAAAAAAD3C7OPjMM89o2bJl6tWrl2666SYZDIbqyHXV27Bhgx599FEdO3ZMPj4+ysvLU3x8vMaPH69Zs2ZJkoYOHapTp04pMzNTI0eO1Pbt21VaWqo2bdro2WefVf/+/Z39rV69WmlpaTpw4ID8/f0VHx+v9evXq1GjRp76RAAAAKDWipiw0dMRagybrwAAroTbxcE333xTq1atUs+ePasjT61x++236+TJk8rNzVXnzp2VlZWlZs2ayWKxOO/JysrS+PHjderUKXXq1Enjx49XUFCQNm7cqIEDB6pNmza6+eabVVJSov79++uFF15Qnz59dPLkSe3YsUOXmvFtt9tlt9udxzabrTo/FwAAAAAAAF6onrsP+Pn56YYbbqiOLLWKyWRSXFycsxhosVg0evRo5ebmqqysTIcPH9aBAweUmJioa6+9VikpKYqLi1Pr1q01atQo9ejRQ6tWrZIklZSU6OzZs0pKSlJERISio6M1YsQIBQQEXPT96enpMplMzhYeHl4Tnw0AAAAAAAAv4nZxcOzYscrMzLzkqLa6IjExURaLRQ6HQzt27FBSUpKioqK0c+dOZWVlqUWLFoqMjFR5ebmmT5+u6OhoBQcHKyAgQJs3b1ZRUZEkKTY2Vt26dVN0dLT69u2rRYsWqbS09JLvTk1NldVqdbbi4uKa+GQAAAAAAAB4Ebd3K+7Tp48++OADBQcH68Ybb5Svr6/L9TVr1lRpwKvZO++8o8cee0wWi0X33XefSkpKlJycrAYNGqi0tFQnT57UypUrNWvWLM2ZM0fz5s1TdHS0GjVqpOTkZNWvX1/r1q2TJDkcDu3atUtbtmzR2rVr9d133yknJ0etWrWqVBZ2KwYAAAAAAIDkXp3I7ZGDjRs3Vp8+fZSYmKhmzZq5TG01mUyXHbo2+mXdwblz5yoxMVGSZDabZbFYZLFYZDabJUnZ2dl64IEH9Oijjyo2NlatW7fW/v37XfoyGAxKSEhQWlqacnNz5efnp7Vr19b0JwEAAAAAAKAOcXtDkqVLl1ZHjlqpSZMmiomJ0YoVKzR//nxJ0h133KF+/frpzJkzzoJhZGSkVq9erV27dqlJkyZ68cUX9f3336tDhw6SpJycHG3btk333nuvmjdvrpycHP3www+Kiory2LcBAAAAAADA+7k9clCSzp49q/fee08LFy7UyZMnJUn/+c9/VFZWVqXhaoPExESVl5c7RwkGBwerQ4cOCg0NVbt27SRJkyZNUseOHdW9e3eZzWaFhoaqd+/ezj6CgoK0fft29ezZU23bttWkSZOUkZGh++67zxOfBAAAAAAAgDrC7ZGD33zzjXr06KGioiLZ7Xbdc889CgwM1PPPPy+73a4FCxZUR86r1rx58zRv3jyXc3l5eS7Hn332mcrLyxUYGKiSkhJ16tRJ06dPd14vKChQRUWFysvLZbfb9dZbbykuLq5G8gMAAAAAAKDucrs4+Mwzz6hz587Kz89X06ZNnef79OmjYcOGVWk4b/Hjjz8qNjZWTzzxhJKSki54/Te/+Y369evHbwgAAABUgYgJGyt9b+GsXtWYBACAq5vbxcEdO3Zo165d8vPzczkfERGhw4cPV1kwb3LfffddcorwwIEDJUmFhYU1lAgAAAAAAAC4jOLgL9Nf/9e3336rwMDAKgmFX2e322W3253HNpvNg2kAAAAAAABQG7m9Icm9997rssaewWBQWVmZpkyZop49e1ZpOFxcenq6TCaTs4WHh3s6EgAAAAAAAGoZt4uDGRkZys7OVocOHXTq1Ck98sgjzinFzz//fHVkxAWkpqbKarU6W3FxsacjAQAAAAAAoJZxe1rxddddp/z8fL311lvKz89XWVmZhgwZogEDBqhhw4bVkREXYDQaZTQaPR0DAAAAuCqxyQgAAJXjdnHw73//u/r3768BAwZowIABLtfGjRun2bNnV1k4AAAAAAAAANXH7WnFTz31lP71r3+dd3706NH629/+ViWhvE1ZWZny8vKUl5cnSTp06JDy8vJUVFQkSTp+/Ljy8vL0xRdfSJL27dunvLw8fffddx7LDAAAAAAAAO/ndnFwxYoV6t+/v3bu3Ok8N2rUKK1atUoffPBBlYbzFnv37lV8fLzi4+MlSWPGjFF8fLwmT54sSXrnnXcUHx+vXr3OTX14+OGHFR8frwULFngsMwAAAAAAALyfweFwONx9aOXKlRo5cqS2bt2q119/XevXr9cHH3ygtm3bVkdGVILNZpPJZJLValVQUJCn4wAAAAAAAMBD3KkTub3moCQ98sgjOnHihBISEhQSEqKsrCzdcMMNlxUWAAAAAKpaxISNNf5ONkEBANRGlSoOjhkz5oLnQ0JC1LFjR73yyivOcy+++GLVJMMl2e122e1257HNZvNgGgAAAAAAANRGlSoO5ubmXvD8DTfcIJvN5rxuMBiqLhkuKT09XWlpaZ6OAQAAAAAAgFrsstYchOddaORgeHg4aw4CAAAAYloxAKBuq/Y1B3/x7bffSpKuu+66K+kGl8FoNMpoNHo6BgAAAAAAAGoxt4uDFRUVmjFjhjIyMlRWViZJCgwM1NixYzVx4kTVq1evykMCAAAAgDsYxQcAQOW4XRycOHGiXn/9dc2aNUsJCQmSpJ07d2rq1Kk6deqUZs6cWeUhAQAAAAAAAFQ9t9ccbNGihRYsWKDf/e53LufXr1+vESNG6PDhw1UasK4aOnSoXn/9dVX2n8edueQAAAAAAADwXu7UidyeA3z8+HG1b9/+vPPt27fX8ePH3e0OF/HDDz/Ix8fH0zEAAAAAAADgxdwuDsbGxmr+/PnnnZ8/f75iY2OrJBSkTz/9VA0aNPB0DAAAAAAAAHgxt9ccfOGFF9SrVy+999576tq1qyRp9+7dKi4u1rvvvlvlAWuDTZs2acaMGfrss8/k4+Ojrl27KjMzU23atFFhYaFatWqlt99+Wy+//LJycnIUGRmpBQsWOH8/SVq2bJkmT56so0ePqnv37vrjH/+o6dOne/CrAAAAgMsXMWGjR9/PhiQAAFSO2yMHW7Vqpf3796tPnz46ceKETpw4oaSkJO3bt08tW7asjoxXvR9//FFjxozR3r17tW3bNtWrV099+vRRRUWF856JEycqJSVFeXl5atu2rfr376+zZ89KknJycjRkyBCNHDlSeXl5uvPOOzVjxoxLvtNut8tms7k0AAAAAAAAwB1ub0ji4+OjkpISNW/e3OX8sWPH1Lx5c5WXl1dpwNro6NGjCgkJ0aeffqqAgAC1atVKixcv1pAhQyRJX3zxhW688UYVFBSoffv2euSRR2S1WrVx43//d/Xhhx/Wpk2bdOLEiQu+Y+rUqUpLcZrVHgAAIABJREFUSzvvPBuSAAAA4GrAyEEAADynWjckuVgtsaysrM6ukffVV1+pf//+at26tYKCghQRESFJKioqct4TExPj/DssLEySdOTIEUlSQUGBbrnlFpc+/++U4wtJTU2V1Wp1tuLi4qr4FAAAAAAAANQhlV5zcMyYMZIkg8GgyZMny9/f33mtvLxcOTk5iouLq/qEtcBvf/tbtWzZUosWLVKLFi1UUVGhm266SadPn3be4+vr6/zbYDBIksu0Y3cZjUYZjcbLDw0AAAAAAIA6r9LFwdzcXEnnRg5++umn8vPzc17z8/NTbGysUlJSqj7hVe7YsWPat2+fFi1apNtvv12StHPnTrf6iIqKUk5Ojsu5Dz/8sMoyAgAAADWNab0AANQOlS4OfvDBB5Kkxx9/XJmZmaxr9/81adJETZs21WuvvaawsDAVFRVpwoQJbvXx9NNPKyEhQXPmzNEDDzygzZs3a9OmTdWUGAAAAAAAADjH7TUHly5dSmHw/6hXr57efPNNffzxx7rppps0evRozZ49260+br31Vi1atEiZmZmKjY3Vli1bFBwcrJ9//rmaUgMAAAAAAACXsVsxasbx48fl6+urwMDASt3vzi40AAAAAAAA8F7u1IkqPa0YNSs4ONjTEQAAAIBaK2LCxmrrm/UUAQDexO1pxagZZrNZycnJno4BAAAAAAAAL8bIwVrKbrfLbrc7j202mwfTAAAAAAAAoDZi5GAtlZ6eLpPJ5Gzh4eGejgQAAAAAAIBahuJgLZWamiqr1epsxcXFno4EAAAAAACAWoZpxbWU0WiU0Wj0dAwAAADgqsSmIQAAVA4jBwEAAAAAAIA6yuuLgxaLRQaDQSdOnPB0FC1btkyNGzf2dAwAAAAAAABAkhdOKzabzYqLi9O8efM8HeWyDB48+KooZAIAAAAAAMD7eV1x0FtYLBZPRwAAAAAAAICX86ri4ODBg5WVlaWsrCxlZmZKkpYuXSpJ+vjjjzV+/Hh98cUXiouL09KlS9WuXTvns6+++qrmzJmj4uJitWrVSpMmTdLAgQMlSYWFhWrVqpVyc3MVFxcnSTpx4oSaNGmiDz74QGazWZL0zjvvaOzYsSouLlbXrl01ePBgDR48WKWlpS7TiTdv3qzk5GQVFxfrN7/5jZYuXaqwsDBNnTpVy5cvlyQZDAZJcukfAAAAQOVETNjo6Qi1Chu4AEDd5VVrDmZmZqpr164aNmyYSkpKVFJSovDwcEnSxIkTlZGRob1796p+/fp64oknnM+tXbtWzzzzjMaOHavPPvtMTz75pB5//HF98MEHlX73oUOH9OCDD6p3797Kz8/Xk08+qYkTJ553308//aQ5c+bojTfe0Pbt21VUVKSUlBRJUkpKivr166cePXo48992221X+KsAAAAAAAAAF+ZVIwdNJpP8/Pzk7++v0NBQSdKXX34pSZo5c6YSExMlSRMmTFCvXr106tQpNWjQQHPmzNHgwYM1YsQISdKYMWP04Ycfas6cObrzzjsr9e6FCxeqXbt2mj17tiSpXbt2+uyzzzRz5kyX+86cOaMFCxaoTZs2kqSRI0dq2rRpkqSAgAA1bNhQdrvdmf9i7Ha77Ha789hms1UqJwAAAAAAAPALrxo5eCkxMTHOv8PCwiRJR44ckSQVFBQoISHB5f6EhAQVFBRUuv99+/apS5cuLuduvvnm8+7z9/d3FgZ/yfJLDnekp6fLZDI52y8jJAEAAAAAAIDKqjPFQV9fX+ffv6znV1FRUaln69U79zM5HA7nuTNnzlxxjl+y/N9+Kys1NVVWq9XZiouLLysPAAAAAAAA6i6vmlYsSX5+fiovL3frmaioKGVnZ2vQoEHOc9nZ2erQoYMkKSQkRJJUUlKi+Ph4SVJeXp5LH+3atdO7777rcm7Pnj3Vlt9oNMpoNLrdPwAAAFAXsMEGAACV43XFwYiICOXk5KiwsFABAQGVGh04btw49evXT/Hx8br77rv1z3/+U2vWrNF7770nSWrYsKFuvfVWzZo1S61atdKRI0c0adIklz6efPJJvfjiixo/fryGDBmivLw8LVu2TNJ/RypWNv/mzZu1b98+NW3aVCaT6bzRhgAAAAAAAEBV8LppxSkpKfLx8VGHDh0UEhKioqKiX32md+/eyszM1Jw5c3TjjTdq4cKFWrp0qcxms/OeJUuW6OzZs+rUqZOSk5M1Y8YMlz5atWql1atXa82aNYqJidGrr77q3K24MiP8kpOTJUnDhg1Tu3bt1LlzZ4WEhCg7O9uNrwcAAAAAAAAqz+C4nAXvUCkzZ87UggULfnU9wOPHj8vX11eBgYGKiIhQcnKys1hYWTabTSaTSVarVUFBQVcSGwAAAAAAALWYO3Uir5tW7EmvvPKKunTpoqZNmyo7O1uzZ8/WyJEjf/W54ODgGkgHAAAAAAAAuGLkYBUaPXq03nrrLR0/flzXX3+9Bg4cqNTUVNWvf+karNlsVlxcnPLy8pSVleVyrbL/PIwcBAAAQG0RMWFjtb+DDUkAAHUZIwc9ZO7cuZo7d+5lP79mzRrFxsZq+PDhGjZs2CXvtdvtstvtzmObzXbZ7wUAAAAAAEDd5HUbktRmwcHB8vHxUWBgoEJDQxUaGnrRe9PT02UymZwtPDy8BpMCAAAAAADAG1AcrKVSU1NltVqd7dc2PQEAAAAAAAD+F9OKaymj0Sij0ejpGAAAAAAAAKjFKA5eZfz8/FReXu7pGAAAAEC1YbMQAACuHkwrvspERERo+/btOnz4sI4ePerpOAAAAAAAAPBiFAevMtOmTVNhYaHatGmjkJAQT8cBAAAAAACAFzM4HA6Hp0PgytlsNplMJlmtVgUFBXk6DgAAAAAAADzEnToRIwcBAAAAAACAOooNSS7Thg0b9Oijj+rYsWPy8fFRXl6e4uPjNX78eM2aNUuSNHToUJ06dUqZmZkaOXKktm/frtLSUrVp00bPPvus+vfv7+xv9erVSktL04EDB+Tv76/4+HitX79ejRo18tQnAgBwnogJGz0dAQAqhU1PAACoHEYOXqbbb79dJ0+eVG5uriQpKytLzZo1k8Vicd6TlZUls9msU6dOqVOnTtq4caM+++wzDR8+XAMHDtRHH30kSSopKVH//v31xBNPqKCgQBaLRUlJSbrUjG+73S6bzebSAAAAAAAAAHdQHLxMJpNJcXFxzmKgxWLR6NGjlZubq7KyMh0+fFgHDhxQYmKirr32WqWkpCguLk6tW7fWqFGj1KNHD61atUrSueLg2bNnlZSUpIiICEVHR2vEiBEKCAi46PvT09NlMpmcLTw8vCY+GwAAAAAAAF6E4uAVSExMlMVikcPh0I4dO5SUlKSoqCjt3LlTWVlZatGihSIjI1VeXq7p06crOjpawcHBCggI0ObNm1VUVCRJio2NVbdu3RQdHa2+fftq0aJFKi0tveS7U1NTZbVana24uLgmPhkAAAAAAABehDUHr4DZbNaSJUuUn58vX19ftW/fXmazWRaLRaWlpUpMTJQkzZ49W5mZmZo3b56io6PVqFEjJScn6/Tp05IkHx8fbd26Vbt27dKWLVv08ssva+LEicrJyVGrVq0u+G6j0Sij0Vhj3woAgMQaXgAAAIC3YeTgFfhl3cG5c+c6C4G/FActFovMZrMkKTs7Ww888IAeffRRxcbGqnXr1tq/f79LXwaDQQkJCUpLS1Nubq78/Py0du3amv4kAAAAAAAA1CEUB69AkyZNFBMToxUrVjgLgXfccYc++eQT7d+/31kwjIyMdI4MLCgo0JNPPqnvv//e2U9OTo6ee+457d27V0VFRVqzZo1++OEHRUVFeeKzAAAAAAAAUEcwrfgKJSYmKi8vz1kcDA4OVocOHfT999+rXbt2kqRJkybp66+/Vvfu3eXv76/hw4erd+/eslqtkqSgoCBt375d8+bNk81mU8uWLZWRkaH77rvPU58FAAAAAACAOsDgcDgcng6BK2ez2WQymWS1WhUUFOTpOAAAAAAAAPAQd+pEjBwEAADAJUVM2OjpCIDb2EAJAIDKYc3BGrR69WpFR0erYcOGatq0qe6++279+OOPqqio0LRp03TdddfJaDQqLi5OmzZt8nRcAAAAAAAAeDmKgzWkpKRE/fv31xNPPKGCggJZLBYlJSXJ4XAoMzNTGRkZmjNnjv7973+re/fu+t3vfqevvvrqov3Z7XbZbDaXBgAAAAAAALiDNQdryCeffKJOnTqpsLBQLVu2dLl27bXX6o9//KOeffZZ57mbb75ZXbp00V/+8pcL9jd16lSlpaWdd541BwEAQFVjWjFqI6YVAwDqMnfWHGTkYA2JjY1Vt27dFB0drb59+2rRokUqLS2VzWbTf/7zHyUkJLjcn5CQoIKCgov2l5qaKqvV6mzFxcXV/QkAAAAAAADwMmxIUkN8fHy0detW7dq1S1u2bNHLL7+siRMnauvWrZfVn9FolNForOKUAAAA52MEFgAAgPdi5GANMhgMSkhIUFpamnJzc+Xn56dt27apRYsWys7Odrk3OztbHTp08FBSAAAAAAAA1AUUB6uZw+HQ8OHDFRQUJIPBoBUrVqioqEhr1qzRDz/8oKioKI0bN07PP/+83nrrLe3bt08TJkzQnj17KA4CAAAAAACgWjGtuJpt2rRJy5Yt07Jly7Ro0SKNHj1aNptNLVu2VEZGhu677z51795dVqtVY8eO1ZEjR5xFwRYtWng4PQAAAAAAALwZxcFqcvr0afn5+engwYMKCwvTI488okceeeSC99arV09TpkzRlClTnOcMBkNNRQUAAAAAAEAdVWuLg2azWTfddJMk6Y033pCvr6+eeuopTZs2TQaDQaWlpXrmmWf0z3/+U3a7XYmJiXrppZcUGRkph8Oh5s2b69VXX9WDDz4oSYqLi9P333+vkpISSdLOnTvVrVs3lZaWyt/fXydOnFBKSorWr18vu92uzp07a+7cuYqNjZUkTZ06VevWrdPIkSM1c+ZMffPNN/+PvXsPi7rM/z/+GgYYRWA8kWiiI4mKKeKxoJSpLMzV9ZBa2qZ4oINrSqYJP/uqoEYHTSmrdW0DLVM7GLpprW2FIbkKqJipeAiEWgxzdUYsRwR+f/htvjupBYqS8Hxc131d8/l87sP7hv/e133Q6NGjtXz5cknnk32tW7dWfn6+LBaLYmJiFBMT45xPaGioBg8erDlz5lzDvyJQe1liN9R0CAAAoAZxkQ4AAJVzXZ85uHz5crm7u2v79u1KSkrSiy++qNdff12SFBUVpaysLK1fv15bt25VRUWF+vfvr9LSUhkMBvXp00dpaWmSpBMnTmjfvn366aeftH//fknS5s2b1bNnT3l5eUmShg8fruLiYn300UfKzs5Wt27ddNddd+k///mPM55Dhw7p/fff19q1a7Vr1y4lJSUpISFBLVu2VFFRkTIzM6tt7g6HQ3a73aUAAAAAAAAAVXHdrhyUpICAAC1atEgGg0Ht27fXV199pUWLFslqtWr9+vXKyMhQeHi4JGnlypUKCAhQamqqhg8fLqvVqqVLl0qSvvjiC3Xt2lX+/v5KS0tThw4dlJaWpoiICEnnVxFu375dxcXFMplMkqQFCxYoNTVV7733nh5++GFJ57cSr1ixQn5+fs4YfXx8ZDQa5e/vX61zT0xMVHx8fLX2CQAAAAAAgLrlul45eOutt7qczRcWFqaDBw9q7969cnd31y233OL81qRJE7Vv31779u2TJEVERGjv3r06duyYNm/eLKvVKqvVqrS0NJWWlurLL7+U1WqVJOXk5KikpERNmjSRt7e3s+Tl5enw4cPOMVq3bu2SGLya4uLiZLPZnKWwsPCajAsAAAAAAIDa47peOXglOnfurMaNG2vz5s3avHmz5s+fL39/fz333HPKzMxUaWmpc9VhSUmJmjdv7tyG/N8aNmzo/N2gQYNKje3m5qaKigqXd6WlpVWK32QyOVcxAgAAAAAAAJfjuk4Obtu2zeX5X//6l4KCgtSxY0edO3dO27Ztcyb4jh8/rtzcXHXs2FHS+QtCevfurXXr1unrr7/W7bffLi8vLzkcDi1dulQ9evRwJvu6deumo0ePyt3dXRaL5Yrj9vPzc158Ikl2u115eXlX3C+A/8Mh5AAAAAAA/LbreltxQUGBpk6dqtzcXK1atUovv/yypkyZoqCgIA0aNEjR0dHasmWLcnJy9Kc//Uk33nijBg0a5GxvtVq1atUqhYaGytvbW25uburTp49WrlzpPG9Qkvr27auwsDANHjxYmzZtUn5+vr788kvNnDlTWVlZVY77zjvv1Jtvvqn09HR99dVXGjNmjIxGY7X8TQAAAAAAAIDKuq5XDo4ePVo//fSTevXqJaPRqClTpjgvB0lOTtaUKVM0YMAAnT17Vn369NHGjRvl4eHhbB8REaGysjLn2YLS+YThunXrXN4ZDAZt3LhRM2fO1NixY3Xs2DH5+/urT58+atas2SXjS0lJUVxc3AV14uLilJeXpwEDBshsNquwsLBaViQCAAAAAAAAVWGo+OXhd9cJq9Wq0NBQLV68uKZDuaSffvpJp06d0g033CBJmjNnjlJTU7Vr1y6XegaDQR988IEGDx582WPZ7XaZzWbZbDb5+vpeUdwAAAAAAAC4flUlT3Rdrxz8vatfv77q169f02EAAAAAAAAAF0VysIo+/PBD/elPf9Lx48dlNBq1a9cude3aVTNmzNCzzz4rSZowYYLOnDmjvn37KiYmRidPnlRKSori4+MlnV8pKJ3f+hwVFSVJ+uGHHzRkyBD94x//0I033qiFCxfqj3/8Y43MEQAAVJ4ldkNNhwDgIricDACAyrluLyRJS0urkS3FvXv31qlTp7Rz505J0ubNm9W0aVOlpaU562zevNnlzEJJuv/++/Xkk0/q5ptvVlFRkYqKinT//fc7v8fHx2vEiBHavXu3+vfvrwcffFD/+c9/LhmHw+GQ3W53KQAAAAAAAEBVXLfJwZpiNpsVGhrqTAampaXpiSee0M6dO1VSUqLvvvtOhw4dcrntWDq/xdjb21vu7u7y9/eXv7+/y5bjqKgojRw5Um3bttUzzzyjkpISbd++/ZJxJCYmymw2O0tAQMBVmS8AAAAAAABqL5KDlyEiIkJpaWmqqKhQenq6hg4dquDgYG3ZskWbN29WixYtFBQUVKU+Q0JCnL8bNGggX19fFRcXX7J+XFycbDabsxQWFl72fAAAAAAAAFA3cebgZbBarXrjjTeUk5MjDw8PdejQQVarVWlpaTpx4sQFqwYrw8PDw+XZYDCovLz8kvVNJpNMJlOVxwEAAAAAAAB+RnLwMvx87uCiRYuciUCr1apnn31WJ06c0JNPPnnRdp6eniorK7uWoQIAgKuMSw8AAABwPWNb8WVo1KiRQkJCtHLlSufFI3369NGOHTt04MCBS64ctFgsysvL065du/TDDz/I4XBcw6gBAAAAAAAAVyQHL1NERITKysqcycHGjRurY8eO8vf3V/v27Z31zp07J4PBoJMnT+q+++5Tv379dMcdd8jPz0+rVq2qoegBAAAAAAAAyVBRUVFR00HUJlarVaGhoVq8eLGk87cZ33HHHTpx4oQaNmx41ca12+0ym82y2Wzy9fW9auMAAAAAAADg960qeSLOHAQAAADgwhK7oaZDuGKcBwoAQOWwrbgaRUVFafPmzUpKSpLBYJDBYFB+fr4kKTs7Wz169JCXl5fCw8OVm5vr0nbdunXq1q2b6tWrp8DAQMXHx+vcuXM1MAsAAAAAAADUFSQHq1FSUpLCwsIUHR2toqIiFRUVKSAgQJI0c+ZMLVy4UFlZWXJ3d9e4ceOc7dLT0zV69GhNmTJFe/fu1dKlS5WSkqL58+dfciyHwyG73e5SAAAAAAAAgKogOViNzGazPD095eXlJX9/f/n7+8toNEqS5s+fr4iICHXs2FGxsbH68ssvdebMGUlSfHy8YmNjNWbMGAUGBuruu+/W3LlztXTp0kuOlZiYKLPZ7Cw/JyEBAAAAAACAyiI5eI2EhIQ4fzdv3lySVFxcLEnKyclRQkKCvL29neXn1Yc//vjjRfuLi4uTzWZzlsLCwqs/CQAAAAAAANQqXEhyjXh4eDh/GwwGSVJ5ebkkqaSkRPHx8Ro6dOgF7erVq3fR/kwmk0wm01WIFAAAAHUdl3kAAFB3kBysZp6eniorK6tSm27duik3N1dt27a9SlEBAAAAAAAAFyI5WM0sFou2bdum/Px8eXt7O1cH/ppZs2ZpwIABatWqlYYNGyY3Nzfl5ORoz549mjdv3jWIGgAAAAAAAHURZw5Ws2nTpsloNKpjx47y8/NTQUHBb7aJjIzUhx9+qE2bNqlnz5669dZbtWjRIrVu3foaRAwAAAAAAIC6ylBRUVFR00HgytntdpnNZtlsNvn6+tZ0OAAAAAAAAKghVckTsa34v1itVnXu3FlGo1HLly+Xp6en5s2bp1GjRmnSpEl677331KxZM7388su69957VVZWpocfflifffaZjh49qlatWmnixImaMmWKs8+oqCidPHlSt99+uxYuXKizZ8/qgQce0OLFi+Xh4aGEhAS988472rNnj0ssoaGhGjhwoObOnXut/wwAAFzAEruhpkMAgCrhUhUAACqHbcW/sHz5cjVt2lTbt2/X448/rscee0zDhw9XeHi4duzYoXvuuUcPPfSQfvzxR5WXl6tly5Z69913tXfvXs2aNUv/7//9P73zzjsufX7++ec6fPiwPv/8cy1fvlwpKSlKSUmRJI0bN0779u1TZmams/7OnTu1e/dujR079lpOHQAAAAAAAHUM24r/i9VqVVlZmdLT0yVJZWVlMpvNGjp0qFasWCFJOnr0qJo3b66tW7fq1ltvvaCPSZMm6ejRo3rvvfcknV85mJaWpsOHD8toNEqSRowYITc3N61evVqS1L9/f1ksFr366quSpMmTJ+urr77S559/fslYHQ6HHA6H89lutysgIIBtxQCAq4KVgwCuN6wcBADUZVXZVszKwV8ICQlx/jYajWrSpIk6d+7sfNesWTNJUnFxsSTplVdeUffu3eXn5ydvb2/99a9/veASkptvvtmZGJSk5s2bO9tLUnR0tFatWqUzZ87o7NmzevvttzVu3LhfjTMxMVFms9lZAgICLn/SAAAAAAAAqJNIDv6Ch4eHy7PBYHB5ZzAYJEnl5eVavXq1pk2bpvHjx2vTpk3atWuXxo4dq7Nnz/5mn+Xl5c7ngQMHymQy6YMPPtDf//53lZaWatiwYb8aZ1xcnGw2m7MUFhZe1nwBAAAAAABQd3EhyRXIyMhQeHi4Jk6c6Hx3+PDhKvfj7u6uMWPGKDk5WZ6ennrggQdUv379X21jMplkMpmqPBYAAJeD7XkAAABA7URy8AoEBQVpxYoV+sc//qE2bdrozTffVGZmptq0aVPlviZMmKDg4GBJ55OOAAAAAAAAwNXGtuIr8Mgjj2jo0KG6//77dcstt+j48eMuqwirIigoSOHh4erQoYNuueWWao4UAAAAAAAAuBC3Ff9OVFRUKCgoSPfcc49ee+01nThxQg0bNqx0+6rcQgMAAAAAAIDai9uKa8AvLyGpimPHjmnJkiU6evSo7r333mqMCgAAAAAAALg0zhy8hFOnTunRRx9VamqqfH199dRTT2ndunUKDQ3V4sWLZbFYNH78eB08eFCpqakaOnSoUlJStGXLFsXFxSkrK0tNmzbVkCFDlJiYqAYNGkiS3nzzTSUlJSk3N1cNGjTQnXfeqVWrVqlp06aaP3++/vjHP0qSGjVqJEkaM2aMUlJSaurPUKMssRtqOgQAAABcp7hICQCAymHl4CVMnTpVGRkZWr9+vT755BOlp6drx44dLnUWLFigLl26aOfOnfqf//kfHT58WP369dN9992n3bt3a82aNdqyZYsmTZrkbFNaWqq5c+cqJydHqampys/P17333qtjx45p0qRJev/99yVJubm5KioqUlJS0kXjczgcstvtLgUAAAAAAACoCs4cvIhTp06pSZMmevvttzVs2DBJks1mU4sWLRQdHe1cOdi1a1d98MEHznYTJkyQ0WjU0qVLne+2bNmiiIgInT59WvXq1btgrKysLPXs2VOnTp2St7e30tLSdMcdd/zmmYNz5sxRfHz8Be9r05mDrBwEAADA5WLlIACgLuPMwSv0zTffqLS0VL169XK+M5vNat++vUu9Hj16uDzn5OQoJSVF3t7ezhIZGany8nLl5eVJkrKzszVw4EC1atVKPj4+ioiIkCQVFBRUKca4uDjZbDZnKSwsvJypAgAAAAAAoA7jzMEr8PM5gj8rKSnRI488osmTJ19Qt1WrVjp9+rQiIyMVGRmplStXys/PTwUFBYqMjKzyhSYmk0kmk+mK4gcAAAAAAEDdRnLwIgIDA+Xh4aHMzEy1atVK0vntugcOHFCfPn0u2a5bt27au3ev2rZte9HvX331lY4fP65nn31WAQEBks5vK/5vnp6ekqSysrLqmMp1ja0gAAAAAAAAVxfbii/Cx8dHY8aM0fTp0/X555/r66+/1vjx4+Xm5iaDwXDJdjNmzNCXX36pSZMmadeuXTp48KDWrVvnvJCkVatW8vT01Msvv6xvvvlG69ev19y5c136aN26tQwGgz788EMdO3ZMJSUlV3WuAAAAAAAAqLtIDl7Ciy++qLCwMA0YMEB9+/bVbbfdpuDg4IteKvKzkJAQbd68WQcOHFDv3r3VtWtXzZo1Sy1atJAk+fn5KSUlRe+++646duyoZ599VgsWLHDp48Ybb1R8fLxiY2PVrFkzl5uOAQAAAAAAgOrEbcWVdPr0ad14441auHChxo8fX9PhXKAqt9AAAAAAAACg9qpKnogzBy9h586d2r9/v3r16iWbzaaEhARJ0qBBg2o4MgAAAAAAAKB6kBz8FQsWLFCDi6AZAAAgAElEQVRubq48PT3VvXt3paenq2nTpjUdFgAAAIDfYIndUC39cEkeAKC2Izl4CV27dlV2dnZNh3FJDodDDofD+Wy322swGgAAAAAAAFyPuJDkOpWYmCiz2ewsAQEBNR0SAAAAAAAArjMkB69TcXFxstlszlJYWFjTIQEAAAAAAOA6w7bi65TJZJLJZKrpMAAAAIDfJc4KBACgclg5CAAAAAAAANRRJAcBAAAAAACAOork4O9USkqKDAZDTYcBAAAAAACAWozk4O+MwWBQamqq8vLyFBERUdPhAAAAAAAAoBbjQpLfqY8++khLliyp6TAAAACA65IldsNF33NRCQAArlg5WI1WrFihJk2ayOFwuLwfPHiwHnroIUnSunXr1K1bN9WrV0+BgYGKj4/XuXPnJEkWi0WSNGTIEGVmZmrEiBHXNH4AAAAAAADULSQHq9Hw4cNVVlam9evXO98VFxdrw4YNGjdunNLT0zV69GhNmTJFe/fu1dKlS5WSkqL58+dLkjIzMyVJycnJKioqcj5fjMPhkN1udykAAAAAAABAVZAcrEb169fXqFGjlJyc7Hz31ltvqVWrVrJarYqPj1dsbKzGjBmjwMBA3X333Zo7d66WLl0qSfLz85MkNWzYUP7+/s7ni0lMTJTZbHaWgICAqzs5AAAAAAAA1DokB6tZdHS0Nm3apO+++07S+VuHo6KiZDAYlJOTo4SEBHl7eztLdHS0ioqK9OOPP1ZpnLi4ONlsNmcpLCy8GtMBAAAAAABALcaFJNWsa9eu6tKli1asWKF77rlHX3/9tTZsOH8YcklJieLj4zV06NAL2tWrV69K45hMJplMpmqJGQAAAKhtuHgEAIDKITl4FUyYMEGLFy/Wd999p759+zq3/Hbr1k25ublq27btJdt6eHiorKzsWoUKAAAAAACAOoxtxZKsVqtiYmIknb8xePHixc5vBoNBqampVepv1KhR+vbbb7Vs2TKNGzfO+X7WrFlasWKF4uPj9fXXX2vfvn1avXq1nn76aWcdi8Wi1NRUGQwGffHFF1c4MwAAAAAAAODSSA5KWrt2rebOnVtt/ZnNZt13333y9vbW4MGDne8jIyP14YcfatOmTerZs6duvfVWLVq0SK1bt3bWWbhwobZs2SJJeuCBB6otJgAAAAAAAOCX2FYsqXHjxtXe53fffacHH3zwgnMBIyMjFRkZecl2AwcOVOfOndWmTRtt3Lix2uMCAAAAAAAAfkZyUOe3FYeGhrpsJ76UwsJCPfnkk9q0aZPc3NzUu3dvJSUlyWKxSJKOHTumqKgoffbZZ8rOzlb9+vV19OhR2Ww25/bkjz/+WPPmzdOePXtkNBoVFhampKQk3XTTTVdzmgAAAECdYYndUNMhALjOcJER6iq2FVdBaWmpIiMj5ePjo/T0dGVkZMjb21v9+vXT2bNnJUnt2rXTRx99pNGjR+tf//qX7Hb7BWcWnj59WlOnTlVWVpY+/fRTubm5aciQISovL690LA6HQ3a73aUAAAAAAAAAVcHKwSpYs2aNysvL9frrr8tgMEiSkpOT1bBhQ6Wlpemee+6RyWTS888/r2nTpkmSlixZcsH24Pvuu8/l+Y033pCfn5/27t2rTp06VSqWxMRExcfHV8OsAAAAAAAAUFexcrAKcnJydOjQIfn4+Mjb21ve3t5q3Lixzpw5o8OHD8tms+n7779Xr169nG2MRqO6d+/u0s/Bgwc1cuRIBQYGytfX17kluaCgoNKxxMXFyWazOUthYWG1zBEAAAAAAAB1BysHq6CkpETdu3fXypUrL/jm5+dX6X4GDhyo1q1ba9myZWrRooXKy8vVqVMn59bkyjCZTBdcdgIAAAAAAABUBcnBKujWrZvWrFmjG264Qb6+vhet06xZM2VmZqpPnz6SpLKyMu3YsUOhoaGSpOPHjys3N1fLli1T7969JUlbtmy5NhMAAAAA6gguFgAAoHLYVlwFDz74oJo2bapBgwYpPT1deXl5SktL0+TJk/Xtt99Kkh5//HElJiZq3bp1ys3N1ZQpU3TixAnnGYWNGjVSkyZN9Ne//lWHDh3SZ599pqlTp9bktAAAAAAAAFBH1erkoNVqVUxMTLX15+XlpS+++EKtWrXS0KFDFRwcrPHjx+vMmTPOlYQzZszQyJEjNXr0aIWFhcnb21tdu3ZVamqqTp48KTc3N61evVrZ2dnq1KmTnnjiCb3wwgvVFiMAAAAAAABQWWwrlpSWlub8nZ+f7/KtoqLC5dnf31/Lly+/ZF99+/ZVaGiobDabJKm8vNx54ch/19m7d+8lx7FYLBeMCwAAAAAAAFQ3koPV7MyZM9qzZ48OHDggh8OhJUuWqKioqKbDAgAAAAAAAC5QZ5KDDodDM2fO1KpVq3Ty5El16tRJzz33nKxWqyQpJSVFMTExWrNmjWJiYlRYWKjbb79dycnJat68uSTp3Llzmjp1qlasWCGj0agJEybo6NGjstlsSk1NVVRUlLZt2yZJat++vaTzl5gsWLBAMTExys7O1owZM7R3716FhoYqOTnZWS8nJ0cxMTHKysqSwWBQUFCQli5dqh49elz7PxYAAABQjSyxG675mFxIAgBA5dTqMwf/26RJk7R161atXr1au3fv1vDhw9WvXz8dPHjQWefHH3/UggUL9Oabb+qLL75QQUGBpk2b5vz+3HPPaeXKlUpOTlZGRobsdrtSU1Od35OSkhQWFqbo6GgVFRWpqKhI27dvV5cuXSRJM2fO1MKFC5WVlSV3d3eNGzfO2fbBBx9Uy5YtlZmZqezsbMXGxsrDw+OS83E4HLLb7S4FAAAAAAAAqIo6sXKwoKBAycnJKigoUIsWLSRJ06ZN08cff6zk5GQ988wzkqTS0lL95S9/0U033STpfEIxISHB2c/LL7+suLg4DRkyRJK0ZMkSbdy40fndbDbL09NTXl5e8vf3vyCO+fPnKyIiQpIUGxurP/zhDzpz5ozq1aungoICTZ8+XR06dJAkBQUF/eqcEhMTFR8ff7l/EgAAAAAAAKBurBz86quvVFZWpnbt2snb29tZNm/erMOHDzvreXl5ORODktS8eXMVFxdLkmw2m77//nv16tXL+d1oNKp79+6VjiMkJMSlb0nO/qdOnaoJEyaob9++evbZZ13iupi4uDjZbDZnKSwsrHQcAAAAAAAAgFRHVg6WlJTIaDQqOztbRqPR5Zu3t7fz9y+38RoMhmq9Nfi/+zcYDJLO32YsSXPmzNGoUaO0YcMGffTRR5o9e7ZWr17tXKX4SyaTSSaTqdpiAwAAAK4Wzv8DAOD3q06sHOzatavKyspUXFystm3bupSLbf+9GLPZrGbNmikzM9P5rqysTDt27HCp5+npqbKyssuKs127dnriiSe0adMmDR06VMnJyZfVDwAAAAAAAFAZdSI52K5dOz344IMaPXq01q5dq7y8PG3fvl2JiYnasKHyN6c9/vjjSkxM1Lp165Sbm6spU6boxIkTzlWAkmSxWLRt2zbl5+frhx9+cK4M/DU//fSTJk2apLS0NB05ckQZGRnKzMxUcHDwZc0XAAAAAAAAqIw6kRyUpOTkZI0ePVpPPvmk2rdvr8GDByszM1OtWrWqdB8zZszQyJEjNXr0aIWFhcnb21uRkZGqV6+e0tLSZDAY9PDDD8toNKpjx47y8/NTQUHBb/ZrNBp1/PhxjR49Wu3atdOIESN07733cuEIAAAAAAAAripDRXUeqleHWK1WdenSRR9//LFGjBihu+66S3fccYdOnDihhg0bXna/FotFMTExiomJqVI7u90us9ksm80mX1/fyx4fAAAAAAAA17eq5InqxIUk1eXIkSPatGmTIiIiVFJSos8++0x5eXkaNWqUvv/++5oODwAAALguWGIrf7TP5eISFAAAKqfObCuuDm5ubkpJSVGnTp2UnZ2tPXv2qLS0VB07dlR+fr4kKTs7Wz169JCXl5fCw8OVm5vrbH/48GENGjRIzZo1k7e3t3r27Kl//vOfzu9Wq1VHjhzRE088IYPB4HKWIQAAAAAAAFDdSA5WQUBAgDIyMnTs2DGFhYUpOjpaRUVFKioqUkBAgCRp5syZWrhwobKysuTu7q5x48Y525eUlKh///769NNPtXPnTvXr108DBw50nku4du1atWzZUgkJCc5+L8XhcMhut7sUAAAAAAAAoCpIDl4Gs9ksT09PeXl5yd/fX/7+/jIajZKk+fPnKyIiQh07dlRsbKy+/PJLnTlzRpLUpUsXPfLII+rUqZOCgoI0d+5c3XTTTVq/fr0kqXHjxjIajfLx8XH2eymJiYkym83O8nNyEgAAAAAAAKgskoPVLCQkxPm7efPmkqTi4mJJ51cOTps2TcHBwWrYsKG8vb21b9++St1o/EtxcXGy2WzOUlhYWD0TAAAAAAAAQJ3BhSTVzMPDw/n75zMDy8vLJUnTpk3TJ598ogULFqht27aqX7++hg0bprNnz1Z5HJPJJJPJVD1BAwAAANcQl4UAAPD7QXLwMnl6eqqsrKxKbTIyMhQVFaUhQ4ZIOr+S8OeLTK6kXwAAAAAAAOBy1OltxWlpaTIYDDp58mSV21osFm3btk2rV6+WwWCo1IUgQUFBWrt2rXbt2qWcnByNGjXKuarQYDAoNTVVFotFH3/8sQwGgz7//PMqxwUAAAAAAABUVp1ODoaHh6uoqEhms1mSlJKSooYNG1aq7bRp02Q0GhUVFSVJ+vbbb3+zzYsvvqhGjRopPDxcAwcOVGRkpLp16+ZSJyEhwdnXnXfeWYXZAAAAAAAAAFVjqKioqKjpIH4vUlJSFBMTU6WVhGlpabrjjjt04sSJSicWL8ZgMOiDDz7Q4MGDlZ+frzZt2mjnzp0KDQ2tVHu73S6z2SybzSZfX9/LjgMAAAAAAADXt6rkiWrVykGr1arHH39cMTExatSokZo1a6Zly5bp9OnTGjt2rHx8fNS2bVt99NFHkly3FaelpWns2LGy2WwyGAwyGAyaM2eOJMnhcGjGjBkKCAiQyWRS27Zt9be//c1l7OzsbPXo0UNeXl4KDw9Xbm6uy/d169apW7duqlevngIDAxUfH69z585dk78LAAAAUNdYYjdUqQAAUFfVquSgJC1fvlxNmzbV9u3b9fjjj+uxxx7T8OHDFR4erh07duiee+7RQw89pB9//NGlXXh4uBYvXixfX18VFRWpqKhI06ZNkySNHj1aq1at0ksvvaR9+/Zp6dKl8vb2dmk/c+ZMLVy4UFlZWXJ3d9e4ceOc39LT0zV69GhNmTJFe/fu1dKlS5WSkqL58+df9jwdDofsdrtLAQAAAAAAAKqi1iUHu3TpoqefflpBQUGKi4tTvXr11LRpU0VHRysoKEizZs3S8ePHtXv3bpd2np6eMpvNMhgM8vf3l7+/v7y9vXXgwAG98847euONNzRkyBAFBgbqrrvu0v333+/Sfv78+YqIiFDHjh0VGxurL7/8UmfOnJEkxcfHKzY2VmPGjFFgYKDuvvtuzZ07V0uXLr3seSYmJspsNjtLQEDAZfcFAAAAAACAuqnWJQdDQkKcv41Go5o0aaLOnTs73zVr1kySVFxcXKn+du3aJaPRqIiIiEqP27x5c5cxcnJylJCQIG9vb2eJjo5WUVHRBSsYKysuLk42m81ZCgsLL6sfAAAAAAAA1F3uNR1AdfPw8HB5NhgMLu8MBoMkqby8vFL91a9fv8rj/nKMkpISxcfHa+jQoRe0q1evXqX6/yWTySSTyXRZbQEAAAAAAACpFiYHr4Snp6fKyspc3nXu3Fnl5eXavHmz+vbte1n9duvWTbm5uWrbtm11hAkAAADgN+Q/+4eaDgEAgOsCycH/YrFYVFJSok8//VRdunSRl5eXLBaLxowZo3Hjxumll15Sly5ddOTIERUXF2vEiBGV6nfWrFkaMGCAWrVqpWHDhsnNzU05OTnas2eP5s2bd5VnBQAAAAAAAFxcrTtz8EqEh4fr0Ucf1f333y8/Pz89//zzkqTXXntNw4YN08SJE9WhQwdFR0fr9OnTle43MjJSH374oTZt2qSePXvq1ltv1aJFi9S6deurNRUAAAAAAADgNxkqKioqajoIXDm73S6z2SybzSZfX9+aDgcAAAAAAAA1pCp5IlYOAgAAAAAAAHUUycFKOnXqlB588EE1aNBAzZs316JFi2S1WhUTEyNJOnHihEaPHq1GjRrJy8tL9957rw4ePOjSx5YtW9S7d2/Vr19fAQEBmjx5ssv25FdffVVBQUGqV6+emjVrpmHDhl3TOQIAAAC1hSV2Q02HAADAdYHkYCVNnTpVGRkZWr9+vT755BOlp6drx44dzu9RUVHKysrS+vXrtXXrVlVUVKh///4qLS2VJB0+fFj9+vXTfffdp927d2vNmjXasmWLJk2aJEnKysrS5MmTlZCQoNzcXH388cfq06fPJeNxOByy2+0uBQAAAAAAAKgKzhyshFOnTqlJkyZ6++23nav5bDabWrRooejoaP35z39Wu3btlJGRofDwcEnS8ePHFRAQoOXLl2v48OGaMGGCjEajli5d6ux3y5YtioiI0OnTp7Vx40aNHTtW3377rXx8fH4zpjlz5ig+Pv6C95w5CAAAAJxfOZj/7B9qOgwAAGoEZw5Ws2+++UalpaXq1auX853ZbFb79u0lSfv27ZO7u7tuueUW5/cmTZqoffv22rdvnyQpJydHKSkp8vb2dpbIyEiVl5crLy9Pd999t1q3bq3AwEA99NBDWrlypX788cdLxhQXFyebzeYshYWFV2n2AAAAAAAAqK3cazqAuqKkpESPPPKIJk+efMG3Vq1aydPTUzt27FBaWpo2bdqkWbNmac6cOcrMzFTDhg0vaGMymWQyma5F6AAAAAAAAKilWDlYCYGBgfLw8FBmZqbznc1m04EDByRJwcHBOnfunLZt2+b8fvz4ceXm5qpjx46SpG7dumnv3r1q27btBcXT01OS5O7urr59++r555/X7t27lZ+fr88+++wazhQAAACoHdhSDABA5bBysBJ8fHw0ZswYTZ8+XY0bN9YNN9yg2bNny83NTQaDQUFBQRo0aJCio6O1dOlS+fj4KDY2VjfeeKMGDRokSZoxY4ZuvfVWTZo0SRMmTFCDBg20d+9effLJJ1qyZIk+/PBDffPNN+rTp48aNWqkjRs3qry83Ll1GQAAAAAAAKhurByspBdffFFhYWEaMGCA+vbtq9tuu03BwcGqV6+eJCk5OVndu3fXgAEDFBYWpoqKCm3cuFEeHh6SpJCQEG3evFkHDhxQ79691bVrV82aNUstWrSQJDVs2FBr167VnXfeqeDgYP3lL3/RqlWrdPPNN9fYnAEAAAAAAFC7cVvxZTp9+rRuvPFGLVy4UOPHj690O6vVqtDQUC1evLha46nKLTQAAAAAAACovaqSJ2JbcSXt3LlT+/fvV69evWSz2ZSQkCBJzm3DAAAAAH4/LLEbLrst5xUCAOoSthVXwYIFC9SlSxf17dtXp0+fVnp6upo2bVrp9lFRUdq8ebOSkpJkMBhkMBiUn5+vzZs3q1evXjKZTGrevLliY2N17ty5qzgTAAAAAAAAgJWDlda1a1dlZ2dfUR9JSUk6cOCAOnXq5Fx5WFZWpv79+ysqKkorVqzQ/v37FR0drXr16mnOnDmX7MvhcMjhcDif7Xb7FcUGAAAAAACAuofk4DVkNpvl6ekpLy8v+fv7S5JmzpypgIAALVmyRAaDQR06dNC///1vzZgxQ7NmzZKb28UXdyYmJio+Pv5ahg8AAAAAAIBahm3FNWzfvn0KCwuTwWBwvrvttttUUlKib7/99pLt4uLiZLPZnKWwsPBahAsAAAAAAIBahJWD1ymTySSTyVTTYQAAAAC/S1wqAgBA5bBy8Brz9PRUWVmZ8zk4OFhbt25VRUWF811GRoZ8fHzUsmXLmggRAAAAAAAAdQTJwWoQFRWlwYMHV6quxWLRtm3blJ+frx9++EETJ05UYWGhHn/8ce3fv1/r1q3T7NmzNXXq1EueNwgAAAAAAABUB0PFfy9Zw2Wx2WyqqKhQw4YNf7PugQMHNGbMGOXk5Oinn35SXl6ejhw5ounTpysnJ0dlZWWKiIjQP/7xD7m7V37Xt91ul9lsls1mk6+v75VMBwAAAAAAANexquSJOHOwGpjN5krXbdeunbZu3eryzmKxaPv27c7fAwcOrFJiEAAAAAAAALgcrBysBlFRUTp58qRSU1NlsVgUExOjmJgY5/fQ0FANHjxYc+bMUUVFheLj4/XGG2/o+++/V5MmTTRs2DC99NJLslqt2rx5s0vflf33sHIQAAAA+D+W2A01HcIV4UIVAMCVYOXg79j777+vRYsWafXq1br55pt19OhR5eTkSJLWrl2rLl266OGHH1Z0dHQNRwoAAAAAAIDajuTgNVZQUCB/f3/17dtXHh4eatWqlXr16iVJaty4sYxGo3x8fOTv7/+r/TgcDjkcDuez3W6/qnEDAAAAAACg9uE63Gts+PDh+umnnxQYGKjo6Gh98MEHOnfuXJX7SUxMlNlsdpaAgICrEC0AAAAAAABqM5KD1czNze2CcwJLS0udvwMCApSbm6tXX31V9evX18SJE9WnTx+XOpURFxcnm83mLIWFhdUSPwAAAAAAAOoOthVXMz8/PxUVFTmf7Xa78vLyXOrUr19fAwcO1MCBA/XnP/9ZHTp00FdffaVu3brJ09NTZWVlvzmOyWSSyWSq9vgBAACA2oALPQAAqBySg9XszjvvVEpKigYOHKiGDRtq1qxZMhqNzu8pKSkqKyvTLbfcIi8vL7311luqX7++WrduLUmyWCz64osv9MADD8hkMqlp06Y1NRUAAAAAAADUcmwrrmZxcXGKiIjQgAED9Ic//EGDBw/WTTfd5PzesGFDLVu2TLfddptCQkL0z3/+U3//+9/VpEkTSVJCQoLy8/N10003yc/Pr6amAQAAAAAAgDrAUPHLA/JQZSNHjpTRaNRbb731m3WtVqtCQ0O1ePHiao3BbrfLbDbLZrPJ19e3WvsGAAAAAADA9aMqeSJWDl6Bc+fOae/evdq6datuvvnmmg4HAAAAAAAAqBJWDl6BXbt2KTw8XHfccYfeeustNWrU6FfrR0VFafny5S7v8vLydOTIEU2fPl05OTlq3LixxowZo3nz5sndvfJHQrJyEAAAAPg/ltgNv1mHS0sAALVVVfJEXEhyBUJDQ/Xjjz9Wun5SUpIOHDigTp06KSEhQZJUVlam/v37KyoqSitWrND+/fsVHR2tevXqac6cOZfsy+FwyOFwOJ/tdvtlzwMAAAAAAAB1E8nBa8hsNsvT01NeXl7y9/eXJM2cOVMBAQFasmSJDAaDOnTooH//+9+aMWOGZs2aJTe3i+/8TkxMVHx8/LUMHwAAAAAAALUMZw7WsH379iksLEwGg8H57rbbblNJSYm+/fbbS7aLi4uTzWZzlsLCwmsRLgAAAAAAAGoRVg5ep0wmk0wmU02HAQAAAAAAgOsYycFrzNPTU2VlZc7n4OBgvf/++6qoqHCuHszIyJCPj49atmxZU2ECAAAA1zUuGwEAoHLYVnyNWSwWbdu2Tfn5+frhhx80ceJEFRYW6vHHH9f+/fu1bt06zZ49W1OnTr3keYMAAAAAAABAdSD7VAlWq1UxMTHV0te0adNkNBrVsWNH+fn5qbS0VBs3btT27dvVpUsXPfrooxo/fryefvrpahkPAAAAAAAAuBS2FV9j7dq109atW13eWSwWbd++vYYiAgAAAAAAQF3FykEAAAAAAACgjmLl4GXYsGGDRo0apVdffVV9+vTRk08+qU2bNsnNzU29e/dWUlKSLBaLs/7rr7+uhQsXKi8vTxaLRZMnT9bEiRMlSfn5+WrTpo1WrVqll156STt27FDbtm31yiuvKCIiooZmCAAAAFzfLLEbrrgPLjUBANQFrBysorffflsjR47UypUrNWLECEVGRsrHx0fp6enKyMiQt7e3+vXrp7Nnz0qSVq5cqVmzZmn+/Pnat2+fnnnmGf3P//yPli9f7tLv9OnT9eSTT2rnzp0KCwvTwIEDdfz48UvG4XA4ZLfbXQoAAAAAAABQFSQHq+CVV17RxIkT9fe//10DBgzQmjVrVF5ertdff12dO3dWcHCwkpOTVVBQoLS0NEnS7NmztXDhQg0dOlRt2rTR0KFD9cQTT2jp0qUufU+aNEn33XefgoOD9dprr8lsNutvf/vbJWNJTEyU2Wx2loCAgKs5dQAAAAAAANRCbCuupPfee0/FxcXKyMhQz549JUk5OTk6dOiQfHx8XOqeOXNGhw8f1unTp3X48GGNHz9e0dHRzu/nzp2T2Wx2aRMWFub87e7urh49emjfvn2XjCcuLk5Tp051PtvtdhKEAAAAAAAAqBKSg5XUtWtX7dixQ2+88YZ69Oghg8GgkpISde/eXStXrrygvp+fn0pKSiRJy5Yt0y233OLy3Wg0XlE8JpNJJpPpivoAAAAAaivOCwQAoHJIDlbSTTfdpIULF8pqtcpoNGrJkiXq1q2b1qxZoxtuuEG+vr4XtDGbzWrRooW++eYbPfjgg7/a/7/+9S/16dNH0vmVhdnZ2Zo0adJVmQsAAAAAAAAgkRysknbt2unzzz+X1WqVu7u7nnnmGb3wwgsaNGiQEhIS1LJlSx05ckRr167VU089pZYtWyo+Pl6TJ0+W2WxWv3795HA4lJWVpRMnTrhsC37llVcUFBSk4OBgLVq0SCdOnNC4ceNqcLYAAAAAAACo7UgOVlH79u312WefOVcQfvHFF5oxY4aGDh2qU6dO6cYbb9Rdd92lBx54QD169NDixYvl5eWlF154QdOnT1eDBg3UuXNnffHFFwoMDFRoaKgk6dlnn9Wzzz6rXbt2qW3btlq/fr2aNm1aw7MFAAAAAABAbWaoqKioqLiqR1wAACAASURBVOkgaiOr1arQ0FAtXrz4ot+PHj2qRo0aqaioSG3atNHOnTudicLLYbfbZTabZbPZLrrFGQAAAAAAAHVDVfJErBysIf7+/jUdAgAAAGohS+yGmg7hd4ELSQAAqBy3mg6gNisvL9dTTz2lxo0by9/fX3PmzHF+MxgMSk1NdT4nJiaqefPmqlevnlq3bq3ExMQaiBgAAAAAAAB1CcnBq2j58uVq0KCBtm3bpueff14JCQn65JNPXOpYLBa98MIL2rp1q9555x3l5uZq5cqVslgsv9q3w+GQ3W53KQAAAAAAAEBVsK34KgoJCdHs2bMlSUFBQVqyZIk+/fRT3X333S71CgoKFBQUpNtvv10Gg0GtW7f+zb4TExMVHx9/VeIGAAAAAABA3cDKwasoJCTE5bl58+YqLi6+oF5UVJR27dql9u3ba/Lkydq0adNv9h0XFyebzeYshYWF1RY3AAAAAAAA6gZWDl5FHh4eLs8Gg0Hl5eUX1OvWrZvy8vL00Ucf6Z///KdGjBihvn376r333rtk3yaTSSaTqdpjBgAAwPWNizgAAEBVkBz8nfD19dX999+v+++/X8OGDVO/fv30n//8R40bN67p0AAAAAAAAFBL1enkYEVFhR555BG99957OnHihHbu3KnQ0NBqHycqKkonT550PlutVpfvL774opo3b66uXbvKzc1N7777rvz9/dWwYcNqjwUAAAAAAAD4WZ1ODn788cdKSUlRWlqaAgMD1bRp06syTlJSkioqKhQVFXXR7z4+Pnr++ed18OBBGY1G9ezZUxs3bpSbG0dCAgAAAAAA4OoxVFRUVNR0EDVlyZIleuGFF3TkyJFrOq7ValVoaKgWL15cbX3a7XaZzWbZbDb5+vpWW78AAAAAAAC4vlQlT1RnVw5GRUVp+fLlks5fFNK6dWv95S9/0bx587Rnzx4ZjUaFhYUpKSlJN910kyQpPz9fbdq00Zo1a/Tyyy8rKytLnTp10sqVK2Wz2fTYY49p//796t27t1asWCE/Pz/nWCdPnlRqauoFcSQkJOidd97Rnj17XN6HhoZq4MCBmjt37lX+SwAAAADXniV2w1Xtn4tZAAConDq7bzUpKUkJCQlq2bKlioqKlJmZqdOnT2vq1KnKysrSp59+Kjc3Nw0ZMuSCG4Znz56tp59+Wjt27JC7u7tGjRqlp556SklJSUpPT9ehQ4c0a9asSsUxbtw47du3T5mZmc53O3fu1O7duzV27NhLtnM4HLLb7S4FAAAAAAAAqIo6u3LQbDbLx8dHRqNR/v7+kqT77rvPpc4bb7whPz8/7d27V506dXK+nzZtmiIjIyVJU6ZM0ciRI/Xpp5/qtttukySNHz9eKSkplYqjZcuWioyMVHJysnr27ClJSk5OVkREhAIDAy/ZLjExUfHx8ZWeLwAAAAAAAPBLdXbl4MUcPHhQI0eOVGBgoHx9fWWxWCRJBQUFLvVCQkKcv5s1ayZJ6ty5s8u74uLiSo8bHR2tVatW6cyZMzp79qzefvttjRs37lfbxMXFyWazOUthYWGlxwMAAAAAAACkOrxy8GIGDhyo1q1ba9myZWrRooXKy8vVqVMnnT171qWeh4eH87fBYLjou19uRf6tcU0mkz744AN5enqqtLRUw4YN+9U2JpNJJpOp0mMAAAAAAAAAv0Ry8H8dP35cubm5WrZsmXr37i1J2rJlyzUZ293dXWPGjFFycrI8PT31wAMPqH79+tdkbAAAAKAmcGEIAAC/DyQH/1ejRo3UpEkT/fWvf1Xz5s1VUFCg2NjYazb+hAkTFBwcLEnKyMi4ZuMCAAAAAACg7uLMwf/l5uam1atXKzs7W506ddITTzyhF154odLtQ0JCtHjx4ssePygoSOHh4erQoYNuueWWy+4HAAAAAAAAqCxDRUVFRU0HcTmsVqtCQ0OvKCF3OVJSUhQTE6OTJ0+6vLdYLIqJiVFMTMxl9VtRUaGgoCBNnDhRU6dOrXJ7u90us9ksm80mX1/fy4oBAAAAAAAA17+q5InYVvw7cOzYMa1evVpHjx7V2LFjne/Pnj0rT0/PGowMAAAAAAAAtdl1uXIwKipKy5cvd3mXl5enI0eOaPr06crJyVHjxo01ZswYzZs3T+7u53Ogp06d0qOPPqrU1FT5+vrqqaee0rp161xWIDocDs2cOVOrVq3SyZMn1alTJz333HOyWq1KS0vTHXfc4TLu7NmzNWfOHFksFj388MM6dOiQ3n33XTVq1EhPP/20Hn74YWfdwsJCPfnkk9q0aZPc3NzUu3dvJSUlqU2bNmratKmCg4PVuHFj9ezZU6+88opMJpPy8vIq9Tdh5SAAAMDvlyV2Q02HUOdw4QkAoC6rSp7oujxzMCkpSWFhYYqOjlZRUZGKiork4eGh/v37q2fPnsrJydFrr72mv/3tb5o3b56z3dSpU5WRkaH169frk08+UXp6unbs2OHS96RJk7R161atXr1au3fv1vDhw9WvXz8dPHhQ4eHhWrx4sXx9fZ3jTps2zdl24cKF6tGjh3bu3KmJEyfqscceU25uriSptLRUkZGR8vHxUXp6ujIyMuTt7a1+/frJ4XDo2LFjCgwM1Keffqrc3Fx98skn+vDDDy/5N3A4HLLb7S4FAAAAAAAAqIrrclux2WyWp6envLy85O/vL0maOXOmAgICtGTJEhkMBnXo0EH//ve/NWPGDM2aNUunT5/W8uXL9fbbb+uuu+6SJCUnJ6tFixbOfgsKCpScnKyCggLn+2nTpunjjz9WcnKynnnmGZnNZhkMBue4/61///6aOHGiJGnGjBlatGiRPv/8c7Vv315r1qxReXm5Xn/9dRkMBuf4DRs2VFpamu655x5JUoMGDfT666//5nbixMRExcfHX+FfEgAAAAAAAHXZdZkcvJh9+/YpLCzMmXiTpNtuu00lJSX69ttvdeLECZWWlqpXr17O72azWe3bt3c+f/XVVyorK1O7du1c+nY4HGrSpMlvxhASEuL8/XMCsbi4WJKUk5OjQ4cOycfHx6XNmTNndPjwYedz586dK3XOYFxcnMvFJXa7XQEBAb/ZDgAAAAAAAPhZrUkOVoeSkhIZjUZlZ2fLaDS6fPP29v7N9h4eHi7PBoNB5eXlzr67d++ulStXXtDOz8/P+btBgwaVitVkMslkMlWqLgAAAAAAAHAx121y0NPTU2VlZc7n4OBgvf/++6qoqHCuHszI+P/s3XtY1GX+//HXcBpEmFGUBBMdTVQ8IJhWHhIytfLw1bIsdU08ZuYBTRO+WoqZqGnm1tXJLdBaa7ekzaLU1a+QUp7FPJAlG8tYmJk6E7qOCvz+6NfszioKgQyH5+O67uuaz/25P/f9vuW/t/chUwEBAWrSpInq168vb29v7d69W02bNpUk2Ww2ffPNN+rZs6ckKSoqSoWFhTp58qTuvPPOUo1bWp06ddJf/vIX3XTTTVwYAgAAUMtwOQYAAKiqquWFJJJksVi0c+dO5ebm6tSpU5o0aZKsVqumTJmir7/+Wh999JHmzZunGTNmyMPDQwEBARo1apRmzZqlrVu36vDhwxo7dqw8PDycycRWrVppxIgRevTRR5WamqrvvvtOu3btUlJSktLS0pzjFhQUaMuWLTp16pTOnz9fqnhHjBihhg0batCgQdq2bZu+++47paena+rUqTp+/PgN+3cCAAAAAAAASlJtk4MzZ86Up6en2rZtq6CgIF26dEmffvqpdu3apY4dO2rixIkaO3as5s6d6/zmhRdeUNeuXTVgwAD17t1b3bt3V3h4uHx9fZ1tkpOT9eijj+rJJ59U69atNXjwYJfVht26ddPEiRP18MMPKygoSEuXLi1VvH5+fvr888/VtGlTPfDAAwoPD9fYsWN14cIFVhICAAAAAADALQzFxcXF7g7CXc6dO6ebb75Zy5cv19ixY90dTrnY7XaZzWbZbDaSjQAAAAAAALVYWfJE1fbMwd9j//79+vrrr3XbbbfJZrNpwYIFkqRBgwa5OTIAAACg9rLEp1V4n5zzCABA6dSq5KAkLVu2TEePHpWPj49uvfVWbdu2TQ0bNnR3WAAAAAAAAEClq1XJwaioKO3du9fdYVQIh8Mhh8PhfLbb7W6MBgAAAAAAANVRtb2QpLZLSkqS2Wx2ltDQUHeHBAAAAAAAgGqG5GA1lZCQIJvN5ixWq9XdIQEAAAAAAKCaqVXbimsSo9Eoo9Ho7jAAAACAcuPyEAAA3IeVgwAAAAAAAEAtRXKwCoiJiVFcXJxL3csvv6y7777bTREBAAAAAACgNmBbcRWQmpoqb29vSZLFYlFcXJzOnj2rnJwcN0cGAAAAAACAmoyVg1VAYGCgAgICXOrmz5+v3Nxc9wQEAAAAAACAWsFQXFxc7O4garuYmBhFRkYqKytLGRkZLu9K++ex2+0ym82y2WwymUw3IkwAAACgSrLEp11RxyUnAIDarCx5IlYOViGpqalq0qSJFixYoPz8fOXn57s7JAAAAAAAANRgnDlYhQQGBsrT01MBAQEKDg6+ZluHwyGHw+F8ttvtNzo8AAAAAAAA1DCsHKymkpKSZDabnSU0NNTdIQEAAAAAAKCaITlYTSUkJMhmszmL1Wp1d0gAAAAAAACoZthWXMX4+PiosLDwuu2MRqOMRmMlRAQAAABUbVw+AgDA78fKwSrGYrHo888/1/fff69Tp065OxwAAAAAAADUYDUqORgTE6O4uLhKGSs3N1cGg0FZWVkV2u+CBQt06NAhNWnSREFBQRXaNwAAAAAAAPCfDMXFxcXuDqKinD59Wt7e3goICLjhYxUWFuqnn35Sw4YN5eVVsbuz09PTddddd+nMmTOqV69eqb6x2+0ym82y2WwymUwVGg8AAAAAAACqj7LkiWrUmYOBgYGVNpanp6eCg4NLfF9cXKzCwsIKTxwCAAAAAAAAFaVGZa5iYmIUGRmpF198URaLRRMmTNCxY8f0/vvvq379+po7d64mTJggSbp48aJmzJihdevW6cyZM2rUqJEmTpyohIQESZLBYNArr7yi9evXKz09XSEhIVq6dKkefPBBSb9uK27evLn279+vyMhI52q/Tz/9VHPnztXBgwe1adMm9ezZU0uWLNEbb7yhEydOqFWrVnr66aed/UjSp59+qri4OFmtVt1xxx0aNWpU5f/jAQAAANdhiU9zdwilxiUlAACUTo06c/C/LV++XJ07d9b+/fs1adIkPf744zp69Kgk6Y9//KPWr1+vv/71rzp69Kj+/Oc/y2KxuHz/9NNPa8iQITpw4IBGjBihRx55RNnZ2dccMz4+XosXL1Z2drYiIiKUlJSkNWvW6LXXXtPhw4c1ffp0/eEPf1BGRoYkyWq16oEHHtDAgQOVlZWlcePGKT4+/rpzczgcstvtLgUAAAAAAAAoixq1cvC/9evXT5MmTZIkzZ49WytWrNDWrVvVunVr5eXlKSwsTD169JDBYFCzZs2u+P6hhx7SuHHjJEnPPvus/v73v+ull17SK6+8UuKYCxYsUJ8+fST9msBbtGiRNm/erK5du0qSWrRooe3bt+v1119XdHS0Xn31Vd1yyy1avny5JKl169Y6ePCglixZcs25JSUlKTExsez/KAAAAAAAAMD/V6NXDkZERDh/GwwGBQcH6+TJk5Kk2NhYZWVlqXXr1po6dao2bdp0xfe/JfT+8/l6Kwc7d+7s/H3s2DGdP39effr0kb+/v7OsWbNGOTk5kqTs7Gzdfvvt1xz3ahISEmSz2ZzFarVe9xsAAAAAAADgP9XolYPe3t4uzwaDQUVFRZKkTp066bvvvtNnn32mzZs3a+jQoerdu7c++OCDco1Zt25d5++CggJJUlpamm6++WaXdkajsVzjGI3GcvcBAAAAAACA2q1GJwevx2Qy6eGHH9bDDz+sBx98UPfee69Onz7tvPV4x44devTRR53td+zYoaioqFL337ZtWxmNRuXl5Sk6OvqqbcLDw7V+/XqXuh07dvyO2QAAAAA3Fpd8AABQ89Ta5OALL7ygkJAQRUVFycPDQ++//76Cg4NVr149Z5v3339fnTt3Vo8ePfTnP/9Zu3bt0ptvvlnqMQICAjRz5kxNnz5dRUVF6tGjh2w2mzIzM2UymTRq1ChNnDhRy5cv16xZszRu3Djt3btXKSkpN2DGAAAAAAAAgKtamxwMCAjQ0qVL9e2338rT01NdunTRp59+Kg+Pfx/DmJiYqPfee0+TJk1SSEiI3n33XbVt27ZM4zz77LMKCgpSUlKS/vGPf6hevXrq1KmT/vd//1eS1LRpU61bt07Tp0/XSy+9pNtuu02LFi3SmDFjKnS+AAAAAAAAwH8zFBcXF7s7iKrIYDDoww8/1ODBg90dSqnY7XaZzWbZbDaZTCZ3hwMAAAAAAAA3KUueqEbfVgwAAAAAAACgZCQHK1hMTIymTJmiuLg41a9fX40aNdKqVat07tw5jR49WgEBAWrZsqU+++wz5zeHDh3SfffdJ39/fzVq1EgjR47UqVOn3DgLAAAAoHqzxKe5FAAAcHUkB0tQXFz8u7cUr169Wg0bNtSuXbs0ZcoUPf7443rooYfUrVs37du3T3379tXIkSN1/vx5nT17Vr169VJUVJT27NmjDRs26Mcff9TQoUOvOYbD4ZDdbncpAAAAAAAAQFlw5mAFi4mJUWFhobZt2yZJKiwslNls1gMPPKA1a9ZIkk6cOKGQkBB9+eWX2rx5s7Zt26aNGzc6+zh+/LhCQ0N19OhRtWrV6qrjzJ8/X4mJiVfUc+YgAAAAoCtWC+Yu7u+mSAAAqHycOehmERERzt+enp5q0KCBOnTo4Kxr1KiRJOnkyZM6cOCAtm7dKn9/f2dp06aNJCknJ6fEMRISEmSz2ZzFarXeoNkAAAAAAACgpvJydwA1kbe3t8uzwWBwqTMYDJKkoqIiFRQUaODAgVqyZMkV/YSEhJQ4htFolNForKCIAQAAgJqFlYIAAJQOyUE369Spk9atWyeLxSIvL/4cAAAAAAAAqDxsK3azJ554QqdPn9awYcO0e/du5eTkaOPGjRo9erQKCwvdHR4AAAAAAABqMJKD5ZCeni6DwaCzZ8/+7j4aN26szMxMFRYWqm/fvurQoYPi4uJUr149eXjw5wEAAAAAAMCNwz7WMoiJiVFkZKRefPHFEtukp6dfUZebm3tF3X9eEh0WFqbU1NSKCBEAAAAAAAAoNZKDAAAAAGocS3xahfbHBScAgJqKfaulFBsbq4yMDK1cuVIGg0EGg8G5InDv3r3q3Lmz/Pz81K1bNx09etTl248++kidOnWSr6+vWrRoocTERF2+fNn53mAw6E9/+pPuv/9++fn5KSwsTOvXr6/M6QEAAAAAAKAWIjlYSitXrlTXrl01fvx45efnKz8/X6GhoZKkOXPmaPny5dqzZ4+8vLw0ZswY53fbtm3To48+qmnTpunIkSN6/fXXlZKSoueee86l/8TERA0dOlRfffWV+vXrpxEjRuj06dMlxuNwOGS3210KAAAAAAAAUBYkB0vJbDbLx8dHfn5+Cg4OVnBwsDw9PSVJzz33nKKjo9W2bVvFx8friy++0IULFyT9mvSLj4/XqFGj1KJFC/Xp00fPPvusXn/9dZf+Y2NjNWzYMLVs2VKLFi1SQUGBdu3aVWI8SUlJMpvNzvJbohIAAAAAAAAoLZKDFSAiIsL5OyQkRJJ08uRJSdKBAwe0YMEC+fv7O8tvqw/Pnz9/1T7q1q0rk8nk7ONqEhISZLPZnMVqtVb0tAAAAAAAAFDDcSFJBfD29nb+NhgMkqSioiJJUkFBgRITE/XAAw9c8Z2vr+9V+/itn9/6uBqj0Sij0ViuuAEAAICaigtEAAAoHZKDZeDj46PCwsIyfdOpUycdPXpULVu2vEFRAQAAAAAAAL8PycEysFgs2rlzp3Jzc+Xv73/NlX2/eeaZZzRgwAA1bdpUDz74oDw8PHTgwAEdOnRICxcuLPG7ixcvatKkSYqNja3AGQAAAAAAAAD/xpmDZTBz5kx5enqqbdu2CgoKUl5e3nW/ueeee/TJJ59o06ZN6tKli+644w6tWLFCzZo1q4SIAQAAAAAAgJIZiouLi90dBK6UkpKiuLg4nT17tlTt7Xa7zGazbDabTCbTDY4OAAAAAAAAVVVZ8kSsHKwAGzZsUI8ePVSvXj01aNBAAwYMUE5OjiQpNzdXBoNBqampuuuuu+Tn56eOHTvqyy+/dOkjJSVFTZs2lZ+fn+6//379/PPP7pgKAAAAUCNY4tOcBQAAlIzkYAU4d+6cZsyYoT179mjLli3y8PDQ/fff73Im4Zw5czRz5kxlZWWpVatWGjZsmC5fvixJ2rlzp8aOHavJkycrKytLd9111zXPI5Qkh8Mhu93uUgAAAAAAAICyYFvxDXDq1CkFBQXp4MGD8vf3V/PmzfWnP/1JY8eOlSQdOXJE7dq1U3Z2ttq0aaPhw4fLZrMpLe3f/6v5yCOPaMOGDSVuK54/f74SExOvqGdbMQAAACCXFYO5i/u7MRIAACof24or2bfffqthw4apRYsWMplMslgskuRyYUlERITzd0hIiCTp5MmTkqTs7GzdfvvtLn127dr1mmMmJCTIZrM5i9VqrYipAAAAAAAAoBbxcncANcHAgQPVrFkzrVq1So0bN1ZRUZHat2+vixcvOtt4e3s7fxsMBkly2XZcVkajUUaj8fcHDQAAAAAAgFqP5GA5/fzzzzp69KhWrVqlO++8U5K0ffv2MvURHh6unTt3utTt2LGjwmIEAAAAahu2EgMAUDokB8upfv36atCggd544w2FhIQoLy9P8fHxZepj6tSp6t69u5YtW6ZBgwZp48aN2rBhww2KGAAAAAAAAPgVZw6Wk4eHh9577z3t3btX7du31/Tp0/X888+XqY/4+Hj16tVLK1euVMeOHbVp0ybNnTv3BkUMAAAAAAAA/IrbiquA06dPy9vbWwEBAbJYLIqLi1NcXFyZ+ijLLTQAAAAAAACoucqSJ2JbcRUQGBjo7hAAAAAAAABQC7FysAqIiYlRZGSksrKylJGR4fKutH8eVg4CAAAA/2aJTyvX91xoAgCozsqSJ+LMwSokNTVVTZo00YIFC5Sfn6/8/PwS2zocDtntdpcCAAAAAAAAlAXJwSokMDBQnp6eCggIUHBwsIKDg0tsm5SUJLPZ7CyhoaGVGCkAAAAAAABqApKD1VRCQoJsNpuzWK1Wd4cEAAAAAACAaoYLSaopo9Eoo9Ho7jAAAACAKokzAwEAKB1WDlYxPj4+KiwsdHcYAAAAAAAAqAVIDlYxFotFn3/+ub7//nudOnXK3eEAAAAAAACgBiM5WMUsWLBAubm5uuWWWxQUFOTucAAAAAAAAFCDGYqLi4vdHQTKz263y2w2y2azyWQyuTscAAAAAAAAuElZ8kSsHAQAAABQ41ji02SJT3N3GAAAVHkkB8tow4YN6tGjh+rVq6cGDRpowIABysnJkSTl5ubKYDDor3/9q+68807VqVNHXbp00TfffKPdu3erc+fO8vf313333aeffvrJ2efu3bvVp08fNWzYUGazWdHR0dq3b5+7pggAAAAAAIBaguRgGZ07d04zZszQnj17tGXLFnl4eOj+++9XUVGRs828efM0d+5c7du3T15eXho+fLieeuoprVy5Utu2bdOxY8f0zDPPONv/8ssvGjVqlLZv364dO3YoLCxM/fr10y+//FJiHA6HQ3a73aUAAAAAAAAAZeHl7gCqmyFDhrg8v/XWWwoKCtKRI0fk7+8vSZo5c6buueceSdK0adM0bNgwbdmyRd27d5ckjR07VikpKc4+evXq5dLnG2+8oXr16ikjI0MDBgy4ahxJSUlKTEysqGkBAAAAAACgFmLlYBl9++23GjZsmFq0aCGTySSLxSJJysvLc7aJiIhw/m7UqJEkqUOHDi51J0+edD7/+OOPGj9+vMLCwmQ2m2UymVRQUODS539LSEiQzWZzFqvVWlFTBAAAAAAAQC3BysEyGjhwoJo1a6ZVq1apcePGKioqUvv27XXx4kVnG29vb+dvg8Fw1br/3IY8atQo/fzzz1q5cqWaNWsmo9Gorl27uvT534xGo4xGY0VODQAAAKgxchf3d3cIAABUCyQHy+Dnn3/W0aNHtWrVKt15552SpO3bt5e738zMTL3yyivq16+fJMlqterUqVPl7hcAAAAAAAC4FpKDZVC/fn01aNBAb7zxhkJCQpSXl6f4+Phy9xsWFqa3335bnTt3lt1u16xZs1SnTp0KiBgAAAAAAAAoWa0+c/Cnn36Sj4+Pzp07p0uXLqlu3bolnvP3/vvvq0ePHnrvvfe0fft2tWrVStOnT9fzzz9f7jjefPNNnTlzRp06ddLIkSM1depU3XTTTeXuFwAAAAAAALgWQ3FxcbG7g3CX9evX69lnn9Xu3bu1c+dOPfjggyVe7DFjxgx5enrq+eef15IlS3To0CG9/fbblRxxyex2u8xms2w2m0wmk7vDAQAAAAAAgJuUJU9Uq7cVf/HFF+revbukX88O/O13SW1/20K8fft29e/vesBxbGysVq9efcV3W7duVUxMjBwOh+bMmaN3331XZ8+eVfv27bVkyRLFxMRIkv75z39q8uTJ2r59uy5evCiLxaLnn3/eeQ4hAAAAgNKzxKe5bWwuQwEAVCe1buVgXl6eIiIiJEnnz5+Xp6enjEaj/vWvf8lgMMjX11fDhw/XK6+8orVr12rSpEmSfs241q1bV56envrll19Up04deXl56ZVXXtHw4cNls9n0r3/9yznO4sWL9e677+rAgQMKDg7W+PHjdeTIES1evFiNGzfWhx9+qLlz5+rgwYMKCwvTgAEDdPHiRS1fvlx169bVkSNHZDKZ1LNnz6vOw+FwyOFwOJ/tdrtCQ0NZOQgAAACI5CAAoHYry8rBWpccXmOPZgAAIABJREFUvHz5so4fPy673a7OnTtrz549qlu3riIjI5WWlqamTZvK399fDRs2VEFBgU6dOqXNmzfrxRdf1CeffKKvvvpKEydO1BdffCFJatiwofz9/V3GSE1N1YgRI7R582Z1795deXl5atGihfLy8tS4cWNnu969e+u2227TokWLFBERoSFDhmjevHmlmsf8+fOVmJh4RT3JQQAAAIDkIACgditLcrDWXUji5eUli8Wir7/+Wl26dFFERIROnDihRo0aqWfPnrJYLGrYsKEkyd/fXxaLRfv27dOgQYNksVh08OBB9evXTxaLRRaL5YrE4P79+zVy5Ei9/PLLzm3KBw8eVGFhoVq1aiV/f39nycjIUE5OjiRp6tSpWrhwobp376558+bpq6++uuY8EhISZLPZnKWksxIBAAAAAACAktS6MwfbtWunf/7zn7p06ZKKiork7++vy5cv6/Lly/L391ezZs10+PBh5eXlqW3btpKkCxcuyMvLSytXrpTD4ZCHh4fee+89/eEPf9Brr73m7PvEiRP6n//5H40bN05jx4511hcUFMjT01N79+6Vp6enSzy/JRfHjRune+65R2lpadq0aZOSkpK0fPlyTZky5arzMBqNMhqNFf3PAwAAAAAAgFqk1m0r/i0xePfdd2vp0qW69dZb9cgjjyg2Nlb33nuvvL291axZM12+fFm5ubk6ceKEevfuraysLBUWFioyMlKZmZkKDAyUyWTSTTfdJOnXBGJ0dLRMJpM2bNjgkgT85ptv1Lp1a33++ee68847SxVnQkKC0tLSrruC8DfcVgwAAAAAAACJ24qvqVmzZjpx4oR+/PFHDRo0SAaDQYcPH9aQIUMUEhLibOfl5aWWLVtqz549uv3229WmTRt9/vnnatGihW677bYr+n3sscdktVq1ZcsW/fTTT876wMBAtWrVSiNGjNCjjz6q5cuXKyoqSj/99JO2bNmiiIgI9e/fX3FxcbrvvvvUqlUrnTlzRlu3blV4eHil/JsAAAAAAACgdqp1yUFJSk9PV5cuXeTr66tt27apSZMmLonB/277243BGRkZJd4enJGRofz8fOdW5N9s3bpVMTExSk5O1sKFC/Xkk0/q+++/V8OGDXXHHXdowIABkqTCwkI98cQTOn78uEwmk+69916tWLGiAmcNAAAAAAAAuKp124prKrYVAwAAAAAAQOK2YgAAAAAAAAClUCu3Fd9IMTEx6tChgzw9PbV69Wr5+Pho4cKFGj58uCZPnqwPPvhAjRo10ksvvaT77rtPknTo0CHNmjVL27ZtU926ddW3b1+tWLFCDRs2dPNsAAAAgOrJEp/m7hCUu7i/u0MAAOC6WDl4A6xevVoNGzbUrl27NGXKFD3++ON66KGH1K1bN+3bt099+/bVyJEjdf78eZ09e1a9evVSVFSU9uzZow0bNujHH3/U0KFDrzmGw+GQ3W53KQAAAAAAAEBZcOZgBYuJiVFhYaG2bdsm6deLRsxmsx544AGtWbNGknTixAmFhIToyy+/1ObNm7Vt2zZt3LjR2cfx48cVGhqqo0ePqlWrVlcdZ/78+UpMTLyinjMHAQAAAFYOAgBqN84cdLOIiAjnb09PTzVo0EAdOnRw1jVq1EiSdPLkSR04cEBbt26Vv7+/s7Rp00aSlJOTU+IYCQkJstlszmK1Wm/QbAAAAAAAAFBTcebgDeDt7e3ybDAYXOoMBoMkqaioSAUFBRo4cKCWLFlyRT8hISEljmE0GmU0GisoYgAAAAAAANRGJAfdrFOnTlq3bp0sFou8vPhzAAAAABWBLb0AAJQO24rd7IknntDp06c1bNgw7d69Wzk5Odq4caNGjx6twsJCd4cHAAAAAACAGozkoJs1btxYmZmZKiwsVN++fdWhQwfFxcWpXr168vDgzwMAAAAAAIAbh9uKa4iy3EIDAAAAAACAmqsseSIOuQMAAABQ41ji0yplHM42BABUd+xb/Z1iYmI0depUPfXUUwoMDFRwcLDmz5/vfJ+Xl6dBgwbJ399fJpNJQ4cO1Y8//ihJstls8vT01J49eyT9emtxYGCg7rjjDuf377zzjkJDQyt1TgAAAAAAAKhdSA6Ww+rVq1W3bl3t3LlTS5cu1YIFC/T3v/9dRUVFGjRokE6fPq2MjAz9/e9/1z/+8Q89/PDDkiSz2azIyEilp6dLkg4ePCiDwaD9+/eroKBAkpSRkaHo6OgSx3Y4HLLb7S4FAAAAAAAAKAuSg+UQERGhefPmKSwsTI8++qg6d+6sLVu2aMuWLTp48KDWrl2rW2+9VbfffrvWrFmjjIwM7d69W9KvKw9/Sw6mp6erT58+Cg8P1/bt251110oOJiUlyWw2OwurDAEAAAAAAFBWJAfLISIiwuU5JCREJ0+eVHZ2tkJDQ10Sdm3btlW9evWUnZ0tSYqOjtb27dtVWFiojIwMxcTEOBOGP/zwg44dO6aYmJgSx05ISJDNZnMWq9V6Q+YIAAAAAACAmosLScrB29vb5dlgMKioqKhU3/bs2VO//PKL9u3bp88//1yLFi1ScHCwFi9erI4dO6px48YKCwsr8Xuj0Sij0Viu+AEAAICaiotCAAAoHVYO3gDh4eGyWq0uq/mOHDmis2fPqm3btpKkevXqKSIiQi+//LK8vb3Vpk0b9ezZU/v379cnn3xyzS3FAAAAAAAAQEUgOXgD9O7dWx06dNCIESO0b98+7dq1S48++qiio6PVuXNnZ7uYmBj9+c9/diYCAwMDFR4err/85S8kBwEAAAAAAHDDkRy8AQwGgz766CPVr19fPXv2VO/evdWiRQv95S9/cWkXHR2twsJCl7MFY2JirqgDAAAAAAAAbgRDcXFxsbuDQPnZ7XaZzWbZbDaZTCZ3hwMAAAAAAAA3KUueiAtJAAAAANQ4lvg0d4dQLlyoAgCoLGwrBgAAAAAAAGopVg5WUw6HQw6Hw/lst9vdGA0AAAAAAACqI1YOVlNJSUkym83OEhoa6u6QAAAAAAAAUM2QHKymEhISZLPZnMVqtbo7JAAAAAAAAFQzbCuupoxGo4xGo7vDAAAAAKokLvQAAKB0WDlYRb388su6++673R0GAAAAAAAAajBWDlYBMTExioyM1Isvvqjz589r5MiR+uSTT3Tx4kWdPXtW9erVc3eIAAAAAAAAqIFIDlYBqamp8vb2liStXr1a27Zt0969e9WwYUOZzWY3RwcAAAAAAICaiuRgFRAYGOj8nZOTo/DwcLVv396NEQEAAAAAAKA2IDlYBfy2rTgrK0sZGRmSJIPBoOjoaKWnp7s3OAAAAKAassSnVdpYXH4CAKjOSA5WIampqYqPj9ehQ4eUmpoqHx+fEts6HA45HA7ns91ur4wQAQAAAAAAUINwW3EVEhgYKD8/P/n4+Cg4ONhlu/F/S0pKktlsdpbQ0NBKjBQAAAAAAAA1AcnBaiohIUE2m81ZrFaru0MCAAAAAABANcO24mrKaDTKaDS6OwwAAAAAAABUYyQHAQAAANQ4XBICAEDpsK0YAAAAAAAAqKVIDgIAAAAAAAC1lKG4uLjY3UGg/Ox2u8xms2w2m0wmk7vDAQAAAAAAgJuUJU/EykEAAAAAAACgluJCknJas2aNpk+frh9++MHl9uDBgwcrICBAb7/9tl599VUtW7ZMVqtVzZs319y5czVy5EhJUm5urpo3b679+/crMjJSknT27FnVr19fW7duVUxMjDumBQAAAFRrlvi0Gz4Gl54AAGoCVg6W00MPPaTCwkKtX7/eWXfy5EmlpaVpzJgx+vDDDzVt2jQ9+eSTOnTokB577DGNHj1aW7duLde4DodDdrvdpQAAAAAAAABlQXKwnOrUqaPhw4crOTnZWffOO++oadOmiomJ0bJlyxQbG6tJkyapVatWmjFjhh544AEtW7asXOMmJSXJbDY7S2hoaHmnAgAAAAAAgFqG5GAFGD9+vDZt2qTvv/9ekpSSkqLY2FgZDAZlZ2ere/fuLu27d++u7Ozsco2ZkJAgm83mLFartVz9AQAAAAAAoPbhzMEKEBUVpY4dO2rNmjXq27evDh8+rLS00p1x4uHxa372Py+NvnTp0nW/MxqNLmccAgAAAPg3zgMEAKB0WDlYQcaNG6eUlBQlJyerd+/ezm2+4eHhyszMdGmbmZmptm3bSpKCgoIkSfn5+c73WVlZlRQ1AAAAAAAAajNWDlaQ4cOHa+bMmVq1apXWrFnjrJ81a5aGDh2qqKgo9e7dWx9//LFSU1O1efNmSb+eWXjHHXdo8eLFat68uU6ePKm5c+e6axoAAAAAAACoRVg5WEHMZrOGDBkif39/DR482Fk/ePBgrVy5UsuWLVO7du30+uuvKzk5WTExMc42b731li5fvqxbb71VcXFxWrhwoRtmAAAAAAAAgNrGUPyfh92hXO6++261a9dOf/zjH8vdV2xsrCwWi+bPn1+q9na7XWazWTabTSaTqdzjAwAAAAAAoHoqS56IbcUV4MyZM0pPT1d6erpeeeUVd4cDAAAA1HqW+NJdEChxeQkAoHYjOVgBoqKidObMGS1ZskStW7d2dzgAAAAAAABAqZAcrAC5ubmVPqbD4ZDD4XA+2+32So8BAAAAAAAA1RvJwSoqJSXlmu+TkpKUmJhYOcEAAAAAAACgRuK24moqISFBNpvNWaxWq7tDAgAAAAAAQDXDysFqymg0ymg0ujsMAAAAoErikhEAAEqHlYMAAAAAAABALUVyEAAAAAAAAKilSA4CAAAAAAAAtRTJQTe7ePGiu0MAAAAAAABALcWFJJUsJiZG7du3l5eXl9555x116NBBL730kmbNmqVt27apbt266tu3r1asWKGGDRu6O1wAAACgWrLEp5Xrey40AQDUFqwcdIPVq1fLx8dHmZmZWrx4sXr16qWoqCjt2bNHGzZs0I8//qihQ4desw+HwyG73e5SAAAAAAAAgLJg5aAbhIWFaenSpZKkhQsXKioqSosWLXK+f+uttxQaGqpvvvlGrVq1umofSUlJSkxMrJR4AQAAAAAAUDOxctANbr31VufvAwcOaOvWrfL393eWNm3aSJJycnJK7CMhIUE2m81ZrFbrDY8bAAAAAAAANQsrB92gbt26zt8FBQUaOHCglixZckW7kJCQEvswGo0yGo03JD4AAAAAAADUDiQH3axTp05at26dLBaLvLz4cwAAAAAVgQtFAAAoHbYVu9kTTzyh06dPa9iwYdq9e7dycnK0ceNGjR49WoWFhe4ODwAAAAAAADUYycESxMTEKC4urkL6mj9/viIjI6/6rnHjxsrMzFRhYaH69u2rDh06KC4uTvXq1ZOHB38eAAAAAAAA3DjsY61k6enpV9SFhYUpNTW18oMBAAAAAABArcbSNAAAAAAAAKCWIjlYCgaDQX/7299c6urVq6eUlBTn8/HjxzVs2DAFBgaqbt266ty5s3bu3HnV/nJyctSiRQtNnjxZiYmJat++/RVtIiMj9fTTT1foPAAAAICazhKfJkt8mrvDAACg2mBbcQUoKChQdHS0br75Zq1fv17BwcHat2+fioqKrmj71Vdf6Z577tHYsWO1cOFCHT9+XAsWLNDu3bvVpUsXSdL+/fv11VdfXXOrscPhkMPhcD7b7faKnxgAAAAAAABqNJKDFWDt2rX66aeftHv3bgUGBkqSWrZseUW7L774QgMGDNCcOXP05JNPSpKaNGmie+65R8nJyc7kYHJysqKjo9WiRYsSx0xKSlJiYuINmA0AAAAAAABqC7YVV4CsrCxFRUU5E4NXk5eXpz59+uiZZ55xJgZ/M378eL377ru6cOGCLl68qLVr12rMmDHXHDMhIUE2m81ZrFZrhcwFAAAAAAAAtQcrB0vBYDCouLjYpe7SpUvO33Xq1LluH0FBQWrcuLHeffddjRkzRiaTyflu4MCBMhqN+vDDD+Xj46NLly7pwQcfvGZ/RqNRRqOxjDMBAAAAAAAA/o2Vg6UQFBSk/Px85/O3336r8+fPO58jIiKUlZWl06dPl9hHnTp19Mknn8jX11f33HOPfvnlF+c7Ly8vjRo1SsnJyUpOTtYjjzxSqoQjAAAAAFe5i/srd3F/d4cBAEC1QXKwFHr16qWXX35Z+/fv1549ezRx4kR5e3s73w8bNkzBwcEaPHiwMjMz9Y9//EPr1q3Tl19+6dJP3bp1lZaWJi8vL913330qKChwvhs3bpz+7//+Txs2bLjulmIAAAAAAACgIpAcLIXly5crNDRUd955p4YPH66ZM2fKz8/P+d7Hx0ebNm3STTfdpH79+qlDhw5avHixPD09r+jL399fn332mYqLi9W/f3+dO3dOKSkp6tKli7p166Y2bdro9ttvr8zpAQAAAAAAoJYyFP/3YXqodCkpKZo2bZqCgoI0adIkzZgxo8x92O12mc1m2Ww2l/MMAQAAAAAAULuUJU/EhSRVgN1u18WLF3XixAmNHj3a3eEAAAAA1Z4lPs3dIZQZZyUCANyhRm8rLioqUlJSkpo3b646deqoY8eO+uCDDyRJ6enpMhgM2rJlizp37iw/Pz9169ZNR48edenj1Vdf1S233CIfHx+1bt1ab7/9tvNdbm6uDAaDsrKynHVnz56VwWBQenq6s279+vUKCwuTr6+v7rrrLq1evVoGg0Fnz56VJE2bNk0Oh0OTJ09Wt27d5O/vr3vvvdflEhQAAAAAAACgotXo5GBSUpLWrFmj1157TYcPH9b06dP1hz/8QRkZGc42c+bM0fLly7Vnzx55eXm5XAby4Ycfatq0aXryySd16NAhPfbYYxo9erS2bt1a6hi+++47Pfjggxo8eLAOHDigxx57THPmzHFpk5ycLC8vL+3du1dvv/22Pv/8c+Xl5WnmzJkl9utwOGS3210KAAAAAAAAUBY1dluxw+HQokWLtHnzZnXt2lWS1KJFC23fvl2vv/66JkyYIEl67rnnFB0dLUmKj49X//79deHCBfn6+mrZsmWKjY3VpEmTJEkzZszQjh07tGzZMt11112liuP1119X69at9fzzz0uSWrdurUOHDum5555zaXfp0iW99tpruuWWWyRJkydP1oIFC0rsNykpSYmJiWX4FwEAAAAAAABc1diVg8eOHdP58+fVp08f+fv7O8uaNWuUk5PjbBcREeH8HRISIkk6efKkJCk7O1vdu3d36bd79+7Kzs4udRxHjx5Vly5dXOpuu+22K9r5+fk5E4O/xfJbHFeTkJAgm83mLFartdQxAQAAAAAAAFINXjlYUFAgSUpLS9PNN9/s8s5oNDoThN7e3s56g8Eg6dezCkvDw+PX3Op/Xvh86dKl3xXvf8bxWyzXukjaaDTKaDT+rrEAAACAmo7LPQAAKJ0au3Kwbdu2MhqNysvLU8uWLV1KaGhoqfoIDw9XZmamS11mZqbatm0rSQoKCpIkl4tD/vNyEunXbcR79uxxqdu9e3eZ5wMAAAAAAABUtBq7cjAgIEAzZ87U9OnTVVRUpB49eshmsykzM1Mmk0nNmjW7bh+zZs3S0KFDFRUVpd69e+vjjz9WamqqNm/eLEmqU6eO7rjjDi1evFjNmzfXyZMnNXfuXJc+HnvsMb3wwguaPXu2xo4dq6ysLKWkpEj690pFAAAAAAAAwB1q7MpBSXr22Wf19NNPKykpSeHh4br33nuVlpam5s2bl+r7wYMHa+XKlVq2bJnatWun119/XcnJyYqJiXG2eeutt3T58mXdeuutiouL08KFC136aN68uT744AOlpqYqIiJCEyZMUFhYmCSxLRgAAAAAAABuZSi+1sF2qHAxMTG6ePGirFZrhV4iYrfbZTabZbPZZDKZKqxfAAAAAAAAVC9lyRPV2G3FVckrr7yiLl26aPHixcrIyHDWGwwGfffdd/rnP/+pWbNm6cCBAwoMDNSoUaO0cOFCeXnx5wEAAAB+D0t82g0fg0tPAAA1QY3eVlxVfPvttxo0aJDS0tLk6+urW2+9VVarVfn5+fL29la/fv3UpUsXHThwQK+++qrefPPNK7YnAwAAAAAAABWNpWmVYMWKFVqxYoWkX7cVR0ZGqkmTJpKkOXPmKDQ0VC+//LIMBoPatGmjH374QbNnz9YzzzwjD4+r528dDoccDofz2W633/iJAAAAAAAAoEZh5aCbZWdnq2vXri43F3fv3l0FBQU6fvx4id8lJSXJbDY7S2hoaGWECwAAAAAAgBqE5GA1lZCQIJvN5iwVebkJAAAAAAAAage2FVcyHx8fFRYWOp/Dw8O1bt06FRcXO1cPZmZmKiAgwLn1+GqMRqOMRuMNjxcAAACojrgsBACA0mHlYCWzWCzauXOncnNzderUKU2aNElWq1VTpkzR119/rY8++kjz5s3TjBkzSjxvEAAAAAAAAKgIZJ/Kqbi4WBMmTFBgYKAMBoPq1aunuLi4EtvPnDlTnp6eatu2rYKCgnTp0iV9+umn2rVrlzp27KiJEyfqwQcfVGJiorKysipxJgAAAAAAAKhtDMXFxcXuDqI6++yzzzRo0CClp6erRYsW8vDwUJ06dRQQEPC7+8zNzVXz5s21f/9+RUZGluobu90us9ksm80mk8n0u8cGAAAAAABA9VaWPBFnDpZTTk6OQkJC1K1bN3eHAgAAAAAAAJQJycFyiI2N1erVqyVJBoNBzZo1k8ViUWRkpF588UVJv54xOGHCBB07dkzvv/++6tevr7lz52rChAnOfnbt2qXHHntM2dnZat++vebMmeOW+QAAAAA1hSU+zW1jcxkKAKA64czBcli5cqUWLFigJk2aKD8/X7t3775qu+XLl6tz587av3+/Jk2apMcff1xHjx6VJBUUFGjAgAFq27at9u7dq/nz52vmzJnXHdvhcMhut7sUAAAAAAAAoCxIDpaD2WxWQECAPD09FRwcrKCgoKu269evnyZNmqSWLVtq9uzZatiwobZu3SpJWrt2rYqKivTmm2+qXbt2GjBggGbNmnXdsZOSkmQ2m50lNDS0QucGAAAAAACAmo/kYCWIiIhw/jYYDAoODtbJkyclSdnZ2YqIiJCvr6+zTdeuXa/bZ0JCgmw2m7NYrdaKDxwAAAAAAAA1GmcOVgJvb2+XZ4PBoKKionL1aTQaZTQay9UHAAAAAAAAajeSg24WHh6ut99+WxcuXHCuHtyxY4ebowIAAACqNy4FAQCgdNhW7GbDhw+XwWDQ+PHjdeTIEX366adatmyZu8MCAAAAAABALUBy0M38/f318ccf6+DBg4qKitKcOXO0ZMkSd4cFAAAAAACAWsBQXFxc7O4gUH52u11ms1k2m00mk8nd4QAAAAAAAMBNypInYuUgAAAAAAAAUEtxIUkVsWHDBi1cuFCHDh2Sp6enunbtqpUrV+qWW25xd2gAAABAtWOJTyt1Wy4vAQDUZqwcrCLOnTunGTNmaM+ePdqyZYs8PDx0//33q6io6KrtHQ6H7Ha7SwEAAAAAAADKgpWDVcSQIUNcnt966y0FBQXpyJEjat++/RXtk5KSlJiYWFnhAQAAAAAAoAZi5WAV8e2332rYsGFq0aKFTCaTLBaLJCkvL++q7RMSEmSz2ZzFarVWYrQAAAAAAACoCVg5WEUMHDhQzZo106pVq9S4cWMVFRWpffv2unjx4lXbG41GGY3GSo4SAAAAqB44RxAAgNIhOVgF/Pzzzzp69KhWrVqlO++8U5K0fft2N0cFAAAAAACAmo7kYBVQv359NWjQQG+88YZCQkKUl5en+Ph4d4cFAAAAAACAGo4zB6sADw8Pvffee9q7d6/at2+v6dOn6/nnn3d3WAAAAAAAAKjhWDlYRfTu3VtHjhxxqSsuLnZTNAAAAAAAAKgNSA4CAAAAqHEs8Wk3rG8uOwEA1CRsKy6FoqIiLV26VC1btpTRaFTTpk313HPPSZIOHjyoXr16qU6dOmrQoIEmTJiggoIC57exsbEaPHiwEhMTFRQUJJPJpIkTJzpvIV6zZo0aNGggh8PhMubgwYM1cuTIypskAAAAAAAAah2Sg6WQkJCgxYsX6+mnn9aRI0e0du1aNWrUSOfOndM999yj+vXra/fu3Xr//fe1efNmTZ482eX7LVu2KDs7W+np6Xr33XeVmpqqxMRESdJDDz2kwsJCrV+/3tn+5MmTSktL05gxY0qMyeFwyG63uxQAAAAAAACgLEgOXscvv/yilStXaunSpRo1apRuueUW9ejRQ+PGjdPatWt14cIFrVmzRu3bt1evXr308ssv6+2339aPP/7o7MPHx0dvvfWW2rVrp/79+2vBggX64x//qKKiItWpU0fDhw9XcnKys/0777yjpk2bKiYmpsS4kpKSZDabnSU0NPRG/jMAAAAAAACgBiI5eB3Z2dlyOBy6++67r/quY8eOqlu3rrOue/fuKioq0tGjR511HTt2lJ+fn/O5a9euKigokNVqlSSNHz9emzZt0vfffy9JSklJUWxsrAwGQ4lxJSQkyGazOctvfQEAAAAAAAClxYUk11GnTp0bPkZUVJQ6duyoNWvWqG/fvjp8+LDS0q59gLLRaJTRaLzhsQEAAADVEZeGAABQOqwcvI6wsDDVqVNHW7ZsueJdeHi4Dhw4oHPnzjnrMjMz5eHhodatWzvrDhw4oH/961/O5x07dsjf399lK/C4ceOUkpKi5ORk9e7dm23CAAAAAAAAuOFIDl6Hr6+vZs+eraeeekpr1qxRTk6OduzYoTfffFMjRoyQr6+vRo0apUOHDmnr1q2aMmWKRo4cqUaNGjn7uHjxosaOHasjR47o008/1bx58zR58mR5ePz7n3/48OE6fvy4Vq1ape7du6tDhw7y9vbW4MGD3TFtAAAAAAAA1AJsKy6Fp59+Wl5eXnrmmWf0ww8/KCQkRBMnTpSfn582btyoadOmqUuXLvLz89OQIUP0wgsvuHx/9913KywsTD179pTD4dCwYcNZhhqiAAAfJklEQVQ0f/58lzZms1lDhgxRWlqaPv74Y0VGRuqzzz6Tv79/Jc4UAAAAAAAAtYmhuLi42N1B1GSxsbE6e/as/va3v1237d1336127dpp7dq1ev755zV69OhSj2O322U2m2Wz2WQymcoTMgAAAAAAAKqxsuSJ2FbsBg6HQ1OnTtVNN90kX19f3XHHHVq6dKnS09P10ksv6eeff9aYMWNkMBiUkpLi7nABAACAasMSnyZL/LUv9wMAAP9GctANnnrqKa1bt06rV6/Wvn37dOjQIc2ePVvPPPOM8vPzZTKZ9OKLLyo/P18PP/zwVftwOByy2+0uBQAAAAAAACgLzhy8wf575d+5c+f06quvKiUlRffdd58k6cyZM7JYLPLz81NwcLAMBoPMZrOCg4NL7DcpKUmJiYk3MnQAAAAAAADUcKwcrGQ5OTm6dOmSunfv7qzz9vbWbbfdpuzs7FL3k5CQIJvN5ixWq/VGhAsAAAAAAIAajJWD1ZTRaJTRaHR3GAAAAAAAAKjGWDlYyW655Rb5+PgoMzPTWXfp0iXt3r1bbdu2dWNkAAAAQPWXu7i/chf3d3cYAABUG6wcrGR169bV448/rlmzZikwMFBNmzbV0qVLdf78eY0dO9bd4QEAAAAAAKAWYeXgDZCeni6DwaCzZ89e9f3ixYvVpEkTDRgwQJ06ddKxY8e0ceNG1a9fv5IjBQAAAAAAQG3GysEKEBMTo8jISL344oulau/r66stW7bI4XCoQYMGV7wvKakIAAAAAAAAVCSSg27i7+8vf39/d4cBAAAAAACAWozkYDnFxsYqIyNDGRkZWrlypSQpOTlZkrR3717Nnj1bR44cUWRkpJKTk9W6dWtJ0vz58/W3v/1NWVlZkn7divzUU0/p8OHD8vb2Vrt27bR27Vo1a9bMPRMDAAAAqjFLfJq7Q6iSuKwFAPDfOHOwnFauXKmuXbtq/Pjxys/PV35+vkJDQyVJc+bM0fLly7Vnzx55eXlpzJgxV+3j8uXLGjx4sKKjo/XVV1/pyy+/1IQJE2QwGEoc1+FwyG63uxQAAAAAAACgLFg5WE5ms1k+Pj7y8/NTcHCwJOnrr7+WJD333HOKjo6WJMXHx6t///66cOGCfH19Xfqw2+2y/b/27j0q6jr/4/hrQBhEmFEUQXTa2fCSJF5K89KamKZiurq5nkq74KqZKxiatkx5AdOlNjtaWdaapburm6eLramZZpJdWKxct61MzTTI6yo6E9IOKvP7w+P8mgRkkGEY5vk453sO853P9/t9fbGPHd/nc7HbNWzYMCUmJkqSOnbsWOVzc3NzlZOTU9uvAwAAAAAAgCDCyEEf6ty5s/vnVq1aSZKOHz9+SbuYmBilpaVp8ODBGj58uJ566ikdOXKkynvbbDbZ7Xb3UVRUVLvhAQAAAAAA0OAxctCHwsLC3D9fnCJcXl5eYduXX35ZU6dO1aZNm7RmzRrNmjVLW7ZsUa9evSpsbzQaZTQaaz80AAAA0ACwth4AANXDyMFaEB4ervPnz1/xfbp16yabzaaPP/5YnTp10urVq2shHQAAAAAAAFAxioO1wGq1qqCgQAcPHtSJEycqHR1YmQMHDshmsyk/P1/fffedNm/erH379l123UEAAAAAAADgSlAcrAUzZsxQaGiokpKSFBsbq8LCwirbZ2dn6/nnn3d/joyM1Ndff61Ro0apffv2uu+++zRlyhRNmjTJ19EBAAAAAAAQxAwul8vl7xDBpqSkRE6nU82bN6+1ezocDpnNZtntdplMplq7LwAAAAAAAAKLN3UiNiTxg6ioKEVFRfk7BgAAANBgWbM2+DtChdgoBQBQ3wT9tOKUlBRlZGQoMzNTzZo1U1xcnJYtW6YzZ85o3Lhxio6OVtu2bfX222+7r3n//fd1ww03yGg0qlWrVsrKytK5c+ckSX/+85+VkJBwybqDI0aM0O9+9ztJF6YVd+3a1eP7F198UR07dlRERISuueYaPffccz5+cwAAAAAAAAS7oC8OStLKlSvVokUL7dixQxkZGZo8ebJGjx6tPn36aOfOnRo0aJDuvvtulZaW6tChQxo6dKh69Oihf//731q6dKmWL1+u+fPnS5JGjx6tkydPatu2be77FxcXa9OmTRo7dmyFz1+1apXmzJmjBQsWaPfu3frjH/+o2bNna+XKlZVmdjqdcjgcHgcAAAAAAADgDYqDkrp06aJZs2apXbt2stlsioiIUIsWLTRx4kS1a9dOc+bM0cmTJ/X555/rueeek8Vi0ZIlS3TNNddo5MiRysnJ0ZNPPqny8nI1a9ZMqampWr16tfv+r732mlq0aKH+/ftX+Py5c+fqySef1G233aZf/vKXuu222zRt2jS98MILlWbOzc2V2Wx2HxaLpdZ/LwAAAAAAAGjYKA5K6ty5s/vn0NBQNW/eXMnJye5zcXFxkqTjx49r9+7d6t27twwGg/v7G2+8USUlJfr+++8lSWPHjtXrr78up9Mp6cLIwDvuuEMhIZf+us+cOaP9+/dr/Pjx7rUIo6KiNH/+fO3fv7/SzDabTXa73X0UFRVd2S8BAAAAAAAAQYcNSSSFhYV5fDYYDB7nLhYCf76OYGWGDx8ul8ulDRs2qEePHvrggw+0aNGiCtuWlJRIkpYtW6aePXt6fBcaGlrpM4xGo4xGY7XyAAAAAMGGjT8AAKgeioNe6tixo15//XW5XC530fCjjz5SdHS02rRpI0mKiIjQbbfdplWrVumbb75Rhw4ddN1111V4v7i4OCUkJOjbb7+tdE1CAAAAAAAAwBcoDnrp97//vRYvXqyMjAylp6drz549mjt3rqZPn+4xbXjs2LEaNmyYvvzyS911111V3jMnJ0dTp06V2WzWkCFD5HQ69emnn+rUqVOaPn26r18JAAAAAAAAQYrioJdat26tjRs3aubMmerSpYtiYmI0fvx4zZo1y6PdzTffrJiYGO3Zs0djxoyp8p4TJkxQZGSknnjiCc2cOVNNmjRRcnKyMjMzffkqAAAAAAAACHIGl8vl8ncIXDmHwyGz2Sy73S6TyeTvOAAAAAAAAPATb+pEjBwEAAAA0OBYszb49flsiAIACBQUBwOU0+mU0+l0f3Y4HH5MAwAAAAAAgEAUcvkmqI9yc3NlNpvdh8Vi8XckAAAAAAAABBiKgwHKZrPJbre7j6KiIn9HAgAAAAAAQIBhWnGAMhqNMhqN/o4BAAAAAACAAEZxEAAAAECDw4YgAABUD9OKAQAAAAAAgCBFcdBHUlJSlJmZWePrV6xYIYPBUIuJAAAAAAAAAE8UB+upAwcOqF+/fv6OAQAAAAAAgAaMNQfrqbfffltLlizxdwwAAAAAAAA0YBQHa8GZM2c0efJkvfHGG4qOjtaMGTM8vj916pQeeOABvfXWW3I6nerXr5+efvpptWvXTtKFKcSZmZlas2aNMjMzVVRUpF/96leyWCz+eB0AAAAg4FmzNvg7Qq1jkxUAgC8wrbgWzJw5U++//77+8Y9/aPPmzcrLy9POnTvd36elpenTTz/VunXrlJ+fL5fLpaFDh+rs2bPuNqWlpVq4cKH++te/avv27SosLLykyPhTTqdTDofD4wAAAAAAAAC8wcjBK1RSUqLly5frb3/7mwYMGCBJWrlypdq0aSNJ2rdvn9atW6ePPvpIffr0kSStWrVKFotFb775pkaPHi1JOnv2rJ5//nklJiZKktLT0zVv3rxKn5ubm6ucnBxfvhoAAAAAAAAaOEYOXqH9+/errKxMPXv2dJ+LiYlRhw4dJEm7d+9Wo0aNPL5v3ry5OnTooN27d7vPRUZGuguDktSqVSsdP3680ufabDbZ7Xb3UVRUVJuvBQAAAAAAgCDAyMF6IiwszOOzwWCQy+WqtL3RaJTRaPR1LAAAAAAAADRgFAevUGJiosLCwlRQUKCrrrpK0oUNSPbu3at+/fqpY8eOOnfunAoKCtzTik+ePKk9e/YoKSnJn9EBAACABovNOwAAqB6Kg1coKipK48eP18yZM9W8eXO1bNlSjzzyiEJCLszYbteunUaMGKGJEyfqhRdeUHR0tLKystS6dWuNGDHCz+kBAAAAAAAQzCgO1oInnnhCJSUlGj58uKKjo/Xggw/Kbre7v3/55Zf1wAMPaNiwYSorK9NNN92kjRs3XjKVGAAAAAAAAKhLBldVC9vBb9LS0mS1WpWdnV2t9g6HQ2azWXa7XSaTybfhAAAAAAAAUG95Uydi5CAAAACABseateGybViXEAAAKcTfAQAAAAAAAAD4ByMHA5TT6ZTT6XR/djgcfkwDAAAAAACAQERxsJ5asWJFld/n5uYqJyenbsIAAAAAAACgQWJacYCy2Wyy2+3uo6ioyN+RAAAAAAAAEGAYORigjEajjEajv2MAAAAA9RKbjQAAUD2MHAQAAAAAAACCFMVBAAAAAAAAIEhRHKyHUlJSlJmZ6e8YAAAAAAAAaOAoDgIAAAAAAABByuByuVz+DoH/l5aWppUrV3qcO3DggKxWa5XXORwOmc1m2e12mUwmHyYEAAAA6j9r1gZ/R/A5Nl0BAFTGmzoRuxXXM0899ZT27t2rTp06ad68eZKk2NhYP6cCAAAAAABAQ0RxsJ4xm80KDw9XZGSk4uPjK23ndDrldDrdnx0OR13EAwAAAAAAQAPCmoMBKjc3V2az2X1YLBZ/RwIAAAAAAECAoTgYoGw2m+x2u/soKirydyQAAAAAAAAEGKYV10Ph4eE6f/58lW2MRqOMRmMdJQIAAAACC5t1AABQPYwcrIesVqsKCgp08OBBnThxQuXl5f6OBAAAAAAAgAaI4qAP5eXlyWAw6PTp015dN2PGDIWGhiopKUmxsbEqLCz0UUIAAAAAAAAEM4PL5XL5O0RDVVZWpuLiYsXFxclgMPj0WQ6HQ2azWXa7XSaTyafPAgAAAAAAQP3lTZ2INQd9KDw8XPHx8f6OAQAAAAAAAFSI4qAXUlJSlJycrNDQUK1cuVLh4eGaP3++xowZo/T0dL322muKi4vTM888o9TUVOXl5al///46deqUmjZtqu+++07p6en68MMPVVZWJqvVqieeeEJDhw7VqVOnlJ6ers2bN6ukpERt2rTRww8/rHHjxvn7tQEAAICAY83a4O8IDQ6bvABAw0Rx0EsrV67UQw89pB07dmjNmjWaPHmy1q5dq9/85jd6+OGHtWjRIt19990VrhM4ZcoUlZWVafv27WrSpIm++uorRUVFSZJmz56tr776Sm+//bZatGihb775Rj/++GOlOZxOp5xOp/uzw+Go/ZcFAAAAAABAg0Zx0EtdunTRrFmzJEk2m02PPfaYWrRooYkTJ0qS5syZo6VLl+rzzz+/5NrCwkKNGjVKycnJkqSrr77a47tu3bqpe/fuki7sWFyV3Nxc5eTk1MYrAQAAAAAAIEixW7GXOnfu7P45NDRUzZs3dxf7JCkuLk6SdPz48UuunTp1qubPn68bb7xRc+fO9SggTp48Wa+88oq6du2qhx56SB9//HGVOWw2m+x2u/soKiq60lcDAAAAAABAkKE46KWwsDCPzwaDwePcxV2Jy8vLL7l2woQJ+vbbb3X33XfrP//5j7p3765nnnlGkpSamqrvvvtO06ZN0+HDhzVgwADNmDGj0hxGo1Emk8njAAAAAAAAALzBtOI6ZrFYdP/99+v++++XzWbTsmXLlJGRIUmKjY3Vvffeq3vvvVd9+/bVzJkztXDhQj8nBgAAAAIPm2cAAFA9FAfrUGZmplJTU9W+fXudOnVK27ZtU8eOHSVdWKvw+uuv17XXXiun06n169e7vwMAAAAAAAB8geJgHTp//rymTJmi77//XiaTSUOGDNGiRYuUkpKisrIyvfbaazp48KAaN26svn376pVXXvF3ZAAAAAAAADRgBpfL5fJ3iGBXXFyssLAwRUdHy2q1KjMzU5mZmV7dw+FwyGw2y263s/4gAAAAAABAEPOmTsTIwXogJibG3xEAAAAAAAAQhBg5WA+kpKSoa9eu2rVrl95//32P76r7x8PIQQAAAOD/WbM2+DtCrWFzFQCAt7ypE4XUUSZUwxtvvKE2bdpo3rx5OnLkiI4cOVJpW6fTKYfD4XEAAAAAAAAA3qA4WI/ExMQoNDRU0dHRio+PV3x8fKVtc3NzZTab3YfFYqnDpAAAAAAAAGgIKA4GKJvNJrvd7j6Kior8HQkAAAAAAAABhg1JApTRaJTRaPR3DAAAAKBeYp0+AACqh5GD9Ux4eLjOnz/v7xgAAAAAAAAIAhQH6xmr1art27fr0KFDOnHihL/jAAAAAAAAoAGjOFjPzJs3TwcPHlRiYqJiY2P9HQcAAAAAAAANmMHlcrn8HQKeUlJS1LVrVy1evLja1zgcDpnNZtntdplMJh+mAwAAAAAAQH3mTZ2IDUkAAAAANDjWrA0VnmejEgAAPDGtGAAAAAAAAAhSjBwMUE6nU06n0/3Z4XD4MQ0AAAAAAAACESMHA1Rubq7MZrP7sFgs/o4EAAAAAACAAENxMEDZbDbZ7Xb3UVRU5O9IAAAAAAAACDBMKw5QRqNRRqPR3zEAAACAeomNRwAAqB6Kg/VQXl6evyMAAAAAAAAgCDCtuAIpKSkyGAwyGAzatWtXnT03Ly/P/dykpKQ6ey4AAAAAAACCE8XBSkycOFFHjhxRp06dJElr165Vr169ZDabFR0drWuvvVaZmZnu9itWrHAX9n56REREuNukpaW5z4eHh6tt27aaN2+ezp07J0nq06ePjhw5osjISI+diAEAAAAAAABfYFpxJSIjIxUfHy9J2rp1q26//XYtWLBAv/71r2UwGPTVV19py5YtHteYTCbt2bPH45zBYPD4PGTIEL388styOp3auHGjpkyZorCwMNlsNoWHhys+Pl6jR4/W6dOnffuCAAAAAAAACHoUB6vhrbfe0o033qiZM2e6z7Vv314jR470aGcwGNwFxcoYjUZ3m8mTJ2vt2rVat26dbDZb7QcHAAAAAAAAqsC04mqIj4/Xl19+qS+++KLW7924cWOVlZV5fZ3T6ZTD4fA4AAAAAAAAAG9QHKyGjIwM9ejRQ8nJybJarbrjjjv00ksvXbIuoN1uV1RUlMeRmppa4T1dLpfeffddvfPOO7r55pu9zpSbmyuz2ew+LBZLjd4NAAAAAAAAwYtpxdXQpEkTbdiwQfv379e2bdv0z3/+Uw8++KCeeuop5efnKzIyUpIUHR2tnTt3elzbuHFjj8/r169XVFSUzp49q/Lyco0ZM0bZ2dleZ7LZbJo+fbr7s8PhoEAIAAAAAAAAr1Ac9EJiYqISExM1YcIEPfLII2rfvr3WrFmjcePGSZJCQkLUtm3bKu/Rv39/LV26VOHh4UpISFCjRjX7IzAajTIajTW6FgAAAAAAAJAoDtaY1WpVZGSkzpw549V1TZo0uWwBEQAAAAAAAKgLFAerITs7W6WlpRo6dKh+8Ytf6PTp03r66ad19uxZ3XLLLe52LpdLR48eveT6li1bKiTEt8s7ulwuSWJjEgAAAAAAgCB3sT50sV5UFYqD1dCvXz89++yzuueee3Ts2DE1a9ZM3bp10+bNm9WhQwd3O4fDoVatWl1y/ZEjRxQfH+/TjCdPnpQk1h0EAAAAAACAJOmHH36Q2Wyusg3FwWro37+/+vfvX2WbtLQ0paWlVdlmxYoVtRfqZ2JiYiRJhYWFl/1DB+B/FzcRKioqkslk8nccAJdBnwUCC30WCCz0WaD2uVwu/fDDD0pISLhsW4qDlXjuuef04osvKj8/X8nJyXXyzA8++ECpqalyOp269dZbvbr24rRls9nMX6ZAADGZTPRZIIDQZ4HAQp8FAgt9Fqhd1R08RnGwAqtWrdKPP/4oSbrqqqvq7Lndu3fXrl27JElRUVF19lwAAAAAAAAEJ4qDFWjdurVfntu4cWN2MgYAAAAAAECdCc3Ozs72dwjUjtDQUKWkpKhRI2q+QCCgzwKBhT4LBBb6LBBY6LOA/xhc1dnTGAAAAAAAAECDE+LvAAAAAAAAAAD8g+IgAAAAAAAAEKQoDgIAAAAAAABBiuIgAAAAAAAAEKQoDgaw4uJijR07ViaTSU2bNtX48eNVUlJy2evy8/N18803q0mTJjKZTLrpppv0448/1kFiILjVtM9KksvlUmpqqgwGg958800fJwUged9ni4uLlZGRoQ4dOqhx48a66qqrNHXqVNnt9jpMDQSPZ599VlarVREREerZs6d27NhRZftXX31V11xzjSIiIpScnKyNGzfWUVIAknd9dtmyZerbt6+aNWumZs2aaeDAgZft4wBqjuJgABs7dqy+/PJLbdmyRevXr9f27dt13333VXlNfn6+hgwZokGDBmnHjh365JNPlJ6erpAQ/lMAfK0mffaixYsXy2Aw+DghgJ/yts8ePnxYhw8f1sKFC/XFF19oxYoV2rRpk8aPH1+HqYHgsGbNGk2fPl1z587Vzp071aVLFw0ePFjHjx+vsP3HH3+sO++8U+PHj9e//vUvjRw5UiNHjtQXX3xRx8mB4ORtn83Ly9Odd96pbdu2KT8/XxaLRYMGDdKhQ4fqODkQHAwul8vl7xDw3u7du5WUlKRPPvlE3bt3lyRt2rRJQ4cO1ffff6+EhIQKr+vVq5duueUWPfroo3UZFwh6Ne2zkrRr1y4NGzZMn376qVq1aqW1a9dq5MiRdRUdCEpX0md/6tVXX9Vdd92lM2fOqFGjRr6MDASVnj17qkePHlqyZIkkqby8XBaLRRkZGcrKyrqk/e23364zZ85o/fr17nO9evVS165d9fzzz9dZbiBYedtnf+78+fNq1qyZlixZonvuucfXcYGgw3CxAJWfn6+mTZu6/8EiSQMHDlRISIgKCgoqvOb48eMqKChQy5Yt1adPH8XFxalfv3768MMP6yo2ELRq0mclqbS0VGPGjNGzzz6r+Pj4uogKQDXvsz9nt9tlMpkoDAK1qKysTJ999pkGDhzoPhcSEqKBAwcqPz+/wmvy8/M92kvS4MGDK20PoPbUpM/+XGlpqc6ePauYmBhfxQSCGsXBAHX06FG1bNnS41yjRo0UExOjo0ePVnjNt99+K0nKzs7WxIkTtWnTJl133XUaMGCA9u3b5/PMQDCrSZ+VpGnTpqlPnz4aMWKEryMC+Ima9tmfOnHihB599NFqLx8AoHpOnDih8+fPKy4uzuN8XFxcpf3z6NGjXrUHUHtq0md/7g9/+IMSEhIuKfIDqB0UB+uZrKwsGQyGKo+vv/66RvcuLy+XJE2aNEnjxo1Tt27dtGjRInXo0EEvvfRSbb4GEDR82WfXrVun9957T4sXL67l1EDw8mWf/SmHw6Fbb71VSUlJys7OvvLgAAAEqccee0yvvPKK1q5dq4iICH/HARok5rjUMw8++KDS0tKqbHP11VcrPj7+ksVbz507p+Li4kqnHrZq1UqSlJSU5HG+Y8eOKiwsrHloIIj5ss++99572r9/v5o2bepxftSoUerbt6/y8vKuJDoQlHzZZy/64YcfNGTIEEVHR2vt2rUKCwu70tgAfqJFixYKDQ3VsWPHPM4fO3as0v4ZHx/vVXsAtacmffaihQsX6rHHHtO7776rzp07+zImENQoDtYzsbGxio2NvWy73r176/Tp0/rss890/fXXS7pQSCgvL1fPnj0rvMZqtSohIUF79uzxOL93716lpqZeeXggCPmyz2ZlZWnChAke55KTk7Vo0SINHz78ysMDQciXfVa6MGJw8ODBMhqNWrduHSMcAB8IDw/X9ddfr61bt7o36CovL9fWrVuVnp5e4TW9e/fW1q1blZmZ6T63ZcsW9e7du04yA8GsJn1Wkv70pz9pwYIFeueddzzWAAZQ+0KzmesSkGJjY1VQUKC///3v6tatmw4ePKhJkyZp0KBB7hERhw4d0g033KAbbrhBrVu3lsFgUGhoqB5//HG1a9dO4eHhWrRokdatW6cXX3yRxV0BH6pJn42KilLLli09jpycHE2aNIl/zAA+VpM+63A4NGjQIJWWlmr16tVyuVwqKSlRSUmJGjdurJAQVnMBaovJZNLs2bNlsVhkNBo1e/Zs7dq1S8uXL1dUVJTuuece7dixw70+WevWrTVr1iw1adJEMTExWrJkidasWaPly5dfsr4ogNrnbZ99/PHHNWfOHP3lL39R586d3f8/lS4UGwHULkYOBrBVq1YpPT1dAwYMUEhIiEaNGqWnn37a/f3Zs2e1Z88elZaWus9lZmbqf//7n6ZNm6bi4mJ16dJFW7ZsUWJioj9eAQgqNemzAPzH2z67c+dO907Gbdu29bjXgQMHZLVa6yw70NDdfvvt+u9//6s5c+bo6NGj6tq1qzZt2uTe8KCwsNCjIN+nTx+tXr1as2bN0sMPP6x27drpzTffVKdOnfz1CkBQ8bbPLl26VGVlZfrtb3/rcZ+5c+eyli/gAwaXy+XydwgAAAAAAAAAdY/5LQAAAAAAAECQojgIAAAAAAAABCmKgwAAAAAAAECQojgIAAAAAAAABCmKgwAAAAAAAECQojgIAAAAAAAABCmKgwAAAAAAAECQojgIAAAAAAAABCmKgwAAAAAAAECQojgIAAAAAAAABCmKgwAAAAAAAECQojgIAAAAAAAABKn/A9YCyMHCA+yIAAAAAElFTkSuQmCC\n"
-          },
-          "metadata": {}
-        }
-      ],
-      "source": [
-        "table.iloc[::-1].plot(x=\"tokens\",y=\"score\",kind=\"barh\",figsize=(15,15))"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "3mRIFciFigjI",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 166
-        },
-        "outputId": "05dc7ba0-1a66-4793-f34f-36f46f707972"
-      },
-      "outputs": [
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "<IPython.core.display.HTML object>"
-            ],
-            "text/html": [
-              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>0</b></text></td><td><text style=\"padding-right:2em\"><b>LABEL_0 (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>LABEL_0</b></text></td><td><text style=\"padding-right:2em\"><b>0.72</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> really                    </font></mark><mark style=\"background-color: hsl(120, 75%, 92%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> too                    </font></mark><mark style=\"background-color: hsl(120, 75%, 84%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> bad                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> that                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> nobody                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> knows                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> about                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> think                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> if                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> were                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> just                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> spruce                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##d                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> up                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> little                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> and                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> if                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> weren                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> t                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> so                    </font></mark><mark style=\"background-color: hsl(120, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> low                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> budget                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> think                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> one                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> major                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> film                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> companies                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> might                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> have                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> wanted                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> take                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> first                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> saw                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> when                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> 11                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> and                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> thought                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(0, 75%, 90%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(0, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> so                    </font></mark><mark style=\"background-color: hsl(0, 75%, 83%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> powerful                    </font></mark><mark style=\"background-color: hsl(0, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> with                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 90%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> many                    </font></mark><mark style=\"background-color: hsl(0, 75%, 78%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> great                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> yet                    </font></mark><mark style=\"background-color: hsl(120, 75%, 89%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> illegal                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> lengths                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> that                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> mitchell                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> goes                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> just                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> keep                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> his                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> family                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> together                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> inspired                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> me                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> then                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> and                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ama                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##zes                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> me                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> now                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> if                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> you                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> re                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> lucky                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> enough                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> find                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> copy                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> don                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> t                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> miss                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> !                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
-            ]
-          },
-          "metadata": {}
-        }
-      ],
-      "source": [
-        "html = cls_explainer.visualize()"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### ▶▶ Exercice : chercher les termes corrélés à chaque classe\n",
-        "\n",
-        "- Appliquer le modèle appris sur l'éval de imdb\n",
-        "- Appliquer l'interprétation sur un ensemble d'instances (100 puis 1000) et relever les termes avec les attributions les plus fortes, dans un sens ou dans l'autre. Réduisez la taille des phrases des reviews à 30 tokens.\n",
-        "- Trouvez les éventuels biais du jeu de données \n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "23--_RYHjq-e"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### --- CORRECTION"
-      ],
-      "metadata": {
-        "id": "S3402Fm7ju91"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "def get_topk(attributions,k=5,threshold=None):\n",
-        "    \"\"\"recup des k tokens les plus positifs + k tokens les plus négatifs\"\"\"\n",
-        "    table = pds.DataFrame(word_attributions,columns=[\"tokens\",\"score\"])\n",
-        "    high = table.nlargest(k,\"score\")\n",
-        "    low = table.nsmallest(k,\"score\")\n",
-        "    return high,low"
-      ],
-      "metadata": {
-        "id": "G4cN9FVNumeH"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "get_topk(word_attributions)"
-      ],
-      "metadata": {
-        "id": "waGGZz-3wSVg",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "746fbb11-33fc-4185-fe15-051c6eafb60f"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "(     tokens     score\n",
-              " 6       bad  0.336267\n",
-              " 74  illegal  0.227870\n",
-              " 5       too  0.169349\n",
-              " 32      low  0.136739\n",
-              " 34   budget  0.109948,\n",
-              "       tokens     score\n",
-              " 71     great -0.556025\n",
-              " 67  powerful -0.434697\n",
-              " 70      many -0.255127\n",
-              " 65       was -0.253017\n",
-              " 68      with -0.195136)"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 81
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "def cut_sentence(sent,threshold):\n",
-        "  toks = sent.split()[:threshold]\n",
-        "  return \" \".join(toks)\n",
-        "\n",
-        "one = small_eval_dataset[0][\"text\"]\n",
-        "cut_sentence(one,50)"
-      ],
-      "metadata": {
-        "id": "EjKCi-pvxN_a",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 53
-        },
-        "outputId": "a2f52f90-f467-41ce-b1c3-6b9bc7f28fae"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "'<br /><br />When I unsuspectedly rented A Thousand Acres, I thought I was in for an entertaining King Lear story and of course Michelle Pfeiffer was in it, so what could go wrong?<br /><br />Very quickly, however, I realized that this story was about A Thousand Other Things besides just'"
-            ],
-            "application/vnd.google.colaboratory.intrinsic+json": {
-              "type": "string"
-            }
-          },
-          "metadata": {},
-          "execution_count": 82
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "maxseqlength = 30\n",
-        "small_eval_dataset_text = [cut_sentence(one[\"text\"],maxseqlength) for one in small_eval_dataset]"
-      ],
-      "metadata": {
-        "id": "CzVhne2S5typ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "all_pos = []\n",
-        "all_neg = []\n",
-        "\n",
-        "for sentence in tqdm(small_eval_dataset_text[:100]): \n",
-        "    word_attributions = cls_explainer(sentence)\n",
-        "    label = cls_explainer.predicted_class_name\n",
-        "    high,low = get_topk(word_attributions)\n",
-        "    if label == \"LABEL_1\": \n",
-        "      all_pos.append(high)\n",
-        "    else:\n",
-        "      all_neg.append(high)\n",
-        "    "
-      ],
-      "metadata": {
-        "id": "hP28_7GwuC23",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "601e0c15-6d34-4f42-8964-e5d5ed2a4dce"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "100%|██████████| 100/100 [00:15<00:00,  6.31it/s]\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "df_high = pds.concat(all_pos)\n",
-        "df_low = pds.concat(all_neg)\n",
-        "df_high"
-      ],
-      "metadata": {
-        "id": "Kp0V1zKl6TNo",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 424
-        },
-        "outputId": "4a7d4dab-5089-420d-e51e-425bef07ef13"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "     tokens     score\n",
-              "3       the  0.413602\n",
-              "6        in  0.406371\n",
-              "2        is  0.395344\n",
-              "4    latest  0.287943\n",
-              "8      long  0.275221\n",
-              "..      ...       ...\n",
-              "17     very  0.600274\n",
-              "16      was  0.479824\n",
-              "19     with  0.477463\n",
-              "18  pleased  0.265249\n",
-              "20      the  0.207427\n",
-              "\n",
-              "[275 rows x 2 columns]"
-            ],
-            "text/html": [
-              "\n",
-              "  <div id=\"df-9ff4bf85-29f0-4a5c-8e28-657e5d6da943\">\n",
-              "    <div class=\"colab-df-container\">\n",
-              "      <div>\n",
-              "<style scoped>\n",
-              "    .dataframe tbody tr th:only-of-type {\n",
-              "        vertical-align: middle;\n",
-              "    }\n",
-              "\n",
-              "    .dataframe tbody tr th {\n",
-              "        vertical-align: top;\n",
-              "    }\n",
-              "\n",
-              "    .dataframe thead th {\n",
-              "        text-align: right;\n",
-              "    }\n",
-              "</style>\n",
-              "<table border=\"1\" class=\"dataframe\">\n",
-              "  <thead>\n",
-              "    <tr style=\"text-align: right;\">\n",
-              "      <th></th>\n",
-              "      <th>tokens</th>\n",
-              "      <th>score</th>\n",
-              "    </tr>\n",
-              "  </thead>\n",
-              "  <tbody>\n",
-              "    <tr>\n",
-              "      <th>3</th>\n",
-              "      <td>the</td>\n",
-              "      <td>0.413602</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>6</th>\n",
-              "      <td>in</td>\n",
-              "      <td>0.406371</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>2</th>\n",
-              "      <td>is</td>\n",
-              "      <td>0.395344</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>4</th>\n",
-              "      <td>latest</td>\n",
-              "      <td>0.287943</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>8</th>\n",
-              "      <td>long</td>\n",
-              "      <td>0.275221</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>...</th>\n",
-              "      <td>...</td>\n",
-              "      <td>...</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>17</th>\n",
-              "      <td>very</td>\n",
-              "      <td>0.600274</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>16</th>\n",
-              "      <td>was</td>\n",
-              "      <td>0.479824</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>19</th>\n",
-              "      <td>with</td>\n",
-              "      <td>0.477463</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>18</th>\n",
-              "      <td>pleased</td>\n",
-              "      <td>0.265249</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>20</th>\n",
-              "      <td>the</td>\n",
-              "      <td>0.207427</td>\n",
-              "    </tr>\n",
-              "  </tbody>\n",
-              "</table>\n",
-              "<p>275 rows × 2 columns</p>\n",
-              "</div>\n",
-              "      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-9ff4bf85-29f0-4a5c-8e28-657e5d6da943')\"\n",
-              "              title=\"Convert this dataframe to an interactive table.\"\n",
-              "              style=\"display:none;\">\n",
-              "        \n",
-              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
-              "       width=\"24px\">\n",
-              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
-              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
-              "  </svg>\n",
-              "      </button>\n",
-              "      \n",
-              "  <style>\n",
-              "    .colab-df-container {\n",
-              "      display:flex;\n",
-              "      flex-wrap:wrap;\n",
-              "      gap: 12px;\n",
-              "    }\n",
-              "\n",
-              "    .colab-df-convert {\n",
-              "      background-color: #E8F0FE;\n",
-              "      border: none;\n",
-              "      border-radius: 50%;\n",
-              "      cursor: pointer;\n",
-              "      display: none;\n",
-              "      fill: #1967D2;\n",
-              "      height: 32px;\n",
-              "      padding: 0 0 0 0;\n",
-              "      width: 32px;\n",
-              "    }\n",
-              "\n",
-              "    .colab-df-convert:hover {\n",
-              "      background-color: #E2EBFA;\n",
-              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
-              "      fill: #174EA6;\n",
-              "    }\n",
-              "\n",
-              "    [theme=dark] .colab-df-convert {\n",
-              "      background-color: #3B4455;\n",
-              "      fill: #D2E3FC;\n",
-              "    }\n",
-              "\n",
-              "    [theme=dark] .colab-df-convert:hover {\n",
-              "      background-color: #434B5C;\n",
-              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
-              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
-              "      fill: #FFFFFF;\n",
-              "    }\n",
-              "  </style>\n",
-              "\n",
-              "      <script>\n",
-              "        const buttonEl =\n",
-              "          document.querySelector('#df-9ff4bf85-29f0-4a5c-8e28-657e5d6da943 button.colab-df-convert');\n",
-              "        buttonEl.style.display =\n",
-              "          google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
-              "\n",
-              "        async function convertToInteractive(key) {\n",
-              "          const element = document.querySelector('#df-9ff4bf85-29f0-4a5c-8e28-657e5d6da943');\n",
-              "          const dataTable =\n",
-              "            await google.colab.kernel.invokeFunction('convertToInteractive',\n",
-              "                                                     [key], {});\n",
-              "          if (!dataTable) return;\n",
-              "\n",
-              "          const docLinkHtml = 'Like what you see? Visit the ' +\n",
-              "            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
-              "            + ' to learn more about interactive tables.';\n",
-              "          element.innerHTML = '';\n",
-              "          dataTable['output_type'] = 'display_data';\n",
-              "          await google.colab.output.renderOutput(dataTable, element);\n",
-              "          const docLink = document.createElement('div');\n",
-              "          docLink.innerHTML = docLinkHtml;\n",
-              "          element.appendChild(docLink);\n",
-              "        }\n",
-              "      </script>\n",
-              "    </div>\n",
-              "  </div>\n",
-              "  "
-            ]
-          },
-          "metadata": {},
-          "execution_count": 85
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "df_high_avg = df_high.groupby(\"tokens\").mean()\n",
-        "df_low_avg = df_low.groupby(\"tokens\").mean()"
-      ],
-      "metadata": {
-        "id": "becpniSG6jDr"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "df_high_avg.nlargest(20,\"score\")"
-      ],
-      "metadata": {
-        "id": "BRh3UR5Y61nX",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 708
-        },
-        "outputId": "ae9f1765-b3fc-49e1-d386-d6327b8f1fb3"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "               score\n",
-              "tokens              \n",
-              "fun         0.796828\n",
-              "nice        0.795959\n",
-              "wonderful   0.773615\n",
-              "strength    0.769845\n",
-              "##az        0.655497\n",
-              "very        0.634470\n",
-              "work        0.628729\n",
-              "festival    0.596434\n",
-              "classic     0.569065\n",
-              "powerful    0.547167\n",
-              "fantastic   0.534932\n",
-              "more        0.534291\n",
-              "becomes     0.520734\n",
-              "curiosity   0.513141\n",
-              "great       0.487063\n",
-              "much        0.485612\n",
-              "master      0.464594\n",
-              "##que       0.460069\n",
-              "touching    0.450371\n",
-              "appreciate  0.450154"
-            ],
-            "text/html": [
-              "\n",
-              "  <div id=\"df-6afa6e27-afe6-4363-bd9b-48d9a11677b7\">\n",
-              "    <div class=\"colab-df-container\">\n",
-              "      <div>\n",
-              "<style scoped>\n",
-              "    .dataframe tbody tr th:only-of-type {\n",
-              "        vertical-align: middle;\n",
-              "    }\n",
-              "\n",
-              "    .dataframe tbody tr th {\n",
-              "        vertical-align: top;\n",
-              "    }\n",
-              "\n",
-              "    .dataframe thead th {\n",
-              "        text-align: right;\n",
-              "    }\n",
-              "</style>\n",
-              "<table border=\"1\" class=\"dataframe\">\n",
-              "  <thead>\n",
-              "    <tr style=\"text-align: right;\">\n",
-              "      <th></th>\n",
-              "      <th>score</th>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>tokens</th>\n",
-              "      <th></th>\n",
-              "    </tr>\n",
-              "  </thead>\n",
-              "  <tbody>\n",
-              "    <tr>\n",
-              "      <th>fun</th>\n",
-              "      <td>0.796828</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>nice</th>\n",
-              "      <td>0.795959</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>wonderful</th>\n",
-              "      <td>0.773615</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>strength</th>\n",
-              "      <td>0.769845</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>##az</th>\n",
-              "      <td>0.655497</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>very</th>\n",
-              "      <td>0.634470</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>work</th>\n",
-              "      <td>0.628729</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>festival</th>\n",
-              "      <td>0.596434</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>classic</th>\n",
-              "      <td>0.569065</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>powerful</th>\n",
-              "      <td>0.547167</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>fantastic</th>\n",
-              "      <td>0.534932</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>more</th>\n",
-              "      <td>0.534291</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>becomes</th>\n",
-              "      <td>0.520734</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>curiosity</th>\n",
-              "      <td>0.513141</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>great</th>\n",
-              "      <td>0.487063</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>much</th>\n",
-              "      <td>0.485612</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>master</th>\n",
-              "      <td>0.464594</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>##que</th>\n",
-              "      <td>0.460069</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>touching</th>\n",
-              "      <td>0.450371</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>appreciate</th>\n",
-              "      <td>0.450154</td>\n",
-              "    </tr>\n",
-              "  </tbody>\n",
-              "</table>\n",
-              "</div>\n",
-              "      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6afa6e27-afe6-4363-bd9b-48d9a11677b7')\"\n",
-              "              title=\"Convert this dataframe to an interactive table.\"\n",
-              "              style=\"display:none;\">\n",
-              "        \n",
-              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
-              "       width=\"24px\">\n",
-              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
-              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
-              "  </svg>\n",
-              "      </button>\n",
-              "      \n",
-              "  <style>\n",
-              "    .colab-df-container {\n",
-              "      display:flex;\n",
-              "      flex-wrap:wrap;\n",
-              "      gap: 12px;\n",
-              "    }\n",
-              "\n",
-              "    .colab-df-convert {\n",
-              "      background-color: #E8F0FE;\n",
-              "      border: none;\n",
-              "      border-radius: 50%;\n",
-              "      cursor: pointer;\n",
-              "      display: none;\n",
-              "      fill: #1967D2;\n",
-              "      height: 32px;\n",
-              "      padding: 0 0 0 0;\n",
-              "      width: 32px;\n",
-              "    }\n",
-              "\n",
-              "    .colab-df-convert:hover {\n",
-              "      background-color: #E2EBFA;\n",
-              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
-              "      fill: #174EA6;\n",
-              "    }\n",
-              "\n",
-              "    [theme=dark] .colab-df-convert {\n",
-              "      background-color: #3B4455;\n",
-              "      fill: #D2E3FC;\n",
-              "    }\n",
-              "\n",
-              "    [theme=dark] .colab-df-convert:hover {\n",
-              "      background-color: #434B5C;\n",
-              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
-              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
-              "      fill: #FFFFFF;\n",
-              "    }\n",
-              "  </style>\n",
-              "\n",
-              "      <script>\n",
-              "        const buttonEl =\n",
-              "          document.querySelector('#df-6afa6e27-afe6-4363-bd9b-48d9a11677b7 button.colab-df-convert');\n",
-              "        buttonEl.style.display =\n",
-              "          google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
-              "\n",
-              "        async function convertToInteractive(key) {\n",
-              "          const element = document.querySelector('#df-6afa6e27-afe6-4363-bd9b-48d9a11677b7');\n",
-              "          const dataTable =\n",
-              "            await google.colab.kernel.invokeFunction('convertToInteractive',\n",
-              "                                                     [key], {});\n",
-              "          if (!dataTable) return;\n",
-              "\n",
-              "          const docLinkHtml = 'Like what you see? Visit the ' +\n",
-              "            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
-              "            + ' to learn more about interactive tables.';\n",
-              "          element.innerHTML = '';\n",
-              "          dataTable['output_type'] = 'display_data';\n",
-              "          await google.colab.output.renderOutput(dataTable, element);\n",
-              "          const docLink = document.createElement('div');\n",
-              "          docLink.innerHTML = docLinkHtml;\n",
-              "          element.appendChild(docLink);\n",
-              "        }\n",
-              "      </script>\n",
-              "    </div>\n",
-              "  </div>\n",
-              "  "
-            ]
-          },
-          "metadata": {},
-          "execution_count": 87
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "df_low_avg.nlargest(20,\"score\")"
-      ],
-      "metadata": {
-        "id": "szxynupe7LBV",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 708
-        },
-        "outputId": "50ac8fa9-e0a9-4672-fbc2-e30deb0fd322"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "                 score\n",
-              "tokens                \n",
-              "rubbish       0.956431\n",
-              "horrible      0.905623\n",
-              "doubt         0.738610\n",
-              "wrong         0.735224\n",
-              "waste         0.620872\n",
-              "too           0.587800\n",
-              "apologize     0.582547\n",
-              "cannot        0.563062\n",
-              "disappointed  0.555120\n",
-              "no            0.546905\n",
-              "not           0.493041\n",
-              "bad           0.478467\n",
-              "awful         0.478381\n",
-              "lear          0.475673\n",
-              "un            0.462937\n",
-              "complain      0.452094\n",
-              "sorry         0.450628\n",
-              "weak          0.441655\n",
-              "worst         0.436304\n",
-              "terrible      0.420429"
-            ],
-            "text/html": [
-              "\n",
-              "  <div id=\"df-b77d6c88-0234-4f0e-96c4-1f7d28edb54a\">\n",
-              "    <div class=\"colab-df-container\">\n",
-              "      <div>\n",
-              "<style scoped>\n",
-              "    .dataframe tbody tr th:only-of-type {\n",
-              "        vertical-align: middle;\n",
-              "    }\n",
-              "\n",
-              "    .dataframe tbody tr th {\n",
-              "        vertical-align: top;\n",
-              "    }\n",
-              "\n",
-              "    .dataframe thead th {\n",
-              "        text-align: right;\n",
-              "    }\n",
-              "</style>\n",
-              "<table border=\"1\" class=\"dataframe\">\n",
-              "  <thead>\n",
-              "    <tr style=\"text-align: right;\">\n",
-              "      <th></th>\n",
-              "      <th>score</th>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>tokens</th>\n",
-              "      <th></th>\n",
-              "    </tr>\n",
-              "  </thead>\n",
-              "  <tbody>\n",
-              "    <tr>\n",
-              "      <th>rubbish</th>\n",
-              "      <td>0.956431</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>horrible</th>\n",
-              "      <td>0.905623</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>doubt</th>\n",
-              "      <td>0.738610</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>wrong</th>\n",
-              "      <td>0.735224</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>waste</th>\n",
-              "      <td>0.620872</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>too</th>\n",
-              "      <td>0.587800</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>apologize</th>\n",
-              "      <td>0.582547</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>cannot</th>\n",
-              "      <td>0.563062</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>disappointed</th>\n",
-              "      <td>0.555120</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>no</th>\n",
-              "      <td>0.546905</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>not</th>\n",
-              "      <td>0.493041</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>bad</th>\n",
-              "      <td>0.478467</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>awful</th>\n",
-              "      <td>0.478381</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>lear</th>\n",
-              "      <td>0.475673</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>un</th>\n",
-              "      <td>0.462937</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>complain</th>\n",
-              "      <td>0.452094</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>sorry</th>\n",
-              "      <td>0.450628</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>weak</th>\n",
-              "      <td>0.441655</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>worst</th>\n",
-              "      <td>0.436304</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>terrible</th>\n",
-              "      <td>0.420429</td>\n",
-              "    </tr>\n",
-              "  </tbody>\n",
-              "</table>\n",
-              "</div>\n",
-              "      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-b77d6c88-0234-4f0e-96c4-1f7d28edb54a')\"\n",
-              "              title=\"Convert this dataframe to an interactive table.\"\n",
-              "              style=\"display:none;\">\n",
-              "        \n",
-              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
-              "       width=\"24px\">\n",
-              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
-              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
-              "  </svg>\n",
-              "      </button>\n",
-              "      \n",
-              "  <style>\n",
-              "    .colab-df-container {\n",
-              "      display:flex;\n",
-              "      flex-wrap:wrap;\n",
-              "      gap: 12px;\n",
-              "    }\n",
-              "\n",
-              "    .colab-df-convert {\n",
-              "      background-color: #E8F0FE;\n",
-              "      border: none;\n",
-              "      border-radius: 50%;\n",
-              "      cursor: pointer;\n",
-              "      display: none;\n",
-              "      fill: #1967D2;\n",
-              "      height: 32px;\n",
-              "      padding: 0 0 0 0;\n",
-              "      width: 32px;\n",
-              "    }\n",
-              "\n",
-              "    .colab-df-convert:hover {\n",
-              "      background-color: #E2EBFA;\n",
-              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
-              "      fill: #174EA6;\n",
-              "    }\n",
-              "\n",
-              "    [theme=dark] .colab-df-convert {\n",
-              "      background-color: #3B4455;\n",
-              "      fill: #D2E3FC;\n",
-              "    }\n",
-              "\n",
-              "    [theme=dark] .colab-df-convert:hover {\n",
-              "      background-color: #434B5C;\n",
-              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
-              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
-              "      fill: #FFFFFF;\n",
-              "    }\n",
-              "  </style>\n",
-              "\n",
-              "      <script>\n",
-              "        const buttonEl =\n",
-              "          document.querySelector('#df-b77d6c88-0234-4f0e-96c4-1f7d28edb54a button.colab-df-convert');\n",
-              "        buttonEl.style.display =\n",
-              "          google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
-              "\n",
-              "        async function convertToInteractive(key) {\n",
-              "          const element = document.querySelector('#df-b77d6c88-0234-4f0e-96c4-1f7d28edb54a');\n",
-              "          const dataTable =\n",
-              "            await google.colab.kernel.invokeFunction('convertToInteractive',\n",
-              "                                                     [key], {});\n",
-              "          if (!dataTable) return;\n",
-              "\n",
-              "          const docLinkHtml = 'Like what you see? Visit the ' +\n",
-              "            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
-              "            + ' to learn more about interactive tables.';\n",
-              "          element.innerHTML = '';\n",
-              "          dataTable['output_type'] = 'display_data';\n",
-              "          await google.colab.output.renderOutput(dataTable, element);\n",
-              "          const docLink = document.createElement('div');\n",
-              "          docLink.innerHTML = docLinkHtml;\n",
-              "          element.appendChild(docLink);\n",
-              "        }\n",
-              "      </script>\n",
-              "    </div>\n",
-              "  </div>\n",
-              "  "
-            ]
-          },
-          "metadata": {},
-          "execution_count": 88
-        }
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "-XRoTAe-50e1"
-      },
-      "source": [
-        "## 3.2 Classification de tokens : entités nommées"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "### ▶▶ Exercice : Explication de modèle de reconnaissance d'entités nommées\n",
-        "\n",
-        "On définit ci-dessous un modèle de reconnaissance d'entités nommées.\n",
-        "Utilisez l'outil d'explicabilité pour une tâche de classification de token, et affichez les attributions pour un exemple."
-      ],
-      "metadata": {
-        "id": "jwvarY88mHD4"
-      }
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "s881ijMF50e1",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 1000,
-          "referenced_widgets": [
-            "604728efd7124bfbba708fd989582fe6",
-            "678ae63c0c354be886a4eb99ecb197dd",
-            "367b69d3db5f4bba9e3d57d8ae3fe0ce",
-            "9d6b715fe2ff419bb0e9e0f9817ed280",
-            "6a758b1b2d024750ab05ac248ce1f80a",
-            "b2c21ad1951a4742850955a24a9cfcdd",
-            "1d96b24c4aed45f5a3ac035cc8a532c5",
-            "8441bc42dfa54fcd80bd9cb23b855348",
-            "5c81ecb4f86644f1857de6adeed504b4",
-            "3165019540854f7e9fc0a66768a49bc6",
-            "626ec59b6f814639a4620288371b94b5",
-            "3fad33f0a8b241e483a20037a73d6d91",
-            "ad62af65a32f42d1801c6a157cf82639",
-            "5c73b74a7ee948c69981a0e8d4788db6",
-            "8ff018e97972473093adc4166760cf1d",
-            "75883b5e8a2741e7a4e4d1799bd1e084",
-            "c0408e189aa44fbd8e97a8dbc6931444",
-            "ce623be3c2c0469fb85db8d953fd8940",
-            "8adb8c0801594eb8bef065d1b2daf0bb",
-            "99c0d9fd187846a6aaf61088eb7c566a",
-            "9aa2d79693d748d59c11f3037b556048",
-            "59d0c7a1fe6b4a8c9f3d8d9d27f7ceac",
-            "1422ab118aeb45359be121ae753f431b",
-            "fc985bef023740beb783e793d4d9298c",
-            "0aaab6aad08a4e55a220bfdd401a3e84",
-            "8c7e48253e6e4ac7bbee5eca600e5af2",
-            "ae599e9537454f6e8aabbd1d44c9afd9",
-            "7de5829e22bc4de794e3296f343897f5",
-            "05201d7c6d34421099fcda145e9c3b69",
-            "5413c943e40e46cfade34ba453d77dbf",
-            "9a055b38f6054d9284fd48a8d272d867",
-            "52042c14e1eb4465be59a45d49a8cea4",
-            "b1f4c471c262491790560af0f8d93f45",
-            "8910247048d64343a8e8937d96d72e9b",
-            "7d5cae2d1db04865af62eef7b8634376",
-            "23ac5178d5d94666ad9469779b943da9",
-            "e85f8086a0c74692b43da84e8655eba5",
-            "34fc513f2ee043a8b19cc115d97bc930",
-            "6fc5ecfac8144a0e8d137d1f5bf8cee2",
-            "0f4ac12493c44672846275ce88b28a58",
-            "eb004831fc404b67ae556c166a9b5d69",
-            "0fb123a5c5c4405f807a98a34ebdf93f",
-            "bc6d1718b78c447890283a1dbebc8d23",
-            "4e54c874458e429e96aa24d55d7344f3",
-            "bf1dcc3d402f479193ae0e16a7d51515",
-            "6adca99ab96a449c9e224139ab4bb7ba",
-            "2d2b356d83b14a6082dea356586bc2c8",
-            "03437bd4548140b1a4d5567749026694",
-            "aca4af16745841ada91a217d9564f123",
-            "cea9e35e91e34124be33a525caf5048d",
-            "2746340f025f41f09585c10a59376191",
-            "beeb5a4e6c4746af86d3d6869c076667",
-            "bc3508b4bf9840e5968248774dab3328",
-            "42493a24fd4d41fcb8284cf33a19e6f0",
-            "f3e4ddbd79eb44cc8bf7316a956ca43f",
-            "b95668a1e54940318d875961ad937622",
-            "f87b6ccdba284777ac642ca1e7357ee1",
-            "d61d6d267e2a41b2b5a247c7a6ec1830",
-            "ff49d929d7404b4c86dcf1498b56e7fb",
-            "7f9e60151f3e47a2a23171e04c07b2d4",
-            "0232c7e956e84f768c78b50fed77998c",
-            "1f6d36af76a54f35853398b0e12a8c2f",
-            "9e6ae68f81af4b8d8f751a984ce2f195",
-            "ed09dfa0140c4208afc2d645f471a1f4",
-            "cc16b48c9ee6447697d1127a8803476c",
-            "76e9bef7bdad4344a35b35b082f251f6"
-          ]
-        },
-        "outputId": "283dbd8f-571b-489a-9f39-4bae2eaa16df"
-      },
-      "outputs": [
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading (…)lve/main/config.json:   0%|          | 0.00/829 [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "604728efd7124bfbba708fd989582fe6"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--dslim--bert-base-NER/snapshots/f7c2808a659015eeb8828f3f809a2f1be67a2446/config.json\n",
-            "Model config BertConfig {\n",
-            "  \"_name_or_path\": \"dslim/bert-base-NER\",\n",
-            "  \"_num_labels\": 9,\n",
-            "  \"architectures\": [\n",
-            "    \"BertForTokenClassification\"\n",
-            "  ],\n",
-            "  \"attention_probs_dropout_prob\": 0.1,\n",
-            "  \"classifier_dropout\": null,\n",
-            "  \"hidden_act\": \"gelu\",\n",
-            "  \"hidden_dropout_prob\": 0.1,\n",
-            "  \"hidden_size\": 768,\n",
-            "  \"id2label\": {\n",
-            "    \"0\": \"O\",\n",
-            "    \"1\": \"B-MISC\",\n",
-            "    \"2\": \"I-MISC\",\n",
-            "    \"3\": \"B-PER\",\n",
-            "    \"4\": \"I-PER\",\n",
-            "    \"5\": \"B-ORG\",\n",
-            "    \"6\": \"I-ORG\",\n",
-            "    \"7\": \"B-LOC\",\n",
-            "    \"8\": \"I-LOC\"\n",
-            "  },\n",
-            "  \"initializer_range\": 0.02,\n",
-            "  \"intermediate_size\": 3072,\n",
-            "  \"label2id\": {\n",
-            "    \"B-LOC\": 7,\n",
-            "    \"B-MISC\": 1,\n",
-            "    \"B-ORG\": 5,\n",
-            "    \"B-PER\": 3,\n",
-            "    \"I-LOC\": 8,\n",
-            "    \"I-MISC\": 2,\n",
-            "    \"I-ORG\": 6,\n",
-            "    \"I-PER\": 4,\n",
-            "    \"O\": 0\n",
-            "  },\n",
-            "  \"layer_norm_eps\": 1e-12,\n",
-            "  \"max_position_embeddings\": 512,\n",
-            "  \"model_type\": \"bert\",\n",
-            "  \"num_attention_heads\": 12,\n",
-            "  \"num_hidden_layers\": 12,\n",
-            "  \"output_past\": true,\n",
-            "  \"pad_token_id\": 0,\n",
-            "  \"position_embedding_type\": \"absolute\",\n",
-            "  \"transformers_version\": \"4.26.0\",\n",
-            "  \"type_vocab_size\": 2,\n",
-            "  \"use_cache\": true,\n",
-            "  \"vocab_size\": 28996\n",
-            "}\n",
-            "\n"
-          ]
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading (…)\"pytorch_model.bin\";:   0%|          | 0.00/433M [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "3fad33f0a8b241e483a20037a73d6d91"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--dslim--bert-base-NER/snapshots/f7c2808a659015eeb8828f3f809a2f1be67a2446/pytorch_model.bin\n",
-            "All model checkpoint weights were used when initializing BertForTokenClassification.\n",
-            "\n",
-            "All the weights of BertForTokenClassification were initialized from the model checkpoint at dslim/bert-base-NER.\n",
-            "If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForTokenClassification for predictions without further training.\n"
-          ]
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading (…)okenizer_config.json:   0%|          | 0.00/59.0 [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "1422ab118aeb45359be121ae753f431b"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--dslim--bert-base-NER/snapshots/f7c2808a659015eeb8828f3f809a2f1be67a2446/config.json\n",
-            "Model config BertConfig {\n",
-            "  \"_name_or_path\": \"dslim/bert-base-NER\",\n",
-            "  \"_num_labels\": 9,\n",
-            "  \"architectures\": [\n",
-            "    \"BertForTokenClassification\"\n",
-            "  ],\n",
-            "  \"attention_probs_dropout_prob\": 0.1,\n",
-            "  \"classifier_dropout\": null,\n",
-            "  \"hidden_act\": \"gelu\",\n",
-            "  \"hidden_dropout_prob\": 0.1,\n",
-            "  \"hidden_size\": 768,\n",
-            "  \"id2label\": {\n",
-            "    \"0\": \"O\",\n",
-            "    \"1\": \"B-MISC\",\n",
-            "    \"2\": \"I-MISC\",\n",
-            "    \"3\": \"B-PER\",\n",
-            "    \"4\": \"I-PER\",\n",
-            "    \"5\": \"B-ORG\",\n",
-            "    \"6\": \"I-ORG\",\n",
-            "    \"7\": \"B-LOC\",\n",
-            "    \"8\": \"I-LOC\"\n",
-            "  },\n",
-            "  \"initializer_range\": 0.02,\n",
-            "  \"intermediate_size\": 3072,\n",
-            "  \"label2id\": {\n",
-            "    \"B-LOC\": 7,\n",
-            "    \"B-MISC\": 1,\n",
-            "    \"B-ORG\": 5,\n",
-            "    \"B-PER\": 3,\n",
-            "    \"I-LOC\": 8,\n",
-            "    \"I-MISC\": 2,\n",
-            "    \"I-ORG\": 6,\n",
-            "    \"I-PER\": 4,\n",
-            "    \"O\": 0\n",
-            "  },\n",
-            "  \"layer_norm_eps\": 1e-12,\n",
-            "  \"max_position_embeddings\": 512,\n",
-            "  \"model_type\": \"bert\",\n",
-            "  \"num_attention_heads\": 12,\n",
-            "  \"num_hidden_layers\": 12,\n",
-            "  \"output_past\": true,\n",
-            "  \"pad_token_id\": 0,\n",
-            "  \"position_embedding_type\": \"absolute\",\n",
-            "  \"transformers_version\": \"4.26.0\",\n",
-            "  \"type_vocab_size\": 2,\n",
-            "  \"use_cache\": true,\n",
-            "  \"vocab_size\": 28996\n",
-            "}\n",
-            "\n"
-          ]
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading (…)solve/main/vocab.txt:   0%|          | 0.00/213k [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "8910247048d64343a8e8937d96d72e9b"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading (…)in/added_tokens.json:   0%|          | 0.00/2.00 [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "bf1dcc3d402f479193ae0e16a7d51515"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading (…)cial_tokens_map.json:   0%|          | 0.00/112 [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "b95668a1e54940318d875961ad937622"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "stream",
-          "name": "stderr",
-          "text": [
-            "loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--dslim--bert-base-NER/snapshots/f7c2808a659015eeb8828f3f809a2f1be67a2446/vocab.txt\n",
-            "loading file tokenizer.json from cache at None\n",
-            "loading file added_tokens.json from cache at /root/.cache/huggingface/hub/models--dslim--bert-base-NER/snapshots/f7c2808a659015eeb8828f3f809a2f1be67a2446/added_tokens.json\n",
-            "loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--dslim--bert-base-NER/snapshots/f7c2808a659015eeb8828f3f809a2f1be67a2446/special_tokens_map.json\n",
-            "loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--dslim--bert-base-NER/snapshots/f7c2808a659015eeb8828f3f809a2f1be67a2446/tokenizer_config.json\n",
-            "loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--dslim--bert-base-NER/snapshots/f7c2808a659015eeb8828f3f809a2f1be67a2446/config.json\n",
-            "Model config BertConfig {\n",
-            "  \"_name_or_path\": \"dslim/bert-base-NER\",\n",
-            "  \"_num_labels\": 9,\n",
-            "  \"architectures\": [\n",
-            "    \"BertForTokenClassification\"\n",
-            "  ],\n",
-            "  \"attention_probs_dropout_prob\": 0.1,\n",
-            "  \"classifier_dropout\": null,\n",
-            "  \"hidden_act\": \"gelu\",\n",
-            "  \"hidden_dropout_prob\": 0.1,\n",
-            "  \"hidden_size\": 768,\n",
-            "  \"id2label\": {\n",
-            "    \"0\": \"O\",\n",
-            "    \"1\": \"B-MISC\",\n",
-            "    \"2\": \"I-MISC\",\n",
-            "    \"3\": \"B-PER\",\n",
-            "    \"4\": \"I-PER\",\n",
-            "    \"5\": \"B-ORG\",\n",
-            "    \"6\": \"I-ORG\",\n",
-            "    \"7\": \"B-LOC\",\n",
-            "    \"8\": \"I-LOC\"\n",
-            "  },\n",
-            "  \"initializer_range\": 0.02,\n",
-            "  \"intermediate_size\": 3072,\n",
-            "  \"label2id\": {\n",
-            "    \"B-LOC\": 7,\n",
-            "    \"B-MISC\": 1,\n",
-            "    \"B-ORG\": 5,\n",
-            "    \"B-PER\": 3,\n",
-            "    \"I-LOC\": 8,\n",
-            "    \"I-MISC\": 2,\n",
-            "    \"I-ORG\": 6,\n",
-            "    \"I-PER\": 4,\n",
-            "    \"O\": 0\n",
-            "  },\n",
-            "  \"layer_norm_eps\": 1e-12,\n",
-            "  \"max_position_embeddings\": 512,\n",
-            "  \"model_type\": \"bert\",\n",
-            "  \"num_attention_heads\": 12,\n",
-            "  \"num_hidden_layers\": 12,\n",
-            "  \"output_past\": true,\n",
-            "  \"pad_token_id\": 0,\n",
-            "  \"position_embedding_type\": \"absolute\",\n",
-            "  \"transformers_version\": \"4.26.0\",\n",
-            "  \"type_vocab_size\": 2,\n",
-            "  \"use_cache\": true,\n",
-            "  \"vocab_size\": 28996\n",
-            "}\n",
-            "\n",
-            "loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--dslim--bert-base-NER/snapshots/f7c2808a659015eeb8828f3f809a2f1be67a2446/config.json\n",
-            "Model config BertConfig {\n",
-            "  \"_name_or_path\": \"dslim/bert-base-NER\",\n",
-            "  \"_num_labels\": 9,\n",
-            "  \"architectures\": [\n",
-            "    \"BertForTokenClassification\"\n",
-            "  ],\n",
-            "  \"attention_probs_dropout_prob\": 0.1,\n",
-            "  \"classifier_dropout\": null,\n",
-            "  \"hidden_act\": \"gelu\",\n",
-            "  \"hidden_dropout_prob\": 0.1,\n",
-            "  \"hidden_size\": 768,\n",
-            "  \"id2label\": {\n",
-            "    \"0\": \"O\",\n",
-            "    \"1\": \"B-MISC\",\n",
-            "    \"2\": \"I-MISC\",\n",
-            "    \"3\": \"B-PER\",\n",
-            "    \"4\": \"I-PER\",\n",
-            "    \"5\": \"B-ORG\",\n",
-            "    \"6\": \"I-ORG\",\n",
-            "    \"7\": \"B-LOC\",\n",
-            "    \"8\": \"I-LOC\"\n",
-            "  },\n",
-            "  \"initializer_range\": 0.02,\n",
-            "  \"intermediate_size\": 3072,\n",
-            "  \"label2id\": {\n",
-            "    \"B-LOC\": 7,\n",
-            "    \"B-MISC\": 1,\n",
-            "    \"B-ORG\": 5,\n",
-            "    \"B-PER\": 3,\n",
-            "    \"I-LOC\": 8,\n",
-            "    \"I-MISC\": 2,\n",
-            "    \"I-ORG\": 6,\n",
-            "    \"I-PER\": 4,\n",
-            "    \"O\": 0\n",
-            "  },\n",
-            "  \"layer_norm_eps\": 1e-12,\n",
-            "  \"max_position_embeddings\": 512,\n",
-            "  \"model_type\": \"bert\",\n",
-            "  \"num_attention_heads\": 12,\n",
-            "  \"num_hidden_layers\": 12,\n",
-            "  \"output_past\": true,\n",
-            "  \"pad_token_id\": 0,\n",
-            "  \"position_embedding_type\": \"absolute\",\n",
-            "  \"transformers_version\": \"4.26.0\",\n",
-            "  \"type_vocab_size\": 2,\n",
-            "  \"use_cache\": true,\n",
-            "  \"vocab_size\": 28996\n",
-            "}\n",
-            "\n"
-          ]
-        }
-      ],
-      "source": [
-        "model_name = 'dslim/bert-base-NER'\n",
-        "model = AutoModelForTokenClassification.from_pretrained(model_name)\n",
-        "tokenizer = AutoTokenizer.from_pretrained(model_name)"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "gIBA1tnP50e1"
-      },
-      "outputs": [],
-      "source": [
-        "ner_explainer = TokenClassificationExplainer(model=model, tokenizer=tokenizer)"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "D7f05OD550e1"
-      },
-      "outputs": [],
-      "source": [
-        "instance = \"New-York City is a place full of celebrities, like Donald Trump.\""
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "Z4ep0_VL50e2"
-      },
-      "outputs": [],
-      "source": [
-        "attributions = ner_explainer(instance, ignored_labels=['O'])"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "5i5qiujC50e2",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "37226223-c33b-4fb1-c7d2-65be63956910"
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "{'New': {'label': 'B-LOC',\n",
-              "  'attribution_scores': [('[CLS]', 0.0),\n",
-              "   ('New', 0.1152263737548048),\n",
-              "   ('-', 0.46603848636622286),\n",
-              "   ('York', 0.6893381904037938),\n",
-              "   ('City', 0.5121532191402767),\n",
-              "   ('is', 0.13319084594186978),\n",
-              "   ('a', 0.0218192290333258),\n",
-              "   ('place', 0.10400881276180558),\n",
-              "   ('full', -0.0225784381906766),\n",
-              "   ('of', -0.0020050147303111504),\n",
-              "   ('celebrities', 0.006248961981265845),\n",
-              "   (',', 0.03019812254600892),\n",
-              "   ('like', 0.009767104508417121),\n",
-              "   ('Donald', -0.005156496527404542),\n",
-              "   ('Trump', 0.009757538902118628),\n",
-              "   ('.', 0.036431588254490506),\n",
-              "   ('[SEP]', 0.0)]},\n",
-              " '-': {'label': 'I-LOC',\n",
-              "  'attribution_scores': [('[CLS]', 0.0),\n",
-              "   ('New', 0.822296035976172),\n",
-              "   ('-', 0.2991285949629092),\n",
-              "   ('York', 0.47518057018527676),\n",
-              "   ('City', -0.03536220094255385),\n",
-              "   ('is', 0.05356126908509579),\n",
-              "   ('a', 0.029608249655954023),\n",
-              "   ('place', -0.017305798892184924),\n",
-              "   ('full', 0.009172928915006318),\n",
-              "   ('of', 0.018796735562098058),\n",
-              "   ('celebrities', -0.022613700966464034),\n",
-              "   (',', 0.02793702240929534),\n",
-              "   ('like', -0.007824794450507256),\n",
-              "   ('Donald', -0.009188010053213595),\n",
-              "   ('Trump', -0.02538116521418082),\n",
-              "   ('.', 0.02720547036097054),\n",
-              "   ('[SEP]', 0.0)]},\n",
-              " 'York': {'label': 'I-LOC',\n",
-              "  'attribution_scores': [('[CLS]', 0.0),\n",
-              "   ('New', 0.5337487385389322),\n",
-              "   ('-', 0.2599881588100973),\n",
-              "   ('York', 0.760698037530082),\n",
-              "   ('City', 0.2446653018946348),\n",
-              "   ('is', 0.06205636341378641),\n",
-              "   ('a', -0.027586963461350995),\n",
-              "   ('place', 0.025106252142951896),\n",
-              "   ('full', -0.05140024436564111),\n",
-              "   ('of', -0.019691609176230692),\n",
-              "   ('celebrities', -0.006924858794352119),\n",
-              "   (',', -0.012906337496774958),\n",
-              "   ('like', -0.015183925146487308),\n",
-              "   ('Donald', -0.01204039634291498),\n",
-              "   ('Trump', 0.01127964153547774),\n",
-              "   ('.', 0.002538817378056633),\n",
-              "   ('[SEP]', 0.0)]},\n",
-              " 'City': {'label': 'I-LOC',\n",
-              "  'attribution_scores': [('[CLS]', 0.0),\n",
-              "   ('New', -0.0871933602852997),\n",
-              "   ('-', -0.05249028275131834),\n",
-              "   ('York', 0.5869292302622858),\n",
-              "   ('City', 0.7707565139463353),\n",
-              "   ('is', 0.11985654993684679),\n",
-              "   ('a', 0.04739014819264039),\n",
-              "   ('place', 0.18055896085095352),\n",
-              "   ('full', 0.008286897987880206),\n",
-              "   ('of', 0.011989923889749092),\n",
-              "   ('celebrities', -0.0032475236083206235),\n",
-              "   (',', 0.031248380244698455),\n",
-              "   ('like', 0.02161511113592928),\n",
-              "   ('Donald', 0.0056803764985796385),\n",
-              "   ('Trump', 0.004046145546989419),\n",
-              "   ('.', 0.012740342569113857),\n",
-              "   ('[SEP]', 0.0)]},\n",
-              " 'Donald': {'label': 'B-PER',\n",
-              "  'attribution_scores': [('[CLS]', 0.0),\n",
-              "   ('New', -0.013149759162410738),\n",
-              "   ('-', 0.0378981983949712),\n",
-              "   ('York', 0.025402688960162036),\n",
-              "   ('City', 0.008721890402059758),\n",
-              "   ('is', 0.014231865840905092),\n",
-              "   ('a', 0.02736637897073334),\n",
-              "   ('place', -0.019735090008239354),\n",
-              "   ('full', -0.012471959788710798),\n",
-              "   ('of', 0.03221012949356266),\n",
-              "   ('celebrities', 0.024813050405665362),\n",
-              "   (',', -0.017656228425442785),\n",
-              "   ('like', 0.2729820610317324),\n",
-              "   ('Donald', 0.7191805751306489),\n",
-              "   ('Trump', 0.6334538244660348),\n",
-              "   ('.', -0.034704161367750404),\n",
-              "   ('[SEP]', 0.0)]},\n",
-              " 'Trump': {'label': 'I-PER',\n",
-              "  'attribution_scores': [('[CLS]', 0.0),\n",
-              "   ('New', -0.001321285459759489),\n",
-              "   ('-', 0.016093381554629152),\n",
-              "   ('York', 0.04688259729308178),\n",
-              "   ('City', 0.013796291436925668),\n",
-              "   ('is', 0.0035908986497817036),\n",
-              "   ('a', 0.0242113979040241),\n",
-              "   ('place', 0.0004160781665048657),\n",
-              "   ('full', -0.0007240688385078413),\n",
-              "   ('of', 0.02103574941985579),\n",
-              "   ('celebrities', 0.01816752146973022),\n",
-              "   (',', 0.030742253749527083),\n",
-              "   ('like', 0.15109025407239116),\n",
-              "   ('Donald', 0.7343402468091149),\n",
-              "   ('Trump', 0.65626083189897),\n",
-              "   ('.', -0.047658868540296724),\n",
-              "   ('[SEP]', 0.0)]}}"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 93
-        }
-      ],
-      "source": [
-        "attributions"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "dm58uxm_50e2",
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 252
-        },
-        "outputId": "c774d436-f291-488f-a2ce-8a56cb51e659"
-      },
-      "outputs": [
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "<IPython.core.display.HTML object>"
-            ],
-            "text/html": [
-              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>B-LOC</b></text></td><td><text style=\"padding-right:2em\"><b>B-LOC (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>New</b></text></td><td><text style=\"padding-right:2em\"><b>2.10</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(120, 75%, 77%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 66%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(120, 75%, 75%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr><tr><td><text style=\"padding-right:2em\"><b>I-LOC</b></text></td><td><text style=\"padding-right:2em\"><b>I-LOC (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>-</b></text></td><td><text style=\"padding-right:2em\"><b>1.65</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 59%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(120, 75%, 86%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 77%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr><tr><td><text style=\"padding-right:2em\"><b>I-LOC</b></text></td><td><text style=\"padding-right:2em\"><b>I-LOC (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>York</b></text></td><td><text style=\"padding-right:2em\"><b>1.75</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 74%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(120, 75%, 88%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 62%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(120, 75%, 88%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr><tr><td><text style=\"padding-right:2em\"><b>I-LOC</b></text></td><td><text style=\"padding-right:2em\"><b>I-LOC (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>City</b></text></td><td><text style=\"padding-right:2em\"><b>1.66</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 71%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(120, 75%, 62%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 91%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr><tr><td><text style=\"padding-right:2em\"><b>B-PER</b></text></td><td><text style=\"padding-right:2em\"><b>B-PER (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>Donald</b></text></td><td><text style=\"padding-right:2em\"><b>1.70</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 87%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(120, 75%, 65%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(120, 75%, 69%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr><tr><td><text style=\"padding-right:2em\"><b>I-PER</b></text></td><td><text style=\"padding-right:2em\"><b>I-PER (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>Trump</b></text></td><td><text style=\"padding-right:2em\"><b>1.67</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(120, 75%, 64%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(120, 75%, 68%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
-            ]
-          },
-          "metadata": {}
-        }
-      ],
-      "source": [
-        "html = ner_explainer.visualize()"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "VSn32SrQ50e3"
-      },
-      "outputs": [],
-      "source": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# Additional notes about HuggingFace dataset"
-      ],
-      "metadata": {
-        "id": "-bUnXTbbGp5e"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### Available corpora\n",
-        "\n",
-        "Note that many corpora are available directly from HuggingFace, for example for text classification tasks:\n",
-        "https://huggingface.co/models?pipeline_tag=text-classification&sort=downloads\n",
-        "\n",
-        "\n",
-        "In particular you can directly load the full AlloCine corpus:\n",
-        "https://huggingface.co/datasets/allocine"
-      ],
-      "metadata": {
-        "id": "bsbgcxgTJsW2"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "#### Some preprocessing\n",
-        "\n",
-        "The library allows to perform some preprocessing directly on the Dataset object, very easily.\n",
-        "Take alook at the doc: https://huggingface.co/course/chapter5/3?fw=pt \n",
-        "\n",
-        "For example here we can compute the lenght of each review and filter our dataset to excluse outliers, e.g. reviews with too few words."
-      ],
-      "metadata": {
-        "id": "FLvU5EYUCnVK"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "def compute_review_length(example):\n",
-        "    return {\"review_length\": len(example[\"review\"].split())}\n",
-        "\n",
-        "dataset = dataset.map(compute_review_length) #Add the column review_lenght\n",
-        "# Inspect the first training example\n",
-        "dataset[\"train\"][0]"
-      ],
-      "metadata": {
-        "id": "SgeXPXp6JmZU"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "Some review are very short... Dataset.filter() can be used to remove some examples."
-      ],
-      "metadata": {
-        "id": "6fL34GWd53ij"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "dataset[\"train\"].sort(\"review_length\")[:3]"
-      ],
-      "metadata": {
-        "id": "56Lv3xpAJmb5"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "filtered_dataset = dataset.filter(lambda x: x[\"review_length\"] > 10)\n",
-        "print(filtered_dataset.num_rows)"
-      ],
-      "metadata": {
-        "id": "UuDpP1JyF-6a"
-      },
-      "execution_count": null,
-      "outputs": []
-    }
-  ],
-  "metadata": {
-    "kernelspec": {
-      "display_name": "visual",
-      "language": "python",
-      "name": "visual"
-    },
-    "language_info": {
-      "codemirror_mode": {
-        "name": "ipython",
-        "version": 3
-      },
-      "file_extension": ".py",
-      "mimetype": "text/x-python",
-      "name": "python",
-      "nbconvert_exporter": "python",
-      "pygments_lexer": "ipython3",
-      "version": "3.9.5"
-    },
-    "colab": {
-      "provenance": [],
-      "collapsed_sections": [
-        "-XRoTAe-50e1"
-      ]
-    },
-    "accelerator": "GPU",
-    "gpuClass": "standard",
-    "widgets": {
-      "application/vnd.jupyter.widget-state+json": {
-        "a3d5065721064cca86aa2c1598053db3": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_3b3b877997064cf3b347ec7f9a8c06e4",
-              "IPY_MODEL_96cdb560d9e44145a0b6cc056e2ea203",
-              "IPY_MODEL_1040d9777c574afaa6d6c2ec893118a3"
-            ],
-            "layout": "IPY_MODEL_d10a06291f9e42959ff48506522f22c1"
-          }
-        },
-        "3b3b877997064cf3b347ec7f9a8c06e4": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_3d4897a33b1841b9a86e953bd1fa1dc8",
-            "placeholder": "​",
-            "style": "IPY_MODEL_9f3eb343824d4c2183effbc9d9bfc02d",
-            "value": "100%"
-          }
-        },
-        "96cdb560d9e44145a0b6cc056e2ea203": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_2b4f0593254a45b58e2fc10b0002d5b3",
-            "max": 3,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_a8b5d0884e1e4b88bfa7ad086b8d89a3",
-            "value": 3
-          }
-        },
-        "1040d9777c574afaa6d6c2ec893118a3": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_d84e6735e79f42ab8a4a2fe7bf018738",
-            "placeholder": "​",
-            "style": "IPY_MODEL_79140d592a7c47448c33ac343e1685f3",
-            "value": " 3/3 [00:00&lt;00:00, 119.85it/s]"
-          }
-        },
-        "d10a06291f9e42959ff48506522f22c1": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "3d4897a33b1841b9a86e953bd1fa1dc8": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "9f3eb343824d4c2183effbc9d9bfc02d": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "2b4f0593254a45b58e2fc10b0002d5b3": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "a8b5d0884e1e4b88bfa7ad086b8d89a3": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "d84e6735e79f42ab8a4a2fe7bf018738": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "79140d592a7c47448c33ac343e1685f3": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "d03bc5ca5b7544e588501cd35f363c56": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_194d05a19eb14a7f966050b4b5349440",
-              "IPY_MODEL_997b829462b2433985a1091ccf68b9b4",
-              "IPY_MODEL_e5b1beb0758d42fca526298a4a81fb6b"
-            ],
-            "layout": "IPY_MODEL_9cfcc16ba77a45038d3dcaef27e34f9a"
-          }
-        },
-        "194d05a19eb14a7f966050b4b5349440": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_90c1da51b4a94fc994c069bb4cb5179c",
-            "placeholder": "​",
-            "style": "IPY_MODEL_d2ec646a77b2494fbc80157722f82948",
-            "value": "Downloading builder script: 100%"
-          }
-        },
-        "997b829462b2433985a1091ccf68b9b4": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_9ab3c85ad9ea487b919ceb0bae41a86a",
-            "max": 4313,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_5bf1d48f85b64a9cba222426f52c20af",
-            "value": 4313
-          }
-        },
-        "e5b1beb0758d42fca526298a4a81fb6b": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_76696050b2384092ad22bb464b52bec6",
-            "placeholder": "​",
-            "style": "IPY_MODEL_dd6ce682a98845e5b10d9f780f1babb7",
-            "value": " 4.31k/4.31k [00:00&lt;00:00, 217kB/s]"
-          }
-        },
-        "9cfcc16ba77a45038d3dcaef27e34f9a": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "90c1da51b4a94fc994c069bb4cb5179c": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "d2ec646a77b2494fbc80157722f82948": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "9ab3c85ad9ea487b919ceb0bae41a86a": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "5bf1d48f85b64a9cba222426f52c20af": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "76696050b2384092ad22bb464b52bec6": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "dd6ce682a98845e5b10d9f780f1babb7": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "bb8c7b49888b489ca1ec799526bf7508": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_de7ff51ef87c41d894e1af424ae78828",
-              "IPY_MODEL_f02fe40848b6400c9a430b607b9b94a8",
-              "IPY_MODEL_8af52f3b43064afebbde111652c7fd82"
-            ],
-            "layout": "IPY_MODEL_065871770a9c4dbea7f7acc114b24561"
-          }
-        },
-        "de7ff51ef87c41d894e1af424ae78828": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_4be4ff45e240406aa52f02884d47dc70",
-            "placeholder": "​",
-            "style": "IPY_MODEL_4a72d4a90c0e4f44b28e7afcbce5294f",
-            "value": "Downloading metadata: 100%"
-          }
-        },
-        "f02fe40848b6400c9a430b607b9b94a8": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_f54dcc594a7d41c1a4fc472c3997f89d",
-            "max": 2166,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_2a608fb16a114631ade6aaf955e3e5f7",
-            "value": 2166
-          }
-        },
-        "8af52f3b43064afebbde111652c7fd82": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_371aaf5effbb46b5b0423f347e4cf53c",
-            "placeholder": "​",
-            "style": "IPY_MODEL_39d97cfa841d4f569dcff884f565fd2f",
-            "value": " 2.17k/2.17k [00:00&lt;00:00, 156kB/s]"
-          }
-        },
-        "065871770a9c4dbea7f7acc114b24561": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "4be4ff45e240406aa52f02884d47dc70": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "4a72d4a90c0e4f44b28e7afcbce5294f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "f54dcc594a7d41c1a4fc472c3997f89d": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "2a608fb16a114631ade6aaf955e3e5f7": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "371aaf5effbb46b5b0423f347e4cf53c": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "39d97cfa841d4f569dcff884f565fd2f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "c90c1fd14779491e81d9db566c718fd1": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_be46d8a47d574ba891575b3e6ae3ac6b",
-              "IPY_MODEL_52a59d65ab684795bf18ab611ff77e0e",
-              "IPY_MODEL_fccd6a00da63457d83100c51e0288ad6"
-            ],
-            "layout": "IPY_MODEL_45cd9475b66f4b20a7cfd52cd3f3500e"
-          }
-        },
-        "be46d8a47d574ba891575b3e6ae3ac6b": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_7a1989336a6b44db97a822791de2b745",
-            "placeholder": "​",
-            "style": "IPY_MODEL_69ef45c9273344699951491f47dd7b8a",
-            "value": "Downloading readme: 100%"
-          }
-        },
-        "52a59d65ab684795bf18ab611ff77e0e": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_49ced039effc4042b10f52698351ae54",
-            "max": 7590,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_f1daa5d41988465ba42481a82eff9b7f",
-            "value": 7590
-          }
-        },
-        "fccd6a00da63457d83100c51e0288ad6": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_a4ea87de1a2b4fa8bdcfa67f7b6ee0df",
-            "placeholder": "​",
-            "style": "IPY_MODEL_51f6c6fd3bd841b3976a7307f67fa796",
-            "value": " 7.59k/7.59k [00:00&lt;00:00, 470kB/s]"
-          }
-        },
-        "45cd9475b66f4b20a7cfd52cd3f3500e": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "7a1989336a6b44db97a822791de2b745": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "69ef45c9273344699951491f47dd7b8a": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "49ced039effc4042b10f52698351ae54": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "f1daa5d41988465ba42481a82eff9b7f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "a4ea87de1a2b4fa8bdcfa67f7b6ee0df": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "51f6c6fd3bd841b3976a7307f67fa796": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "ed49e86c8ab54c30ad909183530aee8b": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_07c207aaecc74309ac2589317075ad19",
-              "IPY_MODEL_f0dfd6e0772f40f296bc57d97b92843b",
-              "IPY_MODEL_7312717db5b54342964f4a68afdfb669"
-            ],
-            "layout": "IPY_MODEL_c6607c54f58a40aab5ff6b183718c6b9"
-          }
-        },
-        "07c207aaecc74309ac2589317075ad19": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_bf88a467975e4a09b518eeb4e9a4e6e8",
-            "placeholder": "​",
-            "style": "IPY_MODEL_7cc436e1a1b6460e8854e9b30386ac8a",
-            "value": "Downloading data: 100%"
-          }
-        },
-        "f0dfd6e0772f40f296bc57d97b92843b": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_7263970b0d7b46b682d1dd55077d0ab5",
-            "max": 84125825,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_231c18f4ec3046c18a097a071b686f34",
-            "value": 84125825
-          }
-        },
-        "7312717db5b54342964f4a68afdfb669": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_0e3226a821c94ba7a6d8ac1390057998",
-            "placeholder": "​",
-            "style": "IPY_MODEL_c46d29fa23e944a6b9d88c5fb6c1eab9",
-            "value": " 84.1M/84.1M [00:41&lt;00:00, 13.9MB/s]"
-          }
-        },
-        "c6607c54f58a40aab5ff6b183718c6b9": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "bf88a467975e4a09b518eeb4e9a4e6e8": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "7cc436e1a1b6460e8854e9b30386ac8a": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "7263970b0d7b46b682d1dd55077d0ab5": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "231c18f4ec3046c18a097a071b686f34": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "0e3226a821c94ba7a6d8ac1390057998": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "c46d29fa23e944a6b9d88c5fb6c1eab9": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "aefaf111ea454f7f8e14bc826f708ca8": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_a406c59a05cf4f5fb17f56de827f8c62",
-              "IPY_MODEL_41a88cbcf6544f0c9447b0daab15ea33",
-              "IPY_MODEL_f8dbe293bd444dbcac713cfcde974bb8"
-            ],
-            "layout": "IPY_MODEL_dcfa8cf3b6074c6c80263270c461f8de"
-          }
-        },
-        "a406c59a05cf4f5fb17f56de827f8c62": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_8586079135e049b68e740f4998eb7931",
-            "placeholder": "​",
-            "style": "IPY_MODEL_9b25f3c7fc5e46fba0764c3d1b91819a",
-            "value": "Generating train split: 100%"
-          }
-        },
-        "41a88cbcf6544f0c9447b0daab15ea33": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_a16e98b9001840a78bc1d69bae0e7864",
-            "max": 25000,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_9b494af657c2488793135bd969715201",
-            "value": 25000
-          }
-        },
-        "f8dbe293bd444dbcac713cfcde974bb8": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_cfcf25aa877643dfad8764cc3163054d",
-            "placeholder": "​",
-            "style": "IPY_MODEL_087509144a954843836ee37933f63e8f",
-            "value": " 25000/25000 [00:15&lt;00:00, 10132.64 examples/s]"
-          }
-        },
-        "dcfa8cf3b6074c6c80263270c461f8de": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": "hidden",
-            "width": null
-          }
-        },
-        "8586079135e049b68e740f4998eb7931": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "9b25f3c7fc5e46fba0764c3d1b91819a": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "a16e98b9001840a78bc1d69bae0e7864": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "9b494af657c2488793135bd969715201": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "cfcf25aa877643dfad8764cc3163054d": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "087509144a954843836ee37933f63e8f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "f71b9acdb9204fbb8fa435fa6777c582": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_5a3cccfe2a7f4338a244f59908c04a48",
-              "IPY_MODEL_409e697590c84910bb6020d8560b530a",
-              "IPY_MODEL_c05a22cd264148718d7f7016a71fee73"
-            ],
-            "layout": "IPY_MODEL_4fceeb55f164455a8fb5e66e60b8de87"
-          }
-        },
-        "5a3cccfe2a7f4338a244f59908c04a48": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_dbc6bbf4ecd048eb8b5c2c644ca065e8",
-            "placeholder": "​",
-            "style": "IPY_MODEL_901b7d38a5214c7aa53b5ef6fcec5f21",
-            "value": "Generating test split: 100%"
-          }
-        },
-        "409e697590c84910bb6020d8560b530a": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_256ae746530d43f9961e956f0addd465",
-            "max": 25000,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_9c562549c3fd4aa98f2fecbe0f8dee80",
-            "value": 25000
-          }
-        },
-        "c05a22cd264148718d7f7016a71fee73": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_a40beb6372d441dcbc258a1ffbbe6645",
-            "placeholder": "​",
-            "style": "IPY_MODEL_b9be6a7ee5064f2a978237bd0a8e0278",
-            "value": " 25000/25000 [00:18&lt;00:00, 10144.92 examples/s]"
-          }
-        },
-        "4fceeb55f164455a8fb5e66e60b8de87": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": "hidden",
-            "width": null
-          }
-        },
-        "dbc6bbf4ecd048eb8b5c2c644ca065e8": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "901b7d38a5214c7aa53b5ef6fcec5f21": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "256ae746530d43f9961e956f0addd465": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "9c562549c3fd4aa98f2fecbe0f8dee80": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "a40beb6372d441dcbc258a1ffbbe6645": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "b9be6a7ee5064f2a978237bd0a8e0278": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "2b822d0eee19484a8d22154d2b2e4c1f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_f45a2635f5e04bf19011596a13ec70ab",
-              "IPY_MODEL_c84fbe52351f4a0a977348a555bc14d7",
-              "IPY_MODEL_f0ada7e10008418ca6f99e8f8f508de4"
-            ],
-            "layout": "IPY_MODEL_8c8f939312d94b16a2b7935830b7c21c"
-          }
-        },
-        "f45a2635f5e04bf19011596a13ec70ab": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_d4cf114525774233aa1737563feabb1d",
-            "placeholder": "​",
-            "style": "IPY_MODEL_06825c2cb3884aefae1b140206160a90",
-            "value": "Generating unsupervised split: 100%"
-          }
-        },
-        "c84fbe52351f4a0a977348a555bc14d7": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_a4bbb500723d4c04ad90df472b38f8f5",
-            "max": 50000,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_8946e461345344b0a587e1f191555265",
-            "value": 50000
-          }
-        },
-        "f0ada7e10008418ca6f99e8f8f508de4": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_5413477475a14c64bcbdd7c904b3468f",
-            "placeholder": "​",
-            "style": "IPY_MODEL_9487c761e6a74e9a89474ce166996349",
-            "value": " 49965/50000 [00:08&lt;00:00, 10500.02 examples/s]"
-          }
-        },
-        "8c8f939312d94b16a2b7935830b7c21c": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": "hidden",
-            "width": null
-          }
-        },
-        "d4cf114525774233aa1737563feabb1d": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "06825c2cb3884aefae1b140206160a90": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "a4bbb500723d4c04ad90df472b38f8f5": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "8946e461345344b0a587e1f191555265": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "5413477475a14c64bcbdd7c904b3468f": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "9487c761e6a74e9a89474ce166996349": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "39254a0779204cdeab4f6137f5dc08f1": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_1f01f9fb1dd049608955f7b74125df46",
-              "IPY_MODEL_5f9c70ec2fa245c0af65060b0e1e6437",
-              "IPY_MODEL_502b9aea682a4581bf56665bd34e3865"
-            ],
-            "layout": "IPY_MODEL_e73d7be5e93c460db88f6ca51a9f321f"
-          }
-        },
-        "1f01f9fb1dd049608955f7b74125df46": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_46d75b448fa74b0e8c788910c96a889a",
-            "placeholder": "​",
-            "style": "IPY_MODEL_80acff6e8a1c47f7a86314cf5c94eda7",
-            "value": "100%"
-          }
-        },
-        "5f9c70ec2fa245c0af65060b0e1e6437": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_90a8b7517edf4ac8b229b6cba148f5d6",
-            "max": 3,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_82855909d7de4efba3003dd17a139331",
-            "value": 3
-          }
-        },
-        "502b9aea682a4581bf56665bd34e3865": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_c5f8f58d80c64219adc509fbd873ab58",
-            "placeholder": "​",
-            "style": "IPY_MODEL_2ac12528c0414261b47d10059dc9a5e8",
-            "value": " 3/3 [00:00&lt;00:00, 116.91it/s]"
-          }
-        },
-        "e73d7be5e93c460db88f6ca51a9f321f": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "46d75b448fa74b0e8c788910c96a889a": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "80acff6e8a1c47f7a86314cf5c94eda7": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "90a8b7517edf4ac8b229b6cba148f5d6": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "82855909d7de4efba3003dd17a139331": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "c5f8f58d80c64219adc509fbd873ab58": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "2ac12528c0414261b47d10059dc9a5e8": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "d8acb0e0dace410d9b1995440e4a31a0": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_4305cb8b9a484f82817a8213a5159293",
-              "IPY_MODEL_efda31d2cca342e69c519abbb7b6293d",
-              "IPY_MODEL_0ff562b22cbc4160bef1ff3d443e1121"
-            ],
-            "layout": "IPY_MODEL_a77a3d00c617482593e7801cd4be0ba9"
-          }
-        },
-        "4305cb8b9a484f82817a8213a5159293": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_2d73df70c12d4b8a99e4f547b575d9ef",
-            "placeholder": "​",
-            "style": "IPY_MODEL_c90524d44fde46358ef4fd8a52500aca",
-            "value": "100%"
-          }
-        },
-        "efda31d2cca342e69c519abbb7b6293d": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_ac43b71c6a48484ca042f3d57ac6220e",
-            "max": 25,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_0260cea216c04e60b95f7a6155f9921f",
-            "value": 25
-          }
-        },
-        "0ff562b22cbc4160bef1ff3d443e1121": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_42cb934fb20d4eb19736291762c2a016",
-            "placeholder": "​",
-            "style": "IPY_MODEL_88b0ce9ec73d438dae320c9988b5976e",
-            "value": " 25/25 [00:16&lt;00:00,  1.57ba/s]"
-          }
-        },
-        "a77a3d00c617482593e7801cd4be0ba9": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "2d73df70c12d4b8a99e4f547b575d9ef": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "c90524d44fde46358ef4fd8a52500aca": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "ac43b71c6a48484ca042f3d57ac6220e": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "0260cea216c04e60b95f7a6155f9921f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "42cb934fb20d4eb19736291762c2a016": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "88b0ce9ec73d438dae320c9988b5976e": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "402c2a8a2ee44dffb3a01eaec20c98c3": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_d7527d02529e4016808ceac038658db9",
-              "IPY_MODEL_0b93d82eab7b4198abdcf61642c0163c",
-              "IPY_MODEL_f821c27fa0ce41c1b56f4886d1b9c3a3"
-            ],
-            "layout": "IPY_MODEL_6429bca686c84873b84dc87b48c3ae74"
-          }
-        },
-        "d7527d02529e4016808ceac038658db9": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_0cd49ed9515747e8a75d52f5b6639cf8",
-            "placeholder": "​",
-            "style": "IPY_MODEL_36d76008033d465082fcc521872674ab",
-            "value": "100%"
-          }
-        },
-        "0b93d82eab7b4198abdcf61642c0163c": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_3e2470174127483a97855e6292538887",
-            "max": 25,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_36e1440bf1c645209717952092df75bb",
-            "value": 25
-          }
-        },
-        "f821c27fa0ce41c1b56f4886d1b9c3a3": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_717cdc92457e4e2399ea8aac1ac59126",
-            "placeholder": "​",
-            "style": "IPY_MODEL_04ec6007983d4e36b99aaa6cd7ddfd27",
-            "value": " 25/25 [00:16&lt;00:00,  1.55ba/s]"
-          }
-        },
-        "6429bca686c84873b84dc87b48c3ae74": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "0cd49ed9515747e8a75d52f5b6639cf8": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "36d76008033d465082fcc521872674ab": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "3e2470174127483a97855e6292538887": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "36e1440bf1c645209717952092df75bb": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "717cdc92457e4e2399ea8aac1ac59126": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "04ec6007983d4e36b99aaa6cd7ddfd27": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "93d4ceef1f944dd1afa2300c6e87b0af": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_9b66c3e18812483892d50349a98b676e",
-              "IPY_MODEL_2a5d5adedda94471b04062ca18c12fb4",
-              "IPY_MODEL_5dfbf50aa4dd470d9c1807094563e2bd"
-            ],
-            "layout": "IPY_MODEL_034f96d6b9de4340b5d1d5abde3e530a"
-          }
-        },
-        "9b66c3e18812483892d50349a98b676e": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_5123fab80f18495eb1187da9ac8ba2a5",
-            "placeholder": "​",
-            "style": "IPY_MODEL_d48dcef075354dca8b45a0223e7850c8",
-            "value": "100%"
-          }
-        },
-        "2a5d5adedda94471b04062ca18c12fb4": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_5d05a5ce506b4dee92d9ed96b954bd2c",
-            "max": 50,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_383db47487d24849b5af562e4a2cace6",
-            "value": 50
-          }
-        },
-        "5dfbf50aa4dd470d9c1807094563e2bd": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_5a1094d2e3af415fa9fff810e4c552cd",
-            "placeholder": "​",
-            "style": "IPY_MODEL_157d00c209f4433095ace959efc620f8",
-            "value": " 50/50 [00:33&lt;00:00,  1.40ba/s]"
-          }
-        },
-        "034f96d6b9de4340b5d1d5abde3e530a": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "5123fab80f18495eb1187da9ac8ba2a5": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "d48dcef075354dca8b45a0223e7850c8": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "5d05a5ce506b4dee92d9ed96b954bd2c": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "383db47487d24849b5af562e4a2cace6": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "5a1094d2e3af415fa9fff810e4c552cd": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "157d00c209f4433095ace959efc620f8": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "719427ef24264e4e865c9cb17734ca71": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_bd6a5aca026c41e78a6ede48e1a711de",
-              "IPY_MODEL_aec7992f7c2d422a80b4a80124e4ebd1",
-              "IPY_MODEL_0b822ee14a934f048b9f71f6cd978909"
-            ],
-            "layout": "IPY_MODEL_a4b8f74456b9402cb9c30119efc4402c"
-          }
-        },
-        "bd6a5aca026c41e78a6ede48e1a711de": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_85e2273f090144939d1b1bda7110c07c",
-            "placeholder": "​",
-            "style": "IPY_MODEL_3491072932d14859b154215b1f87c32d",
-            "value": "Downloading builder script: 100%"
-          }
-        },
-        "aec7992f7c2d422a80b4a80124e4ebd1": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_41389be4835045a1b329b510b67e3649",
-            "max": 4203,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_521066b916a948abb6ba7509b6ec1777",
-            "value": 4203
-          }
-        },
-        "0b822ee14a934f048b9f71f6cd978909": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_6e12244785724ac5a6312a3be758b078",
-            "placeholder": "​",
-            "style": "IPY_MODEL_3b9ce6fc6c0a44edb61605251fe5c649",
-            "value": " 4.20k/4.20k [00:00&lt;00:00, 277kB/s]"
-          }
-        },
-        "a4b8f74456b9402cb9c30119efc4402c": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "85e2273f090144939d1b1bda7110c07c": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "3491072932d14859b154215b1f87c32d": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "41389be4835045a1b329b510b67e3649": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "521066b916a948abb6ba7509b6ec1777": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "6e12244785724ac5a6312a3be758b078": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "3b9ce6fc6c0a44edb61605251fe5c649": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "604728efd7124bfbba708fd989582fe6": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_678ae63c0c354be886a4eb99ecb197dd",
-              "IPY_MODEL_367b69d3db5f4bba9e3d57d8ae3fe0ce",
-              "IPY_MODEL_9d6b715fe2ff419bb0e9e0f9817ed280"
-            ],
-            "layout": "IPY_MODEL_6a758b1b2d024750ab05ac248ce1f80a"
-          }
-        },
-        "678ae63c0c354be886a4eb99ecb197dd": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_b2c21ad1951a4742850955a24a9cfcdd",
-            "placeholder": "​",
-            "style": "IPY_MODEL_1d96b24c4aed45f5a3ac035cc8a532c5",
-            "value": "Downloading (…)lve/main/config.json: 100%"
-          }
-        },
-        "367b69d3db5f4bba9e3d57d8ae3fe0ce": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_8441bc42dfa54fcd80bd9cb23b855348",
-            "max": 829,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_5c81ecb4f86644f1857de6adeed504b4",
-            "value": 829
-          }
-        },
-        "9d6b715fe2ff419bb0e9e0f9817ed280": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_3165019540854f7e9fc0a66768a49bc6",
-            "placeholder": "​",
-            "style": "IPY_MODEL_626ec59b6f814639a4620288371b94b5",
-            "value": " 829/829 [00:00&lt;00:00, 41.4kB/s]"
-          }
-        },
-        "6a758b1b2d024750ab05ac248ce1f80a": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "b2c21ad1951a4742850955a24a9cfcdd": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "1d96b24c4aed45f5a3ac035cc8a532c5": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "8441bc42dfa54fcd80bd9cb23b855348": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "5c81ecb4f86644f1857de6adeed504b4": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "3165019540854f7e9fc0a66768a49bc6": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "626ec59b6f814639a4620288371b94b5": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "3fad33f0a8b241e483a20037a73d6d91": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_ad62af65a32f42d1801c6a157cf82639",
-              "IPY_MODEL_5c73b74a7ee948c69981a0e8d4788db6",
-              "IPY_MODEL_8ff018e97972473093adc4166760cf1d"
-            ],
-            "layout": "IPY_MODEL_75883b5e8a2741e7a4e4d1799bd1e084"
-          }
-        },
-        "ad62af65a32f42d1801c6a157cf82639": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_c0408e189aa44fbd8e97a8dbc6931444",
-            "placeholder": "​",
-            "style": "IPY_MODEL_ce623be3c2c0469fb85db8d953fd8940",
-            "value": "Downloading (…)&quot;pytorch_model.bin&quot;;: 100%"
-          }
-        },
-        "5c73b74a7ee948c69981a0e8d4788db6": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_8adb8c0801594eb8bef065d1b2daf0bb",
-            "max": 433316646,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_99c0d9fd187846a6aaf61088eb7c566a",
-            "value": 433316646
-          }
-        },
-        "8ff018e97972473093adc4166760cf1d": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_9aa2d79693d748d59c11f3037b556048",
-            "placeholder": "​",
-            "style": "IPY_MODEL_59d0c7a1fe6b4a8c9f3d8d9d27f7ceac",
-            "value": " 433M/433M [00:14&lt;00:00, 19.7MB/s]"
-          }
-        },
-        "75883b5e8a2741e7a4e4d1799bd1e084": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "c0408e189aa44fbd8e97a8dbc6931444": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "ce623be3c2c0469fb85db8d953fd8940": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "8adb8c0801594eb8bef065d1b2daf0bb": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "99c0d9fd187846a6aaf61088eb7c566a": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "9aa2d79693d748d59c11f3037b556048": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "59d0c7a1fe6b4a8c9f3d8d9d27f7ceac": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "1422ab118aeb45359be121ae753f431b": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_fc985bef023740beb783e793d4d9298c",
-              "IPY_MODEL_0aaab6aad08a4e55a220bfdd401a3e84",
-              "IPY_MODEL_8c7e48253e6e4ac7bbee5eca600e5af2"
-            ],
-            "layout": "IPY_MODEL_ae599e9537454f6e8aabbd1d44c9afd9"
-          }
-        },
-        "fc985bef023740beb783e793d4d9298c": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_7de5829e22bc4de794e3296f343897f5",
-            "placeholder": "​",
-            "style": "IPY_MODEL_05201d7c6d34421099fcda145e9c3b69",
-            "value": "Downloading (…)okenizer_config.json: 100%"
-          }
-        },
-        "0aaab6aad08a4e55a220bfdd401a3e84": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_5413c943e40e46cfade34ba453d77dbf",
-            "max": 59,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_9a055b38f6054d9284fd48a8d272d867",
-            "value": 59
-          }
-        },
-        "8c7e48253e6e4ac7bbee5eca600e5af2": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_52042c14e1eb4465be59a45d49a8cea4",
-            "placeholder": "​",
-            "style": "IPY_MODEL_b1f4c471c262491790560af0f8d93f45",
-            "value": " 59.0/59.0 [00:00&lt;00:00, 3.53kB/s]"
-          }
-        },
-        "ae599e9537454f6e8aabbd1d44c9afd9": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "7de5829e22bc4de794e3296f343897f5": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "05201d7c6d34421099fcda145e9c3b69": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "5413c943e40e46cfade34ba453d77dbf": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "9a055b38f6054d9284fd48a8d272d867": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "52042c14e1eb4465be59a45d49a8cea4": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "b1f4c471c262491790560af0f8d93f45": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "8910247048d64343a8e8937d96d72e9b": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_7d5cae2d1db04865af62eef7b8634376",
-              "IPY_MODEL_23ac5178d5d94666ad9469779b943da9",
-              "IPY_MODEL_e85f8086a0c74692b43da84e8655eba5"
-            ],
-            "layout": "IPY_MODEL_34fc513f2ee043a8b19cc115d97bc930"
-          }
-        },
-        "7d5cae2d1db04865af62eef7b8634376": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_6fc5ecfac8144a0e8d137d1f5bf8cee2",
-            "placeholder": "​",
-            "style": "IPY_MODEL_0f4ac12493c44672846275ce88b28a58",
-            "value": "Downloading (…)solve/main/vocab.txt: 100%"
-          }
-        },
-        "23ac5178d5d94666ad9469779b943da9": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_eb004831fc404b67ae556c166a9b5d69",
-            "max": 213450,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_0fb123a5c5c4405f807a98a34ebdf93f",
-            "value": 213450
-          }
-        },
-        "e85f8086a0c74692b43da84e8655eba5": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_bc6d1718b78c447890283a1dbebc8d23",
-            "placeholder": "​",
-            "style": "IPY_MODEL_4e54c874458e429e96aa24d55d7344f3",
-            "value": " 213k/213k [00:00&lt;00:00, 311kB/s]"
-          }
-        },
-        "34fc513f2ee043a8b19cc115d97bc930": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "6fc5ecfac8144a0e8d137d1f5bf8cee2": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "0f4ac12493c44672846275ce88b28a58": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "eb004831fc404b67ae556c166a9b5d69": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "0fb123a5c5c4405f807a98a34ebdf93f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "bc6d1718b78c447890283a1dbebc8d23": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "4e54c874458e429e96aa24d55d7344f3": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "bf1dcc3d402f479193ae0e16a7d51515": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_6adca99ab96a449c9e224139ab4bb7ba",
-              "IPY_MODEL_2d2b356d83b14a6082dea356586bc2c8",
-              "IPY_MODEL_03437bd4548140b1a4d5567749026694"
-            ],
-            "layout": "IPY_MODEL_aca4af16745841ada91a217d9564f123"
-          }
-        },
-        "6adca99ab96a449c9e224139ab4bb7ba": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_cea9e35e91e34124be33a525caf5048d",
-            "placeholder": "​",
-            "style": "IPY_MODEL_2746340f025f41f09585c10a59376191",
-            "value": "Downloading (…)in/added_tokens.json: 100%"
-          }
-        },
-        "2d2b356d83b14a6082dea356586bc2c8": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_beeb5a4e6c4746af86d3d6869c076667",
-            "max": 2,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_bc3508b4bf9840e5968248774dab3328",
-            "value": 2
-          }
-        },
-        "03437bd4548140b1a4d5567749026694": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_42493a24fd4d41fcb8284cf33a19e6f0",
-            "placeholder": "​",
-            "style": "IPY_MODEL_f3e4ddbd79eb44cc8bf7316a956ca43f",
-            "value": " 2.00/2.00 [00:00&lt;00:00, 102B/s]"
-          }
-        },
-        "aca4af16745841ada91a217d9564f123": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "cea9e35e91e34124be33a525caf5048d": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "2746340f025f41f09585c10a59376191": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "beeb5a4e6c4746af86d3d6869c076667": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "bc3508b4bf9840e5968248774dab3328": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "42493a24fd4d41fcb8284cf33a19e6f0": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "f3e4ddbd79eb44cc8bf7316a956ca43f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "b95668a1e54940318d875961ad937622": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_f87b6ccdba284777ac642ca1e7357ee1",
-              "IPY_MODEL_d61d6d267e2a41b2b5a247c7a6ec1830",
-              "IPY_MODEL_ff49d929d7404b4c86dcf1498b56e7fb"
-            ],
-            "layout": "IPY_MODEL_7f9e60151f3e47a2a23171e04c07b2d4"
-          }
-        },
-        "f87b6ccdba284777ac642ca1e7357ee1": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_0232c7e956e84f768c78b50fed77998c",
-            "placeholder": "​",
-            "style": "IPY_MODEL_1f6d36af76a54f35853398b0e12a8c2f",
-            "value": "Downloading (…)cial_tokens_map.json: 100%"
-          }
-        },
-        "d61d6d267e2a41b2b5a247c7a6ec1830": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_9e6ae68f81af4b8d8f751a984ce2f195",
-            "max": 112,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_ed09dfa0140c4208afc2d645f471a1f4",
-            "value": 112
-          }
-        },
-        "ff49d929d7404b4c86dcf1498b56e7fb": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_cc16b48c9ee6447697d1127a8803476c",
-            "placeholder": "​",
-            "style": "IPY_MODEL_76e9bef7bdad4344a35b35b082f251f6",
-            "value": " 112/112 [00:00&lt;00:00, 5.68kB/s]"
-          }
-        },
-        "7f9e60151f3e47a2a23171e04c07b2d4": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "0232c7e956e84f768c78b50fed77998c": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "1f6d36af76a54f35853398b0e12a8c2f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "9e6ae68f81af4b8d8f751a984ce2f195": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "ed09dfa0140c4208afc2d645f471a1f4": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "cc16b48c9ee6447697d1127a8803476c": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "76e9bef7bdad4344a35b35b082f251f6": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        }
-      }
-    }
-  },
-  "nbformat": 4,
-  "nbformat_minor": 0
-}
\ No newline at end of file
diff --git a/slides/Master LiTL Course 7 - Current challenges - 16022023.pdf b/slides/Master LiTL Course 7 - Current challenges - 16022023.pdf
deleted file mode 100644
index 0a3e097bcf74c50fefe737746673746010333824..0000000000000000000000000000000000000000
Binary files a/slides/Master LiTL Course 7 - Current challenges - 16022023.pdf and /dev/null differ
diff --git a/slides/Master LiTL_ Course 1 - 24112022.pdf b/slides/Master LiTL_ Course 1 - 24112022.pdf
deleted file mode 100644
index 8c6fcf292c60c9de94860563dda7fdb849737b73..0000000000000000000000000000000000000000
Binary files a/slides/Master LiTL_ Course 1 - 24112022.pdf and /dev/null differ
diff --git a/slides/Master LiTL_ Course 3 - 0501023.pdf b/slides/Master LiTL_ Course 3 - 0501023.pdf
deleted file mode 100644
index 496f42e6448b9bd210799b43f9f6fcc58ab8e858..0000000000000000000000000000000000000000
Binary files a/slides/Master LiTL_ Course 3 - 0501023.pdf and /dev/null differ
diff --git a/slides/Master LiTL_ Course 4 - 12012023.pdf b/slides/Master LiTL_ Course 4 - 12012023.pdf
deleted file mode 100644
index 043f2c2440cb25776ac56692b67527eb56e468a0..0000000000000000000000000000000000000000
Binary files a/slides/Master LiTL_ Course 4 - 12012023.pdf and /dev/null differ
diff --git a/slides/Master LiTL_ Course 5 - CNN, RNN - 02022023.pdf b/slides/Master LiTL_ Course 5 - CNN, RNN - 02022023.pdf
deleted file mode 100644
index af0993a83c1a4095dfcb9a6d68c54b9997f67306..0000000000000000000000000000000000000000
Binary files a/slides/Master LiTL_ Course 5 - CNN, RNN - 02022023.pdf and /dev/null differ
diff --git a/slides/Master LiTL_Course 2 - 30112022.pdf b/slides/Master LiTL_Course 2 - 30112022.pdf
deleted file mode 100644
index 6a4d0aa48cb589a48cc2f27e32c9a3bd7ff48b57..0000000000000000000000000000000000000000
Binary files a/slides/Master LiTL_Course 2 - 30112022.pdf and /dev/null differ
diff --git a/slides/Master LiTL_Course 6 - Seq2seq and Transformers - 09022023.pdf b/slides/Master LiTL_Course 6 - Seq2seq and Transformers - 09022023.pdf
deleted file mode 100644
index db1027cad11d4e0bf6f94f560f1bacce89ba5d83..0000000000000000000000000000000000000000
Binary files a/slides/Master LiTL_Course 6 - Seq2seq and Transformers - 09022023.pdf and /dev/null differ