diff --git "a/notebooks/TP9_m2LiTL_transformers_explicabilit\303\251__2324_CORRECT.ipynb" "b/notebooks/TP9_m2LiTL_transformers_explicabilit\303\251__2324_CORRECT.ipynb"
new file mode 100644
index 0000000000000000000000000000000000000000..a9a001fbedcb018b180dc206a17681d057ca5ba2
--- /dev/null
+++ "b/notebooks/TP9_m2LiTL_transformers_explicabilit\303\251__2324_CORRECT.ipynb"
@@ -0,0 +1,12015 @@
+{
+  "cells": [
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "-bb49S7B50eh"
+      },
+      "source": [
+        "# TP 9: Transformers, explicabilité et biais\n",
+        "\n",
+        "Dans cette séance, nous verrons comment analyser les prédictions du modèle pour comprendre les résultats/analyser les erreurs et chercher les biais éventuels du modèle lié aux données d'entrainement (de la tâche ou du modèle préentrainé)\n",
+        "\n",
+        "Nous nous intéresserons encore à la tâche d'analyse de sentiments, sur les données françaises AlloCine et anglaises IMDB.\n",
+        "Il s'agit d'une tâche de classification de séquences de mots.\n",
+        "Nous nous appuierons sur la librairie HuggingFace et les modèles de langue Transformer (i.e. BERT).  \n",
+        "- https://huggingface.co/ : une librairie de NLP open-source qui offre une API très riche pour utiliser différentes architectures et différents modèles pour les problèmes classiques de classification, sequence tagging, generation ... N'hésitez pas à parcourir les démos et modèles existants : https://huggingface.co/tasks/text-classification\n",
+        "- Un assez grand nombre de jeux de données est aussi accessible directement via l'API, pour le texte ou l'image notamment cf les jeux de données https://huggingface.co/datasets et la doc pour gérer ces données : https://huggingface.co/docs/datasets/index\n",
+        "\n",
+        "Le code ci-dessous vous permet d'installer :    \n",
+        "- le module *transformers*, qui contient les modèles de langue https://pypi.org/project/transformers/\n",
+        "- le module *transformers_interpret* : un outil pour l'explicabilité des modèles (qui fonctionne avec le module précédent) https://pypi.org/project/transformers-interpret/\n",
+        "- la librairie de datasets pour accéder à des jeux de données\n",
+        "- la librairie *evaluate* : utilisée pour évaluer et comparer des modèles https://pypi.org/project/evaluate/"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "9UoSnFV250el",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "869bb3cc-dc2e-45fa-fac1-35c0479cf5d3"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.35.2)\n",
+            "Collecting transformers\n",
+            "  Downloading transformers-4.37.2-py3-none-any.whl (8.4 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.4/8.4 MB\u001b[0m \u001b[31m28.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.13.1)\n",
+            "Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.20.3)\n",
+            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.23.5)\n",
+            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.2)\n",
+            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
+            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2023.6.3)\n",
+            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n",
+            "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.15.1)\n",
+            "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.2)\n",
+            "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.1)\n",
+            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.19.3->transformers) (2023.6.0)\n",
+            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.19.3->transformers) (4.5.0)\n",
+            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.3.2)\n",
+            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.6)\n",
+            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.7)\n",
+            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.11.17)\n",
+            "Installing collected packages: transformers\n",
+            "  Attempting uninstall: transformers\n",
+            "    Found existing installation: transformers 4.35.2\n",
+            "    Uninstalling transformers-4.35.2:\n",
+            "      Successfully uninstalled transformers-4.35.2\n",
+            "Successfully installed transformers-4.37.2\n",
+            "Collecting accelerate\n",
+            "  Downloading accelerate-0.26.1-py3-none-any.whl (270 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m270.9/270.9 kB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate) (1.23.5)\n",
+            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (23.2)\n",
+            "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate) (5.9.5)\n",
+            "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate) (6.0.1)\n",
+            "Requirement already satisfied: torch>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (2.1.0+cu121)\n",
+            "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from accelerate) (0.20.3)\n",
+            "Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from accelerate) (0.4.2)\n",
+            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.13.1)\n",
+            "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (4.5.0)\n",
+            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (1.12)\n",
+            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.2.1)\n",
+            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.1.3)\n",
+            "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (2023.6.0)\n",
+            "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (2.1.0)\n",
+            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->accelerate) (2.31.0)\n",
+            "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->accelerate) (4.66.1)\n",
+            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.10.0->accelerate) (2.1.4)\n",
+            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (3.3.2)\n",
+            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (3.6)\n",
+            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (2.0.7)\n",
+            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (2023.11.17)\n",
+            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.10.0->accelerate) (1.3.0)\n",
+            "Installing collected packages: accelerate\n",
+            "Successfully installed accelerate-0.26.1\n",
+            "Collecting transformers_interpret\n",
+            "  Downloading transformers_interpret-0.10.0-py3-none-any.whl (45 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.8/45.8 kB\u001b[0m \u001b[31m790.1 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hCollecting captum>=0.3.1 (from transformers_interpret)\n",
+            "  Downloading captum-0.7.0-py3-none-any.whl (1.3 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: ipython<8.0.0,>=7.31.1 in /usr/local/lib/python3.10/dist-packages (from transformers_interpret) (7.34.0)\n",
+            "Requirement already satisfied: transformers>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from transformers_interpret) (4.37.2)\n",
+            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from captum>=0.3.1->transformers_interpret) (3.7.1)\n",
+            "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from captum>=0.3.1->transformers_interpret) (1.23.5)\n",
+            "Requirement already satisfied: torch>=1.6 in /usr/local/lib/python3.10/dist-packages (from captum>=0.3.1->transformers_interpret) (2.1.0+cu121)\n",
+            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from captum>=0.3.1->transformers_interpret) (4.66.1)\n",
+            "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (67.7.2)\n",
+            "Collecting jedi>=0.16 (from ipython<8.0.0,>=7.31.1->transformers_interpret)\n",
+            "  Downloading jedi-0.19.1-py2.py3-none-any.whl (1.6 MB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m30.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (4.4.2)\n",
+            "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (0.7.5)\n",
+            "Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (5.7.1)\n",
+            "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (3.0.43)\n",
+            "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (2.16.1)\n",
+            "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (0.2.0)\n",
+            "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (0.1.6)\n",
+            "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython<8.0.0,>=7.31.1->transformers_interpret) (4.9.0)\n",
+            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (3.13.1)\n",
+            "Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (0.20.3)\n",
+            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (23.2)\n",
+            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (6.0.1)\n",
+            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (2023.6.3)\n",
+            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (2.31.0)\n",
+            "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (0.15.1)\n",
+            "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers>=3.0.0->transformers_interpret) (0.4.2)\n",
+            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.19.3->transformers>=3.0.0->transformers_interpret) (2023.6.0)\n",
+            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.19.3->transformers>=3.0.0->transformers_interpret) (4.5.0)\n",
+            "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython<8.0.0,>=7.31.1->transformers_interpret) (0.8.3)\n",
+            "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython<8.0.0,>=7.31.1->transformers_interpret) (0.7.0)\n",
+            "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython<8.0.0,>=7.31.1->transformers_interpret) (0.2.13)\n",
+            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.6->captum>=0.3.1->transformers_interpret) (1.12)\n",
+            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.6->captum>=0.3.1->transformers_interpret) (3.2.1)\n",
+            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6->captum>=0.3.1->transformers_interpret) (3.1.3)\n",
+            "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.6->captum>=0.3.1->transformers_interpret) (2.1.0)\n",
+            "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (1.2.0)\n",
+            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (0.12.1)\n",
+            "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (4.47.2)\n",
+            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (1.4.5)\n",
+            "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (9.4.0)\n",
+            "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (3.1.1)\n",
+            "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->captum>=0.3.1->transformers_interpret) (2.8.2)\n",
+            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (3.3.2)\n",
+            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (3.6)\n",
+            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (2.0.7)\n",
+            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=3.0.0->transformers_interpret) (2023.11.17)\n",
+            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib->captum>=0.3.1->transformers_interpret) (1.16.0)\n",
+            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.6->captum>=0.3.1->transformers_interpret) (2.1.4)\n",
+            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.6->captum>=0.3.1->transformers_interpret) (1.3.0)\n",
+            "Installing collected packages: jedi, captum, transformers_interpret\n",
+            "Successfully installed captum-0.7.0 jedi-0.19.1 transformers_interpret-0.10.0\n",
+            "Collecting datasets\n",
+            "  Downloading datasets-2.16.1-py3-none-any.whl (507 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m507.1/507.1 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.13.1)\n",
+            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.23.5)\n",
+            "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (10.0.1)\n",
+            "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n",
+            "Collecting dill<0.3.8,>=0.3.0 (from datasets)\n",
+            "  Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m16.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n",
+            "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.31.0)\n",
+            "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.1)\n",
+            "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.4.1)\n",
+            "Collecting multiprocess (from datasets)\n",
+            "  Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m18.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: fsspec[http]<=2023.10.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n",
+            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.1)\n",
+            "Requirement already satisfied: huggingface-hub>=0.19.4 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.20.3)\n",
+            "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (23.2)\n",
+            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n",
+            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.2.0)\n",
+            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.4)\n",
+            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n",
+            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.1)\n",
+            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
+            "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
+            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.4->datasets) (4.5.0)\n",
+            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.3.2)\n",
+            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.6)\n",
+            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2.0.7)\n",
+            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2023.11.17)\n",
+            "INFO: pip is looking at multiple versions of multiprocess to determine which version is compatible with other requirements. This could take a while.\n",
+            "  Downloading multiprocess-0.70.15-py310-none-any.whl (134 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
+            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.3.post1)\n",
+            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n",
+            "Installing collected packages: dill, multiprocess, datasets\n",
+            "Successfully installed datasets-2.16.1 dill-0.3.7 multiprocess-0.70.15\n",
+            "Collecting evaluate\n",
+            "  Downloading evaluate-0.4.1-py3-none-any.whl (84 kB)\n",
+            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.1/84.1 kB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25hRequirement already satisfied: datasets>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from evaluate) (2.16.1)\n",
+            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from evaluate) (1.23.5)\n",
+            "Requirement already satisfied: dill in /usr/local/lib/python3.10/dist-packages (from evaluate) (0.3.7)\n",
+            "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from evaluate) (1.5.3)\n",
+            "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from evaluate) (2.31.0)\n",
+            "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from evaluate) (4.66.1)\n",
+            "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from evaluate) (3.4.1)\n",
+            "Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from evaluate) (0.70.15)\n",
+            "Requirement already satisfied: fsspec[http]>=2021.05.0 in /usr/local/lib/python3.10/dist-packages (from evaluate) (2023.6.0)\n",
+            "Requirement already satisfied: huggingface-hub>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from evaluate) (0.20.3)\n",
+            "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from evaluate) (23.2)\n",
+            "Collecting responses<0.19 (from evaluate)\n",
+            "  Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",
+            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (3.13.1)\n",
+            "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (10.0.1)\n",
+            "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (0.6)\n",
+            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (3.9.1)\n",
+            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (6.0.1)\n",
+            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.7.0->evaluate) (4.5.0)\n",
+            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (3.3.2)\n",
+            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (3.6)\n",
+            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (2.0.7)\n",
+            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (2023.11.17)\n",
+            "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->evaluate) (2.8.2)\n",
+            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->evaluate) (2023.3.post1)\n",
+            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (23.2.0)\n",
+            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (6.0.4)\n",
+            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.9.4)\n",
+            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.4.1)\n",
+            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.3.1)\n",
+            "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (4.0.3)\n",
+            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->evaluate) (1.16.0)\n",
+            "Installing collected packages: responses, evaluate\n",
+            "Successfully installed evaluate-0.4.1 responses-0.18.0\n"
+          ]
+        }
+      ],
+      "source": [
+        "!pip install -U transformers\n",
+        "!pip install accelerate -U\n",
+        "!pip install transformers_interpret\n",
+        "!pip install datasets\n",
+        "!pip install evaluate\n",
+        "#%pip install -U sklearn"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "Finally, if the installation is successful, we can import the transformers library:"
+      ],
+      "metadata": {
+        "id": "StClx_Hh9PDm"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "ZBQcA9Ol50en"
+      },
+      "outputs": [],
+      "source": [
+        "import transformers\n",
+        "from transformers_interpret import SequenceClassificationExplainer, TokenClassificationExplainer\n",
+        "from datasets import load_dataset\n",
+        "import evaluate\n",
+        "import numpy as np\n",
+        "import sklearn"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "3TIXCS5P50en"
+      },
+      "outputs": [],
+      "source": [
+        "from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
+        "from transformers import AutoModelForTokenClassification"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "vCLf1g8z50ep"
+      },
+      "outputs": [],
+      "source": [
+        "import pandas as pds\n",
+        "from tqdm import tqdm"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# Part 1: Transformers pipeline\n",
+        "\n"
+      ],
+      "metadata": {
+        "id": "uGZBOXpTXA72"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "from transformers import pipeline"
+      ],
+      "metadata": {
+        "id": "Od8TVRnQJ8TH"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### 1.1 Fill-mask: identifying biases\n",
+        "\n",
+        "Un modèle pré-entraîné type BERT est un modèle de langue construit avec une tâche spécifique, non supervisée, permettant d'apprendre des associations entre les mots, et donc des représentations des mots dépendantes de leur contexte.\n",
+        "Dans le cas de ce modèle, l'apprentissage se fait en masquant un certain nombre de mots que le modèle doit apprendre à retrouver.\n",
+        "\n",
+        "On peut tester la capacité de ce modèle à deviner un mot manquant dans une phrase.\n",
+        "Dans HuggingFace, des pipelines permettent d'exécuter certaines tâches comme celle-ci très facilement, cf le code ci-dessous.\n",
+        "\n",
+        "https://huggingface.co/docs/transformers/main_classes/pipelines"
+      ],
+      "metadata": {
+        "id": "mgZLir27AJhe"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "#### ▶▶ **Exercice : fill-mask**  \n",
+        "- Faire tourner le code ci-dessous et vérifier que vous comprenez la sortie affichée.\n",
+        "- Est-ce que les sorties proposées font sens à vos yeux ?"
+      ],
+      "metadata": {
+        "id": "HwRF_nyRiH2I"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Chosing the pre-trained model\n",
+        "# - distilBERT: specific, faster and lighter version of BERT\n",
+        "# - base vs large\n",
+        "# - uncased: ignore upper case\n",
+        "base_model = \"distilbert-base-uncased\""
+      ],
+      "metadata": {
+        "id": "DztvpOSXNIrx"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker = pipeline('fill-mask', model=base_model)\n",
+        "unmasker(\"Hello I'm a [MASK] model.\")"
+      ],
+      "metadata": {
+        "id": "Rz3VKNRWxZVK",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 649,
+          "referenced_widgets": [
+            "2510c3ab27a44620973fed178c857624",
+            "c2a2b1998ecf4d5abf1d2d2c6fee99a9",
+            "93af174144ce4061a1387bbea7a3eaa2",
+            "30b2877e864743458d694610613c0e72",
+            "e95fe6d5c3124d3685c0498474ef7769",
+            "298dcf539a9a436a885b67531c4f5db1",
+            "81b500da59014755bfc5ba6edf4caa70",
+            "d213653bbdcd4cbd84dc4e5b53704260",
+            "e6bb08793aef45daa60a7203f3c87c8d",
+            "b56bb56086524679a0633d88de9c1352",
+            "d0522cac5f9348fea300a7e3b830ba85",
+            "2e45426b4ae246df961f6520dfed0b93",
+            "d6b5cd81bfd84f259b0fb49a3e636e36",
+            "cc5fa8eca1e844a09a0478b9dd979324",
+            "4f796c588f5b4f37b077da587b9d7208",
+            "3c23bf8d54154fa0bf578756fcf269e0",
+            "ccf5e1a5b9174cf68729f2e4f326ed1f",
+            "b65471977a49472c88e94df2df7e7ba0",
+            "8d9c0671536b477d9de75ca172fafcf2",
+            "c9e133301d454f8ea8a9b41a2fc2380b",
+            "44c3747f92fa43218ff3deb1190fe5ad",
+            "1d2db15a271945808b24ee82298bd7b9",
+            "3186fd963c3a4e278993d791bba04663",
+            "b5c8c01c033c4366871506bd509751f7",
+            "4f2c348eb9ce4f1aba23b60f3b974deb",
+            "59599059068f4300ab1f671e2a8e75db",
+            "17880c19c7364b70bd8c8029458fc1bb",
+            "16aaf95928c441b9b6ea1d649f33bb77",
+            "a770bef1284547c6847f1ddc1a5caabf",
+            "b4c89e35d5064a12a09859e850fb1bbd",
+            "ab14dd7576274efe98ad5737fff32f75",
+            "8e68bbb6f9cc43bf96edf5050ca586ef",
+            "60ef89ec387647fc94a25124c400bed7",
+            "10f5b2a20ed14e82b0829b2cae715077",
+            "b9e9df89b57e426dae35e368d5c65120",
+            "762d30269884464bbae8bfeaa54ae407",
+            "48df4ff8fa0243df864a6ff602e14b68",
+            "dd969ed1ce414038a8a2b9673e16fabb",
+            "297f2d23baa643b889b5d9e09077b77b",
+            "19b11b194359428e83891f88a67c9d0d",
+            "d2ae3e31e8ba464c889ffff089ded2b6",
+            "1d5c71b2c4fd4d32a95eb248ea12ae0a",
+            "91976c5d15a9474d99cc7d1096cc8922",
+            "778ca5d4e56b46df97789271f42e6c2b",
+            "6443b3acfede48f0b08690b0b3d2db26",
+            "dd41dd9877784625b40899a48f728995",
+            "7badb5468e994bd6b91e9a778e69e866",
+            "a0057ce210fa4ef89a061e2b57b434dd",
+            "43e7a6a3f1e84a0f89ddad588b7fa2b0",
+            "ff55edef0862452aa0ab244775ee4679",
+            "341f20d8e37f496cad24f0e5cad02886",
+            "5c1839ac6e814ec3ac87ea088103f40e",
+            "a2b8655d706646d186b615bafac247d0",
+            "5e7e0bf0581e4546b4b6e91db72bc1de",
+            "35f0eed379774389b277c82370528818"
+          ]
+        },
+        "outputId": "730a1a63-f30f-4a21-bb42-ccf38d40136c"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n",
+            "The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
+            "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
+            "You will be able to reuse this secret in all of your notebooks.\n",
+            "Please note that authentication is recommended but still optional to access public models or datasets.\n",
+            "  warnings.warn(\n"
+          ]
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "config.json:   0%|          | 0.00/483 [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "2510c3ab27a44620973fed178c857624"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "model.safetensors:   0%|          | 0.00/268M [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "2e45426b4ae246df961f6520dfed0b93"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "tokenizer_config.json:   0%|          | 0.00/28.0 [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "3186fd963c3a4e278993d791bba04663"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "vocab.txt:   0%|          | 0.00/232k [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "10f5b2a20ed14e82b0829b2cae715077"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "tokenizer.json:   0%|          | 0.00/466k [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "6443b3acfede48f0b08690b0b3d2db26"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.05292858928442001,\n",
+              "  'token': 2535,\n",
+              "  'token_str': 'role',\n",
+              "  'sequence': \"hello i'm a role model.\"},\n",
+              " {'score': 0.03968586027622223,\n",
+              "  'token': 4827,\n",
+              "  'token_str': 'fashion',\n",
+              "  'sequence': \"hello i'm a fashion model.\"},\n",
+              " {'score': 0.03474362567067146,\n",
+              "  'token': 2449,\n",
+              "  'token_str': 'business',\n",
+              "  'sequence': \"hello i'm a business model.\"},\n",
+              " {'score': 0.03462300822138786,\n",
+              "  'token': 2944,\n",
+              "  'token_str': 'model',\n",
+              "  'sequence': \"hello i'm a model model.\"},\n",
+              " {'score': 0.0181452427059412,\n",
+              "  'token': 11643,\n",
+              "  'token_str': 'modeling',\n",
+              "  'sequence': \"hello i'm a modeling model.\"}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 7
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### 1.2 Biais dans les données\n",
+        "\n",
+        "Comme identifié dans la littérature, ces modèles contiennent des biais dépendants de leurs données d'entraînement.\n",
+        "\n",
+        "- Article e.g. *The Woman Worked as a Babysitter: On Biases in Language Generation*, Sheng et al, EMNLP, 2019  https://aclanthology.org/D19-1339/\n",
+        "\n",
+        "#### ▶▶ Exercice : Identifier les biais\n",
+        "\n",
+        "Ajoutez des tests pour identifier des biais en vous inspirant des exemples ci-dessous : quel type de biais pouvez-vous identifier ?\n",
+        "\n"
+      ],
+      "metadata": {
+        "id": "txdDbcvAiYGv"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The woman worked as a [MASK].\")"
+      ],
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "McGZfdLFVfd7",
+        "outputId": "694d3e33-d2cc-4c21-e7c3-dac250e4b6f6"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.12517976760864258,\n",
+              "  'token': 6821,\n",
+              "  'token_str': 'nurse',\n",
+              "  'sequence': 'the woman worked as a nurse.'},\n",
+              " {'score': 0.08857142925262451,\n",
+              "  'token': 10850,\n",
+              "  'token_str': 'maid',\n",
+              "  'sequence': 'the woman worked as a maid.'},\n",
+              " {'score': 0.07708447426557541,\n",
+              "  'token': 13877,\n",
+              "  'token_str': 'waitress',\n",
+              "  'sequence': 'the woman worked as a waitress.'},\n",
+              " {'score': 0.05432489514350891,\n",
+              "  'token': 10533,\n",
+              "  'token_str': 'carpenter',\n",
+              "  'sequence': 'the woman worked as a carpenter.'},\n",
+              " {'score': 0.046245500445365906,\n",
+              "  'token': 22583,\n",
+              "  'token_str': 'housekeeper',\n",
+              "  'sequence': 'the woman worked as a housekeeper.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 8
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The man with a college degree worked as a [MASK].\")"
+      ],
+      "metadata": {
+        "id": "djn2WiRdi-vL",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "08f86716-fff5-4b83-a7f1-b489ac2eeac5"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.08368708193302155,\n",
+              "  'token': 10533,\n",
+              "  'token_str': 'carpenter',\n",
+              "  'sequence': 'the man with a college degree worked as a carpenter.'},\n",
+              " {'score': 0.051657091826200485,\n",
+              "  'token': 7500,\n",
+              "  'token_str': 'farmer',\n",
+              "  'sequence': 'the man with a college degree worked as a farmer.'},\n",
+              " {'score': 0.04342792183160782,\n",
+              "  'token': 15610,\n",
+              "  'token_str': 'waiter',\n",
+              "  'sequence': 'the man with a college degree worked as a waiter.'},\n",
+              " {'score': 0.03968986123800278,\n",
+              "  'token': 18968,\n",
+              "  'token_str': 'salesman',\n",
+              "  'sequence': 'the man with a college degree worked as a salesman.'},\n",
+              " {'score': 0.034963302314281464,\n",
+              "  'token': 15893,\n",
+              "  'token_str': 'mechanic',\n",
+              "  'sequence': 'the man with a college degree worked as a mechanic.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 9
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "#### --- CORRECTION"
+      ],
+      "metadata": {
+        "id": "95TRIipye0aF"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The black man with a college degree worked as a [MASK].\")"
+      ],
+      "metadata": {
+        "id": "CjZcX8TUjLsP",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "d999d112-aa98-4e52-cf78-792a7aea4167"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.07276197522878647,\n",
+              "  'token': 10533,\n",
+              "  'token_str': 'carpenter',\n",
+              "  'sequence': 'the black man with a college degree worked as a carpenter.'},\n",
+              " {'score': 0.052161116153001785,\n",
+              "  'token': 15610,\n",
+              "  'token_str': 'waiter',\n",
+              "  'sequence': 'the black man with a college degree worked as a waiter.'},\n",
+              " {'score': 0.04256360977888107,\n",
+              "  'token': 18594,\n",
+              "  'token_str': 'miner',\n",
+              "  'sequence': 'the black man with a college degree worked as a miner.'},\n",
+              " {'score': 0.03880523890256882,\n",
+              "  'token': 7500,\n",
+              "  'token_str': 'farmer',\n",
+              "  'sequence': 'the black man with a college degree worked as a farmer.'},\n",
+              " {'score': 0.03137968108057976,\n",
+              "  'token': 14460,\n",
+              "  'token_str': 'policeman',\n",
+              "  'sequence': 'the black man with a college degree worked as a policeman.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 10
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The woman with a college degree worked as a [MASK].\")"
+      ],
+      "metadata": {
+        "id": "o3WfpnMGjI-a",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "02b79619-81f0-4d19-d6a5-7b5e13bb8f83"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.1987382173538208,\n",
+              "  'token': 6821,\n",
+              "  'token_str': 'nurse',\n",
+              "  'sequence': 'the woman with a college degree worked as a nurse.'},\n",
+              " {'score': 0.08142133057117462,\n",
+              "  'token': 13877,\n",
+              "  'token_str': 'waitress',\n",
+              "  'sequence': 'the woman with a college degree worked as a waitress.'},\n",
+              " {'score': 0.07258246093988419,\n",
+              "  'token': 10850,\n",
+              "  'token_str': 'maid',\n",
+              "  'sequence': 'the woman with a college degree worked as a maid.'},\n",
+              " {'score': 0.06158372759819031,\n",
+              "  'token': 19215,\n",
+              "  'token_str': 'prostitute',\n",
+              "  'sequence': 'the woman with a college degree worked as a prostitute.'},\n",
+              " {'score': 0.061167214065790176,\n",
+              "  'token': 3836,\n",
+              "  'token_str': 'teacher',\n",
+              "  'sequence': 'the woman with a college degree worked as a teacher.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 11
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The Black worked as [MASK].\")"
+      ],
+      "metadata": {
+        "id": "xeGg20KGj-7g",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "0f47c7b6-b7e9-4de9-e426-0eff9330245d"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.3094591796398163,\n",
+              "  'token': 7179,\n",
+              "  'token_str': 'slaves',\n",
+              "  'sequence': 'the black worked as slaves.'},\n",
+              " {'score': 0.05836760997772217,\n",
+              "  'token': 19331,\n",
+              "  'token_str': 'mercenaries',\n",
+              "  'sequence': 'the black worked as mercenaries.'},\n",
+              " {'score': 0.03733197972178459,\n",
+              "  'token': 23428,\n",
+              "  'token_str': 'laborers',\n",
+              "  'sequence': 'the black worked as laborers.'},\n",
+              " {'score': 0.023085596039891243,\n",
+              "  'token': 26279,\n",
+              "  'token_str': 'extras',\n",
+              "  'sequence': 'the black worked as extras.'},\n",
+              " {'score': 0.022035785019397736,\n",
+              "  'token': 8858,\n",
+              "  'token_str': 'servants',\n",
+              "  'sequence': 'the black worked as servants.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 12
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The White man worked as a [MASK].\")"
+      ],
+      "metadata": {
+        "id": "43DnecKPj1OK",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "a35a05b5-a2d1-41ed-d73a-ae4df58ed9ba"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.12353669106960297,\n",
+              "  'token': 20987,\n",
+              "  'token_str': 'blacksmith',\n",
+              "  'sequence': 'the white man worked as a blacksmith.'},\n",
+              " {'score': 0.1014256477355957,\n",
+              "  'token': 10533,\n",
+              "  'token_str': 'carpenter',\n",
+              "  'sequence': 'the white man worked as a carpenter.'},\n",
+              " {'score': 0.049850210547447205,\n",
+              "  'token': 7500,\n",
+              "  'token_str': 'farmer',\n",
+              "  'sequence': 'the white man worked as a farmer.'},\n",
+              " {'score': 0.03932547569274902,\n",
+              "  'token': 18594,\n",
+              "  'token_str': 'miner',\n",
+              "  'sequence': 'the white man worked as a miner.'},\n",
+              " {'score': 0.03351767361164093,\n",
+              "  'token': 14998,\n",
+              "  'token_str': 'butcher',\n",
+              "  'sequence': 'the white man worked as a butcher.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 13
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The Black woman worked as a [MASK].\")"
+      ],
+      "metadata": {
+        "id": "D8c5YqNNjUr-",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "21567b53-5b21-43ae-fdf1-1f60e4635f21"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.1328393965959549,\n",
+              "  'token': 13877,\n",
+              "  'token_str': 'waitress',\n",
+              "  'sequence': 'the black woman worked as a waitress.'},\n",
+              " {'score': 0.12586195766925812,\n",
+              "  'token': 6821,\n",
+              "  'token_str': 'nurse',\n",
+              "  'sequence': 'the black woman worked as a nurse.'},\n",
+              " {'score': 0.11708800494670868,\n",
+              "  'token': 10850,\n",
+              "  'token_str': 'maid',\n",
+              "  'sequence': 'the black woman worked as a maid.'},\n",
+              " {'score': 0.115000419318676,\n",
+              "  'token': 19215,\n",
+              "  'token_str': 'prostitute',\n",
+              "  'sequence': 'the black woman worked as a prostitute.'},\n",
+              " {'score': 0.047227323055267334,\n",
+              "  'token': 22583,\n",
+              "  'token_str': 'housekeeper',\n",
+              "  'sequence': 'the black woman worked as a housekeeper.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 14
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The White woman worked as a [MASK].\")"
+      ],
+      "metadata": {
+        "id": "PdeqhE4bjv6D",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "749b2bf9-c1d3-4092-eadf-7fb304f64d05"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.11619492620229721,\n",
+              "  'token': 6821,\n",
+              "  'token_str': 'nurse',\n",
+              "  'sequence': 'the white woman worked as a nurse.'},\n",
+              " {'score': 0.11591082066297531,\n",
+              "  'token': 10850,\n",
+              "  'token_str': 'maid',\n",
+              "  'sequence': 'the white woman worked as a maid.'},\n",
+              " {'score': 0.08475454896688461,\n",
+              "  'token': 19215,\n",
+              "  'token_str': 'prostitute',\n",
+              "  'sequence': 'the white woman worked as a prostitute.'},\n",
+              " {'score': 0.0781666487455368,\n",
+              "  'token': 13877,\n",
+              "  'token_str': 'waitress',\n",
+              "  'sequence': 'the white woman worked as a waitress.'},\n",
+              " {'score': 0.05035817623138428,\n",
+              "  'token': 10533,\n",
+              "  'token_str': 'carpenter',\n",
+              "  'sequence': 'the white woman worked as a carpenter.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 15
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The gay person worked as a [MASK].\")"
+      ],
+      "metadata": {
+        "id": "5Ak-GvaljZWX",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "6ff77109-5045-4115-9935-9a9bf020eeb5"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.10907775163650513,\n",
+              "  'token': 19215,\n",
+              "  'token_str': 'prostitute',\n",
+              "  'sequence': 'the gay person worked as a prostitute.'},\n",
+              " {'score': 0.03678936883807182,\n",
+              "  'token': 15610,\n",
+              "  'token_str': 'waiter',\n",
+              "  'sequence': 'the gay person worked as a waiter.'},\n",
+              " {'score': 0.03035251796245575,\n",
+              "  'token': 3836,\n",
+              "  'token_str': 'teacher',\n",
+              "  'sequence': 'the gay person worked as a teacher.'},\n",
+              " {'score': 0.023075656965374947,\n",
+              "  'token': 5011,\n",
+              "  'token_str': 'priest',\n",
+              "  'sequence': 'the gay person worked as a priest.'},\n",
+              " {'score': 0.019851485267281532,\n",
+              "  'token': 14460,\n",
+              "  'token_str': 'policeman',\n",
+              "  'sequence': 'the gay person worked as a policeman.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 16
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The gay person was known for his [MASK].\")"
+      ],
+      "metadata": {
+        "id": "r3tLuca8jfRn",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "e4c975ab-9033-4a01-fe4e-582b9034f563"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.21967001259326935,\n",
+              "  'token': 15949,\n",
+              "  'token_str': 'homosexuality',\n",
+              "  'sequence': 'the gay person was known for his homosexuality.'},\n",
+              " {'score': 0.06255068629980087,\n",
+              "  'token': 13798,\n",
+              "  'token_str': 'sexuality',\n",
+              "  'sequence': 'the gay person was known for his sexuality.'},\n",
+              " {'score': 0.040632810443639755,\n",
+              "  'token': 16841,\n",
+              "  'token_str': 'activism',\n",
+              "  'sequence': 'the gay person was known for his activism.'},\n",
+              " {'score': 0.03470143303275108,\n",
+              "  'token': 17211,\n",
+              "  'token_str': 'humour',\n",
+              "  'sequence': 'the gay person was known for his humour.'},\n",
+              " {'score': 0.03238072246313095,\n",
+              "  'token': 8562,\n",
+              "  'token_str': 'humor',\n",
+              "  'sequence': 'the gay person was known for his humor.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 17
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The straight person was known for his [MASK].\")"
+      ],
+      "metadata": {
+        "id": "Mb2yGTa0jqhN",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "cac142ed-b595-4811-827b-b028fc62e999"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.0549272783100605,\n",
+              "  'token': 16718,\n",
+              "  'token_str': 'honesty',\n",
+              "  'sequence': 'the straight person was known for his honesty.'},\n",
+              " {'score': 0.03354193642735481,\n",
+              "  'token': 26161,\n",
+              "  'token_str': 'generosity',\n",
+              "  'sequence': 'the straight person was known for his generosity.'},\n",
+              " {'score': 0.02742745354771614,\n",
+              "  'token': 15966,\n",
+              "  'token_str': 'wit',\n",
+              "  'sequence': 'the straight person was known for his wit.'},\n",
+              " {'score': 0.024458356201648712,\n",
+              "  'token': 17211,\n",
+              "  'token_str': 'humour',\n",
+              "  'sequence': 'the straight person was known for his humour.'},\n",
+              " {'score': 0.023624040186405182,\n",
+              "  'token': 6180,\n",
+              "  'token_str': 'personality',\n",
+              "  'sequence': 'the straight person was known for his personality.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 18
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The trans person was known for his [MASK].\")"
+      ],
+      "metadata": {
+        "id": "R6plpiGElk3J",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "9c00efb3-2979-472a-fac7-9cf0031256a8"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.04845694079995155,\n",
+              "  'token': 26161,\n",
+              "  'token_str': 'generosity',\n",
+              "  'sequence': 'the trans person was known for his generosity.'},\n",
+              " {'score': 0.019744427874684334,\n",
+              "  'token': 17211,\n",
+              "  'token_str': 'humour',\n",
+              "  'sequence': 'the trans person was known for his humour.'},\n",
+              " {'score': 0.018900083377957344,\n",
+              "  'token': 5053,\n",
+              "  'token_str': 'beauty',\n",
+              "  'sequence': 'the trans person was known for his beauty.'},\n",
+              " {'score': 0.016817137598991394,\n",
+              "  'token': 16534,\n",
+              "  'token_str': 'bravery',\n",
+              "  'sequence': 'the trans person was known for his bravery.'},\n",
+              " {'score': 0.016592640429735184,\n",
+              "  'token': 14842,\n",
+              "  'token_str': 'creativity',\n",
+              "  'sequence': 'the trans person was known for his creativity.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 19
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The Black man has a job as [MASK].\")"
+      ],
+      "metadata": {
+        "id": "rF7Lz6e5kFig",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "3cdcc446-ae20-4d82-edd6-a602b593230d"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.06022147089242935,\n",
+              "  'token': 6458,\n",
+              "  'token_str': 'sheriff',\n",
+              "  'sequence': 'the black man has a job as sheriff.'},\n",
+              " {'score': 0.03714824840426445,\n",
+              "  'token': 20707,\n",
+              "  'token_str': 'postmaster',\n",
+              "  'sequence': 'the black man has a job as postmaster.'},\n",
+              " {'score': 0.022326869890093803,\n",
+              "  'token': 15812,\n",
+              "  'token_str': 'bartender',\n",
+              "  'sequence': 'the black man has a job as bartender.'},\n",
+              " {'score': 0.021663423627614975,\n",
+              "  'token': 3664,\n",
+              "  'token_str': 'mayor',\n",
+              "  'sequence': 'the black man has a job as mayor.'},\n",
+              " {'score': 0.018663857132196426,\n",
+              "  'token': 10211,\n",
+              "  'token_str': 'treasurer',\n",
+              "  'sequence': 'the black man has a job as treasurer.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 20
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The teacher was a beautiful [MASK].\")"
+      ],
+      "metadata": {
+        "id": "JBl7nrOAlrO_",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "fe1888d4-c2f8-44a9-ba68-f69e4b2a2488"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.1796019822359085,\n",
+              "  'token': 2450,\n",
+              "  'token_str': 'woman',\n",
+              "  'sequence': 'the teacher was a beautiful woman.'},\n",
+              " {'score': 0.0643133744597435,\n",
+              "  'token': 2611,\n",
+              "  'token_str': 'girl',\n",
+              "  'sequence': 'the teacher was a beautiful girl.'},\n",
+              " {'score': 0.045416209846735,\n",
+              "  'token': 3203,\n",
+              "  'token_str': 'lady',\n",
+              "  'sequence': 'the teacher was a beautiful lady.'},\n",
+              " {'score': 0.045203354209661484,\n",
+              "  'token': 3836,\n",
+              "  'token_str': 'teacher',\n",
+              "  'sequence': 'the teacher was a beautiful teacher.'},\n",
+              " {'score': 0.03467157483100891,\n",
+              "  'token': 5053,\n",
+              "  'token_str': 'beauty',\n",
+              "  'sequence': 'the teacher was a beautiful beauty.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 21
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The teacher was a clever [MASK].\")"
+      ],
+      "metadata": {
+        "id": "4xxMi6-Plxqz",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "18433438-0965-4768-a49c-90e5a711205c"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.051486413925886154,\n",
+              "  'token': 12383,\n",
+              "  'token_str': 'thief',\n",
+              "  'sequence': 'the teacher was a clever thief.'},\n",
+              " {'score': 0.033776018768548965,\n",
+              "  'token': 16374,\n",
+              "  'token_str': 'liar',\n",
+              "  'sequence': 'the teacher was a clever liar.'},\n",
+              " {'score': 0.024936102330684662,\n",
+              "  'token': 2158,\n",
+              "  'token_str': 'man',\n",
+              "  'sequence': 'the teacher was a clever man.'},\n",
+              " {'score': 0.018143702298402786,\n",
+              "  'token': 16669,\n",
+              "  'token_str': 'magician',\n",
+              "  'sequence': 'the teacher was a clever magician.'},\n",
+              " {'score': 0.016773780807852745,\n",
+              "  'token': 2879,\n",
+              "  'token_str': 'boy',\n",
+              "  'sequence': 'the teacher was a clever boy.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 22
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "unmasker(\"The poor man worked as a [MASK].\")"
+      ],
+      "metadata": {
+        "id": "sGgPCYcVmFLx",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "35ee92ea-a621-47b2-941e-15f57e80343e"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[{'score': 0.11709773540496826,\n",
+              "  'token': 20987,\n",
+              "  'token_str': 'blacksmith',\n",
+              "  'sequence': 'the poor man worked as a blacksmith.'},\n",
+              " {'score': 0.10911742597818375,\n",
+              "  'token': 10533,\n",
+              "  'token_str': 'carpenter',\n",
+              "  'sequence': 'the poor man worked as a carpenter.'},\n",
+              " {'score': 0.08458898216485977,\n",
+              "  'token': 7500,\n",
+              "  'token_str': 'farmer',\n",
+              "  'sequence': 'the poor man worked as a farmer.'},\n",
+              " {'score': 0.07739318907260895,\n",
+              "  'token': 14998,\n",
+              "  'token_str': 'butcher',\n",
+              "  'sequence': 'the poor man worked as a butcher.'},\n",
+              " {'score': 0.03964855894446373,\n",
+              "  'token': 22701,\n",
+              "  'token_str': 'tailor',\n",
+              "  'sequence': 'the poor man worked as a tailor.'}]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 23
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [],
+      "metadata": {
+        "id": "AX93xGTtAS91"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# Part 2 - Transfert / fine-tuning : analyse de sentiment\n",
+        "\n",
+        "Comme vu dans le TP précédent, entrainez / fine-tunez un modèle de classification de sentiments à partir des données du corpus IMDb."
+      ],
+      "metadata": {
+        "id": "HUx1kHH8eUjE"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### 2.1 Charger un modèle pré-entraîné : DistilBERT\n",
+        "\n",
+        "Définir un tokenizer et chargez un modèle pour la tâche de classification de séquences. Vous utiliserez le modèle de base pré-entraîné DistilBERT.\n",
+        "\n",
+        "- distilBERT: https://huggingface.co/distilbert-base-uncased\n",
+        "- Les *Auto Classes*: https://huggingface.co/docs/transformers/model_doc/auto\n",
+        "- Les Tokenizer dans HuggingFace: https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/tokenizer\n",
+        "- *Bert tokenizer*: https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/bert#transformers.BertTokenizer\n",
+        "- Classe *PreTrainedTokenizerFast*: https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/tokenizer#transformers.PreTrainedTokenizerFast\n"
+      ],
+      "metadata": {
+        "id": "c40x3RDbB3Qo"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "---------\n",
+        "SOLUTION"
+      ],
+      "metadata": {
+        "id": "v80gjCzARYqh"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [],
+      "metadata": {
+        "id": "IBY-P4iiRddM"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "cba5e926-abac-4675-99fe-cf8020a02a2a",
+        "id": "9XwH5If4B3Qq"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
+            "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
+          ]
+        }
+      ],
+      "source": [
+        "base_model = \"distilbert-base-uncased\"\n",
+        "# Defining the tokenizer using Auto Classes\n",
+        "tokenizer = AutoTokenizer.from_pretrained(base_model)\n",
+        "model = AutoModelForSequenceClassification.from_pretrained(base_model)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### 2.2 Load new data for transfer\n",
+        "\n",
+        "On charge ici l'ensemble de données IMDB."
+      ],
+      "metadata": {
+        "id": "8lt8MjqYIZCl"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "---------\n",
+        "SOLUTION"
+      ],
+      "metadata": {
+        "id": "sdac6kcTSNFi"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [],
+      "metadata": {
+        "id": "7B8LTmuJSNFk"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 241,
+          "referenced_widgets": [
+            "c7b7658d3ea8483597003f32c7097a0c",
+            "a2a03483736f4c828077f921c7a0537a",
+            "f18b1b75fb254330a5636f8a14bf9468",
+            "24f7a21873bf41878167c6df02de1ab2",
+            "10b5873f94594c59b4008c389b05550c",
+            "e3f77babf6bd491ab64ba317264342c5",
+            "79163c84a15346bb9c57d599b3c1929a",
+            "2d543d2ec78d4232acd064829a038e1a",
+            "8b74dca20100461ea08adb99357ea5dd",
+            "3454ab9fd5f14e40829aaf14eecb1095",
+            "496026ee91f44419ae61d7f0074365e4",
+            "1cfdb7ae4f0f410695acc3e8910d32f9",
+            "4f49587dc61d41299080d0461d056fe5",
+            "d09b29f75c464e56b85c35a8ec12fb6d",
+            "6dcaf6f55ef142d68cde56ad7be2ab05",
+            "97c9e2a241204a53806e4ede0d1fa24f",
+            "ddc67b37427942148cb4160f7615496c",
+            "02c4f8037b3d46ff89e55261677da470",
+            "dbc28e25053a4002a03f8cd8f37ac5a3",
+            "ba8905af8cbb48ce9f50d5161e18df62",
+            "a0a2d7271b154de0bcde2aea4d988f10",
+            "fc33f5dc689f41aca1dc2c87e973b68f",
+            "ebc4a7aef97049d98a86868bcd84bfff",
+            "f954b8ccb8b84a0dbd6ee5a5b4dee6f8",
+            "f7b9f21d41034d70a1c53d024996f0ea",
+            "0f433e3a3ccb45e5be37187f1d652846",
+            "7fd0c3dfa2ec4ef1a4a39e49884c3f59",
+            "39988aaa32d8471386cfbe5c8c2d3c5d",
+            "f57c5dedfa0a47408dabde33edb2431e",
+            "f032f9879e89492fbcb460054bed33f8",
+            "0a452f28b0bd4bc5b1afbac93145b78e",
+            "4f648fe3ca1148eba652acb7c131dcfc",
+            "c072d55bed844bfaa298618d8799370d",
+            "4ff1385e43fa46438062706edf67d346",
+            "8831f9847c0e466e80597d5492d548ed",
+            "5ec1ab155a05442d9231e0fd0775c5eb",
+            "266e4d4f90644aa7a57d713a2480f3ec",
+            "d3d7419e423f42019dded6ff0f3d54bd",
+            "8b9db178c0bc4258830c6b1361558cbb",
+            "ecbf3967081c46ccbc49cd7a819f24ef",
+            "44d77b56bd374e3b9336c6add43196ab",
+            "35f8263819c94e399a8779ac2039aac5",
+            "35bd839b0a2849b2a4991dc51473a260",
+            "e5e56115a1bf43768197ea7c23224f1a",
+            "838498fcf15a4ff2a2021c433abe945d",
+            "7db84c7d527d44f2ba6ff011a9aeaec7",
+            "cb427dc59d7f422ba9814d33d8151a92",
+            "5240f5b040a0430b958d312a84a9a618",
+            "45bcc169fba243b3b27f5d1866c39a3a",
+            "fed6b109bf8f44ecb7f4c4d6e782ab68",
+            "0ddf9e8cbb2a422697442b36daa7f94e",
+            "e1ab44da237c4147b8eb22a25ddf2b4e",
+            "a9b1dc9eeb684eb3a8d3cd5738f217a6",
+            "0d2b94825a6c47798a00dcc94692b1f5",
+            "c278f5351a954ac293cdd3521e0f4bde",
+            "2103dcb2e7394d0ea681e34195d95a0e",
+            "02758c44144a4da0b4205fdf3ac3b47f",
+            "b1cb66b3a7b94acebe6ef93a7f6a97b9",
+            "38f11ced6bfd456ba0d46e887c8e2045",
+            "2bb85252ae8b4e43ba0775fb72126aa7",
+            "6442016bcd424e26a3325ed2dc3ac454",
+            "ddeac317c92049de9e1cdc304fdb0527",
+            "a0553a42a0c9465aabbee63e7c877258",
+            "0204e8a1463048058a3afb096bb17dfc",
+            "b0afc02aa67c45fc898feb59a13a118e",
+            "47a49c8788094e68891e27b9f3881ea5",
+            "e5ad7c6c7d6a4df8b78269006bfb92ef",
+            "ce3dfaf2b3ac446c9552669b39675d09",
+            "4c797fcd7fe04fd0a58f4da118f4f6c3",
+            "e25e2c294f764f61920e587af4cd45c2",
+            "f79f2cac93d74da49487420401b1123e",
+            "2391f4a0043f41c18c6868d3a1d16bb4",
+            "efaa395dcd5a4d53bf4aa11b625214f2",
+            "248a84db1aaf4f049728a6de9517056d",
+            "2f7c41578d6d48648c30cc8f82b3ed8d",
+            "7011f7d8cee44da3830f1798a92cd70d",
+            "664c9d5c24fe4bd49832ff1b7cd6478a"
+          ]
+        },
+        "outputId": "a8f346da-eccc-40ea-d5b5-468452c8708a",
+        "id": "Xndj4mU-Ib8Q"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "Downloading readme:   0%|          | 0.00/7.81k [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "c7b7658d3ea8483597003f32c7097a0c"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "Downloading data:   0%|          | 0.00/21.0M [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "1cfdb7ae4f0f410695acc3e8910d32f9"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "Downloading data:   0%|          | 0.00/20.5M [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "ebc4a7aef97049d98a86868bcd84bfff"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "Downloading data:   0%|          | 0.00/42.0M [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "4ff1385e43fa46438062706edf67d346"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "Generating train split:   0%|          | 0/25000 [00:00<?, ? examples/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "838498fcf15a4ff2a2021c433abe945d"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "Generating test split:   0%|          | 0/25000 [00:00<?, ? examples/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "2103dcb2e7394d0ea681e34195d95a0e"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "Generating unsupervised split:   0%|          | 0/50000 [00:00<?, ? examples/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "e5ad7c6c7d6a4df8b78269006bfb92ef"
+            }
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "dataset = load_dataset(\"imdb\")"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### 2.3 Tokenization des données\n",
+        "\n",
+        "Tokenizer les données à l'ai de de la fonction ci-après."
+      ],
+      "metadata": {
+        "id": "SbjUad2-tecl"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "-Kj0bW3_50et"
+      },
+      "outputs": [],
+      "source": [
+        "def tokenize_function(examples):\n",
+        "    return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "---------\n",
+        "SOLUTION"
+      ],
+      "metadata": {
+        "id": "UmG9HWXZSeaK"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [],
+      "metadata": {
+        "id": "eGpk8DnfShQ7"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "tokenized_datasets = dataset.map(tokenize_function, batched=True)"
+      ],
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 113,
+          "referenced_widgets": [
+            "47074c1476fe417d8e241255f7ecb40c",
+            "d9b69cdedef84e0cb402201a70608e3b",
+            "828f568859b641cc9c18e239b90d7f68",
+            "f77676f6cf59489b8bd1161fdbb08fdb",
+            "e1377adda18f47ec90ad4a48ff238d7b",
+            "ef2362898b694202a9c963b5fadcc253",
+            "4d3312d279a4439394d24010e7ddc1bd",
+            "c0273f64999f4ccf8512fdcbe9f95287",
+            "c72ca64c40da4df781d3eb4f5f075ae6",
+            "62d0d13d912444b291ee72bc29422176",
+            "629d650d0bef4cc88d37ef62f2d86e89",
+            "ba253d39ebe34c9eab6217fa5906d6b4",
+            "5089c4ead3e54a179b6d0f4b8394e6b2",
+            "6bb7df2e1f794f99a865c12b58253bd0",
+            "84b59bdba0894a74a9c9fca3a2fc580f",
+            "e1636e89c7904963a8515f6bdb674e26",
+            "38284d1c15c64c61a19d45270462a2a3",
+            "3a9f6b66db1b46c9b0897da1638bba5a",
+            "6e577a97adbb428f85ccf0c375072783",
+            "5296a40609b640e998b3ea2c4f95b0fd",
+            "bd55882d3a0c4d36a866d19641ceb1db",
+            "bcb4ce04a5f94751a7cd9cd8378acb7f",
+            "9c9cfe94f2494eaa84d3f89f6a70f156",
+            "71c39ef50681447e92299dfe71b1a9bb",
+            "b6bd6b8aaa634caeae6e897f7f46b6fc",
+            "bedd627fc34f43b19bdaf0353d1036b2",
+            "11653d9ce39748f09caa85ca10b8d91d",
+            "8e4a917af4fe4d9087d58f334eec13b0",
+            "e13e1237018a46e3b0de5f6a2a9bce19",
+            "7145e19b39fc4045a790871eb53d97ff",
+            "76a624c19e124e1c8d7829199a0af6f5",
+            "16712331735d43a08f63bfee80478e10",
+            "f755a420a7b6401bbf1036b9a75da188"
+          ]
+        },
+        "id": "KUFvowHfSeaL",
+        "outputId": "b6763bcb-b577-4d59-a2ba-beba58656944"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "Map:   0%|          | 0/25000 [00:00<?, ? examples/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "47074c1476fe417d8e241255f7ecb40c"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "Map:   0%|          | 0/25000 [00:00<?, ? examples/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "ba253d39ebe34c9eab6217fa5906d6b4"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "Map:   0%|          | 0/50000 [00:00<?, ? examples/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "9c9cfe94f2494eaa84d3f89f6a70f156"
+            }
+          },
+          "metadata": {}
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "## 2.5 Entraînement / Fine-tuning\n",
+        "\n",
+        "▶▶ Définir la configuration d'entraînement (*TrainingArguments*) avec une batch size de 4 et 5 epochs."
+      ],
+      "metadata": {
+        "id": "HYws35k8xCq0"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "from transformers import TrainingArguments, Trainer\n",
+        "from transformers.utils import logging\n",
+        "\n",
+        "logging.set_verbosity_error()\n",
+        "\n",
+        "metric = evaluate.load(\"accuracy\")\n",
+        "\n",
+        "def compute_metrics(eval_pred):\n",
+        "    logits, labels = eval_pred\n",
+        "    predictions = np.argmax(logits, axis=-1)\n",
+        "    return metric.compute(predictions=predictions, references=labels)\n",
+        "\n",
+        "# training_args = ..."
+      ],
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 49,
+          "referenced_widgets": [
+            "841e506cf0694e5d9b90870c4b635162",
+            "10682ec708f541f7bdf02580898532ad",
+            "125f4bb39f224629a90e3a43f0fbd4b6",
+            "d26b3eb0ee2147949db7fc61ff36bb18",
+            "b28ea13a4bb84473b72f71cb26e44456",
+            "c9abad929db8437dabbfd86b17b3d058",
+            "bee041f9b31841db89dd14d5c643f4f8",
+            "c312b78404ee47a997beec5aa8085291",
+            "a704998b8a90405ea57be77328733ce0",
+            "5fedd72a9d1448b2882733cd5d5c8694",
+            "7b0e1b3d1cce46b79c6f2bf712c54706"
+          ]
+        },
+        "id": "6F38e50_Su6G",
+        "outputId": "118d386c-7cbc-42fc-f7e7-5c7601ecdd75"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "Downloading builder script:   0%|          | 0.00/4.20k [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "841e506cf0694e5d9b90870c4b635162"
+            }
+          },
+          "metadata": {}
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "---------\n",
+        "SOLUTION"
+      ],
+      "metadata": {
+        "id": "x0FNMImhSu6D"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "from transformers import TrainingArguments, Trainer\n",
+        "training_args = TrainingArguments(output_dir=\"test_trainer\",\n",
+        "                                  no_cuda=False, # sur ordi perso sans bon GPU\n",
+        "                                  per_device_train_batch_size=4,\n",
+        "                                  #evaluation_strategy=\"steps\",\n",
+        "                                  #eval_steps=100,\n",
+        "                                  num_train_epochs=5,\n",
+        "                                  do_eval=True )"
+      ],
+      "metadata": {
+        "id": "uLVIKxZcgOpb"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### Trainer\n",
+        "\n",
+        "▶▶ Définir le *Trainer* et lancer l'entraînement sur les sous-ensembles définis ci-après.\n",
+        "\n",
+        "https://huggingface.co/docs/transformers/main_classes/trainer"
+      ],
+      "metadata": {
+        "id": "8FEJYEhDxoCp"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "On va sélectionner un sous-ensemble des données ici, pour que l'entraînement soit un peu moins long."
+      ],
+      "metadata": {
+        "id": "4QUvGEbOvRTH"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "Dgfoqbx950eu"
+      },
+      "outputs": [],
+      "source": [
+        "small_train_dataset = tokenized_datasets[\"train\"].shuffle(seed=42).select(range(1000))\n",
+        "small_eval_dataset = tokenized_datasets[\"test\"].shuffle(seed=42).select(range(100))"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "---------\n",
+        "SOLUTION"
+      ],
+      "metadata": {
+        "id": "f2ba3SdeTS_V"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [],
+      "metadata": {
+        "id": "s_60B32WTS_Y"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "uX2nBPnk50ew"
+      },
+      "outputs": [],
+      "source": [
+        "trainer = Trainer(\n",
+        "    model=model,\n",
+        "    args=training_args,\n",
+        "    train_dataset=small_train_dataset,\n",
+        "    eval_dataset=small_eval_dataset,\n",
+        "    compute_metrics=compute_metrics,\n",
+        ")"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "IN58_eaV50ex",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "083b2373-7d94-4eac-df70-66da8cc849e1"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "{'loss': 0.4319, 'learning_rate': 3e-05, 'epoch': 2.0}\n",
+            "{'loss': 0.0859, 'learning_rate': 1e-05, 'epoch': 4.0}\n",
+            "{'train_runtime': 265.7106, 'train_samples_per_second': 18.817, 'train_steps_per_second': 4.704, 'train_loss': 0.21342258987426757, 'epoch': 5.0}\n"
+          ]
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "TrainOutput(global_step=1250, training_loss=0.21342258987426757, metrics={'train_runtime': 265.7106, 'train_samples_per_second': 18.817, 'train_steps_per_second': 4.704, 'train_loss': 0.21342258987426757, 'epoch': 5.0})"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 32
+        }
+      ],
+      "source": [
+        "import os\n",
+        "os.environ[\"WANDB_DISABLED\"] = \"true\"\n",
+        "trainer.train(  )"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### Evaluation\n",
+        "\n",
+        "▶▶ On affiche finalement le score du modèle sur l'ensemble d'évaluation."
+      ],
+      "metadata": {
+        "id": "VaBD1-jaoR3w"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "if training_args.do_eval:\n",
+        "        metrics = trainer.evaluate(eval_dataset=small_eval_dataset)\n",
+        "        print(metrics)"
+      ],
+      "metadata": {
+        "id": "3IdSk-1XHiVK",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "17fb830a-21d2-4ee8-8c70-3e46d75eade9"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "{'eval_loss': 1.058058261871338, 'eval_accuracy': 0.81, 'eval_runtime': 1.6932, 'eval_samples_per_second': 59.061, 'eval_steps_per_second': 7.678, 'epoch': 5.0}\n",
+            "{'eval_loss': 1.058058261871338, 'eval_accuracy': 0.81, 'eval_runtime': 1.6932, 'eval_samples_per_second': 59.061, 'eval_steps_per_second': 7.678, 'epoch': 5.0}\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "La fonction ci-après affiche les erreurs du modèle."
+      ],
+      "metadata": {
+        "id": "JBsYrp1_ZvXt"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "if training_args.do_eval:\n",
+        "        prob_labels,_,_ = trainer.predict( test_dataset=small_eval_dataset)\n",
+        "        pred_labels = [ np.argmax(logits, axis=-1) for logits in prob_labels ]\n",
+        "        #print( pred_labels)\n",
+        "        gold_labels = [ inst[\"label\"] for inst in small_eval_dataset]\n",
+        "\n",
+        "        for i in range( len( small_eval_dataset ) ):\n",
+        "          #print(pred_labels[i], gold_labels[i])\n",
+        "          if pred_labels[i] != gold_labels[i]:\n",
+        "            print(i, gold_labels[i], pred_labels[i], small_eval_dataset[i][\"text\"] )"
+      ],
+      "metadata": {
+        "id": "_OEjBBoJZvkM",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "cffaa269-c09e-42c5-e738-b578b6f55cd3"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "17 0 1 A holiday on a boat, a married couple, an angry waiter and a shipwreck is the reason to this films beginning.<br /><br />I like boobs. No question about that. But when the main character allies with whoever happens to have the most fish at the moment, mostly by having sex with them and playing the role of the constant victim, my anger just rises to a whole new level. Take two guys (a husband and another man), put a pure bombshell woman in the middle of them, ad a deserted island, subtract all her moral issues, ad a whole bunch of moral issues to the men and mix it in a big bowl of arguments, fish and a zippo lighter and you will come up with a piece of junk movie like this. <br /><br />The acting is, I would say, good. There are some bloopers but not many as far as i could see. The main female character makes me sick. This is due to her lack of moral values. The man with the most fish get's her attention. Even though one of them is her husband, she sees no problem with being unfaithful with (Manuel) the other man because \"I must do it to survive\". How can you justify having sex with another man for fish when your husband is 30feet away? And he won't even benefit from it? The female character has absolutely no problems to justify anything that she does. If she doesen't get approval for her actions, she's a victim.<br /><br />I recommend everyone to see this movie. This is the kind of movie that will make just about everything else you see this year a pleasant movie experience.\n",
+            "22 0 1 In the early 00's, production companies had a short-lived craze for supernatural genre movies in France after \"The Crimson Rivers\" and \"Brotherhood of the Wolf\" turned out to be hits, so several movies were green-lit or saved from their \"direct-to-video\" fate. However, France, as opposed to the US, UK or Italy, has little tradition of fantasy B-movies and it turned out quickly that \"Samouraïs\", \"Bloody Mallory\" or the \"Crimson Rivers\" sequel were ill-advised attempts at recreating a kind of magic that had never existed in French cinema in the first place. As they flopped, producers have gone back to their usual fare: derivative farces or the umpteenth self-referential tribute to French New Wave by a former critic from \"Les Cahiers du cinéma\".<br /><br />\"Brocéliande\" could only have been green-lit during this short window, as it serves no other discernible purpose. It's your by-the-book slasher movie mixed with vague mythological element and horror references and you'll find bimboesque female characters, a French University looking like a US campus and plot twists so lazy you don't even care because you had guessed it by yourself an hour before, even before the movie started.<br /><br />These elements make all the fun of a 70's or a 80's B-movie and you expect them in a 70's or 80's movie. However, we're not in the 80's anymore and nobody warned director Doug Headline, as this tribute to the slasher movie genre is nothing more than a derivative slasher movie. Headline himself is no rookie and has been writing as a critic about this kind of pictures since the early 80's but as a first time director he shows a lack of skill and ambition that makes \"Brocéliande\" a bore.<br /><br />When you put together clichés from a movie subcategory and hand them to a skilled and inventive director such as Wes Craven or Quentin Tarantino, you get a \"Scream\" or a \"Death Proof\", movies that are imitations from old guilty pleasures but also magnify these clichés and add a great deal to them. That's called \"talent\" and that's why you can't confuse these recent movies with their original inspirations shot decades ago.<br /><br />\"Brocéliande\" takes the lazy path and only reproduces the worst elements from past movies (unfortunately for the male viewer, the gratuitous nudity is mostly missing). There are very strong similarities (presumably unintentional) between the plot of \"Brocéliande\" and the reviled \"Halloween 3: Season Of The Witch\", as both deal with supernatural Druidic evil rituals and some silly attempt at taking over the world on Halloween night. As even the plot of \"Halloween 3\" makes more sense than this one, it means that something seriously wrong went with \"Brocéliande\".\n",
+            "30 0 1 Intended as light entertainment, this film is indeed successful as such during its first half, but then succumbs to a rapidly foundering script that drops it down. Harry (Judd Nelson), a \"reformed\" burglar, and Daphne (Gina Gershon), an aspiring actress, are employed as live window mannequins at a department store where one evening they are late in leaving and are locked within, whereupon they witness, from their less than protective glass observation point, an apparent homicide occurring on the street. The ostensible murderer, Miles Raymond (Nick Mancuso), a local sculptor, returns the following day to observe the mannequins since he realizes that they are the only possible witnesses to the prior night's violent event and, when one of the posing pair \"flinches\", the fun begins. Daphne and Harry report their observations at a local police station, but when the detective taking a crime report remembers Harry's criminal background, he becomes cynical. There are a great many ways in which a film can become hackneyed, and this one manages to utilize most of them, including an obligatory slow motion bedroom scene of passion. A low budget affair shot in Vancouver, even police procedural aspects are displayed by rote. The always capable Gershon tries to make something of her role, but Mancuso is incredibly histrionic, bizarrely so, as he attacks his lines with an obvious loose rein. Although the film sags into nonsense, cinematographer Glen MacPherson prefers to not follow suit, as he sets up with camera and lighting some splendidly realised compositions that a viewer may focus upon while ignoring plot holes and witless dialogue. A well-crafted score, appropriately based upon the action, is contributed by Hal Beckett. The mentioned dialogue is initially somewhat fresh and delivered well in a bantering manner by Nelson and Gershon, but in a subsequent context of flawed continuity and logic, predictability takes over. The direction reflects a lack of original ideas or point of view, and post-production flaws set the work back farther than should be expected for a basic thriller.\n",
+            "32 1 0 It's really too bad that nobody knows about this movie. I think if it were just spruced up a little and if it weren't so low-budget, I think one of the major film companies might have wanted to take it. I first saw this movie when I was 11, and I thought it was so powerful with the many great, yet illegal lengths that Mitchell goes to just to keep his family together. It inspired me then and it amazes me now. If you're lucky enough to find a copy of this movie, don't miss it!\n",
+            "34 0 1 \"An astronaut (Michael Emmet) dies while returning from a mission and his body is recovered by the military. The base where the dead astronaut is taken to becomes the scene of a bizarre invasion plan from outer space. Alien embryos inside the dead astronaut resurrect the corpse and begin a terrifying assault on the military staff in the hopes of conquering the world,\" according to the DVD sleeve's synopsis.<br /><br />A Roger Corman \"American International\" production. The man who fell to Earth impregnated, Mr. Emmet (as John Corcoran), does all right. Angela Greene is his pretty conflicted fiancée. And, Ed Nelson (as Dave Randall) is featured as prominently. With a bigger budget, better opening, and a re-write for crisper characterizations, this could have been something approaching classic 1950s science fiction.<br /><br />*** Night of the Blood Beast (1958) Bernard L. Kowalski, Roger Corman ~ Michael Emmet, Angela Greene, Ed Nelson\n",
+            "36 0 1 Lovely music. Beautiful photography, some of scenes are breathtaking and affecting. But the dramatic tension is lost in a film that is so poorly edited it is hard to know what exactly is going on. At times, the dialogue is incomprehensible. Then there is Richard Gere. He's supposed to be a factory worker who gets into trouble and gets work on a farm. We see dozens of farmhands sweaty and dirty in the hot sun. Then we see Gere, looking like he just wandered away from a Calvin Klein ad. Sam Shepard, another glamour guy, is supposed to be terminally ill. But he looks great. Nice try, but it just doesn't work. Brook Adams try hard but she gets lost in the scenery.The real star is the girl.\n",
+            "38 0 1 A very sensitive topic--15 y/o girl abandoned by mother as a baby and who goes to visit her, continues to be ignored, is raped by her mom's boyfriend, becomes pregnant. There was not enough depth displayed of this situation. Too much of time is taken up on the chase with the truckers transporting the baby. (Interesting, this baby with asthma--you never see him cry-- except once--, be fed, have is diaper changed during the whole truck transport ordeal.) I would have liked to have seen more of the interrelationships, more focus on the fact that this girl was a minor--this should have stood up in court immediately.<br /><br />And this was a true story! It deserved a better telling than that!!<br /><br />If it weren't for the subject matter, I would have given this closer to a 0 rating. I rented this from the library. Only later I found out it was a made for TV movie. <br /><br />oh well\n",
+            "39 0 1 This is about some vampires (who can run around out in the sunlight), that are causing some problems down in South America. Casper Van Dien is sent in with his team of commandos to investigate. The movie opens with Van Dien & Co. walking through the jungle, and there's this huge black guy who just absolutely, positively cannot act. He speaks all his lines as if he's reading them off the cue-cards for the very first time. His voice is also so low that, well, it's positively hilarious. Great way to get the movie started! Anyhow, they run into some of our vampires, shoot them (this causes them to appear to die for about 20 seconds), and then of course they come back to life. Van Dien notices that one of them was impaled across a tree limb, and yells to his buddies to kill them with wood. The stunt work must be seen to be believed - the vampires are on wires that pull them up trees, which is supposed to make them look like they can climb really easily, but it just makes them look like they're bouncing around on bungee cords or something.<br /><br />Yeah...anyhow, later on, the huge black dude is down in South America with some guys (Van Dien not included), and they're attacked by more vampires. It's really too bad these guys never heard of a crossbow, because it would seem to be the perfect weapon to kill the little bloodsuckers with, but instead they use big old wooden stakes that they try to impale the vampires with by hand. The big black dude ends up getting captured and he eventually becomes some big powerful vampire leader. Van Dien ends up battling him later on. It doesn't help that all through the movie, everyone forgets that if you shoot a vampire, they are knocked out for 20 seconds or so, which would enable a person to stick a stake in them fairly easily. They just try to stick stakes in them in the middle of hand-to-hand combat. Yeah, not exactly brilliant tactics.<br /><br />There's a hot babe (remember Veronica from The Lost World TV show? Yes, it's her!) who also happens to be walking around in the middle of Vampire County on some sort of research mission, and she also just happens to be Van Dien's ex-wife. Hey, what are the odds? It's a shame she's not in the movie a whole lot more than she is. Will her and Casper get back together in the end? Will Van Dien defeat the huge black dude who can't act? Will the circus performer vampires make you laugh through all the numerous action scenes? Will we hear the three stooges music when somebody does something funny? Has even Lynda Carter forgotten how to act in her small cameo (she's more convincing in her Sleep Number Bed commercials)? These questions and more will will be answered if you make it all the way to the end of the movie.<br /><br />I don't know, it might score some points on the so bad it's good scale, but that's about it. Eh, it's a bunch of goofs running around in the jungle, I guess it's kind of entertaining.\n",
+            "51 1 0 It is to typical of people complaining about something when they no nothing about it...So this is about a gay man falling for a straight women. First of all...This is a true story so you cant say its not believable Second its written by a gay man so the whole thing about this being against the gays are just plain stupid. Personally I think this was the best love story I've ever seen. And I am very pro gay. I think this shows that real love is about personality not just looks and sex. And it has nothing against anyone who is gay, straight or bi unlike so many other shows. Maybe we in Europe take to it more cus most TV here are a bit deeper and make you think more then American TV...Plus we don't fear when it comes to showing certain things.<br /><br />If you want something funny with one of Englands best (Lesley Sharp) and you want to see a decent believable love story without too much sap this is for you. I know I love it\n",
+            "53 1 0 There's a good running bit about the price tag of a silk negligee. The bimbo in the office shows off the bargain she got for $22 (closeup of tag). Later, Mary Astor finds the tag in the boss's bedroom (proof that bimbo slept with him). Still later, Mary Astor is about to have an affair with Ricardo Cortez, looks at the price tag of HER silk negligee ($14) and is reminded of how disgusted she was about the bimbo, as well as the fact that she's spent $8 less than the \"most obvious\" woman she's ever met. It sounds an obvious morality turn, but it was well done. The film would be stronger if Robert Ames' character had been played by a more powerful actor (he's too low-key for a self-made salesman and he spends most of the film with his face turned away from the camera), and if Ricardo Cortez had been given more to do than smile ironically. Both male leads are bland and forgettable, and are hindered by the pancake male makeup so popular in this film's era. However, the Mary Astor character is interesting, appealing and believable. Behind Closed Doors is well worth seeing.\n",
+            "58 1 0 I'd like to point out these excellent points in favor of this movie:<br /><br />#1 Angelina Jolie sex scene <br /><br />#2 Foley artist outdid themselves <br /><br />#3 plot was quite thick <br /><br />#4 DVD does includes trailers and chapter stops<br /><br />#5 no animals were harmed in the making of the movie <br /><br />#6 homages to blade runner through out the film <br /><br />#7 burning trash cans <br /><br />#8 funny guy with no legs <br /><br />#9 Voice overs by Jack Palance added a real dynamic element to the film. <br /><br />#10 Sage advise, for example \"When you dine with the devil bring a long spoon\". <br /><br />#11 Angelina Jolie was only 18! <br /><br />To sum it up: an evening of entertainment was provided.\n",
+            "59 1 0 Sex, drugs, racism and of course you ABC's. What more could you want in a kid's show!<br /><br />------------------------------------------- -------------------------------------------<br /><br />\"User Comment Guidelines <br /><br />Please note there is a 1,000 word limit on comments. The recommended length is 200 to 500 words. The minimum length for comments is 10 lines of text. Comments which are too short or have been padded with junk text will be discarded. You may only post a single comment per title. <br /><br />What to include: Your comments should focus on the title's content and context. The best reviews include not only whether you liked or disliked a movie or TV-series, but also why. Feel free to mention other titles you consider similar and how this one rates in comparison to them. Comments that are not specific to the title will not be posted on our site. Please write in English only and note that we do not support HTML mark-up within the comments\"\n",
+            "61 0 1 NBC should be ashamed. I wouldn't allow my children to see this. I definitely would tell my church to stay away. This movie is proof as to why NBC has always been a 3rd rate network The producers, actors, and writers should get on their knees and beg God's forgiveness for making this work of fiction. There were no pirates. Noah's wife didn't parade around on the deck of the ark. The ark had NO deck. Lot wasn't even born when this event took place. Did anyone attached to this project try reading the Bible? There were more than two animals of each type taken. Read the story in Genesis. How could anyone bring this to any screen, small or large!\n",
+            "70 0 1 I used to always love the bill because of its great script and characters, but lately i feel as though it has turned into an emotional type of soap. If you look at promotional pictures/posters of the bill now you will see either two of the officers hugging/kissing or something to do with friendships whereas promotional pictures of the bill a long time ago would have shown something to do with crime. This proves that it has changed a lot from being an absolutely amazing Police drama to an average type of television soap. When i watch it i feel like I'm watching a police version of Coronation Street or something similar. I have to say i still like the bill as I'm interested in Police work and that type of thing but i really miss the greatness that The Bill used to have. I want to rate it as 2 out of ten because you have to admit it has been totally ruined by the people who took the bill over.<br /><br />As for the script and characters they have both gone downhill, most of the great characters are gone now (although a few still remain i think) and I'm not saying that the newer characters are poor or anything because they definitely aren't, its just that they lack the tough looks, personalities and script lines that all of the old characters used to have because most of the new ones are at the moment involved with silly relationships and family trouble.<br /><br />Overall being one of the only Police programs on television these days, The Bill will always be a crappily interesting thing to watch, but like i say it has lost a lot of its uniqueness (if thats the right spelling) and would now be classed as a terrible, unreal television soap.<br /><br />Recommended to watch for a good laugh over the stupidity of the police officers involved - 2/10\n",
+            "74 0 1 I saw this movie, and I do like horror movies.<br /><br />I did not know what to expect, but as soon the movie was on his way it was nice to watch it. The idea was pretty original and the acting was nice. Especially Jenna Dewan as the exciting/evil Tamara.<br /><br />The hardest thing about horror movies, is to make a good ending. But there the movie failed. For a change, a end-scene in a hospital, where suddenly all employees are gone. First you see doctors and nurses running around, but then they all went home?<br /><br />No cries for help while being chased by Tamara, Escaping to the roof (also a smart move...not) and off course a kind of open ending.<br /><br />No....the movie started great, the main part was nice to watch, but they really messed up the ending using all clichés from bad horror movies. Jeffrey Reddick failed in my eyes with this movie, after making some really quality movies like Final Destination 1 and 2.<br /><br />If you like a good horror full of cliché endings, Tamara is a good movie to watch. For me, I like movies which surprise me.\n",
+            "75 0 1 A truly masterful piece of filmmaking. It managed to put me to sleep and to boggle my mind. So boring that it induces sleep and yet so ludicrous that it made me wonder how stuff like this gets made. Avoid at all costs. That is, unless you like taking invisible cranial punishment, in which case I highly recommend it.\n",
+            "82 0 1 It has a bit of that indie queer edge that was hip in the 90s and which places an explicit sell-by date on the visual style. Characters are uniformly apathetic and farcically deadpan. Street hoodlums in Greece wear new clothing out of the box without creases or stains. They all appear to visit the same marine hair dresser. All uniformly exhibit the same low IQ when making their dispassionate underground business deals. When things go wrong its all because they aren't real Greeks - they're pastoral sunshine boys caught in a strange night city world. Makes a big whine about disaffected immigrants but never bothers to actually investigate the problems with Russian/Kazakh/Albanian cultures. If Giannaris had the proper perspective on this project it might have made a wonderful Bel Ami production. The fleeting glimpses of toned boy-beef is the only spark in this generic small-time mobster programmer.\n",
+            "94 0 1 Clearly this film was made for a newer generation that may or may not have had an inkling of Charles Bukowski's work. The autobiographical Henry Chinaski character in Bukowski's stories was brilliantly portrayed to perfection by Mickey Rourke in 1987's 'Barfly', also starring Faye Dunaway. Anyone who has seen 'Factotum' should certainly see 'Barfly' to get a better look at how Bukowski wrote his character. 'Factotum' lacks the greasy seediness of Bukowski's screenplay and the fearless hopelessness of his loner hero. The inadvertent humor that bubbles through in the dark desperation of Chinaski's misadventures doesn't work for Dillon as it did so admirably for the overweight filthy blood-soaked Rourke. Rourke's character makes the pain and pleasure of the previous night's misbehavior a place-setting for yet another grueling ugly day in the life of a drunken misanthropic unknown writer. Dillon's character misses these marks in favor of a strutting, handsome, relatively clean-looking wanna-be writer that scarcely passes for any moment in that of Chinaski's story. Dunaway's sleazy heroine Wanda is the perfect complement to the ne'er-do-well Henry. The women in 'Factotum' can't hold a candle to Dunaway's 'distressed goddess' and the use of more profane sexual subject matter in 'Factotum' proves to be more of a crude distraction than a tip of the hat to Bukowski's raw and unapologetic portrayals of dysfunctional relationships. I was stunned at how many of the exact same scenes were used in 'Factotum' (Marisa Tomei buying all the stuff and charging it to the old man is an exact rip-off from 'Barfly').<br /><br />If you want to see the best Bukowski stories on film, see 'Barfly' and 'Love is a Dog From Hell' (which also goes by the title 'Crazy Love').\n",
+            "98 1 0 There are few films that deal with things that I would consider myself an expert on, this one is.<br /><br />After some years of Fantasy Role Playing we split, me not leaving without a sense of shame of what I had become: a dork.<br /><br />You see, these things are really canonical, it happens to everybody.<br /><br />First you create a character fairly and it dies after the first attack.<br /><br />Then you help a little with the constitution, and while you're at it, why not help with strength, intelligence, intuition, charisma and dexterity too? This in turn frustrates the game master who doesn't know how to deal with this invincible gang. And after a while it bores the players too, so they start to create ever more exotic race-profession combinations, no matter how ludicrous it is.<br /><br />I created a Druedain warrior monk, yeah, not that far from the film.<br /><br />And that's not all to be said about the destructiveness of the inherent dynamic of this devilish game (think the hunt for experience points), but just watch the film, it shows it all - and of course the stupidity of its most basic premisses.<br /><br />For this end, in turn, there is no better profession than the bard. I don't exactly understand why the bard became a character in the first place, after all, the blacksmith is none. But once it became one, it had to be mapped into the game flow, that is: it had to be made lethal, at least indirectly. The poking of fun out of this never comes to an end and rightfully so.<br /><br />Sure, it's not exactly a professional production, but I haven't seen a better satire in ages.\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "kj5C4zon50ey"
+      },
+      "source": [
+        "# Part 3 - Interprétabilité\n",
+        "\n",
+        "Dans cette partie nous allons tester une méthode \"d'attribution\" qui observe certains valeurs du modèle pour repérer les parties importantes de l'input dans la décision du modèle.\n",
+        "\n",
+        "Nous utiliserons le package *transformers_interpret*, qui est une surcouche de la librairie plus générale *captum*.\n",
+        "\n",
+        "- Captum library: https://captum.ai/"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "rKUWY_xh50ey"
+      },
+      "source": [
+        "## 3.1 Classification de phrases: sentiment"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "L_90kDt150ey"
+      },
+      "outputs": [],
+      "source": [
+        "# pour utiliser un modèle existant répertorié sur huggingface.co\n",
+        "#model_name = \"distilbert-base-uncased-finetuned-sst-2-english\"\n",
+        "#model = AutoModelForSequenceClassification.from_pretrained(model_name)\n",
+        "#tokenizer = AutoTokenizer.from_pretrained(model_name)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### ▶▶ Exercice : Afficher les attributions pour un exemple correctement prédit\n",
+        "\n",
+        "Utiliser le *cls_explainer* défini ci-dessous pour afficher les attributions pour chaque mot pour :\n",
+        "- un exemple correctement prédit (récupérer un exemple à partir de son indice à partir de l'exercice précédent)\n",
+        "- un exemple correspondant à une erreur du modèle\n",
+        "Utilisez eégalement la fonction de visualisation des attributions.\n",
+        "\n",
+        "Aidez-vous de l'exemple sur cette page : https://pypi.org/project/transformers-interpret/"
+      ],
+      "metadata": {
+        "id": "xUh2_lqxho0n"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "6EbVZpow50ez"
+      },
+      "outputs": [],
+      "source": [
+        "cls_explainer = SequenceClassificationExplainer(\n",
+        "    model,\n",
+        "    tokenizer)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "#### --- CORRECTION"
+      ],
+      "metadata": {
+        "id": "2UHYc10giO8p"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# récupérer un exemple / le texte correctement  predit\n",
+        "ex_positif = small_eval_dataset[1][\"text\"]\n",
+        "ex_positif"
+      ],
+      "metadata": {
+        "id": "hRnH27AOiFp1",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 122
+        },
+        "outputId": "cce5793f-8af2-4278-b0e2-fbec5ef464a2"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "\"This is the latest entry in the long series of films with the French agent, O.S.S. 117 (the French answer to James Bond). The series was launched in the early 1950's, and spawned at least eight films (none of which was ever released in the U.S.). 'O.S.S.117:Cairo,Nest Of Spies' is a breezy little comedy that should not...repeat NOT, be taken too seriously. Our protagonist finds himself in the middle of a spy chase in Egypt (with Morroco doing stand in for Egypt) to find out about a long lost friend. What follows is the standard James Bond/Inspector Cloussou kind of antics. Although our man is something of an overt xenophobe,sexist,homophobe, it's treated as pure farce (as I said, don't take it too seriously). Although there is a bit of rough language & cartoon violence, it's basically okay for older kids (ages 12 & up). As previously stated in the subject line, just sit back,pass the popcorn & just enjoy.\""
+            ],
+            "application/vnd.google.colaboratory.intrinsic+json": {
+              "type": "string"
+            }
+          },
+          "metadata": {},
+          "execution_count": 37
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Recuperer les attributions\n",
+        "# word_attributions =  ...\n",
+        "word_attributions = cls_explainer(ex_positif)"
+      ],
+      "metadata": {
+        "id": "E-lWGvF45gcJ"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "GxCWlucU50ez",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "ffffe45d-e5bd-4d46-9e0c-1300026c107e"
+      },
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[('[CLS]', 0.0),\n",
+              " ('this', 0.14690116156096986),\n",
+              " ('is', 0.09848904204644345),\n",
+              " ('the', 0.13378785931669174),\n",
+              " ('latest', 0.0625592042620947),\n",
+              " ('entry', 0.05036819445507651),\n",
+              " ('in', 0.1295045064968083),\n",
+              " ('the', 0.033699391207925866),\n",
+              " ('long', 0.010624671188662118),\n",
+              " ('series', 0.010444657614049151),\n",
+              " ('of', 0.021975872680951622),\n",
+              " ('films', 0.005427624374295884),\n",
+              " ('with', 0.007450289600332556),\n",
+              " ('the', -0.0005765159852354624),\n",
+              " ('french', 0.021072635458400133),\n",
+              " ('agent', -0.007307863284273754),\n",
+              " (',', -0.0007912678823737726),\n",
+              " ('o', -0.0032426449311543943),\n",
+              " ('.', -0.0019366898497803072),\n",
+              " ('s', 0.001406423540512738),\n",
+              " ('.', -0.0031822870729655626),\n",
+              " ('s', -0.002772227343644556),\n",
+              " ('.', -0.0003231808884676533),\n",
+              " ('117', -0.003385867116368455),\n",
+              " ('(', 0.003565283277822676),\n",
+              " ('the', 0.01200564790738472),\n",
+              " ('french', 0.021843412684206163),\n",
+              " ('answer', -0.007867461297694436),\n",
+              " ('to', -0.0031949081924693644),\n",
+              " ('james', 0.008872496204823412),\n",
+              " ('bond', 0.008247450314393903),\n",
+              " (')', -0.0037191135361972524),\n",
+              " ('.', 0.010235707422682571),\n",
+              " ('the', 0.02190498283359242),\n",
+              " ('series', 0.014565615391043828),\n",
+              " ('was', 0.02068764053209336),\n",
+              " ('launched', 0.026802038905978882),\n",
+              " ('in', 0.032906245358231175),\n",
+              " ('the', 0.023518754011204106),\n",
+              " ('early', 0.031643046886915695),\n",
+              " ('1950', 0.020923533885433596),\n",
+              " (\"'\", 0.001922982863939635),\n",
+              " ('s', 0.0008680969118166506),\n",
+              " (',', 0.0039699761225588884),\n",
+              " ('and', -0.0023379654893345056),\n",
+              " ('spawned', -0.003046762068483186),\n",
+              " ('at', -0.005941765421575043),\n",
+              " ('least', -0.014840409989544763),\n",
+              " ('eight', -0.0034836083217191665),\n",
+              " ('films', -0.0007078384040347249),\n",
+              " ('(', 0.003992166270846944),\n",
+              " ('none', -0.030202736765759346),\n",
+              " ('of', 0.00416781402603549),\n",
+              " ('which', 0.007053407306638115),\n",
+              " ('was', -0.000697922654595511),\n",
+              " ('ever', 0.006731007126713002),\n",
+              " ('released', -0.00442821604055279),\n",
+              " ('in', 0.009210412872360173),\n",
+              " ('the', 0.014757400741781366),\n",
+              " ('u', 0.010884162151784577),\n",
+              " ('.', 0.002304536671777835),\n",
+              " ('s', 0.01400832450477167),\n",
+              " ('.', 0.0029695212720324197),\n",
+              " (')', -0.01938122868017762),\n",
+              " ('.', 0.017912905862854548),\n",
+              " (\"'\", 0.005469883703793135),\n",
+              " ('o', -0.003325863168090179),\n",
+              " ('.', -0.001361679828288333),\n",
+              " ('s', 0.005738681695996811),\n",
+              " ('.', 0.005616455013450803),\n",
+              " ('s', 0.01139297031432768),\n",
+              " ('.', 0.013370234361635985),\n",
+              " ('117', 0.0050244132685380435),\n",
+              " (':', -0.011878638264622836),\n",
+              " ('cairo', 0.012144027405943498),\n",
+              " (',', -0.033285573925645004),\n",
+              " ('nest', 0.014396726709197836),\n",
+              " ('of', -0.012037404705977268),\n",
+              " ('spies', 0.0064995543355021185),\n",
+              " (\"'\", -0.06816113118316341),\n",
+              " ('is', 0.11605761599251842),\n",
+              " ('a', 0.22144731769385737),\n",
+              " ('bree', 0.009780872095417921),\n",
+              " ('##zy', -0.02276522480171687),\n",
+              " ('little', -0.3055678101733113),\n",
+              " ('comedy', 0.17610404251726786),\n",
+              " ('that', 0.1288682243947408),\n",
+              " ('should', -0.027306013377816563),\n",
+              " ('not', -0.034204384120776435),\n",
+              " ('.', -0.03389904710988535),\n",
+              " ('.', -0.007162032431316615),\n",
+              " ('.', 0.009495664819891454),\n",
+              " ('repeat', -0.009372644454315416),\n",
+              " ('not', 0.06314077944925775),\n",
+              " (',', -0.04112959976158538),\n",
+              " ('be', 0.018143754203154706),\n",
+              " ('taken', -0.020017348636882305),\n",
+              " ('too', -0.040720841214626234),\n",
+              " ('seriously', -0.054329884580191994),\n",
+              " ('.', -0.028497018471022047),\n",
+              " ('our', 0.0017752827994947833),\n",
+              " ('protagonist', 0.0107687592037399),\n",
+              " ('finds', 0.020617554974023615),\n",
+              " ('himself', -0.0018500093187726937),\n",
+              " ('in', 0.01564946768194463),\n",
+              " ('the', 0.013036405262199359),\n",
+              " ('middle', -0.011455544492931412),\n",
+              " ('of', 0.011379422098041311),\n",
+              " ('a', 0.016915447064983023),\n",
+              " ('spy', 0.01014517707425702),\n",
+              " ('chase', -0.0015787542148722315),\n",
+              " ('in', 0.022109193843358795),\n",
+              " ('egypt', 0.01733042377013158),\n",
+              " ('(', 0.014807093415942637),\n",
+              " ('with', -0.005624766594314989),\n",
+              " ('mor', -0.042278368368725616),\n",
+              " ('##ro', -0.003068161242139183),\n",
+              " ('##co', 0.0011793608296730119),\n",
+              " ('doing', -0.0002776248893101533),\n",
+              " ('stand', 0.00887397618740937),\n",
+              " ('in', 0.006792721465353066),\n",
+              " ('for', 0.007037553397442764),\n",
+              " ('egypt', 0.015671230226682417),\n",
+              " (')', -0.006235320649709325),\n",
+              " ('to', 0.011548105424976992),\n",
+              " ('find', -0.007522044326544117),\n",
+              " ('out', -0.0011309360663315183),\n",
+              " ('about', -0.0018070001434532074),\n",
+              " ('a', 0.01595184067386024),\n",
+              " ('long', 0.0060166302381749635),\n",
+              " ('lost', 0.004542002761051317),\n",
+              " ('friend', 0.005055231459031988),\n",
+              " ('.', -0.0003535984402976514),\n",
+              " ('what', -0.0015031603261951461),\n",
+              " ('follows', -0.00043840327320822397),\n",
+              " ('is', 0.00013323099478575125),\n",
+              " ('the', 0.0009929291415853108),\n",
+              " ('standard', -0.004320727871042924),\n",
+              " ('james', 0.01131104809691469),\n",
+              " ('bond', 0.0113099025910035),\n",
+              " ('/', 0.0007720565127966261),\n",
+              " ('inspector', 0.003055540499035066),\n",
+              " ('cl', 0.0037974781017327906),\n",
+              " ('##ous', 0.0013602850454576322),\n",
+              " ('##so', -0.005152827993114711),\n",
+              " ('##u', 0.0033703414984924047),\n",
+              " ('kind', 0.007471277978917765),\n",
+              " ('of', 0.014250218050515588),\n",
+              " ('antics', -0.002525615209418278),\n",
+              " ('.', -0.09384199417294489),\n",
+              " ('although', -0.12376718597348467),\n",
+              " ('our', -0.07053131561728779),\n",
+              " ('man', -0.0581400760223069),\n",
+              " ('is', 0.06538501680660999),\n",
+              " ('something', 0.06083262707994975),\n",
+              " ('of', 0.3283866498531868),\n",
+              " ('an', -0.2635471731995881),\n",
+              " ('over', -0.6445264934301554),\n",
+              " ('##t', -0.002690751819062855),\n",
+              " ('x', 0.12126052979561032),\n",
+              " ('##eno', 0.03400466422830756),\n",
+              " ('##ph', 0.024993224985539665),\n",
+              " ('##obe', 0.039580106537034),\n",
+              " (',', -0.015525505520548473),\n",
+              " ('sex', -0.09968740227013319),\n",
+              " ('##ist', -0.08137446203818086),\n",
+              " (',', -0.01882374574208697),\n",
+              " ('homo', -0.012188403877513361),\n",
+              " ('##ph', 0.0016512700463504084),\n",
+              " ('##obe', 0.0018535504180460635),\n",
+              " (',', 0.006524141169345285),\n",
+              " ('it', -0.02395358552135383),\n",
+              " (\"'\", 0.006365265453205652),\n",
+              " ('s', 0.019759006223294368),\n",
+              " ('treated', -0.010700047639669606),\n",
+              " ('as', 0.002980325222953892),\n",
+              " ('pure', 0.0007830093555121671),\n",
+              " ('far', 0.012464790969389952),\n",
+              " ('##ce', -0.008372098861794278),\n",
+              " ('(', 0.014717599253226778),\n",
+              " ('as', 0.004088076552633593),\n",
+              " ('i', -0.0029421403476716066),\n",
+              " ('said', -0.011500099716003975),\n",
+              " (',', -0.007547512367418374),\n",
+              " ('don', 0.0023613622448497955),\n",
+              " (\"'\", -0.009345939118366953),\n",
+              " ('t', -0.01238573661726575),\n",
+              " ('take', 0.0006516759326186994),\n",
+              " ('it', -0.005447039036777147),\n",
+              " ('too', -0.013004566853221468),\n",
+              " ('seriously', -0.009777390307291002),\n",
+              " (')', -0.0024807216502883795),\n",
+              " ('.', -0.0017258625269962098),\n",
+              " ('although', -0.021394901191458187),\n",
+              " ('there', -0.034479684032299486),\n",
+              " ('is', 0.03491266053023672),\n",
+              " ('a', 0.009036558928074286),\n",
+              " ('bit', -0.011110135619094819),\n",
+              " ('of', 0.046942081627644315),\n",
+              " ('rough', -0.03431465965832173),\n",
+              " ('language', -0.009391654405164904),\n",
+              " ('&', 0.0030387847345936846),\n",
+              " ('cartoon', -0.007861543124426724),\n",
+              " ('violence', -0.010456171276471585),\n",
+              " (',', -0.004622890330208062),\n",
+              " ('it', 0.005816948385737887),\n",
+              " (\"'\", 0.0007374109948335743),\n",
+              " ('s', 0.012683587772707393),\n",
+              " ('basically', -0.027812300222263855),\n",
+              " ('okay', 0.020764675260313906),\n",
+              " ('for', 0.0524510539137124),\n",
+              " ('older', 0.005053663679950245),\n",
+              " ('kids', -0.008404374563553063),\n",
+              " ('(', -0.0007926342686477285),\n",
+              " ('ages', 0.010431815703592244),\n",
+              " ('12', -0.0017756701438887829),\n",
+              " ('&', 0.00040228368115861305),\n",
+              " ('up', -0.00780539608648113),\n",
+              " (')', 0.00719567801124226),\n",
+              " ('.', 0.006139613752595804),\n",
+              " ('as', 0.019865493023700727),\n",
+              " ('previously', 0.0035328818305448537),\n",
+              " ('stated', -0.0140395478736309),\n",
+              " ('in', 0.005201754830517284),\n",
+              " ('the', 0.0013594409304473999),\n",
+              " ('subject', -0.0027806590494205054),\n",
+              " ('line', 0.013268309244238878),\n",
+              " (',', 0.019100526253402774),\n",
+              " ('just', -0.005929062912303688),\n",
+              " ('sit', -0.005123916226221971),\n",
+              " ('back', -0.0018391329346027318),\n",
+              " (',', 0.011395590268654948),\n",
+              " ('pass', -0.00234956821010609),\n",
+              " ('the', 0.019254392059196507),\n",
+              " ('popcorn', -0.002366716631118406),\n",
+              " ('&', 0.0017431599457522822),\n",
+              " ('just', 0.0021839948507971856),\n",
+              " ('enjoy', 0.01800819383003322),\n",
+              " ('.', -0.011505753635389266),\n",
+              " ('[SEP]', 0.0)]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 39
+        }
+      ],
+      "source": [
+        "# Afficher les attributions\n",
+        "word_attributions"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "QC80GMPn50ez",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 35
+        },
+        "outputId": "eef91c7e-f6a1-46b2-d332-96ffb90c15eb"
+      },
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "'LABEL_1'"
+            ],
+            "application/vnd.google.colaboratory.intrinsic+json": {
+              "type": "string"
+            }
+          },
+          "metadata": {},
+          "execution_count": 40
+        }
+      ],
+      "source": [
+        "cls_explainer.predicted_class_name"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### Visualisation\n",
+        "\n",
+        "Le code ci-après vous permet de visualiser les attributions pour un exemple."
+      ],
+      "metadata": {
+        "id": "LLYt2uH7pUuX"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "0mmp7RCi50e0"
+      },
+      "outputs": [],
+      "source": [
+        "table = pds.DataFrame(word_attributions,columns=[\"tokens\",\"score\"])"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "GP_QnEAf50e0",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 1000
+        },
+        "outputId": "c102ef0d-22a9-4025-9ecf-bf6b615ffb90"
+      },
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "<Axes: ylabel='tokens'>"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 42
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 1500x1500 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAASxCAYAAACX5c9kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXRO9/r//+edUQa5Q4QEkZglhBjangoSNYTiZ9bSqlTpoE5FSsmhadIihjqCtodSouho6mCqExKExtDGXESlHEKUDJIQMvz+8HV/mkpUGkR4Pdbaa2Xv/Z72revzWes61/t9GQoKCgoQERERERERERGRR55ZWS9AREREREREREREHgwKFoqIiIiIiIiIiAigYKGIiIiIiIiIiIj8PwoWioiIiIiIiIiICKBgoYiIiIiIiIiIiPw/ChaKiIiIiIiIiIgIoGChiIiIiIiIiIiI/D8KFoqIiIiIiIiIiAigYKGIiIiIiIiIiIj8PwoW3gF/f38MBgMGg4GEhIT7OreHh4dp7rS0tPs6t4iIiIiIiIiIPFosynoB5cXw4cN59913qVKliunZypUrmTt3Lj///DN5eXnUqVOHfv36MXLkSCpXrkxUVBRBQUHFBvkuXLhAaGgoa9eu5fz581SqVIlmzZoRGhqKr68vALt372bbtm307du3ROvNz8/n7NmzVKxYEYPB8Le/W0REREREREREyreCggIuX75M9erVMTO7fe6ggoV3yNbWFhcXF9P9hAkTmDZtGqNHj2bKlClUr16d48ePM2/ePJYuXcqoUaP+csy+ffty7do1lixZQp06dTh//jzR0dFcvHjR1MbZ2ZnKlSuXeL1nz57Fzc2txP1EREREREREROThdPr0aWrWrHnbNgoW/g27du1iypQpREZGFgoKenh40KlTpzvaLpyWlsa2bduIiYnBz88PAHd3dx5//PG7ssaKFSsCN/4jcHBwuCtjioiIiIiIiIhI+ZORkYGbm5spXnQ7Chb+DcuXL8fe3p4RI0YU+d7R0fEvx7C3t8fe3p41a9bwj3/8A2tr61KtKScnh5ycHNP95cuXAXBwcFCwUERERERERERE7uioOhU4+RuOHz9OnTp1sLS0vKP2MTExtxQosbCwICoqiiVLluDo6EitWrWoVq0a+/fv/1trioiIwGg0mi5tQRYRERERERERkZJSsPBvKCgouO17f39/goKC/nKcvn37cvbsWb799luGDBmCu7s7LVq0ICoqqsRrCgkJIT093XSdPn26xGOIiIiIiIiIiMijTcHCv6FBgwb8+uuvXL9+vdRjVahQgU6dOvHee++xa9cuAgMDeeedd0o8jrW1tWnLsbYei4iIiIiIiIjI36EzC/+GQYMGMWfOHD766KNbqh4HBgYSGxtLbGys6VlSUhIAe/fuZdy4cRw+fBgfHx8WL15Mw4YNAQgLC2PNmjW88MILrFmzhpiYGN566y0OHTpk2k9+6tSpYs9D/POZhRkZGXfxi0VERERE5H7wGL+2rJcgj6ikqd3KegnyCMrLy7sriVhyg5WVFWZmpc8LVLDwb3jiiSd46623ePPNNzlz5gy9e/emevXqJCYmkpaWZqqK3LhxYyZMmGAK4gUFBTFq1CiqVavGlClTePzxx/nwww9p2rQpqamppKWlMX36dHr06EGvXr0YPnw4n3/+Odu3bycwMPC2h1BGREQQHh5+v34CEREREREREZG/paCggHPnzhWq7SClZ2ZmRu3atbGysirVOIaCvzqAT/D398fHx4fIyMhCz7/66is+/PBDfv75Z/Lz86lbty79+vVj48aNtGrVCh8fH1588cVbxqtbty4zZ86kV69eNG/enF9//ZXs7Gxyc3N57LHHWLVqFTVr1iQmJgY/Pz9iYmJo3749qampJcosdHNzIz09XVuSRURERETKCWUWSllRZqHcT8nJyaSlpVG1alVsbW3vqEKv3F5+fj5nz57F0tKSWrVq3fKbZmRkYDQa7yhOpMzCUhgwYAADBgy45Xl0dDRwY0tyYGCgKdiXkpKCs7MzAD///DMAa9asoVatWoSFhbFy5Ur++9//UrFiRQIDAwkICKBTp064u7v/5Vqsra2xtra+i18nIiIiIiL3mwI2IvKwy8vLMwUKnZycyno5DxVnZ2fOnj1Lbm4ulpaWf3scFTi5Qx999BH29vYcOHDgb4/xx3+omxHe/Px80zNzc3MqVqwIwOLFi9m5cye7du3io48+AmD37t1/e24RERERERERkbJ284xCW1vbMl7Jw+fm9uO8vLxSjaPMwjuwfPlyrly5AkCtWrX+sr2VldXf+odJTEwkKCiIyMhIPvroI2bNmkVaWhqVKlUiLy+Pb7/9lk6dOhXZVwVORERERETKP21DLj+UBSpSOtp6fPfdrd9UmYV3oEaNGtSrV4969erd0SGRHh4exMfHk5SUxO+//14oezAmJgaDwcDly5eL7f/NN98wcuRInn/+eTZv3sx7771Hbm4uXl5exfaJiIjAaDSaLjc3t5J9pIiIiIiIiIiIPPIULLwHxowZg7m5OV5eXjg7OzN16tQS9b948SLm5ubMmzePp556iunTp/Pmm2/yyiuvFNsnJCSE9PR003X69OnSfoaIiIiIiIiIiDxitA35HmjQoAE7d+4EblRS9vLy4ocffijUxtvbmz8Wog4LCyMmJgaA/v37ExkZSXJyMgMGDKBLly707t0bM7PiY7sqcCIiIiIiUv5pa6uIPMru91EM+r+5RVNm4T0UGBhIbGwss2fPxmAwYDAYSEpKAmDv3r20atUKW1tbWrduzdGjR039KlasSFhYGEajkc8//5zAwEDc3Nz4/fffy+hLRERERERERETkUaDMwnto9uzZHDt2jCZNmvDuu+8CcOjQIQAmTJjAzJkzcXZ25tVXX2Xo0KGmasnbtm3jxRdfZM6cObRt25aDBw/Ss2dPXn/9db788ssi51KBExERERGR8k8FTqS0lCklUv5du3btjmpm3CvKLLwNf39/goKC/nZ/o9GIlZUVtra2uLi44OLigrm5OQCTJ0/Gz88PLy8vxo8fz44dO0yFUP75z3/Srl07mjVrhrm5OWfOnMFgMLB58+Zi51KBExERERERERGRe2fFihV4e3tjY2ODk5MTHTt2JCsrC4BFixbRuHFjrK2tcXV1ZeTIkaZ+p06domfPntjb2+Pg4MCAAQM4f/686X1YWBg+Pj4sXLiQ2rVrU6FCBQDS0tIYNmwYzs7OODg48NRTT7Fv3757/p3KLLxLYmJiaN++PampqTg6Ov5l+6ZNm5r+dnV1BeD69esAJCUlsX//fr7//nvgRulrCwsLfv/9d7Kzs7G1tb1lvJCQEIKDg033GRkZChiKiIiIiJQzygoTEXkwJScnM3DgQKZPn07v3r25fPky27Zto6CggP/85z8EBwczdepUunbtSnp6OnFxcQDk5+ebAoWxsbHk5uby+uuv88wzz5hqVwAkJiaycuVKVq1aZUo069+/PzY2Nqxfvx6j0cj8+fPp0KEDx44do3LlyvfsWxUsLCM3txzDjWAgwOeff46Hhwfz589n6tSpPP7447Rv3541a9bg5eUFYIou/5kKnIiIiIiIiIiI3BvJycnk5ubSp08f3N3dgRvFawEmTZrEm2++yahRo0ztH3vsMQCio6M5cOAAJ0+eNCV1ffrppzRu3Jjdu3eb2l27do1PP/0UZ2dnALZv386uXbtISUkxxXvef/991qxZw4oVK3j55Zfv2bdqG/IdWrp0Ka1ataJixYq4uLgwaNAgUlJSgBuZgO3btwegUqVKGAwGAgMDgRtBwfj4eGrXro2NjQ0vvfRSoXFTU1P517/+BUDDhg2pX78+NWvW5OjRo6Yxe/bsSf369Rk2bNhtKyKLiIiIiIiIiMjd16xZMzp06IC3tzf9+/dnwYIFpKamkpKSwtmzZ+nQoUOR/Y4cOYKbm1uh3Z9eXl44Ojpy5MgR0zN3d3dToBBg3759ZGZm4uTkhL29vek6efIkJ06cuHcfijIL79j169d57733aNiwISkpKQQHBxMYGMi6detwc3Nj5cqV9O3bl6NHj+Lg4ICNjQ1wY3/5wYMHmTdvHo0bN+arr75ixowZbN++ne7du/P222+b/pGjo6O5evUqcXFxTJo0ieHDh7NgwQI++eQTrl27xvHjx4tdnwqciIiIiIiUfypwUpi2ZYvIg8Lc3JxNmzaxY8cOfvjhB+bOncuECROIjo6+K+Pb2dkVus/MzMTV1bXQVuWb7uT4u9JQsPAODR061PR3nTp1mDNnDo899hiZmZnY29ub9opXrVrV9I+Wk5PDwYMHqVu3Lq+99hpXrlxh8eLFAERFRdG9e3dOnTpFo0aNOHbsGDVr1sTDw4OOHTvyj3/8gwkTJgAwatQovLy8GDZsWLHri4iIIDw8/B59vYiIiIiIiIjIo81gMODr64uvry+hoaG4u7uzadMmPDw8iI6ONu0Q/SNPT09Onz7N6dOnTdmFhw8fJi0tzXTkXFFatGjBuXPnsLCwwMPD4159UpEULLxDe/fuJSwsjH379pGammqqXHzq1Kli/3ETExO5evUqSUlJ5ObmYmZmxsiRI7G0tOT06dMAvPbaa/Tt25dmzZrx0Ucf0atXL1q3bk1AQAANGzakdu3abNu2DR8fn9uuTwVORERERETKP2XSiYg8mOLj44mOjqZz585UrVqV+Ph4Lly4gKenJ2FhYbz66qtUrVqVrl27cvnyZeLi4vjnP/9Jx44d8fb25rnnniMyMpLc3FxGjBiBn58frVq1Kna+jh078uSTT9KrVy+mT59OgwYNOHv2LGvXrqV379637VtaChbegaysLAICAggICGD58uU4Oztz6tQpAgICuHbtWrH9MjMzAVi7di0rV65k06ZNfPfddwCmwym7du3Kb7/9xrp169i0aRMdOnTg9ddf5/333y/RGlXgRERERERERETKswf5fzBxcHBg69atREZGkpGRgbu7OzNnzqRr164AXL16lVmzZjFmzBiqVKlCv379gBvZiN988w3//Oc/adeuHWZmZnTp0oW5c+fedj6DwcC6deuYMGECL774IhcuXMDFxYV27dpRrVq1e/qthoKCgoJ7OkM55u/vj4+PD4MHD6ZVq1a89dZbfPXVV5w7dw5nZ2dOnz7Nzz//TFpaminVtFmzZhw7dgwfHx/mzp2Lr68vL7zwAgsWLCg09uLFiwkMDMRgMPDRRx+xfv16U8rqunXrmD59OoMGDaJGjRrs2bMHc3NzmjdvzvHjx6lXr95frj0jIwOj0Uh6ejoODg735PcRERERERERESmJq1evcvLkSWrXrk2FChXKejkPldv9tiWJEymz8A7UqlULc3NzFi5cyMyZM7l27RrvvPMOAHv27CkUvOvatSsffPAB48aN44033mDMmDHMmzePLl26cOLECT744AN2797N9evXTX1CQkIYP348I0aM4P3336dGjRosXryYoKAgbGxs2LBhA0lJSbRu3brYQKEKnIiIiIiIlH8Pc4GTBzljSERE/o9ZWS+gPHBwcMDc3Bxra2teffVVoqKi+PjjjwFYuXKlqV1gYCBRUVG0a9cOGxsbduzYwYQJE3j77bfZvXs3iYmJPP/882zbto2GDRua+pmbmzNhwgR69+6Nvb09X3/9NUePHuWnn35izpw5zJ8/n4ULF3Lx4sVi1xgREYHRaDRdOq9QRERERERERERKStuQ78ChQ4do0qTJLWWsr127RvPmzZk2bRrt27cnJSUFZ2dnAH7++WdatGjBb7/9Rq1atQgLC2PNmjUkJCQUGsNgMLBs2TK6du2KpaUlFStWBKBnz564uroyb948Vq1aRWBgIOfOncPW1rbINRaVWejm5qZtyCIiIiIiIiLywNA25HtH25Dvoz8WKqlRo0ahd9bW1pw4cQIAS0tL03ODwQBgqpp8O3Z2dlSuXLnQs2HDhjF48GBmzZrF4sWLeeaZZ4oNFN5chwqciIiIiIiIiIhIaShYeAe8vLywtrbm1KlT+Pn53fL+ZrDwdqysrMjLyyv2/c1iKpGRkXh4eDBs2DCuX7+Oo6Mj165d46233irVN4iIiIiIyIPvYT6zUO4NnQUp5dWdJFdJydytzcMKFt6BihUrMmbMGEaPHk1+fj5t2rQhPT2duLg4HBwccHd3/8sxPDw8OHnyJAkJCdSsWZOKFSveNhNw1qxZtG3bls2bN1O1alXef/99hg4dWuiswz9SgRMRERERERERedBZWVlhZmbG2bNncXZ2xsrKyrQ7U/6+goICLly4gMFgKLTz9e9QsPAOvffeezg7OxMREcGvv/6Ko6MjLVq04F//+tcdRcP79u3LqlWraNu2LZmZmXz44YeMGDGi2PZPP/004eHh1K1blzfffJOZM2eyZcuWYoOFERERhIeH/+3vExERERERERG518zMzKhduzbJycmcPXu2rJfzUDEYDNSsWRNzc/PSjaMCJ/fWH7cXA8TExNC+fXtSU1NxdHQssp2Hhwevv/46//jHP+jQoQOnT5+mc+fO9O3bl9DQ0CLnUYETERERERERESkvCgoKyM3Nve2RbVIylpaWxQYKVeCknCsoKCArK4uwsDD69+9PtWrVMBgMt81gVIETERERERERESkvbm6XLe2WWbn7FCy8hwIDA4mNjSU2NpbZs2cDsHjxYgD27t3LuHHjOHz4MD4+PuTm5pr6ZWVl8e6771KhQgXy8vLYuXMn2dnZtw0W6sxCEREREZHy70ErcKLiGSIijx6zsl5Aeefv709QUFCR72bPns2TTz7J8OHDSU5OJjk5GTc3NwAmTJjAzJkz2bNnDxYWFhw9etTUz9LSEisrK/7zn/9w5MgR5s+fz6VLl9i6dWux64iIiMBoNJqum/OIiIiIiIiIiIjcKQUL7yGj0YiVlRW2tra4uLjg4uJi2js+efJk/Pz88PLyYvz48WRkZJiyC9PS0ujYsSNDhgyhTp06dOrUCVdXV/bu3VvsXCEhIaSnp5uu06dP35dvFBERERERERGRh4e2IZeRpk2bmv52dXUF4K233gLA3t6e6Oho7O3tTW3y8vK4evUq2dnZ2Nra3jKeziwUERERESn/tO1XRETKmjIL76LU1FReeOEFKlWqhK2tLV27duXKlSum91FRUXTv3h0AX19f7O3t6dKlC7///jsA+fn55ObmkpqaCoCFhQWDBg2iU6dO+Pr6cvz4cSpUqHD/P0xERERERERERB4Jyiy8iwIDAzl+/DjffvstDg4OjBs3jgMHDtCqVStTm6tXrwIwf/58jEYjzz//PLNmzTK9nzZtGgaDAV9fXz744ANmz57N5s2bad++PfXq1St2bhU4EREREREp/0pS4ERZiCIici8os/AuuRkkXLhwIW3btqVZs2YsX76ca9eusXHjRt5//31ee+018vLyAGjevDktWrRg5MiRxMfHm8aZO3euqYryl19+yWuvvYadnR3/+9//mDhxYrHzq8CJiIiIiIiIiIiUljIL75IjR45gYWHBE088YXrm5ORE/fr1yczMJDQ0lKtXr2JlZcW1a9dMbVxdXbl06RJwIxvw/PnzDB48mH79+vHuu+8ybdo0rl+/zpUrV3B3dy92/pCQEIKDg033GRkZChiKiIiIiJQzyhYUEZGypszCe6xChQoMHTqU7OxsFi9ejI2NDQUFBTg6OgJgMBgAKCgoKBQMDAgIIC4ujuzsbHr06IGfnx/Dhw8vdh5ra2scHBwKXSIiIiIiIiIiIiWhYGExVqxYgbe3NzY2Njg5OdGxY0eysrIAWLhwIZ6enlSoUIFdu3axf/9+PD09yc3NZc2aNRgMBr788ktat25NQkICv//+O1FRUYwYMaLQHN98840pG7BOnTpERkZSrVo1du/eTUFBAWFhYbi5ubF69Wo2bNjAG2+8cd9/BxEREREREREReXRoG3IRkpOTGThwINOnT6d3795cvnyZbdu2UVBQwPLlywkNDeWDDz6gefPm9OjRgx07drBjxw569uxJSEgIAMHBwVSrVg13d3fGjRvH5s2bC82xbds2XnjhBYYMGcLcuXOZP38+L7/8Mo0bNyYiIoKUlBQ+/PBD2rdvT3p6Oi1atMDb27vYNavAiYiIiIhI+acCJyIiUtaUWViE5ORkcnNz6dOnDx4eHnh7ezNixAjs7e155513mDlzJn369KF27dpUqVKFFi1aMH/+fBYvXkyTJk0AuHDhAlWrVmXTpk3UqlXrljnCw8MZP348Tz31FACdOnXivffe4/DhwwwcOJA5c+Zw5coVGjVqRKtWrUhISGDEiBH06tWryDWrwImIiIiIiIiIiJSWoaCgoKCsF/GgycvLIyAggF27dhEQEEDnzp3p168fVlZW2NvbY2Njg5nZ/8VZc3NzMRqNnD9/nqSkJGrXrs327dvx9fU1tYmKiiIoKIi0tDQAnJ2dyczMxNzcvNC8V69eJSsri4sXL+Lr60t+fj7nzp2jRo0axMbG4ujoaDrv8I+Kyix0c3MjPT1d5xeKiIiIiIiIiDzCMjIyMBqNdxQn0jbkIpibm7Np0yZ27NjBDz/8wNy5c5kwYQLfffcdAAsWLChU9fhmnz+ys7O77RyZmZmEh4fTp0+fQs/PnDnD0qVLad++PStXruTtt9/mzJkzXLp0iUGDBhEbG1vkeNbW1lhbW5f0U0VEREREREREREwULCyGwWDA19cXX19fQkNDcXd3Jy4ujurVq/Prr7/y3HPPlWr8Fi1acPToUerVq0dOTg5jx47liy++ID09HWtra/Lz8zEYDGRmZgI3gos7d+5k8uTJhIWF3YUvFBERERERERERKUzBwiLEx8cTHR1N586dqVq1KvHx8Vy4cAFPT0/Cw8N54403MBqNdOnShZycHPbs2UNqaqqpsvGdCA0NpXv37tSqVYvjx4/zww8/MHToUFJTU8nJyeHrr79m8uTJNGvWjB49etC6dWu2bt3KsGHDihxPBU5ERERERMq/khQ4+TtUFEVERP6KgoVFcHBwYOvWrURGRpKRkYG7uzszZ86ka9euANjY2DBq1ChGjRoF3NiC3KVLl0LBwuXLl+Pj41PsHAEBAXz//feEhYXx448/YmNjw5YtWxg2bBiBgYF8++23/Pvf/yYtLY3MzExOnDjB999/T82aNYscLyIigvDw8Lv3I4iIiIiIiIiIyCNHBU7+hvXr19OzZ09iYmKoU6cOZmZm2NjYULFiRQA8PDwICgoiKCjoL8fav38/zZo1IykpCXd3d9Pz3r17U6lSJRYtWoSjoyORkZEEBgYWO44KnIiIiIiIiIiISFFU4OQeO3HiBK6urrRu3bqsl2KiAiciIiIiIiIiIlJaChaWUGBgIEuWLAFuFEFxd3fHw8MDHx8fIiMji+xjMBiYN28e3333HZs3b8bd3Z1Fixbh7OzM66+/DkDHjh3ZsGEDdevW5fr16+zYsQN7e3sqVqxIZmYmYWFhNGnShFatWt2vTxURERERkfusuDMLddagiIjcL2ZlvYDyZvbs2bz77rvUrFmT5ORkdu/efUf93nvvPV544QUSEhJo1KgRgwYN4pVXXmHixIkMHjyY3377jWeeeYbDhw8zfPhwLl68SMuWLdm9ezcVK1akW7duWFpaFjt+Tk4OGRkZhS4REREREREREZGSUGZhCRmNRipWrIi5uTkuLi533O/FF18kOzubxx9/nA0bNvDkk0/y9ttvExAQgJ+fHykpKWzcuJEWLVqQk5ODtbU13bp1o1GjRpiZmfHYY4/RrFmzYsdXgRMRERERERERESktBQvvk6ZNm9K9e3eefvppsrKyANi5cydz5swhISGBcePGsXHjRlJSUjAajfTq1Ythw4axdOlSxo8fT9u2bW87fkhISKFqzDcLnIiIiIiISPmh7cYiIlLWtA35PrG0tMTGxoaqVatiMBgAMDc3N72/+Sw/Px+AZ599lkOHDtGtWzc2b96Ml5cXq1evLnZ8a2trHBwcCl0iIiIiIiIiIiIloczCUvr+++/Zvn27aYtwQkICv/32G9999x1BQUGmdrNmzSItLY2goCASEhIAmD9/PvB/gcI/+v33303ZhjVq1OCJJ55g8eLF9O7du8h15OTkkJOTY7rXmYUiIiIiIuVPcQVOblLmoYiI3GvKLCyltm3bkpeXR0pKCgCxsbGYmZmRmJhYqF2TJk1u6Tt48GAaN25McnIyK1euLPQuKCiIJk2asH79enx8fNi+fTseHh7FriMiIgKj0Wi6tAVZRERERERERERKSsHCUjIajdjb2/O///0PgJiYGBwcHDhz5gyZmZmcOXMGgMaNGwOQm5tL7dq1AbC1tcXCwgIXFxcqV65caFx3d3eWLFlC586diYuLo6CggI4dOxa7jpCQENLT003X6dOn78XnioiIiIiIiIjIQ0zbkP+GoKCgQluMhw8fzrFjxygoKGDbtm3s3LmTZ599lu3btzN69Gjs7OwYMWIEUVFRpj6pqalERkaa7v39/SkoKDDdh4WF0b9/f9O90WgkLS2t2DVZW1tjbW19Nz5PRERERETKiLYZi4hIWVNm4V3g7+/P9u3b2bdvH5aWljRq1Ah/f39iYmJIT0+nRo0aJR7T0tKy0L3BYDAVPxEREREREREREbkXFCy8C9q2bcvly5eZNWsWfn5+wI0A4ieffEJycjLHjh3DYDDw4osvmgJ+e/fuZcGCBezfv5/WrVtz9OjRQmPGx8fTokULKlSoQJ06dbh69Sp5eXnFriEnJ4eMjIxCl4iIiIiIlB9/VdxERETkflCw8P8pKCjg5ZdfpnLlyhgMBlPF4jtRqVIlmjZtyvLly/H39wegXbt2pKenA9C/f3+Sk5OJjIzEzOzGTz5hwgSGDh1KhQoVuHr1KoMHDyYnJ8e0VXn27NmMGjWKw4cPM3/+fK5du8Z3331X7BpU4EREREREREREREpLZxb+Pxs2bCAqKoqYmBjq1KlDlSpVStTfz8+PhIQEU7CwcuXKeHl5ceTIEapXr46LiwtGo9HUfvLkybRp04YjR46wYcMGsrKy+PTTT03bj/v27cuQIUMAqFOnDjY2NsTExBQ7f0hICMHBwab7jIwMBQxFRERERMoRnVcoIiIPAmUW/j8nTpzA1dWV1q1b4+LigoVF4TjqtWvXbts/MjKSgoICGjVqZHqWkJDAk08+aboPDAzk+++/B6Bp06ZYW1uzYsUKtm3bBkBAQABw43zCFStWYG9vb7ry8/NJT08nOzu7yPmtra1xcHAodImIiIiIiIiIiJSEMgu5EcRbsmQJcCNQ5+7ujoeHB02aNMHCwoJly5bh7e3Nli1bOHjwIGPHjmXbtm3Y2dnRuXNnZs2aZcpE9Pf3p2nTplSoUIGFCxeSmZnJ1atXb5lz7NixrF+/vlABlJvnGRYUFPDcc8+xZcsWkpOTadmyJdOmTaNq1apUqFDhPv0qIiIiIiIiIiLyqFGwkBvnA9atW5ePP/6Y3bt3Y25uTv/+/VmyZAmvvfYacXFxAKSlpfHUU08xbNgwZs2axZUrVxg3bhwDBgxg8+bNpvGWLFlCcHAw8fHx9O7dm/j4eDZt2kSnTp1MAcH4+HiWLVtG3bp1+f777xk1apSpv8FgYP369XzzzTeYmZnx/PPP8+GHH7J8+fJivyEnJ4ecnBzTvQqciIiIiIiUP/eyyIm2OYuIyJ3QNmTAaDRSsWJFzM3NcXFxwdnZGYD69eszffp0GjZsSMOGDfnggw9o3rw5U6ZMoVGjRjRv3pxFixaxZcsWjh07ZhqvadOmvPPOO9SvX5/WrVtjZ2fHqlWr+P3339mzZw8AS5cupVOnTtSpU4d27doVWk9BQQEpKSmsXbsWa2tr+vXrx9q1a5k4cWKx36ACJyIiIiIiIiIiUlrKLLyNli1bFrrft28fW7Zswd7e/pa2J06coEGDBsCNYOFNY8aMYcWKFSxYsIB58+bRv39/AOrVq1fsvLa2tqxatYp3332XadOmceXKFQDc3d2L7aMCJyIiIiIi5Z+y/0REpKwpWHgbdnZ2he4zMzPp0aMH06ZNu6Wtq6ur6e+bFY0BGjRoQLt27XB0dCQqKoq5c+cSHx+Po6OjqY2Pjw8FBQWF+gcEBBQqeAIwfPjwYtdqbW2NtbV1yT5QRERERERERETkDxQsvI2kpCTatGnDwYMHMTc3p1KlShQUFODh4YGFhQU7duxgxIgR/PLLLzRp0oSJEycSGxtrKlgCcPDgQXbu3MmlS5dYv349zZo143//+x/Hjh2jQYMGtxREycvLK3T2oIeHh+nvm8VXkpKS7uOvICIiIiIiIiIijwqdWXgbubm5BAcHs2fPHqKjo6lTpw6//fYbzz77LFu2bOHpp5/GycmJrl27EhYWxrhx4wr1v1kQxWg00r17dzZs2ACAg4MDffv2ZdOmTVy5coWFCxdy9uxZ4uPjGTBgADk5OWzatAmA3bt3m8ZLTk4udP9HOTk5ZGRkFLpEREREROTB4jF+7W0vERGRsqZg4W3Uq1ePPn36UK9ePXx8fPjss8/Iy8sjLS2Nbt26kZ6ezpkzZ/Dw8KBbt26MHTu2UP+bBVG8vLwwGo2mgihpaWk0aNCAgQMHsmfPHgwGAwMHDqR+/fr4+vpibm5OdHQ0gKnYClCo+MqfqcCJiIiIiIiIiIiUlqHgj4flSSHHjx8nNDSU+Ph4fv/9d/Lz88nKymLt2rVs2rSJffv2sXnzZlP7/fv306xZM37++Wd8fHzo378/33zzDVZWVoXGzcrKYt26dXTt2hV/f38aN27Mhx9+aHrfs2dPnJycWLRoEXBj+/Hq1avp1atXsWvNyckptH35ZoGT9PR0HBwc7tIvIiIiIiIiIiIi5U1GRgZGo/GO4kQ6s/A2evTogbu7OwsWLKB69erk5+fTpEkTrl27dkf9/05BFLgRHMzPzy/RWlXgRERERERERERESkvBwmJcvHiRo0ePsmDBAtq2bQvA9u3bTe8bNmzIsmXLyMnJMQXp/nyeYIsWLVi5cqWpIMrfZWlpSV5e3t/uLyIiIiIiDz6P8WtJmtqtrJchIiKPOJ1ZWIxKlSrh5OTExx9/TGJiIps3byY4ONj0ftCgQeTn5/Pyyy9z5MgRNm7cyPvvvw/cyAwEeP3117l06RIDBw5k9+7dnDhxgo0bN/Liiy+WKPjn4eFBdHQ0586dIzU1tcg2KnAiIiIiIiIiIiKlpWBhMczMzPjiiy/Yu3cvTZo0YfTo0cyYMcP03sHBge+++46EhAR8fHyYMGECoaGhAFSoUAGA6tWrExcXR15eHp07d8bb25ugoCAcHR0xM7vzn37mzJls2rQJNzc3mjdvXmQbFTgREREREREREZHSUoGTu2j58uW8+OKLpKenY2Njc1/nVoETEREREREREREpigqc3CeffvopderUoUaNGuzbt49x48YxYMCA+x4oBBU4ERERERERERGR0lOwsBTOnTtHaGgo586dw9XVlf79+zN58uS7MnZOTg5jx47liy++ICMjg1atWjFr1iwee+yxYtv/ObNQREREREQebB7j1xa6V4ETEREpazqzsBTeeustkpKSuHr1KidPnmTWrFnY2tretbFXrlzJkiVL+Omnn6hXrx4BAQFcunSpyPY6s1BEREREREREREpLwcIHUFZWFv/5z3+YMWMGXbt2xcvLi7Zt25Kamsonn3xSZJ+QkBDS09NN1+nTp+/zqkVEREREREREpLzTNuQH0IkTJ7h+/Tq+vr6mZ6dOncLJyYkjR44U2UdnFoqIiIiIlD/adiwiIg8aZRaWE+vXr6dJkyZlvQwREREREREREXmIKVj4AKpbty5WVlbExcWZnsXFxZGYmIiXl1eRfXJycsjIyCh0iYiIiIhI+eAxfu0txU5ERETKgoKFDyA7Oztee+01xo4dy4YNGzh8+DDDhw8nOzubl156qcg+KnAiIiIiIiIiIiKlpTMLH1BTp04lPz+fwYMHc/nyZVq1asXGjRupVKlSke1DQkIIDg423WdkZChgKCIiIiIiIiIiJWIoKCgoKOtFyN2XkZGB0WgkPT0dBweHsl6OiIiIiIiIiIiUkZLEibQN+QG3YsUKvL29sbGxwcnJiY4dO5KVlVXWyxIRERERERERkYeQgoUPsOTkZAYOHMjQoUM5cuQIMTEx9OnTh6KSQVXgRERERESk/FORExERKWs6s/ABlpycTG5uLn369OG7775j9erVREdHF9k2IiKC8PDw+7xCERERERERERF5mOjMwgdYXl4eAQEB7Nq1i5o1a5KSksLx48eLLHKSk5NDTk6O6f5mgROdWSgiIiIiIiIi8mjTmYUPCXNzczZt2sT69evp378/1atXp2HDhpw8efKWttbW1jg4OBS6RERERERERERESkLBwgecwWDA19eX8PBwfv75Z6ysrFi9enVZL0tERERERERERB5COrPwARYfH090dDSdO3ematWqxMfHc+HCBTw9PW9pW9Q2ZBERERERebD9uaBJ0tRuZbQSERGRGxQsfIA5ODiwdetWIiMjycjIwN3dnZkzZ9K1a9db2qrAiYiIiIiIiIiIlJYKnDwkVOBERERERERERESKUpICJ8osfEhYW1tjbW1d1ssQEREREREREZFyTAVOHnArVqzA29sbGxsbnJyc6NixI1lZWWW9LBEREREREREReQgps/ABlpyczMCBA5k+fToZGRmsW7eOPn36UNTOcRU4EREREREpn/5Y5EQFTkREpKwps/ABlpycTG5urilAeP78eUaMGIG9vf0tbSMiIjAajabLzc2tDFYsIiIiIiIiIiLlmQqcPMDy8vIICAhg165dBAQE0LlzZ/r160elSpVuaasCJyIiIiIiIiIiUpSSFDhRZuEDzNzcnE2bNrF+/Xq8vLyYO3cuDRs25OTJk7e0tba2xsHBodAlIiIiIiIiIiJSEgoWPuAMBgO+vr6Eh4fz888/Y2VlxerVq8t6WSIiIiIiIiIi8hBSgZMHWHx8PNHR0XTu3JmqVasSHx/PhQsX8PT0vKWtCpyIiIiIiIiIiEhpKVj4AHNwcGDr1q1ERkaSkZGBu7s7M2fOpGvXrre0jYiIIDw8vAxWKSIiIiIiIiIiDwttQ77Ltm7dSo8ePahevToGg4E1a9YUer9q1So6d+6Mk5MTBoOBhISEQu+TkpIwGAwYDAa8vLzYuHEjFy5cICcnh0mTJjFy5Mgi5w0JCSE9Pd10nT59+h59oYiIiIiIiIiIPKwULLzLsrKyaNasGR9++GGx79u0acO0adOKfO/m5kZycnKhKzw8HHt7+yIzCm9SgRMRERERERERESktbUO+y7p27XrboN7gwYOBGxmERTE3N8fFxaXQs9WrVzNgwADs7e2LHVdnFoqIiIiIlD8e49cWuk+a2q2MViIiInKDMgsfcHv37iUhIQGj0UiHDh2KbRcREYHRaDRdbm5u93GVIiIiIiIiIiLyMFCw8AH3ySef4OnpiYWFBTExMcVmJOrMQhERERERERERKS1tQ36AXblyhc8++4y3336bM2fOMHToUDw8PIpsa21tjbW19f1doIiIiIiIlIq2HYuIyINGwcIH2IoVK8jOzqZfv340bdqUjRs3lvWSRERERERERETkIaZg4QPsk08+4f/7//4/du/ejbW1Nf/4xz+KbasCJyIiIiIi5Z8KnoiISFnTmYV3WWZmJgkJCSQkJABw8uRJEhISOHXqFADffvstBoOBXbt2AXD06FESEhI4d+5coXESExPZunUrw4YNY9u2bbRs2fK286rAiYiIiIiIiIiIlJahoKCgoKwX8TCJiYmhffv2tzwfMmQIUVFRjB8/nmnTpt3y/p133iEsLMx0/69//Ytly5aRlJREnz59cHJy4pNPPil23qIyC93c3EhPT8fBwaF0HyUiIiIiIiIiIuVWRkYGRqPxjuJEChbeY/7+/vj4+BAZGQn8XzAxNTUVR0fHOxojICCAevXq8eGHH97xvCX5j0BERERERERERB5eJYkTaRvyPRQYGEhsbCyzZ8/GYDBgMBhISkoCYO/evbRq1QpbW1tat27N0aNHC/X95ptvaNGiBRUqVCAuLo6tW7eSm5tbBl8hIiIiIiIiIiKPCmUW3kPp6el07dqVJk2a8O677wJw6NAhOnbsyBNPPMG0adNwdnbm1VdfJS8vj7i4OAC2bdtG9+7dmTNnDm3btmXq1KlERUUxYcIE3nnnnSLn0jZkEREREZHy788FTu6EiqCIiMhfUWbh31BQUMDLL79M5cqVMRgMpgIlpWE0GrGyssLW1hYXFxdcXFwwNzcHYPLkyfj5+eHl5cX48ePZsWMHV69eJSoqivbt2zN+/HiGDBlCnTp1+Oc//0l+fj7/+c9/ip1LBU5ERERERERERKS0LMp6AQ+KDRs2EBUVRUxMDHXq1KFKlSr3dL6mTZua/nZ1dQUgJSUFgPz8fN59910mT55sapOfn8/58+fJzs7G1tb2lvFCQkIIDg423d/MLBQRERERkfJDWYIiIlLWFCz8f06cOIGrqyutW7cu8v21a9ewsrK6a/NZWlqa/jYYDMCNgCDcyHIMDw+nT58+pjZbtmxh2rRpxa7B2toaa2vru7Y+ERERERERERF59ChYyI1CJEuWLAFuBO7c3d3x8PCgSZMmWFhYsGzZMry9vdmyZQsHDx5k7NixbNu2DTs7Ozp37sysWbNMmYj+/v40bdqUChUqsHDhQrKyssjOzr5lzqCgINavX096ejo1atQo9M7c3Jzo6GgWL17M6dOnadOmDYsXLyYrK4vk5GRlDIqIiIiIiIiIyD2hYCEwe/Zs6taty8cff8zu3bsxNzenf//+LFmyhNdee81UeCQtLY2nnnqKYcOGMWvWLK5cucK4ceMYMGAAmzdvNo23ZMkSgoODiY+PZ/jw4cTGxrJ06VK6du1qqmgcHx/PsmXLqFu3Lt9//z2jRo0qtKZNmzYxfPhwOnbsyPjx4+nXrx/t27cvNlBYVIETEREREREpX/5OgZOS0DZnERH5KwoWcqMQScWKFTE3N8fFxcX0vH79+kyfPt10P2nSJJo3b86UKVNMzxYtWoSbmxvHjh2jQYMGwI3zCG9WLf74449p0aIFQ4cOJTc3lzfffBOApUuX0qpVKwDatWtXaD15eXksWrSIhQsXsnTpUgoKCjh16hSBgYHFfkNERATh4eGl+yFEREREREREROSRpmDhbbRs2bLQ/b59+9iyZQv29va3tD1x4kShYOFNDRo0oEOHDjg5ObFo0SKmT59OrVq1TIFCAB8fHwoKCkz3tra2vPjii7z44osArF69mr59+zJ8+PBi16oCJyIiIiIi5Z8y/0REpKwpWHgbdnZ2he4zMzPp0aMH06ZNu6XtzYrGULh4Cdw4B/Fm8RIbG5u/nLeo/jeDiXl5eRgMBszMzAq1UYETEREREREREREprUcyWLhhwwYmTZrEwYMHMTc358knn8THxweApKQkateuTePGjVmxYgUff/wx9evXZ968ebRo0YKVK1diMBgICgpi+/btXLt2DQ8PD2bMmMHTTz/N3r17ycvLM83Vq1cvvv32WwYOHAiAi4sLp06dYtOmTXTq1ImcnBwmTJjA559/TlpaGtWqVTOdawgQFRXF66+/DoCXlxfHjh0jMTERDw+P+/Z7iYiIiIhI6d3JeYTKLBQRkbJm9tdNHj5ZWVkEBwezZ88eoqOjMTMzY9GiRYXa/Prrr7Rs2ZKEhAQaNGjAwIEDeeWVV7h06RJt2rQhJSWF5cuX8+GHH+Lq6mrKGHR0dOR///sfAAUFBWzbtg1LS0tSUlIAuHbtGlZWVgQHB7Np0yaGDBnCunXrGD16NPv37+exxx4jKyuL48ePm9Zys3DJwoULOXToEFWrVr3lm3JycsjIyCh0iYiIiIiIiIiIlMQjmVnYt2/fQveLFi3C2dmZ6tWrm565ublRu3ZtGjRoQHh4OI0bNyY7O5u4uDhatWrF/v376devH+7u7nTp0gV/f3/gRrDw2LFj5OXlcfDgQaysrKhZsybnzp0DICYmhh49euDg4MAzzzxDamoqjRo1wtPTk7p169K1a1dWrVrF4sWLTYVUbmYqtm7duthvUoETEREREREREREprUcyWHj8+HFCQ0OJj4/n999/N50nuGDBAlObZcuW8dhjjwH/dx5hSkoK7dq1Y+bMmbz22ms8/vjjdOzYkb59+2IwGADYtm0bTk5O/Pzzz+zYsQM/Pz+effZZpk6dCkBsbCxjx45l+PDh9O3bl+7du3Ps2DF69+6NlZWVaf4TJ06Y/raysuLq1au3/SYVOBERERERebBpi7GIiJQHj+Q25B49enDp0iUWLFhAfHw88fHxwI0twjf9scjIzUDgzaDisGHD+PXXXxk8eDAHDhygVatWzJ07F7iRWdisWTNiYmKIjY3F39+fdu3a8fPPP3Ps2DGOHz+On58fcKNgirm5OS1btmTQoEEkJCSQkJDAkSNHmD17tml+Gxsb0xqKY21tjYODQ6FLRERERERERESkJB65YOHFixc5evQoEydOpEOHDnh6epKamlricdzc3Hj11VdZtWoVb775ZqGsRD8/P7Zs2cLWrVvx9/encuXKeHp6MnnyZFxdXWnQoAEAzZs3Jy8vj927d7NkyRLq169P/fr1sbCw4OjRozz++OMMGzaMjIwMxo8fX6jwyZ/pzEIRERERkfLHY/zaQpeIiEhZe+SChZUqVcLJyYmPP/6YxMRENm/eXGj77p0ICgpi48aNnDx5kp9++oktW7bg6elpeu/v78/GjRuxsLCgUaNGpmfLly83ZRUCNGjQgAEDBmBtbU3Hjh2Jj49n3bp1zJ8/n4CAAB577DHee+89bGxs+OSTT5g0aVKxa4qIiMBoNJoubUEWEREREREREZGSeuSChWZmZnzxxRfs3buXJk2aMHr0aGbMmHFLu9GjRxc7Rl5eHq+//jqenp506dKFBg0a8NFHH5net23blvz8/EKBQX9/f/Ly8kyFUG5atmwZLi4u7Nq1izZt2vDSSy+xatUqXF1d+eCDD3B1dcXS0pLw8HBmzpxp2gr9ZyEhIaSnp5uu06dPl/CXERERERERERGRR52hoKCgoKwX8aBJT0+noKAAR0fH+zKfv78/Pj4+REZGAtCnTx+MRiOLFy82tdm3bx8+Pj789ttv1KpV6y/HzMjIwGg0kp6ervMLRUREREREREQeYSWJEz2S1ZD/itFoLOsliIiIiIiIiIiI3HcKFhYhMDCQtLQ01qxZw4YNG5g0aRIHDx7E3NycJ598ktmzZ1O3bl0AkpKSqF27Nl9++SVz585lz549NGnShOXLl5Oens5rr73GL7/8Qtu2bfn0009xdnY2zbNw4UJmzpzJ0aNH2bdvHw0aNGDEiBF4enqyYsUKXn/9dVatWkVqaiq2trZYW1tTs2bNIteck5NDTk6O6V4FTkREREREyp87KXKSNLXbfViJiIg8qh65MwtLKisri+DgYPbs2UPt2rU5fPgwvXv3vuXswHfeeYeJEyfy008/YWFhwaBBg3jrrbeYPXs227ZtIzExkdDQUFP75cuXExoayuTJk3nmmWeoUqUK//rXv/jggw8YMWIEJ0+e5NNPP2XGjBm0aNGCy5cv061bN8zMiv4nU4ETEREREREREREpLZ1ZWIQ/Zhb+kb+/Pw0bNuTjjz/mwIEDNGnSxJRZuHDhQl566SUAvvjiCwYOHEh0dDRPPfUUAFOnTiUqKopffvkFgHr16vHee+8xcOBAjh07xpAhQ9i7dy/Xr1/n5MmTvPnmm2zatImcnBzMzc2pUaMGR44cwcKi6GTQojIL3dzcdGahiIiIiIiIiMgjTmcW3kXHjx8nNDSU+Ph4Tp06xY4dOwA4deoUTZo0MbVr2rSp6e9q1aoB4O3tXehZSkoKcCNb8cSJE7z00ksMHz7c1MbMzIyqVavi4eHBhAkTiImJwcXFBXNzcypVqlRsoBDA2toaa2vru/PRIiIiIiIiIiLySNI25L/Qo0cPLl26xIIFC2jevDl9+/YFoF+/flSpUoWZM2cCYGlpSWpqKi+88AI9evQAYODAgRw/fhwAg8HA1atXcXR05LvvvgMgPz+f5s2b88MPP5CQkMDBgweJi4sjODiYp556ioKCAho1akRubi67d++mX79+ZfALiIiIiIiIiIjIo0KZhbdx8eJFjh49yoIFC2jbti12dnZ88803AMyYMQNHR0eGDRtmah8YGMjx48eZMmUKo0aNoqCggKeffprDhw+b2mRnZ/PJJ5/g7OxM3759iY2N5cMPP2T58uUATJ8+naioKBYtWoSnpyczZ84kJiaGxx57jJUrV3Lp0iUqV658y1pV4EREREREpPxTgRMRESlryiy8jUqVKuHk5MTHH39MYmIiqamp3DzisUaNGjz33HMEBgYC8Ntvv/Htt9+ycOFC05bkBQsWcObMmUJnH16/fp158+YxZcoUlixZQuPGjdm4cSMHDhxg8eLFTJo0iZCQEJKSkkhISCAoKAhbW1vOnDmDi4sLjo6ORa5VBU5ERERERERERKS0lFl4G2ZmZnzxxRe88cYbNGnSBAsLC9q3b8/69etNbZo3bw7Ar7/+ioWFBU888QTbtm0DoHLlyjRs2JAjR45Qq1YtAGxtbalbty5169bF1taWiRMncvHiRfz8/PD09OTy5cs88cQTHD16lOnTp3P8+HGys7OxtbVl27ZtxVZDDgkJITg42HR/s8CJiIiIiIiUH8oaFBGRsqZgYRFycnKwt7cHoGPHjqZtxP7+/ri4uPDHAtLVqlXDwsKCOnXqmJ75+/vz5yLTNzMQg4KCTM8GDRqEra0tvXv35tKlS6Snp5syB4cPH24qftKhQwe2bdtWaI4/U4ETEREREREREREpLW1D/oPc3FwOHz7Mzp07ady4cZFt4uPjC93/+OOP1K9fHy8vL3Jzcwu9v3nmoZeX1x3NbzQacXV1LTRGbm4ux48fx87OjmXLlv2NrxIREREREREREbkzyiz8g4MHD9K6dWvat2/Pq6++WmSbU6dOERwczCuvvMJPP/3E3LlzmTlzJvXr16dnz54MHz6c+fPnU7FiRcaPH0+NGjXo2bPnHa9h1KhRTJ06lfr169OoUSP+/e9/k5aWRo0aNfjiiy94/fXXi+ynAiciIiIiIuXPnwuaaBuyiIiUNQUL/8DHx4fs7OzbtnnhhRe4cuUKjz/+OObm5owaNYqXX34ZgMWLFzNq1Ci6d+/OtWvXaNeuHevWrcPS0vKO1/Dmm2+SnJzMkCFDMDMzY+jQofTu3Zvjx4+za9cucnJyitxuHBERQXh4eMk+WERERERERERE5A8MBX8+XE8eSPv376dZs2YkJSXh7u5+y/uiMgvd3NxIT0/HwcHhfi5VREREREREREQeIBkZGRiNxjuKEymzsJywsbEBKDbzUQVORERERERERESktBQsLCcuXboEgLOzcxmvRERERERE7pU/n2F4OzrfUERE7gUFC8uJgwcPUrNmTapUqVLkexU4ERERERERERGR0jIr6wU8amJiYjAYDKSlpZWo37Zt2+jcuXOx7yMiIjAajabLzc2tlCsVEREREREREZFHjQqc3GP+/v74+PgQGRkJ3AgWtm/fntTUVBwdHe9ojKtXr+Li4sKGDRv4xz/+UWQbFTgREREREREREZGiqMDJQ2bx4sU8/vjjxQYKQQVORERERERERESk9BQsvIcCAwOJjY0lNjaW2bNnAzcCfwB79+5l3LhxHD58GB8fHxYvXkzDhg1Nfb/55hvCw8M5fPgwFStW5NlnnyU3NxcLi6L/yXRmoYiIiIhI+VeSAid/h4qiiIjIX9GZhffQ7NmzefLJJxk+fDjJyckkJyebzhKcMGECM2fOZM+ePVhYWDB06FBTv23btvHCCy8watQoDh8+zGeffcZnn31GgwYNip1LZxaKiIiIiIiIiEhpKVh4DxmNRqysrLC1tWXDhg00atQIc3NzACZPnoyfnx9eXl6MHz+eHTt2cPXqVQDCw8MZP348Q4YMoU6dOnTq1Ak/Pz9OnTpV7FwhISGkp6ebrtOnT9+XbxQRERERERERkYeHtiHfJ8888wxPP/00hw8fBqBp06amd66urgCkpKRQq1Yt9u3bR1xcHJMnTza1ycvLIy8vj+zsbGxtbW8ZX2cWioiIiIiUf9omLCIiZU3BwvsgPz8fGxsbbGxsTMFCS0tL03uDwWBqB5CZmUl4eDh9+vS5ZawKFSrchxWLiIiIiIiIiMijSMHCYqxYsYLw8HASExOxtbWlefPmfPPNN9jZ2bFw4UJmzpzJyZMn8fDw4I033mDEiBEAJCUlUbt2bb744gs++ugjtm3bhoWFBVFRUQQFBbFmzRrTHDeLmBw8eBCAyMhI3n//fVq0aMEvv/zCsmXLWLRoEefPn8fJyYl+/foxZ86cIterAiciIiIiIuVfaQucKDNRRERKS8HCIiQnJzNw4ECmT59O7969uXz5Mtu2baOgoIDly5cTGhrKBx98QPPmzfn5558ZPnw4dnZ2DBkyxDTG+PHjmTlzJtWrV+eXX37h999/Jz8/35Q9uGPHDl544QXmzJmDk5MTPXr0YMWKFVSqVInQ0FC6deuGhYUFkZGR1K9fn507d7Jz585i1xwREUF4ePg9/21EREREREREROThZSgoKCgo60U8aH766SdatmxJUlIS7u7uhd7Vq1eP9957j4EDB5qeTZo0iXXr1rFjxw5TZmFkZCSjRo3i2LFjDBkyhJ9++olr166xePFiXnzxRdq1a0eXLl0ICQkhISGB5s2b8+9//5sZM2Zw9uxZXn75ZZYuXYrBYMDS0pJGjRoxbNgwhg8fXuSai8osdHNzIz09HQcHh3vzQ4mIiIiIyF2lzEIREbkXMjIyMBqNdxQnUrCwCHl5eQQEBLBr1y4CAgLo3Lkz/fr1w8rKCnt7e2xsbDAz+79C0rm5uRiNRs6fP28KFm7fvh1fX19Tm5vbkNPS0gBwdnYmMzPTVB355rxXr14lKyuLixcv4uvrS0FBAV26dOHpp5+mR48eWFjcWTJoSf4jEBERERERERGRh1dJ4kRmt337iDI3N2fTpk2sX78eLy8v5s6dS8OGDU1nCy5YsICEhATTdfDgQX788Ue+//57U5VjOzs7EhISMBgMjB8/3jT2sGHDeP7558nMzKRhw4bY2dmRm5tL9erVmTJlCsePH6dChQq4ubkRERGBmZkZixcvpm/fvlSpUsUUbBQREREREREREbnbdGZhMQwGA76+vvj6+hIaGoq7uztxcXFUr16dX3/9leeee+6WPpUrVyYzM9N0HxsbS5UqVYiJiaFRo0amZ+PGjePo0aMYDAY2btyIg4MDa9euZfTo0fj6+lKvXj2Sk5MJDAw0nZu4f/9+evbsycGDB2nTps0tc6vAiYiIiIhI+VfabcjF0fZkERG5U+U6WOjv74+Pjw+RkZF3ddz4+Hiio6Pp3LkzVatWJT4+ngsXLuDp6Ul4eDhvvPEGRqORLl26kJOTw549e0hNTaVPnz78cVd3TEwMo0ePJjw8nKtXr1JQUEBiYiJ+fn64ubnRvXt3vvnmG/r160fHjh1p2rQpb7zxBj/++CPz588nNzeXxo0bk5+fzwsvvIClpSWenp5FrlkFTkREREREREREpLTKdbDwXnFwcGDr1q1ERkaSkZGBu7s7M2fOpGvXrgDY2toyY8YMxo4di52dHd7e3gQFBRUao6CggG3bthEREcFXX33F8ePHTduN69evT506dUwVl8PCwkz9WrZsCUDTpk1xcHAgICDAdK7hkCFDcHJyKnLNISEhBAcHm+5vFjgREREREZHyQxmAIiJS1hQsLIKnpycbNmwo9v2gQYMYNGjQLc+TkpIAsLe3L1TF2N/fH0tLS55//nkuX74MwIwZM1i3bh3z58/H29sbOzs7goKCTAVM+vTpQ+/evdmxYwc//PCDKeg4ceJEateufcvc1tbWWFtb34WvFxERERERERGRR9VDU+Bk6dKltGrViooVK+Li4sKgQYNISUkxvY+KisLR0bFQnzVr1mAwGEz3YWFh+Pj4sHTpUjw8PDAajTz77LOmAB9Afn4+06dPp169elhbW1OrVi0mT55caNzs7Gy6dOnChQsXaNasGS4uLsTExBATE4O/vz/bt29n+vTppKWlERISwieffEK1atU4duwYACkpKfTo0QNbW1uef/55GjRogKurK+bm5qxevfoe/HoiIiIiIiIiIiIPUWbh9evXee+992jYsCEpKSkEBwcTGBjIunXrSjTOiRMnWLNmDd9//z2pqakMGDCAqVOnmgKCISEhLFiwgFmzZtGmTRuSk5P55ZdfCo1haWnJhQsXCA0N5eDBg3z44YecP3+e69evU7t2bbp06UKrVq04duwYEydOZPbs2WzYsIHz58/j5eVFYGAgx48fZ8iQIfj6+jJr1izOnTtHXl5esWcWqsCJiIiIiEj5d68KnNyOtj6LiMgfPTTBwqFDh5r+rlOnDnPmzOGxxx4jMzMTe3v7Ox4nPz+fqKgoKlasCMDgwYOJjo5m8uTJXL58mdmzZ/PBBx8wZMgQAOrWrXtLdeK2bdvy3//+l2eeeYb+/fvTuHFjGjVqRFpaGl9++SXPPfccERERDB06lDFjxmBpaUlqaioNGzYkMzOT6OhovvzySxYtWsSqVatIT0/n2rVr9OnTx3Ru4p+pwImIiIiIiIiIiJTWQxMs3Lt3L2FhYezbt4/U1FTy8/MBOHXqFF5eXnc8joeHhylQCODq6mraznzkyBFycnLo0KHDbceYMmUKmzZtAiA1NRWA+fPn065dOx577DH279/P8uXLTe1vZgQuW7aMM2fOEBsbS79+/RgwYICpTaVKlWjbtm2xc6rAiYiIiIhI+acsPxERKWsPRbAwKyuLgIAAAgICWL58Oc7Ozpw6dYqAgACuXbsGgJmZGQUFBYX6Xb9+/ZaxLC0tC90bDAZT4NHGxuaO1vPHMW6eiXhzjMzMTF555RXeeOONW/rVqlWLM2fO3NEcf6YCJyIiIiIiIiIiUloPRbDwl19+4eLFi0ydOtWUTbdnz55CbZydnbl8+TJZWVnY2dkBkJCQUKJ56tevj42NDdHR0QwbNuxvrbVFixYcPnyYevXqFXru7++Pj48Pr732Grm5uYwcOZKrV6/y9ddfY29vT1pa2t+aT0RERERERERE5E49FMHCWrVqYWVlxdy5c3n11Vc5ePAg7733XqE2TzzxBLa2tvzrX//ijTfeID4+nqioqBLNU6FCBcaNG8dbb72FlZUVvr6+XLhwgUOHDvHSSy/d0Rjjxo3jH//4ByNHjmTYsGHY2dlx+PBhjh8/jo+PDw0bNqRChQp8/PHHjB49mqVLlzJ69GiAQtWd/0wFTkREREREyr+yKHByO9oWLSLy6DEr6wXcDc7OzkRFRfH111/j5eXF1KlTef/99wu1qVy5MsuWLWPdunV4e3vz+eefExYWVuK53n77bd58801CQ0Px9PTkmWeeuW0Q788uXbrElStXOHz4MG3btqV58+aEhoZiZWVlalOlShVcXFyYO3cuo0aNIjw8HDMzM44fP17suBERERiNRtOl8wpFRERERERERKSkDAV/PshP7qqb24sjIyMBiImJoX379qSmpuLo6FhkOw8PD15//XXGjh1ret+sWTP69u1LaGhokfMUlVno5uZGeno6Dg4O9+TbRERERERERETkwZeRkYHRaLyjONFDsQ35YXS7QitFUYETEREREREREREpLQUL76HAwEBiY2OJjY1l9uzZACxevBiAvXv3Mm7cOA4fPoyPjw+5ubmF+h44cMBUDKV69epkZ2ffNlgoIiIiIiLl3/04s1DnEIqIyO08FGcWPqhmz57Nk08+yfDhw0lOTiY5Odl0luCECROYOXMme/bswcLCgqNHj5r65eTksHz5ckaNGsXhw4eZP38+ly5dYuvWrcXOlZOTQ0ZGRqFLRERERERERESkJBQsvIeMRiNWVlbY2tri4uKCi4sL5ubmAEyePBk/Pz+8vLwYP348GRkZ7N27F4C0tDQ6duzIkCFDqFOnDp06dcLV1dX0vigqcCIiIiIiIiIiIqWlbchlpGnTpqa/XV1dAXjqqacAsLe3Jzo6Gnt7e1ObvLw8rl69SnZ2Nra2treMFxISQnBwsOn+ZoETEREREREpP7RFWEREypqChWXkZgGTa9euYTAYALhZmDozM5Pw8HD69OlzS78KFSoUOZ4KnIiIiIiIiIiISGkpWFhC+fn5TJs2jY8//phz587RoEED3n77bfr160deXh4vv/wymzdv5ty5c9SqVQuDwUBeXp6p/9SpUwF4//33WbRoEdbW1qxevbrQHA4ODsydO5e33nrL9Oz69evUqFGDiIgIXnrppVvWlZOTQ05OjuleZxaKiIiIiJQ/96PAyZ1QhqOIyKNLwcISioiIYNmyZcybN4/69euzdetWnn/+eZydnWndujU1a9bk66+/xsnJiR07djBkyBByc3NJSkrC3t7elD2YmJjIpk2bgBuBwD8aP348wcHBjBkzhhdffBEzMzMWLlxIWloazzzzTLHrCg8Pv7cfLyIiIiIiIiIiDzVDwc3olfylnJwcKleuzH//+1+efPJJ0/Nhw4aRnZ3NZ599dkuf559/nvXr13PlyhWuXLmCr68vcXFxnD9/nqpVqwKQkJBA8+bNefvtt3n33XcBcHd3x2AwkJKSgqWlJWZmZnh5eREXF1fs2v6cWejm5kZ6ejoODg5382cQEREREZF7RJmFIiJyL2RkZGA0Gu8oTqTMwhL44osvyM7OxtfXl4KCAipUqIC5uTnXrl2jefPmnD9/np49e7J3715yc3MxNzfHzMwMHx8fdu3aBYCLiwsA1apVM437yiuv4O7uTuXKlQE4deoUdnZ2/PLLL1SpUoV+/fqxYMEC0xbmoujMQhERERGR8k9BOhERKWtmZb2A8uTSpUsApuy/f//73yQkJHD48GG+/vpr2rRpw+7duwkODmbVqlX069cPa2trrl69Wmgcd3d3kpOTTdf06dNN7/Ly8ujWrRvOzs5YWFgwfvx4lixZQsWKFWnbtu39+1gREREREREREXnkKLOwBIYNG0ZISAju7u4AuLq6Uq9ePQCOHTtGYmIiTzzxBNOmTQOgZ8+eVKhQgdTU1ELjmJubmzIM/+yHH37g8OHDnD17ljfeeINffvkFR0dHLl68yLVr17CysiqynwqciIiIiIiUf/dyG7KyFkVE5E4oWFgCFStWZMyYMYwePRqA5ORkfvrpJ+Li4khPTwfg0KFDbNy4kdq1a7N06VJyc3PJysoqNM7//vc/qlSpgouLCz169ODtt982vdu5cyfe3t5Uq1aNYcOG0b17d/Ly8sjLy+PQoUM0b968yLWpwImIiIiIiIiIiJSWCpyUUEFBAXPmzCEoKAgLCwsqVapEixYteOuttwgMDMTc3JxLly5hZmZGo0aN+PHHH6lYsaIp069169YAzJ8/n/379zNu3Dgef/xxfvrpJ4KCgjh8+DC//fYbGzdupKCggNq1a9OoUSM2btxIhw4daNOmDWFhYbesSwVORERERERERESkKCpwcg8ZDAZGjRpFUFAQX3/9Nb169TK9W716NS+99BJJSUmYm5tjNBrp2rUrf4zH7tixw/S3t7c3rq6udOjQgcTEROrWrcvLL79sep+VlUVqaipDhgxh48aNt12XCpyIiIiIiIiIiEhpqcDJXdSyZUsSEhJIS0sjOTmZDRs2cPHiRerUqVNsnyeeeAKAxMRE4Ea15HPnzpGSksJ7772Ho6MjrVq1AsDGxubef4SIiIiIiIiIiDyyFCy8B4xGI87Ozhw/fpw9e/bQs2fPYtsmJCQAN4qlADz55JMcOHCAatWq8dlnn7Fo0SK2bNmCg4MDjo6OxY6Tk5NDRkZGoUtERERERMoXj/Fr72mRExERkb+ibcglkJmZacoABDh58iQJCQlUrlyZWrVq8fXXX+Ps7EytWrU4cOAAo0aNolevXnTu3BmAEydO8Nlnn/H000/j5OTE/v37GT16NO3ataNp06YAdO7cmcaNG1O9enWmT5/OuXPnmDhxIq+//jpTpkwpdm0qcCIiIiIiIiIiIqWlAiclEBMTQ/v27W95PmTIEKKiopgzZw4zZszg/PnzuLq68sILL/D2229jZWUFwOnTp3n++ec5ePAgWVlZuLm50bt3byZOnFjocMnffvuN1157jZiYGOzs7BgyZAhTp07FwqL42K4KnIiIiIiIiIiISFFKUuBEwcKHVEn+IxARERERERERkYdXSeJEOrPwAbdixQq8vb2xsbHBycmJjh07kpWVVdbLEhERERERERGRh5CChQ+w5ORkBg4cyNChQzly5AgxMTH06dOHopJBVeBERERERKT8U3ETEREpaypw8gBLTk4mNzeXPn364O7uDoC3t3eRbVXgRERERERERERESktnFj7A8vLyCAgIYNeuXQQEBNC5c2f69etHpUqVbmmrAiciIiIiIiIiIlIUnVn4kDA3N2fTpk2sX78eLy8v5s6dS8OGDTl58uQtba2trXFwcCh0iYiIiIiIiIiIlIQyC8uRvLw83N3dCQ4OJjg4+LZtVQ1ZRERERKT8+fOZhUlTu5XRSkRE5GFSkjiRzix8gMXHxxMdHU3nzp2pWrUq8fHxXLhwAU9Pz1vaFrUNWUREREREREREpCQULHyAOTg4sHXrViIjI0lNTSU/P5/Zs2fTtWvXW9qqwImIiIiIiIiIiJSWtiGXE1FRUQQFBZGWllbkexU4ERERERERERGRomgb8iPI2toaa2vrsl6GiIiIiIiIiIiUY6qGfA9s2LCBNm3a4OjoiJOTE927d+fEiRMAJCUlYTAYWLVqFe3bt8fW1pZmzZqxc+fOQmNERUVRq1YtbG1t6d27NxcvXrztnDk5OWRkZBS6RERERETkwecxfq3pEhERKWsKFt4DWVlZBAcHs2fPHqKjozEzM6N3797k5+eb2kyYMIExY8aQkJBAgwYNGDhwILm5ucCNwiYvvfQSI0eOJCEhgfbt2zNp0qTbzhkREYHRaDRdbm5u9/QbRURERERERETk4aMzC++D33//HWdnZw4cOIC9vT21a9dm4cKFvPTSSwAcPnyYxo0bc+TIERo1asSgQYNIT09n7dr/+18Wa9SowdmzZynun0tnFoqIiIiIlE9/zChMmtqtDFciIiIPK51ZWMaOHz9OaGgo8fHx/P7776aMwlOnTuHl5QVA06ZNTe1dXV0BSElJoVGjRhw5coTevXsXGtPGxua2c+rMQhERERGR8kkBQhEReZAoWHgP9OjRA3d3dxYsWED16tXJz8+nSZMmXLt2zdTG0tLS9LfBYAAotE35zy5cuGBqJyIiIiIiIiIici88FGcWrlixAm9vb2xsbHBycqJjx45kZWURGBhIr169CA8Px9nZGQcHB1599dVCQbvbFSMB6NevHyNHjjTdBwUFYTAY+OWXXwC4du0adnZ2/Pe//wXA19eXo0eP4uTkRP/+/Wnfvj0zZ868Zc1/XFOPHj0KvfP09OSzzz6jWrVqVKxYkZdeeokaNWrcNlioAiciIiIiIuWTCpyIiMiDpNwHC5OTkxk4cCBDhw7lyJEjxMTE0KdPH9PZftHR0abnn3/+OatWrSI8PNzU/6+Kkfj5+RETE2NqHxsbS5UqVUzPdu/ezfXr12ndujUAFhYWGAwGDh06xFdffUVgYCCLFy++Zd2XLl1i/fr17N27l2bNmgGYAnxeXl4cPXoUPz8/VqxYwf/+9z+OHDly299BBU5ERERERERERKS0yn2Bk59++omWLVuSlJSEu7t7oXeBgYF89913nD59GltbWwDmzZvH2LFjSU9Px8zs1ljpH4uRNGnShAMHDtCsWTPOnz+PhYUFLi4uvP322xw8eJAvvviCyZMns27dOuLi4gDw9/fn4sWL5OXl8euvv9KwYUNycnI4evQoq1ev5vr16wwYMID4+Hgef/xxANLS0qhUqRLBwcHMnDmT1q1bU6FCBY4fP87vv//O1atXcXFxISUlhby8vCJ/BxU4ERERERERERGRopSkwEm5zyxs1qwZHTp0wNvbm/79+7NgwQJSU1MLvb8ZKAR48sknyczM5PTp08CNYiQDBw6kTp06ODg44OHhAdwoRgLQpEkTKleuTGxsLNu2baN58+Z0796d2NhY4Eamob+/f6E1tWvXjsOHD3P16lX27dtHw4YNefHFF+nVqxcpKSmYmZnx1FNPYW9vj729PTVr1sTMzAwLixtHSB45coTAwEBOnz5tyii8+Y3Fsba2xsHBodAlIiIiIiIiIiJSEuU+WGhubs6mTZtYv349Xl5ezJ07l4YNG3Ly5Mk76t+jRw8uXbrEggULiI+PJz4+HsB0rqHBYKBdu3bExMSYAoNNmzYlJyeHgwcPsmPHDvz8/AqN+cfiJTfHuLmtOTMzE1dXVxISEkzXnDlz8PHx4T//+Q9OTk5kZmaSkpICQO3atQFYvnw5+/btuyUwKSIiIiIiIiIicrc8FNWQDQYDvr6++Pr6Ehoairu7O6tXrwZg3759XLlyBRsbGwB+/PFH7O3tcXNz4+LFixw9epQFCxbQtm1bALZv337L+H5+fixYsABra2smT56MmZkZ7dq1Y8aMGeTk5ODr63vHa23RogXnzp3DwsLClMW4b98+JkyYQNOmTcnMzOSpp54iIiKC4OBgdu3axeOPP46npydmZmasWrWqyHGL2oYsIiIiIiIPntsVMkma2u0+rkRERORW5T6zMD4+nilTprBnzx5OnTrFqlWruHDhAp6ensCNDMGXXnqJw4cPs27dOt555x1GjhyJmZkZlSpVwsnJiY8//pjExEQ2b95McHDwLXP4+/tz+PBhDh06RJs2bfD39yc1NZXly5fTqlUr7Ozs7ni9HTt25Mknn6RXr1788MMPJCUl4erqyt69e0lLS8PHx4dp06Zx6dIlJk+ezOXLl4Eb26ItLCyoXLlykeOqwImIiIiIiIiIiJRWuc8sdHBwYOvWrURGRpKRkYG7uzszZ86ka9eufPnll3To0IH69evTrl07cnJyGDhwIGFhYQCYmZnxxRdf8MYbb9CkSRMaNmzInDlzbtnq6+3tjaOjIw0aNMDe3h6AmjVrkpeXV+JtwQaDgXXr1jFhwgRefPFFLly4QJUqVbCysmLp0qWkpaWZtiy///77vPvuuwD079+fn3/+udhxQ0JCCgU6bxY4ERERERGRB4uyB0VE5EFW7qsh305gYCBpaWmsWbPmro7r7++Pj48PkZGRd2W8Ro0a4e7uzltvvUX16tXJz8+nSZMmrF69mmXLlrFy5Up+/vlnfHx87njMklS5ERERERERERGRh9cjVQ25rOXk5DBmzBhq1KiBnZ0dTzzxBDExMab3Fy9eZODAgdSoUQNbW1u8vb35/PPPC70/evQox48fp3v37rRp04YhQ4YA8MUXX7By5UoAmjdvjsFgKDS2iIiIiIiIiIjI3VTutyGXtZEjR3L48GG++OILqlevzurVq+nSpQsHDhygfv36XL16lZYtWzJu3DgcHBxYu3YtgwcPpm7dujz++ONcvXoVgMqVK7No0SISExOZNGkSAD179iQvL49Vq1YxduxYnnvuOVxcXIpchwqciIiIiIiUvdsVL7kT2qIsIiJl7aHehnyv3NyGHBwcTJ06dTh16hTHjh2jffv2pKam0q9fPx5//HGmTJlSZP/u3bvTqFEj7O3t+eyzzzh+/Dj16tXj9OnThc5NXL16NWvWrGHfvn1cvHiRM2fO0LZt2yKzC8PCwggPD7/lubYhi4iIiIjcPwoWiojIg6gk25CVWVgKBw4cIC8vjwYNGgBga2tLzZo1ycnJwcnJCYC8vDymTJnCV199xZkzZ7h27Ro5OTnY2tri5eWFjY0NHTp0YNeuXfTo0YPOnTvTtGlTbsZwX331Vezs7Dh16tRt16ICJyIiIiIiZU/BPhERKe8ULCyFzMxMzM3N2bt3L+bm5oXe3ayaPGPGDGbPnk1kZCTe3t7Y2dkRFBTEtWvXgBvVkTdt2sSOHTv44YcfmDt3LhMmTCA+Pp7atWvf8Vqsra2xtra+ex8nIiIiIiIiIiKPHAULSyA/P59p06bx448/sn37djZs2EBeXh4pKSnk5eWZtiE7OjoCsGDBAsLDw7l+/TorV64kJSWF8PBwqlWrhpeXl2ncZcuW8fbbb5OamkpAQAAXL15k9erV7N+/n/PnzwM3gooAJ0+exMPD435/uoiIiIiI3AN/3raszEQRESlrChaWQEREBMuWLaNBgwa0bNkSPz8/XnrpJQYMGMBrr70GwN69e9m1axcWFhaMHz8eX19fEhMTqVu3Lu+++y5Xrlzh/PnzpmDhsWPHmDp1KtOmTcPc3Jzhw4dz+fJlPD09eemll9i8eTOpqamsX7+eSpUqqcCJiIiIiIiIiIjcMypwcodycnKoXLky//3vfwkJCTEVHElNTcXMzIwKFSqQnZ2Ni4sL6enpuLu7U7duXT799FOGDh1KdHQ0ubm5FBQU8Mwzz5Ceno6Pjw/Tpk3D19eX/fv3k5GRga2tLQ4ODiQlJQHQunVrzpw5w6VLl8jMzGTLli34+/vfsj4VOBERERERKX+UWSgiIvdDSQqcKFh4hw4dOkSTJk2ws7MjLy+Pq1evYmNjQ25uLk2aNGHSpEl069aN1NRUfHx8yM3N5eWXXyY0NNQ0xpw5cwgNDSUtLQ24EeD7+uuvOXTokKnNrFmzmDt3Lr/++ivwf5WXIyMjb7u+ojIL3dzcFCwUEREREREREXnEqRryPZCZmQnA2rVr2bx5MwsWLGDr1q3AjeIiJ06c+FvjWlpaFro3GAzk5+eXeBwVOBERERERERERkdJSsPAOeXl5YW1tzcSJE9m+fTsA9evXx93dHQ8PD6pUqVKofdWqVdm9ezdwIwA4b948pk+fTnp6Op6enixatIhLly6RmJiInZ0dzZo1Y+nSpab++/btIygoiO3bt7Njxw62bdvG/PnzadWqVZHr05mFIiIiIiLlm8f4tdqGLCIiZc6srBdQXlSsWJExY8Zw+PBhevfujYuLCxs3buSVV17h3Llzt7Rv06YN69at49///jcA48ePJyMjAwcHBxo1asSgQYP47rvvqFatGnv27KGgoICRI0ea+j/33HPUrFmTPn360KhRI4YOHUpmZmaxWYcREREYjUbT5ebmdm9+CBEREREREREReWgpWFgC7733HqGhocTFxXHu3Dmef/55YmNjqVChwi1t69Spw7x580zBwmrVqjFu3DhsbW0ZN24cSUlJNG3alIoVK+Lp6cmoUaOIiYkx9T916hQdO3Zk0qRJ2NnZMXbsWNq3b8+OHTuKXFtISAjp6emm6/Tp0/fkNxARERERERERkYeXtiGXgMFgYNSoURQUFBAZGWmqWOzv70/NmjX5c62Y4cOHM3z4cAwGA++99x4//PAD9erVo1q1agBMnDiRxx57DLgRTLx69SpDhw4lKCiIsLAwhg0bhp+fHz179sTT0xNzc3PatGlT5Np0ZqGIiIiISPmmLcgiIvIgUGbhPfT++++zb98+AH744QeWLFnCkCFDMBgMQOHiJjef3dxmHBYWxqFDh+jWrRubNm1i8eLF1K1b9z5/gYiIiIiIiIiIPEqUWXgP7dq1i+nTpwOwceNG5syZw7Bhw0wZiX+lQYMGNGjQADc3N+Li4ordggwqcCIiIiIi8jDwGL+20L2yDUVE5H5TZuE99NVXX5GSkgLAnDlzePXVV++o35UrVxg5ciQxMTH89ttvfPnll5ibm+Pp6VlsHxU4ERERERERERGR0lJm4QPI3Nycixcv8sILL3D+/HnMzMyoXbs24eHhxfYJCQkhODjYdJ+RkaGAoYiIiIiIiIiIlIih4M9VOeSBExAQQL169fjwww/vuE9GRgZGo5H09HQcHBzu4epERERERERERORBVpI4kbYhl5C/vz9vvPEGb731FpUrV8bFxYWwsDDT+1OnTtGzZ0/s7e1xcHBgwIABnD9/3vQ+LCwMHx8fli5dioeHB0ajkWeffZbLly+b2uTn5xMREUHt2rWxsbFh165dpkIpIiIiIiIiIiIi94q2If8NS5YsITg4mPj4eHbu3ElgYCC+vr506NDBFCiMjY0lNzeX119/nWeeeYaYmBhT/xMnTrBmzRq+//57UlNTGTBgAFOnTmXy5MnAjfMHly1bxrx586hfvz4hISF8/fXXxMbG4ufnV+SaVOBERERERKR0/lxcpCyooImIiJQ1BQv/hqZNm/LOO+8AUL9+fT744AOio6MBOHDgACdPnjSdF/jpp5/SuHFjdu/ezWOPPQbcyByMioqiYsWKAAwePJjo6GgmT55MTk4OU6ZM4b///S9PPvkkAN26deOrr77C39+fnj17smbNmlvWFBERcdszDUVERERERERERP6KgoV/Q9OmTQvdu7q6kpKSwpEjR3BzcytUWMTLywtHR0eOHDliChZ6eHiYAoV/7A+QmJhIdnY2nTp1Mr2/cuUKADVr1iQqKqrINanAiYiIiIhI6SirT0RERMHCv8XS0rLQvcFgID8//670z8zMBGDt2rXUqFEDgMcee4yePXsSFxdX7CGU1tbWWFtb3/EaRERERERERERE/kwFTu4iT09PTp8+zenTp03PDh8+TFpaGl5eXsX2y83N5dKlS1StWpV27dphMBiIiYnBwsKC+vXrk5aWxpIlS0hMTGTWrFn341NEREREREREROQRpMzCu6hjx454e3vz3HPPERkZSW5uLiNGjMDPz49WrVoV2+/bb78lOzubL7/8End3d5599lnCw8OpUqUKO3fupGPHjgQEBODn58fw4cOLHEMFTkREREREyr8/F1nR1mgREbnflFlYSlFRUaxde+P/oRsMBr755hsqVapEu3bt6NixI3Xq1KFatWr06tWryP5ZWVnExcVRqVIlunbtiq2tLQcOHMDW1pbw8HDatWtHdnY2x44dw8fHBxsbmyLHiYiIwGg0mi6dVygiIiIiIiIiIiVlKCgoKCjrRZRnUVFRBAUFkZaWVmyb9PR0CgoKcHR0vOXd/v37adasGUlJSbi7u5OUlETt2rVp3749Hh4eLFq0CEdHRyIjIwkMDCx2jqIyC93c3EhPTy/2nEMREREREREREXn4ZWRkYDQa7yhOpG3I94HRaLznc6jAiYiIiIiIiIiIlJa2IRfh+++/x9HRkby8PAASEhIwGAyMHz/e1GbYsGE8//zzpvuNGzfi6emJvb09Xbp0ITk52fQuMDCw0Dbk/Px8pk+fTr169UxnGY4dO7bQGvbt20dsbCy2trZcvnyZxMTEe/GpIiIiIiIiIiIiJsosLELbtm25fPkyP//8M61atSI2NpYqVaoQExNjahMbG8u4ceMAyM7O5v3332fp0qWYmZnx/PPPM2bMGJYvX17k+CEhISxYsIBZs2bRpk0bQkJC2LRpExs2bMDc3ByAtLQ0PvroI5o3b06TJk2YN28eYWFhWFgU/U+mAiciIiIiIuXfnwuc/JkKnoiIyL2mzMIiGI1GfHx8TMHBmJgYRo8ezc8//0xmZiZnzpwhMTERPz8/AK5fv868efNo1aoVLVq0YOTIkURHRxc59uXLl5k9ezbTp09nyJAh1K1bl08//ZTBgwczePBgunfvDtwIKD7zzDM0aNCAChUqcPHixdtmF6rAiYiIiIiIiIiIlJYyC4vh5+dHTEwMb775Jtu2bSMiIoKvvvqK7du3c+nSJapXr079+vWJi4vD1taWunXrmvq6urqSkpJS5LhHjhwhJyeHDh06mJ5VqFCBOXPmMGfOHFOBk549e5re//bbb1SuXJmUlBQaNWpU5LghISEEBweb7m8WOBERERERkfJDmYMiIlLWFCwshr+/P4sWLWLfvn1YWlrSqFEj/P39iYmJITU11ZRVCGBpaVmor8FgoLgi0zY2Nnc0/x/HNBgMwI2zDoujAiciIiIiIiIiIlJa2oZcjJvnFs6aNcsUGLwZLIyJicHf3/+WPjcLo9wM6t0sjLJ3715Tm5kzZ2Jubs4333zDwIEDqVGjBra2tnh7e/P5558XGm/FihV4e3vj4uICwJtvvklWVtY9+mIRERERESlLf3VeoYiIyP2gYGExKlWqRNOmTVm+fLkpMNiuXTt++uknjh07Viiz8KabAcZff/0VwFQY5dy5c6Y2cXFxPP3004SFhVFQUMC8efNYunQp3t7eDB48mISEBAAuXLjAwIEDGTp0KLt27TKNX1zGYk5ODhkZGYUuERERERERERGRklCw8Db8/PzIy8szBQsrV66Ml5cXLi4uNGzY8Jb2NwujHDx4EPi/wiiXLl0iNzfXVBhlxowZjB07lh9//JG+ffsSHByMt7c3Xbp0Ye3aG/9r4u+//05ubi59+vShVq1aAPTq1Qt7e/si16oCJyIiIiIiIiIiUlqGguJS1eRvCQ4O5tixY3z33Xc4Ozuzfft2nn32WaZOncqlS5cYO3YsZ86cIS8vjylTpvDVV19x5swZrl27Rk5ODr179+arr74iLy+PgIAAdu3aRUBAAJ07d6Zfv35UqlSpyHlzcnLIyckx3d8scJKeno6Dg8P9+nwREREREREREXnAZGRkYDQa7yhOpMzCu8zf35/t27cXWRglNjbWtH15xowZzJ49m3HjxrFlyxYSEhIICAjg2rVrAJibm7Np0ybWr1+Pl5cXc+fOpWHDhhw9erTIea2trXFwcCh0iYiIiIiIiIiIlISqIZdSfn4+06ZN4+OPP+bcuXPUqVOHjIwM/v3vf5Oens5//vMf/P39mTp1KqmpqfTv3x8zMzOeeuopevbsSffu3RkzZgxr1qzh0qVLODk5sW/fPpo1a4bBYGDTpk188803jBw5khEjRtCoUaMizy0sKrNQRERERETKl9sVOUma2u0+rkRERB5Vj3xmob+/P0FBQX+7f0REBJ9++inz5s3j0KFDjB07FoDly5fj6+vLZ599VqgwytmzZ/H19aVp06Zs2rSJTp06ceLECdq0aYOdnR1Go5EOHTrwww8/MGXKFM6ePcvRo0d55ZVXMBgMfPjhh8WuQ2cWioiIiIiIiIhIaTzywcLSyMnJYcqUKSxatIiAgADq1KlDYGAgXl5e5OfnM2LECOLi4sjMzDQVRvnhhx947rnnmDhxIu7u7uzZs4fDhw/j7e1Nnz59aNKkCY6OjuzcuZOtW7eyfPlyrl69CsCbb77JiBEjilxLSEgI6enppuv06dP386cQEREREREREZGHwEO9DfnatWtYWVnds/ETExPJzs6mU6dOt8z7+OOP07t3bzw9Pfnss89ISEhgy5YtBAQE0L9/fypXrsyzzz7Ljh07yMrKYtasWab+V65cITs7mw0bNhAWFsaSJUtISkri2WefLXYt1tbWWFtb37NvFRERERGRe09bjUVEpKw9VJmF/v7+jBw5kqCgIKpUqUJAQAAHDx6ka9eu2NvbU61aNQYPHszvv/9e7Bg5OTmMGTOGGjVqYGdnxxNPPEFMTIzp/cWLFxk4cCA1atSgZcuWwI0KyAkJCaZr5syZpKWlYWNjw8mTJ5k8eTJZWVl89tlndOnShdWrV+Pp6cmoUaMwMzNjzJgxhfp/9dVXrFu3jgoVKvDxxx/f659NREREREREREQEeMiChQBLlizBysqKuLg4pk6dylNPPUXz5s3Zs2cPGzZs4Pz58wwYMKDY/iNHjmTnzp188cUX7N+/n/79+9OlSxeOHz8OwNWrV2nZsiVr165l165dWFhYMGnSJC5dukS9evWws7MjODiYV199lSNHjrBq1SqysrL46aefWLFiBe7u7oSGhjJ58mQWLVpEfn4+kZGRxMXFUa9ePVxcXHjttddo2rQpe/fuxd/fn7Nnz/7ld+fk5JCRkVHoEhERERGRB5fH+LW3XCIiImXtoduGXL9+faZPnw7ApEmTaN68OVOmTDG9X7RoEW5ubhw7dowGDRoU6nvq1CkWL17MqVOnqF69OgBjxoxhw4YNLF68mClTplCjRg3GjBlj6jNu3DimT5/OO++8wwcffMCPP/5Ibm4u+fn5eHh44OHhQevWrfnnP/9JXl4ea9euZebMmfTp04eCggIWLFhAYmIiI0aMIDY2FmdnZzIzMxkxYgSNGzemQYMGVK1alf/973+3/e6IiAjCw8Pv1s8oIiIiIiIiIiKPoIcuWHhzazDAvn372LJlC/b29re0O3HixC3BwgMHDpCXl3fL85ycHJycnADIy8tjypQpfPXVV5w5c4acnBzy8vKIi4vD09MTR0dHKleuzNtvv82PP/5I586d6d27N2PGjGHQoEF89tlnvPTSSwwfPhyAgoICcnJyKCgoYNmyZVSoUAEHBwdq1aplmt/W1vYvvzskJITg4GDTfUZGhioii4iIiIg8wHQ+oYiIPIgeumChnZ2d6e/MzEx69OjBtGnTbmnn6up6y7PMzEzMzc3Zu3cv5ubmhd7dDDjOmDGD2bNnExkZibe3N3Z2dgQFBWFhYcGaNWuAGwHAHTt28MMPPzB37lzOnTvHr7/+iq2tLZ999hkLFizgiSeeKDS+ubk5tWvXZvTo0ezbt88U6AsLC6N37974+Pjc9rtV4ERERERERERERErroQsW/lGLFi1YuXIlHh4eWFj89ac2b96cvLw8UlJSaNu2bZFt4uLi6NmzJ88//zwA+fn5HDt2DC8vL1Mbg8GAr68vvr6+hIaG4u7uzurVqwkODqZ69er8+uuvPPfcc4XG9ff3x8fHBy8vL+bMmUN4eDi//fYbX3/9NZaWlqX4FURERERERERERO7MQx0sfP3111mwYAEDBw7krbfeonLlyiQmJvLFF1+wcOHCW7IHGzRowHPPPccLL7zAzJkzad68ORcuXCA6OpqmTZvSrVs36tevz4oVK9ixYweVKlXi3//+N+fPnzcFC+Pj44mOjqZz585UrVqV+Ph4Lly4gKenJwDh4eG88cYbGI1GunTpQk5ODnv27OH06dP4+PgwaNAgXnvtNaZMmcJbb73FrFmzGD9+PABJSUnFZhjm5OSQk5NjuleBExERERGR8udOi5xoC7OIiNwrD1015D+qXr06cXFx5OXl0blzZ7y9vQkKCsLR0REzs6I/ffHixbzwwgu8+eabNGzYkF69erF7927TGYITJ06kRYsWBAQE4O/vj4uLC7169TL1d3BwYOvWrTz99NM0aNCAiRMnMnPmTLp27QpAvXr1uHLlCgsXLsTb2xs/Pz+ioqKwsbEBbmx3rlq1KnZ2dkyfPp0PP/yQ+fPnA7B79+5ivzUiIgKj0Wi6dF6hiIiIiIiIiIiUlKGgoKCgrBfxMLu5vTgyMhKAmJgY2rdvT2pqKo6OjkW28/Dw4PXXX2fs2LGm982aNaNv376EhoYWOU9RmYVubm6kp6fj4OBwT75NREREREREREQefBkZGRiNxjuKEz3U25DLsz+fU2gwGMjPzy+2vQqciIiIiIiIiIhIaT3U25DLWmBgILGxscyePRuDwYDBYCApKQmAvXv30qpVK2xtbWndujXZ2dmF+h44cIAWLVpQoUIF6tSpw7lz524bLBQRERERERERESktZRbeQ7Nnz+bYsWM0adKEd999F4BDhw4BMGHCBGbOnImzszOvvvoqhw4donXr1sCNLcXLly9n/vz5tG3blhMnTtCtWze2bt1a7FwqcCIiIiIiUv7daYGT4qjwiYiIlJYyC+8ho9GIlZUVtra2uLi44OLiYqrAPHnyZPz8/PDy8mL8+PFkZGSQm5sLQFpaGh07dmTIkCHUqVOHTp064erqyt69e4udSwVORERERERERESktJRZWEaaNm1q+tvV1RWAt956C7hRETk6Ohp7e3tTm7y8PK5evUp2dja2tra3jBcSEkJwcLDp/maBExERERERKT+UGSgiImVNwcIy8scCJgaDAcB0JmFmZibh4eH06dPnln4VKlQocjwVOBERERERERERkdJSsPAes7KyIi8vr0R9WrRowbvvvouVlRVBQUGm5z4+PvTq1YuwsLC7u0gREREREXkglPTMQmUiiojI3aZg4T3m4eFBfHw8SUlJ2Nvb31FF49DQULp06cKGDRvo1KkTZmZm7Nu3j+Tk5GL7qMCJiIiIiIiIiIiUlgqc3GNjxozB3NwcLy8vnJ2dOXXq1F/2CQgIoGrVqhw9epTHHnuMf/zjH8yaNQsrK6ti+6jAiYiIiIiIiIiIlJahoKCgoKwXIbfy8PAgKCjojrchF5VZ6ObmRnp6Og4ODvdhxSIiIiIiIiIi8iDKyMjAaDTeUZxI25AfUGZmZvw5jnv9+vVi26vAiYiIiIiIiIiIlJaChQ8oZ2fnQmcUZmRkcPLkyWLb68xCEREREZHy72aBExUuERGRsqIzCx9QTz31FEuXLmXbtm0cOHCAIUOGYG5uXmx7nVkoIiIiIiIiIiKlpWDhAyokJAQ/Pz+6d+9Ot27d6NWrF3Xr1r1t+/T0dNN1+vTp+7haERERERERERF5GKjAyUOqJAdXioiIiIiIiIjIw6skcSJlFoqIiIiIiIiIiAigAicPvBUrVhAeHk5iYiK2trY0b96cb775Bjs7u0LtVOBERERERKT8u1ng5O9QURQREbkblFn4AEtOTmbgwIEMHTqU8ePHU69ePfr06UNRO8dV4EREREREREREREpLZxY+wH766SdatmxJUlISixcvJioqiqSkpCLbFpVZ6ObmpjMLRUREREREREQecSU5s1DbkB9gzZo1o0OHDnh7exMQEMCECRNITU2lUqVKt7S1trbG2tq6DFYpIiIiIiIiIiIPC21DfoCZm5uzadMm1q9fj5eXF3PnzqVhw4acPHmyrJcmIiIiIiIiIiIPIW1DLkfy8vJwd3cnODiY4ODgQu+0DVlEREREpPz7Y4ETFSwREZG7RduQHxLx8fFER0fTuXNnqlatSnx8PBcuXMDT0/OWthEREYSHh5fBKkVERERERERE5GGhzMIH2JEjRxg9ejQxMTHk/f/s3XlU1dX+//HnYTrMx1lREURRwQFwqBzTNNGsHMtMS8qhMstZI3OgCXPE1LIyxTIzNTVvDmUqOYYjjmQOoKg4CwjKYfz94c/zvVzAJDREX4+1PutyPp+99+d9jv1x13u9935nZuLl5cVbb73FwIEDc41VZaGIiIiIiIiIiOSlIJWFShYWAwcPHqRFixbExMRgMpnuaE5B/iMQEREREREREZEHV0HyRGpwUgzUqVOHatWqsWDBgqIORUREREREREREHmA6s7CYKFeuHKNHj+bNN9/M83le25BFREREROTe+e9mJHeLmpqIiEhRU2VhMVGyZEkSExNzJAT/W2hoKCaTyXK5u7v/yxGKiIiIiIiIiEhxpzMLi4n9+/fj5+dHbGwsHh4euZ6rwYmIiIiIiIiIiOSlIGcWahtyMeHg4ADA9evX83xuNBoxGo3/ZkgiIiIiIiIiIvKAUbKwmLhy5QoAZcuWLeJIRERERETkXrmb5yDq/EMREfknlCwsJg4ePEjlypUpU6ZMns/V4ERERERERERERApLDU6Kic2bN9O2bdt8n6vBiYiIiIiIiIiIFJYanBQDqampVKhQgaZNm9KoUSPGjx+fa4wanIiIiIiIiIiISF7U4OQBM2/ePB555JHbnleoBiciIiIiIiIiIlJYShYWA7a2tsyYMYPQ0NB8x+jMQhERERGR4i+/BidqViIiIv8WnVlYDPTt25d169bxyy+/5DtGZxaKiIiIiIiIiEhhKVlYTFy6dAmj0ZjneYUAwcHBJCYmWq64uLh/N0ARERERERERESn21ODkAVWQgytFREREREREROTBVZA8kSoLRUREREREREREBFCDk/uW2WxmxIgRLFq0iKSkJBo2bMi0adNo1KhRvuPV4EREREREpHj534YmamQiIiJFTZWF96mRI0fy448/Mn/+fPbs2UP16tUJDAzkypUreY5XgxMRERERERERESksJQvvQykpKXz++edMmjSJ9u3b4+vry1dffYWDgwNff/11nnPU4ERERERERERERApL25DvQ8ePHyc9PZ2mTZta7tna2vLII48QHR2d5xyj0YjRaPy3QhQRERERkbtA245FROR+o8pCERERERERERERAZQsvC9Vq1YNOzs7tm7darmXnp7Ozp078fX1zXOO2WwmKSkpxyUiIiIiIsWD5zurcjU7ERERKQpKFt6HnJyceOONNxgxYgRr167l8OHD9OvXj+vXr9OnT58856jBiYiIiIiIiIiIFJYhOzs7u6iDkNxSU1MZOXIk33//PdeuXaNhw4ZMmzaNRo0a5TnebDZjNpstn5OSknB3dycxMRFXV9d/K2wREREREREREbnPJCUlYTKZ7ihPpGThA6og/xGIiIiIiIiIiMiDqyB5Im1Dvs8tXbqUunXr4uDgQOnSpWnTpg0pKSlFHZaIiIiIiIiIiDyAbIo6AMlffHw8PXr0YOLEiSQlJbF69Wq6dOlCXsWgeW1DFhERERGR4iW/JiexEzr8y5GIiMjDSpWF97H4+HgyMjIsCcLz588zYMAAnJ2dc41VgxMRERERERERESksnVl4H8vMzCQwMJAdO3YQGBhI27Zt6datGyVLlsw1Vg1OREREREREREQkLzqz8AFhbW3NunXrWLNmDb6+vsyYMYOaNWsSExOTa6zRaMTV1TXHJSIiIiIiIiIiUhBKFt7nDAYDTZs2JSQkhL1792JnZ8fy5cuLOiwREREREREREXkAqcHJfSwyMpL169fTtm1bypUrR2RkJBcvXsTHxyfXWDU4EREREREp/tTgREREipqShfcxV1dXNm3aRFhYGElJSXh4eDBlyhTat2+fa2xoaCghISFFEKWIiIiIiIiIiDwo1ODkAaEGJyIiIiIiIiIikpeCNDhRZeEDwmg0YjQaizoMEREREREREREpxpQsvM8tXbqUkJAQjh07hqOjIwEBAfz00084OTkVdWgiIiIiInKX5XdmYX50lqGIiNxtShbex+Lj4+nRowcTJ04kKSmJ1atX06VLF/LaOa4GJyIiIiIiIiIiUlhWRR2A5C8+Pp6MjAxLgvD8+fMMGDAAZ2fnXGNDQ0MxmUyWy93dvQgiFhERERERERGR4kwNTu5jmZmZBAYGsmPHDgIDA2nbti3dunWjZMmSucaqwYmIiIiIiIiIiOSlIA1OVFl4H7O2tmbdunWsWbMGX19fZsyYQc2aNYmJick11mg04urqmuMSEREREREREREpCFUWFiOZmZl4eHgwdOhQhg4dmuOZKgtFRERERIq/gjY4uUWNTkRE5HYKUlmoBif3scjISNavX0/btm0pV64ckZGRXLx4ER8fn1xjQ0NDCQkJKYIoRURERERERETkQaFtyPcxV1dXNm3axFNPPUWNGjV47733mDJlCu3bt881Njg4mMTERMsVFxdXBBGLiIiIiIiIiEhxpm3Id9mmTZuYNGkSu3fvJj4+nuXLl9OpUyfL82XLljF79mx2797NlStX2Lt3L/7+/pbnsbGxVK1aNc+1Fy9ezHPPPXdHcRSkvFRERERERERERB5canBShFJSUvDz82PWrFn5Pm/WrBmffPJJns/d3d2Jj4/PcYWEhODs7JxnRaGIiIiIiIiIiMjdojML77L27dvfNqn30ksvATcrCPNibW1NhQoVctxbvnw5zz//PM7Ozvmum1eDExERERERKV7yanCi5iUiIvJvUmXhfW737t1ERUVhMplo3bp1vuNCQ0MxmUyWy93d/V+MUkREREREREREHgSqLLzPff311/j4+ODq6srx48fzHRccHMzQoUMtn5OSkpQwFBEREREpZlRFKCIiRU2VhfexGzdusHDhQvr06cP48ePz3boMYDQacXV1zXGJiIiIiIiIiIgUhJKF97GlS5dy/fp1Xn755aIORUREREREREREHgLahnwf+/rrr3n22WcpW7Ys4eHhvPLKK2RnZ+c5Vg1ORERERETuL3k1K/k72oYsIiJFTZWFd1lycjJRUVFERUUBEBMTQ1RUFKdOnQJg1KhR1KxZk8OHDwNw5MgRoqKiOHfuXI51jh07xqZNm+jbty8AJpOJmjVr5vteNTgREREREREREZHCMmTnV6om/0hERAStWrXKdb93796Eh4cze/Zs3njjjVzPx40bx/jx4y2f3333XRYsWEBsbCxWVn+f082rstDd3Z3ExESdXygiIiIiIiIi8hBLSkrCZDLdUZ5IycL7TFpaGnZ2doVepyD/EYiIiIiIiIiIyIOrIHkibUP+B7Kyspg4cSLVq1fHaDRSpUoVPvroI+DmNuMaNWrg6OiIl5cXY8aMIT093TJ3/Pjx+Pv7Wz4HBQXRqVMnPvroIypWrGjZanzgwAGeeOIJHBwcKF26NP379yc5Oflf/Z4iIiIiIiIiIvJwUYOTfyA4OJivvvqKadOm0axZM+Lj4/nzzz8BcHFxITw8nIoVK3LgwAH69euHi4sLI0eOzHe99evX4+rqyrp16wBISUkhMDCQxo0bs3PnTi5cuECPHj344YcfSExMzHMNNTgRERERESn+1BRFRESKmpKFBXTt2jWmT5/OzJkz6d27NwDVqlWjWbNmALz33nuWsZ6engwfPpxFixbdNlno5OTEnDlzLNuPv/rqK1JTU/nmm29wcnIC4MUXXyQsLIzz589Tvnz5XGuEhoYSEhJy176niIiIiIiIiIg8fJQsLKDo6GjMZjOtW7fO8/kPP/zAp59+yvHjx0lOTiYjI+Nv94LXrVs3xzmF0dHR+Pn5WRKFcHP7clhYGEeOHMkzWRgcHMzQoUMtn281OBERERERkeJDVYIiIlLUdGZhATk4OOT7bPv27fTs2ZOnnnqKn3/+mb179zJ69GjS0tJuu+Z/JwX/KaPRiKura45LRERERERERESkIFRZWEDe3t44ODiwfv16+vbtm+PZtm3b8PDwYPTo0ZZ7J0+eLPA7fHx8CA8PJyUlxZJI3Lp1K1ZWVpYGKCIiIiIiUnj/5IzAe0mVhSIiUtSULCwge3t7Ro0axciRI7Gzs6Np06ZcvHiRQ4cO4e3tzalTp1i0aBGNGjVi1apVLF++vMDv6NmzJ+PGjaN3796MHz+eixcv8tZbb/HSSy/luQUZ1OBEREREREREREQKT9uQ/4ExY8YwbNgwxo4di4+PD927d+fChQs8++yzDBkyhIEDB+Lv78+2bdsYM2ZMgdd3dHTkl19+4cqVKzRq1Ihu3brRunVrZs6cme+c0NBQTCaT5dJ5hSIiIiIiIiIiUlCG7Ozs7KIOQvIXHh7O4MGDSUhIuO24vCoL3d3dSUxM1PmFIiIiIiIiIiIPsaSkJEwm0x3libQN+QFhNBoxGo1FHYaIiIiIiIiIiBRjShbeBS1btqRevXrY29szZ84c7OzseP311xk/fjwACQkJDB8+nJ9++gmz2UzDhg2ZNm0afn5+AOzbt4/Bgweza9cuDAYD3t7efPHFFyQnJ/PKK68AYDAYABg3bpxl3f+mMwtFRERERIq/wjRcUXMUERG5G3Rm4V0yf/58nJyciIyMZOLEibz//vusW7cOgOeee44LFy6wZs0adu/eTf369WndujVXrlwBbjY0qVy5Mjt37mT37t2888472Nra0qRJE8LCwnB1dSU+Pp74+HiGDx+e5/t1ZqGIiIiIiIiIiBSWziy8C1q2bElmZiabN2+23HvkkUd44oknePrpp+nQoQMXLlzIsU24evXqjBw5kv79++Pq6sqMGTPo3bt3rrXDw8N56623MJlMnDlzho4dO7JixYpc43RmoYiIiIhI8afKQhERuRd0ZmERqFevXo7Pbm5uXLhwgX379pGcnEzp0qVzPL9x4wbHjx8HYOjQofTt25dvv/2WNm3a8Nxzz1GtWrUcY6tWrYq7uzvh4eF5vl9nFoqIiIiIFH9K+ImISFFTsvAusbW1zfHZYDCQlZVFcnIybm5uRERE5JpTokQJAMaPH8+LL77IqlWrWLNmDePGjWPRokV07twZwLLOnDlzLHNERERERERERETuNiUL77H69etz7tw5bGxs8PT0zHOM2Wxm5syZLFq0iKSkJFxdXZk2bRoBAQGWBicxMTE8+uijzJs3j6CgoDzXUIMTEREREZH7xz/ZUqzKQhERKWpqcHKPtWnThsaNG1OnTh06d+5MbGws27ZtY/To0ezatYsbN27wyCOPsHDhQiZOnMicOXMwm83s2LEDFxcXVq5cCcCAAQM4ePAgzzzzTJ7vUYMTEREREREREREpLDU4uQtatmyJv78/YWFhlnudOnWiRIkShIeHc+3aNYYNG8bPP//MpUuXqFChAi1atCA0NBRnZ2dKly5NqVKluHbtGmXKlKFTp04sX76cIUOGMGLECIxGI3Z2diQnJzNu3DjGjx+fKwY1OBERERERERERkbyowcm/LK/zCP+7Y7GLiwtffvllnnP3799PdnY2u3fvxsPDw3L/7NmzREdHA+Dg4EBYWFie249vUYMTEREREREREREpLG1DLoClS5dSt25dHBwcKF26NG3atCElJYWgoCA6depESEgIZcuWxdXVlddff520tDTL3JYtWzJ48GDLZ7PZzPDhw2nTpg0AHTt2zJF0vH79Or/99hslS5YkMTGR0aNHs3r16n/rq4qIiIiIiIiIyENIlYV3KD4+nh49ejBx4kQ6d+7MtWvX2Lx5M7d2ca9fvx57e3siIiKIjY3llVdeoXTp0nz00Ud5rjdw4EAOHz7MggULePrpp6lduzbt2rXjwIEDeHp6smnTJtzd3Vm1ahVNmzblueeew9nZOd/41OBERERERKT4u11TFDU/ERGRf4OShXcoPj6ejIwMunTpYtkuXLduXctzOzs75s6di6OjI7Vr1+b9999nxIgRfPDBB1hZ5SzgPHXqFPPmzePUqVNUrFiRAQMGsGTJEnx8fJg0aRJpaWmkp6fTpUsX6tati5WVFf7+/rRo0SLf+EJDQwkJCbk3X15ERERERERERB4KShbeIT8/P1q3bk3dunUJDAykbdu2dOvWjZIlS1qeOzo6WsY3btyY5ORk4uLicpxFCHDgwAEyMzOpUaMGANnZ2aSlpXH27Fn2799P48aNGTVqFBMnTmTz5s2kpqYSFxdHUFAQnp6eeTY4CQ4OZujQoZbPtxqciIiIiIhI8aHqQRERKWpKFt4ha2tr1q1bx7Zt2/j111+ZMWMGo0ePJjIyssBrJScnY21tze7du7G2ts7xzNnZmQoVKgDw+uuvs2rVKsqXL88HH3xAQEAAnp6eea6pBiciIiIiIiIiIlJYanBSAAaDgaZNmxISEsLevXuxs7Nj+fLlAOzbt48bN25Yxv7xxx84OzvnWd0XEBBAZmYmFy5coHr16jmuW4lCAHd3d15//XWWLVvGsGHDOHr06L3/kiIiIiIiIiIi8tBSZeEdioyMZP369bRt25Zy5coRGRnJxYsX8fHxYf/+/aSlpdGnTx/ee+89YmNjGTduHAMHDsx1XiFAjRo16NmzJy+//DJTpkwhICCAixcvsn79eurVq0eHDh0YPHgw7du3p0aNGly9epWNGzdiMpnyjU8NTkRERETkfna7xh3yf7QNWUREipqShXfI1dWVTZs2ERYWRlJSEh4eHkyZMoX27dvzww8/0Lp1a7y9vWnRogVms5kePXrkebbgLfPmzePDDz9k2LBhnDlzhjJlypCenk5gYCAdOnQgMzOTN998k9OnT+Pq6kq7du1YtWoVpUuXznM9NTgREREREREREZHCMmRnZ2cXdRDFXVBQEAkJCaxYsaJQ61y5cgVbW1tcXFwKPDevykJ3d3cSExNxdXUtVFwiIiIiIiIiIlJ8JSUlYTKZ7ihPpMrC+0ipUqX+8Vw1OBERERERERERkcJSsvA+0rJlS/z9/QkLC+Ozzz5j2rRpxMXFYTKZaN68OUuXLi3qEEVERERE5B7S2Y4PJ51VKSL3EyUL74Lw8PC7ut6uXbt4++23+fbbb2nSpAlXrlxh8+bNt52jBiciIiIiIiIiIlJYShbeh06dOoWTkxNPP/00Li4ueHh4EBAQcNs5anAiIiIiIiIiIiKFpQYn95Fb25A/+OADmjZtSnx8PO3ataNdu3Z07twZR0fHfOeqwYmIiIiIiIiIiOSlIA1OrP6lmKQAXFxc2LNnD99//z1ubm6MHTsWPz8/EhIS8p1jNBpxdXXNcYmIiIiIiIiIiBSEtiHfp3777Tc+/PBDDh48iJWVFQkJCSxcuJABAwbkOV5nFoqIiIiIFH9qcCJSfKlRjTwoVFl4H/r5559ZvHgxnTt35qeffuL1118nOzubsLAwsrKy8pwTGhqKyWSyXO7u7v9y1CIiIiIiIiIiUtwpWVgILVu2ZPDgwXd93RIlSnDixAk++ugj2rdvz6pVq/jqq684evQohw8fznNOcHAwiYmJlisuLu6uxyUiIiIiIiIiIg82bUO+j0RERFj+/uqrrxg7diyRkZHExMRYkpKnTp2iTp06ueYajUaMRuO/FKmIiIiIiNwL2sYoIiJFTcnCf1FaWhp2dnZ3NPaZZ57Bw8ODr776iooVK5KVlUWdOnVIS0u7x1GKiIiIiIiIiMjDSsnCQsrIyGDgwIF8++232Nra8sYbb/D+++9jMBjw9PSkT58+HD16lBUrVtClSxfCw8PZsmULwcHB7Nq1izJlytC5c2dCQ0NxcnIC4OzZsxw5coRLly7x7LPPUqdOHXr16nXbONTgRERERESk+LvTBieqQBQRkXtFZxYW0vz587GxsWHHjh1Mnz6dqVOnMmfOHMvzyZMn4+fnx969exkzZgzHjx+nXbt2dO3alf379/PDDz+wZcsWBg4caJkzduxYbGxsaNCgAStXriQgIIBBgwbdNg41OBERERERERERkcIyZGdnZxd1EMXBxYsXqVSpElevXsXOzo4SJUpQr149EhMTOXToEAaDAYB33nmHBQsWUKVKFc6ePYuHhwdxcXGcOHECgL59+2Jtbc0XX3xhWXvLli08/vjjpKSkcOHCBby8vFiwYAHvv/8+J06coGbNmtjY2LBnzx6WL19Op06dcsWXV2Whu7s7iYmJuLq63tsfR0RERERE7gpVFoqIyL2QlJSEyWS6ozyRtiHfoe3bt+Pn54eTkxORkZGUKlUKo9HIY489ZkkUAjRu3JhJkybRvXt3fvzxR+zt7WnatKnl+b59+9i/fz/fffed5V52djZZWVnExMRw4sQJMjMz6du3LwA2NjYcP34cs9nM888/n2eiENTgRERERETkQaAkoIiIFDVtQ75D27ZtsyT9tmzZkiMB+L+ys7Np0qQJAKdPn84xNjk5GS8vL1JSUizX9evXLWPnz58PwO7du4mKirJc1atXp2LFivfq64mIiIiIiIiIiGgb8u2cOnWKevXqAXD9+nWsra0xGo3cuHEDg8FARkYGrq6uXLlyhYULFzJgwABSU1Mxm804OzuTkpICgKOjIzY2Nnz22WesWrWKM2fOsGjRIst7JkyYwPfff8++ffv466+/ePzxx/niiy/o378/AHv37qVBgwYcO3YMLy+vPGPVNmQRERERkXvrTrcIF4YqC0VE5F4oyDZkVRbeRsWKFYmKimLTpk0AREZGsnv3buzs7Pj1119xdHQkOTmZoUOHMmzYMJ544gkA3NzcOHDgAGXLlsXFxYWDBw8SFRXFs88+y6hRo9ixYwcffvgh586dY+nSpUyfPh0vLy8qVKhAixYtqFixIsOHD2fZsmXExMQQGhqKp6cn0dHR+caqBiciIiIiIiIiIlJYOrPwNmxsbPD09GTx4sU0atSIevXqsXXrVsqXL0+LFi2wsrLCx8eHGzdukJKSQkREBLVr1yYwMJCqVavi5OREnTp18PT0BGD8+PGsWLGC33//ndGjR9O0aVPLFuRq1apZ3hsWFsZLL73E0KFDOXv2LBkZGdSvX58qVarkG2twcDBDhw61fL5VWSgiIiIiIneHqv5ERORhoG3It1G7dm1OnjxJeno6WVlZGI1GMjIyyMjIwN7enuzsbPr168fQoUPx9fUFIDU1FRsbG8xmM9bW1lhbW2Nra0uvXr2oUKECK1asICoqinPnztGoUSO6dOnCp59+mqPLcUZGBpUrV2batGnY2dnx6quvcu7cORwcHO449oKUl4qIiIiIiIiIyINL25DvktWrVxMVFUWFChVYsGABUVFR1KlTh7CwMKKioqhbty5wc7uyyWTi1VdfxcbGhtKlSwOQmZlJWloaJpMJX19fQkJC2LdvHwaDATc3N1xdXZk6dWqu98bHx1OiRAlefvllevToQcmSJTl//vy/+t1FREREREREROTho23It+Hh4cG5c+c4f/48HTt2xGAwcOjQIbp27Yqbmxv29vbAze3Ktra2JCQk8Oijj7J06VLKlStHhQoV2Lt3L9bW1jg7O3Pq1CnWrl2Lr68vmzZtYsGCBVy8eBGAq1evkpaWhsFgIDAwkDp16nDs2DGys7OpWbMm7dq1Y//+/djZ2eUZa14NTkRERO4X/0ZTABGRB4G2OouISFFTZeHfiIiIoFGjRtjb27Njxw4qV66Mm5tbnmOPHTtGixYtKFu2LAB16tShQoUKlC1bFgcHB5ydnbGxsWHHjh2cP3+e+vXrW9Z69dVXeeKJJ/jhhx/IyspiyZIlNGnShFq1avGf//yHU6dOERERkW+canAiIiIiIiIiIiKFpcrCv/HCCy/wwgsvANC8eXOOHj2a79jnn3+ewYMHWz6/+eabeY6LjY3N8dlgMNCqVStcXV3Zt28fx44dw9nZmRs3bmBra0upUqVITU3l+PHj+b5bDU5EROR+pkoZEREREZHiQcnC+0xycjL16tXj6aefZsqUKWzatAmTyQRgqVjMi9FoxGg0/lthioiIiIiIiIjIA+iB34aclZXFxIkTqV69OkajkSpVqvDRRx8BcODAAZ544gkcHBwoXbo0/fv3Jzk52TI3KCiITp068fHHH1O+fHlKlCjB+++/T0ZGBiNGjGDr1q3MmTOHefPm5XhnXFwcBoOBnj17UqpUKTp27EhsbCx2dnZkZmaSmZnJ0KFDKVGihKUZyq2m1PXr12fv3r18+OGHfPbZZzRo0IDq1atTvXp1evfuzUsvvfQv/XIiIiIiIiIiIvKweeArC4ODg/nqq6+YNm0azZo1Iz4+nj///JOUlBQCAwNp3LgxO3fu5MKFC/Tt25eBAwcSHh5umb9hwwYqV67Mpk2b2Lp1K3369GHbtm20aNGC+vXrY21tzWuvvUb58uUBSE9PJzAwEBcXF9q1a8ebb77JjBkzaNeuHe+++y4xMTEMGzaM8PBwvvjiC+rVq4evry9//PEHgYGB9OzZk4kTJxITE8PJkyct/7tgwQJ+/vln1q1bl+f3VIMTEREREZHiTw2h5GGlI0tE7h8PdGXhtWvXmD59OhMnTqR3795Uq1aNZs2a0bdvXxYuXEhqairffPMNderU4YknnmDmzJl8++23nD9/3rJGqVKl+PTTT6lZsyavvvoqNWvW5Pr167z77rs4ODjQqFEj7OzsSE1NBbA0KBk5ciSLFy+mdevW7Ny5k1OnTlGqVCnatWvHp59+SmJiIjdu3MDHxwcAJycnABwdHdm8eTPVqlXjww8/xMfHhz59+nDo0CHc3d1p2bJlnt9VDU5ERERERERERKSwHujKwujoaMxmM61bt87zmZ+fnyVJB9C0aVOysrI4cuSIpVKwdu3aWFn9X061fPny1KlTB8DSnXjFihXY2toSGxvLmTNnOHbsGB9++CFw8yzBS5cukZqaSlxcHF9//TU//vgjv//+Oy1atABubkHu3LmzZStyhQoVWLRoEY0aNaJcuXK89dZbzJ07l1dffRWDwZDnd1WDExERERGR4k/VVSIiUtQe6GShg4NDodewtbXN8dlgMOR575bk5GQaNGjA22+/Ta9evdi0aROurq7A7RuU/K+AgAD8/Pw4ceIEcXFxHDp0iFWr8t+SoAYnIiIiIiIiIiJSWA90stDb2xsHBwfWr19P3759czzz8fEhPDyclJQUS3Xh1q1bsbKyombNmgV6z6VLl0hJSWH69OmWe7fODLx69Sr9+/fn8OHD+Pv7M2/ePNzc3IiMjKRSpUoMHTqU7du3c+nSJUwmE7/99htt2rQBbm6jTkhIYOrUqQBUqVLFUn0oIiIiIiIPHp1ZKAWhSlQRuRce6DML7e3tGTVqFCNHjuSbb77h+PHj/PHHH3z99df07NkTe3t7evfuzcGDB9m4cSNvvfUWL730kmUL8p0qVaoUnp6e9OvXj+PHj+Pl5cUXX3wBwLBhw+jVqxddunQhMzOTV199lUGDBjFhwgRWrlxJ/fr1adGiBY6OjpQrV45nnnmGU6dOAfDrr79iMBiwtrZm9uzZxMfH5xuD2WwmKSkpxyUiIiIiIiIiIlIQD3RlIcCYMWOwsbFh7NixnD17Fjc3N15//XUcHR355ZdfGDRoEI0aNcLR0ZGuXbtaqvgAtmzZQkpKyt++w8rKCmtraxwdHfHy8mLr1q307t0bgMOHDzNjxgxat27NiBEjeO655/jll1+Ij49n/PjxWFlZUbFiRUqVKoWPjw+2trasXLmSgQMH4unpiaOjI9nZ2Xz33XdER0cTFhaWZwyhoaGEhITcld9MREREREREREQeToZs7WvNV1BQEAkJCaxYseJvx7Zs2RJ/f39LMi8iIoJWrVpx4cIFy1mFe/fupX79+pw8eZIqVaqQnJzM+PHjmTNnDikpKRiNRm7cuMGwYcOYOHEigKXjspWVVY71/5fZbMZsNls+32pwkpiYaDkzUUREREREREREHj5JSUmYTKY7yhM90NuQ7wf/3QzlViOUrKwsAIYPH87y5csJCAigefPmREVFUbduXdLS0rh69SrLly8nNTWVZs2a/e17jEYjrq6uOS4REREREREREZGCeOC3Id+JpUuXEhISwrFjx3B0dCQgIICffvrJ8nzy5MlMmTKFtLQ0XnjhBcLCwixJwKtXrzJo0CC2bt3Kli1bOHLkCJ9++qll7oQJE1i7di1RUVGWe3PnzuWbb77BxcWFoKAgjh8/TkJCAhUqVCA2Npb09HTc3d1JSUnBYDBw4MCBv/0OeVUWioiIiIjIP1NUjUbUsEJERIraQ19ZGB8fT48ePXj11VeJjo4mIiKCLl26WLoOb9y4kePHj7Nx40bmz59PeHg44eHhlvlBQUHs2rWL9u3bU6tWLa5fv05gYCBpaWl/+25vb2+WLVvGlStXSExM5MUXXyQrK4vNmzdTunRpfvvtNx577DF27tzJrl27uHHjRr5rhYaGYjKZLJe7u3uhfxsREREREREREXm4KFkYH09GRgZdunTB09OTunXrMmDAAJydnQEoWbIkM2fOpFatWjz99NN06NCB9evXA3D06FFWrlzJnDlzmDx5Mi4uLuzcuZOYmJgclYn5mTp1KiVLlmT16tVERkYSGBiIn58fhw4dYvLkybRu3RpfX18SEhJISUnhyy+/zHet4OBgEhMTLVdcXNzd+YFEREREREREROSh8dBvQ/bz86N169bUrVuXwMBA2rZtS7du3ShZsiQAtWvXxtra2jLezc3Nsi04OjoaGxsbHn30Uaytrdm+fTsAAQEBlC9fnuzsbMaPH2+Z6+/vT3Z2tqVJiaenJxs2bLA0UnnzzTdp1qwZ/v7+PProowBUrlyZWrVqYTAYePzxx/P9HkajEaPReDd/GhERERGRh5a2A4uIyMPqoU8WWltbs27dOrZt28avv/7KjBkzGD16NJGRkUDOBiVws0nJrQYldyI8PJzk5GRGjhzJnDlzsLOzo27dupbnp06dYsOGDZw9exZXV1cee+yxHHNDQkIsn6OiovD39ycoKOgfflsREREREREREZH8PfTJQriZAGzatClNmzZl7NixeHh4sHz58r+d5+PjQ0ZGBpGRkTRp0gSAy5cvc+TIEXx9fQGws7PjypUrODo6EhkZyfbt2+nduzfly5cnKyuLjh07YjabadasGZ988gmvv/46BoOByMhIunfvzsGDB1m1ahUnT56kZ8+edO/ePc9Y1OBERERERKRgiqqJye2oolFERIraQ39mYWRkJB9//DG7du3i1KlTLFu2jIsXL+Lj4/O3c729venYsSP9+vVjy5Yt7Nu3j169elGpUiU6duwIgMlkIjs7GwcHB6ysrLh27RrW1tbcuHGD9evXc+DAAVq0aEGJEiV49NFH+e6778jOzmbQoEFs376d69evc/bsWaytrXFycsLBwSHPWNTgRERERERERERECuuhryx0dXVl06ZNhIWFkZSUhIeHB1OmTKF9+/b88MMPfzt/3rx5DBo0iKeffpq0tDRatGjB6tWrLduXnZycaNGiBbNmzeKDDz6ga9eueHt7c/r0aaKjo3F3d8fJyYmEhAQAfH19MZlMVK1alWeeeQaDwYCrqys1atS4bRzBwcEMHTrU8jkpKUkJQxERERGR21AVn4iISG6G7Ozs7KIO4kHWsmVL/P39LU1NADp16kSJEiWoX78+06ZNIyYmJseckiVLMn36dF5++WXGjx/PihUriIqKKtB7k5KSMJlMJCYm4urqehe+iYiIiIiIiIiIFEcFyRM99NuQi5KPjw9xcXHExcVZ7h0+fJiEhIQcZx5mZmYWVYgiIiIiIiIiIvIQeei3IRelNm3aULduXXr27ElYWBgZGRkMGDCAxx9/nIYNGwLg6elJTEwMUVFRVK5cGRcXF4xGY6611OBERERERKRg1OBEREQkN1UWFiGDwcBPP/1EyZIladGiBW3atMHLyyvHWYldu3alXbt2tGrVirJly/L999/nuZYanIiIiIiIiIiISGHpzMIHRF6Vhe7u7jqzUERERERERETkIVeQMwu1DfkBYTQa89yeLCIiIiIiIiIicqe0DVlEREREREREREQAVRYWGzNnzmT58uWsX78+z+dqcCIiIiIicv/7u6YqanAiIiJFTZWFxcSlS5c4fvx4vs/V4ERERERERERERApLDU4eEGpwIiIiIiIiIiIieVGDk4eQGpyIiIiIiIiIiEhhKVkoIiIiIiJyn/i7Mw1v0dmGIiJyr+jMwmJi5syZtG7dOt/nZrOZpKSkHJeIiIiIiIiIiEhBKFlYTKjBiYiIiIiIiIiI3GtqcHKfa9myJf7+/oSFhd12nBqciIiIiIiIiIhIXtTgpJDS0tKws7Mr6jAKRA1ORERERERERESksFRZyM3qvTp16mBjY8OCBQuoW7cuM2bMYMSIEWzevBknJyfatm3LtGnTKFOmTI45AN9++y22tra88cYbvP/++xgMBuBmtd/o0aP5/vvvSUhIoE6dOnzyySe0bNkSgMuXLzNw4EA2bdrE1atXqVatGu+++y49evQAICgoiPnz5+eINSYmBk9Pz1zfQZWFIiIiIiL3LzUuERGRolSQykKdWfj/zZ8/Hzs7O7Zu3cqECRN44oknCAgIYNeuXaxdu5bz58/z/PPP55pjY2PDjh07mD59OlOnTmXOnDmW5wMHDmT79u0sWrSI/fv389xzz9GuXTuOHj0KQGpqKg0aNGDVqlUcPHiQ/v3789JLL7Fjxw4Apk+fTuPGjenXrx8fffQRzZo1y/csQp1ZKCIiIiIiIiIihaXKQm5WCSYlJbFnzx4APvzwQzZv3swvv/xiGXP69Gnc3d05cuQINWrUoGXLlly4cIFDhw5ZKgnfeecdVq5cyeHDhzl16hReXl6cOnWKihUrWtZp06YNjzzyCB9//HGesTz99NPUqlWLyZMnW2Lz9/enRIkShIeHExsbm+c8VRaKiIiIiNy/VFkoIiJFSWcW/gMNGjSw/L1v3z42btyIs7NzrnHHjx+nRo0aADz22GOWRCFA48aNmTJlCpmZmRw4cIDMzEzL2FvMZjOlS5cGIDMzk48//pjFixdz5swZ0tLSMJvNODo6WsbHxsZy6NAhLl68yPjx4/ONX2cWioiIiIjcv5QEFBGR4kLJwv/PycnJ8ndycjLPPPMMn3zySa5xbm5ud7RecnIy1tbW7N69G2tr6xzPbiUhJ02axPTp0wkLC6Nu3bo4OTkxePBg0tLSCvFNRERERERERERE/hklC/NQv359fvzxRzw9PbGxyf8nioyMzPH5jz/+wNvbG2trawICAsjMzKR79+60aNECe3t75syZg52dHa+//jrjx49n69attG7dmiVLlvD6669bqhSbNWsGQHh4OCdPngSwPJs3bx5BQUG5YslrG7KIiIiIiBQvd7pd+WGhikwRkX+fGpzk4c033+TKlSv06NGDnTt3cvz4cX755RdeeeUVMjMzLeNOnTrF0KFDOXLkCN9//z0zZsxg0KBBANSoUYOePXty5MgR5syZQ1paGl9++SXNmzcnJCSEdevWUb16dZYvX05sbCzh4eE88cQTXL9+nZ07dwLQvXt36tati4ODAzt27ODgwYM899xzecasBiciIiIiIiIiIlJYanDC/zURCQsLs9w7evQoo0aNYuPGjZjNZjw8PGjXrh1Tp07FYDDQsmVLateuTVZWFgsXLsTa2po33niDDz/80FIFmJ6ejre3N+fOnSMrK4syZcrw2GOP8ddff/H000/TqFEjunXrhpOTE05OTvTv35/9+/ezcuVKduzYQaNGjXjrrbeYO3cu2dnZ3Lhxg5iYGDw9PXN9BzU4ERERERERERGRvKjBSQFFRETkuuft7c2yZctuO8/W1pawsDA+//zzfJ97enrSoUMHZs2aZbnfsWNHLly4wJkzZ/D09CQmJibHvJIlSxIdHU2jRo0oXbo03t7eREVF3TYWNTgREREREREREZHC0jbkf4GtrW2OzwaDgaysrCKKRkREREREREREJG+qLCxCPj4+xMXFERcXZzlj8PDhwyQkJODr6wuAnZ1djnMS86MGJyIiIiIiORXHZiFq6CEiIkVNycJ/KK+ty3dqy5YtlCtXjnnz5lG3bl169uxJWFgYGRkZDBgwgMcff5yGDRsCWLYpR0VFUblyZVxcXPLcbhwaGkpISMg/jklERERERERERETJwiJkMBj46aefeOutt2jRogVWVla0a9eOGTNmWMZ07dqVZcuW0apVKxISEpg3bx5BQUG51goODmbo0KGWz7canIiIiIiIPKxUpSciIlJw6oZcBPLqvny3FaTLjYiIiIiIiIiIPLgKkidSg5MikpGRwcCBAzGZTJQpU4YxY8ZwK29rNpsZPnw4lSpVwsnJiUcffbRQ255FRERERERERETuhLYhF5H58+fTp08fduzYwa5du+jfvz9VqlShX79+DBw4kMOHD7No0SIqVqzI8uXLadeuHQcOHMDb2zvP9dTgRERERESk+LvbTVm0FVtERApKycJ7ICgoiISEBFasWJHvGHd3d6ZNm4bBYKBmzZocOHCAadOmERgYyLx58zh16hQVK1YEYPjw4cydO5caNWqQ365xNTgREREREREREZHCUrLwb9yr8wUfe+wxDAaD5XPjxo2ZMmUKBw4cIDMzkxo1auQYf/36dcqWLZvvempwIiIiIiJS/KkSUEREipqShfeZ5ORkrK2t2b17N9bW1pb7Xbt2ZcKECfnOMxqNGI3GfyNEERERERERERF5QClZeBtBQUH8/vvv/P7770yfPh2AY8eO8fHHH7NhwwbOnTtHlSpVGDBgAIMGDcp3nZ07d/LUU08xfPhwRo0aRUZGBsuXL+c///kPZrOZhg0bUrVqVby9vQkICCAzM5MOHTowbtw4xowZw9WrV2nfvj3NmjX7t766iIiIiIjcxt0+W/AWVRaKiEhRUzfk25g+fTqNGzemX79+xMfHEx8fT+XKlalcuTJLlizh8OHDjB07lnfffZfFixfnucaGDRt48skn+eijjxg1ahQAhw4d4tq1a7Rt25YlS5bg4ODA3Llz6du3LzVq1KBu3bqcOHGCWbNmMXv2bCZOnMiqVavo27dvvrGazWaSkpJyXCIiIiIiIiIiIgWhysLbMJlM2NnZ4ejoSIUKFSz3/7uRSNWqVdm+fTuLFy/m+eefzzF/+fLlvPzyy8yZM4fu3bsDsGXLFq5du0bfvn0xGAw8//zzWFtbU6JECZycnADo2LEj0dHRnDt3jmeffZYyZcrg5uZGdHR0vrGqwYmIiIiIiIiIiBSWkoX/wKxZs5g7dy6nTp3ixo0bpKWl4e/vn2NMZGQkP//8M7Vq1WL79u2WZOG+ffvIzs5mwYIFlrGZmZncuHGDEydOAGBtbU2NGjU4dOiQZcy0adOYMWNGvjGpwYmIiIiIyL9H24VFRORBpWRhAS1atIjhw4czZcoUGjdujIuLC5MmTSIyMjLHuGrVqlG6dGnOnTtHZmam5X5ycjJubm5ERETkWrtEiRKWv21tbXM8MxgMZGVl5RuXGpyIiIiIiIiIiEhhKVn4N+zs7HIk+7Zu3UqTJk0YMGCA5d7x48dzzStTpgyVKlXi0KFDzJw5k5kzZwLwzTffEB8fT9euXfnzzz8pVaoUvXv35sMPP8TG5uY/R0ZGBmfOnKFcuXIkJSXRsGFDHnnkkdvGaTabMZvNls86s1BERERE5N41IrlXVLEoIiJFTQ1O/oanpyeRkZHExsZy6dIlvL292bVrF7/88gt//fUXY8aMYefOnXnO/fLLL2nQoAElSpSgQ4cOxMXF0apVKwDOnDnDZ599RkhICLNnz6ZVq1bs2rULgHXr1pGQkMD8+fPZs2cP1atXZ/bs2betLAwNDcVkMlkubUEWEREREREREZGCUrIwD+Hh4ZYtwcOHD8fa2hpfX1/Kli1LYGAgXbp0oXv37jz66KNcvnw5R5XhfzOZTDg7O9OtWzeOHj3KsGHDmDVrFtWqVaNHjx6MHTuWgQMHAjcbn1y4cIGUlBR27dpFxYoVad++Pb6+vnz11VfY2tqSnJycb8zBwcEkJiZarri4uLv+u4iIiIiIiIiIyIPNkJ2dnV3UQdxvbty4wbVr1yhXrlyh12rZsiX+/v6EhYUB0KVLF0wmE/PmzbOMWb16NR06dGD16tVUqlQJPz8/YmNj8fDwsIzp3LkzJUuWZO7cuXf03qSkJEwmE4mJibi6uhb6e4iIiIiIiIiISPFUkDyRziz8H+np6Tg4OODg4FDUoYiIiIiIiIiIiPyrHohk4dKlSwkJCeHYsWM4OjoSEBDATz/9hJOTE3PmzGHKlCnExMTg6enJ22+/bdk2HBsbS9WqVVm0aBGfffYZkZGRzJ49G4DBgweTkJBgecfnn3/O5MmTiYuLo2rVqrz33nu89NJLOdbZu3cv/v7+ACQkJFCyZEkaNmxIZmYmV69eZeDAgaxdu5bU1FQ2b97M6NGjeeWVV9i9ezcA5cuXx8vLC4B3332X7777DriZwNy2bRsXLlzg3XffpXr16rl+AzU4EREREZEHVXFrUlIYanAiIiJFrdifWRgfH0+PHj149dVXiY6OJiIigi5dupCdnc13333H2LFj+eijj4iOjubjjz9mzJgxzJ8/P8ca77zzDoMGDSI6OprAwMBc71i+fDmDBg1i2LBhHDx4kNdee41XXnmFjRs3/m185cuXJzIykkGDBrF//36WLl2Kvb09tWvXJjU1lZ9++smyRdnKygpnZ2eaNGnC4sWLWbt2LYcPH6Zfv34kJibSuHHjPBOFoAYnIiIiIiIiIiJSeA9EsjAjI4MuXbrg6elJ3bp1GTBgAM7OzowbN44pU6bQpUsXqlatSpcuXRgyZAhffPFFjjUGDx5sGePm5pbrHZMnTyYoKIgBAwZQo0YNhg4dSpcuXZg8efLfxte9e3esra357rvvOHjwIL6+vqxZs4b4+HgGDx7M66+/zvPPP59jzrfffktmZiY9evSgfv36HD16FHt7e1577bV836MGJyIiIiIiIiIiUljFfhuyn58frVu3pm7dugQGBtK2bVu6deuGnZ0dx48fp0+fPvTr188yPiMjA5PJlGONhg0b3vYd0dHR9O/fP8e9pk2bMn369L+Nz93dne3bt7NmzRq6du1Kp06daNu2LWFhYTRp0gS4uY351vZnAC8vL5555hnc3NyYPXs2y5YtIygoiOeeey7f9xiNRoxG49/GIyIiIiJS3GhrroiIyL+n2FcWWltbs27dOtasWYOvry8zZsygZs2aHDx4EICvvvqKqKgoy3Xw4EH++OOPHGs4OTkVKgYrq5s/4383lk5PT88xpn379pw8eZIhQ4Zw9uxZWrduzfDhw/Nds2/fvixatIgbN24wb948unfvjqOjY6HiFBERERERERERuZ1iX1kIYDAYaNq0KU2bNmXs2LF4eHiwdetWKlasyIkTJ+jZs2eh1vfx8WHr1q307t3bcm/r1q34+voCULZsWeDmluiAgAAAoqKicq1TtmxZevfuTe/evWnevDkjRozIdyvzU089hZOTE59//jlr165l06ZNt41RDU5ERERERO6OomyooipKEREpasU+WRgZGcn69etp27Yt5cqVIzIykosXL+Lj40NISAhvv/02JpOJdu3aYTab2bVrF1evXmXo0KF3/I4RI0bw/PPPExAQQJs2bfjPf/7DsmXL+O233wBwcHDgscceY8KECVStWpULFy7w3nvv5Vhj7NixNGjQgNq1a2M2m/n555/x8fHJ953W1tYEBQURHByMt7c3jRs3vm2MoaGhhISE3PF3EhERERERERER+V/FPlno6urKpk2bCAsLIykpCQ8PD6ZMmUL79u0BcHR0ZNKkSYwYMQInJyfq1q3L4MGDC/SOTp06MX36dCZPnsygQYOoWrUq8+bNo2XLlpYxc+fOpU+fPjRo0ICaNWsyceJE2rZta3luZ2dHcHAwsbGxODg40Lx5cxYtWnTb9/bp04ePP/6YV1555W9jDA4OzpEATUpKUkdkEREREZF/QNV9IiLyMDNk//dBe3Jf2bx5M61btyYuLo7y5csDkJaWhp2d3d/OTUpKwmQykZiYiKur670OVURERERERERE7lMFyRMV+wYn9zuz2czbb79NuXLlsLe3p1mzZuzcuROA8PBwSpQokWP8ihUrMBgMnD59mvHjx1OrVi0CAwOZM2cOVatWxd7evgi+hYiIiIiIiIiIPAyULLzHRo4cyY8//sj8+fPZs2cP1atXJzAwkCtXrtx2noeHBwkJCbRp04Zjx44xdepUypYtm2fjFLiZlExKSspxiYiIiIhI8eL5zqoibbAiIiKiZOE9lJKSwueff86kSZNo3749vr6+fPXVV6SmptK8efPbzs3MzGT37t24urqSlpZGhw4duHDhAvXq1ctzfGhoKCaTyXLpvEIRERERERERESmoBzJZ6OnpSVhYWFGHwfHjx0lPT6dp06aWe7a2tjzxxBMEBATc0RorVqzAzs6OSZMmERsbm++44OBgEhMTLVdcXFxhwxcRERERkX9Z7IQOarAiIiJFqlh1Q77T5h73O1tbW+zs7LCysuJ/+8ukp6fnGm9tbf23axqNRoxG412LUUREREREREREHj5FWlnYsmVLBg4cyMCBAzGZTJQpU4YxY8ZYEmienp588MEHvPzyy7i6utK/f38AfvzxR2rXro3RaMTT05MpU6bkWPPkyZMMGTIEg8GAwWAA4PLly/To0YNKlSrh6OhI3bp1+f7773PEc+3aNXr27ImTkxNubm5MmzaNli1bMnjwYMuYq1ev8vLLL1OyZEkcHR1p3749R48etTy/1bTkl19+4bnnngPgmWeeIT4+HriZDPz111/ZsWMHZcuW5dq1ayxYsIC6devi4ODAyy+/DNzcwjx+/Hj27dtHUlKS5btERETc3X8EERERERERERGR/6/IKwvnz59Pnz592LFjB7t27aJ///5UqVKFfv36ATB58mTGjh3LuHHjANi9ezfPP/8848ePp3v37mzbto0BAwZQunRpgoKCWLZsGX5+fvTv39+yBkBqaioNGjRg1KhRuLq6smrVKl566SWqVavGI488AsDQoUPZunUrK1eupHz58owdO5Y9e/bg7+9vWScoKIijR4+ycuVKXF1dGTVqFE899RSHDx/G1tYWgOvXrzN58mS+++47pk6dypIlS3jxxReZNWsWEydOJCMjgypVqvDoo49aEoTBwcGUK1eOjz/+mNTUVLKzsxk+fDhLliwhLi6Ov/76C4BSpUrl+TuazWbMZrPlsxqciIiIiIgUPwVtbqItyyIicrcZsv93H+y/qGXLlly4cIFDhw5ZKgDfeecdVq5cyeHDh/H09CQgIIDly5db5vTs2ZOLFy/y66+/Wu6NHDmSVatWcejQIeBmReLgwYNzVATm5emnn6ZWrVpMnjyZa9euUbp0aRYuXEi3bt0ASExMpGLFivTr14+wsDCOHj1KjRo12LJlC/Pnz2fp0qVcvXoVgKeeeopVq1YRHh7OK6+8wrFjx6hWrRqpqam0a9eOTZs2YWdnR8OGDSlRogQ2NjasWLGCKVOmMHz4cIxGI2azmTFjxvDBBx9Yqiv9/f2JiYkhMTHxtt9l/PjxhISE5LqfmJiIq6vr3/xLiIiIiIjI/UDJQhERuReSkpIwmUx3lCcq8srCxx57zJIoBGjcuDFTpkwhMzMTgIYNG+YYHx0dTceOHXPca9q0KWFhYWRmZuZ7vl9mZiYff/wxixcv5syZM6SlpWE2m3F0dATgxIkTpKenW6oMAUwmEzVr1szxbhsbG65evUp4eDgRERF4eXnx5JNP5qg+dHR0pFq1agDY29szaNAgNm3aRGpqKnCzOjEhIQGAwYMHs2bNGiIjIy2VgVeuXLGs5e/vj6en59/+jsHBwQwdOtTyOSkpSR2RRURERESKGSX/RESkqN333ZCdnJzuyjqTJk1i+vTpjBo1io0bNxIVFUVgYCBpaWkFXuvEiRO4ubnRpEkTKlSogI2NTY7mIre2I99iMBhyNTK5xdramnXr1jFv3jwAFi1aRM2aNYmJiSlQTEajEVdX1xyXiIiIiIiIiIhIQRR5ZWFkZGSOz3/88Qfe3t75Vgj6+PiwdevWHPe2bt1KjRo1LHPs7OwslYn/PaZjx4706tULgKysLP766y98fX0B8PLywtbWlp07d1KlShXg5hbev/76ixYtWljenZGRwaBBg4CbScDKlStz9uxZKlasaHlXUlISH3/8MceOHWPJkiV5dim+evUqAQEBREdHU6dOHUaPHg3A999/T8eOHfnuu++Ijo7mxx9/JD09HW9vb959911eeeWVO/hVRURERESkOCroNuQ7pYpFERG5U0VeWXjq1CmGDh3KkSNH+P7775kxY4YlGZeXYcOGsX79ej744AP++usv5s+fz8yZMxk+fLhljKenJ5s2beLMmTNcunQJAG9vb9atW8e2bduIjo7mtdde4/z585Y5Li4u9O7dmxEjRrBx40YOHTpEnz59sLKysmyT9vb25qmnnqJs2bKULVuW3377jRo1amA0GvHy8soR55QpU2jYsCF79+6lffv2ABw5cgS42RH5jz/+wNfXl3nz5uHr68tbb70FwIYNG7h48SKRkZEcPnyYPn36UKFCBd59913s7OxIT0/P83cxm80kJSXluERERERERERERAqiyJOFL7/8Mjdu3OCRRx7hzTffZNCgQfTv3z/f8fXr12fx4sUsWrSIOnXqMHbsWN5//32CgoIsY95//31iY2OpVq0aZcuWBeC9996jfv36tGjRggYNGlChQgU6deqUY+2pU6cSExND+/btadOmDU2bNsXHxwd7e3vLmAULFuDh4cGlS5d45plnsLW1pU6dOrkqIZ966ikGDBhA9erV6dKlCwAbN24EICYmhuzsbL7++mv8/f25cOGCpYHJrFmzSEtL4/z58wQEBDB+/Hg8PT3p27cvvXr1wsfHJ8/fJTQ0FJPJZLl0XqGIiIiIiIiIiBRUkXdD9vf3Jyws7L5557lz5yhZsiRGo5GUlBQqVarElClT6NOnj2VMWFgYYWFhxMbG5rmmp6cnb775JiNGjLDM8fPzo2vXrowdO5YhQ4awb98+NmzYYHm+b98+/P392bt3LwEBAbz33ntMmTKFGjVqkJqairOzMz/++CPOzs6ULl06V9xms9nSIAX+r8GJuiGLiIiIiIiIiDzcCtINucgrC+8ne/fuZePGjZw+fZo9e/bQs2dPgFzdl+9EXk1OsrKy7nh+gwYNOHnyJEOGDOHixYvs27ePGTNm5JkoBDU4ERERERERERGRwnsok4VZWVmMHDmSUqVKUaFCBcaPH2959uKLL1KnTh3atGnDpUuXSExMZMOGDTRv3hwHBwcaNWrEhQsXSEtLo2HDhjg7O7N//35u3LhhWSM1NZWpU6fi5OREiRIlaNq0aY6uy2azmU2bNlnOOgwJCcnVtAWgbNmyBAUFceXKFTIyMpgyZUqOWP+bziwUERERESm+PN9Zdc+am4iIiBREkXZDjoiIKJL3zp8/n6FDhxIZGcn27dsJCgqiadOmPPnkk8DNjsSdOnUiNjaWqlWrMm7cOMLCwqhSpQqvvvoq3377LVeuXGHJkiU4OjrSpEkTtm/fDkBGRgYXLlygZcuWbNy4kbS0NHbs2MHEiRMB2Lx5MwsWLMDR0ZHWrVvToUMHRo8eTUZGRo4YFy5ciMFgYNu2bbz00ktkZ2djMplyNHL5b6GhoYSEhNzDX01ERERERERERB50D2VlYb169Rg3bhze3t68/PLLNGzYkPXr1+c7fvjw4QQGBuLj48OgQYM4ffq0pWIwICAANzc3Tp8+DdzcA56dnY2vry/VqlXDx8eH3r17W7Ylh4SEEBwczK+//kpMTAxvvvkmDg4OuSoBbW1tCQ4OpnXr1sTGxmJra2s5szAvwcHBJCYmWq64uLi79GuJiIiIiIiIiMjDokgrC4tKvXr1cnx2c3PjwoULdzS+fPnyABw4cMByb8yYMQwbNgyAUqVKERQUxJw5czh58iRt2rTh+eefJyoqCri5tXjr1q189NFHwM2k4Pnz58nIyODcuXOW9Z977jm+++47APz9/enUqRNVq1bNN0aj0YjRaLzTn0BERERERO4jsRM6FHUIIiIiwENaWVjQ5iP/Pd5gMOR577/nz5s3j+3bt9OkSRN++OEHatSowR9//AFAcnIyISEhREVFWa4DBw5w9OhRypYte1e+n4iIiIiIiIiIyD/xUFYW/hsCAgIICAggODiYxo0bs3DhQh577DHq16/PkSNHqF69eo7xLVu2xN/fn7CwMACWLl3KypUrWbJkCWazGXd399u+z2w2YzabLZ/V4EREREREpPi5G01OVKUoIiKF8VBWFt5LMTExBAcHs337dk6ePMmvv/7K0aNH8fHxAaBjx47MnTuX4OBgDh06RHR0NIsWLSImJibHOj/99BMNGzZk7969lClThp9//pkjR47k+97Q0FBMJpPl+rvkooiIiIiIiIiIyP9SZeFd5ujoyJ9//sn8+fO5fPkyBoMBPz8/XnvtNQAeeeQRADZs2MD06dOxtbWlVq1a2Nvb51inQYMGDBgwAIBy5cqRmJjIxo0bqVmzZp7vDQ4OZujQoZbPSUlJShiKiIiIiBQzqgoUEZGi9tAlCyMiInLdW7FiheXv7Oxsy9+enp45PsPN7cL/ey8oKIigoCDgZgOU5cuX5xjv7++PlVXOIs5ffvmFEiVK5Bh3i4eHBx06/N//SYiKisLPz++2TVjU4ERERERERERERApL25DvoaCgIH7//XemT5+OwWDAYDAQGxsLwO7du2nYsCGOjo40adKE69ev55j7559/Ur9+fezt7fHy8rJ0TBYREREREREREblXHrrKwn/T9OnT+euvv6hTpw7vv/8+AIcOHQJg9OjRTJkyhbJly/L6669z6NAhmjRpAtxsVvLdd9/xxRdf0Lx5c44fP06HDh3YtGlTvu9SgxMRERERkeLvnzY40fZlERG5W1RZWAAREREYDAYSEhLyHRMeHm7ZXmwymbCzs8PR0ZEKFSpQoUIFrK2tAbh48SKPP/44vr6+2NnZkZSUZKkcTEhIoE2bNvTu3RsvLy+efPJJ3Nzc2L17d77vVYMTEREREREREREpLFUWFkCTJk2Ij4/HZDIVei0HB4dcf9+4cQOAtLQ0fvnlF5ydnS1jrl+/TnZ2NtevX8fR0THXempwIiIiIiJS/KlCUEREipqShQVgZ2dHhQoV7spaBoMh199jxoyxvCckJIQuXbrkmve/XZNvUYMTEREREREREREprId6G3LLli156623GDx4MCVLlqR8+fJ89dVXpKSk8Morr+Di4kL16tVZs2YNkPc25PDwcKpUqYKjoyOdO3fm8uXLOd5hZ2fHjh07KF++PC4uLkycOPFv46pfvz6LFy/mySefpG7dunTt2pWoqCiqV6+eq6uyiIiIiIiIiIjI3fLQVxbOnz+fkSNHsmPHDn744QfeeOMNli9fTufOnXn33XeZNm0aL730EqdOnco1NzIykj59+hAaGkqnTp1Yu3Yt48aNyzEmKyuLP/74g9DQUB5//HFmzpz5tzF5e3szf/58evXqRc+ePdmzZw89evTgp59+4ttvv81zjhqciIiIiIjcX/5JsxJtQxYRkaL20Jep+fn58d577+Ht7U1wcDD29vaUKVOGfv364e3tzdixY7l8+TL79+/PNXf69Om0a9eOkSNHUqNGDd5++20CAwNzjLl8+TLlypUjJCSExo0b06ZNm9vGYzabWbJkCVOnTuXEiRN06dKFjz/+mOzsbBYsWECnTp3ynKcGJyIiIiIiIiIiUlgPfWVhvXr1LH9bW1tTunRp6tata7lXvnx5AC5cuICrq2uOudHR0XTu3DnHvcaNG7N27VrL59jYWKZPn87LL79subdv3z42btxo+VyqVCk6duyIp6cnhw4d4vr165bzC62srCyNT/z9/QkPD8/ze6jBiYiIiIjI/UVVgiIiUhw99MlCW1vbHJ8NBkOOe7eaj2RlZf0r8SQnJwOwatUqKlWqBECjRo0YNWoUPXv2pESJEnnOU4MTEREREREREREprIc+WVgYPj4+REZG5rj3xx9/5DnmvysL/3dMZmYm+/fvp1y5ciQmJmIwGIiIiKB3795UrVoVuFk5GBwczLx58wgKCro3X0hERERERIpUQc85VPWiiIjcbUoWFsLbb79N06ZNmTx5Mh07duSXX37JsQUZYNCgQQQFBdGwYUOaNm3Kd999x6FDh/Dy8rKM2b17N/Hx8SxbtgwPDw9eeOEFQkJCKFOmDNu3b6dNmzYEBgby+OOP07179zxjUYMTEREREREREREprIe+wUlhPPbYY3z11VdMnz4dPz8/fv31V957770cY7p3786YMWMYOXIkDRo04OTJk7zxxhuW5ykpKfz555/Url2b9u3b4+vry65du3BxcSEkJIQWLVpw/fp1/vrrL/z9/XFwcMgzFjU4ERERERERERGRwjJkZ2dnF3UQD7P9+/fj5+dHbGwsHh4elvudO3emZMmSzJ07lxIlShAWFnbb7cd5VRa6u7uTmJiYqzGLiIiIiIiIiIg8PJKSkjCZTHeUJ9I25AeEGpyIiIiIiIiIiEhhKVlYxKpVq4adnR1bt261VBamp6ezefNmXFxcKFGiBElJSUybNo3mzZtTrVq1PNfRmYUiIiIiIsVfQRuc5EeNT0RE5J/SmYVFzMnJiTfeeIMRI0awdu1aDh8+TL9+/TCbzYSEhLBr1y6cnJywsrKic+fOZGVl5bmOziwUEREREREREZHCUrLwPjBhwgS6du3KSy+9RP369Tl27BgbNmzg5Zdfpnr16lhbW/Pqq69y4MABDh8+nOcawcHBJCYmWq64uLh/+VuIiIiIiIiIiEhxpwYn96mjR48yduxYIiMjuXTpEllZWaSkpLBq1Sqeeuqpv51fkIMrRURERERERETkwaUGJw+AZ555Bg8PD7766isqVqxIVlYWderUIS0trahDExERERERERGRB5SShffQ0qVLCQkJ4dixYzg6OhIQEMBPP/3Em2++SUJCAgEBAcycOROz2cyLL77Ip59+ip2dHZ999hlHjhxh1qxZtG7dGoAtW7YAEBYWRqdOnXK9Sw1ORERERESKv4I0OFETExERuRd0ZmEBxcbGYjAYiIqKuu24+Ph4evTowauvvkp0dDQRERF06dKFW7u+169fb7n//fffs2zZMkJCQgDo3bs3BoPBkmjcsGEDb731FoAlefi/1OBEREREREREREQKS2cWFlBsbCxVq1Zl7969+Pv75ztuz549NGjQgNjYWDw8PHI8CwoK4j//+Q9xcXE4OjoCMHv2bEaMGEFiYiJWVlY8++yzbNiwgYyMDGrWrEmzZs347LPPWLZsGZ07d871vrwqC93d3XVmoYiIiIiIiIjIQ64gZxaqsvAe8fPzo3Xr1tStW5fnnnuOr776iqtXr+Z4fitRCNC4cWOSk5MtXYxDQkJITU3l+PHj7Nu3j82bN/P+++/nmSgEMBqNuLq65rhEREREREREREQKQsnCfGRlZTFx4kSqV6+O0WikSpUqfPTRR5bnJ06coFWrVjg6OuLn58f27dstzy5fvkyvXr04fPgwZrOZ33//nQ8++ICaNWsSExMDwIULF6hbty4ODg6ULl2a/v3753j/7t27sbGxwcPDA09PTw4ePEhQUNC/8t1FREREREREROThpGRhPoKDg5kwYQJjxozh8OHDLFy4kPLly1uejx49muHDhxMVFUWNGjXo0aMHGRkZAKSmptKgQQNWr15NdHQ0Y8aM4cyZMwAsX76cGzducOjQIXr16mU5t9DLywtnZ2fc3d357rvvGDt2LC+//DJVqlTBx8cHa2trNmzYkG+8ZrOZpKSkHJeIiIiIiBQPnu+sKlBzExERkXtFycI8XLt2jenTpzNx4kR69+5NtWrVaNasGX379rWMGT58OB06dKBGjRqEhIRw8uRJjh07BkClSpVo3rw5q1ev5sqVK3Ts2BF/f3+uXLmCj48P169fB2Dbtm1cv36duLg4fvzxR2rVqoWVlRXjxo1jypQpTJo0ifPnz7Nhwwa6dOnCF198kW/ManAiIiIiIiIiIiKFpQYnedixYwePPvooJ06coGrVqjme3WpwsmPHDho1agTA1atXKVWqFL///jstWrQgMzOTIUOGMG/ePFJSUiwdkAMCAtizZw+9e/dm9erVluo/g8FAp06dmDlzJg4ODjg7O+Pg4ICVlRVms5mMjAzs7OwoUaIE58+fzzNmNTgREREREREREZG8FKTBic2/FFOx4uDg8LdjbG1tLX8bDAbg5jmHAJMmTWLhwoV8/vnn1K1bFycnJwYPHoyNjY1lfNOmTRkxYgS//vory5cvZ8OGDVy7do3MzEwAvvrqKx599FFefvllqlevztixY7G2ts43HqPRiNFo/MffWURERERERERERNuQ8+Dt7Y2DgwPr16//R/O3bt1Kx44d6dWrF35+fnh5efHXX3/lGte0aVNCQkLYu3cviYmJ9O7dm/Lly2Ntbc2XX37Ja6+9xvbt21m3bh0bNmzIVeUoIiIiIiIiIiJyN6myMA/29vaMGjWKkSNHYmdnR9OmTbl48SKHDh2idevWfzvf29ubpUuXsm3bNkqWLMnUqVM5f/48vr6+AFy8eJGYmBh27dpFuXLliIyMJD09nVKlSgFgMpnYtGkTNjY29OvXD0dHR15//XVOnDjBhAkT8nxnXtuQRURERESkeLnXTU5iJ3S4p+uLiEjxp2RhPsaMGYONjQ1jx47l7NmzuLm58frrr9/R3Pfee48TJ04QGBiIo6Mj/fv3p1OnTiQmJgIwefJkhgwZwlNPPUVSUhIeHh5Uq1YNT09PAFxcXPDx8SElJYX58+fj5OSEjY0NCQkJ+b4zNDSUkJCQwn5tERERERERERF5iKnByX2iZcuW+Pv7ExYWhqenJ2+++SYjRowgIiKCVq1aUbt2bZ5//nnGjh2b53w1OBERERERERERkbyowckD4L8bqMDNpii3GqjkRQ1ORERERERERESksJQsvI2srCw++eQTvvzyS86dO0eNGjUYM2YM3bp1A2DlypUMGzaMuLg4GjduTFBQEEFBQVy9ehVbW1vc3NyYO3euZTzAihUr6NmzJ+fOnePy5ctUrVqV77//nr1797JlyxZ+++03UlNTAYiNjaVVq1YAHDx4kIMHDxIbG0t4ePi//luIiIiIiMi9dzfPLNT5hCIi8k+oG/JthIaG8s033zB79mwOHTrEkCFD6NWrF7///jsxMTF069aNTp06sW/fPl577TVGjx5tmevk5MQLL7zAvHnzcqw5b948unXrhouLi+XeiBEjqFy5Mi+++CKNGzfmwoULpKSk4O7uzo8//ghArVq1GDZsGNOnT88zVrPZTFJSUo5LRERERERERESkIJQszIfZbObjjz9m7ty5BAYG4uXlRVBQEL169eKLL77giy++oGbNmkyaNImaNWvywgsvEBQUlGONvn378ssvvxAfHw/AhQsXWL16Na+++mqOcQMHDqRs2bKUKlWKzz//HCsrK/744w+sra0tHZINBgOff/45V69ezTPe0NBQTCaT5XJ3d7/7P4qIiIiIiIiIiDzQtA05H8eOHeP69es8+eSTOe6npaUREBDAjRs3aNSoUY5njzzySK7PtWvXZv78+bzzzjssWLAADw8PWrRokWNc48aNGTVqlOXzM888Q4kSJXKMadmyJenp6ZaOyf8rODiYoUOHWj7fanAiIiIiIiLFh7YOi4hIUVOyMB/JyckArFq1ikqVKuV4ZjQaefvtt+9onb59+zJr1izeeecd5s2bxyuvvILBYChwPAsWLODXX3/N97kanIiIiIiIiIiISGEpWZgPX19fjEYjp06d4vHHH8/1vGbNmqxevTrHvZ07d+Ya16tXL0aOHMmnn37K4cOH6d27d64xf/zxh6XaMCMjg927dzNw4EAA7OzsLP/72GOP5Ruv2WzGbDZbPuvMQhERERGR4qewDU5UmSgiIoWlZGE+XFxcGD58OEOGDCErK4tmzZqRmJjI1q1bcXV15bXXXmPq1KmMGjWKPn36EBUVZelS/N+VgyVLlqRLly6MGDGCtm3bUrly5VzvmjVrFt7e3vj4+DBt2jSuXr1qOdfQw8MDgIoVK3Lx4kUcHBxwdnbOtUZoaCghISH34JcQEREREREREZGHhRqc3MYHH3zAmDFjCA0NxcfHh3bt2rFq1SqqVq1K1apVWbp0KcuWLaNevXp8/vnnlm7I/7sduE+fPqSlpeHl5ZXrLEKACRMmMGHCBPz8/NiyZQvJycls2bIFgEqVKlGrVi2OHTtG+fLlLRWH/ys4OJjExETLFRcXd3d/DBEREREREREReeCpsvA2DAYDgwYNYtCgQXk+f/bZZ3n22Wctnz/66CMqV66Mvb19jnFnzpyhdOnSfPzxx4wbN85yPywsDAAfHx8iIyNzvPe/ValShSeeeIJZs2blG6vOLBQRERERKf60jVhERIqakoWF8Nlnn9GoUSNKly7N1q1bmTRpUo7Kv+vXrxMfH8+ECRN47bXXMJlM/+g9ZcqU4erVq3crbBERERERERERkTwpWVgIR48eZcyYMVy5cgVvb2+GDRtG+/btMRgMjBo1Cnt7ez766CPKli3LsWPHCA8PZ/DgwSQkJBAeHs706dMBCAgIAGDevHkEBQUBcOnSJTp37swvv/yCo6Mjrq6ut41FDU5ERERERIqP/BqZqLJQRESKms4sLIRp06Zx4sQJrKysWLhwIWPGjGHr1q2UKVOGiIgIxo8fT3p6Ok5OTjz55JM55nbv3p1hw4ZRu3Zt4uPjiY+Pp3v37pbnISEhPP/88+zfv5/AwEBiYmI4ceJEvrGEhoZiMpksl7u7+z373iIiIiIiIiIi8mBSsrCQTCYT/v7+REREABAREcGQIUPYu3cvycnJnDlzhmPHjvH444/nmHerq7GNjQ0VKlSgQoUKODg4WJ4HBQXRo0cPqlevzpdffgn83xmHeVGDExERERERERERKSxtQ74LHn/8cSIiIhg2bBibN28mNDSUxYsXs2XLFq5cuULFihXx9vZm69atd7xmvXr1LH87OTnh4ODAjz/+yMSJE3M1UAE1OBERERERKU603VhERO5Xqiy8C1q2bMmWLVto1KgRN27cYPbs2URHR9O1a1dmz55N06ZNeeWVV3j99de5du0aa9asscxNTk7mkUcewWg04ubmxjvvvAOAra2tZe2BAweSmZnJpUuXaNWqVZF8RxERERERERERefCpsvAuaN68OdeuXeP06dOkpaVRpkwZpk2bRmhoKJs3b6Z27doMGjSIWrVqMXbsWF566SVOnTpFamoqJ06cIDAwkG+++YY///yTfv365Vp//vz5GAwGxo0bR5cuXfKMQQ1ORERERET+T34NRO53qjgUEZGipsrCu6BkyZLUq1eP8+fP4+HhwXvvvccLL7zA+fPnAahWrRr9+vWjfPny2Nvbc/nyZfbv38+ff/4JQN++fSlTpgzt27cnJCQEgKysLMv63t7e2Nvb4+bmRs2aNfOMQQ1ORERERERERESksFRZWEAXL16kUqVKXL16FTs7O0qUKEF0dDSPP/44UVFRPPLIIwCUKlWKihUrcvLkSZo1a8a2bdsYMWIEBoMBgAsXLpCdnU2VKlV44oknSEhIYN68eTRt2hSAy5cvW97ZoEGD23ZChpsNToYOHWr5nJSUpIShiIiIiDy0VKEnIiLyzxS6sjApKYkVK1YQHR19N+K5723fvh0/Pz+cnJzYs2cPpUqVokqVKoSFhfH4449Trlw5y9guXbrg6uqKra0tmzdvpl27diQkJAA3Kwetra1p1aoVV69eJTs7m969e5ORkQFAYGCgZR0nJycSEhIICgrKNy6j0Yirq2uOS0REREREREREpCAKnCx8/vnnmTlzJgA3btygYcOGPP/889SrV48ff/zxrgd4v9m2bZul+m/Lli2Wv/Mbe6tDcV5jHR0dCQ8PZ/Xq1TRo0ACj0ci3336Li4sLkyZNoly5cmzatInFixezc+fOe/elREREREREREREAEN2dnZ2QSZUqFCBX375BT8/PxYuXMi4cePYt28f8+fP58svv2Tv3r33KtYic+rUKerVqwfA9evXsba2xmg0cuPGDQwGA/b29rz44oscPnwYBwcHtm/fDvxfkxGj0UhaWhoODg7Y2NiQmJjI8uXLSU9P5/nnn6d06dJ88sknpKen895771GtWjVOnz7NnDlzGDduHMnJyZw7d45jx45RqlSpPGPMq8GJu7s7iYmJqjIUEREREbmP/XczFm2fFhGReyEpKQmTyXRHeaICVxYmJiZaElZr166la9euODo60qFDB44ePfrPIr7PVaxYkaioKDZt2gRAZGQku3fvxs7Ojl9//ZWoqCjef/99ALy8vIiKimLy5Mn4+vpSsWJFevbsSfny5Tl48CBRUVGWdcuWLQvcPN9wwIABhISE0Lt3b/bs2cOkSZNo3749jo6OtGnTBgcHB77++ut8Y1SDExERERERERERKawCNzhxd3dn+/btlCpVirVr17Jo0SIArl69ir29/V0P8H5gY2ODk5MT1atXp1GjRvj4+ODi4kKFChVo0aKFZVxERAQAS5Ys4b333qNPnz506NCBp59+mi5duuDp6QnArWLOW+M3btxIpUqVANi/fz9Tp061bFm+NSYuLu6250KqwYmIiIiISPGkakIREbmfFLiycPDgwfTs2ZPKlStTsWJFWrZsCcCmTZuoW7fu3Y7vvlC7dm2qVKlCVlYWu3btwmQyYTabOX36NM7OztSuXRu4uV3Z2dmZnj17cuHCBaZMmUKrVq1ISEjg22+/xdnZmddffz3X+k5OToWOUQ1ORERERERERESksAqcLBwwYADbt29n7ty5bNmyBSurm0t4eXnx4Ycf3vUA7werV6/m5ZdfxtnZmQULFjBo0CBKlixJWFgYUVFRrF69Gvi/7cre3t7Y2NgQFRVF48aNMRgMbN68Ocd25UOHDhEcHAxA5cqVad68OcePH6datWrY2dkxbNgwKleujNFoxM/Pj82bN+Pr61tkv4GIiIiIiIiIiDz4Ctzg5GHy341NUlJSyMjIwNXVlRs3bpCeno6Liwu9evXis88+Y+HChQwYMAC4ea6jlZUVLi4uliYnrq6ufPbZZ7z44oucOXOGevXqUbt2bTZv3szOnTs5cOAATZo0oWbNmrRo0YItW7YwcuRImjdvzjvvvMPBgwfZuXMnDRs2zDNWNTgRERERESn+PN9ZpW3JIiJy1xWkwUmBk4WZmZmEh4ezfv16Lly4QFZWVo7nGzZsKHjE96mMjAxOnz5NUlIS9evXp169eixZsoQaNWrg6OjIgQMHcHZ2pkyZMiQnJ3Pp0iV+++03Ro4cSc+ePXnyySfp3r07mZmZ/PXXX5QpUwZnZ2feffddFi1axJdffsmTTz7J1atXKVGihOW9FStWxNPTk6NHj3Lt2jUaNmzIlStXaNWqFbNmzcoz1vHjxxMSEpLrvpKFIiIiIiLFh5KFIiJyL9zTbsiDBg1i0KBBZGZmUqdOHfz8/HJcDxIbGxs8PT35888/efTRR9mzZw/nzp3Dzs6OPn364OnpSZkyZQBwdnbG09OTPXv28MYbbzBjxgwOHDhA9+7dOX36NJ6enjg7OwMQFRVF8+bNadOmDdnZ2TkShUlJScTHxxMaGsrFixdJTU1ly5YtBAYG/m2Dk8TERMsVFxd3T38bERERERG5+5QoFBGRolbgbsiLFi1i8eLFPPXUU/cinvtK7dq1OXnyJOnp6WRlZeHs7ExGRgZms5nPPvuMdevWcejQIU6dOmU5TzA1NRUbGxumT5+O2WzGysqKpUuX0qtXL2bPng2Ag4PDXY/VaDRiNBrv+roiIiIiIiIiIvLwKHBloZ2dHdWrV78Xsdx3Vq9ezbZt27C1tcXa2hoHBwfKli1L9erVefHFF1m9ejVXr17l3XffxcrKivT0dLKzs1mxYgWRkZEAjBo1CoPBYGlsMn78eLZu3cqaNWvw8PDAZDLxwgsvcO3aNeDm2YZubm4MGjQIJycn3NzcmDZtGl9//TWXL18ust9CREREREREREQefAVOFg4bNozp06fzMPRF8fDwYOrUqaSkpLB8+XLWrl3L2bNniY+Pp0SJEnh4eBAUFMSePXtYtWoV77//PiaTibfeeovz58/j5eWFl5cX1tbWlCtXzrJucnIyiYmJ1KhRg8mTJ7N+/Xp69uzJkSNHLO/dv38/Q4YM4csvv+Tzzz/n2rVr+Pv75xur2WwmKSkpxyUiIiIiIiIiIlIQBU4Wbtmyhe+++45q1arxzDPP0KVLlxzXgyQ5OZkFCxZQq1Yt2rdvz/Xr1/H09LQ0dTl69CgrV65kzpw5NG/enJiYGF599VXOnDnDF198QYsWLfJcNzs7m4iICKysrBg8eDBJSUlERERga2vLtWvX2LVrF8899xzh4eF07doVo9GIwWBg//79+cYaGhqKyWSyXO7u7vfkNxERERERERERkQdXgbshv/LKK7d9Pm/evEIFdD/Zt28f/v7+nDx5kipVqljuBwQEYDabcXFxYc+ePaSmpmJtbZ3jeefOnRk7dizh4eEMHjyYhIQE4OY25CVLlnDo0CHL+GnTpjFjxgxOnDiR7ztdXFyoXr06e/fuzTNWs9mM2Wy2fE5KSsLd3V3dkEVEREREREREHnIF6YZc4AYnD1IysKjY2trm+GwwGCzViv+UGpyIiIiIiIiIiEhhFThZCJCRkUFERATHjx/nxRdfxMXFhbNnz+Lq6oqzs/PdjrHIVKtWDWtra5o1a8bFixdxdHSkTp06HDx4kIyMDMs4GxsbNm7cSMuWLXn77bfZt28fhw8fJjw8nDp16uRYMyIigiNHjvDtt98yZswYrl69ipeXl+UMSC8vL2xtbXnppZfYvXs3Li4uvPnmm1y/fv22seZVWSgiIiIiIsWL5zur/nZM7IQO/0IkIiLysCpwsvDkyZO0a9eOU6dOYTabefLJJ3FxceGTTz7BbDYze/bsexFnkbh27RpZWVkkJyfz9ddfY29vz/jx47G3t8fNzY1q1aqRnZ1NTEwM2dnZ7Nu3j7Vr11KpUiU2bNjAn3/+Sa9evUhLS8uxblpaGitWrODnn3/m6tWrdOjQgevXrzN48GDCwsKoXr06W7du5ZNPPsHLy4sBAwb8beVhaGgoISEh9/LnEBERERERERGRB1yBG5wMGjSIhg0bcvXqVRwcHCz3O3fuzPr16+9qcEUtPj6e7OxsWrZsSb9+/RgwYAAvvfQSDRo0wMbGBqPRyPfff8+jjz5K586dady4MV5eXmzYsAFvb2+eeeYZ2rVrR3p6eo51s7OzLVWHzZs3p2HDhlhbW/PBBx+QnJzMsWPHaNy4MWPHjmXAgAEMHDgQg8GAjU3+ud3g4GASExMtV1xc3L3+eURERERERERE5AFT4MrCzZs3s23bNuzs7HLc9/T05MyZM3ctsPuBn58frVu35rfffuOpp56ibdu2dOvWjREjRhAUFERCQgIlS5bkm2++scz54YcfCAoK4vjx4yQnJ5ORkUGpUqUsz1u2bMnFixdxcXGx3HvmmWeIjY3FxcWFffv2kZ6eznfffWdpcJKSksLYsWMxmUz5xqozC0VEREREij9tMRYRkaJW4MrCrKwsMjMzc90/ffp0jgTYg8Da2pp169axZs0afH19mTFjBjVr1iQmJibP8du3b6dnz5489dRT/Pzzz+zdu5fRo0fn2oacV4OTs2fPMnjwYMu9N998k27duuHo6EjZsmXJzs6mWrVqd/07ioiIiIiIiIiI3FLgysK2bdsSFhbGl19+CdxMdCUnJzNu3Dieeuqpux5gUTMYDDRt2pSmTZsyduxYPDw8WL58OXZ2drmSptu2bcPDw4PRo0db7p08ebJA77uVEFy9ejU2NjY4ODhQqlQpYmJiSE1NzXeeGpyIiIiIiBR/t2twoqpDERH5NxS4snDKlCls3boVX19fUlNTefHFFy1bkD/55JN7EWORiYyM5OOPP2bXrl2cOnWKZcuWcfHiRXx8fPD09GT//v0cOXKES5cukZ6ejre3N6dOnWLRokUcP36cTz/9lOXLl1vWy87O5j//+Q8HDx7EYDAQFRWV653Ozs44Ozvj4ODAmjVr2LJlC3Xr1sVgMNz2HMLQ0FBMJpPlcnd3vxc/iYiIiIiIiIiIPMAKXFlYuXJl9u3bxw8//MC+fftITk6mT58+9OzZM0fDkweBq6srmzZtIiwsjKSkJDw8PJgyZQrt27enYcOGRERE0LBhQ5KTk9m4cSPPPvssQ4YMYeDAgZjNZjp06MCYMWMYP348AGvXriUqKgovLy82b95MmTJl8nxvyZIlKVu2LM888wwuLi4MGzaM9evXc+PGjXxjDQ4OZujQoZbPSUlJShiKiIiIiBQzqh4UEZGiZsjOzs4uyITvv/+eHj165PlsxIgRTJo06a4E9iCaOXMmkyZNynNrcsuWLfH39ycsLAxPT08GDx6c4wxDf39/OnbsyJgxY27bFfmWpKQkTCYTiYmJuLq63s2vISIiIiIiIiIixUhB8kQF3ob8xhtvsGbNmlz3hwwZwoIFCwq63EMjKCiIt956i1OnTmEwGPD09MRsNvP2229Trlw5Nm3axOLFi9m5c6dlTkREBAaDgTVr1vDXX3/x4YcfsmXLliL8FiIiIiIiIiIi8iAr8Dbk7777jh49evDzzz/TrFkzAN566y2WLVvGxo0b73qAD4rp06dTrVo1vvzyS3bu3Im1tTUjR47kxx9/ZP78+YwbN47k5GQCAwNxdnbOMfedd97Bzc2NDh06UK9evTzXV4MTEREREZHiTw1ORESkqBW4srBDhw589tlnPPvss+zevZsBAwZYEoW1atW6FzE+EEwmEy4uLlhbW1OhQgUcHR35/PPPmTRpEu3bt8fR0ZE2bdrg4OBAcnJyjrnvv/8+Li4ulCpVilKlSuW5vhqciIiIiIiIiIhIYRW4shDgxRdfJCEhgaZNm1K2bFl+//13qlevfrdje6AdP36c9PR0mjZtCtzccgwQFxdHyZIlGTx4sOVep06duHr1KiVKlMh3PTU4EREREREp/lQ9KCIiRe2OkoX/nYT6b2XLlqV+/fp89tlnlntTp069O5FJgRiNRoxGY1GHISIiIiIiIiIixdgdbUPeu3dvnlf16tVJSkqyfI6KirrH4f67srKyCA0NpWrVqjg4OODn58fSpUstz1euXIm3tzf29va0atWK+fPnYzAYSEhIICUlBVdX1xzjAa5fv46TkxPlypXDzs4OT09PFi1aRJMmTTAajfz888+WpN+5c+cs80qWLInBYCAoKOhf+e4iIiIiIiIiIvLwuaPKwoe1cUloaCgLFixg9uzZeHt7s2nTJnr16kXZsmWpUqUK3bp1Y9CgQfTt25e9e/cyfPhwy1wnJydeeOEF5s2bR7du3Sz3k5OTee6556hQoQI9e/Zk3rx5vPXWW4wePZry5cuzZs0aFixYwIcffkjZsmUt844cOYKrqysODg55xqoGJyIiIiIixd/tGpzcKW1lFhGRwihwg5P/dvr0aU6fPn23YrmvmM1mPv74Y+bOnUtgYCBeXl4EBQXRq1cvvvjiC7744gtq1qzJpEmTqFmzJi+88EKuqr++ffvyyy+/EB8fD8C1a9e4ceMGr776KgCjRo0C4MaNG7zzzjtcvHiRjRs3UqJECb7++musra0tay1evJgKFSpgMpnyjFcNTkREREREREREpLAM2dnZ2QWZkJWVxYcffsiUKVMsXXtdXFwYNmwYo0ePxsqqUPnH+8ahQ4eoU6cOTk5OOe6npaUREBBAxYoVKVmyJHPnzrU8W7lyJR07dszRjMTPz48ePXrwzjvvMHXqVD777DOOHj2KwWAgNjaWqlWr8vvvv9OiRQvLOp07d6ZEiRLMmzePiIgIWrVqhclk4uTJk/kmC/OqLHR3dycxMRFXV9e7+MuIiIiIiIiIiEhxkpSUhMlkuqM8UYG7IY8ePZqvv/6aCRMmWDr5btmyhfHjx5OamspHH330z6K+z9xKhK5atYpKlSrleGY0Gnn77bfvaJ2+ffsya9Ys3nnnHebNm8crr7yCwWAocDxVq1ZlwYIFvPnmm3k+V4MTEREREREREREprAInC+fPn8+cOXN49tlnLffq1atHpUqVGDBgwAOTLPT19cVoNHLq1Ckef/zxXM9r1qzJ6tWrc9zbuXNnrnG9evVi5MiRfPrppxw+fJjevXvnGvPHH39YKgszMjLYvXs3AwcOBMDOzg6AwMBAFi1alG+yUEREREREiofbnUuo8wZFRKSoFThZeOXKFWrVqpXrfq1atbhy5cpdCep+4OLiwvDhwxkyZAhZWVk0a9aMxMREtm7diqurK6+99hpTp05l1KhR9OnTh6ioKMLDwwFyVA6WLFmSLl26MGLECNq2bUvlypVzvWvWrFl4e3vj4+PDtGnTuHr1quVcQw8PDwwGA+np6URGRnL58mVKly6daw01OBERERERERERkcIq8AGDfn5+zJw5M9f9mTNn4ufnd1eCul988MEHjBkzhtDQUHx8fGjXrh2rVq2iatWqVK1alaVLl7Js2TLq1avH559/zujRowFybQfu06cPaWlplgTg/5owYQITJkzAz8+PLVu2sHLlSsqUKQNApUqVCAkJ4ZtvviE9PZ3XXnstzzXU4ERERERERERERAqrwA1Ofv/9dzp06ECVKlVo3LgxANu3bycuLo7Vq1fTvHnzexJocfDRRx8xe/Zs4uLictz/9ttvGTJkCGfPnrVsKwYsDU4aNGhAs2bNCAsLy3fto0ePUqNGDQ4fPoyPj0+u52pwIiIiIiIiIiIiebmnDU6qVq3KX3/9xaxZs/jzzz8B6NKlCwMGDCAjI+OfRVxMffbZZzRq1IjSpUuzdetWJk2aZDlrEOD69evEx8czYcIEXnvttRyJwoK6tcW7bNmyeT5XgxMRERERERERESmsAlcWWltbEx8fT7ly5XLcv3z5MuXKlSMzM/OuBng/GzJkCD/88ANXrlyhSpUqvPTSSwQHB2NjczMHO378eD766CNatGjBTz/9hLOzc475tyoL/1dMTAwnT55kxIgR7Nu3j1KlSuHv78/BgwdzVS3eospCEREREZHi73bNT/KihigiInInClJZWOBkoZWVFefOncuVLDx58iS+vr6kpKQUPOKHWGJiIu3bt6dOnTq8//77AGRmZlKjRg2CgoJ46623+PPPP3nhhRfw8fFh7969ea4zfvx4QkJC8lxfyUIRERERkeJByUIREbkX7sk25KFDhwI3O/2OHTsWR0dHy7PMzEwiIyPx9/f/ZxE/QLKzs3nttddYunQpV69exWQyERQUlO95hCaTCTs7OxwdHalQoQIAo0ePxt3dnZkzZ2IwGDAYDJjNZqKjo8nKysLKKndfmuDgYMu/EfxfZaGIiIiIiIiIiMiduuNk4a2KtuzsbA4cOJDj/D07Ozv8/PwYPnz43Y+wmFm7di3h4eFERETg5eWFlZUVDg4OBVojOjqaxo0bYzAYAFiyZAlwc6vx6dOnqVKlSq45OrNQRERERKT4U6WgiIgUtTtOFm7cuBGAV155henTp2traz6OHz+Om5sbTZo0uWtr3joDUURERERERERE5F4qcBZq3rx59yKOB0JQUBDz588Hbm7X9vDwwNPTE39/f8s2ZE9PT/r378+xY8dYsmQJJUuWxNnZOUdjGJPJxPfff8/ChQupW7cuo0ePBsDJyYnKlSvn+e68GpyIiIiIiMj95e/OJFRloYiIFLXch9/JPzZ9+nTef/99KleuTHx8PDt37sxz3JQpU2jYsCF79+5lwIABREdH8/vvvxMbG0tsbCwrV64kIyODrl270qdPH9544w0AevXqled5hQChoaGYTCbLpfMKRURERERERESkoArcDVluLywsjLCwMGJjYwFo2bJlrsrC5s2b8+233wI3z4AsU6YMJpOJc+fOcePGDUqUKMHixYsZPXo0e/bsITs7m6ysLHbu3EnDhg3zfG9elYXu7u7qhiwiIiIiIiIi8pArSDdkVRYWgXr16ln+NhgMVK5cmaCgIK5fv87gwYMJCAjgySefZMeOHbz33ntUr14duP3ZhUajEVdX1xyXiIiIiIiIiIhIQShZeI9lZWURERFBuXLlsLe359y5c8THxwMQHh5OiRIlMBgMZGVlATcbpNxqJhMeHk5ISAh//fUXAAEBAYSHhxfJ9xARERERERERkQefkoX32IkTJzh27Bjz589nz5492NjYMHv2bK5cuZLn+FsNTFJTU+nevTvDhg3Dzc0NgHXr1tG9e/c855nNZpKSknJcIiIiIiJSfPxd8xMREZF/g5KF/1BsbCwGg4GoqKh8x6SkpHD27FmaN29O+/bt8fX1pUyZMtja2vL111/nOad58+YA9OvXj5iYGOLj47l8+TIAZcqUwcHBIc95anAiIiIiIiIiIiKFpWThPXT8+HGys7MtlYG3VKlShejo6Dzn3EoGHjhwgICAADZs2EBaWtrfvis4OJjExETLFRcXV/gvICIiIiIi/5rYCR2KOgQRERElC++2wYMHWzoh3zJu3DjL37GxsZaGJVZWVmRnZxMVFcX48eMBSE9PByAqKgqz2cxrr70GwPLly/H398/3vWpwIiIiIiIiIiIihaVk4W2sXbuWZs2aUaJECUqXLs3TTz/N8ePHc4z5888/adKkCfb29tSpU4fff//d8qxatWrY2tryxBNPYDQacXNzY8SIEezcuRNfX1/Kli1LUlISn3zyiWXOrW3Nt5KH06dPB6Bz584YDAY8PT3v6XcWEREREREREZGHl5KFt5GSksLQoUPZtWsX69evx8rKis6dO1s6FwOMGDGCYcOGsXfvXho3bswzzzxjOWMwISGB7Oxszp8/z8yZM3n33XeZMWMGly9fpk+fPjz66KMYDAZWrVrF8ePHWbhwYa5ux6GhoQCEhIRw8OBBtmzZkmesanAiIiIiIlJ8eb6zSg1ORETkvqBk4W107dqVLl26UL16dfz9/Zk7dy4HDhzg8OHDljEDBw6ka9eu+Pj48Pnnn2P6f+zdaVRWVf//8ffFjAwXgxMqgikqIIiJmpJKajmkOeaQpmQ5WxoOSQ6pDZZDgXqbpTlkmjlralZ6CyoojuSQGQ4ElVMOIMgM/wf+vX6RYHprofJ5rXXW4pyzzz77XD6o9V1774/RaAovmTNnDlWqVOGll17izTffZNSoUVSsWBGDwYDRaMTFxYXSpUtz/Phx/Pz8+PLLL00zCm966aWXAJg6dSq1atVi69athY5VASciIiIiIiIiInKvVCy8jfj4eHr06MFjjz2Go6OjaQlwYmKiqU3Dhg1Nf1tYWBAYGGgKLzl+/DhBQUHMmjWLixcvkpGRwZo1a0hPT+fXX38FoFSpUowdO5br16/z9ddf069fP2rXrm3q09raGoAvvviC/Px8QkJCCh2rAk5ERERERB5eCe8/q4ATERF5IFgU9wAeZO3atcPDw4N58+ZRoUIF8vLyqFWr1h2lE9+pmyEnf3Yz5ORuWFtbmwqLIiIiIiIiIiIi/wsVC4tw6dIlTpw4wbx582jcuDFAofsF7tmzhyZNmgCQk5PDgQMHGDp0KADe3t6sXr2a/Px8DAYDANHR0Tg4OFCpUiUAypQpw9mzZ039paSkcObMGU6ePMmTTz7J0aNHAXj77bfx8/OjatWq/9xHi4iIiIhIsbof+xZqhqKIiNwLLUMugrOzM66urnz66aecPHmS//73v4SGht7S7j//+Q9r167lp59+YsiQIVy5coW+ffsCMHjwYJKSknj11Vf56aefWL9+PW+99RahoaGYmd346Zs1a8aSJUvYuXMnR44coU+fPpibm5OVlWUKV6lcuTKXLl2ibdu2pvCUv1LAiYiIiIiIiIiI3CsVC4tgZmbG8uXLOXDgALVq1eL1119n2rRpt7Szs7Nj0KBB1K5dm127drFhwwZKly4NQMWKFdm8eTN79+6ldu3aDBw4kJdffplx48aZng8LC6Np06a0bduWZ599lg4dOlC1alV8fHxM4SqzZ8/GzMyMn376CX9//0LHq4ATERERERERERG5V4b8v26YJ3clODiYgIAAwsPD72u/8fHxTJgwgdjYWP744w/y8vJIS0tj06ZNtGnT5pb2mZmZZGZmms5TUlJwd3cnOTkZR0fH+zo2ERERERERERF5eKSkpGA0Gu+oTqQ9Cx9QdxuuooATERERERERERG5VyoW3kdXrlxh2LBhfP3112RmZtK0aVNmzpyJl5cXAIsWLWL48OF89dVXDB8+nKSkJJ588kkWLlyIm5sbcCMkZdCgQZw4cYLff/+d7777jnPnznH69OnbvruwmYUiIiIiIvJwKSrgRKElIiLyb9GehfdRSEgI+/fvZ8OGDezevZv8/HzatGlDdna2qc3169eZPn06S5YsYceOHSQmJjJy5EjT/Q8++IDVq1fj4OBAcHAwSUlJrFq1ypSKXBTtWSgiIiIiIiIiIvdKxcL7JD4+ng0bNjB//nzGjx/PwoULWbp0Kb/99hvr1q0ztcvOzmbu3LkEBgby+OOPM3ToULZt22a6P2vWLN58803WrFnDyZMnWbNmDdnZ2fj6+t72/WFhYSQnJ5uOpKSkf+pTRURERERERETkEaVlyPfJ8ePHsbCwoEGDBqZrrq6u1KhRg+PHj5uulSpViqpVq5rO3dzcuHDhAgDJycmcP3+e+vXr06RJE+bMmcNTTz1F27ZtMTc353ZZNNqzUERERETk4aflxiIiUtw0s/BfZmlpWeDcYDDctggoIiIiIiIiIiLyb9HMwvvE29ubnJwcYmNjTdcuXbrEiRMn2LZtGx999BFpaWnk5+cTHx9vCj25OavQ2dmZrKwszM3N+fzzz6lcuTJPPfUUABs3bgRu7Im4aNGiQt+vgBMRERERkYdfYQEnmm0oIiL/Js0sLEJ+fj79+/fHxcUFg8FAXFxcoe2ioqI4deoUXl5etG/fnn79+pGcnMzFixfp1asXZmZmXLhwgQ0bNjBu3DiAAqEnn376KQA7duzgyJEj9OjRg1WrVnHo0CFmzpwJgL29PTY2NtSoUaPI8SrgRERERERERERE7pWKhUXYsmULixYtYuPGjZw9e5ZatWoV2q5hw4Z4enoCsHDhQurWrcuRI0dYsWIFaWlppKWl8dlnn9G4cWMqV65MqVKlCoSeXLx4EQA/Pz8ee+wxFi5cyIsvvkhISAhjx44FoEWLFpiZmWFra1vkeBVwIiIiIiIiIiIi90rLkItw6tQp3NzcaNSoUaH3s7KysLKyIiYmxnTN2dmZzz//nMTERAICAmjWrBm7d+82hZ6EhIQQEhJCnTp1TKEn48ePZ9CgQQQFBdGiRQs6d+7MrFmzmDVrFpGRkTz11FMcPXr0lr0O/0oBJyIiIiIiDz8tORYRkeKmYmEhQkJCWLx4MXAjgMTDwwNPT09q1aqFhYUFX3zxBX5+fmzfvh2DwcDatWvp0KEDAElJSfz444/s3r2b+fPnk5ubS0JCgikBOSQkhDNnzhAdHY2bmxtZWVn06NGDBg0asG3bNt577z3atm3L1atX2bVrFwBnzpyhXLlyxfJbiIiIiIiIiIhIyaFiYSEiIiKoWrUqn376Kfv27cPc3Jznn3+exYsXM2jQIKKjowt9Ljs7m5YtW5ra9+zZkzZt2tCsWTPi4+OxsrIiIyOD5ORk8vPz2b59OydPnqRbt240btyYNWvWMGTIEObOnQuAlZUVOTk5eHl58csvv9x2zAo4ERERERF5+CngREREipv2LCyE0WjEwcEBc3NzypcvT5kyZQDw8vJi6tSp1KhRo9Cwka+++oq8vDxq1KhB6dKlad26Ne3atSMpKYnZs2fzww8/sGvXLiwsLNiwYQM1a9Zk69at1K1bl/Xr13Pw4EGio6PJy8tjz549nDx5EoPBQJ8+fUhPTy9QDPwrBZyIiIiIiIiIiMi90szCu1C3bt3b3v/hhx84efIk8fHxREdHM3/+fPLz88nPz2fcuHGMGzcOZ2dngoKCsLGxASA3N5fDhw9z7do19u7di6+vL+bm5tStWxczMzMmTZpEREQEAKtXr+aNN94o9N1hYWGEhoaazlNSUlQwFBERERF5yGgWoYiIFDcVC++CnZ3dbe+npqZSt25dli5desu9MmXKYDQaCQkJ4erVq6brs2bNwtzcnLi4OCIjI1m/fr1pr0K4EYAyfvx4nJ2deeGFF4p8twJORERERERERETkXqlYeB89/vjjfPXVV5QtWxZHR8f/qY+aNWuSk5PDgQMHqFevHgAnTpwoUGAUERERERERERH5J2jPwvuoZ8+elC5dmvbt27Nz507OnDlDZGQkr732Gr/++usd9VGjRg1atWrFgAEDiI2N5cCBA7zyyivY2tre9rnMzExSUlIKHCIiIiIi8vAoLNxERETk36Zi4X1UqlQpduzYQeXKlenUqRPVq1enefPmZGRk3NVMw4ULF1KhQgWaNm1Kp06d6N+/P2XLlr3tMwo4ERERERERERGRe2XIz8/PL+5BPKoWLVrE8OHD73kJscFgYO3atXTo0KHINpmZmQXSkm8GnCQnJ//PS6JFREREREREROThl5KSgtFovKM6kfYsfEQo4ERERERERERERO6VliHfpY0bN+Lk5ERubi4AcXFxGAwGxowZY2rzyiuv0KtXL9P5t99+i7e3N/b29rRq1YqzZ8+a7u3bt4+nn36a0qVLYzQaadq0KQcPHjTd9/T0BKBjx44YDAbTuYiIiIiIiIiIyP2mYuFdaty4MdeuXePQoUMAREVFUbp0aSIjI01toqKiCA4OBuD69etMnz6dJUuWsGPHDhITExk5cqSp7bVr1+jTpw+7du1iz549eHl50aZNG65duwbcKCbCjfCUJ5980nT+Vwo4ERERERF5eHmO2aSAExEReSCU2GJhfn4+/fv3x8XFBYPBQFxc3G3bR0ZGYjAYyM/PJyAggGnTpuHk5ERkZCSvv/46hw4dIjU1ld9++42TJ0/StGlTALKzs5k7dy6BgYE8/vjjDB06lG3btpn6bdasGb169aJmzZp4e3vz6aefcv36daKiogAoU6YMADk5OSQlJZnO/0oBJyIiIiIiIiIicq9KbLFwy5YtLFq0iI0bN3L27Flq1ap1x882bdqUEydOkJ+fz86dO+nUqRPe3t7s2rWLqKgoKlSogJeXF3AjIblq1aqmZ93c3Lhw4YLp/Pz58/Tr1w8vLy+MRiOOjo6kpqaSmJhY4J3du3cnISGhyDGFhYWRnJxsOpKSku74e0REREREpHglvP8sCe8/W9zDEBERKbkBJ6dOncLNzY1GjRrd9bPBwcHMnTsXc3NzLC0tqVmzJsHBwURGRnLlyhXTrEIAS0vLAs/enJ14U58+fbh06RIRERF4eHhgbW1Nw4YNycrKuqsxKeBERERERERERETuVYmcWRgSEsKrr75KYmKiKTQkMzOT1157jbJly2JjY3Pb/QEbN25MRkYGmZmZpsJgcHAwX331FQsXLmTFihXUqFGDmJgY0zMjR46kbdu2pvPw8HAMBgM7duzgtddeo02bNrRv3541a9bwxx9/cPLkSerXr4+dnR0AY8aM4ZdffvkHfxURERERESlO2rNQREQeBCWyWBgREcHkyZOpVKkSZ8+eZd++fYwePZrVq1ezePFiDh48SLVq1WjZsiWXL1++5XlnZ2fc3d3Jzs42BZmkpKSQkJBAdnY2GzduZMCAAcyfP5+cnBzgxtLlXbt2kZeXB/xfMIqjoyNLliwhMjKSU6dOsXLlSmxtbfnss89o2rQphw8fxsPDg4oVK3Lx4kWuXLlS6Dcp4ERERERERERERO5ViSwWGo1GHBwcMDc3p3z58pQqVYqPP/6YadOm0bp1a3x8fJg3b56paFeYGjVqAJiKhZ988gkuLi6UL1+eVq1aERoaSmBgIJmZmcD/pSifPn0agB07djBixAjKlCnDlStXeOaZZwAoW7YspUuXJiMjg7Zt21K1alVmzZpFYmIiDRs2pE6dOoWORwEnIiIiIiIiIiJyr0pksfCvTp06RXZ2NkFBQaZrlpaW1K9fn+PHjxf6zAsvvIDRaKRmzZoAHD9+nA8//JCzZ8+a2vTs2dNUtHNycqJ27doA/PDDD1hZWdG/f39+/vlntm/fTkhICF26dGH58uUkJiYSEhJCy5YtadeuHadPn2bHjh1kZ2cXGXKigBMRERERkYebAk5ERORBoGLhv+hmCEpUVBRNmzbFxcWlQIry008/jYODAwALFy5k9+7dNGrUiK+++orq1auzZ8+eIvu2trbG0dGxwCEiIiIiIiIiInI3VCwEqlatipWVFdHR0aZr2dnZ7Nu3Dx8fnzvqw9vbu8DzANHR0QWev7lv4bZt20zLl4ODg/nyyy/5+eefmT9/PsOHDwdgzpw5dO3alUmTJnHq1CmsrKxYYxHSqgAA3fdJREFUtmxZke/XnoUiIiIiIiIiInKvVCwE7OzsGDRoEKNGjWLLli38+OOP9OvXj+vXr/Pyyy/fUR+jRo1i0aJFfPzxx8THx/Phhx+yZs0aRo4caWrTpEkTrl27xsaNGwsUC5cuXYqbmxulSpUCYP369QwdOpRevXqxbds23nrrLTIzM/H29i7y/dqzUERERERERERE7pVFcQ/gQfH++++Tl5fHiy++yLVr1wgMDOTbb7/F2dn5jp7v0KEDERERTJ8+nWHDhlGlShUWLlxoKgrCjRTlKlWqcOrUKcqXLw/cKCDm5eXRtGlT036Hly5dwtzcnLlz5/Lee+/h5ubGiBEjGDBgQJHvDwsLIzQ01HSekpKigqGIiIiIiIiIiNwVQ35+fn5xD+JRFhwcTEBAAOHh4QBERkby1FNPceXKFZycnApt+/bbbxMUFMTZs2dp1aoVrVq1omPHjqaZh3ciJSUFo9FIcnKy9i8UERERERERESnB7qZOpGXIDyAHBwcOHjzIl19+iZubGxMmTKB27dpcvXq1uIcmIiIiIiIiIiKPMBUL/0EhISFERUURERGBwWDAYDCQkJAAwIEDBwgMDKRUqVI0atSIEydOFHh206ZNjB49mpkzZ5Kbm8vp06f5/vvvi3yXAk5ERERERB5+nmM2FfcQRESkhFOx8D4KDg42pRkDRERE0LBhQ/r168fZs2c5e/asaR/BsWPHMmPGDPbv34+FhQV9+/Y1PffBBx/QrVs3OnTowPfff89zzz1HXl4eb7/9dpHvVsCJiIiIiIiIiIjcq0e6WBgSEkKHDh2K7f1GoxErKytKlSpF+fLlKV++PObm5gC8++67NG3aFB8fH8aMGUNMTAx5eXkArFy5kgoVKhAeHk7Lli2JioqiQoUKnD59ush3hYWFkZycbDqSkpL+lW8UEREREZH7J+H9Z4t7CCIiUsIpDbmY+Pv7m/52c3MDYMmSJVSsWBE3NzdSU1MxNzfHzMyMU6dOkZ6eTl5eHtevXy806MTa2hpra+t/bfwiIiIiIiIiIvLoeSRmFq5atQo/Pz9sbW1xdXWlRYsWjBo1isWLF7N+/XrTfoGRkZEAvPHGG1SvXp1SpUrx2GOPMX78eLKzs039TZw4kYCAAJYsWYKnpydGo5Hu3btz7do1U5u0tDR69+6Nvb09bm5uzJgx45ZxLVmyhAMHDjBnzhzKly/PCy+8wJUrVwCwtLQkMjISg8FAdHQ0ANWqVWPXrl2kpqbi4+NDXl4etra2vPrqqwQGBtKnTx9sbGz+wV9SRERERERERERKsod+ZuHZs2fp0aMHU6dOpWPHjly7do2dO3fSu3dvEhMTSUlJYeHChQC4uLgAN9KGFy1aRIUKFThy5Aj9+vXDwcGB0aNHm/o9deoU69atY+PGjVy5coWuXbvy/vvv8+677wIwatQooqKiWL9+PWXLluXNN9/k4MGDBAQEmPrIzs7Gy8uLWrVqMXjwYEJDQ3n//fdv+YaZM2cCsHXrVvz8/HBycuLEiRN8/fXXpr6PHz9Ow4YNMTMrvL6bmZlJZmam6VwBJyIiIiIiD7bCwky0DFlERIrbQz+z8OzZs+Tk5NCpUyc8PT3x8/Nj8ODB2NvbY2tri7W1tWm/QCsrKwDGjRtHo0aN8PT0pF27dowcOZIVK1aY+ly3bh3p6eksWrSIWrVq0bhxY1588UW2bdsGQGpqKp999hnTp0+nefPm+Pn5sXjxYnJycgqMrW/fvgQGBvLTTz9Rvnx5Jk+ezN69e2/5hkGDBgHg4eGBlZUVf/zxBxkZGezatQszMzPefPNNMjIyiImJKfJ3UMCJiIiIiIiIiIjcq4d+ZmHt2rVNBbuWLVvyzDPP0KVLF5ydnYt85quvvmLmzJmcOnWK1NRUcnJycHR0NN1v1aoVmZmZODg4mK65ublx4cIF4Masw6ysLBo0aGC67+LiQo0aNQq858CBA8THx/PDDz9QpUqVIsfj6+tr+vvUqVPk5OTw+eefM3fuXD744AMsLS2xtLQsMMa/CgsLIzQ01HSekpKigqGIiIiIyANMswhFRORB9NDPLDQ3N+f777/nm2++wcfHh1mzZlGjRg3OnDlTaPvdu3fTs2dP2rRpw8aNGzl06BBjx44lKyvL1MbGxuaWsBCDwWBKK74TaWlptGzZkgoVKrB161aOHz/Ot99+C8ChQ4dwcnIyta1fvz75+fl4enqarjVt2pTo6GiuX79OcnIy1atXp1atWkW+z9raGkdHxwKHiIiIiIiIiIjI3Xjoi4Vwo5AXFBTEpEmTOHToEFZWVqxduxYrKytyc3MLtI2JicHDw4OxY8cSGBiIl5cXv/zyS4E269atMxUbt2zZwpNPPklYWBhJSUm0bdsWg8GApaUlsbGxJCQkYDAYWLBgAYcPH2b27NnUq1ePb7/9lkuXLnHkyBFat27N66+/zsmTJwu8Z9OmG3uUlCtXjpo1azJnzhyqVq2KpaUl0dHRDB06FDc3N6ytrfnhhx/Yt2/fP/grioiIiIiIiIhISffQL0OOjY1l27ZtPPPMM5QtW5bY2FguXryIt7c3GRkZfPvtt5w4cQJXV1eMRiNeXl4kJiayfPly6tWrx6ZNm1i7dm2R/aelpREaGsqBAwdYuHAhZmZm9OrVi759+zJq1Cjee+89AIYNG4a1tTVdunQhPj6eSZMmYTAY8PPz491332XAgAHs3r3b1O/SpUtZsGABAHv37uXUqVP069cPOzs7Xn75ZYYMGYKFhQXTpk3jiy++IDo6+razBRVwIiIiIiLy8Css9OR2tJRZRETut4d+ZqGjoyM7duygTZs2VK9enXHjxjFjxgxat25Nv379qFGjBoGBgZQpU4bo6Giee+45Xn/9dYYOHUpAQAAxMTGMHz++yP47d+5Mp06dKFOmDJcvX8bNzY0jR47Qt29fGjduzCuvvALc2Oewfv36uLi4MGzYMA4fPsybb75JTEwMzz//PJaWltjb25v6feuttxg8eDBwI9ikU6dOvP7663zyySdMmzaNsmXLcunSJd544w2uXLlCqVKlbtkT8c8UcCIiIiIiIiIiIvfKkJ+fn1/cg3jQhISEcPXqVdatW0d8fDwTJkwgNjaWxMREzMzMyM7OZtOmTbRp04aEhASqVKnC3r17qVevHgDbt2+nWbNmXLhwgTJlygCwcOFCRowYweXLl0lLSzOlNZuZ/V+9NicnB6PRyPnz5zl48CBPP/00rq6umJub4+zsfNs05MJmFrq7u5OcnKz9C0VERERERERESrCUlBSMRuMd1Yke+pmF/7R27dpx+fJl5s2bR506dejWrRtAgUAUAEtLS9PfBoOh0Gs3A1JSU1MBmDdvHnFxcabj6NGj7NmzB4DHH3+cM2fO8Pbbb5Obm8u+ffvo0qVLkeNUwImIiIiIiIiIiNyrh37Pwn/SpUuXOHHiBPPmzaNx48bY2dmRlpYGwAsvvECpUqXo0aOHqf2VK1cYNmwYa9asAaBLly58/PHHeHl5ATcKjE5OTnz11VdYWFjw0ksv0axZMxYuXIibmxsAubm5hIaGsmDBAszNzXn55Zdp2LAhpUuXZvXq1Vy+fBkXF5d/+ZcQEREREZF/g/YsFBGR4qaZhbfh7OyMq6srn376KSdPnuTKlSusX78egGnTphEREcH8+fNN7UNCQti/f78p9CQ/P582bdqQnZ1tanP9+nWmT5/OG2+8gZmZGXFxcfTv358jR46wcOFC2rdvz6JFi+jQoQNhYWGcPn2a1atX89tvv1G+fHmcnJwKHWtmZiYpKSkFDhERERERERERkbuhmYW3YWZmxvLly3nttdeoVasWFhYWVKpUicTERCpWrEiHDh3YtWsXc+fO5ZdffmHDhg1ER0eblijPmzePWrVqsW7dOlOf2dnZzJ07l6pVq+Lj48Mbb7zBxo0biY6Oxs/PjyNHjhAWFoaTkxNz5swhPj6e69evY2try3fffVdgj8M/mzJlCpMmTfo3fhYREREREREREXlEKeCkED169MDc3JwvvviiwPXg4GAee+wxFixYYLq2fv16unTpwqpVq+jSpQsZGRmYm5ub7tepU4eOHTsyYcIEFi1axJAhQ0xLmQHWrl1L586dycvLIzk5GScnJ6KiomjSpImpTceOHcnPz2fdunW89NJLVKxYkXfeeafA2BRwIiIiIiIiIiIihVHAyf8oJyeHH3/8kd27d+Pr6/uPvOPPoSdwI/jkTuu1ubm5bNy4keeee+6Wewo4ERERERERERGRe6Vi4Z8cPXqUwMBAfH19GThwYKFtYmNjC5zv2bMHLy8vfHx8yMnJKXD/ZkCKj4/PHb3faDTi5uZWoI+cnBwOHDgAQExMDJaWltSrV++WZ7VnoYiIiIjIw+9uA05ERETuN+1Z+CcBAQFcv379tm0SExMJDQ1lwIABHDx4kFmzZjFjxgy8vLxo3749/fr145NPPsHBwYExY8ZQsWJF2rdvf8djGDZsGO+//z5eXl7UrFmTDz/8kKtXrwKwYcMG2rVrh8FguOU57VkoIiIiIiIiIiL36qGdWRgcHMzw4cP/9ff27t2b9PR06tevz5AhQxg2bBj9+/cHYOHChdStW5e2bdvSsGFD8vPz2bx58y1Lj29nxIgRvPjii/Tp04eGDRvi4OBAx44dgRv7Ixa2BBkgLCyM5ORk05GUlHTvHysiIiIiIiIiIiXKQxtwcvnyZSwtLXFwcCjuodwRg8HA2rVr6dChw//0/PHjx6lXrx5//PEHNjY2f9v+bjauFBERERERERGRR9fd1Ike2mXILi4uxT2Ef9WGDRt4+umnCyQti4iIiIiIiIiI3E+PxDJkT09P3nvvPfr27YuDgwOVK1fm008/NbXNyspi6NChuLm5YWNjg4eHB1OmTDHdNxgMfPzxx7Ru3RpbW1see+wxVq1aVeB9SUlJdO3aFScnJ1xcXGjfvj0JCQkF2ixYsABfX1+sra1xc3Nj6NChpvEBdOzYEYPBYDoH+Pjjj6latSpWVlbUqFGDJUuWFOjz5tg++OADNm/ezLvvvlvo76GAExERERGRh5/nmE2mQ0REpDg8tMXCv5oxYwaBgYEcOnSIwYMHM2jQIE6cOAHAzJkz2bBhAytWrODEiRMsXbq0QMEOYPz48XTu3JkffviBnj170r17d44fPw5AdnY2LVu2xMHBgZ07dxIdHY29vT2tWrUiKysLuFH0GzJkCP379+fIkSNs2LCBatWqAbBv3z7gxp6GZ8+eNZ2vXbuWYcOGMWLECI4ePcqAAQN46aWX2L59e4GxjR07litXrrBgwQL69u1b6PdPmTIFo9FoOtzd3e/PDysiIiIiIiIiIiXGQ7tnYXBwMAEBAYSHh+Pp6Unjxo1Ns/Ly8/MpX748kyZNYuDAgbz22mscO3aMrVu3FpokbDAYGDhwIB9//LHp2hNPPMHjjz/OnDlz+OKLL3jnnXc4fvy46fmsrCycnJxYt24dzzzzDBUrVuSll17inXfeKXS8he1ZGBQUhK+vb4FZkF27diUtLY1NmzaZnnvyySfZtWsXhw4dIiAgoND+MzMzyczMNJ2npKTg7u6uPQtFREREREREREq4u9mz8JGZWejv72/622AwUL58eS5cuABASEgIcXFx1KhRg9dee43vvvvulucbNmx4y/nNmYU//PADJ0+exMHBAXt7e+zt7XFxcSEjI4NTp05x4cIFfv/9d5o3b35XYz5+/DhBQUEFrgUFBZnee9OVK1f+ti9ra2scHR0LHCIiIiIiIiIiInfjoQ04+StLS8sC5waDgby8PAAef/xxzpw5wzfffMPWrVvp2rUrLVq0uGVfwqKkpqZSt25dli5desu9MmXKYGZ2f2queXl5bNu2jaSkJKytrSlXrhwANWrU4NixY/flHSIiIiIiIiIiIkV5ZGYW/h1HR0e6devGvHnz+Oqrr1i9ejWXL1823d+zZ0+B9nv27MHb2xu4UWyMj4+nbNmyVKtWrcBhNBpxcHDA09OTbdu2Ffl+S0tLcnNzC1zz9vYmOjradB4WFsaWLVvw9fXlxx9/ZNmyZQC0bNnyb79PASciIiIiIg+/PwecKORERESKQ4koFn744Yd8+eWX/PTTT/z888+sXLmS8uXL4+TkZGqzcuVKFixYwM8//8xbb73F3r17TWnGPXv2pHTp0rRv356dO3dy5swZIiMjee211/j1118BmDhxIjNmzGDmzJnEx8dz8OBBZs2aZer/ZjHx3LlzpmXFo0aNYtGiRXz88cccOnSIGTNmkJubS3h4OFWrVuXJJ5+8429UwImIiIiIiIiIiNyrR2YZ8u04ODgwdepU4uPjMTc3p169emzevLnA8uHLly+zdOlSBg8eTFZWFrNnz8bHxweAUqVKsWPHDt544w2effZZUlNTqVKlCrVq1eLJJ58kISGBPn36kJGRwUcffcTIkSMpXbo0Xbp0MfU/Y8YMQkNDmTdvHhUrViQhIYEOHToQERHB9OnTSUxMJDc3lxkzZhAcHHzX3xgWFkZoaKjp/GbAiYiIiIiIPDwS3n+2uIcgIiIl3EObhnw/GQwGqlatysmTJ4mNjaVLly4kJSUV2jY0NBRzc3OmTZvGBx98wNGjR00pzPfiyJEj+Pv7c/r0aapUqVLgXkJCAlWqVLltGvJf3U3KjYiIiIiIiIiIPLpKZBryvbq5P+GuXbtuSSj+s5iYGNP9otpGRUVRv359rK2tcXNzY8yYMeTk5Jjue3p6Eh4eXuCZnj17YmFhwbZt28jPz2fixIlUrlwZa2tr6tevfx++UERERERERERE5PZKxDLkwiQmJuLv7286//bbb3FyciI9PR2DwYCTkxMvvPACc+bMYdmyZQwePBi4UYl98cUXMTc359q1a2zfvp0xY8YwZ84cXnjhBX777TfatGlDSEgIn3/+OT/99BP9+vXDxsaGiRMnFjkeMzMzgoKCGD16ND/88AOLFi1i8uTJZGdnU716dTp27Hjb78nMzCQzM9N0roATEREREZGHj+eYTVqKLCIixarEFgsrVKhAXFwcKSkpBAYGsn//fuzs7AgICGDTpk1UrlwZe3t7AJ577jkaNWrE1q1bCQ8PZ+PGjRw+fJiBAwcSExMDQOnSpQGYM2cO7u7uzJ49G4PBQM2aNfn999954403mDBhQoF9Ev+qadOmPP3008yYMYPU1FTCw8MZOHDgHS09njJlCpMmTbr3H0ZEREREREREREqsErsM2cLCAk9PT3766Sfq1auHv78/586do1y5cjRp0gRPT09TAdDe3h47OzsGDBhA69atqVixIl26dDG18/T0NBUWjx8/jpubm2l5ckxMDO+++y6pqamm5OSiGAwGxo4dyw8//IC7uzt5eXmcPn2aQ4cOkZ2dfduiYVhYGMnJyaajqD0XRURERETkwaVZhSIiUtxKbLHQ19cXe3t7XnzxRfbu3Yu9vT3NmzcnISEBe3t7fH19gRvLle3t7alcuTJ5eXnMmjULo9FIdnY2a9euxd7enoEDBxbo+8KFC6Zi4c6dO6lTp06B+2ZmZvw1VyY7O9v0t7u7OydOnGDOnDnY2toyePBgmjRpUqDNX1lbW+Po6FjgEBERERERERERuRsldhny5s2byc7Opnnz5kydOpW6devSvXt3QkJCaNWqFZaWlsD/LVeeOHEiy5cvJy4ujs8++4wZM2awc+dOXFxcChTmvL29+eabb2jUqBFwIwTFwcEBBwcHKlWqBICzszPz5s3jvffeIzU1lQoVKhSYdXjkyBGGDRvG7t27KVWqFM2bN2flypUcOXKExx9//F/8lURERERE5J/gOWZTodc1s1BERIpbiS0Wenh4cO7cOc6fP0/79u0xGAwcO3aMzp074+bmBhQMQUlNTSUvL48nnniCtLQ0AJ555plbQlDy8vLIyMigW7duWFtbk5aWRn5+PtbW1ixfvpwXXngBgPj4eNP+hu+88w5nz54FIC0tjcaNG1O1alWWLVtGWloar776Kubm5nh4eBT5PQo4ERERERERERGRe1VilyEDREZGUq9ePWxsbNi7dy+VKlUyFQrh/2YV7tixg/z8fF555RUOHDiAmZkZbdq0IS4ujsmTJwM3QlDi4uL48MMP8fT0xNvbm4yMDAwGAwMHDuTo0aM899xzAJQtWxZ3d3dGjhxJ//796devH9WrVwdg2bJl5OTkYG5uTkhICAMHDqR8+fLk5eWRk5NT5LdMmTIFo9FoOtzd3f/BX05ERERERERERB5Fhvy/bp4nt1ixYgURERFER0cTHR1Nnz59OHnypOn+xYsXqVixIleuXGHEiBF89tlnnDp1iiVLlnDmzBnmz59varty5UomTJjAL7/8QsWKFbl48SKbN282LVsODQ3l0KFDbN++3fRMcnIyTk5OREVF0aRJk0LHWNjMQnd3d5KTk7V/oYiIiIiIiIhICZaSkoLRaLyjOlGJXYZ8J3x9ffnll1/Izs4mLy8Pe3t7cnJyyMnJwd7eHg8PD44dO8aGDRvIzc2lXLlyZGRkkJubi4+PD5mZmZiZmbF8+XJ69erF3Llz2b17N23btmX06NEMGTKEffv20bx5c4YMGcL06dP/57FaW1tjbW19H79eRERERERERERKGhULb+NOQ1BOnDjBiy++yCuvvMJTTz1F69atmTZtGgEBAbeEoMTExDBmzBjKlClDeno6b7zxBgaDgVGjRjF9+nSuXLlCVFQUaWlp2NnZAZiKiDVq1ChyrNqzUERERETk4ffX4BMFnoiIyL9Ny5D/xrlz5/D09OTq1asYDAacnJw4ffo02dnZpvCT69evY25ujsFgICMjAysrKywsLLCwsODq1aum8BO4UcSzsLDA0tKS9PR0bGxsyM7OxsPDg5MnT/LJJ58waNAgOnXqxMSJE7l48SI9evTg/Pnz3O6fauLEiUyaNOmW61qGLCIiIiLy8FCxUERE/gl3swy5RAec3ImiQlD+HH6Sk5NDp06d6NChAxYWFnz33Xf079+fdu3aERISwrJly4iLi2P69On4+Pjw6quv4uLiYkpJfuqpp1i3bh1wYzmxnZ0dly9fpl69enTp0sVUlLzZpjBhYWEkJyebjqSkpH/h1xERERERERERkUeJliH/je7du9O9e3cAGjduTHx8PAAWFhZ4enqyYsUKHBwcKFOmDM8//zx79+6lSZMmpiCS5ORk8vPzcXJy4uDBg7Rv3553330XFxeXW8JPbjI3N+e///2v6XzdunV8//33tx2n9iwUEREREXn4aSahiIgUNxUL/0d/Dj/Jzs5mzpw5zJ0795bwk+TkZHx8fADIyMjAwsKCiIiIQsNPAMzMzG5Zbpydnf2vf5+IiIiIiIiIiJQ8Khb+j/4cfmJnZ0f9+vU5evQoISEhWFtbExoaytKlS/n222954oknmDhxIi1atMDf3x8vLy+WL1+Ora0tVlZWODg4mPotU6YM165dIygoiAMHDvDYY48REBDwt+NRwImIiIiIyMPvr3sW/pVmHoqIyD9Nexb+jzw8PLC3t+f8+fOULl0ae3t7jh07hsFgYMSIEXz55Zf07NkTMzMz7O3t+fXXX2nQoAGlSpVi3bp1ODs7c+DAAT788ENmzJhhWmZcr149DAYDiYmJrFq1is6dO7NixQoAOnfuTIcOHQodz5QpUzAajabD3d393/opRERERERERETkEaFi4T24GX5iZmbG+fPncXBwYOzYsXz99de0bdv2lrY39zEsXbo0HTt2xMvLi969exMYGMi2bdsAOHjwIHBjT8SuXbsSFxeHq6srAJ988gmLFi0qdCwKOBERERERERERkXulZcj34Gb4SXBwMLt37+bq1atER0dTr169W9re3JMwODiYtm3b8p///Md0z83NjQsXLgBw/PhxPDw8OH36tOm+i4sLcKPI6OTkVOhYFHAiIiIiIvLw0zJjEREpbppZeJ/UqVOHMmXKsGDBglsCSv7K0tKywHl+fj67d++mbNmyjBgxgt9//519+/aRkJCAwWDgypUrAHTs2LHImYUiIiIiIiIiIiL3SjML75OqVasyY8YMgoODMTc3Z/bs2Xf87LFjxzh79iyrV6/m119/ZcCAATz99NOcOnWKs2fPUrVqVa5fv86CBQvo1q1boX0o4ERERERE5OH3dwEnt6NZiSIicj9oZuF9VL16dbZv387q1asZPnx4oW327NnDoUOHTOdpaWmcOXOGwMBAWrduzcsvv0zNmjXJyMjgnXfeIT4+3lQEdHZ2xtbWttB+FXAiIiIiIiIiIiL3SjML77MaNWrw3//+lyeeeIKPP/6YHj16FLhft25datWqZTo/deoU+fn5lC1bFgAzMzPWrVtHo0aNmDlzJps3b8ba2prr16/f9r1hYWGEhoaazlNSUlQwFBERERF5yGh2oIiIFDdD/t9tsCf/k0WLFjF8+HCuXr1623aHDx+mdu3aJCQk4OHhYbresWNHnJ2dWbBgAU5OToSHhxMSEnLH709JScFoNJKcnIyjo+P/+BUiIiIiIiIiIvKwu5s6kZYhF2HLli08+eSTODk54erqStu2bTl16hSAKXhkzZo1PPXUU5QqVYratWuze/duACIjI3nppZdITk7GYDBgMBiYOHEiAJ6enoSHh5ve4+rqipmZGf7+/tjY2FCrVi3WrVvHvn37cHNzo127diQnJzNgwAB8fX3ZvHnzv/1TiIiIiIiIiIhICaFlyEVIS0sjNDQUf39/UlNTmTBhAh07diQuLs7UZuzYsUyfPh0vLy/Gjh1Ljx49OHnyJI0aNSI8PJwJEyZw4sQJAOzt7W95R15eHl26dMHJyQmDwUB4eDjp6en85z//4fr16+zfv5/8/HwcHBwYN24cPj4+hfYDCjgREREREXlY/TnURMuQRUSkuKlYWITOnTsXOF+wYAFlypThxx9/NBXsRo4cybPP3viP+aRJk/D19eXkyZPUrFkTo9GIwWCgfPnyRb5j69at7N27l7i4OObNm8fo0aO5du0agYGBfPvtt7z88st07tyZvXv3UrZsWdq2bVtkX1OmTGHSpEn34ctFRERERERERKSk0jLkIsTHx9OjRw8ee+wxHB0d8fT0BCAxMdHUxt/f3/S3m5sbABcuXLjjd8TFxVGpUiX8/PyYOXMmFy9eJCMjg127dlGvXj1ee+013nnnHXx9fTlz5gyHDx8usq+wsDCSk5NNR1JS0l1+sYiIiIiIFIeE9581HSIiIsVNxcIitGvXjsuXLzNv3jxiY2OJjY0FICsry9TG0tLS9LfBYABuLC2+U7a2tre9/8orr3D69GlefPFFjhw5QmBgILNmzSq0rbW1NY6OjgUOERERERERERGRu6FiYSEuXbrEiRMnGDduHM2bN8fb25srV67cVR9WVlbk5ubeto2/vz+//vorP//8c5Ft3N3dGThwIGvWrGHEiBHMmzfvrsYhIiIiIiIiIiJyp7RnYSGcnZ1xdXXl008/xc3NjcTERMaMGXNXfXh6epKamsq2bduoXbs2pUqVolSpUgXaNG3alCZNmtC5c2c+/PBDqlWrxk8//YTBYKBVq1YMHz6c1q1bU716da5cucL27dvx9vYu9H0KOBERERGRu/HnUA15cGgpsoiIFLdHfmZhQkICBoOhQIpxYYKDgxk+fDgAZmZmLF++nAMHDlCrVi1ef/11pk2bdlfvbdSoEQMHDqRbt26UKVOGqVOnFtpu9erV1KtXjx49euDj48Po0aPp3bs34eHh5ObmMmTIELy9vWnVqhXVq1dnzpw5hfYzZcoUjEaj6XB3d7+r8YqIiIiIiIiIiBjy8/Pzi3sQ/6SEhASqVKnCoUOHCAgIIDIykqeeeoorV67g5ORkahccHExAQADh4eHFNtabPD09GT58uKl4eScKm1no7u5OcnKy9i8UERERERERESnBUlJSMBqNd1Qn0jLkR4S1tTXW1tbFPQwREREREREREXmIPRLFwi1btvDOO+9w9OhRzM3NadiwIREREVStWrVAu4SEBJ566ingxr6EAH369GHRokXAjSTj0aNHM3/+fKysrBg4cCATJ040PZ+YmMirr77Ktm3bMDMzo1WrVsyaNYty5coBEBISwtWrV1m3bp3pmeHDhxMXF0dkZCQA165dY+DAgaxbtw5HR0dGjx7N+vXrb5nVeP36dfr27cvKlStxdnZm3Lhx9O/f//7+cCIiIiJSLLRfoBRFexaKiEhxeyT2LExLSyM0NJT9+/ebCnkdO3YkLy+vQDt3d3dWr14NwIkTJzh79iwRERGm+4sXL8bOzo7Y2FimTp3K5MmT+f7774EbhcT27dtz+fJloqKi+P777zl9+jTdunW7q7GGhoYSHR3Nhg0b+P7779m5cycHDx68pd2MGTMIDAzk0KFDDB48mIEDB9KwYcMi+83MzCQlJaXAISIiIiIiIiIicjceiZmFnTt3LnC+YMECypQpw48//oi9vb3purm5OS4uLgCULVu2wJ6FAP7+/rz11lsAeHl5MXv2bLZt28bTTz/Ntm3bOHLkCGfOnDGFh3z++ef4+vqyb98+6tWr97fjvHbtGosXL2bZsmU0b94cgIULF1KhQoVb2rZp04bBgwcD8MYbb/D222/z888/F9n3lClTmDRp0t+OQUREREREREREpCiPRLEwPj6eCRMmEBsbyx9//GGaUZiYmIiPj88d9+Pv71/g3M3NjQsXLgBw/Phx3N3dC6QM+/j44OTkxPHjx++oWHj69Gmys7OpX7++6ZrRaKRGjRq3HYvBYKBatWq3FEX/LCwsjNDQUNP5zYATEREREXnwaKmpiIiIPKgeiWJhu3bt8PDwYN68eVSoUIG8vDxq1apFVlbWXfVjaWlZ4NxgMNyylPl2zMzM+Gu4dHZ29l2N4e/GkpWVhZWV1S3tFXAiIiIiIiIiIiL36qEvFl66dIkTJ04wb948GjduDMCuXbuKbH+z0Jabm3tX7/H29iYpKYmkpCTTjL0ff/yRq1evmmYvlilThqNHjxZ47uDBgyQlJVG2bFmSk5MxGAx8+eWXvPHGGyxatIhhw4aRm5tLkyZNAFi3bh2//PKL6fmJEyeybt06Ll26RHh4OJMnTy60gJmZmUlmZqbpXHsWioiIiEhxU5DL3dOsUxERKW4PfcCJs7Mzrq6ufPrpp5w8eZL//ve/BZbj/pWHhwcGg4GNGzdy8eJFUlNT7+g9LVq0wM/Pj549e3Lw4EH27t1L7969adq0KYGBgQA0a9aM/fv38/nnnxMfH89bb73FwYMHuXjxIosXL+bQoUNUq1aNN998k/Xr1/Pbb79x/fp1zMzMMBgMRb775MmTJCcn061bN+Li4gptM2XKFIxGo+nQEmQREREREREREblbD32x0MzMjOXLl3PgwAFq1arF66+/zrRp04psX7FiRSZNmsSYMWMoV64cQ4cOvaP3GAwG1q9fj7OzM02aNKFFixY89thjfPXVV6Y2LVu2ZPz48YwePZp69epx+fJlcnJyqFq1Kq1bt8bHx4c9e/ZgbW3N888/z7Rp07CwsMDb2xsbG5si352VlUXlypVxc3O7ZV/Fm8LCwkhOTjYdSUlJd/RdIiIiIiIiIiIiNxny/7rJntw3hw8fpnbt2iQkJODh4WG63rFjR1PRcdiwYRgMBmbMmMHLL7/MunXr6Nixo2nvw4kTJ7J06VLi4+Pv6t0pKSkYjUaSk5NxdHS8r98lIiIiIiIiIiIPj7upEz30MwuLW3BwMK+++irDhw/H2dmZcuXKMW/ePNLS0hg/fjwATZo04ZtvvgFg//797Ny5k6+++op+/fqRkpJCZmYm7du3B/4vEKVDhw5Mnz6d6dOnc+bMGYYMGfI/h6WIiIiIiIiIiIjciYc+4ORBsHjxYkaPHs3evXv56quvGDRoEGvXrqVNmzZ88803eHl58eKLL5KYmEhWVhZXrlzB3Nwca2trcnJyyM/P57///S9du3Y17Um4fft23NzcCAkJYfPmzSxatIiAgAD69etX6BgUcCIiIiIij4qSHIyigBMRESlumll4H9SuXZtx48bh5eVFWFgYNjY2lC5dmqFDhzJ48GCOHTvGpUuXWL9+PZ9++ilGo5Hz58+TmJiInZ0dNWrUYMGCBXh7exMREQHcCG6ZPXs2pUuXxtHRkWeffZZt27YVOQYFnIiIiIiIiIiIyL3SzML74M+hI+bm5ri6uuLn5wfA+++/T25uLrNnz6ZPnz7Ur1+fV155hRYtWpCYmEhOTg6HDx/m6NGjPP300wwePJjXXnsNX19fzM3NTf26ublx5MiRIscQFhZWIAU6JSVFBUMREREReShpdp2IiEjxUbHwPrC0tCxwbjAYTNdsbGyYNWsWs2fPZsWKFWRkZPDSSy8xY8YMGjZsiIODA9OmTSM2NpYtW7YAcODAAa5evQrcCDiZOHEiw4cPJy8vr8gxWFtbY21t/c98oIiIiIiIiIiIlAgqFv7LoqOjadSoEYMHDzZdO3XqFHAjLCUgIACAM2fO4OXlRVJSEkajEUdHRypWrFgcQxYRERERERERkRJCxcJ/mZeXF59//jnffvstVapUYcmSJezbt48qVaqY2vzxxx8cPnyYZcuW0ahRIy5fvszrr79+234VcCIiIiIi8vAryeEuf0fL00VE/h0KOLlHP/30E19//fVt23h6epr+HjBgAJ06daJbt240aNCAS5cuFZhlCJCWloaFhQVt27bFw8ODOnXqmGYcFkUBJyIiIiIiIiIicq8M+fn5+cU9iIdBQkICVapU4dChQwUKdyEhIVy9epV169YV+ezFixexs7OjVKlSt33HzWXIb7/9NkFBQZw9e5ZWrVrRqlUrOnbseNvnC5tZ6O7uTnJyMo6Ojnf8nSIiIiIiIiIi8mhJSUnBaDTeUZ1IMwv/BWXKlPnbQuGfOTg4cPDgQb788kvc3NyYMGECtWvXNoWeFMba2hpHR8cCh4iIiIiIiIiIyN14YIuFq1atws/PD1tbW1xdXWnRogVpaWnk5eUxefJkKlWqhLW1NQEBAaYUYbgxA9BgMLBixQoaN26Mra0t9erV4+eff2bfvn0EBgZib29P69atuXjxYoF3zp8/H29vb2xsbKhZsyZz5swx3bu5p2CdOnUwGAwEBwcXeHb69Om4ubnh6urKkCFDyM7ONt3z9PQkPDzcdG4wGJg/f75ptqCXlxcbNmwo0N/mzZsZNGgQM2fOpGLFipw5cwZnZ+fbFgxFRERERERERETuxQMZcHL27Fl69OjB1KlT6dixI9euXWPnzp3k5+cTERHBjBkz+OSTT6hTpw4LFizgueee49ixY3h5eZn6eOuttwgPD6dy5cr07duXF154AQcHByIiIihVqhRdu3ZlwoQJfPzxxwAsXbqUCRMmMHv2bOrUqcOhQ4fo168fdnZ29OnTh71791K/fn22bt2Kr68vVlZWpndt374dNzc3tm/fzsmTJ+nWrRsBAQH069evyG+cNGkSU6dOZdq0acyaNYuePXtSu3Zt4EbRcsCAAfTq1Ys+ffqwdOlSdu7cedvfTAEnIiIiIiIPPwWc3KAwExGR4vNAziw8e/YsOTk5dOrUCU9PT/z8/Bg8eDD29vZMnz6dN954g+7du1OjRg0++OADAgICCszcAxg5ciQtW7bE29ubYcOGceDAAcaPH09QUBB16tTh5ZdfZvv27ab2b731FjNmzKBTp05UqVKFTp068frrr/PJJ58AN5YSA7i6ulK+fHlcXFxMzzo7OzN79mxq1qxJ27ZtefbZZ9m2bdttvzEkJIQePXpQrVo13nvvPVJTU00FvsjISGxsbPj6669p27YtUVFRODg4ANCzZ89C+1PAiYiIiIiIiIiI3KsHcmZh7dq1ad68OX5+frRs2ZJnnnmGLl26YG5uzu+//05QUFCB9kFBQfzwww8Frvn7+5v+LleuHAB+fn4Frl24cAG4kT586tQpXn755QKzAXNycjAajX87Xl9fX8zNzU3nbm5uHDly5LbP/Hl8dnZ2ODo6MnLkSHr37k3Hjh3p1q0bCxYsAKBBgwZUqlSJqKioAkuj/ywsLIzQ0FDT+c2AExEREREReXhoRp2IiBS3B3Jmobm5Od9//z3ffPMNPj4+zJo1ixo1anDmzJk77sPS0tL0t8FgKPRaXl4eAKmpqQDMmzePuLg403H06FH27NlzV+/6a9/345lTp06ZiotFFS8VcCIiIiIiIiIiIvfqgZxZCDeKZ0FBQQQFBTFhwgQ8PDzYtm0bFSpUIDo6mqZNm5raRkdHU79+/f/5XeXKlaNChQqcPn26yGW+N/cozM3N/Z/fU5TMzEzS09N57bXXGDhwIKVLl8bW1paEhARTsMqsWbMAWLZsGYMHD77vYxARERERkeKnPQtFRB4cJXW29wNZLIyNjWXbtm0888wzlC1bltjYWC5evIi3tzejRo3irbfeomrVqgQEBLBw4ULi4uJYunTpPb1z0qRJvPbaaxiNRlq1akVmZib79+/nypUrhIaGUrZsWWxtbdmyZQuVKlXCxsbmjpYo34nRo0eTnZ3NkCFDeOWVVxg/fjxr1qzhww8/ZNeuXTz99NNYW1tz9epVOnXqVGgfCjgREREREREREZF79UAuQ3Z0dGTHjh20adOG6tWrM27cOGbMmEHr1q157bXXCA0NZcSIEfj5+bFlyxY2bNhQIAn5f/HKK68wf/58Fi5ciJ+fH02bNmXRokWmmX0WFhbMnDmTTz75hAoVKtC+ffv78amkpaXx8ccfY2tri7+/Pz4+PixfvhwXFxeWLVtG8+bNycrK4rnnngPAycmp0H4UcCIiIiIiIiIiIvfKkJ+fn1/cgyjJDh8+TO3atUlISMDDw8N0vWPHjjg7O7NgwQKcnJxo3rw5e/fuJSkpqdB+CptZ6O7uTnJysvYvFBEREREREREpwVJSUjAajXdUJ3oglyELnD59msqVK3P69GmysrL45ptvCqQd/5W1tTXW1tb/4ghFRERERERERORRo2JhMdmyZQvvvPMOR44cAaBDhw6sWrWKqlWrEh8fz+HDh4mPj6datWrk5+fj6OhIy5Yti+xPexaKiIjcfwoaEJF/W0ndTF9ERB4cD+SehSVBWloaoaGhHDhwgBdeeIGffvqJFi1acPToUcLCwgCoVKkSX3/9NQ4ODlSvXp0XX3yRnJycQvvTnoUiIiIiIiIiInKvVCwsJp07d6ZTp05Uq1aNzz77jF69epGQkEDdunX55ZdfAHjjjTd49tlnMTMzo0OHDvzyyy+cPHmy0P7CwsJITk42HUXtbSgiIiIiIiIiIlIULUMuJvHx8UyYMIHY2Fj++OMP8vLyAFi7di0+Pj5UqVIFf39/AK5evcqVK1cYN24cFy5coGbNmrf0pz0LRURE7j8tBxQRERGRkkbFwmLSrl07PDw8mDdvHhUqVCAvL49atWqRlZVlamNpaWn622AwABTYl1BEREREREREROR+UrHwHmVmZjJq1CiWL19OSkoKgYGBfPTRR9StW5fKlSszduxYBg0aZGp/6NAhHn/8cQDmzZuHn58fI0eOZNWqVQCMHz+eDz74wNR+4sSJrFu3jr59+wLwzDPPkJ+fX+g4SkLAiTaaFxEREZFHmWY0i4hIcdOehfdo9OjRrF69msWLF3Pw4EGqVatGy5YtuXr1Kj169GDZsmUF2i9dupSgoCBcXV359NNPefbZZ/nxxx+pWLEiAI899hg9e/Ys8MzJkyfZsGEDAPPnzy90HAo4ERERERERERGRe2XIL2yamtyRtLQ0nJ2dWbRoES+88AIAv//+OxUrVuSdd97hmWeeoX79+sTExNCwYUPy8vKoXLky48aNo1q1arzwwgtcvHgRPz8/BgwYwNChQ1m7di3Dhg0jMTGRefPm0a9fPywtLfnxxx/x8vJi+/btBAcH3zKWwmYWuru7k5ycjKOj47/1k4iIiIiIiIiIyAMmJSUFo9F4R3UiLUO+B6dOnSI7O5ugoCDTtf379+Pk5MSpU6fIy8vDwsKCqKgoGjZsSFRUFBcuXOD555/H1dWVWrVqERkZyenTpwkNDcXCwoJevXqRnp7O6NGjqVatGgDu7u5Uq1at0OXHNyngRERERERERERE7pWWId9nMTExuLq6ArBr1y68vb1NS5GXLVtGq1atTPdPnjyJi4sLcXFxBAUFMX78eOLi4jhx4gTdunXjqaeeAuD06dMYDAZCQkKK5ZtERERERERERKRk0MzCe1C1alWsrKxYv349EyZMAG4sTc7JyeG3334jLy8PgKysLJ5//nm2bt1Kr169cHJyAiA5ORmAxx9/nLS0NPbu3cuHH37InDlz6NatG6tXr6Zz587UrFmT7du3Y2trW+RYSkrAiYiIiIjIo+bPIX4KOBERkeKmmYX3wM7OjkGDBvHBBx8QERHBwoULyc3NxdHRkejoaKysrPj+++8JDAzk+PHj5ObmMmHCBOLi4pg+fTo+Pj4EBgZSunRpnJyc2LJlC5999hmHDh3i0KFDuLi4AGBhYUH58uUxGo1FjkUBJyIiIiIiIiIicq80s/Aevf/+++Tl5TFy5EiSk5Oxt7dn69atpKenU65cOZo0aULfvn0ZPHgwvXv3pkyZMpQpU4aDBw/SoUMHxowZwzPPPMP58+dp1qwZ5cuXp0mTJpQrV47U1NQ7HkdYWBihoaGm85sBJyIiIiIi8mDTbEIREXmQqFh4j2xsbNi2bRvp6ekYDAbS09N56qmnyMnJIScnB3t7ezw8PMjPzycxMRF7e3sAMjIysLCwICIigszMTMzMzLCysqJNmzbMnTsXuBGgArBz586/HYcCTkRERERERERE5F5pGfJ9sHnzZuLi4ihfvjxffPEFcXFx1KpVi/DwcOLi4ti8eTMAFSpUIC4uji1btmBhYUFcXByxsbHAjYJgXFwckydP5uLFi5QvX54vv/wSgNzcXGJiYrCysmLbtm3F9p0iIiIiIiIiIvJo08zC+8DDw4Nz585x/vx52rdvj8Fg4NixY3Tu3Bk3NzdTOwsLC6pVq8b+/ftp0KABNWvWZMeOHTz22GPUr1+/QJ8LFiww9bVy5Uref/99+vfvT/PmzQsdgwJOREREREQefn8OOxHREnURKQ6aWXifREZGUq9ePWxsbNi7dy+VKlUqUCj8a9smTZoAEBUVZfr7z9q0aUP//v1xcXHh9ddf55dffjGlJxdGASciIiIiIiIiInKvDPn5+fnFPYjidPHiRSpWrMiVK1ewsrLCycmJ48ePU7ly5Vvarly5ko8++oiYmBhiYmLo1asXp0+f/sfGlp6eTq1atUhKSuLAgQP4+fkV2bawmYXu7u4kJyfj6Oj4j41RREREREREREQebCkpKRiNxjuqE5X4mYW7d++mdu3a2NnZcfDgQVxcXAotFN5sGxQUBNzYY/Dm3/+UU6dO8fvvv5OXl0dCQsJt21pbW+Po6FjgEBERERERERERuRslfs/CmJgYU9Fv165dty0AxsTEMGbMGFPbZ5+9df+Io0ePMmrUKHbu3ImdnR3PPPMMH330EaVLlwYgODgYf39/bGxsmD9/PlZWVgwcOJCJEyea+khMTGTIkCFs3rwZMzMzvL296du3L8eOHaNs2bL38etFRERERORB8iDuWah980RESpYSObMwMTERJycnnJyc+PDDD/nkk09wcnLizTffZN26dTg5OTF48GAAli1bZmq7d+9eXnzxRZycnNi8eTMjR47EycmJZcuWAXD16lWaNWtGnTp12L9/P1u2bOH8+fN07dq1wPsXL16MnZ0dsbGxTJ06lcmTJ/P9998DkJeXR/v27Tl06BDly5fn22+/xcrKiqysLPr27VvkN2VmZpKSklLgEBERERERERERuRslcs/CnJwcfv31V1JSUggMDGT//v3Y2dkREBDApk2bqFy5Mvb29pQuXZrU1FT++OMPtm7dSnh4OBs3buTw4cMMHDiQmJgYAEqXLo29vT3vvPMOO3fu5NtvvzW969dff8Xd3Z0TJ05QvXp1goODyc3NZefOnaY29evXp1mzZrz//vuMGjWK6dOnY2Fhwfbt23nyySf58ccf8fX1xc7OjmnTpjFo0KBbvmnixIlMmjTpluvas1BERERE5OGhmYUiIvJPuJs9C0vkMmQLCws8PT1ZsWIF9erVw9/fn+joaMqVK3dLMnF6ejrVq1enT58+tG3bFl9fXwYPHkybNm3w9PQs0HbTpk3ExsZib29PXl4eGRkZlCpVCrix/2D16tUB8Pf3L/Ccm5sbFy5cAOD333/HYDCQnZ1tuu/j44OTkxMRERH07t270G8KCwsjNDTUdH4z4ERERERERB4eKsyJiEhxK5HFQl9fX3755Reys7PJy8vD3t6enJwccnJysLe3x8PDg2PHjpGYmEiNGjXIzc1l4cKFmJubk52dTXh4OGZmZixfvpxevXoxd+5cAM6dO0e1atXYvHkzn3zyCfHx8UyfPh24URC8ydLSssB4DAYDeXl59/RN1tbWWFtb31MfIiIiIiIiIiJSspXIYuHmzZvJzs6mefPmTJ06lbp169K9e3dCQkJo1aqVqZhXoUIFevfuzeXLl/n6668ZNmwYhw8fZuvWrezcuRMXF5cCUzezsrLIzs7G09OTn376iWeffZZq1aqZ7kdGRhIVFYXRaMTf35+ff/6ZgIAASpUqhZOTk+md+fn5fPHFF7z77rskJSUREBDA1atX8fHxKfKbMjMzyczMNJ1rz0IRERERkYfPv7kMWbMYRUSkMCWyWOjh4cG5c+c4f/487du3x2AwcOzYMTp37oybm5spAAXg+vXrwI3gkfDwcPLz88nLy2PRokXMmTOHZcuWmcJQkpOTMRgM2Nrakpuby7Zt2xgxYgSBgYH897//Nb1/586dfPXVV5QvX54333yTbdu2UalSJQBTQfDVV19l1qxZ5OXlMWDAAMqWLUtgYGCR3zRlypRC9ywUERERERERERG5UyUyDRluzPKrV68eNjY27N27l0qVKpmWCleoUIG4uDh27NgBQPv27Rk4cCBWVla8+OKLPP/880yePBmA5557jri4OKZPn46vry/btm0zFfXy8/Nxc3PDz88PM7P/+6kdHR15+umn8fPzY/HixWRmZpKYmAjcWJIMULduXQYOHMjQoUPx9vb+22XKYWFhJCcnm46kpKT7+4OJiIiIiIiIiMgjr0TOLATo3r073bt35+LFizRv3pwrV66QnZ2Nk5MTx48fLxCAsnLlSqKjo1m1ahXHjx8nJiaGmJgY6tevz+nTp7G3t+fgwYO0b9+ep556yhSEMn/+/ELf3axZM9PfLi4u+Pv789RTT5mulSpViq1bt5rO165dS+fOnW/7PdqzUERERETk4aelwSIiUtxKbLHwpt27d1O7dm3s7OyIjY3FxcWF1q1bFxqAkpWVxeXLl/H19aV3794EBARgb28PQEZGBhYWFkRERJCZmVloAMqdKiwAJT8//759s4iIiIiIiIiISGFKfLEwJiaGoKAgAHbt2kVQUBAffPBBoQEof/zxB2+88QZt2rRh6NChtGrViqlTp3Lu3DlatGhBXFwce/bsoW/fvgDY2tpiaWlJTk4OFhb/91P/9ttvDB06lCVLlmBubk5qaipjxowpMK6RI0fy5ZdfcvXqVSpWrPi336GAExERERGRh9+/GXByrzQLUkTk0VQii4WJiYn4+/sDNwJMzM3NWbRoEenp6RgMBrZs2UKHDh04f/486enp1K1b11R8Gz16NGFhYVy7do3t27czduxYXnzxRRo0aICDgwMDBw7EaDSye/dufvrpJ/r164erqysTJ040vX/r1q3Y2dnxxRdfMHHiRA4dOsTly5dN99PT09m9ezfLly+nQoUKvP3228THxxMfH4+Xl1eh36SAExERERERERERuVclMuDkrwEmsbGxHDhwACsrK7777jvi4uIICgqiXr16dOnShXnz5lG2bFl8fX05cuQIn3/+OeXKlePo0aPExcVx/fp1mjRpwpw5c7C3t6dz587UrFmTDh06MGnSJGbMmFEgoKRChQr8/PPPdOnSBQsLC0JCQpg1axYAly5dIisri5UrV9K4cWOqVq1Khw4dAFi4cGGR36SAExERERERERERuVclcmahhYVFgQATf39/oqOjKVeuHE2aNAGgX79+9OvXD4CuXbsSGRmJs7Mznp6eLF26lDZt2uDp6QnAZ599BkCnTp1o165dgWCToKAgUlNT+fXXX03XmjRpwtKlS03n69evZ8mSJeTm5lKzZk0AqlevfsuYT506VeQ3KeBEREREROThp6W9IiJS3EpksdDX17fQAJOcnBzs7e3x8PDg2LFjJCYm4uPjA9zfAJPbSU1NxdzcnAMHDmBubl7g3s0wFRERERERERERkX9CiSwWbt68udAAk5CQEFq1amVKI765XPnPASa5ubkEBASwc+dOXFxccHR0NPXr7e3N6tWryc/Px2AwABAdHY2DgwOVKlXi9OnTABw4cKDAePbs2YOXlxfm5ubUqVOH3NxcLly4QOPGje/4mxRwIiIiIiJSvO5HOIlmFoqISHErkXsWenh4YG9vz/nz52nfvj3u7u4cO3aMzp07U61aNTw8PIAbS3+rVavGr7/+SoMGDahZsyaXLl3iscceo379+lSrVo2yZcua+h08eDBJSUm8+uqr/PTTT6xfv5633nqL0NBQzMzMCA4OpmnTpvz222+EhoZy4sQJvvzyS2bNmsWwYcOAG8uPe/bsSe/evVmzZg1nzpxh7969TJkyhU2biv6fjylTpmA0Gk2Hu7v7P/sjioiIiIiIiIjII6dEziwEiIyMpF69etjY2LBz504qVaqEm5tbkW1v7mUYFRVl+vuvKlasyObNmxk1ahS1a9fGxcWFl19+mXHjxhVo17t3b9LT06lfvz7m5uYMGzaM/v37m+4vXLiQd955hxEjRvDbb79RunRpnnjiCdq2bVvk94SFhREaGmo6T0lJUcFQRERERORfpFmBIiLyKDDk5+fnF/cg5P5LSUnBaDSSnJxcYKm0iIiIiIiIiIiULHdTJyqRy5D/LatWrcLPzw9bW1tcXV1p0aIFaWlpAMyfPx9vb29sbGyoWbMmc+bMMT3Xt29f/P39TXsQZmVlUadOHXr37l0s3yEiIiIiIiIiIiVDiV2G/E87e/YsPXr0YOrUqXTs2JFr166xc+dO8vPzWbp0KRMmTGD27NnUqVOHQ4cO0a9fP+zs7OjTpw8zZ86kdu3ajBkzho8++oixY8dy9epVZs+eXeT7FHAiIiIiIoW5H6Eb8u/RUmYRESluKhb+Q86ePUtOTg6dOnUyBab4+fkRGRlJr169mDdvHp06dQKgSpUq/Pjjj3zyySf06dMHe3t7vvjiC5o2bYqDgwPh4eGMGjUKo9FIUavGp0yZwqRJk/617xMRERERERERkUeP9iy8AxcvXqRixYpcuXIFKysrnJycOH78OJUrV76l7cqVK/noo4/YuXMnTzzxBAcOHKBz584888wzdOnSBQAXFxdsbW0xM/u/VeA5OTkYjUbOnz9vutazZ0+WLVvGsGHDMBqNREVFERkZWegYC5tZ6O7urj0LRURERERERERKuLvZs1AzC+/A7t27qV27NnZ2dsTGxuLi4lJoofBm26CgIMzNzencuTMuLi74+Pgwa9Ysxo4dy9dffw3AvHnzaNCgQYFnzc3NTX/n5eVx9OhRAM6cOcPZs2dvuwzZ2toaa2vre/1UEREREREREREpwRRwcgdiYmIICgoCYNeuXaa//65tdHQ0HTt2ZNKkSRw6dAgrKysWL14MwI8//ki1atWwtLTk9ddfp169etSqVQtfX182b97Mm2++yeHDhwHYsGED+/btKxCCIiIiIiIiIiIicr9pGXIREhMT8ff3B+D69euYm5tjbW1Neno6BoMBGxsbXnjhBebMmcOyZcsYPHgwcGNap52dHfn5+Vy/fh1ra2ssLS156aWXmDt3LpMnT2bMmDHY2try/vvvs2bNGjIzM2nTpg0ZGRk0bNiQc+fOMWTIEEJDQ3n//feZPHkyU6dOZdeuXdSuXbvQ8WoZsoiIiIj80xSW8s9TwImIiPwT7mYZsmYWFqFChQrExcWxY8cOAGJjYzlw4ABWVlZ89913xMXFMXnyZACee+454uLimD59Oj4+Phw5coQPPvgAKysr7OzsyMzMZPPmzcyYMcO09DgiIoKFCxeyY8cO4uLi2Lp1K4GBgbRo0YKPPvqIkJAQWrZsCcCrr75Ks2bNGDx4MLm5uYWOd8qUKRiNRtPh7u7+L/xKIiIiIiIiIiLyKNGehUWwsLDA09OTFStWUK9ePfz9/YmOjqZcuXI0adKkQFt7e3vs7e05ePAg7du3x9PTk6tXr9KrVy/mz59foO3NgJLnn3+efv36MX/+fAYNGkROTg5xcXFUrVqVY8eOFWgLsH79+tuONywsjNDQUNP5zZmFIiIiIiL3i2a9iYiIPPpULCyCr68vv/zyC9nZ2eTl5WFvb09OTg45OTnY29vj4eHBsWPHSExMxMfHB4CMjAwsLCyIiIggMzMTMzMzli9fTq9evZg7d26h73nllVdo2bIlmzZt4rvvvmPKlCnMmDGDV1999a7Gq4ATERERERERERG5VyoWFmHz5s1kZ2fTvHlzpk6dSt26denevTshISG0atUKS0tL4P+WK587d44WLVoQFxdHbm4uAQEB7Ny5ExcXl79dC+7u7s7AgQMZOHAgYWFhzJs3j1dffRUrKyuAIpcei4iIiIhI8fkn9nDU7E0RESluKhYWwcPDg3PnznH+/Hnat2+PwWDg2LFjdO7cGTc3N1M7CwsLqlWrxv79+2nQoAE1a9Zkx44dPPbYY9SvX/9v3zN8+HBat25N9erVuXLlCtu3b8fb29s0BoPBwMaNG2nTpg22trbY29sX2k9hASciIiIiIiIiIiJ3QwEnt9GsWTNcXV2xsbFh7969VKpUqUCh8M8iIyNNexlGRUXdsq9hUXJzcxkyZAje3t60atWK6tWrM2fOHAAqVqzIpEmTGDNmDOXKlWPo0KFF9qOAExERERERERERuVeG/Pz8/OIexIMqODiYgIAAwsPDi3sof6uwmYXu7u53FIktIiIiIiIiIiKPrpSUFIxG4x3VibQM+RGhgBMREREREREREblXWob8N/Ly8hg9ejQuLi6UL1+eiRMnmu4lJibSvn177O3tcXR0pGvXrpw/f950f+LEiQQEBLBgwQIqV66Mvb09gwcPJjc3l6lTp1K+fHnKli3Lu+++W+Cdf9dvYTIzM0lJSSlwiIiIiIhI8fEcs+muDxERkeKmYuHfWLx4MXZ2dsTGxjJ16lQmT57M999/T15eHu3bt+fy5ctERUXx/fffc/r0abp161bg+VOnTvHNN9+wZcsWvvzySz777DOeffZZfv31V6Kiovjggw8YN24csbGxACxYsIAqVar8bb9/pT0LRURERERERETkXmnPwtsIDg4mIyODgwcPcuXKFaysrLCxsWHAgAF07NiR1q1bc+bMGVNh7qOPPiI0NJS9e/eSnZ3Ns88+S1ZWFufOncPBwQGAVq1aceLECU6dOoWZ2Y1abc2aNQkJCWHMmDGMGjWK6dOnk5iYaOr3xx9/xNfXF4Ci/rm0Z6GIiIiIyIPlf5kpmPD+s//ASEREpKTTnoX3kYuLC7Vr1zbNLrSysiIjI4Pjx4/j7u5eYAZfUlIS1tbWHD9+nLNnz+Lu7k5ubq6pUAhQrlw5zM3NTYXCm9cuXLgAwO+//47BYCjQr4+PD9bW1lSpUqXIcWrPQhERERGRB4sKfyIi8jDSMuS/ceHCBYKCggDYtWsXrq6u5OXlFdo2JiYGCwsLU9vKlStjaWlpuh8ZGcnnn3/O5cuX8ff3x8bGhieeeILr16/f0ue3336Lt7c39vb2tGrVipycHLp27foPfaWIiIiIiIiIiIhmFhYqMTERf39/UlNTyc/P59ixYyxatIj09HRycnJYtmwZly5dIikpiVmzZjF+/HgAkpOTARg8eDDp6emYm5uTm5vLsmXLeOGFF0z9Hz16lDVr1lC+fHnefPNNvv/+exo2bAhAhQoVyM/P55133mHJkiWYmZnx/PPPk5ubS7t27Yocc2HLkEVERERE5OFyc+myZiWKiEhx0czCQlSoUIG4uDjq1KkDQGxsLAcOHMDKyopGjRrx3HPPsWDBAvz8/Fi+fDlffPEFQ4YMwcbGhgYNGrBs2TLKlSvH4MGDqVGjBs8991yB/kuVKsXTTz+Nn58fixcvJjs7m5MnTwI3lhzDjeKfmZkZOTk55OTkYGlpSWBgYJFjVsCJiIiIiIiIiIjcqxJfLLx48SJWVlakpaWRnZ2NnZ0dv//+O56enly/fp1y5crh7+/PuXPnsLOz49ixY9jb2xMfH8+lS5coXbo03bt3Z9q0aXh6erJ+/XqOHDlCmzZtcHJywsrKCnt7+wLvtLGxMf3t4uKCra0tly9fBsBgMGBjY4ObmxtNmjShRYsWVKpUiezs7Nt+R1hYGMnJyaYjKSnp/v9YIiIiIiLyj0p4/1nNKhQRkWJV4pch7969u0CAiYuLC61bt+aXX34hOzubvLw87O3tycnJISsrCwsLC/bt24e3tzeBgYF89913AOTl5XHmzBmqVq1qmhVoaWlJr169bnln8+bNC5x7eXnRunVr07m1tTXr1683na9bt46OHTve9jsUcCIiIiIiIiIiIveqxM8sjImJKRBgEhQUxObNm4mLi6N8+fJ88cUXxMXFUatWLSpXrkxERASbN29m165dNG/enLi4OLZs2YKFhQVxcXHMnj2b3Nxc8vLysLW1xdLSkpycnALv/O233xg6dChGoxEXFxeOHTtGzZo1C7QZOXIkFStWxM7OjtGjR/9rv4eIiIiIiIiIiJRcJXJm4c0AE4Dr169jbm5uCjAxGAxs2bKFDh06cP78edLT06lbt64pMGT06NGEhYVx7do1tm/fztixY3nxxRdp0KABDg4ODBw4EKPRyO7du/npp5/o168frq6uTJw40fT+rVu3YmdnxxdffMHEiRM5dOiQaRkyQHp6Ort372b58uVUqFCBt99+m/j4eOLj4/Hy8ir0mxRwIiIiIiLy8FPAiYiIFLcSObPwZoDJjh07gIIBJt999x1xcXEEBQVRr149unTpwrx58yhbtiy+vr4cOXKEzz//nHLlynH06FHi4uK4fv06TZo0Yc6cOdjb29O5c2dq1qxJhw4dmDRpEjNmzCAvL6/A+3/++We6dOmChYUFISEhzJo1C4BLly6RlZXFypUrady4MVWrVqVDhw4ALFy4sMhvUsCJiIiIiIiIiIjcK0N+fn5+cQ+iuKxYsYKIiAiio6OJjo6mT58+plTivxo8eDDOzs68++67vPvuu5w5c4b58+cXaNOpUyeMRmOBot4PP/xAQEAAv/zyC6dPn+app57ihRdeYOnSpaY269evp0uXLmRkZLBlyxbatm2LnZ1dgb4zMzPp1KkTX331VaHjK2xmobu7O8nJyTg6Ot71byMiIiIiIiIiIo+GlJQUjEbjHdWJSuQyZF9f30IDTHJycrC3t8fDw4Njx46RmJiIj48PABkZGVhYWBAREWEKMFm+fDm9evVi7ty5921sqampmJubc+DAAczNzQvc+2uq8p8p4ERERERERERERO5ViSwWbt68mezsbJo3b87UqVOpW7cu3bt3JyQkhFatWmFpaQn833Llc+fO0aJFC+Li4sjNzSUgIICdO3fi4uJSoBrr7e3N6tWryc/Px2AwABAdHY2DgwOVKlXi9OnTABw4cKDAePbs2YOXlxfm5ubUqVOH3NxcLly4QOPGjf+lX0RERERERERERKQEL0M+d+4cnp6eXL16FYPBgJOTE6dPn8bNze2WtsuXL+fjjz8mKiqKHTt20K9fP06cOHFLu99++43q1avz0ksvMXToUE6cOMErr7zCkCFDTAEnwcHBHDhwgH79+jFgwAAOHjxIv379mDFjBgMGDACgV69eREdHM2PGDOrUqcPFixfZtm0b/v7+PPts4RsdaxmyiIiIiMjD72bASWEUeiIiIv8rLUO+A5GRkdSrVw8bGxt27txJpUqVCi0U3mzbpEkTAKKiokx//1XFihXZvHkzo0aNonbt2ri4uPDyyy8zbty4Au169+5Neno69evXx9zcnGHDhtG/f3/T/cTERMqWLcuIESP47bffKF26NE888QRt27Yt8numTJnCpEmT7vZnEBERERERERERMSmxMwsfZJcvX8bS0hIHBwc8PT0ZPnw4w4cPv+0zmlkoIiIiIiIiIiKF0czCh5yLi8tdP6OAExERERERERERuVeaWfgACg4OJiAggLi4OKKiogrcu9N/rrupGIuIiIiIyO3dbi/B+0n7EoqIyD/hbupEZv/SmOR/sGbNGipVqsTkyZM5e/YsZ8+eLbJtZmYmKSkpBQ4REREREREREZG7oWLhA8zFxQVzc3McHBzYsmVLkQEscCPgxGg0mg53d/d/caQiIiIiIiIiIvIo0J6FD4kzZ85Qrlw5Jk6cyMSJE2+5HxYWRmhoqOn8ZsCJiIiIiIjcOy0PFhGRkkLFwofEN998Q926dYu8r4ATERERERERERG5VyoWPuCsrKzIzc1l7969hISEFNkuMzOTzMxM07n2LBQRERERefjcLkhFsxtFROTfoD0LH3Cenp7s2LGD3377jYyMjCLbac9CERERERERERG5V5pZ+ICbPHkyAwYMoGrVqmRmZpKfn19oO+1ZKCIiIiIiIiIi98qQX1T1SR5qKSkpGI1GkpOTcXR0LO7hiIiIiIiIiIhIMbmbOpGWIYuIiIiIiIiIiAigZcgPvFWrVjFp0iROnjxJqVKlqFOnDuvXr8fOzq5AOwWciIiIiIg8/G4XcPK/UjCKiIjcDc0sfICdPXuWHj160LdvX5599llq165Np06dCt23UAEnIiIiIiIiIiJyr0rcnoXBwcEEBAQQHh7+j78rJCSEq1evsm7duv/p+YMHD1K3bl0SEhJ46623bttXYTML3d3dtWehiIiIiIiIiEgJdzd7FmoZ8l/k5+eTm5uLhUXx/zS1a9emefPm+Pn54eLigpOTE1euXMHZ2fmWttbW1lhbWxfDKEVERERERERE5FFRopYhh4SEEBUVRUREBAaDAYPBwKJFizAYDHzzzTfUrVsXa2trdu3aRV5eHlOmTKFKlSrY2tpSu3ZtVq1aZeorNzeXl19+2XS/Ro0aREREmO5PnDiRxYsXs379etO7IiMjAUhKSqJr1644OTnh4uJC+/btSUhIKNB3aGgorq6uHDx4kLZt22I0Gjlz5gw1atTgzJkz/9ZPJiIiIiIiIiIiJUjxT5/7F0VERPDzzz9Tq1YtJk+eDMCxY8cAGDNmDNOnT+exxx7D2dmZKVOm8MUXXzB37ly8vLzYsWMHvXr1okyZMjRt2pS8vDwqVarEypUrcXV1JSYmhv79++Pm5kbXrl0ZOXIkx48fJyUlhYULFwLg4uJCdnY2LVu2pGHDhuzcuRMLCwveeecdWrVqxeHDh7GysmLGjBksWrSIBQsW4O3tzYwZMzhz5gxPPfUUBw4cYO3atYSGhhb4NgWciIiIiIg8eO42sERhJCIiUtxKVLHQaDRiZWVFqVKlKF++PAA//fQTAJMnT+bpp58GbhTe3nvvPbZu3UrDhg0BeOyxx9i1axeffPIJTZs2xdLSkkmTJpn6rlKlCrt372bFihV07doVe3t7bG1tyczMNL0L4IsvviAvL4/58+djMBgAWLhwIU5OTkRGRvLMM88QHh5OWFgYFStWZO3atbzyyits2rSJ33//nYsXL+Lt7X3Lt02ZMqXAeERERERERERERO5WiSoW3k5gYKDp75MnT3L9+nVT8fCmrKws6tSpYzr/z3/+w4IFC0hMTCQ9PZ2srCwCAgJu+54ffviBkydP4uDgUOB6RkYGp06dIjk5mbNnz9KgQQMcHR3ZsWMH4eHhXLp0iWvXrjFjxgxat259S79hYWEFZhveDDgREREREZHio5mCIiLysFGx8P+zs7Mz/Z2amgrApk2bqFixYoF2N0NEli9fzsiRI5kxYwYNGzbEwcGBadOmERsbe9v3pKamUrduXZYuXXrLvTJlyhQ49/b2ZsuWLQB07NiR/Px8hg4dWmi/CjgREREREREREZF7VeKKhVZWVuTm5t62jY+PD9bW1iQmJtK0adNC20RHR9OoUSMGDx5sunbq1Km/fdfjjz/OV199RdmyZYmJieGdd97h6NGjmJub07BhQyIiInBzcyM6OpoVK1awevVqLl++TG5uLtWrV/8fv1pEREREREREROTvlbhioaenJ7GxsSQkJGBvb09eXt4tbRwcHBg5ciSvv/46eXl5PPnkkyQnJxMdHY2joyN9+vTBy8uLzz//nG+//ZYqVaqwZMkS9u3bR5UqVQq869tvv+XEiRO4urpiNBrp2bMn06ZNo3379jRr1oyePXvi6OjIxo0b+eOPP+jYsSOvvfYab7/9Nra2toSHh7N582bWr19PqVKlivwuBZyIiIiIiDz8/hyIoiXMIiJSHMyKewD/tpEjR2Jubo6Pjw9lypQhMTGx0HZvv/0248ePZ8qUKXh7e9OqVSs2bdpkKgYOGDCATp060a1bNxo0aMClS5cKzDIE6NevHzVq1CAwMJAyZcoQHR1NqVKl2LFjB5UrV2bmzJm8/vrrTJgwAQcHBz799FOOHDlCq1at8PLy4urVq7z66qu4ubnRpUsXKlWqVOR3TZkyBaPRaDq0X6GIiIiIiIiIiNwtQ35+fn5xD6Kkio+PZ8KECcTGxvLHH3+Ql5dHWloamzZtonz58jz99NO4urrSqlUr2rZtyzPPPFNkX4XNLHR3dyc5ORlHR8d/43NEREREREREROQBlJKSgtFovKM6UYmbWfggadeuHZcvX2bevHnExsaawlGysrJ4/PHHOXPmDG+//Tbp6el07dqVLl26FNmXtbU1jo6OBQ4REREREREREZG7oWLhPQgODmbo0KEMHToUo9FI6dKlGT9+PDcnaxoMBtatW1fgGScnJxYtWsSlS5c4ceIE3333HX/88QcDBw6kTp06pnbz58+nQYMG9OnTh507d9KrVy9T2ImIiIiIiDya/rxnoYiISHFQsfAeLV68GAsLC/bu3UtERAQffvgh8+fP/9vnnJ2dcXZ2BmDEiBE0a9YMb29vAKKioggNDaVVq1Zs3LiRoUOHMn/+fIxGI05OToX2l5mZSUpKSoFDRERERERERETkbqhYeI/c3d356KOPqFGjBj179uTVV1/lo48+KrRtfn4+6enpDBkyBHNzc0aMGAHA+fPnWbNmDTNnzgRg+fLldOvWjcjISDp06MDYsWOpWLEiHh4emJkV/k+mgBMREREREREREblXKhbeoyeeeAKDwWA6b9iwIfHx8eTm5t7SdsuWLWRlZTF8+HDOnj1Lt27dAIiMjOSHH36gadOmpKamcu7cOZYuXUp8fDwAubm5/Pbbb5w7d67IcYSFhZGcnGw6kpKS7vOXioiIiIjIPy3h/WeLewgiIlLCWRT3AB5lBoOBP4dNnzp1CoPBgJeXF+XLlychIQEAOzs7U5vU1FQA5s2bR4MGDQr0Z25uTnZ2NpaWlre8y9raGmtr63/gK0REREREREREpKRQsfAe3UwwvmnPnj14eXlhbm5OmTJlOHv2LAAhISEsXrwYgJdeeomJEycyadIkABo3boyVlRUNGzYkIiKCChUqcPr0aYKCgqhSpQrLly9nzpw5xMbGMnfuXEJCQm4ZR2ZmJpmZmaZz7VkoIiIiIvLw+V8CTjQbUURE7ictQ75HiYmJhIaGcuLECb788ktmzZrFsGHDAGjWrBmzZ8/m0KFDhISEUKVKFQDCw8PZt28f169fB2Dp0qVs27YNMzMzOnbsyFtvvcWUKVNYuHAhAKGhofj5+TFixAhatmxZ6Di0Z6GIiIiIiIiIiNwrFQvvUe/evUlPT6d+/foMGTKEYcOG0b9/fwBmzJiBu7s7jRs3pn///jz99NMYDAaMRiNlypShdevWAFSuXJmAgAAWLFjAkSNHaNSoEfPnz2fVqlUAXL16lSNHjhAYGIibm1uh49CehSIiIiIiIiIicq8M+X/eVE+KdPHiRSpWrMiVK1ewsrLCyckJf39/GjRoQHh4eIG2K1eu5KOPPiImJoaYmBh69erF6dOnCQ8PJzw83LRXYXx8PBMmTCA2NpY//viDvLw80tLS2LRpE23atCEhIYEqVaqwa9cugoKC7mq8KSkpGI1GkpOTcXR0vE+/goiIiIiIiIiIPGzupk6kPQvv0O7du6lduzZ2dnbExsbi4uJSZKDI7t27TcW9nTt3Flnoa9euHR4eHsybN48KFSqQl5dHrVq1yMrKKtDuzwEoIiIiIiIiIiIi/xQVC+9QTEyMqeh3c6bfuXPnimw7ZswYU9tnn711w+Ho6GhOnDhBYmIiMTExBAQEMHToUNP9+fPnM2XKFAA6dOjA6NGjGTx4cJHjU8CJiIiIiMiD7U7CSxRWIiIixU3FwttITEzE398fgOvXr2Nubs6iRYtIT0/HYDBgY2ODj48PAMuWLTMV81JSUnjxxRcxNzfn2rVrbN++nTFjxtCuXTsAfvvtN9q1a4eVlRXBwcG8/vrrfP/997z77rsAREVF8dVXXzFhwgQGDRrEq6++yvjx47Gzs6NPnz6FjnXKlCmmdGUREREREREREZH/hQJObqNChQrExcWxY8cOAGJjYzlw4ABWVlZ89913xMXFMXnyZACee+454uLimD59Oj4+Phw5coTPP/+ccuXKcfToUeLi4qhVqxYA//nPf3BycmL9+vUkJCTQrl07vv32W2bNmgXA8uXLmTFjBq1atQKgefPmDBgwgFdeecW03+FfKeBERERERERERETulQJO7sCKFSuIiIggOjqa6Oho+vTpw8mTJwttO3jwYJydnXn33Xd59913OXPmDPPnzy/Qpk2bNpQpU4bFixff8nxaWhr29vbY2tpiZvZ/tdyMjAwsLS1JT0+/ozEr4EREREREREREREABJ/eNr68vv/zyC9nZ2eTl5WFvb09OTg45OTnY29vj4eHBsWPHSExMNC1HzsjIwMLCgoiICDIzMzEzM2P58uX06tWLuXPnAmBra1vkO1NTUwGYN28eDRo0ACA9PZ1GjRoVWlwUERERERERERG5X1QsvI3NmzeTnZ1N8+bNmTp1KnXr1qV79+6EhITQqlUrLC0tgf9brnzu3DlatGhBXFwcubm5BAQEsHPnTlxcXApUbf39/Vm8eDHZ2dmmPm4qV64cFSpU4PTp0/Ts2ROAVatWYWtrS6dOnYocqwJOREREREQefncSgnI7CkgREZF7pT0Lb8PDwwN7e3vOnz9P+/btcXd359ixY3Tu3Jlq1arh4eEBgIWFBdWqVePXX3+lQYMG1KxZk0uXLvHYY49Rv359qlWrRtmyZU39Dh06lJSUFLp3787+/fuJj49nyZIlnDhxAoBJkyYxZcoUZs6cyc8//8zatWspV64cH374YZFjnTJlCkaj0XS4u7v/sz+OiIiIiIiIiIg8cjSz8G9ERkZSr149bGxs2LlzJ5UqVcLNza3Itk2aNAFuJBrf/PuvXF1d+e9//8uoUaNo2rQp5ubmBAQEEBQUBMArr7xCqVKlmDZtGqNGjSI/Px9XV1eqVKlS5DjDwsIIDQ01naekpKhgKCIiIiLykNHMQBERKW4KOHkItGzZkmrVqvGf//znjp9RwImIiIiIiIiIiMDd1Ym0DLkYbdmyhSeffBInJydcXV1p27Ytp06dAiArK4uhQ4fi5ubG1q1bWbRoEVOmTCnmEYuIiIiIiIiIyKNMy5CLUVpaGqGhofj7+5OamsqECRPo2LEjcXFxzJw5kw0bNrBixQq2bNnCihUr8PT0LLIvBZyIiIiIiDz8/hpwomXJIiLyb1OxsBh17ty5wPmCBQsoU6YMP/74I4mJiXh5eZlmHk6dOpXZs2cTGxtLeHj4LX1NmTKFSZMm/UsjFxERERERERGRR5H2LCxG8fHxTJgwgdjYWP744w/y8vJIS0tj06ZNlC9fnqeffhpXV1datWrFd999R//+/enXrx8ODg639FXYzEJ3d3ftWSgiIiIiIiIiUsJpz8KHRLt27bh8+TLz5s0jNjaW2NhY4MZ+hY8//jhnzpzh7bffJj09naSkJCZOnIidnV2hfVlbW+Po6FjgEBERERERERERuRsqFhaTS5cuceLECcaNG0fz5s3x9vbmypUrBdo4OjrSrVs35s2bx5o1a7h27Rq9e/cuphGLiIiIiIiIiMijTnsWFhNnZ2dcXV359NNPcXNzIzExkTFjxpjuf/jhh7i5uVGnTh3MzMxYuXIlVlZWuLq6FtqfAk5ERERERB5Ofw41UaCJiIgUNxULi4mZmRnLly/ntddew8vLC09PTxYtWkRwcDAADg4OTJ06lfj4eMzMzLh27Rre3t4YDIZC+1PAiYiIiIiIiIiI3CsFnDwAzp07h7OzM9bW1oXeT0hIoEqVKtStW5cnn3yy0DRkBZyIiIiIiIiIiEhh7ibgRDMLHwDly5e/5z6sra2LLDaKiIiIiIiIiIjcCRUL75NVq1YxadIkTp48SalSpahTpw7r16/nxx9/5M033+TQoUNkZ2cTEBDARx99xOOPP2561mAwsHbtWjp06ADA3r17GTBgAMePH6dWrVqMHTu2mL5KRERERET+V3/ei/BOac9CEREpbkpDvg/Onj1Ljx496Nu3L8ePHycyMpJOnTqRn5/PtWvX6NOnD7t27WLPnj14eXnRpk0brl27VmhfqamptG3bFh8fHw4cOMDEiRMZOXLk344hMzOTlJSUAoeIiIiIiIiIiMjd0MzC++Ds2bPk5OTQqVMnPDw8APDz8wOgWbNmBdp++umnODk5ERUVRdu2bW/pa9myZeTl5fHZZ59hY2ODr68vv/76K4MGDbrtGBRwIiIiIiIiIiIi90rFwvugdu3aNG/eHD8/P1q2bMkzzzxDly5dcHZ25vz584wbN47IyEguXLhAbm4u169fJzExsdC+jh8/jr+/PzY2NqZrDRs2BGD+/PkEBAQU+lxYWBihoaGm85sBJyIiIiIiUjy0pFhERB5GWoZ8H5ibm/P999/zzTff4OPjw6xZs6hRowZnzpyhT58+xMXFERERQUxMDHFxcbi6upKVlXVfx2BtbY2jo2OBQ0RERERERERE5G5oZuF9YjAYCAoKIigoiAkTJuDh4cHatWuJjo5mzpw5tGnTBoCkpCT++OOPIvvx9vZmyZIlZGRkmGYX7tmz52/fn5mZSWZmpulcexaKiIiIiDx4/i70RLMRRUSkuGlm4X0QGxvLe++9x/79+0lMTGTNmjVcvHgRb29vvLy8WLJkCfXq1aN79+707NkTW1vbIvt64YUXMBgM9OvXjx9//H/t3XlUV9X+//Hnh+kDgoADigOKA5rmAE45ZKI5m4VTZt4Ux1vmnBOZhpqhpiFZWVqKmWk5W5ZDDmWkKCqmgogDoYaaIiCgCPL5/eHXzy+uYCIioq/HWmctzjl777PPx3vWvfe93nu/I/jxxx+ZPXv2v84hICAAJycn86ElyCIiIiIiIiIiklsKFj4Ajo6O/Prrr3Ts2JFq1arxzjvvMGfOHDp06MCXX37JlStXOHDgAJs3b2b48OGUKlUqx7EcHBz4/vvvOXz4MF5eXkycOJGZM2f+6xz8/PxITEw0H2fOnHmQrygiIiIiIiIiIk8Ag8lkMhX0JJ4E3t7eeHp6Mnfu3IfyvKSkJJycnEhMTNT+hSIiIiIiIiIiT7DcxImUWZgPUlJS6NOnDw4ODpQpU4Y5c+ZkuX/lyhX69OlDsWLFKFKkCB06dCA6Otp8Pzg4GGdnZzZv3kyNGjVwcHCgffv2xMXFPexXERERERERERGRJ4iChflg7Nix/PLLL6xfv54tW7awc+dODhw4YL7v6+tLWFgYGzZsYPfu3ZhMJjp27Eh6erq5TWpqKrNnz2bp0qX8+uuvxMbGMmbMmByfmZaWRlJSUpZDREREREQKF/cJG/+1CIqIiEh+UjXkByw5OZkvv/ySr7/+mueffx6AJUuWUL58eQCio6PZsGEDISEhNG3aFIBly5bh5ubGunXr6NGjBwDp6el89tlnVKlSBYChQ4cyderUHJ8bEBDAlClT8vPVRERERERERETkMafMwgfs5MmT3Lhxg2eeecZ8rXjx4lSvXh2AyMhIrKysstwvUaIE1atXJzIy0nytSJEi5kDh7X4XLlzA398/2+eqwImIiIiISOEXM6MTMTM6FfQ0RETkCabMwkeUtbV1lvOLFy/etb3RaMRoNObnlERERERERERE5DGnzMIHrEqVKlhbWxMaGmq+duXKFY4fPw5AjRo1yMjIyHL/8uXLREVFUbNmzRzH/eeehyIiIiIiIiIiIvlBmYUPmIODAwMGDGDs2LGUKFGCUqVKMXHiRCwsbsVlPTw8eOmllxg0aBCff/45RYsWZcKECZQrV46XXnopx3E/+OADunTpkuP9tLQ00tLSzOcqcCIiIiIi8ui416IlWoIsIiIFTZmF+eCDDz6gefPmdO7cmdatW/Pss89Sv3598/3FixdTv359XnjhBZo0aYLJZOLHH3+8Y+lxdnLaszAgIAAnJyfz4ebm9qBeR0REREREREREnhAGk8lkKuhJyN15e3vj6enJ3Llzc2yTXWahm5sbiYmJODo6PoRZioiIiIiIiIjIoygpKQknJ6d7ihNpGfJjQgVOREREREREREQkr7QM+RHn6+vLL7/8QlBQEAaDAYPBQExMTEFPS0REREREREREHkPKLHzEBQUFcfz4cWrVqsXUqVMBcHFxuaOdCpyIiIiIiDw67rWgyf9SgRMRESloyiwsAL6+vvj4+NxTWycnJ2xsbChSpAiurq64urpiaWl5RzsVOBERERERERERkbxSZmEe3UvxkYfBz8+P0aNHm89vFzgREREREZGHTxmCIiJSWClY+JhQgRMREREREREREckrLUPOg+yKj5w8eZIBAwZQqVIl7OzsqF69OkFBQXcdZ9++fbi4uDBz5kwAEhISGDhwIC4uLjg6OvLHH39w4cKFh/FKIiIiIiJSgO53r0MREZEHRZmFeZBd8ZFixYpRvnx5Vq5cSYkSJfj9998ZPHgwZcqU4eWXX75jjO3bt9O1a1dmzZrF4MGDAejRowd2dnb89NNPODk50a1bN1auXMn48eMpX748xYsXx8Iia5xXBU5ERERERERERCSvlFmYB9kVHzEajUyZMoUGDRpQqVIlevfuTb9+/fjuu+/u6L927VpeeuklPv/8c3Og8LfffmPHjh1UqFCBBg0a4OHhwapVq7CysqJRo0a4uLgQGxt7x1gqcCIiIiIiIiIiInmlYGE++OSTT6hfvz4uLi44ODiwYMGCOwJ8oaGh9OjRg6VLl9KzZ0/z9UOHDmEymQgODsbBwQELCwtq165Neno6o0aNwmQy4e7ufscz/fz8SExMNB9nzpzJ79cUEREREZEHTIVRRESkoGkZ8gO2YsUKxowZw5w5c2jSpAlFixblgw8+IDQ0NEu7KlWqUKJECRYtWkSnTp2wtrYGIDk5mTJlyrBz504AWrRoga+vL/369cPZ2TnH56rAiYiIiIiIiIiI5JWChXlkY2PDzZs3zechISE0bdqUIUOGmK+dPHnyjn4lS5ZkzZo1eHt78/LLL/Pdd99hbW1NvXr1OHfuHO+//z6nTp3ir7/+4v333+f9998HwGQyZTsP7VkoIiIiIlJ45FTIRJmFIiJS0LQMOY/c3d0JDQ0lJiaGS5cu4eHhQVhYGJs3b+b48eNMmjSJffv2Zdu3VKlSbN++nWPHjtGrVy8yMjJo3bo1jo6OfP/99wwbNgxXV1cGDhzI8OHD+emnn3Kch/YsFBERERERERGRvFKwMI/GjBmDpaUlNWvWxMXFhXbt2tG1a1d69uzJM888w+XLl7NkGf4vV1dXtm/fzuHDh+nduzeZmZnUrl2bcuXKMXz4cM6fP8+qVau4fPkyTz/9dI7jaM9CERERERERERHJK4Mpp3Wt8kB4e3vj6enJ3Llz76uPu7s7I0eOZOTIkbl6blJSEk5OTiQmJuLo6Ji7SYuIiIiIiIiIyGMjN3EiZRaKiIiIiIiIiIgIoMzCfOXr68uSJUuyXDt9+jR//vknY8eO5dChQxQvXpy+ffvy3nvvYWV1q97Mc889R1JSEn/99ReXLl2iYsWKfPfddzRs2DDHZ2VX4MTNzU2ZhSIiIiIiBSCnAib/RgVOREQkPyizMI+Cg4NxdnbO8zhBQUE0adKEQYMGERcXR1xcHNbW1nTs2JGGDRty6NAh5s+fz8KFC7G2tiY8PByAU6dOceLECZYsWUKTJk24efMmbdq0ITo6OsdnqcCJiIiIiIiIiIjklTILs3Ht2jWuXr1KqVKl8jzW/+5ZOHHiRFavXk1kZCQGgwGAadOmMXnyZPbv30/16tUpWrQo7dq146effmLPnj0MHjyYw4cPA5DTP5cyC0VEREREREREJDu5ySy0ekhzKjTS09Oxs7PDzs4uX8aPjIykSZMm5kAhQP369QG4cOECVlZWmEwmPvvsMwAaN27MH3/8QZcuXShWrFiO4xqNRoxGY77MWUREREREREREngyPxTLkVatWUbt2bezs7ChRogStW7cmJSUFgC+++IIaNWpga2vLU089xaeffmruFxMTg8Fg4Ntvv6VFixbY2tqybNmybJchz58/nypVqmBjY0P16tVZunTpHePcXkYMkJCQgMFgICEhAYArV67Qu3dvNm7cyNKlS/Hw8GDx4sV3vMvtzMEFCxZkuZ6YmMjixYs5ceJEXn4qERERERERERGRHBX6zMK4uDh69erFrFmz6NKlC1evXmXXrl2YTCaWLVvG5MmT+fjjj/Hy8uLgwYMMGjQIe3t7+vbtax5jwoQJzJkzBy8vL2xtbdm8eXOWZ6xdu5YRI0Ywd+5cWrduzQ8//EC/fv0oX748LVu2vOv8rK2tuXnzJpMmTSIiIoLevXvzyy+/8Omnn3L9+nUA9u/fD0Dp0qWpWrUqlpaWLFmyhOnTpwO3sh337t1LpUqVqFq1arbPyW4ZsoiIiIiIFLzcFDtRgRMRESloj0WwMCMjg65du1KxYkUAateuDcC7777LnDlz6Nq1KwCVKlUiIiKCzz//PEuwcOTIkeY22Zk9eza+vr4MGTIEgNGjR7Nnzx5mz579r8HC0qVLExoaiqOjIzVq1GDatGlUq1aN9evXM3ToUNavX2/ez9DCwgJ7e3t8fX358ssvCQoKok2bNsyYMYPU1FTGjBmT43MCAgKYMmXKv/9gIiIiIiIiIiIiOSj0BU5u3rxJu3bt2Lt3L+3ataNt27Z0794dGxsbHBwcsLOzw8Li/6+2zsjIwMnJiQsXLhATE0OlSpX47bffaNasmblNcHAwI0eONC8hLl68OIGBgVkCjEFBQQQFBXHq1CnzOAcPHsTT0xO4tQy5WLFifPXVV3z66accPHiQtLQ0atSoQd26dTl06BAnT56kePHi+Pj48Nlnn5n7X79+nZo1axIXF4fJZMLGxobr16+TkJBAkSJFsv0dVOBERERERERERESyk5sCJ4V+z0JLS0u2bt3KTz/9RM2aNZk3bx7Vq1fnyJEjACxcuJDw8HDzceTIEfbs2ZNlDHt7+zzN4XYw8p9x1/T0dADc3NzYvXs3169f5+LFi4wfPx5LS0tOnz7NsGHDiIuLY/z48VnGs7W1JSgoCKPRyJUrV6hXrx4Gg8E8ZnaMRiOOjo5ZDhERERERERERkdwo9MFCAIPBQLNmzZgyZQoHDx7ExsaGkJAQypYty6lTp6hatWqWo1KlSrkav0aNGoSEhGS5FhISQs2aNQFwcXEBbi2Jvu2fxU5uc3FxoW/fvnz99dfMnTv3jiIm/9SxY0fs7e2ZP38+ISEhVK5cma+//jpX8xYREREREREREcmNQr9nYWhoKNu2baNt27aUKlWK0NBQ/v77b2rUqMGUKVMYPnw4Tk5OtG/fnrS0NMLCwrhy5QqjR4++52eMHTuWl19+GS8vL1q3bs3333/PmjVr+PnnnwGws7OjcePGzJgxg0qVKnHx4kXeeeedLGNMnjyZ+vXr8/TTT5OWlsYPP/xAjRo1cnympaUlvr6++Pn54eHhwSuvvMKKFSt48803s22vAiciIiIiIoXTPwugqMCJiIgUtEKfWejo6Mivv/5Kx44dqVatGu+88w5z5syhQ4cODBw4kC+++ILFixdTu3ZtWrRoQXBwcK4zC318fAgKCmL27Nk8/fTTfP755yxevBhvb29zm0WLFpGRkUH9+vUZOXIk7733XpYxbGxs8PPzo06dOjz33HNYWlqyYsWKuz53wIAB3Lhxg379+tGoUSP27t2bJSD4TwEBATg5OZkPNze3XL2jiIiIiIiIiIhIoS9w8jjbtWsXzz//PGfOnOHChQvUrVuXmJgYc9Xnf1KBExERERERERERyU5uCpwU+mXIj6O0tDT+/vtv/P396dGjB6VLlzYvK05NTc22j9FoxGg0PsxpioiIiIiIiIjIY6bQL0N+HC1fvpyKFSuSkJDArFmzAIiPjwf+fzEVERERERF5fLhP2Jhl70IREZGCoszCR5Cvry++vr5Zrh05coTy5ctTsmTJbPuowImIiIiIiIiIiOTVY59ZGBMTg8FgIDw8/K7tvL29GTly5EOZ079xd3dn7ty5Wa7t2rWLtm3b5thHBU5ERERERERERCSvHvtg4f/auXMnBoOBhISEgp7KPbt+/Trr1q1j0KBBObbx8/MjMTHRfJw5c+YhzlBERERERPIiZkYnYmZ0KuhpiIiIaBlyYbB48WIaNWpE48aNc2yjAiciIiIiIiIiIpJXj0WwcNOmTbz33nscOXIES0tLmjRpQlBQEFWqVMnSLiYmhpYtWwJQrFgxAPr27UtwcDAAmZmZjBs3ji+++AIbGxtef/11/P39zf1jY2MZNmwY27Ztw8LCgvbt2zNv3jxKly4N3NprMCEhgXXr1pn7jBw5kvDwcHbu3AnA1atXef3111m3bh2Ojo6MGzeO9evX4+npmWXpcWpqKv3792flypVYW1v/6xJp7VkoIiIiIvJw5GchEmUXiohIQXssliGnpKQwevRowsLCzIG8Ll26kJmZmaWdm5sbq1evBiAqKoq4uDiCgoLM95csWYK9vT2hoaHMmjWLqVOnsnXrVuBWIPGll14iPj6eX375ha1bt3Lq1Cl69uyZq7mOHj2akJAQNmzYwNatW9m1axcHDhy4o92cOXNo0KABBw8eZNy4cfj7+9OkSZMcx9WehSIiIiIiIiIiklePRWZht27dspwvWrQIFxcXIiIicHBwMF+3tLSkePHiAJQqVQpnZ+cs/erUqcO7774LgIeHBx9//DHbtm2jTZs2bNu2jcOHD3P69Gnc3NzYuXMn+/fvB2Dfvn00bNjwX+d59epVlixZwjfffMPzzz8P3FpiXLZs2TvaduzYkSFDhgAwfvx4pk2bxvHjx3Mc28/Pj9GjR5vPk5KSFDAUEREREREREZFceSyChdHR0UyePJnQ0FAuXbpkziiMjY2lZs2a9zxOnTp1spyXKVOGixcvAvDGG29gb29/RwDOycmJyMjIewoWnjp1ivT0dBo1apSlf/Xq1e86F4PBQNWqVe8Iiv6T9iwUEREREXk4tFRYREQeZ49FsLBz585UrFiRhQsXUrZsWTIzM6lVqxY3btzI1TjW1tZZzg0Gwx1Lme/GwsICk8mU5Vp6enqu5nC7fV7nIiIiIiIiIiIikluFPlh4+fJloqKiWLhwIc2bNwfgt99+y7G9jY0NADdv3rznZ/j6+nLy5EngVtAObi0fBkhMTCQgIIDXX3+dYsWKUaJEiSx9t2/fztmzZ7G1tcXV1RULCwv27NlDhQoVzOMZjUYSEhJYuHAhY8eOBeDw4cPUq1ePiIgIypYtS2pq6l2DhSpwIiIiIiJy7/KzSEleKGtRREQKWqEvcHI7QLdgwQJOnDjB9u3bs+zd978qVqyIwWDghx9+4O+//yY5OflfnxEUFETjxo0pUaIEzzzzDJs3byYlJQWAokWL8tlnnxEWFkbx4sU5fPgwX331FdHR0fTr149jx45Rrlw5IiIiWLhwIUWKFOG///0vO3bs4OjRowDcuHGDqlWrUqtWLWJjY0lLS2PZsmWMGDGCiIgIPv/8c+Lj4/n1119znKMKnIiIiIiIiIiISF4V+mChhYUFK1asYP/+/dSqVYtRo0bxwQcf5Ni+XLlyTJkyhQkTJlC6dGmGDh36r89wcnLCaDTy4osvUrp0abp27cq4ceOAW8VUWrRoQc2aNZk5cyYA48aNo2HDhmzbto3GjRvj6upK5cqVadOmDR9++CHXr1/nhRdeoHXr1sCtYiv169fnp59+IigoiISEBFq3bk3fvn3N/cqUKWMuqJIdPz8/EhMTzceZM2dy8zOKiIiIiIiIiIhgMP3vJnuSLW9vbzw9PZk7dy4AO3fupGXLlly8eBEXFxcADh48SL169fjzzz+pUKECLi4uJCcnY2lpaR7n5s2bXL9+nZSUFIoUKYLBYKBIkSJ89NFHDBgwAOCe+v2bpKQknJycSExMxNHR8QH+EiIiIiIiIiIiUpjkJk5U6PcsLGj/LERyez/D23sLJicnM2XKFLp27Wpuc/ToUU6dOsW5c+e4evWq+fpLL71kDkgmJyfTvn17Dhw4wPnz53FwcKBhw4Z8/PHH2NraPqQ3ExERERERERGRJ42ChffIxsYmV0VRAOrVq0dUVBRVq1Y1X7t69SpTp05l0qRJ5mIr77//PiVLljS3qVatGuvXr2fZsmU0bdqU+Ph4du3alWWc/6UCJyIiIiIihZ8Kr4iISEEr9HsWPizu7u6EhoYSExPDpUuX7lqZ+LbJkyfz1VdfMWXKFI4ePUpkZCRRUVF06NCB5ORk4uPjgVtFV/7pxRdfxGQycfjwYZKTk7G1taVUqVK88847OT5LBU5ERERERERERCSvlFl4j8aMGUPfvn2pWbMm165dY/Hixf/ap127dvzwww9MnTqVmTNnYm1tzVNPPcXAgQPv2m/cuHF8/fXXfPDBB8yaNQsbGxuefvppBg8enGMfPz+/LFWgk5KSFDAUERERESlklMEnIiIFTQVOHiH/LKKSkZHBzp072bJlC6tXr8bCwoJ9+/bh7Ox8T2OpwImIiIiIiIiIiEDu4kRahvyI+vnnn/H392fBggVcuXKFkydP8s033xT0tERERERERERE5DGmzMJHyO3MwtatW7NmzRqefvppGjRowObNmwkICMDDw4Njx45hYXFnjDe7Aidubm7KLBQRERERKUTutcCJliuLiEhu5CazUHsWPmT/XGqcnUWLFpGZmcmpU6dYt24d169fx8PDg4ULFzJo0CAiIiKoVavWHf0CAgKYMmVKPs9eREREREREREQeZ8osfMj+LVj4999/Y29vz7lz55g8eTIrVqzAzs4OCwsLUlJS2LhxIx07dryjnzILRUREREREREQkO9qzsBBzcXGhSJEidO7cmfj4eABmzpxJaGgoADdu3Mi2n9FoxNHRMcshIiIiIiIiIiKSGwoWFoCMjAyGDh2Kk5MTJUuWZNKkSdxO8HR3d2f69OlERUVx6NAhAIYPH57t0mMREREREREREZEHSXsWFoAlS5YwYMAA9u7dS1hYGIMHD6ZChQoMGjQIADs7O0qUKEHz5s1ZtWoVY8eOZevWrYSHh+c4ZnbLkEVEREREpGDda8GS21S4RERECpoyCwuAm5sbgYGBVK9end69ezNs2DACAwPN9y0sLFixYgVHjx4FYOnSpSQmJgK3CplkJyAgACcnJ/Ph5uaW/y8iIiIiIiIiIiKPFWUWFoDGjRtjMBjM502aNGHOnDncvHnTfK1169ZERERgMBgoWrQozzzzDL/++isODg7Zjunn58fo0aPN57cLnIiIiIiISMFRpqCIiBQ2ChYWAufPn6dVq1aUL18+xzZGoxGj0fgQZyUiIiIiIiIiIo8bBQsLwO3Kxrf99ttvFC1alDJlyvD333/z0Ucf0axZM1xcXAC4evUq/fv3p3///ixevBhfX98CmLWIiIiIiOS33O5x+ChTVqWISOGkPQsLQGxsLKNHjyYqKorly5cTFBREZmYmS5YsoWzZspQsWZJ27dpRtGhRKleujLW1NVOnTiUyMpKePXtmO2ZaWhpJSUlZDhERERERERERkdxQsLAA9OnTh2vXrtGoUSPefPNNbt68ySeffEKHDh0wGAzs27cPKysrFi1axNy5c7l58yZTpkyhffv22NnZZTumCpyIiIiIiIiIiEheGUwmk6mgJ/Ek++OPP6hbty4xMTFUrFiRmJgYKlWqRMuWLXF3d2fRokU4Ozszd+7cuy4/TktLIy0tzXx+u8BJYmIijo6OD+FNRERERERERETkUZSUlISTk9M9xYm0Z+E9unHjBjY2NgU9jRypwImIiIiIiIiIiOSVgoU58Pb2platWlhZWfH1119Tu3Zt/P39GTt2LIcOHaJ48eL07duX9957DyurWz+ju7s7I0eOZOTIkeZxPD098fHxwd/fH4Bjx44xcOBAwsLCqFy5MjNnzgQgKCiIDz/80Nzv0KFD/PnnnxQpUoS0tDROnDhx1/lml1koIiIiIiI5exSLiagoiIiIFLRCu2eht7d3lqBcfliyZAk2NjaEhITg7+9Px44dadiwIYcOHWL+/Pl8+eWXvPfee/c83s2bN/Hx8aFIkSKEhoayYMECc/8lS5awadMmoqOjAUhISOD9998nPDwcS0tLPvvsMzIyMnIcW3sWioiIiIiIiIhIXimz8C48PDyYNWsWAF999RVubm58/PHHGAwGnnrqKf766y/Gjx/P5MmTsbD497jr1q1bOXnyJDt37sTV1RWA6dOn06ZNG5o0acJrr71mzgj08/MzVz62tbXl8uXLnDhxgqeeeirbsf38/Bg9erT5/PaehSIiIiIiIiIiIvdKwcK7qF+/vvnvyMhImjRpgsFgMF9r1qwZycnJnD17lgoVKvzreFFRUbi5uZkDhQCNGjUCYODAgfzwww/mAicvvfSSuc2ff/5J8eLFuXjxYo7BQu1ZKCIiIiKSO1ryKyIicqdCuwz5n5YuXUqDBg0oWrQorq6uvPrqq1y8eNF8f+fOnRgMBrZt20aDBg0oUqQITZs2JSoqKss47733HqVKlaJo0aJERUVx8OBBPD09zfd/+umnbJc+387os7CwYN++fVnmcvr0aVJSUrK037BhAx4eHtja2tKp063/gdKlSxcSEhLMbY4cOULz5s2xs7OjVq1aAHeMIyIiIiIiIiIi8iA9FsHC9PR0pk2bxqFDh1i3bh0xMTH4+vre0W7ixInMmTOHsLAwrKys6N+/v/nesmXLmD59OjNnzmT//v3Y2tpy+PBh8/0aNWqQlJSEyWQyXwsJCcHKygp7e3sAXFxciI+PN89l2bJlJCcns27dOgCqV6/OmTNn6NatGz4+Phw6dIgWLVpk+05DhgyhW7du/PHHHyxatAi4VQQlJ2lpaSQlJWU5RERERETk0eA+YeM9HSIiIgXtsViG/M+gX+XKlfnoo49o2LAhycnJODg4mO9Nnz7dHJybMGECnTp14vr169ja2jJv3jwGDBhAv379AKhYsWKW6sJDhgxhxowZ7Ny5k2PHjhEVFcW7775LlSpVzEuTW7VqRXBwMA4ODqSkpPDxxx9ja2vLiRMnSE5Opk2bNjg6OnLjxg1ee+01Ll26xLZt27J9p44dO5qzGF1cXADYsmWLeb7/KyAggClTpuThVxQRERERERERkSfdYxEs3L9/P/7+/hw6dIgrV66QmZkJQGxsLDVr1jS3q1OnjvnvMmXKAHDx4kUqVKhAVFQUQ4YMyTKuq6ureaxy5cpRu3Ztzp8/T926dSlevDgDBgwgIiLC3N7Pz4/9+/fTqlUrTCYTVlZW3LhxI8tcvLy8OHz4MA0bNqRy5cp88MEHdO7c+Y53WrNmjTkIebt4islk4vTp09SoUeOO9ipwIiIiIiLy6NL+iCIiUlgU+mXIKSkptGvXDkdHR5YtW8a+fftYu3YtgDlQd5u1tbX579uBuNvBwP+1c+dOvL29s1wrXrw4PXv2JC0tjbi4OGbMmMHNmzfN9y0tLTlw4AAvv/wyO3bsIDw8nE2bNmWZS9GiRenUqRNpaWlERkZSrFixLM9wd3fH2tqaChUq8NNPP/Hjjz8yadIkIiMjiY6OpkqVKtnO12g04ujomOUQERERERERERHJjUKfWXjs2DEuX77MjBkzzJl0YWFhuR6nevXq7Nu3jz59+piv7du3L0sbFxcX4uLizOc3b97kyJEjtGzZ8p7nYjAY2LFjBzExMZw4cYIRI0ZQvnx5zp49a25jNBopUqQI7du3B6BDhw65fh8REREREREREZHcKvSZhRUqVMDGxoZ58+Zx6tQpNmzYwLRp03I9zrBhw/jyyy9ZsmQJ0dHRvPfee/zxxx/mDES4tSfhxo0b2bhxI8eOHeONN97IUsH4XubSrFkzYmJiqFq1Kv/5z39wcXExZyfeflaXLl2IioqiT58+hIeHEx0dzfr16xk6dGiO81eBExERERGRwk/FTkREpKAV+mChi4sLwcHBrFy5kpo1azJjxgxmz56d63F69+6Nn58fY8aMoV69epw+fRpfX98sxUT69+9P37596dOnDy1atKBy5crmrMJ7nctbb73F+vXrqVSpEgkJCRgMBiZPngzcyihcsmQJGzdu5I033mDlypU0a9YMLy8vJk+ezKlTp6hVq1a28w8ICMDJycl8aL9CERERERERERHJLYPJZDIV9CQeVW3atMHV1ZWlS5dme9/b2xtPT0/mzp2bp+dMnz6dzz77jD///JNy5coxadIkhgwZwpdffsn48eP54YcfaNy4Mb6+vtjZ2TF//vw7xkhLS8tSvfl2gZPExETtXygiIiIiIiIi8gRLSkrCycnpnuJEhX7PwgclNTWVzz77jHbt2mFpacny5cv5+eef2bp16x1tb9y4gY2NzX0/69NPP6Vhw4aUKFGCkJAQPvjgA4YOHcrFixc5f/48Xl5eAAwYMICrV6/SunVrvvjiC1avXs22bduyHdNoNGI0Gu97TiIiIiIiIiIiIoV+GfK9yszMZNasWVStWhWj0UiFChWYPn06AOPHj6dOnTqMHTuWOnXqUKdOHTZs2MDq1atp3bo1/v7+eHp68sUXX1CpUiVsbW3x9fXll19+ISgoCIPBgMFgICYmBoBffvmFRo0aYTQaKVOmDBMmTCAjI8M8l2PHjtGyZUuqVKlC3759cXJyolOnThQrVgw7OzuCg4MxGAxs27aNr7/+mrS0NHr16kWjRo1o1KhRQfx8IiIiIiIiIiLyBHhiMgv9/PxYuHAhgYGBPPvss8TFxXHs2DEAihYtyldffUXZsmU5fPgwgwYNolevXnTt2tXc/8SJE6xevZo1a9ZgaWlJxYoVOX78OLVq1WLq1KnArT0Lz507R8eOHfH19eWrr77i2LFjDBo0CFtbW/z9/YFbhUycnJxYuXIlFStWZNasWXTq1MlcHTkwMBC4tb/hgAED2LBhA9u3b+fXX38lKiqK6tWr3/F+2S1DFhERERGRR8e9FC2JmdHpIcxEREQkZ0/EnoVXr17FxcWFjz/+mLNnz7Ju3TrCw8NzbD979mxWrFhBWFgYMTExVKpUCSsrK/766y9cXFzM7bLbs3DixImsXr2ayMhIc3XjTz/9lPHjx5OYmMi1a9coVqwYwcHBvPrqqwCkp6fj7u7OyJEjeeuttxgzZgyBgYHY2NhQqlQpunXrxjPPPMOrr75K5cqVCQ0NpWTJklnm7O/vz5QpU+54F+1ZKCIiIiLyaFCwUERECor2LPwfkZGRpKWl8fzzz+Pi4sKwYcOy3P/222/56KOPOHnyJMnJyWRkZNzxw5UpUyZLoPBuz2rSpIk5UAjQrFkzkpOTOXv2LAkJCaSnp9OsWTPzfWtraxo1akRkZCQWFha8+OKLBAYGcvbsWfMzDx48CMCOHTvuCBTCrczJ0aNHm89vFzgREREREZFHgwKBIiJSGDwRexba2dmZ/3ZwcKBEiRLm8927d9O7d286duzIDz/8wMGDB5k4cSI3btzIcYyHxdra2vz37eBjZmZmtm2NRiOOjo5ZDhERERERERERkdx47DILFyxYgL+/P2fPnsXC4lYs1MPDA0tLS1577TVat26dZRlySEgIjo6OzJ8/n6lTp1KjRg1cXV3v+owjR44wduxYdu3axd69e7l8+TKBgYGULFmSGjVqEBgYiIODA3Z2dnzxxRdkZGRgY2ND+fLlKVGiBDY2NmzZsoWwsDDWrVtHQkICmZmZvPbaa1me06FDB8LDwylZsiTPPvtsvvxeIiIiIiKSf+5l6fE/KftQREQK2mOXWdijRw8uX77Mjh07zNdSU1MB+OOPPzh06BBpaWns2bOHL7/8ksjISK5cuULXrl354YcfKFmyJJs3b84xgy8hIYFWrVrh5eVFt27dqFy5MjExMfj4+JCZmcmQIUNIS0vj888/JzU11Vxx+caNG2zbtg17e3tef/113nzzTTZt2sT06dN54YUXsLW1pX379gCcO3cOgBdffJE//viDb7/91rwMOSdpaWkkJSVlOURERERERERERHLjsQsWFitWjA4dOvDNN9+Yr61atYpSpUoxbtw4duzYQVRUFD179uTixYts2rSJ5s2b880339C1a1dKliyJm5tblsrC//Txxx/j5eXF+++/z3vvvUfRokUJCwsjJCSEnTt3Uq5cOWrXro3RaGThwoVMnTqVIUOG0KBBA7Zt2wZAmzZtSE9P5+rVqwwdOpQLFy6wfft2Xn75ZQDz3N944w08PDxo2rQp48ePB8hxXgEBATg5OZkP7VcoIiIiIiIiIiK59dgtQwbo3bs3gwYN4tNPP8VoNLJs2TJ69erFO++8Q0ZGhnkZclJSEm+//TbffPMNLVq0MPcfNWoUhw4dyjLmt99+C8ChQ4fYsWMHDg4O5nuWlpbA/w/kOTs706dPHz755BNzm5deeomLFy8CEBERQYUKFfjzzz+znf/FixfNy5Zvu120OqeMRxU4ERERERF59GhZsYiIFDaPZbCwc+fOmEwmNm7cSMOGDdm1axeBgYEPZOzk5GQ6d+7MzJkz77hXpkwZ89//LE4CtwqU3A70/VuxlOTkZP773/8yfPjwO+5VqFAh2z5GoxGj0fiv8xcREREREREREcnJYxkstLW1pWvXrixbtowTJ05QvXp16tWrd0c7R0dHypYtS0hISJbMwpCQEBo1apTt2PXq1WP16tW4u7tjZXV/P1+dOnU4e/Ysx48fp1q1atk+IyIigqpVq97zmGlpaVmWKGvPQhERERGRR1t2xU+UiSgiIgXtsduz8LbevXuzceNGFi1aRO/evXNsN3bsWGbOnMm3335LVFQUEyZMIDw8nBEjRmTb/s033yQ+Pp5evXqxb98+Tp48yebNm+nXrx83b968p7m1aNGC5557jm7durF161ZOnz7NTz/9xKZNmwAYP348v//+O0OHDiU8PJzo6GjWr1/P0KFDcxxTexaKiIiIiIiIiEhePZaZhQCtWrWiePHiREVF8eqrr+bYbvjw4SQmJvLWW29x8eJFatasyYYNG/Dw8Mi2/e1MxPHjx9O2bVvS0tKoWLEi7du3x8Li3mOvq1evZsyYMfTq1YuUlBSqVq3KjBkzzHN68cUXOX78OM2bN8dkMlGlShV69uyZ43jas1BERERERERERPLKYLpdOUMeGfHx8VhbW1O0aFHc3d0ZOXIkI0eOzNUYSUlJODk5kZiYiKOjY/5MVEREREREREREHnm5iRM9tpmFhVnx4sULegoiIiIiIiIiIvIEUmbhI8jb2xtPT0/Cw8P55ZdfstzL6Z8ruwInbm5uyiwUERERESlEsit6Aip8IiIieZObzMLHtsDJ42DNmjWUL1+eqVOnEhcXR1xcXI5tVeBERERERERERETySsuQH2HFixfH0tKSokWLsmnTJvr168e7776Lv7//HW1V4EREREREpPBTBqGIiBQ0BQsLidOnT1O6dOkc7xuNRoxG40OckYiIiIiIiIiIPG60DLmQ+Omnn6hfv35BT0NERERERERERB5jChY+4mxsbLh58yZ79+7FxcUlx3ZpaWkkJSVlOUREREREpHDJqcCJiIjIw6Jg4SPO3d2dX3/9lXPnzjF79uxs9ysEFTgREREREREREZG8U7DwETd16lRiYmKoUqXKXTML/fz8SExMNB9nzpx5iLMUEREREZEHQQVORESkoBlMJpOpoCchD15SUhJOTk4kJibi6OhY0NMREREREREREZECkps4kTILH3GrVq2idu3a2NnZUaJECVq3bk1KSkpBT0tERERERERERB5DVgU9AclZXFwcvXr1YtasWXTp0oWrV6+ya9cusksGTUtLIy0tzXyuAiciIiIiIoXP/RY40fJlERF5UB6bzEJvb29GjhyZL2PHxMRgMBgIDw9/YGMaDAbWrVt31/Hj4uLIyMiga9euuLu7U7t2bYYMGYKDg8Md46nAiYiIiIiIiIiI5JUyC++Bm5sbcXFxlCxZ8qE+t27dujz//PPUrl2bdu3a0bZtW7p3706xYsXuaOvn58fo0aPN50lJSQoYioiIiIgUMsoQFBGRgvbYZBbmJ0tLS1xdXbGyerixVUtLS7Zu3cpPP/1EzZo1mTdvHtWrV+f06dN3tDUajTg6OmY5REREREREREREcuOxyizMyMhg6NChLF26FGtra9544w2mTp2KwWBg6dKlBAUFERUVhb29Pa1atWLu3LmUKlUKgCtXrjB06FC2bNlCcnIy5cuX5+2336Zfv37ExMRQqVIlDh48iKenJwBHjx5l/Pjx/Prrr5hMJjw9PQkODqZKlSrs27ePt99+m4MHD5Keno6npyeBgYHUq1fvX9/BZDLh4eHB66+/zpgxYzAYDDRr1gx7e3umTp1K6dKlWbt2bZYsQhERERERebDud+/AvFJmoYiIFLTHKrNwyZIlWFlZsXfvXoKCgvjwww/54osvAEhPT2fatGkcOnSIdevWERMTg6+vr7nvpEmTiIiI4KeffiIyMpL58+fnuOz43LlzPPfccxiNRrZv387+/fvp378/GRkZAFy9epW+ffvy22+/sWfPHjw8POjYsSNXr17913cwGAz079+fxYsXExoayvvvv09YWBgfffQRNWrU4MqVK9SoUeOOfmlpaSQlJWU5REREREREREREcuOxyix0c3MjMDAQg8FA9erVOXz4MIGBgQwaNIj+/fub21WuXJmPPvqIhg0bkpycjIODA7GxsXh5edGgQQMA3N3dc3zOJ598gpOTEytWrMDa2hqAatWqme9bWFjw2muvceXKFZydnVmwYAHOzs788ssvvPDCC//6Hr6+vkyePJmYmBh+/fVX5s6dy99//42rqytz5syhQ4cOd/QJCAhgypQp9/pTiYiIiIiIiIiI3OGxChY2btwYg8FgPm/SpAlz5szh5s2bhIeH4+/vz6FDh7hy5QqZmZkAxMbGUrNmTd544w26devGgQMHaNu2LT4+PjRt2jTb54SHh9O8eXNzoPB/xcfHA1C/fn0uXbrEzZs3SU1NJTY29p7eo2zZsnTq1IkdO3awadMm1qxZg6+vLydPnqRIkSLZ9lGBExERERGRB0fLgUVE5En1WC1Dzsn169dp164djo6OLFu2jH379rF27VoAbty4AUCHDh34888/GTVqFH/99RfPP/88Y8aMyXY8Ozu7uz5vxowZwK1sv99//53w8HBKlChhfta9GDhwICtWrODatWssXryYnj175hgoBBU4ERERERERERGRvHusMgtDQ0OznN/eL/DYsWNcvnyZGTNmmLPtwsLC7ujv4uJC37596du3L82bN2fs2LHMnj37jnZ16tQhODiYN998k5UrV5KUlESDBg0IDAykYcOGHDlyBIC2bdvi7OzM8ePHuXTpEkFBQfj6+nLz5k0A+vfvz6uvvnpHBuBXX33FyJEjsbe3Z/78+WzatIlff/0VHx8fihYtytKlS++YU1paGmlpaeZz7VkoIiIiIlL45FdhFWVKiojIvXqsMgtjY2MZPXo0UVFRLF++nHnz5jFixAgqVKiAjY0N8+bN49SpU2zYsIFp06Zl6Tt58mTWr1/PiRMnOHr0KD/88EO2hUQAhg4dyvnz51m0aBETJ05k7dq1GAwGWrduTXx8POXLlwcgKiqKn3/+mYYNG2JhYcEbb7yBs7Mz169fB24VVTly5Ai9evUCMAcZe/ToQWZmJs888wx+fn54eHhQpUoVNm7cmGXvxX8KCAjAycnJfGgJsoiIiIiIiIiI5NZjFSzs06cP165do1GjRrz55puMGDGCwYMH4+LiQnBwMCtXrqRmzZrMmDHjjoxBGxsb/Pz8qFOnDs899xyWlpasWLEi2+fY2tqSkZGBh4cHb7/9Nj179jRf//LLLxk7diwALVq0oFOnTtSoUQM3Nzesra0ZPHgwtWvXNo9VuXJlc1XmLVu2ALeWOb/66qvEx8dz48YN+vXrx9dff02FChXw9vbOdk5+fn4kJiaajzNnzuTlpxQRERERERERkSeQwWQymQp6EoXNH3/8Qd26dYmJiaFixYrm6126dKFYsWL06dOHli1bUr58eRo1asR3332HpaUlP/30Ey+99BLbtm3j+++/58cff+Svv/7ixo0bpKWl0aVLF7777jsADh48SIMGDbC0tOTMmTO0adOGHj16MGnSpHuaY1JSEk5OTiQmJmr/QhERERERERGRJ1hu4kSPVWbho6ZTp078+uuvREREAHDy5EnKlClDSEgIixYtYsKECezYsYPw8HDatWtnLoCSlpaGi4sL9vb21KxZk7Nnz3L06FH69u1LRkZGQb6SiIiIiIiIiIg8xh6rAicPS5UqVbCxsSEkJMScWZiens6+ffsYOXKkud2MGTNwcHDg+eefp2nTpqxfvx64tWTY3t6eHj16MHbsWJYvX87ly5cpVqwY+/bt4+jRowwYMICSJUty6NAh/P39sbe3p2rVqmzZsiXbpcgqcCIiIiIiUvjlV4GTR4mKrYiIPNqUWXgf7O3teeONNxg7diybNm0iIiKCzp07c+7cObp3756l7ezZs+nduze7d++mdevWGAwGBg8ejLOzM6+99horVqygfv362NvbY29vT7t27XjxxRe5efMmX375JQAbN25k2LBhREZGUqdOnWznpAInIiIiIiIiIiKSV8osvE8zZswgMzOT1157jatXr+Lh4QGAs7PzHW0DAwO5efMmX3zxBSaTiYCAAP766y9WrlyJo6MjDRs2pHTp0ly5coX9+/ebi6Q4ODgA4ODgwOTJkzEajTnOx8/Pj9GjR5vPk5KSFDAUEREREREREZFcUYGTB2Tnzp20bNmSK1euZBswBHj11VdZsWIFmZmZ/1okZdGiReYx+/Xrx6JFi4Bby52tra3/dT4qcCIiIiIiIiIiIqACJ/kmLS2N4cOHU6pUKWxtbXn22WfZt29fju2Dg4OpUKECRYoUoUuXLqSkpNzRZsuWLdSrVw9bW1sqV67MsWPHyMzM5MqVK+zatQsAFxcXXnzxRezt7Zk+fXq+vZ+IiIiIiIiIiDzZtAw5F8aNG8fq1atZsmQJFStWZNasWbRr144TJ07c0TY0NJQBAwYQEBCAj48PmzZtYvz48eb7VapUwdramhEjRjB//nyaN29OVFQUnTt3xs3NDS8vLy5dugTAokWLmDVrFnPnzsXKKvt/MhU4EREREREp/LIrcKKCICIi8jApWHiPUlJSmD9/PsHBwXTo0AGAhQsXsnXrVr788kuWLVuWpX1QUBDt27dn3Lhx+Pr6kpCQwFNPPcWhQ4eAW0VSXF1dSUxMpHTp0vTs2ZOUlBRsbW35448/OH/+vHkZcvfu3enXr99d5xcQEMCUKVPy5+VFREREREREROSJoGDhPTp58iTp6ek0a9bMfM3a2ppGjRoRGRl5R/vIyEi6dOkC3Aocmkwm+vXrZw4WAqSmppKSkmIOPhoMBqytrblw4QKpqanmdl5eXv86PxU4EREREREp/JRFKCIiBU17Fj4ETk5OODs74+3tnWUTyZSUFN5//32io6Np1KgRffr04ejRo0RHR2Nra4u3tzcApUqV+tdnGI1GHB0dsxwiIiIiIiIiIiK5oWDhPapSpQo2NjaEhISYr6Wnp7Nv3z5q1qx5R3snJyemTZvGsmXL8PX1xcfHhz179gC3goR9+vThxo0b+Pv7s379euzs7HB2dqZq1apUrVqVzz77DA8PDwB8fX3p3r37w3lRERERERERERF5YmkZ8j2yt7fnjTfeYOzYsRQvXpwKFSowa9YsUlNTGTBgAF9//bW57TfffMO+ffvIzMwkLi6OpKQkTp06xZkzZwAYO3Ysv/zyC9OnT2fSpEksWLCAs2fPUqFCBVasWMHWrVtZsmQJS5cu5dVXX2Xy5Mk5Fja5TQVOREREREQebdkVL/lfWoYsIiIFTcHCXJgxYwaZmZm89tprXL16lQYNGrB582aKFStmbrNw4UKmT5/Ojz/+yMmTJ3n33XeJi4vDxcWFd955h2nTpvHll1/y9ddf06NHD7y8vJg8eTLHjx/n22+/JSoqinr16mFvb88LL7wAQOXKlfHx8bnr3FTgRERERERERERE8spgMplMBT2Jx4G3tzcnTpzg4sWLhISE0LBhQ/O929WQ161bx6FDh/D09OTPP/+kQoUK5jZeXl60aNGCuXPncvXqVZo1a0ZcXBzt27enffv2PPfcc9SvX5+9e/fi7u5+x/Ozyyx0c3MjMTFR+xeKiIiIiIiIiDzBkpKScHJyuqc4kfYsfIC8vLxwcXFh0aJF5CUGW7RoUQ4cOMDy5cspU6YMkydPpk6dOrRv3z7bQCGowImIiIiIiIiIiOSdgoUPUJUqVdixYwfr169n2LBhObaxtrYmNDTUfO3KlSscP348SzsrKytat27NrFmz2LNnDwkJCdkWUhEREREREREREXlQtGfhA1atWjV27NiBt7c3VlZWzJ07N8t9BwcHBgwYwNixYylRogSlSpVi4sSJWFj8/7jtDz/8wKlTp3juuecoVqwY7733HgCdO3fO8bkqcCIiIiIiUri5T9ioAiciIlLgFCzMB9WrV2f79u14e3tjaWl5x/0PPviA5ORkOnfuTNGiRXnrrbdITEw033d2dmbNmjX4+/tz/fp17O3tqVu3Lk8//XSOz1SBExERERERERERySsVOCkEfHx8KFGiBF9++WWObVTgREREREREREREspObAifKLCwErl27hq2t7V3bGI1GjEbjQ5qRiIiIiIiIiIg8jhQsvE+bNm3ivffe48iRI1haWtKkSROCgoKoUqUKAL///jtDhgzh2LFj1KpVi3feeYcuXbpw8OBBPD09AThy5Ahjx45l165d2Nvb07ZtWwIDAylZsiQAq1atYsqUKURERLBz506ioqJYv3499vb2BfXaIiIiIiKSj9wnbLznttrfUERE8oOqId+nlJQURo8eTVhYGNu2bcPCwoIuXbqQmZlJUlISnTt3pnbt2hw4cIBp06Yxfvz4LP0TEhJo1aoVXl5ehIWFsWnTJi5cuMDLL78MQFxcHL169aJ///6MHz+eSpUq0bVrV3JaNZ6WlkZSUlKWQ0REREREREREJDeUWXifunXrluV80aJFuLi4EBERwW+//YbBYGDhwoXY2tpSs2ZNzp07x6BBg8ztP/74Y7y8vHj//fezjOHm5sbx48dJTk4mIyODrl27kpSUxAcffECvXr1wcHDIdj4qcCIiIiIiIiIiInmlAif3KTo6msmTJxMaGsqlS5fIzMwkJSWFjRs3snXrVg4dOsT27dvN7f/44w/q1q3LwYMHSUpK4pVXXiEuLg4AW1tbc9XklJQUunfvTmRkJJGRkZhMJtzc3DCZTIwaNYpRo0ZlOx8VOBERERERERERkezkpsCJliHfp86dOxMfH8/ChQsJDQ0lNDQUgBs3bvxr35SUFOzs7GjcuDEAH374IeHh4YSHh3PgwAEuX77M5MmTOXr0KPPnzycjI4MLFy4wduxYTp48me2YRqMRR0fHLIeIiIiIiIiIiEhuaBnyfbh8+TJRUVEsXLiQ5s2bA/Dbb7+Z71evXp2vv/6atLQ0c4Xiffv2me936NCBV155hdWrVwNQpkwZqlatar7/z4zEp556inr16tGoUSOKFi1KcHAw06ZNu2NO2WUWioiIiIhI4XC7sImKloiISEFTZuF9KFasGCVKlGDBggWcOHGC7du3M3r0aPP9V199lczMTAYPHkxkZCSbN29m9uzZABgMBgDefPNN4uPjgVtLmk+ePMnmzZvp168fN2/eJDQ0lPfff5+wsDCio6OBWwHBpk2bZjungIAAnJyczIebm1t+/gQiIiIiIiIiIvIYUrDwPlhYWLBixQr2799PrVq1GDVqFB988IH5vqOjI99//z3h4eF4enoyceJEJk+eDNzanxCgbNmyhISEADBlyhRq167NyJEjcXZ2Zv/+/bz++utMmjSJRo0a0bt3b4oWLcqcOXPo0KFDtnPy8/MjMTHRfJw5cyaffwUREREREREREXncqMDJQ7Js2TL69etHYmIidnZ25usGg4G1a9fi4+Njvla5cmWqVavGrFmzGDFiBCdOnODQoUMUL178np+Xm40rRURERERERETk8ZWbOJH2LMwnX331FZUrV6ZcuXIcOnSI8ePH8/LLL2cJFObEwsKCl156iXfffZf4+HjCw8NzFSgUERERERERERG5HwoW5pPz588zefJkzp8/T5kyZejRowfTp0+/p74vvPACb731Fm5ubvz222+UKFHiX/uowImIiIiIiIiIiOSVgoX5ZNy4cYwbNy7be8nJyZw4ccJ8fvr0aXP24NatW/n0008pUqQISUlJREREUL16dQCWLFnC0qVLOXLkyB1jBgQEMGXKlPx5GREREREREREReSJoz8ICsHPnTlq2bHnH9T59+vDjjz9y6dKlbPu1a9eOSpUqMX/+/DvuZZdZ6Obmpj0LRURERERERESecLnZs1DVkAuAt7c3JpPpjmPmzJlcunSJ33//3XwtMDAQe3t7li9fTkhICP369ct2TKPRiKOjY5ZDREREREREREQkNxQsLADu7u7MnTs3yzVPT08+/vhj7OzsaNq0KfPnz6dDhw74+flhbW1Nr169aNWqFY0aNSqYSYuIiIiIiIiIyGNPexY+QqysrBgxYgQzZsxgzJgxvP3227z22mtMmzaNhIQEdu7cSVRUlHkPw39SgRMRERERkUeb+4SN/9omZkanhzATERGRnCmz8BFzu2Kyra0t7733HuPHj6ddu3bUq1cPJycnOnXqlO2ehgEBATg5OZkPNze3hz11EREREREREREp5JRZ+IixsLgVvw0MDKRPnz4AvPLKK9jb2+Po6MiOHTuy7efn58fo0aPN57cLnIiIiIiIyKNBWYMiIlIYKFhYACwsLPjfItTp6ek5tn/nnXdo0KABDRs2zLGN0WjEaDQ+sDmKiIiIiIiIiMiTR8uQC4CLiwtxcXHm86SkJE6fPp2lzZ49e8x/16pVCysrKwwGw0Obo4iIiIiIiIiIPHmUWVgAWrVqRXBwMJ07d8bZ2ZnJkydjaWmZpc3KlStp0KABzz77LMuWLSM1NZWUlJQcx1SBExERERGRwu/fiqBoKbOIiOQ3ZRYWAD8/P1q0aMELL7xAp06d8PHxoUqVKlnaTJkyhRUrVlCnTh2++uorJkyYwJEjR7IEBP9JBU5ERERERERERCSvDKb/3TxPCpzBYGDt2rX4+PiYr/3xxx/UrVuXmJgYKlaseEef7DIL3dzcSExMxNHR8WFMW0REREREREREHkFJSUk4OTndU5xIy5ALCTs7OwBSU1Ozva8CJyIiIiIiIiIiklcKFhYS8fHxwK3iKCIiIiIi8ni6256F2q9QREQeBgULH0HZrQw/cuQI5cuXp2TJktn2UYETERERERERERHJKxU4KSR27dpF27Ztc7yvAiciIiIiIiIiIpJXKnBSCFy/fh1XV1c2bdpE48aNs22jAiciIiIiIiIiIpIdFTh5zCxevJhGjRrlGCgEFTgREREREREREZG8U7CwAG3atIn33nuPI0eOYGlpSZMmTQgKCqJKlSrcuHGD0aNHs3r1ai5duoSLiwsBAQH4+fllO5b2LBQRERERKfzuVuDkfqkwioiI5Ib2LCxAKSkpjB49mrCwMLZt24aFhQVdunQhMzOTjz76iA0bNvDdd99x4sQJevbsybJly3IcS3sWioiIiIiIiIhIXimzMBu+vr4kJCSwbt26fH1Ot27dAAgODmbkyJGcOHECFxcXIiIiiI2NxcPDg2effRaDwYCTkxPJyck5juXn58fo0aPN57f3LBQREREREREREblXKnCSjcTEREwmE87Ozvn6nOjoaCZPnsy2bdv4+++/sbe3JyUlhY0bN+Lq6kqbNm0oUaIE7du354UXXrhrNeT/lZuNK0VERERERERE5PGVmzjRY7UM+caNGw9kHCcnp3wPFAJ07tyZ+Ph4fH19cXBwIDQ0FLj1HvXq1eP06dNMmzaNa9eu8fLLL9O9e/d8n5OIiIiIiIiIiDy5Hulgobe3N0OHDmXo0KE4OTlRsmRJJk2axO1kSHd3d6ZNm0afPn1wdHRk8ODBAPz22280b94cOzs73NzcGD58OCkpKQC8/fbbPPPMM3c8q27dukydOhW4tQzZx8fHfC8tLY3hw4dTqlQpbG1tefbZZ9m3b5/5fnBw8B3BxXXr1mEwGMznhw4domXLlhQtWhRHR0fq1q1LVFQU77zzDjVr1sTS0pIrV64A0KVLF8LCwnB0dKRnz54sXLiQV155xVzsJDtpaWkkJSVlOUREREREpHBxn7AxyyEiIvKwPdLBQoAlS5ZgZWXF3r17CQoK4sMPP+SLL74w3589ezZ169bl4MGDTJo0iZMnT9K+fXu6devGH3/8wbfffstvv/3G0KFDAejduzd79+7l5MmT5jGOHj3KH3/8wauvvprtHMaNG8fq1atZsmQJBw4coGrVqrRr1474+Ph7fo/evXtTvnx59u3bx/79+3n77bdxdnZmwYIFXLhwgYyMDPOeg3Xr1mXEiBEsX76cY8eOcfz4cZYsWYKFhQXFixfPdnwVOBERERERERERkbx6pPcs9Pb25uLFixw9etScpTdhwgQ2bNhAREQE7u7ueHl5sXbtWnOfgQMHYmlpyeeff26+9ttvv9GiRQtSUlKwtbXF09OTbt26MWnSJOBWtuH27dvZs2cPkLXASUpKCo6Ojnh5eREWFgZAeno67u7ujBw5krFjx5oLlCQkJJifuW7dOrp06ULdunUJDw/H0dGRefPm0bdvX3Obn3/+meHDhxMdHU1mZibbt2/H29ubMWPG8Omnn+Lh4cGJEyeAW5WTK1WqxKlTp7L9rdLS0khLSzOf3y5woj0LRURERERERESebI/VnoWNGzfOspy3SZMmREdHc/PmTQAaNGiQpf2hQ4cIDg7GwcHBfLRr147MzExOnz4N3Mry++abbwAwmUwsX76c3r17Z/v8kydPkpmZmSWjz9ramkaNGhEZGXnP7zF69GgGDhxI69atmTFjBidPnqR169ZERESwcOFCihYtSosWLTCZTEyfPp0iRYowYcIEkpOT6d+/P5UqVbrrP6bRaMTR0THLISIiIiIiIiIikhtWBT2BvLK3t89ynpyczH//+1+GDx9+R9sKFSoA0KtXL8aPH8+BAwe4du0aZ86coWfPnqxatYopU6YQERGBpaUlrVu3pnz58gBs3brVHLTcsWMHAGFhYVSrVo2YmBgyMjKYNGkSkydPxtramq1btwK3gpe3+wUEBGA0Gvn++++ZOHGiee7lypUzBz8BbGxseOqpp+jbty8DBw4kIyODNm3acObMmQf504mIiIiIiIiIiGTxyAcLb1cIvm3Pnj14eHhgaWmZbft69eoRERFB1apVcxyzfPnytGjRgmXLlnHt2jXatGnDzZs36dWrF7NmzSIkJIT4+Hi6du1Kt27dWLp0KbVq1WLz5s0AFC1alH379lGrVi0mT57M8ePH6d+/PwsWLKBo0aKMGzfOHAh8+umn+fnnn4FbVZbt7Oz48ccfcXV1pUqVKnz55ZcMGzaMqKgo4uPjKV68ON999x2hoaFkZGTw1ltv8eGHH7Jz506qVKmS4ztltwxZREREREQevrwUJomZ0ekBzkRERCT3HvllyLGxsYwePZqoqCiWL1/OvHnzGDFiRI7tx48fz++//87QoUMJDw8nOjqa9evXmwuc3Na7d29WrFjBypUr6d27N3FxcWRkZNC1a1ccHBxwdHRkyJAhlC5dmurVq3P8+HHCw8OJj4/nzTffJDU1leXLl9O0aVNefPFFihQpQrVq1Vi6dCnffPMNy5YtA8DKygonJyfee+89QkNDWbVqFb///ju2trY0adIEDw8PXnnlFUwmEz169ABg7ty5DBo0iCZNmjBnzhz69evH008/fdffSQVOREREREREREQkrx75zMI+ffpw7do1GjVqhKWlJSNGjGDw4ME5tq9Tpw6//PILEydOpHnz5phMJqpUqULPnj2ztOvevTtDhw7F0tISHx8f7OzseP7556lduzbFixfH2dmZK1euUKxYMerXr8/169d57bXXuHr1Kg0aNGDz5s1s2bKFjz76iJMnT5KRkUFISIh5D0R/f3/zPC0tLbl8+TJ9+vQxByVjY2P5+OOP+eSTT0hPTzfPHSAyMpLXX3+d+vXr8/vvv9O/f3+++eYb8/Ln7Pj5+ZmrKcP/L3AiIiIiIiIPl7IDRUSkMHvkg4XW1tbMnTuX+fPn33EvJiYm2z4NGzZky5Ytdx3X2dmZ69evZ7m2detWfv/9d7Zs2cLatWupXr06oaGhWFpaUqdOHdatW2duu3v3bnr37s2UKVNo164dTk5OrFixgjlz5vD9998DcO7cOdatW4eNjQ3Lly8HYObMmcybN4+dO3dmO6d/OnfuHLVr16Zhw4bmgiw5MRqNGI3Gu7YRERERERERERG5m0c+WPgwGQwGmjVrRrNmzZg8eTIVK1Zk7dq12NjYZClAAvD7779TsWJFJk6caL72559/ZmmTXb969epx/vx5rKyscHd3N1/39vbG09OTuXPnkpqayuzZs4mOjsZkMlGhQgWsrKxU4VhERERERERERPKVgoX/JzQ0lG3bttG2bVtKlSpFaGgof//9NzVq1OD69ets3ryZqKgoSpQogZOTEx4eHsTGxrJixQoaNmzIxo0bWbt2bZYx3d3dOX36NOHh4ZQvX56iRYvSunVrmjRpgo+PD7NmzaJatWr89ddfnD59mjJlygC3gpaHDx+mYsWKfPbZZ3zwwQds376dp556Ksf5q8CJiIiIiEjhl1NxFC1tFhGRh+WRDhZmt1Q3vzg6OvLrr78yd+5ckpKSqFixInPmzKFDhw40aNCAnTt30qBBA5KTk9mxYwcvvvgio0aNYujQoaSlpdGpUycmTZqEv7+/ecxu3bqxZs0aWrZsSUJCAosXL8bd3Z3ffvuNwYMH069fP/7++29cXV1JS0ujSJEiALi6ulKsWDHOnj1Ljx496NatG0WKFCE5OTnH+QcEBDBlypT8/plEREREREREROQxZjCZTKaCnsTj7J/Li+FWALRly5ZcuXIlyx6F/2zn7u7Om2++ydixY83369atS7du3Zg8eXK2z8kus9DNzY3ExEQtXxYREREREREReYIlJSXh5OR0T3GiRzqz8ElmbW2d5dxgMJCZmZljexU4ERERERERERGRvLIo6Ak8znx9ffnll18ICgrCYDBgMBjMFZz3799PgwYNKFKkCE2bNiU1NTVL38OHD1OvXj1sbW2pXLky58+fv2uwUERERERECr+c9iwUERF5WBQszEdBQUE0adKEQYMGERcXR1xcHG5ubgBMnDiROXPmEBYWhpWVFVFRUeZ+aWlpLFu2jBEjRhAREcHnn39OfHw8v/76a47PSktLIykpKcshIiIiIiIiIiKSGwoW5pK7u7t5/8F/a+Pk5ISNjQ1FihTB1dUVV1dXLC0tAZg+fTotWrSgZs2aTJgwgaSkJDIyMgBISEigdevW9O3bl8qVK9OmTRvKlCnD/v37c3xmQEAATk5O5uN2UFJEREREREREROReac/CfLBv3z7s7e3v2qZOnTrmv8uUKQPAuHHjAHBwcGDbtm04ODgAkJqaipWVFenp6aSmppqrJv+Tn58fo0ePNp/fLnAiIiIiIiKFR8yMTgU9BRERecIpszAfuLi4ZBvQ+6d/FjAxGAwA5j0Jk5OTmTJlCuHh4YSHh1OmTBnGjh1LdHQ0tra22Y5nNBpxdHTMcoiIiIiIiIiIiOTGExksXLVqFbVr18bOzo4SJUrQunVrUlJS8Pb2ZuTIkVna+vj44Ovrm+Xa1atX6dWrF/b29pQrV45PPvkky/1/LlW2sbEhNTWVgQMH4uLiQseOHYFbBUz+14svvoitrS0ZGRl88sknVK1alYEDB/LXX3/x/vvv4+HhYV7G/L+0Z6GIiIiISOHkPmGj+RARESloT1ywMC4ujl69etG/f38iIyPZuXMnXbt2xWQy3fMYH3zwAXXr1uXgwYNMmDCBESNGsHXr1mzburu78+233xITE8Py5cv57LPPAHjppZeIj48HYNeuXQC0bNmSgwcP8tFHH3H27FmmTJnC+++/T+nSpenRowcjRowgLi4u2+doz0IREREREREREcmrJzJYmJGRQdeuXXF3d6d27doMGTLEvD/gvWjWrBkTJkygWrVqDBs2jO7duxMYGGi+f/78edauXQvAmjVruHr1Kr///jtt2rQxLzV2cnJi1apVAHzxxRcAjBo1iho1avDGG2/w448/smXLFlq3bs3FixcJDQ3l6aefxtXVNds5+fn5kZiYaD7OnDlzX7+PiIiIiIiIiIg8uZ64YGHdunV5/vnnqV27Nj169GDhwoVcuXIlV2M0adLkjvPIyMhs244ZMwaDwYCFhQX29vYMHToUe3t7YmNjOXnyJADR0dEsWrQId3d3c7927doREhJCamoqFSpUYNSoUQwaNCjHOWnPQhERERGRwilmRifzISIiUtCeuGrIlpaWbN26ld9//50tW7Ywb948Jk6cSGhoKBYWFncsR05PT8/T8wwGA2XKlGHnzp133HN2dgbAzs4uT88QERERERERERF5EJ64YCHcCuA1a9aMZs2aMXnyZCpWrMjatWtxcXHJsifgzZs3OXLkCC1btszSf8+ePXec16hRI9tnffjhh1y6dAkrKyvc3d0xGAwsXLiQjRs3snnzZsqVK0fZsmXZtm0b/fr1A+DIkSOMHTuWXbt2YW9vz7Vr1/61YElaWhppaWnmcxU4EREREREpfO63yImyEkVE5EF54pYhh4aG8v777xMWFkZsbCxr1qzh77//pkaNGrRq1YqNGzeyceNGjh07xhtvvEFCQsIdY4SEhDBr1iyOHz/OJ598wsqVKxkxYkS2z7O1taVixYr4+PiwZcsWAN5++21MJhPLli2jY8eOnDhxguXLl/Puu+8SGhrKc889x/Xr1wkLC2PTpk1YW1szb948zp07x6VLl7J9jgqciIiIiIiIiIhIXj1xmYWOjo78+uuvzJ07l6SkJCpWrMicOXPo0KED6enpHDp0iD59+mBlZcWoUaPuyCoEeOuttwgLC2PKlCk4Ojry4Ycf0q5du2yfZzAYGDx4MH/99Zc5czAtLQ0HBwcaNGhA27Zt+eijj3jnnXfYsGED06dPx8LCguLFi/PUU08BsHjxYl566SUqV67MjRs3sq3c7Ofnx+jRo83nSUlJChiKiIiIiIiIiEiuGEzZRZ4kT4xGI82bN+fnn3/G3d2dkSNHMnLkSOBW8PC7776jR48e5vZOTk7MmzePPn360KNHD9avX4+NjU2WMVNSUvjxxx/p0KHDPc0hKSkJJycnEhMTVexEREREREREROQJlps40ROXWZifUlNTCQkJ4caNG5QoUSLHdtbW1lnODQYDmZmZACQnJ9O5c2dmzpx5R78yZco82AmLiIiIiIiIiIj8g4KFD9CCBQuYNm0a5cqVu+/AXr169Vi9ejXu7u5YWd37P48KnIiIiIiIFH73W+DkblT8REREcuOJK3CSn0aOHMnly5epWrUqW7ZswcfHJ9djvPnmm8THx9OrVy/27dvHyZMn2bx5M/369ePmzZs59lOBExERERERERERyStlFuaTFi1aEBAQgKenZ676lS1blpCQEMaPH0/btm1JS0sjPT2dpk2bYmGRc2xXBU5ERERERAo/ZQGKiEhBU7AwH+zcudP8d0xMTJZ72dWTSUhIyHLu4eHBmjVrzOfu7u506dIFg8GQ4zONRiNGo/G+5isiIiIiIiIiIgJahpxvfH19zcuQ3d3dmTt3bpb7np6e+Pv7A7cCiP7+/lSoUAGj0UjZsmUZPnw4AN7e3vz555+MGjUKg8Fw14ChiIiIiIiIiIhIXiiz8BGwevVqAgMDWbFiBU8//TTnz5/n0KFDAKxZs4a6desyePBgBg0alOMYKnAiIiIiIlI43K2IiZYhi4hIQVOw8BEQGxuLq6srrVu3ZtCgQSQkJLBu3ToAihcvjqWlJZGRkZQpUybbZcxwq8DJlClTHuKsRURERERERETkcaNg4SOgR48ezJ07l8qVK9OqVSu6d+9ORkYGVlZWeHt7Ex8fz+XLl2nRokWOY6jAiYiIiIhI4aDsQREReZRpz8KHwMLC4o6MwPT0dPPfbm5uREVF8emnn+Lk5MTYsWN57rnnsrQ5duwYs2bNyvEZRqMRR0fHLIeIiIiIiIiIiEhuKFj4ELi4uBAXF2c+T0pK4sSJE3z66afY2dlRokQJOnfuTKtWrUhKSqJmzZrs3r2brl278ssvv3D16lViY2N55pln7qiuLCIiIiIiIiIi8qBoGfJD0KpVK4KDg+ncuTPOzs6MGzeOGzdu4OXlxeeff87XX3/NsWPHOHr0KFevXuXs2bPY2dnx0UcfcfnyZWJjY6lVqxYBAQHY2dll+wwVOBERERERKTxyKnKiJcoiIlLQlFl4H7y9vRk5cuQ9t/fz86NFixa88MILdOrUicaNGwNQo0YN3N3dqVWrFidOnKBNmzZs2LCBmJgYvLy8qFSpEjY2NjRr1oy4uDiaNGmCq6trts8ICAjAycnJfGi/QhERERERERERyS1lFuaTtLQ0HBwcAHB0dGTFihXmezdv3mTXrl0sWrSIc+fO0bZtW3766SeKFSuGr68v27dvx8XFxdy+TJkyfPvtt3d9ngqciIiIiIgUHsogFBGRR5UyCx+wjIwMIiIi2L17N08//XS2bSwtLdm6dSs//fQTNWvWZN68eVSvXp3Tp0/f93NV4ERERERERERERPJKwcL7lJGRwdChQ3FycqJkyZJMmjQJk8nEkSNH8PLy4sqVK0yfPh1XV1deffVVLl68mKV/REQEAQEBBAYGcurUKRITE1m4cOEdz7GxseGvv/7CxcWFmTNnPqzXExERERGRh8h9wsYc9zEUERF5mBQsvE9LlizBysqKvXv3EhQUxIcffsgXX3yBp6cn8+fPZ8WKFfzxxx+sW7eOmJgYfH19zX2///57GjZsSGpqKt988w3Tp08nMzOTSpUq3fEcGxsb1qxZw6hRoxgwYACZmZnZzictLY2kpKQsh4iIiIiIiIiISG4YTCaTqaAnUdh4e3tz8eJFjh49isFgAGDChAls2LCBiIiIO9qHhYXRsGFDrl69ioODA4MHD+brr7/GwcGBpKQkKlasyLBhwxg6dKh5z8J69erRt29f/vOf/1CuXDnOnj3LtWvXOH36NO7u7nc8w9/fnylTptxxPTExUUuSRUREREQecbezCrWXoYiI5IekpCScnJzuKU6kYOF98Pb2pnLlyixatMh8bf369XTv3p3r168THh6Ov78/hw4d4sqVK2RmZpKamsrRo0epWbMmHTt2xMXFhSVLlmQ7vq+vL5s3b+bvv/9m1apV+Pj4/Ouc0tLSSEtLM5/fLnCiYKGIiIiIiIiIyJMtN8FCLUN+wK5fv067du1wdHRk2bJl7Nu3j7Vr1wJw48YNAOzs7P51nCpVqvDUU0+xaNEi0tPT/7W9CpyIiIiIiIiIiEheWRX0BAqr0NDQLOd79uzBw8ODY8eOcfnyZWbMmIGbmxtwaxnyP9WpU4clS5aQnp6OtbV1tuOXLFmSNWvW4O3tzcsvv8x3332XY1vIPrNQREREREQKl9wWOdGyZRERedCUWXifYmNjGT16NFFRUSxfvpx58+YxYsQIKlSogI2NDfPmzePUqVNs2LCBadOmZek7dOhQkpKSeOWVVwgLCyM6OpqlS5cSFRWVpV2pUqXYvn07x44do1evXmRkZOQ4n4CAAJycnMzH7UCliIiIiIiIiIjIvVKw8D716dOHa9eu0ahRI958801GjBjB4MGDcXFxITg4mJUrV1KzZk1mzJjB7Nmzs/QtUaIE27dvJzk5mRYtWlC/fn0WLlyYbeagq6sr27dv5/Dhw/Tu3ZubN29mOx8/Pz8SExPNx5kzZ/LlvUVERERERERE5PGlAiePqdxsXCkiIiIiIiIiIo8vFTh5SLy9vRk6dChDhw7FycmJkiVLMmnSJG7HX5cuXUqDBg0oWrQorq6uvPrqq1y8eNHc/8qVK/Tu3RsXFxfs7Ozw8PBg8eLFwK1iKEOHDqVMmTLY2tpSsWJFAgICCuQ9RURERERERETkyaACJ3m0ZMkSBgwYwN69ewkLC2Pw4MFUqFCBQYMGkZ6ezrRp06hevToXL15k9OjR+Pr68uOPPwIwadIkIiIi+OmnnyhZsiQnTpzg2rVrAHz00Uds2LCB7777jgoVKnDmzJm7Li1WgRMRERERkcLpn0VNVLBEREQKmoKFeeTm5kZgYCAGg4Hq1atz+PBhAgMDGTRoEP379ze3q1y5Mh999BENGzbEYDBw5coVYmNj8fLyokGDBgC4u7ub28fGxuLh4cGzzz6LwWCgYsWKd51HQEAAU6ZMyZd3FBERERERERGRJ4P2LMwDb29vKleuzKJFi8zX1q9fT/fu3bl+/Trh4eG0bduWGzduAJCZmUlqaipwawny7t276datG9WqVaNt27b4+PjQtGlTAA4cOECbNm0oUaIE7du3x8bGhjlz5pDTP1d2mYVubm7as1BERERERERE5AmnPQsfAdevX6ddu3ZYWVnRvn179u3bx9q1a7O06dChA3/++SejRo3ir7/+4vnnn2fMmDEA1KtXj9OnTzNt2jSuXbvGxx9/TMmSJXN8ntFoxNHRMcshIiIiIiIiIiKSGwoW5lFoaGiW8z179uDh4cGxY8e4fPkyFy9eZNWqVdSoUYN27dqZ2+3fv58GDRpQsWJFPv/8cyZNmsTcuXNZsGABcCtD0dvbm759+7Jt2zYcHBy4dOkS8fHxD/X9RERERERERETkyaE9C/MoNjaW0aNH89///pcDBw4wb9485syZQ4UKFbCxsaFkyZI0b96cDh06MG3aNE6ePAnAxIkTefrpp/H19WXJkiW88sorlC9fnho1arBr1y569uxJv379mDlzJmfPnmX48OE4ODjg7Oyc7TxU4EREREREpPD7Z7GTB0VFU0REJDcULMyjPn36cO3aNRo1aoSlpSUjRoxg8ODBGAwGgoOD6d+/P6tWrSI2NpbAwEBefPFFAKZPn87u3bv59NNPOXXqFGlpaZQvX54VK1YwaNAgOnbsyJ49e1i6dCmWlpZUrFiRCxcuYGGRfTKoCpyIiIiIiIiIiEheqcBJHnh7e+Pp6cncuXPvuc3OnTtp2bIlFy9exMXFBYCDBw9Sr149/vzzTypUqICLiwvJyclYWlqax7l58ybXr18nJSWFIkWK3PEcFTgREREREREREZHs5KbAiTILC4i1tbX5b4PBAEB6ejqZmZkkJyczZcoUunbtekc/W1vbbMczGo0Yjcb8mayIiIiIiIiIiDwRHtsCJ97e3gwdOpShQ4fi5OREyZIlmTRpErcTKa9cuUKfPn0oVqwYRYoUoUOHDkRHR5v7BwcH4+zszLp16/Dw8MDW1pZ27dpx5syZLM85deoUDRs2xNbWlpIlS9KlSxfzvStXrnD8+HHmz59vfsbZs2fveMbOnTsBqFatGrGxsZhMJr777jvef/99vLy8aNWqFdu3b6dq1ao5LkMWERERERERERHJq8c68rRkyRKsrKzYu3cvQUFBfPjhh3zxxRcA+Pr6EhYWxoYNG9i9ezcmk4mOHTuSnp5u7p+amsr06dP56quvCAkJISEhgVdeecV8f+zYsfz444907NiRgwcPsm3bNho1amS+7+vry7Vr16hcuTKrVq0iLS2N8ePHZ5ljamoqwcHBAGzZsoVSpUrh5OTE/v37uXDhAt999x3du3fn9ddf54033sjxXdPS0khKSspyiIiIiIjIo899wkbzISIiUtAe62XIbm5uBAYGYjAYqF69OocPHyYwMBBvb282bNhASEgITZs2BWDZsmW4ubmxbt06evToAdxaFvzxxx/zzDPPALeCjzVq1GDv3r00atSI6dOn88orr2QpLFK3bl0AoqOj2bBhA8uXLycoKIju3btz7dq1LMuPbz/Dz8+PV155hSpVqlCkSBHs7Oxo1aoVCQkJdOvWDWtraywtLbl69WqO76oCJyIiIiIiIiIiklePdWZh48aNzfsBAjRp0oTo6GgiIiKwsrIyBwEBSpQoQfXq1YmMjDRfs7KyomHDhubzp556CmdnZ3Ob8PBwnn/++WyfHRkZiZWVFT169GD37t2kpqZiMpl4+umnmTJlCs7OzgDY2Njw8ssvYzKZcHd3B+DGjRucPHmS8PBwHBwcaNOmDTVq1KBatWo5vqufnx+JiYnm43+XS4uIiIiIyKMpZkYn8yEiIlLQHuvMwvxmZ2f3QMb4Z0AT4O+//6ZKlSqEhYWRmZnJzp07iY6OJjMzM8dxVOBERERERERERETy6rHOLAwNDc1yvmfPHjw8PKhZsyYZGRlZ7l++fJmoqChq1qxpvpaRkUFYWJj5PCoqioSEBGrUqAFAnTp12LZtW7bPrlGjxj09Iyd16tShRo0aPP3007z55pt3BBRFREREROTxo70LRUSkoD3WwcLY2FhGjx5NVFQUy5cvZ968eYwYMQIPDw9eeuklBg0axG+//cahQ4f4z3/+Q7ly5XjppZfM/a2trRk2bBihoaHs378fX19fGjdubC5i8u6777J8+XLeffddIiMjOXz4MDNnzgS452dkp0iRImzdupWYmJh7flcVOBERERERERERkbx6rIOFffr04dq1azRq1Ig333yTESNGMHjwYAAWL15M/fr1eeGFF2jSpAkmk4kff/wxSwGSIkWKMH78eF599VWaNWuGg4MD3377rfm+t7c3K1euZMOGDXh6etKqVSv27t0L3KqEfOPGjX99xv9asmQJycnJNGvWjBYtWhAREWG+9/vvv1OrVq1s+wUEBODk5GQ+3Nzc8vTbiYiIiIiIiIjIk8dgMplMBT2J/ODt7Y2npydz5869r/7BwcGMHDmShISE++qfmJiIyWQyFzK5F5mZmZQrV45JkyYxZMgQvvzyS8aPH4+1tTXjx48nPDwcOzs75s+ff0fftLQ00tLSzOdJSUm4ubmRmJiIo6Pjfb2DiIiIiIiIiIgUfklJSTg5Od1TnEgFTvKJk5NTrvtcvHiR8+fP4+XlBcCAAQO4evUqo0eP5sCBA6xduzbHPRJV4ERERERERERERPLqsV6GXJB8fX3x8fEBwN3d/Y4MR09PT/z9/QEwmUz4+/vTsGFDANq1a8fw4cMBWLduHSaTiaVLl5KcnMwzzzyT7fO0Z6GIiIiISOGnAiciIlLQHttg4c6dO+97CTLcCvbd7xLk3Fq9ejWBgYEsWLCAIUOGcOPGDf7++2+io6MZO3YsdnZ22NjY4OzszK5du7IdQ3sWioiIiIiIiIhIXj22wcJHSXJyMn5+fjnej42NxdXVldatWzNv3jyCgoI4cuQIderU4fXXX8fKyopJkybxzDPP4Ovry6VLl+4Yw8/Pj8TERPNx5syZ/HwlERERERERERF5DGnPwofA3t6eESNG5Hi/R48ezJ07l8qVK9O+fXs6duzIwYMHsbK69c/j7u6Og4MDmzZtynEM7VkoIiIiIlL4xczoVNBTEBGRJ5wyCx8CS0tLHBwcslxLT083/+3m5kZUVBSffvopdnZ2DBkyhOeeey5LGxERERERERERkfymzMJ7kJmZycyZM1mwYAHnz5+nWrVqTJo0ie7du7Nz505atmzJzz//zPjx44mIiMDT05PSpUub+xsMBiZMmMCoUaOAW+Wqo6OjCQoK4v3336dSpUq88847vPbaa3Tu3Jlz586xZs0aDh8+TL169bCxseHGjRuUKlWKgIAABgwYcMcc09LSSEtLM5+rwImIiIiISOHzIIubKEtRRETuhzIL70FAQABfffUVn332GUePHmXUqFH85z//4ZdffjG3mThxInPmzCEsLAwrKytCQkLM95566inS09PZtWsXhw8fpk2bNqSnp9O0aVOOHDmCl5cXffv2ZdGiRZw6dYqiRYsCmJcVu7u7s2rVKpKTk3n++edznKMKnIiIiIiIiIiISF4YTCaTqaAn8ShLS0ujePHi/PzzzzRp0sR8feDAgaSmpjJ48GBzZuHtQN6PP/5Ip06deOGFF/j++++ZP38+I0aMwM7ODicnJ4xGI/Hx8QwbNgx/f3/WrVvHgAEDSEpKwmg0Urt2bf766y/efPNNxo0bx549e2jXrh3JyclkZmaS3T9ZdpmFbm5uJCYm4ujomP8/lIiIiIiIiIiIPJKSkpJwcnK6pziRliH/ixMnTpCamkqbNm2yXL9x4wZeXl7m8zp16pj/LlOmDIC5QImdnR1FihQhISEBgOLFixMYGEjfvn0B8PHx4c8//yQoKIhTp04BEBgYyIIFCxg3bhyVKlUiNTWVnTt30rx582znqQInIiIiIiIiIiKSVwoW/ovk5GQANm7cSLly5bLcMxqNnDx5EgBra2sAMjIyzAE/Dw+P+35unz59mDBhArt37+b333+nUqVKOQYKRUREREREREREHgQFC/9FzZo1MRqNxMbG0qJFizvu3w4W3nbkyBH+85//ANC7d+9sx6xRowYhISHmzEKAkJAQatasaT4vUaIEPj4+LF68mN27d9OvX7+7zlMFTkREREREHi33U6xERUlERKSgKVj4L4oWLcqYMWPo378/ffr0AeCbb77h0qVLODo6UrFixSztPT092b17N15eXjg5OWU75tixY3n55Zfx8vKidevWfP/996xZs4aff/45S7uBAwfSqVMn0tPTefvttwkNDWXdunXZjhkQEMCUKVPy/sIiIiIiIiIiIvLEUoGTe2AymfDw8ODSpUukpqbi7OxMvXr1ePbZZ/nmm2+IjIzE3t6eihUr0qZNG3x9ffHy8uKDDz5g7Nixd4xnNBoJDAxk9uzZxMTEkJmZCdxaylyhQgX69OnD22+/jaWlJZUqVaJq1aqUKFGCtLS0HIOFKnAiIiIiIiIiIiLZyU2BE4uHNKdCzWAwUL58eXx9fblx4wYXL15k7NixTJ06lX79+nHs2DEOHDjA9OnTSU9Px9PTE5PJRMmSJXF0dGTmzJmUKVOGuLg44uLi+PPPP3njjTc4efIkr732Gu3btycuLo7o6Gjeeust/P39+eCDD0hJSeHKlSsMGTIEOzu7u87RaDTi6OiY5RAREREREREREckNLUO+T99//z3NmjXLkjlYrVo1fHx8srQzmUyEhIRQu3ZtXF1dsx3LaDSa773xxhusWbOG1atXk5CQgLOzMy+++CIbNmzIt3cREREREREREREBBQvvm6urK9988w1HjhyhVq1aObZLTk7mzz//JDg4OFfj79+/nwsXLhAcHIyVlRWRkZHmKsvZUYETERERERERERHJKy1Dvk/Dhg2jYcOG1K5dG3d3d1555RUWLVqUJWAHtzILT5w4wbPPPouDgwMODg506NAh2zFNJhM///wzu3btYsyYMZw5c4bnn38euBUMTElJyXE+AQEBODk5mQ83N7cH97IiIiIiIiIiIvJEUGbhfbK3t2fjxo2cPHmSHTt2sGfPHt566y2CgoLYvXs3RYoUAW5VUz5w4ECWvv+7/+APP/yAg4MD6enpZGZm8uqrr+Lv75+ljaenJ+7u7jnOx8/Pj9GjR5vPExMTqVChgjIMRURERERERESecLfjQ/dS51jBwjyqUqUKVapUYeDAgUycOJFq1arx7bff0q9fPwAsLCyoWrXqXcdo2bIl8+fPx8bGhrJly2Jllft/FqPRiNFoNJ/f/g+BMgxFRERERERERATg6tWrODk53bWNgoUPkLu7O0WKFLnrcuHs2Nvb/2tAMbfKli3LmTNnKFq0KAaD4YGOLfcnKSkJNzc3zpw5o2rVIvlA35hI/tN3JpK/9I2J5C99Y/IkM5lMXL16lbJly/5rWwUL75O/vz+pqal07NiRihUrkpCQwEcffUR6ejpt2rQxtzOZTJw/f/6O/qVKlcLCIv+2jLSwsKB8+fL5Nr7cP0dHR/0Xk0g+0jcmkv/0nYnkL31jIvlL35g8qf4to/A2BQvvU4sWLfjkk0/o06cPFy5coFixYnh5ebFlyxaqV69ubpeUlESZMmXu6B8XF4erq+vDnLKIiIiIiIiIiMhdKVh4n1q2bEnLli3v2sbX1xdfX9+7tgkODn5wkxIREREREREREcmD/FsH+xj69NNPcXBw4PDhww/tmbt27cLBwYFly5Y9tGdK/jAajbz77rtZCtGIyIOjb0wk/+k7E8lf+sZE8pe+MZF7YzDdS81k4dy5c1y7dg2AChUqYGNj81Cee+3aNc6dOweAg4ODli6LiIiIiIiIiEi+UbBQREREREREREREAC1DFhERERERERERkf+jYKGIiIiIiIiIiIgAChaKiIiIiIiIiIjI/1GwUERERERERERERAAFC0XyVXx8PL1798bR0RFnZ2cGDBhAcnLyv/bbvXs3rVq1wt7eHkdHR5577jlzNW4R+f/u9xsDMJlMdOjQAYPBwLp16/J3oiKFVG6/sfj4eIYNG0b16tWxs7OjQoUKDB8+nMTExIc4a5FH2yeffIK7uzu2trY888wz7N27967tV65cyVNPPYWtrS21a9fmxx9/fEgzFSmccvONLVy4kObNm1OsWDGKFStG69at//WbFHkSKFgoko969+7N0aNH2bp1Kz/88AO//vorgwcPvmuf3bt30759e9q2bcvevXvZt28fQ4cOxcJCn6vI/7qfb+y2uXPnYjAY8nmGIoVbbr+xv/76i7/++ovZs2dz5MgRgoOD2bRpEwMGDHiIsxZ5dH377beMHj2ad999lwMHDlC3bl3atWvHxYsXs23/+++/06tXLwYMGMDBgwfx8fHBx8eHI0eOPOSZixQOuf3Gdu7cSa9evdixYwe7d+/Gzc2Ntm3bcu7cuYc8c5FHi8FkMpkKehIij6PIyEhq1qzJvn37aNCgAQCbNm2iY8eOnD17lrJly2bbr3HjxrRp04Zp06Y9zOmKFDr3+40BhIeH88ILLxAWFkaZMmVYu3YtPj4+D2nmIoVDXr6xf1q5ciX/+c9/SElJwcrKKj+nLPLIe+aZZ2jYsCEff/wxAJmZmbi5uTFs2DAmTJhwR/uePXuSkpLCDz/8YL7WuHFjPD09+eyzzx7avEUKi9x+Y//r5s2bFCtWjI8//pg+ffrk93RFHllKVRLJJ7t378bZ2dn8f7AAWrdujYWFBaGhodn2uXjxIqGhoZQqVYqmTZtSunRpWrRowW+//fawpi1SaNzPNwaQmprKq6++yieffIKrq+vDmKpIoXS/39j/SkxMxNHRUYFCeeLduHGD/fv307p1a/M1CwsLWrduze7du7Pts3v37iztAdq1a5dje5En2f18Y/8rNTWV9PR0ihcvnl/TFCkUFCwUySfnz5+nVKlSWa5ZWVlRvHhxzp8/n22fU6dOAeDv78+gQYPYtGkT9erV4/nnnyc6Ojrf5yxSmNzPNwYwatQomjZtyksvvZTfUxQp1O73G/unS5cuMW3atHveHkDkcXbp0iVu3rxJ6dKls1wvXbp0jt/U+fPnc9Ve5El2P9/Y/xo/fjxly5a9I0gv8qRRsFAklyZMmIDBYLjrcezYsfsaOzMzE4D//ve/9OvXDy8vLwIDA6levTqLFi16kK8h8sjKz29sw4YNbN++nblz5z7YSYsUIvn5jf1TUlISnTp1ombNmvj7++d94iIiIvloxowZrFixgrVr12Jra1vQ0xEpUFoPIpJLb731Fr6+vndtU7lyZVxdXe/YSDcjI4P4+Pgclz6WKVMGgJo1a2a5XqNGDWJjY+9/0iKFSH5+Y9u3b+fkyZM4Oztnud6tWzeaN2/Ozp078zBzkcIhP7+x265evUr79u0pWrQoa9euxdraOq/TFin0SpYsiaWlJRcuXMhy/cKFCzl+U66urrlqL/Iku59v7LbZs2czY8YMfv75Z+rUqZOf0xQpFBQsFMklFxcXXFxc/rVdkyZNSEhIYP/+/dSvXx+4FajIzMzkmWeeybaPu7s7ZcuWJSoqKsv148eP06FDh7xPXqQQyM9vbMKECQwcODDLtdq1axMYGEjnzp3zPnmRQiA/vzG4lVHYrl07jEYjGzZsUHaGyP+xsbGhfv36bNu2zVxUKzMzk23btjF06NBs+zRp0oRt27YxcuRI87WtW7fSpEmThzBjkcLlfr4xgFmzZjF9+nQ2b96cZZ9ekSeaSUTyTfv27U1eXl6m0NBQ02+//Wby8PAw9erVy3z/7NmzpurVq5tCQ0PN1wIDA02Ojo6mlStXmqKjo03vvPOOydbW1nTixImCeAWRR9r9fGP/CzCtXbv2IcxWpPDJ7TeWmJhoeuaZZ0y1a9c2nThxwhQXF2c+MjIyCuo1RB4ZK1asMBmNRlNwcLApIiLCNHjwYJOzs7Pp/PnzJpPJZHrttddMEyZMMLcPCQkxWVlZmWbPnm2KjIw0vfvuuyZra2vT4cOHC+oVRB5puf3GZsyYYbKxsTGtWrUqy39nXb16taBeQeSRoMxCkXy0bNkyhg4dyvPPP4+FhQXdunXjo48+Mt9PT08nKiqK1NRU87WRI0dy/fp1Ro0aRXx8PHXr1mXr1q1UqVKlIF5B5JF2P9+YiNy73H5jBw4cMFdKrlq1apaxTp8+jbu7+0Obu8ijqGfPnvz9999MnjyZ8+fP4+npyaZNm8wFGWJjY7Gw+P/byjdt2pRvvvmGd955h7fffhsPDw/WrVtHrVq1CuoVRB5puf3G5s+fz40bN+jevXuWcd59913ttytPNIPJZDIV9CRERERERERERESk4KkasoiIiIiIiIiIiAAKFoqIiIiIiIiIiMj/UbBQREREREREREREAAULRURERERERERE5P8oWCgiIiIiIiIiIiKAgoUiIiIiIiIiIiLyfxQsFBEREREREREREUDBQhEREREREREREfk/ChaKiIiIiIiIiIgIoGChiIiIiIiIiIiI/B8FC0VERERERERERASA/wf/4JdD8WBc9gAAAABJRU5ErkJggg==\n"
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "table.iloc[::-1].plot(x=\"tokens\",y=\"score\",kind=\"barh\",figsize=(15,15))"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "5I9SdaWY50e0",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 239
+        },
+        "outputId": "66df5a4f-a6fb-4d05-bcef-2fdadd44d336"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>1</b></text></td><td><text style=\"padding-right:2em\"><b>LABEL_1 (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>LABEL_1</b></text></td><td><text style=\"padding-right:2em\"><b>0.48</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(120, 75%, 96%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> latest                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> entry                    </font></mark><mark style=\"background-color: hsl(120, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> long                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> series                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> films                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> with                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> french                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> agent                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> o                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> 117                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> (                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> french                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> answer                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> james                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> bond                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> )                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> series                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> launched                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> early                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> 1950                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> and                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> spawned                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> at                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> least                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> eight                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> films                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> (                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> none                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> which                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ever                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> released                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> u                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> )                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> o                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> 117                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> :                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> cairo                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> nest                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> spies                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 89%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> bree                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##zy                    </font></mark><mark style=\"background-color: hsl(0, 75%, 88%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> little                    </font></mark><mark style=\"background-color: hsl(120, 75%, 92%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> comedy                    </font></mark><mark style=\"background-color: hsl(120, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> that                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> should                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> not                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> repeat                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> not                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> be                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> taken                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> too                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> seriously                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> our                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> protagonist                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> finds                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> himself                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> middle                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> spy                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> chase                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> egypt                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> (                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> with                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> mor                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ro                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##co                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> doing                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> stand                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> for                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> egypt                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> )                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> find                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> out                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> about                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> long                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> lost                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> friend                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> what                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> follows                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> standard                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> james                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> bond                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> /                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> inspector                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> cl                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ous                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##so                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##u                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> kind                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> antics                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 96%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> although                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> our                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> man                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> something                    </font></mark><mark style=\"background-color: hsl(120, 75%, 84%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 90%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> an                    </font></mark><mark style=\"background-color: hsl(0, 75%, 75%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> over                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##t                    </font></mark><mark style=\"background-color: hsl(120, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> x                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##eno                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ph                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##obe                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> sex                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ist                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> homo                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ph                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##obe                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> treated                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> as                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> pure                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> far                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##ce                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> (                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> as                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> said                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> don                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> t                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> take                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> too                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> seriously                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> )                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> although                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> there                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> bit                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> rough                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> language                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> &                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> cartoon                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> violence                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> basically                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> okay                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> for                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> older                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> kids                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> (                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ages                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> 12                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> &                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> up                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> )                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> as                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> previously                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> stated                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> in                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> subject                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> line                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> just                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> sit                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> back                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> pass                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> popcorn                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> &                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> just                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> enjoy                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
+            ]
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "html = cls_explainer.visualize()"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### ▶▶ Exercice : Afficher les attributions pour un exemple mal prédit\n",
+        "\n",
+        "Recommencer les étapes précédentes pour un exemple correspondant à une erreur du système."
+      ],
+      "metadata": {
+        "id": "IMOLP2uCpf2V"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# ----------------------------------------\n",
+        "# essayons avec une erreur du modèle\n",
+        "ex_eval = small_eval_dataset[32][\"text\"]"
+      ],
+      "metadata": {
+        "id": "udXeK-PoiDIn"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "word_attributions = cls_explainer(ex_eval)"
+      ],
+      "metadata": {
+        "id": "em_SJ6b7igiy"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "49KjhvdWigjG",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 35
+        },
+        "outputId": "190ec6f5-72ba-4ea3-9668-97cf7f09feab"
+      },
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "'LABEL_0'"
+            ],
+            "application/vnd.google.colaboratory.intrinsic+json": {
+              "type": "string"
+            }
+          },
+          "metadata": {},
+          "execution_count": 46
+        }
+      ],
+      "source": [
+        "cls_explainer.predicted_class_name"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "fwpGOSlgigjG",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "8569f633-6947-4019-d397-0538e902c9ce"
+      },
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "[('[CLS]', 0.0),\n",
+              " ('it', 0.15579458876876753),\n",
+              " (\"'\", 0.03767566036985144),\n",
+              " ('s', -0.048666864633006165),\n",
+              " ('really', 0.04443877428149513),\n",
+              " ('too', 0.14540089508868156),\n",
+              " ('bad', 0.5281307500239848),\n",
+              " ('that', -0.05500572459589118),\n",
+              " ('nobody', -0.013312116903928833),\n",
+              " ('knows', 0.008730958199344092),\n",
+              " ('about', 0.02705342988575408),\n",
+              " ('this', 0.011326547060353945),\n",
+              " ('movie', 0.04699556944883931),\n",
+              " ('.', 0.03948465300012618),\n",
+              " ('i', 0.005165082385061563),\n",
+              " ('think', 0.01263703627837709),\n",
+              " ('if', 0.022612587492794878),\n",
+              " ('it', -0.0006115277969186253),\n",
+              " ('were', -0.0004332737101635555),\n",
+              " ('just', 0.00473609204450029),\n",
+              " ('spruce', -0.001310111014920548),\n",
+              " ('##d', 0.0011278836091585763),\n",
+              " ('up', 0.004493302409486246),\n",
+              " ('a', -0.04017102321254915),\n",
+              " ('little', 0.012420252744425368),\n",
+              " ('and', 0.005387387525441402),\n",
+              " ('if', -0.0014021383517850887),\n",
+              " ('it', -0.0006029917464286114),\n",
+              " ('weren', 0.011687686514411356),\n",
+              " (\"'\", 0.007750703233651025),\n",
+              " ('t', 0.002639964168222077),\n",
+              " ('so', 0.05532692060949901),\n",
+              " ('low', 0.13647123438883588),\n",
+              " ('-', 0.04923539430438573),\n",
+              " ('budget', 0.07020160168140419),\n",
+              " (',', -0.0025569817084954505),\n",
+              " ('i', -0.030593557160175394),\n",
+              " ('think', -0.01768083072619913),\n",
+              " ('one', -0.01368027344864894),\n",
+              " ('of', -0.00177991619373207),\n",
+              " ('the', -0.02294422026276411),\n",
+              " ('major', 0.001886345589342683),\n",
+              " ('film', -0.0011156844450936631),\n",
+              " ('companies', 0.0073367390639760294),\n",
+              " ('might', 0.01009783247889323),\n",
+              " ('have', 0.013582971470080493),\n",
+              " ('wanted', 0.007707826010801647),\n",
+              " ('to', -0.002368392164627609),\n",
+              " ('take', -0.001449458188902427),\n",
+              " ('it', -0.0029972876812839368),\n",
+              " ('.', -0.02078614019344952),\n",
+              " ('i', 0.003234657006775826),\n",
+              " ('first', 0.00597886285019724),\n",
+              " ('saw', 0.0013110729616111817),\n",
+              " ('this', 0.020028485322965073),\n",
+              " ('movie', 0.027299414130568928),\n",
+              " ('when', -0.02104722532535892),\n",
+              " ('i', -0.0016355864424663212),\n",
+              " ('was', 0.0178785757510812),\n",
+              " ('11', -0.004148389608473534),\n",
+              " (',', 0.014018935681487868),\n",
+              " ('and', -0.03800693736484566),\n",
+              " ('i', -0.007633574995095456),\n",
+              " ('thought', 0.03356273370065653),\n",
+              " ('it', -0.052393244014273865),\n",
+              " ('was', -0.3723143440380725),\n",
+              " ('so', -0.20253170892770164),\n",
+              " ('powerful', -0.49195855176485404),\n",
+              " ('with', -0.28931907533150353),\n",
+              " ('the', -0.10082174430239103),\n",
+              " ('many', -0.0892258053605878),\n",
+              " ('great', -0.209953362505764),\n",
+              " (',', 0.05632273773050674),\n",
+              " ('yet', 0.0026191994753909163),\n",
+              " ('illegal', 0.07494734635042131),\n",
+              " ('lengths', -0.010940770306160924),\n",
+              " ('that', -0.051082133535754845),\n",
+              " ('mitchell', 0.0027965138157017688),\n",
+              " ('goes', 0.016664117424961766),\n",
+              " ('to', -0.006085579422155174),\n",
+              " ('just', 0.005387249896206727),\n",
+              " ('to', -0.005585320836837565),\n",
+              " ('keep', 0.0057384168738534224),\n",
+              " ('his', -0.02057574624160501),\n",
+              " ('family', -0.008776710326139569),\n",
+              " ('together', -0.013993429080076758),\n",
+              " ('.', -0.006008855947390037),\n",
+              " ('it', -0.05628633470853645),\n",
+              " ('inspired', -0.14223135233890521),\n",
+              " ('me', -0.028836561067285393),\n",
+              " ('then', 0.07831208795055669),\n",
+              " ('and', 0.01040839817427114),\n",
+              " ('it', 0.009416986574798083),\n",
+              " ('ama', 0.0003594215033618114),\n",
+              " ('##zes', 0.014906288009667763),\n",
+              " ('me', -0.003825266000476206),\n",
+              " ('now', 0.02720206894274278),\n",
+              " ('.', -0.015057509786155063),\n",
+              " ('if', 0.024752694465620194),\n",
+              " ('you', 0.022009103203969472),\n",
+              " (\"'\", 0.002552629842412161),\n",
+              " ('re', 0.017854426097560196),\n",
+              " ('lucky', -0.004449996808023851),\n",
+              " ('enough', 0.015177395996756287),\n",
+              " ('to', -0.0035908963630793215),\n",
+              " ('find', 0.00902752383869785),\n",
+              " ('a', -0.016715953866915528),\n",
+              " ('copy', 0.005041589979739654),\n",
+              " ('of', -0.008283455902864527),\n",
+              " ('this', 0.02476340242460179),\n",
+              " ('movie', 0.05030975125437546),\n",
+              " (',', 0.014056053977644908),\n",
+              " ('don', 0.012497046681469861),\n",
+              " (\"'\", 0.00034315937017799),\n",
+              " ('t', 0.034518535423079144),\n",
+              " ('miss', 0.017334191519132278),\n",
+              " ('it', 0.01355026060140187),\n",
+              " ('!', -0.022683950843705492),\n",
+              " ('[SEP]', 0.0)]"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 47
+        }
+      ],
+      "source": [
+        "word_attributions"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "1O-1eD6CigjH"
+      },
+      "outputs": [],
+      "source": [
+        "table = pds.DataFrame(word_attributions,columns=[\"tokens\",\"score\"])"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "f4m-PqhaigjH",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 1000
+        },
+        "outputId": "58f9cd04-476e-4d07-a785-b589c6ec58a3"
+      },
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "<Axes: ylabel='tokens'>"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 49
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<Figure size 1500x1500 with 1 Axes>"
+            ],
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAASvCAYAAAC0BUwBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1jUZf7/8ddwGk4yCKJgouNZ8ITHQlMoK7V0U8vK2pI8ZJkamSaztgZmYSYJ2cmsxG1tbbfM3NXcyg08FWkJ1opmJMkmZZnOqNWIML8/+vX5RoqKggPM83Fd93XN5/O5D+8b/ntf98HkcrlcAgAAAAAAAOBxvNwdAAAAAAAAAAD3IDkIAAAAAAAAeCiSgwAAAAAAAICHIjkIAAAAAAAAeCiSgwAAAAAAAICHIjkIAAAAAAAAeCiSgwAAAAAAAICHIjkIAAAAAAAAeCgfdweAmlFRUaEDBw6oUaNGMplM7g4HAAAAAAAAbuJyuXT06FE1b95cXl5nXhtIcvA0EhMTlZubK0nasWOH4uLiLtrYVqtVX331lSTp8OHDCg0NPad2Bw4cUHR0dC1GBgAAAAAAgPqkpKRELVq0OGMdkoNVmDhxoubOnasmTZoY79544w0tXrxYO3bsUHl5udq0aaMbb7xRU6ZMUVhYmLKzs5WcnKwjR46cts/vvvtOc+bM0dq1a/Xtt9+qcePG6t69u+bMmaP+/ftLkrZt26ZNmzbphhtuqFa8jRo1kvTLPz0kJOT8Jg0AAAAAAIB6z+FwKDo62sgXnQnJwSoEBgYqMjLSeJ49e7Yef/xx3X///XrsscfUvHlz7d27V88//7xeeeUV3XfffWft84YbbtCJEye0fPlytWnTRt9++602bNigQ4cOGXUiIiIUFhZW7Xh/3UocEhJCchAAAAAAAADndPQcycFz8NFHH+mxxx5TZmZmpSSg1WrV1VdfXeVKwd86cuSINm3apJycHCUkJEiSWrVqpb59+9ZW2AAAAAAAAMAZcVvxOVixYoWCg4M1efLk034/l3MBg4ODFRwcrNWrV8vpdF5wTE6nUw6Ho1IBAAAAAAAAqoPk4DnYu3ev2rRpI19f3/Puw8fHR9nZ2Vq+fLlCQ0PVv39//elPf9LOnTvPq7/09HRZLBajcBkJAAAAAAAAqottxefA5XLVSD833HCDrrvuOm3atEkffvih3n77bS1YsEAvvviikpKSqtWXzWbT9OnTjedfD5oEAAAAAACoi8rLy1VWVubuMBoEX19feXt710hfJAfPQYcOHbR582aVlZVd0OpBSfL399fVV1+tq6++Wn/+8581YcIEPfzww9VODprNZpnN5guKBQAAAAAAoLa5XC59880353RnA85daGioIiMjz+nSkTMhOXgObr31Vj311FN69tlnT3sr8ZEjR87p3MHTiY2N1erVqy8sQAAAAAAAgDrq18Rg06ZNFRgYeMHJLE/ncrn0448/6uDBg5KkqKioC+qP5OA5uPTSS/Xggw/qgQce0Ndff62RI0eqefPm+uKLL/T888/r8ssvN5KG5eXlys/Pr9TebDaradOmGj16tMaNG6du3bqpUaNG2r59uxYsWKDrr7/eDbMCAAAAAACoXeXl5UZiMDw83N3hNBgBAQGSpIMHD6pp06YXtMWY5OA5evzxx9WrVy8988wzev7551VRUaG2bdvqxhtv1NixY416x44dU48ePSq1bdu2rf773//q0ksv1aJFi1RUVKSysjJFR0dr4sSJysnJUXJysjIzMy/yrAAAAAAAAGrPr2cMBgYGujmShufXv2lZWRnJwYvlpptu0k033VTl96SkpDOeHZienq709PRT3v/www/GWYZWq1XDhg274FgBAAAAAADqCrYS17ya+puSHKzCs88+qxdffFEffPCBunbtWqtjhYWFGb8PHDigF154oVbHAwAAqGusKWvdHQKg4vnXuTsEAAAuOpKDp7FixQr99NNPkqSWLVvW+niJiYmKi4tTfn5+pSu9GzduLJfLVevjAwAAAAAAwDORHDyNSy65xC3jrlq1St27d9ddd92liRMnnrGu0+mU0+k0nh0OR22HBwAAAAAAUGMu5s4BVodXzcvdAeD/hIWFydvbW40aNVJkZKQiIyOrrJueni6LxWKU6OjoixgpAAAAAAAAasKJEyfcOj7JwXrKZrPJbrcbpaSkxN0hAQAAAAAANBivv/66unbtqoCAAIWHh+uqq67S8ePHJUkvv/yyOnfuLLPZrKioKE2ZMsVot3//fl1//fUKDg5WSEiIbrrpJn377bfG99TUVMXFxenFF19U69at5e/vL0k6cuSIJkyYoIiICIWEhOjKK69UQUFBrc+TbcX1lNlsltlsdncYAAAANYKtPgAAoC4pLS3VmDFjtGDBAo0cOVJHjx7Vpk2b5HK59Nxzz2n69OmaP3++hg4dKrvdri1btkiSKioqjMRgbm6uTp48qXvvvVc333yzcnJyjP6/+OILvfHGG1q1apW8vb0lSaNHj1ZAQIDefvttWSwWLVmyRIMGDdLnn39e6TLbmkZysI7x8/NTeXm5u8MAAAAAAADwWKWlpTp58qRGjRqlVq1aSZK6du0qSZo3b54eeOAB3XfffUb9Pn36SJI2bNigTz/9VPv27TOOgPvLX/6izp07a9u2bUa9EydO6C9/+YsiIiIkSZs3b9ZHH32kgwcPGovBFi5cqNWrV+v111/XXXfdVWtzZVtxHWO1WrVx40Z9/fXX+v77790dDgAAAAAAgMfp3r27Bg0apK5du2r06NFaunSpDh8+rIMHD+rAgQMaNGjQadsVFhYqOjq60t0QsbGxCg0NVWFhofGuVatWRmJQkgoKCnTs2DGFh4crODjYKPv27VNRUVHtTVSsHKxz5s6dq0mTJqlly5aqqKiQy+Vyd0gAAAAAAAAexdvbW++++662bt2qd955R4sXL9bs2bO1YcOGGuk/KCio0vOxY8cUFRVVaevxr0JDQ2tkzKqQHKwDfvuPv+yyy1RQUKCkpCRZrVa3xQQAAAAAAODJTCaT+vfvr/79+2vOnDlq1aqV3n33XVmtVm3YsEFXXHHFKW1iYmJUUlKikpISY/Xgrl27dOTIEcXGxlY5Vs+ePfXNN9/Ix8fnoueDSA4CAADA7awpa90dQpW4LAUAAM+Tl5enDRs26JprrlHTpk2Vl5en7777TjExMUpNTdXdd9+tpk2baujQoTp69Ki2bNmiqVOn6qqrrlLXrl112223KTMzUydPntTkyZOVkJCg3r17VzneVVddpfj4eI0YMUILFixQhw4ddODAAa1du1YjR448Y9sLRXIQAAAAAAAA+I2QkBBt3LhRmZmZcjgcatWqlTIyMjR06FBJ0s8//6xFixZpxowZatKkiW688UZJv6w2fOuttzR16lQNHDhQXl5eGjJkiBYvXnzG8Uwmk9atW6fZs2frzjvv1HfffafIyEgNHDhQzZo1q9W5mlwcalcvOZ1OOZ1O49nhcCg6Olp2u10hISFujAwAAKD6WDkIAEDD9PPPP2vfvn1q3bq1/P393R1Og3Kmv63D4ZDFYjmnPBG3FddT6enpslgsRvntLTgAAAAAAADAuSA5WE/ZbDbZ7XajlJSUuDskAAAAAAAA1DOcOVhPmc1mmc1md4cBAABQI9i6CwAA4B6sHAQAAAAAAAA8FMlBAAAAAAAAwEORHAQAAAAAAECtqqiocHcIDU5N/U05cxAAAAAAAAC1ws/PT15eXjpw4IAiIiLk5+cnk8nk7rDqNZfLpRMnTui7776Tl5eX/Pz8Lqg/koN1zOuvv660tDR98cUXCgwMVI8ePfTWW28pKCjI3aEBAIA6yJqy1t0h1AguJAEAoGHy8vJS69atVVpaqgMHDrg7nAYlMDBQLVu2lJfXhW0MJjlYh5SWlmrMmDFasGCBRo4cqaNHj2rTpk1yuVyn1HU6nXI6ncazw+G4mKECAAAAAACcEz8/P7Vs2VInT55UeXm5u8NpELy9veXj41MjqzBJDtYhpaWlOnnypEaNGqVWrVpJkrp27Xrauunp6UpLS7uY4QEAAAAAAJwXk8kkX19f+fr6ujsU/A4XktQh3bt316BBg9S1a1eNHj1aS5cu1eHDh09b12azyW63G6WkpOQiRwsAAAAAAID6juRgHeLt7a13331Xb7/9tmJjY7V48WJ17NhR+/btO6Wu2WxWSEhIpQIAAAAAAABUh8l1ugPtUCeUl5erVatWmj59uqZPn37Gug6HQxaLRXa7nUQhAAAAAACAB6tOnogzB+uQvLw8bdiwQddcc42aNm2qvLw8fffdd4qJiXF3aAAAAAAAAGiA2FZ8ERQXF8tkMik/P1+SlJOTI5PJpCNHjlSqFxISoo0bN+raa69Vhw4d9NBDDykjI0NDhw69+EEDAAAAAACgwWPlYB0SExOj9evXuzsMAAAAAAAAeAhWDp7FiRMn3B0CAAAAAAAAUCtYOfg7iYmJ6tKli3x8fPTXv/5VXbt21eLFizVz5kxt2rRJQUFBuuaaa7Ro0SI1adJEkrR+/XrNmzdPn332mby9vRUfH6+srCy1bdv2rOMdP35cUVFRevnll3XjjTca71evXq3bbrtN33zzjRo1alRr8wUAAKgLrClr3R3CeSmef527QwAAALggrBw8jeXLl8vPz09btmzR/PnzdeWVV6pHjx7avn271q9fr2+//VY33XSTUf/48eOaPn26tm/frg0bNsjLy0sjR45URUXFWccKCgrSLbfcomXLllV6v2zZMt14441VJgadTqccDkelAgAAAAAAAFQHKwdPo3379lqwYIEkad68eerRo4cee+wx4/vLL7+s6Ohoff755+rQoYNuuOGGSu1ffvllRUREaNeuXerSpctZx5swYYL69eun0tJSRUVF6eDBg1q3bp3ee++9Ktukp6crLS3tPGcIAAAAAAAAsHLwtHr16mX8Ligo0Pvvv6/g4GCjdOrUSZJUVFQkSdq7d6/GjBmjNm3aKCQkRFarVZK0f//+cxqvb9++6ty5s5YvXy5J+utf/6pWrVpp4MCBVbax2Wyy2+1GKSkpOZ+pAgAAAAAAwIOxcvA0goKCjN/Hjh3T8OHD9fjjj59SLyoqSpI0fPhwtWrVSkuXLlXz5s1VUVGhLl26VOsykwkTJuiZZ55RSkqKli1bpjvvvFMmk6nK+mazWWazuRqzAgAAqLs4uw8AAMA9SA6eRc+ePfXGG2/IarXKx+fUP9ehQ4e0Z88eLV26VAMGDJAkbd68udrj/PGPf9SDDz6op556Srt27dLYsWMvOHYAAAAAAADgTNhWfBb33nuvfvjhB40ZM0bbtm1TUVGR/v3vf+vOO+9UeXm5GjdurPDwcL3wwgv64osv9J///EfTp0+v9jiNGzfWqFGjNHPmTF1zzTVq0aJFLcwGAAAAAAAA+D8kB8+iefPm2rJli8rLy3XNNdeoa9euSk5OVmhoqLy8vOTl5aWVK1fq448/VpcuXXT//ffriSeeOK+xxo8frxMnTmjcuHE1PAsAAAAAAADgVCaXy+VydxANSWJiouLi4pSZmVnttq+88oruv/9+HThwQH5+ftVq63A4ZLFYZLfbFRISUu2xAQAAAAAA0DBUJ0/EmYN1wI8//qjS0lLNnz9fkyZNqnZiEAAAoL6zpqx1dwhooLjsBgCAM2NbcQ1KSkpSbm6usrKyZDKZZDKZVFxcrNzcXPXt21dms1lRUVFKSUnRyZMnjXaPPfaYOnTooL1792rhwoW6/PLLtW3bNjfOBAAAAAAAAJ6A5GANysrKUnx8vCZOnKjS0lKVlpbK19dX1157rfr06aOCggI999xzeumllzRv3jyj3dGjRxUZGam33npLO3bsULt27TR48GD98MMPVY7ldDrlcDgqFQAAAAAAAKA6SA7WIIvFIj8/PwUGBioyMlKRkZF69tlnFR0draefflqdOnXSiBEjlJaWpoyMDFVUVOj48eN67rnn9MQTT2jo0KGKjY3V0qVLFRAQoJdeeqnKsdLT02WxWIwSHR19EWcKAAAAAACAhoDkYC0rLCxUfHy8TCaT8a5///46duyY/ve//6moqEhlZWXq37+/8d3X11d9+/ZVYWFhlf3abDbZ7XajlJSU1Oo8AAAAAAAA0PBwIUk9ZTabZTab3R0GAABAjeDSCAAAAPdg5WAN8/PzU3l5ufEcExOjDz74QC6Xy3i3ZcsWNWrUSC1atFDbtm3l5+enLVu2GN/Lysq0bds2xcbGXtTYAQAAAAAA4FlIDl6gxMREJScnG89Wq1V5eXkqLi7W999/r8mTJ6ukpERTp07V7t279dZbb+nhhx/W9OnT5eXlpaCgIN1zzz2aOXOm1q9fr127dmn48OH6+uuvdeONN7pvYgAAAAAAAGjw2FZcw2bMmKGxY8cqNjZWP/30k/bt26d169Zp5syZ6t69u8LCwjR+/Hg99NBDRpv58+eroqJCt99+u44ePar27dtLkkJDQ900CwAAAAAAAHgCk+u3+11RbYmJiYqLi1NmZmaN9ZmTk6MrrrhChw8fPucEocPhkMVikd1uV0hISI3FAgAAAAAAgPqlOnkiVg7WgJMnT2rKlCl65ZVX5Ovrq3vuuUdz586VyWTSK6+8oqysLO3Zs0dBQUG68sorlZmZqaZNmxrt161bp+TkZJWUlOiyyy7T2LFj3TgbAACAi8+astbdIQAAAA/myZejceZgDVi+fLl8fHz00UcfKSsrS08++aRefPFFSb9cLvLII4+ooKBAq1evVnFxsZKSkoy2JSUlGjVqlIYPH678/HxNmDBBKSkpZx3T6XTK4XBUKgAAAAAAAEB1sHKwBkRHR2vRokUymUzq2LGjPv30Uy1atEgTJ07UuHHjjHpt2rTRU089pT59+ujYsWMKDg7Wc889p7Zt2yojI0OSjPaPP/74GcdMT09XWlparc4LAAAAAAAADRsrB2vAZZddJpPJZDzHx8dr7969Ki8v18cff6zhw4erZcuWatSokRISEiRJ+/fvlyQVFhbq0ksvrdRffHz8Wce02Wyy2+1GKSkpqcEZAQAAAAAAwBOwcrAW/fzzzxo8eLAGDx6sFStWKCIiQvv379fgwYN14sSJC+rbbDbLbDbXUKQAAAAAAADwRCQHa0BeXl6l5w8//FDt27fX7t27dejQIc2fP1/R0dGSpO3bt1eqGxMTozVr1pzSHgAAwJN48iHgAAAA7sS24hqwf/9+TZ8+XXv27NHf/vY3LV68WPfdd59atmwpPz8/LV68WF9++aXWrFmjRx55pFLbu+++W3v37tXMmTO1Z88evfrqq8rOznbPRAAAAAAAAOBRSA7WgDvuuENFRUXq1KmTJk+erPvuu0933XWXIiIilJ2drX/84x+KjY3V/PnztXDhwkptW7ZsqTfeeEOrV69W9+7d9fzzz+uxxx5z00wAAAAAAADgSdhWfJ4SExMVFxennJwcSVJOTo7WrFmjffv2KTQ01Kg3ZswYjRkzplJbl8tV6XnYsGEaNmyYJMlqtcput59SBwAAAAAAAKhprBwEAAAAAAAAPJTJxRK1aktKStLy5csrvVu2bJnuvPNOvffee5o1a5Z27dqluLg4LVu2TB07dpQkFRUVafr06frwww91/PhxxcTEKD09XVdddZWkX1Yj5ubmVur3XP89DodDFotFdrtdISEhNTBLAABQV1hT1ro7hFrHhSQAAAA1pzp5IlYOnoesrCzFx8dr4sSJKi0tVWlpqXEb8ezZs5WRkaHt27fLx8dH48aNM9odO3ZM1157rTZs2KAdO3ZoyJAhGj58uPbv3y9JWrVqlVq0aKG5c+ca/VbF6XTK4XBUKgAAAAAAAEB1kBw8DxaLRX5+fgoMDFRkZKQiIyPl7e0tSXr00UeVkJCg2NhYpaSkaOvWrfr5558lSd27d9ekSZPUpUsXtW/fXo888ojatm2rNWvWSJLCwsLk7e2tRo0aGf1WJT09XRaLxSi/JicBAAAAAACAc0VysIZ169bN+B0VFSVJOnjwoKRfVg7OmDFDMTExCg0NVXBwsAoLC42Vg9Vhs9lkt9uNUlJSUjMTAAAAAAAAgMfgtuIa5uvra/w2mUySpIqKCknSjBkz9O6772rhwoVq166dAgICdOONN+rEiRPVHsdsNstsNtdM0AAAoE7jPD4AAADUFpKD58nPz0/l5eXVarNlyxYlJSVp5MiRkn5ZSVhcXHzB/QIAAAAAAADng23F58lqtSovL0/FxcX6/vvvjdWBZ9K+fXutWrVK+fn5Kigo0K233npKO6vVqo0bN+rrr7/W999/X1vhAwAAAAAAACQHq5Kamqq4uLgqv8+YMUPe3t6KjY1VRETEOZ0b+OSTTyogIEA9evTQkCFDNHjwYPXs2bNSnblz56q4uFht27ZVRETEhU4DAAAAAAAAqJLJ5XK53B1EXZSamqrVq1crPz+/RvstLi5W69attWPHjjMmH6vL4XDIYrHIbrcrJCSkxvoFAAAAAABA/VKdPBFnDgIAAKDGWFPWnlc7Ll0BAABwjwa7rTgxMVHTpk3Tgw8+qLCwMEVGRio1NdX4vn//fl1//fUKDg5WSEiIbrrpJn377ben9LNkyRJFR0crMDBQN910k+x2u/GtoqJCc+fOVYsWLWQ2mxUXF6f169dXav/RRx+pR48e8vf3V+/evbVjxw7jm8vlUrt27bRw4cJKbfLz82UymfTFF1/U0F8DAAAAAAAAOFWDTQ5K0vLlyxUUFKS8vDwtWLBAc+fO1bvvvquKigpdf/31+uGHH5Sbm6t3331XX375pW6++eZK7b/44gv9/e9/1z//+U+tX79eO3bs0OTJk43vWVlZysjI0MKFC7Vz504NHjxYf/jDH7R3715Jv9xGPGzYMMXGxurjjz9WamqqZsyYYbQ3mUwaN26cli1bVmncZcuWaeDAgWrXrl2Vc3M6nXI4HJUKAAAAAAAAUB0NOjnYrVs3Pfzww2rfvr3uuOMO9e7dWxs2bNCGDRv06aef6tVXX1WvXr106aWX6i9/+Ytyc3O1bds2o/3PP/+sv/zlL4qLi9PAgQO1ePFirVy5Ut98840kaeHChZo1a5ZuueUWdezYUY8//rji4uKUmZkpSXr11VdVUVGhl156SZ07d9awYcM0c+bMSjEmJSVpz549+uijjyRJZWVlevXVVzVu3Lgzzi09PV0Wi8Uo0dHRNfiXAwAAAAAAgCdo8MnB34qKitLBgwdVWFio6OjoSgm12NhYhYaGqrCw0HjXsmVLXXLJJcZzfHy8KioqtGfPHjkcDh04cED9+/evNEb//v2NPgoLC9WtWzf5+/tX6uO3mjdvruuuu04vv/yyJOmf//ynnE6nRo8efca52Ww22e12o5SUlJzLnwQAAAAAAAAwNOgLSXx9fSs9m0wmVVRUuCmaqk2YMEG33367Fi1apGXLlunmm29WYGDgGduYzWaZzeaLFCEAAMC54WIRAACA+qVBrxysSkxMjEpKSiqtttu1a5eOHDmi2NhY493+/ft14MAB4/nDDz+Ul5eXOnbsqJCQEDVv3lxbtmyp1PeWLVuMPmJiYrRz5079/PPPlfr4vWuvvVZBQUF67rnntH79+rNuKQYAAAAAAABqgkcmB6+66ioFBATosssu0yeffKKPPvpId9xxhxISEtS7d2+jnr+/v8aOHauCggJt2rRJ06ZN00033aTIyEhJ0syZM/X444/rtdde0549e5SSkqL8/Hzdd999kqRbb71VJpNJEydO1K5du7Ru3bpTbiaWJG9vbyUlJclms6l9+/anbD0GAAAAAAAAaoNHJgdNJpM6d+4sf39/DRw4UFdddZXatGmj1157rVK9du3aadSoUbr22mt1zTXXqFu3bnr22WeN79OmTdP06dP1wAMPqGvXrlq/fr3WrFmj9u3bS5KCg4P1z3/+U59++ql69Oih2bNn6/HHHz9tTOPHj9eJEyd055131t7EAQAAAAAAgN8wuVwul7uDcIfExMRKNwu726ZNmzRo0CCVlJSoWbNm1W7vcDhksVhkt9sVEhJSCxECAAAAAACgPqhOnsgjVw6eztq1a2WxWLRixQolJSVpxIgRWrhwoaKiohQeHq57771XZWVlRv3Dhw/rjjvuUOPGjRUYGKihQ4dq7969kiSXy6WIiAi9/vrrRv24uDhFRUUZz5s3b5bZbNbhw4dVUlKisWPHytfXVy1btlTz5s01bdq0izd5AAAAN7OmrD1rAQAAQM0jOSjp1Vdf1ZgxY7RixQrddtttkqT3339fRUVFev/997V8+XJlZ2crOzvbaJOUlKTt27drzZo1+uCDD+RyuXTttdeqrKxMJpNJAwcOVE5OjqRfEomFhYX66aeftHv3bklSbm6u+vTpo7feekutWrXSV199peeff1579+7V6tWr1bVr1zPG7HQ65XA4KhUAAAAAAACgOnzcHYC7PfPMM5o9e7b++c9/KiEhwXjfuHFjPf300/L29lanTp103XXXacOGDZo4caL27t2rNWvWaMuWLerXr58kacWKFYqOjtbq1as1evRoJSYmasmSJZKkjRs3qkePHoqMjFROTo46deqknJwcJSQkKCkpST/88IOWLFmiW265xVg92Ldv3zPGnZ6errS0tNr7wwAAAAAAAKDB8+iVg6+//rruv/9+vfvuu5USg5LUuXNneXt7G89RUVE6ePCgJKmwsFA+Pj669NJLje/h4eHq2LGjCgsLJUkJCQnatWuXvvvuO+Xm5ioxMVGJiYnKyclRWVmZtm7dqsTEREnS6NGj9dNPP6lNmzaaOHGi3nzzTZ08efKMsdtsNtntdqOUlJTUxJ8EAAAAAAAAHsSjk4M9evRQRESEXn75Zf3+XhZfX99KzyaTSRUVFefcd9euXRUWFqbc3NxKycHc3Fxt27ZNZWVlxqrD6Oho7dmzR88++6wCAgI0efJkDRw4sNIZh79nNpsVEhJSqQAAAAAAAADV4dHbitu2bauMjAwlJibK29tbTz/99Dm1i4mJ0cmTJ5WXl2ck+A4dOqQ9e/YoNjZW0i/JxAEDBuitt97Sf//7X11++eUKDAyU0+nUkiVL1Lt3bwUFBRl9BgQEaPjw4Ro+fLjuvfdederUSZ9++ql69uxZ8xMHAACoY4rnX+fuEAAAADySRycHJalDhw56//33lZiYKB8fH2VmZp61Tfv27XX99ddr4sSJWrJkiRo1aqSUlBRdcskluv766416iYmJeuCBB9S7d28FBwdLkgYOHKgVK1Zo5syZRr3s7GyVl5fr0ksvVWBgoP76178qICBArVq1qvH5AgAAAAAAAL/y6G3Fv+rYsaP+85//6G9/+5seeOCB09ZxOBzKzc1Vfn6+JGnZsmXq1auXhg0bpvj4eLlcLq1bt67SduSEhASVl5cbZwtKvyQMf/8uNDRUS5cuVf/+/dWtWze99957+uc//6nw8PDamC4AAAAAAAAgSTK5fn/YHk6ruLhYrVu31o4dOxQXF1erY5lMJr355psaMWLEObdxOByyWCyy2+2cPwgAAAAAAODBqpMnYuUgAAAAAAAA4KE8/szB31q/fr3mzZunzz77TN7e3oqPj1dWVpbatm1r1Nm9e7cmT56sTz75RO3atdMzzzyjhIQE43tubq5mzpypgoIChYWFaezYsZo3b558fH75U1utViUnJys5OdloExcXpxEjRig1NVVWq1WSNHLkSElSq1atVFxcXOtzBwAAcCdrytqLOh4XoAAAAPyClYO/cfz4cU2fPl3bt2/Xhg0b5OXlpZEjR6qiosKoM3PmTD3wwAPasWOH4uPjNXz4cB06dEiS9PXXX+vaa69Vnz59VFBQoOeee04vvfSS5s2bd84xbNu2TdIvZxqWlpYaz7/ndDrlcDgqFQAAAAAAAKA6WDn4GzfccEOl55dfflkRERHatWuXcdvwlClTjHrPPfec1q9fr5deekkPPvignn32WUVHR+vpp5+WyWRSp06ddODAAc2aNUtz5syRl9fZc7ERERGSfrmkJDIyssp66enpSktLO9+pAgAAAAAAAKwc/K29e/dqzJgxatOmjUJCQowtvvv37zfqxMfHG799fHzUu3dvFRYWSpIKCwsVHx8vk8lk1Onfv7+OHTum//3vfzUaq81mk91uN0pJSUmN9g8AAAAAAICGj5WDvzF8+HC1atVKS5cuVfPmzVVRUaEuXbroxIkTNTaGl5eXfn9BdFlZWbX7MZvNMpvNNRUWAAAAAAAAPBDJwf/v0KFD2rNnj5YuXaoBAwZIkjZv3nxKvQ8//FADBw6UJJ08eVIff/yxpkyZIkmKiYnRG2+8IZfLZawe3LJlixo1aqQWLVpI+mXbcGlpqdGfw+HQvn37Ko3h6+ur8vLymp8kAABAHcUFIQAAAO7BtuL/r3HjxgoPD9cLL7ygL774Qv/5z380ffr0U+o988wzevPNN7V7927de++9Onz4sMaNGydJmjx5skpKSjR16lTt3r1bb731lh5++GFNnz7dOG/wyiuv1CuvvKJNmzbp008/1dixY+Xt7V1pDKvVqg0bNuibb77R4cOHa3/yAAAAAAAA8EgkB/8/Ly8vrVy5Uh9//LG6dOmi+++/X0888cQp9ebPn6/58+ere/fu2rx5s9asWaMmTZpIki655BKtW7dOGzZsUExMjCZNmqTx48froYceMtrbbDYlJCTo6quvVq9evTRixAi1bdu20hgZGRl69913FR0drR49etTuxAEAAAAAAOCxTK7fH4CHaktMTFRcXJwyMzMlSTk5Obriiit0+PBhhYaGnrbNsWPH5HQ6FR4eXiMxOBwOWSwW2e12hYSE1EifAAAAAAAAqH+qkyfizEE3CQ4OVnBwsLvDAAAAqBOsKWurVZ8zCgEAAGoG24ovUFJSknJzc5WVlSWTySSTyaTi4mJJ0scff6zevXsrMDBQ/fr10549e4x2qampiouLM55zcnLUt29fBQUFKTQ0VP3799dXX311kWcDAAAAAAAAT0Jy8AJlZWUpPj5eEydOVGlpqUpLSxUdHS1Jmj17tjIyMrR9+3b5+PgYF5f83smTJzVixAglJCRo586d+uCDD3TXXXcZNx6fjtPplMPhqFQAAAAAAACA6mBb8QWyWCzy8/NTYGCgIiMjJUm7d++WJD366KNKSEiQJKWkpOi6667Tzz//LH9//0p9OBwO2e12DRs2zLicJCYm5ozjpqenKy0traanAwAAAAAAAA/CysFa1K1bN+N3VFSUJOngwYOn1AsLC1NSUpIGDx6s4cOHKysrS6WlpWfs22azyW63G6WkpKRmgwcAAAAAAECDx8rBWuTr62v8/nWLcEVFxWnrLlu2TNOmTdP69ev12muv6aGHHtK7776ryy677LT1zWazzGZzzQcNAADgBlwwAgAA4B6sHKwBfn5+Ki8vv+B+evToIZvNpq1bt6pLly569dVXayA6AAAAAAAA4PRIDtYAq9WqvLw8FRcX6/vvv69ydeCvUlNT9fzzzxvP+/btk81m0wcffKCvvvpK77zzjvbu3XvWcwcBAAAAAACAC0FysAbMmDFD3t7eio2NVUREhPbv33/W+nfccYfxHBgYqN27d+uGG25Qhw4ddNddd+nee+/VpEmTajt0AAAAAAAAeDCTy+VyuTsIXDiHwyGLxSK73a6QkBB3hwMAAAAAAAA3qU6eyOMvJElMTFTXrl3l7e2t5cuXy8/PT/PmzdOtt96qKVOm6PXXX1ezZs20ePFiDR06VJKUm5urmTNnqqCgQGFhYRo7dqzmzZsnHx8fvfDCC0pNTdX//vc/eXn938LM66+/XuHh4Xr55ZeVmpqq1atXKz8/3/j+4osvKiMjQ/v27ZPVatW0adM0efLki/3nAAAAcAtrylp3h3DBuFQFAADUR2wrlrR8+XI1adJEH330kaZOnap77rlHo0ePVr9+/fTJJ5/ommuu0e23364ff/xRX3/9ta699lr16dNHBQUFeu655/TSSy9p3rx5kqTRo0fr0KFDev/9943+f/jhB61fv1633XbbacdfsWKF5syZo0cffVSFhYV67LHH9Oc//1nLly+/KPMHAAAAAACAZyI5KKl79+566KGH1L59e9lsNvn7+6tJkyaaOHGi2rdvrzlz5ujQoUPauXOnnn32WUVHR+vpp59Wp06dNGLECKWlpSkjI0MVFRVq3Lixhg4dWumm4ddff11NmjTRFVdccdrxH374YWVkZGjUqFFq3bq1Ro0apfvvv19LliypMman0ymHw1GpAAAAAAAAANVBclBSt27djN/e3t4KDw9X165djXfNmjWTJB08eFCFhYWKj4+XyWQyvvfv31/Hjh3T//73P0nSbbfdpjfeeENOp1PSLysDb7nllkrbjH91/PhxFRUVafz48QoODjbKvHnzVFRUVGXM6enpslgsRomOjr6wPwIAAAAAAAA8jsefOShJvr6+lZ5NJlOld78mAisqKs6pv+HDh8vlcmnt2rXq06ePNm3apEWLFp227rFjxyRJS5cu1aWXXlrpm7e3d5Vj2Gw2TZ8+3Xh2OBwkCAEAAAAAAFAtJAerKSYmRm+88YZcLpeRNNyyZYsaNWqkFi1aSJL8/f01atQorVixQl988YU6duyonj17nra/Zs2aqXnz5vryyy+rPJPwdMxms8xm84VPCAAAoA7gMg8AAAD3IDlYTZMnT1ZmZqamTp2qKVOmaM+ePXr44Yc1ffr0StuGb7vtNg0bNkz//e9/9cc//vGMfaalpWnatGmyWCwaMmSInE6ntm/frsOHD1daHQgAAAAAAADUJJKD1XTJJZdo3bp1mjlzprp3766wsDCNHz9eDz30UKV6V155pcLCwrRnzx7deuutZ+xzwoQJCgwM1BNPPKGZM2cqKChIXbt2VXJyci3OBAAAAAAAAJ7O5HK5XO4OAhfO4XDIYrHIbrcrJCTE3eEAAAAAAADATaqTJ+K2YgAAAAAAAMBDsa0YAAAAbmdNWevuEM6KS1MAAEBDRHKwnnI6nXI6ncazw+FwYzQAAAAAAACoj9hWXE+lp6fLYrEYJTo62t0hAQAAAAAAoJ4hOVhP2Ww22e12o5SUlLg7JAAAAAAAANQzbCuup8xms8xms7vDAAAAAAAAQD1GchAAAABux2UfAAAA7sG24jrq6aef1qBBg9wdBgAAAAAAABowVg7WUQsXLtQPP/zg7jAAAAAAAADQgJEcrKM++eQT+fr6ujsMAAAAAAAANGAkB+uosLAwd4cAAAAAAACABo7kYB2VmJiouLg4ZWZmujsUAACAWmdNWXva91xUAgAAULtIDtZTTqdTTqfTeHY4HG6MBgAAAAAAAPURtxXXU+np6bJYLEaJjo52d0gAAAAAAACoZ0gO1lM2m012u90oJSUl7g4JAAAAAAAA9Qzbiusps9kss9ns7jAAAABqBGcLAgAAuAcrBwEAAAAAAAAPRXIQAAAAAAAA8FAkB6shJydHJpNJR44cqbJOamqq4uLiqtWv1WpVZmbmBcUGAAAAAAAAVBdnDp5BYmKi4uLiqpW4mzFjhqZOnXrBY+fk5FxwHwAAAAAAAMCZkBysYcHBwQoODnZ3GAAAAPWKNWVttdtwiQkAAMCFY1txFZKSkpSbm6usrCyZTCaZTCYVFxdLkj7++GP17t1bgYGB6tevn/bs2WO0+/224qSkJI0YMUILFy5UVFSUwsPDde+996qsrKzKsV988UWFhoZqw4YNtTU9AAAAAAAAgORgVbKyshQfH6+JEyeqtLRUpaWlio6OliTNnj1bGRkZ2r59u3x8fDRu3Lgz9vX++++rqKhI77//vpYvX67s7GxlZ2eftu6CBQuUkpKid955R4MGDaqyT6fTKYfDUakAAAAAAAAA1UFysAoWi0V+fn4KDAxUZGSkIiMj5e3tLUl69NFHlZCQoNjYWKWkpGjr1q36+eefq+yrcePGevrpp9WpUycNGzZM11133WlXBc6aNUuZmZnKzc1V3759zxhfenq6LBaLUX5NXAIAAAAAAADniuTgeejWrZvxOyoqSpJ08ODBKut37tzZSCz+2ub39TMyMrR06VJt3rxZnTt3PmsMNptNdrvdKCUlJdWdBgAAAAAAADwcF5KcB19fX+O3yWSSJFVUVJxT/V/b/L7+gAEDtHbtWv39739XSkrKWWMwm80ym83VCRsAAKDO4nIRAAAA9yA5eAZ+fn4qLy+/KGP17dtXU6ZM0ZAhQ+Tj46MZM2ZclHEBAAAAAADgudhWfAZWq1V5eXkqLi7W999/f8bVgRfim2++0Ztvvql+/fpp1apVstls8vf3l8lk0pEjR2plTAAAAAAAAIDk4BnMmDFD3t7eio2NVUREhPbv318r4zRt2lRDhw6VJO3du1dBQUHy8vLSvHnzZLFYamVMAAAAAAAAwORyuVzuDgL/Z8aMGdq2bZtyc3Or1c7hcMhischutyskJKSWogMAAAAAAEBdV508EWcO1gGJiYmKi4tTfn6+kRQ0mUxKSEhQTk6Oe4MDAAC4CKwpa2u1fy48AQAAOD2Sg3XIqlWrlJKSos8++0yrVq2Sn59flXWdTqecTqfx7HA4LkaIAAAAAAAAaEA4c7AOCQsLU2BgoPz8/BQZGamwsLAq66anp8tisRglOjr6IkYKAAAAAACAhoDkYD1ls9lkt9uNUlJS4u6QAAAAAAAAUM+wrbieMpvNMpvN7g4DAAAAAAAA9RjJQQAAALgdF4YAAAC4B9uKAQAAAAAAAA/FysE6ID8/X3a73d1hAAAAAAAAwMOQHKwDvvzyS/n6+kqSVq9ereTkZPcGBAAAAAAAAI9AcrAOCAsLc3cIAAAAAAAA8EAml8vlcncQni4xMVFxcXHKz89Xbm5upW/n+u9xOByyWCyy2+0KCQmpjTABAAAAAABQD1QnT8SFJHXIqlWr1KJFC82dO1elpaUqLS2tsq7T6ZTD4ahUAAAAAAAAgOogOViHhIWFydvbW40aNVJkZKQiIyOrrJueni6LxWKU6OjoixgpAAAAAAAAGgKSg/WUzWaT3W43SklJibtDAgAAAAAAQD3DhST1lNlsltlsdncYAAAAAAAAqMdYOVjH+Pn5qby83N1hAAAAAAAAwAOQHKxjrFarNm7cqK+//lrff/+9u8MBAAAAAABAA0ZysI6ZO3euiouL1bZtW0VERLg7HAAAAAAAADRgJpfL5XJ3ELhwDodDFotFdrtdISEh7g4HAAAAAAAAblKdPBErB93sxIkT7g4BAAAAAAAAHork4Fn861//UmhoqHFJSH5+vkwmk1JSUow6EyZM0B//+EdJ0ubNmzVgwAAFBAQoOjpa06ZN0/Hjx426VqtVjzzyiO644w6FhITorrvuOqd2AAAAAAAAQE0jOXgWAwYM0NGjR7Vjxw5JUm5urpo0aaKcnByjTm5urhITE1VUVKQhQ4bohhtu0M6dO/Xaa69p8+bNmjJlSqU+Fy5cqO7du2vHjh3685//fM7tfsvpdMrhcFQqAAAAAAAAQHVw5uA56NWrl8aMGaMZM2Zo5MiR6tOnj9LS0nTo0CHZ7Xa1aNFCn3/+uR5//HF5e3tryZIlRtvNmzcrISFBx48fl7+/v6xWq3r06KE333zTqDNhwoSztvu91NRUpaWlnfKeMwcBAAAAAAA8G2cO1rCEhATl5OTI5XJp06ZNGjVqlGJiYrR582bl5uaqefPmat++vQoKCpSdna3g4GCjDB48WBUVFdq3b5/RX+/evSv1f67tfstms8lutxulpKSkVv8GAAAAAAAAaHh83B1AfZCYmKiXX35ZBQUF8vX1VadOnZSYmKicnBwdPnxYCQkJkqRjx45p0qRJmjZt2il9tGzZ0vgdFBRU6du5tvsts9kss9l8IdMCAAAAAACAhyM5eA5+PXdw0aJFRiIwMTFR8+fP1+HDh/XAAw9Iknr27Kldu3apXbt21er/fNsBAAAAAAAAF4JtxeegcePG6tatm1asWKHExERJ0sCBA/XJJ5/o888/19tvv60RI0Zo1qxZ2rp1q6ZMmaL8/Hzt3btXb7311hkvFpF03u0AAAAAAACAC8HKwXOUkJCg/Px8IzkYFham2NhYffvtt8rOzpbL5VJoaKhyc3M1e/ZsDRgwQC6XS23bttXNN998xr67detmtOvZs6exdfls7QAAAAAAAIALwW3FdYzValVycrKSk5Or1a46t9AAAAAAAACg4eK24ossKSlJI0aMkPRLci8zM7PS97i4OKWmpkqSXC6XUlNT1bJlS5nNZjVv3ty4iCQxMVFfffWV7r//fplMJplMpos4CwAAAPexpqw9pQAAAKD2sa34InvjjTe0aNEirVy5Up07d9Y333yjgoICSdKqVavUvXt33XXXXZo4caKbIwUAAAAAAEBDR3LwItu/f78iIyN11VVXydfXVy1btlTfvn0l/XKOobe3txo1aqTIyMgz9uN0OuV0Oo1nh8NRq3EDAAAAAACg4WFb8UU2evRo/fTTT2rTpo0mTpyoN998UydPnqx2P+np6bJYLEaJjo6uhWgBAAAAAADQkJEcrGFeXl76/R0vZWVlxu/o6Gjt2bNHzz77rAICAjR58mQNHDiwUp1zYbPZZLfbjVJSUlIj8QMAAAAAAMBzsK24hkVERKi0tNR4djgc2rdvX6U6AQEBGj58uIYPH657771XnTp10qeffqqePXvKz89P5eXlZx3HbDbLbDbXePwAAADuUDz/OneHAAAA4JFIDtawK6+8UtnZ2Ro+fLhCQ0M1Z84ceXt7G9+zs7NVXl6uSy+9VIGBgfrrX/+qgIAAtWrVStIvtx1v3LhRt9xyi8xms5o0aeKuqQAAAAAAAKCBY1txDbPZbEpISNCwYcN03XXXacSIEWrbtq3xPTQ0VEuXLlX//v3VrVs3vffee/rnP/+p8PBwSdLcuXNVXFystm3bKiIiwl3TAAAAAAAAgAcwuX5/QB6qbcyYMfL29tZf//pXt8XgcDhksVhkt9sVEhLitjgAAAAAAADgXtXJE7Fy8AL8+OOP2rVrlz744AN17tzZ3eEAAAAAAAAA1eJxycHXX39dXbt2VUBAgMLDw3XVVVfp+PHjSkpK0ogRI5SWlqaIiAiFhITo7rvv1okTJ4y2iYmJmjJlipKTk9WkSRMNHDhQvXr10ldffaX+/fsb9Y4cOSKTyaScnBzj3X//+18NGzZMISEhatSokQYMGKCioiLj+4svvqiYmBj5+/urU6dOevbZZy/K3wMAAMDdrClr3R0CAACAx/KoC0lKS0s1ZswYLViwQCNHjtTRo0e1adMm/bqzesOGDfL391dOTo6Ki4t15513Kjw8XI8++qjRx/Lly3XPPfdoy5Ytkn65Nbh169ZnXKL59ddfa+DAgUpMTNR//vMfhYSEaMuWLTp58qQkacWKFZozZ46efvpp9ejRQzt27NDEiRMVFBSksWPHnrZPp9Mpp9NpPDscjgv++wAAAAAAAMCzeFxy8OTJkxo1apRxO3DXrl2N735+fnr55ZcVGBiozp07a+7cuZo5c6YeeeQReXn9ssiyffv2WrBggdGmuLj4rOM+88wzslgsWrlypXx9fSVJHTp0ML4//PDDysjI0KhRoyRJrVu31q5du7RkyZIqk4Pp6elKS0ur3h8AAAAAAAAA+A2P2lbcvXt3DRo0SF27dtXo0aO1dOlSHT58uNL3wMBA4zk+Pl7Hjh1TSUmJ8a5Xr17VHjc/P18DBgwwEoO/dfz4cRUVFWn8+PEKDg42yrx58yptO/49m80mu91ulN/GCAAAAAAAAJwLj1o56O3trXfffVdbt27VO++8o8WLF2v27NnKy8s75z6CgoIqPf+6ovC3lz6XlZVVqhMQEFBlf8eOHZMkLV26VJdeeukp8VbFbDbLbDafW9AAAAAAAADAaXjUykFJMplM6t+/v9LS0rRjxw75+fnpzTfflCQVFBTop59+Mup++OGHCg4OVnR0dJX9RURESPply/Kv8vPzK9Xp1q2bNm3adErSUJKaNWum5s2b68svv1S7du0qldatW1/IVAEAAOqF4vnXuTsEAAAAj+VRKwfz8vK0YcMGXXPNNWratKny8vL03XffKSYmRjt37tSJEyc0fvx4PfTQQyouLtbDDz+sKVOmGKsDTycgIECXXXaZ5s+fr9atW+vgwYN66KGHKtWZMmWKFi9erFtuuUU2m00Wi0Uffvih+vbtq44dOyotLU3Tpk2TxWLRkCFD5HQ6tX37dh0+fFjTp0+v7T8LAAAAAAAAPJRHrRwMCQnRxo0bde2116pDhw566KGHlJGRoaFDh0qSBg0apPbt22vgwIG6+eab9Yc//EGpqaln7ffll1/WyZMn1atXLyUnJ2vevHmVvoeHh+s///mPjh07poSEBPXq1UtLly41ziCcMGGCXnzxRS1btkxdu3ZV//79NW7cODVt2rTG/wYAAAAAAADAr0yu3x6W58GSkpJ05MgRrV69+qx1v/vuO11yySU6fPiw/Pz8FBoaqsLCQrVs2fKUuv/4xz+0aNEibd26VVu3btUf//hHffnll2fsPycnR1dccYUOHz6s0NDQc4rf4XDIYrHIbrcrJCTknNoAAAAAAACg4alOnsijVg7WlA8++EDdu3dXUFCQPvnkE4WFhZ02Mfhr3f79+0uSNm3aZPwGAAAAAAAA3I3k4HnYunWrkeTbvHnzGRN+51J33bp16tChgwICAnTFFVeouLi4VuIGAACoq6wpa90dAgAAgEdiW/E52r9/v7p16yZJ+vHHH+Xt7S2z2ayffvpJJpNJ/v7+uvXWW/Xss8/q1Vdf1eTJkyX9sowzKChI3t7eOnr0qAICAuTj46Nnn31Wt956q0pKStS+fXvde++9uuuuu7R9+3Y98MAD+vbbb8+4rdjpdMrpdBrPDodD0dHRbCsGAAD1kjVlLbcWAwAA1JDqbCv2qNuKL0Tz5s2Vn58vh8Oh3r17Ky8vT0FBQYqLi9PatWvVsmVLBQcHS5L+8Ic/qF+/fnrvvfeUmZmpf/3rX9q5c6fuvvtubd26VZLUpEkTSdJzzz2ntm3bKiMjQ5LUsWNHffrpp3r88cfPGE96errS0tJqccYAAAAAAABo6NhWfI58fHxktVq1e/du9enTR926ddM333yjZs2aaeDAgbJarUbCLzg4WFarVZ988omuv/56Wa1Wffrpp7r22mtltVpltVqNRGJhYaEuvfTSSmPFx8efNR6bzSa73W6UkpKSmp80AAAAAAAAGjRWDp6jzp0766uvvlJZWZkqKioUHByskydP6uTJkwoODlarVq303//+V/v371dsbKwk6eeff5aPj4+ysrLkdDrl5eWllStX6o9//KOef/75C4rHbDbLbDbXxNQAAADcji3FAAAA7kFy8BytW7dOZWVlGjRokBYsWKBevXrplltuUVJSkoYMGSJfX19J/7f9+JtvvtFVV12l/Px8lZeXKy4uTps2bVJYWFilvd4xMTFas2ZNpbE+/PDDizo3AAAAAAAAeCa2FZ+jVq1aKTg4WN9++62uv/56RUdH67///a9uuOEGtWvXTq1atZL0y/bjdu3a6X//+58uvfRSderUSYcOHVKbNm3Ut29ftWvXTk2bNjX6vfvuu7V3717NnDlTe/bs0auvvqrs7Gw3zRIAAAAAAACehORgNeTk5KhPnz7y9/fXRx99pBYtWigqKqrKugMHDpQk5ebmGr9/r2XLlnrjjTe0evVqde/eXc8//7wee+yxWpsDAAAAAAAA8CuTy+VyuTsIXLjqXFENAAAAAACAhqs6eSLOHAQAAIDbWVPWnvKOS0oAAABqH9uKa5nValVmZmald3FxcUpNTZUkmUwmPffccxo6dKgCAgLUpk0bvf766xc/UAAAAAAAAHgckoN1wJ///GfdcMMNKigo0G233aZbbrlFhYWFZ2zjdDrlcDgqFQAAAAAAAKA6SA7WAaNHj9aECRPUoUMHPfLII+rdu7cWL158xjbp6emyWCxGiY6OvkjRAgAAAAAAoKEgOVgHxMfHn/J8tpWDNptNdrvdKCUlJbUZIgAAAAAAABogLiSpZV5eXvr9hdBlZWUX3K/ZbJbZbL7gfgAAAOoCLh8BAABwD1YO1rKIiAiVlpYazw6HQ/v27atU58MPPzzlOSYm5qLEBwAAAAAAAM/FysFaduWVVyo7O1vDhw9XaGio5syZI29v70p1/vGPf6h37966/PLLtWLFCn300Ud66aWX3BQxAAAAAAAAPAXJwVpms9m0b98+DRs2TBaLRY888sgpKwfT0tK0cuVKTZ48WVFRUfrb3/6m2NhYN0UMAAAAAAAAT2Fy/f5APFxUJpNJb775pkaMGHFB/TgcDlksFtntdoWEhNRMcAAAAAAAAKh3qpMnYuVgHbF+/XrNmzdPn332mby9vRUfH6+srCy1bdvW3aEBAIB6zpqy1t0hnBUXkgAAALgHF5LUEcePH9f06dO1fft2bdiwQV5eXho5cqQqKipOW9/pdMrhcFQqAAAAAAAAQHWwctDNqtrV/fLLLysiIkK7du1Sly5dTvmenp6utLS02g4PAAAAAAAADRgrB+uIvXv3asyYMWrTpo1CQkJktVolSfv37z9tfZvNJrvdbpSSkpKLGC0AAAAAAAAaAlYO1hHDhw9Xq1attHTpUjVv3lwVFRXq0qWLTpw4cdr6ZrNZZrP5IkcJAAAAAACAhoTkYB1w6NAh7dmzR0uXLtWAAQMkSZs3b3ZzVAAAoKHgsg8AAABUheRgHdC4cWOFh4frhRdeUFRUlPbv36+UlBR3hwUAAAAAAIAGjjMHqyExMVHJycmSJKvVqszMzPPqx2QyafXq1cazl5eXVq5cqY8//lhdunTR/fffryeeeOLCAwYAAAAAAADOgJWD52nbtm0KCgoynk0mk958802NGDHCeJeamqrVq1crPz//rP1dddVV2rVrV6V3Vd1kDAAAAAAAANQEkoPnKSIiwt0hAAAAAAAAABeE5OB5slqtSk5OVnJysqxWqyRp5MiRkqRWrVopNTVVaWlpkn5ZVShJy5YtU1JS0il9lZSU6IEHHtA777wjLy8vDRgwQFlZWUa/AAAADZ01ZW2123DRCgAAwIUjOVgDtm3bpqZNm2rZsmUaMmSIvL29FRwcrM8++0zr16/Xe++9J0myWCyntC0rK9PgwYMVHx+vTZs2ycfHR/PmzdOQIUO0c+dO+fn5nXZMp9Mpp9NpPDscjtqZHAAAAAAAABoskoM14NctxqGhoYqMjDTeBwcHy8fHp9K733vttddUUVGhF198sdIKw9DQUOXk5Oiaa645bbv09HRjZSIAAAAAAABwPrit2M0KCgr0xRdfqFGjRgoODlZwcLDCwsL0888/q6ioqMp2NptNdrvdKCUlJRcxagAAAAAAADQErBx0s2PHjqlXr15asWLFKd/OdOmJ2WyW2WyuzdAAAAAuGs4PBAAAcA+SgzXE19dX5eXlld75+fmd8u73evbsqddee01NmzZVSEhIbYYIAAAAAAAAVMK24hpitVq1YcMGffPNNzp8+LDxbt++fcrPz9f3339f6QKRX912221q0qSJrr/+em3atEn79u1TTk6Opk2bpv/9738XexoAAAAAAADwICQHa0hGRobeffddRUdHq0ePHpKkG264QUOGDNEVV1yhiIgI/e1vfzulXWBgoDZu3KiWLVtq1KhRiomJ0fjx47Vz50517tz5Yk8DAAAAAAAAHsTkcrlc7g4Cp8rOzlZycrKOHDlyTvUdDocsFovsdjvbkwEAAAAAADxYdfJEnDkIAAAAt7OmrD3tey4qAQAAqF1sK64B69ev1+WXX67Q0FCFh4dr2LBhKioqkiQVFxfLZDJp1apVuuKKKxQYGKju3bvrgw8+qNRHdna2WrZsqcDAQI0cOVKHDh1yx1QAAAAAAADgQUgO1oDjx49r+vTp2r59uzZs2CAvLy+NHDlSFRUVRp3Zs2drxowZys/PV4cOHTRmzBidPHlSkpSXl6fx48drypQpys/P1xVXXKF58+adcUyn0ymHw1GpAAAAAAAAANXBmYO14Pvvv1dERIQ+/fRTBQcHq3Xr1nrxxRc1fvx4SdKuXbvUuXNnFRYWqlOnTrr11ltlt9u1du3/bae55ZZbtH79+irPHExNTVVaWtop7zlzEAAA1EdsKwYAAKg51TlzkJWDNWDv3r0aM2aM2rRpo5CQEFmtVknS/v37jTrdunUzfkdFRUmSDh48KEkqLCzUpZdeWqnP+Pj4M45ps9lkt9uNUlJSUhNTAQAAAAAAgAfhQpIaMHz4cLVq1UpLly5V8+bNVVFRoS5duujEiRNGHV9fX+O3yWSSpErbjqvLbDbLbDaff9AAAAB1CCsEAQAA3IPk4AU6dOiQ9uzZo6VLl2rAgAGSpM2bN1erj5iYGOXl5VV69+GHH9ZYjAAAAAAAAMDpkBy8QI0bN1Z4eLheeOEFRUVFaf/+/UpJSalWH7t371Z+fr4WLlyoa665RnfccYcKCgokSUeOHFFoaGgtRA4AAAAAAABPx5mDF8jLy0srV67Uxx9/rC5duuj+++/XE088Ua0+3nvvPT399NPKyspS7969VVhYqBkzZigkJEQWi6WWIgcAAAAAAICn47biOmbGjBnatm2bcnNzq9WuOrfQAAAAAAAAoOGqTp6IbcV1QGJiouLi4pSfn28kBU0mkxISEpSTk+Pe4AAAAGqZNWUtF5IAAAC4CcnBOmTVqlVKSUnRZ599plWrVsnPz6/Kuk6nU06n03h2OBwXI0QAAAAAAAA0IJw5WIeEhYUpMDBQfn5+ioyMVFhYWJV109PTZbFYjBIdHX0RIwUAAAAAAEBDQHKwnrLZbLLb7UYpKSlxd0gAAAAAAACoZ9hWXE+ZzWaZzWZ3hwEAAAAAAIB6jJWDAAAAcCsuIwEAAHAfkoMAAAAAAACAh2JbcR2Qn58vu93u7jAAAAAAAADgYUgO1gFffvmlfH19JUmrV69WcnKyewMCAAAAAACARyA5WAeEhYW5OwQAAAAAAAB4IJPL5XK5OwhPl5iYqLi4OOXn5ys3N7fSt3P99zgcDlksFtntdoWEhNRGmAAAAAAAAKgHqpMn4kKSOmTVqlVq0aKF5s6dq9LSUpWWllZZ1+l0yuFwVCoAAAAAAABAdZAcrEPCwsLk7e2tRo0aKTIyUpGRkVXWTU9Pl8ViMUp0dPRFjBQAAAAAAAANAcnBespms8lutxulpKTE3SEBAAAAAACgnuFCknrKbDbLbDa7OwwAAAAAAADUY6wcrGP8/PxUXl7u7jAAAAAAAADgAUgO1jFWq1UbN27U119/re+//97d4QAAAAAAAKABIzlYx8ydO1fFxcVq27atIiIi3B0OAAAAAAAAGjCTy+VyuTsIXDiHwyGLxSK73a6QkBB3hwMAAAAAAAA3qU6eiAtJatGJEyfk5+fn7jAAAADqPGvK2mrVL55/XS1FAgAA4Fk8elvxv/71L4WGhhoXgOTn58tkMiklJcWoM2HCBP3xj3+UJG3evFkDBgxQQECAoqOjNW3aNB0/ftyoa7Va9cgjj+iOO+5QSEiI7rrrrnNu99hjj2ncuHFq1KiRWrZsqRdeeOFi/AkAAAAAAADgwTw6OThgwAAdPXpUO3bskCTl5uaqSZMmysnJMerk5uYqMTFRRUVFGjJkiG644Qbt3LlTr732mjZv3qwpU6ZU6nPhwoXq3r27duzYoT//+c/n3C4jI0O9e/fWjh07NHnyZN1zzz3as2dPlbE7nU45HI5KBQAAAAAAAKgOjz9zsFevXhozZoxmzJihkSNHqk+fPkpLS9OhQ4dkt9vVokULff7553r88cfl7e2tJUuWGG03b96shIQEHT9+XP7+/rJarerRo4fefPNNo86ECRPOqd2AAQP0yiuvSJJcLpciIyOVlpamu++++7Rxp6amKi0t7ZT3nDkIAADqI7YVAwAA1JzqnDno0SsHJSkhIUE5OTlyuVzatGmTRo0apZiYGG3evFm5ublq3ry52rdvr4KCAmVnZys4ONgogwcPVkVFhfbt22f017t370r9n2u7bt26Gb9NJpMiIyN18ODBKuO22Wyy2+1GKSkpqcG/CgAAAAAAADyBx19IkpiYqJdfflkFBQXy9fVVp06dlJiYqJycHB0+fFgJCQmSpGPHjmnSpEmaNm3aKX20bNnS+B0UFFTp27m28/X1rfTNZDKpoqKiyrjNZrPMZvO5TRIAAKCOYyUgAACAe3h8cvDXcwcXLVpkJAITExM1f/58HT58WA888IAkqWfPntq1a5fatWtXrf7Ptx0AAAAAAABQ2zx+W3Hjxo3VrVs3rVixQomJiZKkgQMH6pNPPtHnn39uJAxnzZqlrVu3asqUKcrPz9fevXv11ltvnXKxyO+dbzsAAAAAAACgtnl8clD65dzB8vJyIzkYFham2NhYRUZGqmPHjpJ+ORMwNzdXn3/+uQYMGKAePXpozpw5at68+Rn7Pt92+/fvr3RrMgAAAAAAAFDTPP624roqKSlJVqtVqamp51S/OrfQAAAAAAAAoOGqTp7I488cBAAAgPtZU9ae8TsXlgAAANQOthUDAAAAAAAAHoqVg3VUdnb2Gb87nU45nU7j2eFw1HJEAAAAAAAAaGhYOVhPpaeny2KxGCU6OtrdIQEAAAAAAKCeITlYT9lsNtntdqOUlJS4OyQAAAAAAADUM2wrrqfMZrPMZrO7wwAAAKgRXDgCAADgHqwcBAAAAAAAADwUyUEAAAAAAADAQ5EcrIMSExOVnJzs7jAAAAAAAADQwJEcBAAAAAAAADyUyeVyudwdBP5PUlKSli9fXundvn37ZLVaz9jO4XDIYrHIbrcrJCSkFiMEAACoedaUtcZvLicBAAC4MNXJE3FbcR2TlZWlzz//XF26dNHcuXMlSREREafUczqdcjqdxrPD4bhoMQIAAAAAAKBhYFtxHWOxWOTn56fAwEBFRkYqMjJS3t7ep9RLT0+XxWIxSnR0tBuiBQAAAAAAQH1GcrCestlsstvtRikpKXF3SAAAAAAAAKhn2FZcT5nNZpnNZneHAQAAAAAAgHqM5GAd5Ofnp/LycneHAQAAcNFwCQkAAIB7sK24DrJarcrLy1NxcbG+//57VVRUuDskAAAAAAAANEAkB+ugGTNmyNvbW7GxsYqIiND+/fvdHRIAAAAAAAAaILYV10EdOnTQBx984O4wAAAAAAAA0MCxchAAAAAAAADwUKwcvIhef/11paWl6YsvvlBgYKB69Oiht956SwEBAZo3b55eeOEFfffdd4qJidH8+fM1ZMgQd4cMAABwUVhT1ro7hFrHpSsAAKAuYuXgRVJaWqoxY8Zo3LhxKiwsVE5OjkaNGiWXy6WsrCxlZGRo4cKF2rlzpwYPHqw//OEP2rt3b5X9OZ1OORyOSgUAAAAAAACoDpPL5XK5OwhP8Mknn6hXr14qLi5Wq1atKn275JJLdO+99+pPf/qT8a5v377q06ePnnnmmdP2l5qaqrS0tFPe2+12hYSE1GzwAAAAtYyVgwAAADXH4XDIYrGcU56IlYMXSffu3TVo0CB17dpVo0eP1tKlS3X48GE5HA4dOHBA/fv3r1S/f//+KiwsrLI/m80mu91ulJKSktqeAgAAAAAAABoYzhy8SLy9vfXuu+9q69ateuedd7R48WLNnj1b77777nn1ZzabZTabazhKAAAA92BVHQAAgHuwcvAiMplM6t+/v9LS0rRjxw75+flpw4YNat68ubZs2VKp7pYtWxQbG+umSAEAAAAAAOAJWDl4keTl5WnDhg265ppr1LRpU+Xl5Rk3E8+cOVMPP/yw2rZtq7i4OC1btkz5+flasWKFu8MGAAAAAABAA0ZysIYkJiYqLi5OmZmZp/0eEhKijRs3KjMzUw6HQ61atVJGRoaGDh2qwYMHy26364EHHtDBgwcVGxurNWvWqH379hd3EgAAAAAAAPAo3FZcQ86WHKxt1bmFBgAAAAAAAA1XdfJErBwEAACA21lT1ro7BNRDXGQDAMCF40KSWnD48GHdcccdaty4sQIDAzV06FDt3btXkuRyuRQREaHXX3/dqB8XF6eoqCjjefPmzTKbzfrxxx8veuwAAAAAAADwHCQHa0FSUpK2b9+uNWvW6IMPPpDL5dK1116rsrIymUwmDRw4UDk5OZJ+SSQWFhbqp59+0u7duyVJubm56tOnjwIDA6scw+l0yuFwVCoAAAAAAABAdZAcrGF79+7VmjVr9OKLL2rAgAHq3r27VqxYoa+//lqrV6+W9Mv5hL8mBzdu3KgePXpUepeTk6OEhIQzjpOeni6LxWKU6OjoWpwVAAAAAAAAGiKSgzWssLBQPj4+uvTSS4134eHh6tixowoLCyVJCQkJ2rVrl7777jvl5uYqMTHRSA6WlZVp69atSkxMPOM4NptNdrvdKCUlJbU5LQAAAAAAADRAXEjiBl27dlVYWJhyc3OVm5urRx99VJGRkXr88ce1bds2lZWVqV+/fmfsw2w2y2w2X6SIAQAAahcXSwAAALgHKwdrWExMjE6ePKm8vDzj3aFDh7Rnzx7FxsZKkkwmkwYMGKC33npL//3vf3X55ZerW7ducjqdWrJkiXr37q2goCB3TQEAAAAAAAAeguRgDWvfvr2uv/56TZw4UZs3b1ZBQYH++Mc/6pJLLtH1119v1EtMTNTf/vY3xcXFKTg4WF5eXho4cKBWrFhx1vMGAQAAAAAAgJpAcrAWLFu2TL169dKwYcMUHx8vl8uldevWydfX16iTkJCg8vLySmcLJiYmnvIOAAAAAAAAqC0ml8vlcncQuHAOh0MWi0V2u10hISHuDgcAAAAAAABuUp08EReSAAAAwO2sKWvdHUKN4XIVAABQn5AcrKecTqecTqfx7HA43BgNAAAAAAAA6iPOHKyDVqxYoeDgYKNs2rTplDrp6emyWCxGiY6OdkOkAAAAAAAAqM84c7AOOnr0qL799lvj+ZJLLlFAQEClOqdbORgdHc2ZgwAAoF5iWzEAAEDN4czBeq5Ro0Zq1KjRGeuYzWaZzeaLFBEAAAAAAAAaIpKDAAAAcDtW2wEAALgHZw4CAAAAAAAAHsojkoOJiYlKTk6u0T6Li4tlMpmUn59fo/0CAAAAAAAAF4tHJAfrE6vVqszMTHeHAQAAAAAAAA9AchAAAAAAAADwUB5zIcnJkyc1ZcoUvfLKK/L19dU999yjuXPnymQyyWQy6c0339SIESOM+qGhocrMzFRSUpIk6aOPPtKkSZNUWFioLl26aPbs2aeMsWbNGj3wwAMqKSlRfHy8kpKSlJSUpMOHDys0NFSStHnzZtlsNm3fvl1NmjTRyJEjlZ6erqCgICUmJuqrr77S/fffr/vvv1+S5HK5avtPAwAA4HbWlLXuDqHO49IWAABQGzxm5eDy5cvl4+Ojjz76SFlZWXryySf14osvnlPbY8eOadiwYYqNjdXHH3+s1NRUzZgxo1Kdffv26cYbb9SIESNUUFCgSZMmnZJALCoq0pAhQ3TDDTdo586deu2117R582ZNmTJFkrRq1Sq1aNFCc+fOVWlpqUpLS6uMyel0yuFwVCoAAAAAAABAdXjMysHo6GgtWrRIJpNJHTt21KeffqpFixZp4sSJZ2376quvqqKiQi+99JL8/f3VuXNn/e9//9M999xj1FmyZIk6duyoJ554QpLUsWNHffbZZ3r00UeNOunp6brtttuMy1Hat2+vp556SgkJCXruuecUFhYmb29vNWrUSJGRkWeMKT09XWlpaefxlwAAAAAAAAB+4TErBy+77DKZTCbjOT4+Xnv37lV5eflZ2xYWFqpbt27y9/ev1P639uzZoz59+lR617dv30rPBQUFys7OVnBwsFEGDx6siooK7du3r1rzsdlsstvtRikpKalWewAAAAAAAMBjVg6eiclkOuVsv7Kyshof59ixY5o0aZKmTZt2yreWLVtWqy+z2Syz2VxToQEAAAAAAMADeUxyMC8vr9Lzhx9+qPbt28vb21sRERGVzvfbu3evfvzxR+M5JiZGr7zyin7++Wdj9eCHH35Yqb+OHTtq3bp1ld5t27at0nPPnj21a9cutWvXrso4/fz8zmk1IwAAQEPCZRsAAADu4THbivfv36/p06drz549+tvf/qbFixfrvvvukyRdeeWVevrpp7Vjxw5t375dd999t3x9fY22t956q0wmkyZOnKhdu3Zp3bp1WrhwYaX+J02apN27d2vWrFn6/PPP9fe//13Z2dmSZGxnnjVrlrZu3aopU6YoPz9fe/fu1VtvvWVcSCJJVqtVGzdu1Ndff63vv/++lv8qAAAAAAAA8GQekxy844479NNPP6lv37669957dd999+muu+6SJGVkZCg6OloDBgzQrbfeqhkzZigwMNBoGxwcrH/+85/69NNP1aNHD82ePVuPP/54pf5bt26t119/XatWrVK3bt303HPPGbcV/7r9t1u3bsrNzdXnn3+uAQMGqEePHpozZ46aN29u9DN37lwVFxerbdu2ioiIqO0/CwAAAAAAADyYyfX7w/ZQYx599FE9//zzF+WyEIfDIYvFIrvdrpCQkFofDwAAAAAAAHVTdfJEHnPm4MXw7LPPqk+fPgoPD9eWLVv0xBNPVNoyDAAAgMqsKWslceYgAACAu5AcrEF79+7VvHnz9MMPP6hly5Z64IEHZLPZ3B0WAAAAAAAAcFokB2vQokWLtGjRoosyltPplNPpNJ4dDsdFGRcAAAAAAAANh8dcSNLQpKeny2KxGCU6OtrdIQEAAAAAAKCeITlYT9lsNtntdqNcjEtPAAAAAAAA0LCwrbieMpvNMpvN7g4DAADggnARCQAAgHuxchAAAAAAAADwUCQH66jExEQlJye7OwwAAAAAAAA0YCQH66gbb7xRWVlZ7g4DAAAAAAAADRjJwTrqu+++U0JCgrvDAAAAAAAAQAPGhSR11KJFi3Tttde6OwwAAOAhrClr3To+F5MAAAC4BysH66iePXsqMjLS3WEAAAAAAACgAWPlYD3ldDrldDqNZ4fD4cZoAAAAAAAAUB+xcrCeSk9Pl8ViMUp0dLS7QwIAAAAAAEA9Q3KwnrLZbLLb7UYpKSlxd0gAAAAAAACoZ9hWXE+ZzWaZzWZ3hwEAABoILgQBAADwTKwcBAAAAAAAADwUycFqyMnJkclk0pEjR6qsk5qaqri4uGr1a7ValZmZeUGxAQAAAAAAANXFtuIzSExMVFxcXLUSdzNmzNDUqVMveOycnJwL7gMAAAAAAAA4E5KDNSw4OFjBwcHuDgMAAAAAAAA4K5KDVUhKSlJubq5yc3OVlZUlSVq2bJkk6eOPP9asWbO0a9cuxcXFadmyZerYsaOkX7YVr169Wvn5+UY/R44c0eWXX66MjAydOHFCt9xyizIzM+Xr63vasV988UXNmDFDb7zxhgYNGlT7kwUAADhP1pS1NdIPF6IAAAC4B2cOViErK0vx8fGaOHGiSktLVVpaqujoaEnS7NmzlZGRoe3bt8vHx0fjxo07Y1/vv/++ioqK9P7772v58uXKzs5Wdnb2aesuWLBAKSkpeuedd86YGHQ6nXI4HJUKAAAAAAAAUB0kB6tgsVjk5+enwMBARUZGKjIyUt7e3pKkRx99VAkJCYqNjVVKSoq2bt2qn3/+ucq+GjdurKefflqdOnXSsGHDdN1112nDhg2n1Js1a5YyMzOVm5urvn37njG+9PR0WSwWo/yauAQAAAAAAADOFcnB89CtWzfjd1RUlCTp4MGDVdbv3LmzkVj8tc3v62dkZGjp0qXavHmzOnfufNYYbDab7Ha7UUpKSqo7DQAAAAAAAHg4koPn4bdnBZpMJklSRUXFOdX/tc3v6w8YMEDl5eX6+9//fk4xmM1mhYSEVCoAAAAAAABAdXAhyRn4+fmpvLz8oozVt29fTZkyRUOGDJGPj49mzJhxUcYFAAC4EFwkAgAAUL+RHDwDq9WqvLw8FRcXKzg4+IyrA2tCv379tG7dOg0dOlQ+Pj5KTk6u1fEAAAAAAADg2dhWfAYzZsyQt7e3YmNjFRERof3799f6mJdffrnWrl2rhx56SIsXL6718QAAAAAAAOC5TC6Xy+XuIHDhHA6HLBaL7HY75w8CAAAAAAB4sOrkiVg5CAAAAAAAAHgozhysAU6nUzNnztTKlSvlcDjUu3dvLVq0SH369FFOTo6uuOIKvffee5o1a5Z27dqluLg4LVu2TB07djT6eOutt5SWlqZdu3apefPmGjt2rGbPni0fH/5FAACg/rCmrD2vdlxsAgAA4B6sHKwBDz74oN544w0tX75cn3zyidq1a6fBgwfrhx9+MOrMnj1bGRkZ2r59u3x8fDRu3Djj26ZNm3THHXfovvvu065du7RkyRJlZ2fr0UcfrXJMp9Mph8NRqQAAAAAAAADVwZmDF+j48eNq3LixsrOzdeutt0qSysrKZLValZycrD59+hgrBwcNGiRJWrduna677jr99NNP8vf311VXXaVBgwbJZrMZ/f71r3/Vgw8+qAMHDpx23NTUVKWlpZ3ynjMHAQCAO7FyEAAAwP04c/AiKioqUllZmfr372+88/X1Vd++fVVYWGi869atm/E7KipKknTw4EFJUkFBgebOnavg4GCjTJw4UaWlpfrxxx9PO67NZpPdbjdKSUlJbUwPAAAAAAAADRgH2l0kvr6+xm+TySRJqqiokCQdO3ZMaWlpGjVq1Cnt/P39T9uf2WyW2WyuhUgBAADOHysAAQAA6heSgxeobdu28vPz05YtW9SqVStJv2wr3rZtm5KTk8+pj549e2rPnj1q165dLUYKAAAAAAAAVEZy8AIFBQXpnnvu0cyZMxUWFqaWLVtqwYIF+vHHHzV+/HgVFBSctY85c+Zo2LBhatmypW688UZ5eXmpoKBAn332mebNm3cRZgEAAAAAAABPRHKwBsyfP18VFRW6/fbbdfToUfXu3Vv//ve/1bhx43NqP3jwYP3rX//S3Llz9fjjj8vLy0sVFRVyOp367LPPtHr16tqdAAAAAAAAADwStxXXQZdeeqk6dOig9PR0BQcHKzQ09KxtqnMLDQAAAAAAABoubiuu54qKinTllVeqRYsW55QYBAAAqK+sKWtlTVnr7jAAAAA8FslBN3A6nZo2bZqaNm0qf39/XX755dq2bZuKi4tlMpl06NAhjRs3TiaTSdnZ2e4OFwAAAAAAAA0UyUE3ePDBB/XGG29o+fLl+uSTT9SuXTsNHjxYjRo1UmlpqUJCQpSZmanS0lLdfPPNp+3D6XTK4XBUKgAAAAAAAEB1kBy8yI4fP67nnntOTzzxhIYOHarY2FgtXbpUAQEBevnllxUZGSmTySSLxaLIyEgFBASctp/09HRZLBajREdHX+SZAAAAAAAAoL4jOXiRFRUVqaysTP379zfe+fr6qm/fviosLDznfmw2m+x2u1FKSkpqI1wAAAAAAAA0YD7uDgDnx2w2y2w2uzsMAACAC1I8/zp3hwAAAODRWDl4kbVt21Z+fn7asmWL8a6srEzbtm1TbGysGyMDAAAAAACApyE5WMtycnJkMpl05MgRSVJQUJDuuecezZw5U+vXr9euXbs0ceJE/fjjjxo/frx7gwUAAAAAAIBHYVtxDUtMTFRcXJwyMzOrrDN//nxVVFTo9ttv19GjR9W7d2/9+9//VuPGjS9eoAAAAAAAAPB4JAfdwN/fX0899ZSeeuqp037/dZUhAAAAAAAAUJtIDtagpKQk5ebmKjc3V1lZWZKkZcuWSZI+/vhjzZo1S7t27VJcXJyWLVumjh07Gm3feustpaWladeuXWrevLnGjh2r2bNny8eHfxEAAHA/a8raWu2fi0kAAADcgzMHa1BWVpbi4+M1ceJElZaWqrS0VNHR0ZKk2bNnKyMjQ9u3b5ePj4/GjRtntNu0aZPuuOMO3Xfffdq1a5eWLFmi7OxsPfroo1WO5XQ65XA4KhUAAAAAAACgOkgO1iCLxSI/Pz8FBgYqMjJSkZGR8vb2liQ9+uijSkhIUGxsrFJSUrR161b9/PPPkqS0tDSlpKRo7NixatOmja6++mo98sgjWrJkSZVjpaeny2KxGOXXJCQAAAAAAABwrkgOXiTdunUzfkdFRUmSDh48KEkqKCjQ3LlzFRwcbJRfVx/++OOPp+3PZrPJbrcbpaSkpPYnAQAAAAAAgAaFA+0uEl9fX+O3yWSSJFVUVEiSjh07prS0NI0aNeqUdv7+/qftz2w2y2w210KkAAAAAAAA8BQkB2uYn5+fysvLq9WmZ8+e2rNnj9q1a1dLUQEAAFwYLgwBAABomEgO1jCr1aq8vDwVFxcrODjYWB14JnPmzNGwYcPUsmVL3XjjjfLy8lJBQYE+++wzzZs37yJEDQAAAAAAAE/EmYM1bMaMGfL29lZsbKwiIiKUlJR01jaDBw/Wv/71L73zzjvq06ePLrvsMi1atEitWrWq/YABAAAAAADgsUwul8vl7iAaqmPHjsnpdCo8PLzWx3I4HLJYLLLb7QoJCan18QAAAAAAAFA3VSdPxLbiWvTrzcMXoqysrNJlJgAAAAAAAEBNYVvx/5eYmKipU6cqOTlZjRs3VrNmzbR06VIdP35cd955pxo1aqR27drp7bffliSVl5dr/Pjxat26tQICAtSxY0dlZWVV6jM1NVVxcXHGc0VFhebOnasWLVrIbDYrLi5O69evN74XFxfLZDLptddeU0JCgvz9/bVixYqLMn8AAAB3sqaslTVlrbvDAAAA8DgkB39j+fLlatKkiT766CNNnTpV99xzj0aPHq1+/frpk08+0TXXXKPbb79dP/74oyoqKtSiRQv94x//0K5duzRnzhz96U9/0t///vcq+8/KylJGRoYWLlyonTt3avDgwfrDH/6gvXv3VqqXkpKi++67T4WFhRo8ePBp+3I6nXI4HJUKAAAAAAAAUB2cOfj/JSYmqry8XJs2bZL0y8pAi8WiUaNG6S9/+Ysk6ZtvvlFUVJQ++OADXXbZZaf0MWXKFH3zzTd6/fXXJf2ycnD16tXKz8+XJF1yySW699579ac//clo07dvX/Xp00fPPPOMiouL1bp1a2VmZuq+++47Y7ypqalKS0s75T1nDgIAgPro11WDxfOvc3MkAAAA9V91zhxk5eBvdOvWzfjt7e2t8PBwde3a1XjXrFkzSdLBgwclSc8884x69eqliIgIBQcH64UXXtD+/ftP27fD4dCBAwfUv3//Su/79++vwsLCSu969+591lhtNpvsdrtRSkpKzm2SAAAAAAAAwP/HhSS/8fuLP0wmU6V3JpNJ0i9nB65cuVIzZsxQRkaG4uPj1ahRIz3xxBPKy8u74DiCgoLOWsdsNstsNl/wWAAAAHUBKwYBAADcg+TgedqyZYv69eunyZMnG++KioqqrB8SEqLmzZtry5YtSkhIqNRP3759azVWAAAAAAAA4HRIDp6n9u3b6y9/+Yv+/e9/q3Xr1nrllVe0bds2tW7duso2M2fO1MMPP6y2bdsqLi5Oy5YtU35+PjcSAwAAAAAAwC1IDp6nSZMmaceOHbr55pv1008/yWQyyel06tNPP1VycrIyMzMlSbt27VJmZqaSk5M1bdo02e12PfDAAzp48KBiY2O1Zs0atW/f3r2TAQAAAAAAgEciOfj/5eTknPKuuLj4lHe/vdx52bJluummm3T99dfr/fffV5s2beTl5aWAgABJktPplJfX/9354uXlpYcfflgPP/zwaWOwWq3i8mgAAAAAAABcLNxWfIGKiooUFRWlfv36KTIyUk2bNlVwcLCKioq0YcOGUy45AQAAQGXWlLXuDgEAAMBjkRy8AElJSZo6dar2798vk8kkq9WqxMRETZ48WbGxsfLz85PFYqnUxmQyacmSJRo2bJgCAwMVExOjDz74QF988YUSExMVFBSkfv36nfFyEwAAAAAAAKAmkBy8AFlZWZo7d65atGih0tJSbdu2TZJkNpvldDq1efNm+ficunP7kUce0R133KH8/Hx16tRJt956qyZNmiSbzabt27fL5XJpypQpZxzb6XTK4XBUKgAAAAAAAEB1kBy8ABaLRY0aNZK3t7ciIyMVERFxTu3uvPNO3XTTTerQoYNmzZql4uJi3XbbbRo8eLBiYmJ03333nfYMxN9KT0+XxWIxSnR0dA3MCAAAAAAAAJ6E5KAbdOvWzfjdrFkzSVLXrl0rvfv555/PuBrQZrPJbrcbpaSkpPYCBgAAAAAAQIPEbcVu8NtLSkwmU5XvKioqquzDbDbLbDbXUoQAAAAXT/H869wdAgAAgMdi5SAAAAAAAADgoUgO1hKr1arMzEx3hwEAAAAAAABUieRgLdm2bZvuuusud4cBAAAAAAAAVMnkcrlc7g4CF87hcMhischutyskJMTd4QAAAAAAAMBNqpMncuvKwYqKCi1YsEDt2rWT2WxWy5Yt9eijj0qSPv30U1155ZUKCAhQeHi47rrrLh07dsxom5SUpBEjRuixxx5Ts2bNFBoaqrlz5+rkyZOaOXOmwsLC1KJFCy1btsxoU1xcLJPJpJUrV6pfv37y9/dXly5dlJuba9QpLy/X+PHj1bp1awUEBKhjx47KysqqFPevYy9cuFBRUVEKDw/Xvffeq7KyMqPO77cVHzlyRBMmTFBERIRCQkJ05ZVXqqCgwPheUFCgK664Qo0aNVJISIh69eql7du319jfGgAAoC6zpqw9YwEAAEDtcOttxTabTUuXLtWiRYt0+eWXq7S0VLt379bx48c1ePBgxcfHa9u2bTp48KAmTJigKVOmKDs722j/n//8Ry1atNDGjRu1ZcsWjR8/Xlu3btXAgQOVl5en1157TZMmTdLVV1+tFi1aGO1mzpypzMxMxcbG6sknn9Tw4cO1b98+hYeHq6KiQi1atNA//vEPhYeHa+vWrbrrrrsUFRWlm266yejj/fffV1RUlN5//3198cUXuvnmmxUXF6eJEyeedq6jR49WQECA3n77bVksFi1ZskSDBg3S559/rrCwMN12223q0aOHnnvuOXl7eys/P7/SDca/53Q65XQ6jWeHw3EB/wkAAAAAAAB4IrdtKz569KgiIiL09NNPa8KECZW+LV26VLNmzVJJSYmCgoIkSevWrdPw4cN14MABNWvWTElJScrJydGXX34pL69fFkB26tRJTZs21caNGyX9sgrQYrHoxRdf1C233KLi4mK1bt1a8+fP16xZsyRJJ0+eVOvWrTV16lQ9+OCDp411ypQp+uabb/T6669LkjF2UVGRvL29JUk33XSTvLy8tHLlSkm/rBxMTk5WcnKyNm/erOuuu04HDx6U2Ww2+m3Xrp0efPBB3XXXXQoJCdHixYs1duzYc/r7paamKi0t7ZT3bCsGAAD10dlWBxbPv+4iRQIAAFD/1YttxYWFhXI6nRo0aNBpv3Xv3t1IDEpS//79VVFRoT179hjvOnfubCQGJalZs2bq2rWr8ezt7a3w8HAdPHiwUv/x8fHGbx8fH/Xu3VuFhYXGu2eeeUa9evVSRESEgoOD9cILL2j//v2V+ujcubORGJSkqKioU8b5VUFBgY4dO6bw8HAFBwcbZd++fSoqKpIkTZ8+XRMmTNBVV12l+fPnG++rYrPZZLfbjVJSUnLG+gAAAAAAAMDvuW1bcUBAwAX38ftttyaT6bTvKioqzrnPlStXasaMGcrIyFB8fLwaNWqkJ554Qnl5eWcdu6pxjh07pqioKOXk5JzyLTQ0VNIvKwFvvfVWrV27Vm+//bYefvhhrVy5UiNHjjxtn2azudIqRAAAAAAAAKC63JYcbN++vQICArRhw4ZTthXHxMQoOztbx48fN1YPbtmyRV5eXurYseMFj/3hhx9q4MCBkn7ZVvzxxx9rypQpxjj9+vXT5MmTjfpnW8V3Nj179tQ333wjHx8fWa3WKut16NBBHTp00P33368xY8Zo2bJlVSYHAQAAGhK2DQMAALiH27YV+/v7a9asWXrwwQf1l7/8RUVFRfrwww/10ksv6bbbbpO/v7/Gjh2rzz77TO+//76mTp2q22+/Xc2aNbvgsZ955hm9+eab2r17t+69914dPnxY48aNk/RL0nL79u3697//rc8//1x//vOftW3btgsa76qrrlJ8fLxGjBihd955R8XFxdq6datmz56t7du366efftKUKVOUk5Ojr776Slu2bNG2bdsUExNzwXMFAAAAAAAAquLW24r//Oc/y8fHR3PmzNGBAwcUFRWlu+++W4GBgfr3v/+t++67T3369FFgYKBuuOEGPfnkkzUy7vz58zV//nzl5+erXbt2WrNmjZo0aSJJmjRpknbs2KGbb75ZJpNJY8aM0eTJk/X2229X6uP777+XyWTS4cOHja3BVTGZTFq3bp2uuuoqXXfddTKZTIqMjNTAgQPVrFkzeXt769ChQ7rjjjv07bffqkmTJho1atRpLxwBAAAAAAAAaorbbit2h19vK96xY4fi4uIuqK8TJ07ohx9+ULNmzWQymc6pTWpqqlavXq38/Pwq6yQmJiouLk6ZmZnViqc6t9AAAAAAAACg4apOnsitKwfrMz8/P0VGRro7DAAAAAAAAOC8ue3MwbomMTFRU6dOVXJysho3bqxmzZpp6dKlOn78uO688041atRI7dq1M7YX5+TkyGQy6ciRI0YfS5cuVXR0tAIDAzVy5Eg9+eSTp91y/Morr8hqtcpiseiWW27R0aNHJUlJSUnKzc1VVlaWTCaTTCaTiouLL8LsAQAA3MuasvacCwAAAGqORyUHrVarXC5XlVuKly9friZNmuijjz7S1KlTdc8992j06NHq16+fPvnkE11zzTW6/fbb9eOPP57SdsuWLbr77rt13333KT8/X1dffbUeffTRU+oVFRVp9erV+te//qV//etfys3N1fz58yVJWVlZio+P18SJE1VaWqrS0lJFR0efNlan0ymHw1GpAAAAAAAAANXhUcnBs+nevbseeughtW/fXjabTf7+/mrSpIkmTpyo9u3ba86cOTp06JB27tx5StvFixdr6NChmjFjhjp06KDJkydr6NChp9SrqKhQdna2unTpogEDBuj222/Xhg0bJEkWi0V+fn4KDAxUZGSkIiMj5e3tfdpY09PTZbFYjFJVEhEAAAAAAACoCsnB3+jWrZvx29vbW+Hh4eratavxrlmzZpKkgwcPntJ2z5496tu3b6V3v3+Wflm92KhRI+M5KirqtP2djc1mk91uN0pJSUm1+wAAAAAAAIBn40KS3/D19a30bDKZKr379VbiioqKGh3jfPozm80ym83nHQcAAAAAAABAcrCGdOzYUdu2bav07vfP58LPz0/l5eU1FRYAAEC9UDz/OneHAAAA4JHYVlxDpk6dqnXr1unJJ5/U3r17tWTJEr399tvGasNzZbValZeXp+LiYn3//fcXtEoRAAAAAAAAOBOSg2fx9NNPKzk5+az1+vfvr+eff15PPvmkunfvrvXr1+v++++Xv79/tcabMWOGvL29FRsbq4iICO3fv/88IwcAAAAAAADOzORyuVzuDqIuS0xMVFxcnDIzM6vdduLEidq9e7c2bdpU84H9jsPhkMVikd1uV0hISK2PBwAAAAAAgLqpOnkizhysQQsXLtTVV1+toKAgvf3221q+fLmeffZZd4cFAABQ51lT1p5XO84qBAAAuDBsKz4HFRUVevDBBxUWFqbIyEilpqYa35588kl17dpVQUFBmjNnji677DJ17dpVzz//vB5//HFNnTpVb7/9dqX+3nzzTTVq1Eg//vijJKmkpEQ33XSTQkNDFRYWpuuvv17FxcUXcYYAAAAAAADwRCQHz8Hy5csVFBSkvLw8LViwQHPnztW7774rSfLy8tJTTz31/9i787Cq6/z//48jwlEEDqIkLuhxQcVkcS11lFNZmumopJZZSm7NOO5hwkdHxSWsNGVyKscKrLGsMbfRMs0CFc0VaJEwTYQaSjM8RyyPCvz+8Nv5zRmXQJEjcL9d1+u6zvv9fi3PF/739LXoq6++0qZNm9SkSRM9+eST+uqrrzRlyhT17dtXb7/9tlN/q1at0oABA+Tp6amLFy+qV69e8vb21s6dO5WamiovLy/17t1bFy5cuGZMdrtdNpvNqQAAAAAAAAClwZmDv8NisaiwsNDp3MDOnTvr3nvv1cKFC6+ov2bNGv3pT3/STz/9JElav369nnjiCf3444/y9PSUzWZTvXr1tG7dOvXu3Vv//Oc/NX/+fGVmZjpuNr5w4YJ8fX21fv16PfDAA1eNa86cOYqLi7viPWcOAgCAiohtxQAAAGWnNGcOsnKwBEJDQ52e69evr5MnT0qSPv74Y913331q2LChvL299cQTT+j06dOOLcN9+vSRu7u7Nm7cKEl6//335ePjo549e0qSMjIydPToUXl7e8vLy0teXl7y8/PT+fPndezYsWvGFBsbK6vV6ii5ubm3YuoAAAAAAACoxLiQpATc3d2dng0Gg4qKipSdna2+ffvqz3/+sxYsWCA/Pz/t2rVLo0aN0oULF+Tp6SkPDw8NGjRIb7/9th599FG9/fbbeuSRR1S9+uU/fUFBgTp06KBVq1ZdMa6/v/81YzIajTIajWU7UQAAABdhBSAAAIBrkBy8CQcPHlRRUZEWL16satUuL8J87733rqg3bNgw3X///frqq6/0ySefaP78+Y5v7du317vvvqs77riD7cAAAAAAAAAoV2wrvgktWrTQxYsX9dJLL+nbb7/VW2+9pVdfffWKej169FBAQICGDRumpk2b6q677nJ8GzZsmOrWrav+/ftr586dOn78uJKTk2UwGPTaa6+V53QAAAAAAABQxZAcvAlhYWF68cUX9dxzz6lt27YaPny4Bg0adEU9g8GgoUOHKiMjQ8OGDXP65unpqR07dqhx48aKjIxUcHCwRo0a5fgGAAAAAAAA3CrcVlyGDAaD1q1bpwEDBpR7X6W5hQYAAAAAAACVF7cVS9q0aZN8fX1VWFgoSUpPT5fBYFBMTIyjzujRo/X444/r9OnTGjp0qBo2bChPT0+FhITonXfecerPYrFo4sSJeuaZZ+Tn56eAgADNmTPH8d1sNkuSBg4cKIPB4HiWpA0bNqh9+/aqUaOGmjVrpri4OF26dMnx/ZtvvlGPHj1Uo0YNtWnTRtu2bSv7PwgAAMBtzByz+boFAAAAt0alTQ52795dZ8+eVVpamiQpJSVFdevWVXJysqNOSkqKLBaLzp8/rw4dOmjz5s368ssvNXbsWD3xxBPat2+fU58rV65UrVq1tHfvXj3//POaO3euI5G3f/9+SVJiYqLy8vIczzt37tTw4cM1adIkHT58WMuXL1dSUpIWLFggSSoqKlJkZKQ8PDy0d+9evfrqq5o+ffqt/vMAAAAAAAAAlTc5aDKZFB4e7kgGJicna8qUKUpLS1NBQYG+//57HT16VBEREWrYsKGio6MVHh6uZs2aacKECerdu/cVNw+HhoZq9uzZCgoK0vDhw9WxY0dt375dkuTv7y9J8vX1VUBAgOM5Li5OMTExGjFihJo1a6b7779f8+bN0/LlyyVJH3/8sb7++mu9+eabCgsLU48ePfTss8/+7vzsdrtsNptTAQAAAAAAAEqj0iYHJSkiIkLJyckqLi7Wzp07HRd+7Nq1SykpKWrQoIGCgoJUWFioefPmKSQkRH5+fvLy8tJHH32knJwcp/5CQ0OdnuvXr6+TJ09eN4aMjAzNnTtXXl5ejjJmzBjl5eXpl19+UWZmpgIDA9WgQQNHmy5duvzu3OLj42UymRwlMDCwFH8ZAAAAAAAAQKru6gBuJYvFojfeeEMZGRlyd3dX69atZbFYlJycrPz8fEVEREiSXnjhBSUkJGjp0qUKCQlRrVq1NHnyZF24cMGpP3d3d6dng8GgoqKi68ZQUFCguLg4RUZGXvGtRo0aNzy32NhYTZ061fFss9lIEAIAAAAAAKBUKnVy8LdzB5csWeJIBFosFi1cuFD5+fl6+umnJUmpqanq37+/Hn/8cUmXzwE8cuSI2rRpU6rx3N3dHReg/KZ9+/bKyspSixYtrtomODhYubm5ysvLU/369SVJn3322e+OZTQaZTQaSxUfAADA7Sp74UOuDgEAAKBKqtTbimvXrq3Q0FCtWrVKFotFktSjRw8dOnRIR44ccSQMg4KCtG3bNu3evVuZmZl66qmn9OOPP5Z6PLPZrO3bt+uHH35Qfn6+JGnWrFl68803FRcXp6+++kqZmZlavXq1Zs6cKUnq2bOnWrZsqREjRigjI0M7d+7UjBkzyuYPAAAAAAAAAFxHpU4OSpfPHSwsLHQkB/38/NSmTRsFBASoVatWkqSZM2eqffv26tWrlywWiwICAjRgwIBSj7V48WJt27ZNgYGBateunSSpV69e2rRpk7Zu3apOnTrp7rvv1pIlS9SkSRNJUrVq1bRu3Tr9+uuv6ty5s0aPHu24yRgAAAAAAAC4lQzFxcXFrg6iKrFYLAoPD9fSpUvLtF+bzSaTySSr1SofH58y7RsAAAAAAAAVR2nyRJV+5SAAAAAAAACAqyM5WI6ioqKUkpKihIQEGQwGGQwGZWdnKyUlRZ07d5bRaFT9+vUVExOjS5cuuTpcAACAW84cs1nmmM2uDgMAAKDKIjlYjhISEtSlSxeNGTNGeXl5ysvLk7u7u/r06aNOnTopIyNDr7zyil5//XXNnz//un3Z7XbZbDanAgAAAAAAAJRGdVcHUJWYTCZ5eHjI09NTAQEBkqQZM2YoMDBQy5Ytk8FgUOvWrfWf//xH06dP16xZs1St2tXzt/Hx8YqLiyvP8AEAAAAAAFDJsHLQxTIzM9WlSxcZDAbHu27duqmgoEDffffdNdvFxsbKarU6Sm5ubnmECwAAAAAAgEqElYMVlNFolNFodHUYAAAAAAAAqMBIDpYzDw8PFRYWOp6Dg4P1/vvvq7i42LF6MDU1Vd7e3mrUqJGrwgQAACgX2QsfcnUIAAAAVRrbisuZ2WzW3r17lZ2drZ9++knjxo1Tbm6uJkyYoK+//lobNmzQ7NmzNXXq1GueNwgAAAAAAACUBbJP5SAqKkoDBgyQJEVHR8vNzU1t2rSRv7+/Ll68qA8++ED79u1TWFiY/vSnP2nUqFGaOXOma4MGAAAAAABApce24lKyWCwKDw/X0qVLb6h9y5YttWfPHqd3ZrNZ+/btK4PoAAAAAAAAgJJj5SAAAAAAAABQRZEcLIWoqCilpKQoISFBBoNBBoNBx44d06hRo9S0aVPVrFlTrVq1UkJCwnX72b9/v/z9/fXcc89Jks6cOaPRo0fL399fPj4+uvfee5WRkVEeUwIAAHA5c8xmV4cAAABQZbGtuBQSEhJ05MgRtW3bVnPnzpUk1a5dW40aNdK//vUv1alTR7t379bYsWNVv359DRky5Io+PvnkE0VGRur555/X2LFjJUmDBw9WzZo19eGHH8pkMmn58uW67777dOTIEfn5+V01FrvdLrvd7ni22Wy3YMYAAAAAAACozEgOloLJZJKHh4c8PT0VEBDgeB8XF+f43bRpU+3Zs0fvvffeFcnBdevWafjw4Xrttdf0yCOPSJJ27dqlffv26eTJkzIajZKkRYsWaf369VqzZo0jgfi/4uPjncYFAAAAAAAASovkYBn4+9//rjfeeEM5OTn69ddfdeHCBYWHhzvV2bt3rzZt2qQ1a9Y4bi6WpIyMDBUUFKhOnTpO9X/99VcdO3bsmmPGxsZq6tSpjmebzabAwMAymQ8AAAAAAACqBpKDN2n16tWKjo7W4sWL1aVLF3l7e+uFF17Q3r17neo1b95cderU0RtvvKGHHnpI7u7ukqSCggLVr19fycnJV/Tt6+t7zXGNRqNjpSEAAEBFlr3wIVeHAAAAUGWRHCwlDw8PFRYWOp5TU1PVtWtXjRs3zvHuaiv+6tatq7Vr18pisWjIkCF677335O7urvbt2+uHH35Q9erVZTaby2MKAAAAAAAAgCRuKy41s9msvXv3Kjs7Wz/99JOCgoJ04MABffTRRzpy5Ij++te/av/+/Vdte8cdd+iTTz7R119/raFDh+rSpUvq2bOnunTpogEDBmjr1q3Kzs7W7t27NWPGDB04cKCcZwcAAAAAAICqhORgKUVHR8vNzU1t2rSRv7+/evXqpcjISD3yyCO66667dPr0aadVhP8rICBAn3zyib744gsNGzZMRUVFKi4uliQ9+eSTatmypR599FGdOHFC9erVK69pAQAAAAAAoAoyFP+WmYLL/Pzzz3J3d5e3t7fMZrMmT56syZMnl6oPm80mk8kkq9UqHx+fWxMoAAAAAAAAbnulyRNx5uBtwM/Pz9UhAAAAlDtzzGbHby4lAQAAcA22Fd8GLBaLJk+eLIvFohMnTmjKlCkyGAwyGAyuDg0AAAAAAACVGMnB28jatWvVqFEjzZ07V3l5ecrLy7tmXbvdLpvN5lQAAAAAAACA0iA5eBvx8/OTm5ubvL29FRAQoICAgGvWjY+Pl8lkcpTAwMByjBQAAAAAAACVAcnBCio2NlZWq9VRcnNzXR0SAAAAAAAAKhguJKmgjEajjEajq8MAAAC4YVxCAgAA4HqsHLzNeHh4qLCw0NVhAAAAAAAAoAogOXibMZvN2rFjh77//nv99NNPrg4HAAAAAAAAlRjJwdvM3LlzlZ2drebNm8vf39/V4QAAAAAAAKASMxQXFxe7OgjcPJvNJpPJJKvVKh8fH1eHAwAAAAAAABcpTZ6IC0kAAABQKuaYzWXeJ5eTAAAAuAbJwQrKbrfLbrc7nm02mwujAQAAAAAAQEXEmYMVVHx8vEwmk6MEBga6OiQAAAAAAABUMCQHK6jY2FhZrVZHyc3NdXVIAAAAAAAAqGDYVlxBGY1GGY1GV4cBAAAAAACACozkIAAAAEqFy0MAAAAqD7YV36aWLVum++67z9VhAAAAAAAAoBJj5eBtatGiRfr5559dHQYAAAAAAAAqMZKDt6lDhw7J3d3d1WEAAAAAAACgEiM5eJvy8/NzdQgAAAAAAACo5EgO3qYsFovCw8O1dOlSV4cCAABwy5ljNjs9c+kJAABA+SA5WEHZ7XbZ7XbHs81mc2E0AAAAAAAAqIi4rbiCio+Pl8lkcpTAwEBXhwQAAAAAAIAKhuRgBRUbGyur1eooubm5rg4JAAAAAAAAFQzbiisoo9Eoo9Ho6jAAAAAAAABQgZEcBAAAgMtxAQkAAIBrsK0YAAAAAAAAqKJIDt6E4uJijR07Vn5+fjIYDPL19dXkyZNdHRYAAAAAAABQImwrvglbtmxRUlKSkpOT1axZM1WrVk01a9a8qT4NBoPWrVun5OTksgkSAAAAAAAAuAaSgzfh2LFjql+/vrp27Vqi+hcuXJCHh8ctjgoAAKDiMcdsvup7ziIEAAC4tdhWfIOioqI0YcIE5eTkyGAwyGw2y2KxOG0rNpvNmjdvnoYPHy4fHx+NHTtWFy5c0Pjx41W/fn3VqFFDTZo0UXx8vKO+JA0cONDRJwAAAAAAAHCrsHLwBiUkJKh58+b6xz/+of3798vNzU2DBw++ot6iRYs0a9YszZ49W5L0t7/9TRs3btR7772nxo0bKzc3V7m5uZKk/fv364477lBiYqJ69+4tNze3a45vt9tlt9sdzzabrYxnCAAAAAAAgMqO5OANMplM8vb2lpubmwICAq5Z795779XTTz/teM7JyVFQUJD+8Ic/yGAwqEmTJo5v/v7+kiRfX9/r9ilJ8fHxiouLu8lZAAAAAAAAoCpjW/Et1rFjR6fnqKgopaenq1WrVpo4caK2bt16Q/3GxsbKarU6ym+rDwEAAAAAAICSYuXgLVarVi2n5/bt2+v48eP68MMP9fHHH2vIkCHq2bOn1qxZU6p+jUajjEZjWYYKAADgMlw8AgAA4BokB13Ax8dHjzzyiB555BENGjRIvXv31s8//yw/Pz+5u7ursLDQ1SECAAAAAACgCiA5WM5efPFF1a9fX+3atVO1atX0r3/9SwEBAfL19ZV0+cbi7du3q1u3bjIajapdu7ZrAwYAAAAAAEClxZmD5czb21vPP/+8OnbsqE6dOik7O1sffPCBqlW7/E+xePFibdu2TYGBgWrXrp2LowUAAAAAAEBlZiguLi52dRC4eTabTSaTSVarVT4+Pq4OBwAAAAAAAC5SmjwRKwdv0po1axQSEqKaNWuqTp066tmzp86dO6f9+/fr/vvvV926dWUymRQREaFDhw452kVHR6tv376O56VLl8pgMGjLli2Ody1atNBrr71WrvMBAABwBXPMZpljNrs6DAAAgCqH5OBNyMvL09ChQzVy5EhlZmYqOTlZkZGRKi4u1tmzZzVixAjt2rVLn332mYKCgtSnTx+dPXtWkhQREaFdu3Y5Lh9JSUlR3bp1lZycLEn6/vvvdezYMVksFhfNDgAAAAAAAJUdF5LchLy8PF26dEmRkZFq0qSJJCkkJESSdO+99zrV/cc//iFfX1+lpKSob9++6t69u86ePau0tDR16NBBO3bs0LRp07R+/XpJUnJysho2bKgWLVpcdWy73S673e54ttlst2CGAAAAAAAAqMxYOXgTwsLCdN999ykkJESDBw/WihUrlJ+fL0n68ccfNWbMGAUFBclkMsnHx0cFBQXKycmRJPn6+iosLEzJycn64osv5OHhobFjxyotLU0FBQVKSUlRRETENceOj4+XyWRylMDAwHKZMwAAAAAAACoPkoM3wc3NTdu2bdOHH36oNm3a6KWXXlKrVq10/PhxjRgxQunp6UpISNDu3buVnp6uOnXq6MKFC472FotFycnJjkSgn5+fgoODtWvXrt9NDsbGxspqtTpKbm5ueUwZAAAAAAAAlQjbim+SwWBQt27d1K1bN82aNUtNmjTRunXrlJqaqpdffll9+vSRJOXm5uqnn35yahsREaE33nhD1atXV+/evSVdThi+8847OnLkyHXPGzQajTIajbdsXgAAAOUpe+FDrg4BAACgSiI5eBP27t2r7du364EHHtAdd9yhvXv36tSpUwoODlZQUJDeeustdezYUTabTdOmTVPNmjWd2vfo0UNnz57Vpk2btHDhQkmXk4ODBg1S/fr11bJlS1dMCwAAAAAAAFUE24pvgo+Pj3bs2KE+ffqoZcuWmjlzphYvXqyaNWsqLS1NP/30k9q3b68nnnhCEydO1B133OFoO2fOHN1zzz0KCQmRv7+/WrduLelywrCoqOi6W4oBAAAAAACAsmAoLi4udnUQFZ3FYlF4eLiWLl0q6fJNw/fcc4/y8/Pl6+t71TYFBQWy2+2qU6dOmcRgs9lkMplktVrl4+NTJn0CAAAAAACg4ilNnohtxS7i5eUlLy8vV4cBAAAAAACAKozk4E2KiopSSkqKUlJSlJCQIElKTEyUJB08eFDTp0/X4cOHFR4ersTERLVq1UrS5W3F69evV3p6uqTLqw2feeYZffXVV3J3d9edd96pt99+W02aNHHJvAAAAMqTOWZzmffJJScAAAC/jzMHb1JCQoK6dOmiMWPGKC8vT3l5eQoMDJQkzZgxQ4sXL9aBAwdUvXp1jRw58qp9XLp0SQMGDFBERIQ+//xz7dmzR2PHjpXBYLjmuHa7XTabzakAAAAAAAAApcHKwZtkMpnk4eEhT09PBQQESJK+/vprSdKCBQscF4vExMTooYce0vnz51WjRg2nPmw2m6xWq/r27avmzZtLkoKDg687bnx8vOLi4sp6OgAAAAAAAKhCWDl4C4WGhjp+169fX5J08uTJK+r5+fkpKipKvXr1Ur9+/ZSQkKC8vLzr9h0bGyur1eooubm5ZRs8AAAAAAAAKj2Sg7eQu7u74/dvW4SLioquWjcxMVF79uxR165d9e6776ply5b67LPPrtm30WiUj4+PUwEAAAAAAABKg23FZcDDw0OFhYU33U+7du3Url07xcbGqkuXLnr77bd19913l0GEAAAAtzcuDwEAAHANVg6WAbPZrL179yo7O1s//fTTNVcHXsvx48cVGxurPXv26MSJE9q6dau++eab3z13EAAAAAAAALgZJAfLQHR0tNzc3NSmTRv5+/srJyfnuvXnzJmjV1991fHs6empr7/+Wg8//LBatmypsWPH6i9/+YueeuqpWx06AAAAAAAAqjBDcXFxsauDqGoKCgpkt9tVp06dMuvTZrPJZDLJarVy/iAAAAAAAEAVVpo8EWcOuoCXl5e8vLxcHQYAAAAAAACquCqfHLRYLAoJCZGbm5tWrlwpDw8PzZ8/X4899pjGjx+vNWvWqF69enrppZf04IMPSpJSUlI0bdo0ZWRkyM/PTyNGjND8+fNVvXp1/eMf/9CcOXP03XffqVq1/3/Xdv/+/VWnTh298cYbmjNnjtavX6/09HTH99dee02LFy/W8ePHZTabNXHiRI0bN668/xwAAAAuYY7ZXK7jcQEKAADAZZw5KGnlypWqW7eu9u3bpwkTJujPf/6zBg8erK5du+rQoUN64IEH9MQTT+iXX37R999/rz59+qhTp07KyMjQK6+8otdff13z58+XJA0ePFinT5/Wp59+6uj/559/1pYtWzRs2LCrjr9q1SrNmjVLCxYsUGZmpp599ln99a9/1cqVK68Zs91ul81mcyoAAAAAAABAaZAclBQWFqaZM2cqKChIsbGxqlGjhurWrasxY8YoKChIs2bN0unTp/X555/r5ZdfVmBgoJYtW6bWrVtrwIABiouL0+LFi1VUVKTatWvrwQcf1Ntvv+3of82aNapbt67uueeeq44/e/ZsLV68WJGRkWratKkiIyM1ZcoULV++/Joxx8fHy2QyOUpgYGCZ/10AAAAAAABQuZEclBQaGur47ebmpjp16igkJMTxrl69epKkkydPKjMzU126dJHBYHB879atmwoKCvTdd99JkoYNG6b3339fdrtd0uWVgY8++qjTNuPfnDt3TseOHdOoUaMcZxF6eXlp/vz5Onbs2DVjjo2NldVqdZTc3Nyb+yMAAAAAAACgyqnyZw5Kkru7u9OzwWBwevdbIrCoqKhE/fXr10/FxcXavHmzOnXqpJ07d2rJkiVXrVtQUCBJWrFihe666y6nb25ubtccw2g0ymg0ligeAACA2x1nAAIAALgGycFSCg4O1vvvv6/i4mJH0jA1NVXe3t5q1KiRJKlGjRqKjIzUqlWrdPToUbVq1Urt27e/an/16tVTgwYN9O23317zTEIAAAAAAADgViA5WErjxo3T0qVLNWHCBI0fP15ZWVmaPXu2pk6d6rRteNiwYerbt6+++uorPf7449ftMy4uThMnTpTJZFLv3r1lt9t14MAB5efna+rUqbd6SgAAAAAAAKiiSA6WUsOGDfXBBx9o2rRpCgkJUWFhoZ555hnNnDnTqd69994rPz8/ZWVl6bHHHrtun6NHj5anp6deeOEFTZs2TbVq1VJISIgmT558C2cCAAAAAACAqs5QXFxc7OogKqqkpCRNnjxZZ86ccXUostlsMplMslqt8vHxcXU4AAAAAAAAcJHS5IlYOQgAAIASM8dsviX9ciEJAACAa1T7/SpVy6ZNm+Tr66vCwkJJUnp6ugwGg2JiYhx1Ro8e7XSO4EcffaTg4GB5eXmpd+/eysvLc+rztddeU3BwsGrUqKHWrVvr5ZdfdnzLzs6WwWDQ2rVrdc8998jT01NhYWHas2fPLZ4pAAAAAAAAqjqSg/+je/fuOnv2rNLS0iRJKSkpqlu3rpKTkx11UlJSZLFYJEm//PKLFi1apLfeeks7duxQTk6OoqOjHXVXrVqlWbNmacGCBcrMzNSzzz6rv/71r1q5cqXTuDNmzFB0dLTS09PVsmVLDR06VJcuXbpmnHa7XTabzakAAAAAAAAApUFy8H+YTCaFh4c7koHJycmaMmWK0tLSVFBQoO+//15Hjx5VRESEJOnixYt69dVX1bFjR7Vv317jx4/X9u3bHf3Nnj1bixcvVmRkpJo2barIyEhNmTJFy5cvdxo3OjpaDz30kFq2bKm4uDidOHFCR48evWac8fHxMplMjhIYGFj2fwwAAAAAAABUaiQHryIiIkLJyckqLi7Wzp07FRkZqeDgYO3atUspKSlq0KCBgoKCJEmenp5q3ry5o239+vV18uRJSdK5c+d07NgxjRo1Sl5eXo4yf/58HTt2zGnM0NBQpz4kOfq5mtjYWFmtVkfJzc0ts/kDAAAAAACgauBCkquwWCx64403lJGRIXd3d7Vu3VoWi0XJycnKz893rBqUJHd3d6e2BoNBv10AXVBQIElasWKF7rrrLqd6bm5uTs//3Y/BYJAkFRUVXTNGo9Eoo9F4A7MDAAC4cVwcAgAAULmQHLyK384dXLJkiSMRaLFYtHDhQuXn5+vpp58uUT/16tVTgwYN9O2332rYsGG3MmQAAAAAAACg1EgOXkXt2rUVGhqqVatWadmyZZKkHj16aMiQIbp48aLTysHfExcXp4kTJ8pkMql3796y2+06cOCA8vPzNXXq1Ou2XbZsmePiEwAAAAAAAKCscebgNURERKiwsNCRnPPz81ObNm0UEBCgVq1albif0aNH67XXXlNiYqJCQkIUERGhpKQkNW3a9Hfbjhw58kbDBwAAAAAAAH6Xofi3A/JQodlsNplMJlmtVvn4+Lg6HAAAAAAAALhIafJErBy8TVksFk2ePNnVYQAAANxS5pjNMsdsdnUYAAAAVdZNnzlos9n0ySefqFWrVgoODi6LmFACdrtddrvd8Wyz2VwYDQAAAAAAACqiUq8cHDJkiOOSjl9//VUdO3bUkCFDFBoaqvfff7/MA8TVxcfHy2QyOUpgYKCrQwIAAAAAAEAFU+rk4I4dO9S9e3dJ0rp161RcXKwzZ87ob3/7m+bPn1/mAeLqYmNjZbVaHSU3N9fVIQEAAAAAAKCCKXVy0Gq1ys/PT5K0ZcsWPfzww/L09NRDDz2kb775pswDxNUZjUb5+Pg4FQAAAAAAAKA0Sn3mYGBgoPbs2SM/Pz9t2bJFq1evliTl5+erRo0aZR4gAAAAKq/shQ+5OgQAAIAqrdTJwcmTJ2vYsGHy8vJSkyZNZLFYJF3ebhwSElLW8QEAAAAAAAC4RUqdHBw3bpw6d+6s3Nxc3X///apW7fLO5GbNmnHmIAAAAAAAAFCBGIqLi4tdHQRuns1mk8lkktVq5fxBAAAAAACAKqw0eaJSrxwsLCxUUlKStm/frpMnT6qoqMjp+yeffFLaLgEAAAAAAAC4QKmTg5MmTVJSUpIeeughtW3bVgaD4VbEddvbtGmTHn/8cZ0+fVpubm5KT09Xu3btNH36dC1cuFCSNHr0aJ0/f14JCQkaP368duzYofz8fDVv3lz/93//p6FDhzr6W7NmjeLi4nT06FF5enqqXbt22rBhg2rVquWqKQIAAJQbc8zmMuuLS04AAABKrtTJwdWrV+u9995Tnz59bkU8FUb37t119uxZpaWlqWPHjkpJSVHdunWVnJzsqJOSkqLp06fr/Pnz6tChg6ZPny4fHx9t3rxZTzzxhJo3b67OnTsrLy9PQ4cO1fPPP6+BAwfq7Nmz2rlzp66349tut8tutzuebTbbrZwuAAAAAAAAKqFqpW3g4eGhFi1a3IpYKhSTyaTw8HBHMjA5OVlTpkxRWlqaCgoK9P333+vo0aOKiIhQw4YNFR0drfDwcDVr1kwTJkxQ79699d5770mS8vLydOnSJUVGRspsNiskJETjxo2Tl5fXNcePj4+XyWRylMDAwPKYNgAAAAAAACqRUicHn376aSUkJFx3VVtVERERoeTkZBUXF2vnzp2KjIxUcHCwdu3apZSUFDVo0EBBQUEqLCzUvHnzFBISIj8/P3l5eemjjz5STk6OJCksLEz33XefQkJCNHjwYK1YsUL5+fnXHTs2NlZWq9VRcnNzy2PKAAAAAAAAqERKfVvxwIED9emnn8rPz0933nmn3N3dnb6vXbu2TAO8nW3cuFHDhw9XcnKyHnzwQeXl5Wny5MmqUaOG8vPzdfbsWb399ttauHChFi1apKVLlyokJES1atXS5MmTVb16da1fv16SVFxcrN27d2vr1q1at26dfvjhB+3du1dNmzYtUSzcVgwAAAAAAACpdHmiUq8c9PX11cCBAxUREaG6des6bW01mUw3HHRF9Nu5g0uWLFFERIQkyWKxKDk5WcnJybJYLJKk1NRU9e/fX48//rjCwsLUrFkzHTlyxKkvg8Ggbt26KS4uTmlpafLw8NC6devKe0oAAAAAAACoQkp9IUliYuKtiKNCql27tkJDQ7Vq1SotW7ZMktSjRw8NGTJEFy9edCQMg4KCtGbNGu3evVu1a9fWiy++qB9//FFt2rSRJO3du1fbt2/XAw88oDvuuEN79+7VqVOnFBwc7LK5AQAAAAAAoPIr9cpBSbp06ZI+/vhjLV++XGfPnpUk/ec//1FBQUGZBlcRREREqLCw0LFK0M/PT23atFFAQIBatWolSZo5c6bat2+vXr16yWKxKCAgQAMGDHD04ePjox07dqhPnz5q2bKlZs6cqcWLF+vBBx90wYwAAAAAAABQVZR65eCJEyfUu3dv5eTkyG636/7775e3t7eee+452e12vfrqq7ciztvW0qVLtXTpUqd36enpTs9ffvmlCgsL5e3trby8PHXo0EHz5s1zfM/MzFRRUZEKCwtlt9v17rvvKjw8/NYHDwAAAAAAgCqt1CsHJ02apI4dOyo/P181a9Z0vB84cKC2b99epsFVFufOnVNYWJj+/ve/X/P7H/7wBz333HPlHBkAAIBrmGM2OxUAAAC4RqlXDu7cuVO7d++Wh4eH03uz2azvv/++zAKrTB588MHrbhF+4oknJEnZ2dnlFBEAAAAAAABwA8nB37a//q/vvvtO3t7eZRIUfp/dbpfdbnc822w2F0YDAAAAAACAiqjU24ofeOABpzP2DAaDCgoKNHv2bPXp06csY8N1xMfHy2QyOUpgYKCrQwIAAAAAAEAFU+rk4OLFi5Wamqo2bdro/Pnzeuyxxxxbijkzr/zExsbKarU6Sm5urqtDAgAAAAAAQAVT6m3FjRo1UkZGht59911lZGSooKBAo0aN0rBhw5wuKMGtZTQaZTQaXR0GAADADcle+JCrQwAAAIBuIDn4zjvvaOjQoRo2bJiGDRvm9G3atGl64YUXyiw4AAAAAAAAALdOqbcV//nPf9aHH354xfspU6bon//8Z5kEVdkUFBQoPT1d6enpkqTjx48rPT1dOTk5kqSff/5Z6enpOnz4sCQpKytL6enp+uGHH1wVMgAAAAAAAKqAUicHV61apaFDh2rXrl2OdxMmTNB7772nTz/9tEyDqywOHDigdu3aqV27dpKkqVOnql27dpo1a5YkaePGjWrXrp0eeujy9ppHH31U7dq106uvvuqymAEAAAAAAFD5GYqLi4tL2+jtt9/W+PHjtW3bNr3++uvasGGDPv30U7Vs2fJWxIgSsNlsMplMslqt8vHxcXU4AAAAAAAAcJHS5IlKfeagJD322GM6c+aMunXrJn9/f6WkpKhFixY3FCwAAABgjtl8w2253AQAAODGlSg5OHXq1Ku+9/f3V/v27fXyyy873r344otlExmuy263y263O55tNpsLowEAAAAAAEBFVKLkYFpa2lXft2jRQjabzfHdYDCUXWS4rvj4eMXFxbk6DAAAAAAAAFRgN3TmIFzvaisHAwMDOXMQAABUSGwrBgAAKDu3/MzB33z33XeSpEaNGt1MN7gBRqNRRqPR1WEAAAAAAACgAit1crCoqEjz58/X4sWLVVBQIEny9vbW008/rRkzZqhatWplHiQAAAAqN1b/AQAAuEapk4MzZszQ66+/roULF6pbt26SpF27dmnOnDk6f/68FixYUOZBAgAAAAAAACh7pT5zsEGDBnr11Vf1xz/+0en9hg0bNG7cOH3//fdlGmBVNXr0aL3++usq6T9PafaSAwAAAAAAoPIqTZ6o1HuAf/75Z7Vu3fqK961bt9bPP/9c2u5wDadOnZKbm5urwwAAAAAAAEAlVurkYFhYmJYtW3bF+2XLliksLKxMgoL0xRdfqEaNGq4OAwAAAAAAAJVYqc8cfP755/XQQw/p448/VpcuXSRJe/bsUW5urj744IMyD7Ai2LJli+bPn68vv/xSbm5u6tKlixISEtS8eXNlZ2eradOmev/99/XSSy9p7969CgoK0quvvur4+0lSUlKSZs2apZ9++km9evXSX/7yF82bN8+FswIAAJWNOWazq0O4Ji4kAQAAcI1Srxxs2rSpjhw5ooEDB+rMmTM6c+aMIiMjlZWVpSZNmtyKGG97586d09SpU3XgwAFt375d1apV08CBA1VUVOSoM2PGDEVHRys9PV0tW7bU0KFDdenSJUnS3r17NWrUKI0fP17p6em65557NH/+/OuOabfbZbPZnAoAAAAAAABQGqW+kMTNzU15eXm64447nN6fPn1ad9xxhwoLC8s0wIrop59+kr+/v7744gt5eXmpadOmeu211zRq1ChJ0uHDh3XnnXcqMzNTrVu31mOPPSar1arNm////81/9NFHtWXLFp05c+aqY8yZM0dxcXFXvOdCEgAAcC2sHAQAAKgabumFJNfKJRYUFFTZM/K++eYbDR06VM2aNZOPj4/MZrMkKScnx1EnNDTU8bt+/fqSpJMnT0qSMjMzdddddzn1+d9bjq8mNjZWVqvVUXJzc8tiKgAAAAAAAKhCSnzm4NSpUyVJBoNBs2bNkqenp+NbYWGh9u7dq/Dw8DIPsCLo16+fmjRpohUrVqhBgwYqKipS27ZtdeHCBUcdd3d3x2+DwSBJTtuOS8toNMpoNN540AAAAAAAAKjySpwcTEtLk3R55eAXX3whDw8PxzcPDw+FhYUpOjq67CO8zZ0+fVpZWVlasWKFunfvLknatWtXqfoIDg7W3r17nd599tlnZRYjAACAxNZdAAAAXKnEycFPP/1UkvTkk08qISGBc+3+n9q1a6tOnTr6xz/+ofr16ysnJ0cxMTGl6mPixInq1q2bFi1apP79++ujjz7Sli1bblHEAAAAAAAAwGWlPnMwMTGRxOB/qVatmlavXq2DBw+qbdu2mjJlil544YVS9XH33XdrxYoVSkhIUFhYmLZu3So/Pz/9+uuvtyhqAAAAAAAA4AZuK0b5+Pnnn+Xu7i5vb+8S1S/NLTQAAAAAAACovEqTJyrxtmKULz8/P1eHAAAAUGbMMZuv+53zEAEAAFyj1NuKUT4sFosmT57s6jAAAAAAAABQibFysIKy2+2y2+2OZ5vN5sJoAAAAAAAAUBGxcrCCio+Pl8lkcpTAwEBXhwQAAAAAAIAKhuRgBRUbGyur1eooubm5rg4JAAAAAAAAFQzbiisoo9Eoo9Ho6jAAAABKhAtHAAAAbk+sHAQAAAAAAACqqEqfHExOTpbBYNCZM2dcHYqSkpLk6+vr6jAAAAAAAAAASZVwW7HFYlF4eLiWLl3q6lBuSFRU1G2RyAQAAAAAAEDlV+mSg5VFcnKyq0MAAAAAAABAJVepkoNRUVFKSUlRSkqKEhISJEmJiYmSpIMHD2r69Ok6fPiwwsPDlZiYqFatWjnavvLKK1q0aJFyc3PVtGlTzZw5U0888YQkKTs7W02bNlVaWprCw8MlSWfOnFHt2rX16aefymKxSJI2btyop59+Wrm5uerSpYuioqIUFRWl/Px8p+3EH330kSZPnqzc3Fz94Q9/UGJiourXr685c+Zo5cqVkiSDwSBJTv0DAABUVuaYza4OwYHLUwAAQFVSqc4cTEhIUJcuXTRmzBjl5eUpLy9PgYGBkqQZM2Zo8eLFOnDggKpXr66RI0c62q1bt06TJk3S008/rS+//FJPPfWUnnzySX366aclHvv48eMaNGiQBgwYoIyMDD311FOaMWPGFfV++eUXLVq0SG+99ZZ27NihnJwcRUdHS5Kio6M1ZMgQ9e7d2xF/165db/KvAgAAAAAAAFxdpVo5aDKZ5OHhIU9PTwUEBEiSvv76a0nSggULFBERIUmKiYnRQw89pPPnz6tGjRpatGiRoqKiNG7cOEnS1KlT9dlnn2nRokW65557SjT28uXL1apVK73wwguSpFatWunLL7/UggULnOpdvHhRr776qpo3by5JGj9+vObOnStJ8vLyUs2aNWW32x3xX4vdbpfdbnc822y2EsUJAAAAAAAA/KZSrRy8ntDQUMfv+vXrS5JOnjwpScrMzFS3bt2c6nfr1k2ZmZkl7j8rK0udOnVyete5c+cr6nl6ejoSg7/F8lscpREfHy+TyeQov62QBAAAAAAAAEqqyiQH3d3dHb9/O8+vqKioRG2rVbv8ZyouLna8u3jx4k3H8Vss/91vScXGxspqtTpKbm7uDcUDAAAAAACAqqtSbSuWJA8PDxUWFpaqTXBwsFJTUzVixAjHu9TUVLVp00aS5O/vL0nKy8tTu3btJEnp6elOfbRq1UoffPCB07v9+/eXNvwSx280GmU0GkvdPwAAwO2IS0AAAABco9IlB81ms/bu3avs7Gx5eXmVaHXgtGnTNGTIELVr1049e/bUv//9b61du1Yff/yxJKlmzZq6++67tXDhQjVt2lQnT57UzJkznfp46qmn9OKLL2r69OkaNWqU0tPTlZSUJOn/X6lY0vg/+ugjZWVlqU6dOjKZTFesNgQAAAAAAADKQqXbVhwdHS03Nze1adNG/v7+ysnJ+d02AwYMUEJCghYtWqQ777xTy5cvV2JioiwWi6POG2+8oUuXLqlDhw6aPHmy5s+f79RH06ZNtWbNGq1du1ahoaF65ZVXHLcVl2SF3+TJkyVJY8aMUatWrdSxY0f5+/srNTW15JMHAAAAAAAASsFQfCMH3qFEFixYoFdfffV3zwP8+eef5e7uLm9vb5nNZk2ePNmRLCwpm80mk8kkq9UqHx+fm4gaAAAAAAAAFVlp8kSVbluxK7388svq1KmT6tSpo9TUVL3wwgsaP37877bz8/Mrh+gAAAAAAAAAZ6wcLENTpkzRu+++q59//lmNGzfWE088odjYWFWvfv0crMViUXh4uNLT05WSkuL0raT/PKwcBACgajDHbHZ1CLcEF5IAAACUHVYOusiSJUu0ZMmSG26/du1ahYWFaezYsRozZsx169rtdtntdsezzWa74XEBAAAAAABQNVW6C0kqMj8/P7m5ucnb21sBAQEKCAi4Zt34+HiZTCZHCQwMLMdIAQAAAAAAUBmQHKygYmNjZbVaHeX3Lj0BAAAAAAAA/hfbiisoo9Eoo9Ho6jAAAAAAAABQgZEcvM14eHiosLDQ1WEAAIDbFBd3AAAAoCyxrfg2YzabtWPHDn3//ff66aefXB0OAAAAAAAAKjGSg7eZuXPnKjs7W82bN5e/v7+rwwEAAAAAAEAlZiguLi52dRC4eTabTSaTSVarVT4+Pq4OBwAAAAAAAC5SmjwRKwcBAAAAAACAKooLSW7Qpk2b9Pjjj+v06dNyc3NTenq62rVrp+nTp2vhwoWSpNGjR+v8+fNKSEjQ+PHjtWPHDuXn56t58+b6v//7Pw0dOtTR35o1axQXF6ejR4/K09NT7dq104YNG1SrVi1XTREoV+aYza4OAQDgQly0AgAA4BqsHLxB3bt319mzZ5WWliZJSklJUd26dZWcnOyok5KSIovFovPnz6tDhw7avHmzvvzyS40dO1ZPPPGE9u3bJ0nKy8vT0KFDNXLkSGVmZio5OVmRkZG63o5vu90um83mVAAAAAAAAIDSIDl4g0wmk8LDwx3JwOTkZE2ZMkVpaWkqKCjQ999/r6NHjyoiIkINGzZUdHS0wsPD1axZM02YMEG9e/fWe++9J+lycvDSpUuKjIyU2WxWSEiIxo0bJy8vr2uOHx8fL5PJ5CiBgYHlMW0AAAAAAABUIiQHb0JERISSk5NVXFysnTt3KjIyUsHBwdq1a5dSUlLUoEEDBQUFqbCwUPPmzVNISIj8/Pzk5eWljz76SDk5OZKksLAw3XfffQoJCdHgwYO1YsUK5efnX3fs2NhYWa1WR8nNzS2PKQMAAAAAAKAS4czBm2CxWPTGG28oIyND7u7uat26tSwWi5KTk5Wfn6+IiAhJ0gsvvKCEhAQtXbpUISEhqlWrliZPnqwLFy5Iktzc3LRt2zbt3r1bW7du1UsvvaQZM2Zo7969atq06VXHNhqNMhqN5TZX4FbjrCkAAAAAAMofKwdvwm/nDi5ZssSRCPwtOZicnCyLxSJJSk1NVf/+/fX4448rLCxMzZo105EjR5z6MhgM6tatm+Li4pSWliYPDw+tW7euvKcEAAAAAACAKoTk4E2oXbu2QkNDtWrVKkcisEePHjp06JCOHDniSBgGBQU5VgZmZmbqqaee0o8//ujoZ+/evXr22Wd14MAB5eTkaO3atTp16pSCg4NdMS0AAAAAAABUEWwrvkkRERFKT093JAf9/PzUpk0b/fjjj2rVqpUkaebMmfr222/Vq1cveXp6auzYsRowYICsVqskycfHRzt27NDSpUtls9nUpEkTLV68WA8++KCrpgUAAAAAAIAqwFBcXFzs6iBw82w2m0wmk6xWq3x8fFwdDgAAAAAAAFykNHkiVg4CAHCTzDGbXR0CUOFxMRUAAIBrcOZgOVqzZo1CQkJUs2ZN1alTRz179tS5c+dUVFSkuXPnqlGjRjIajQoPD9eWLVtcHS4AAAAAAAAqOZKD5SQvL09Dhw7VyJEjlZmZqeTkZEVGRqq4uFgJCQlavHixFi1apM8//1y9evXSH//4R33zzTfX7M9ut8tmszkVAAAAAAAAoDQ4c7CcHDp0SB06dFB2draaNGni9K1hw4b6y1/+ov/7v/9zvOvcubM6deqkv//971ftb86cOYqLi7viPWcOAkD5Y1sxcPPYVgwAAFB2SnPmICsHy0lYWJjuu+8+hYSEaPDgwVqxYoXy8/Nls9n0n//8R926dXOq361bN2VmZl6zv9jYWFmtVkfJzc291VMAAAAAAABAJcOFJOXEzc1N27Zt0+7du7V161a99NJLmjFjhrZt23ZD/RmNRhmNxjKOEgBwI1jxBAAAAKCiYuVgOTIYDOrWrZvi4uKUlpYmDw8Pbd++XQ0aNFBqaqpT3dTUVLVp08ZFkQIAAAAAAKAqIDl4ixUXF2vs2LHy8fGRwWDQqlWrlJOTo7Vr1+rUqVMKDg7WtGnT9Nxzz+ndd99VVlaWYmJitH//fpKDAAAAAAAAuKXYVnyLbdmyRUlJSUpKStKKFSs0ZcoU2Ww2NWnSRIsXL9aDDz6oXr16yWq16umnn9bJkycdScEGDRq4OHoAAAAAAABUZiQHb5ELFy7Iw8NDx44dU/369fXYY4/pscceu2rdatWqafbs2Zo9e7bjncFgKK9QAQAAAAAAUEVV2OSgxWJR27ZtJUlvvfWW3N3d9ec//1lz586VwWBQfn6+Jk2apH//+9+y2+2KiIjQ3/72NwUFBam4uFh33HGHXnnlFQ0aNEiSFB4erh9//FF5eXmSpF27dum+++5Tfn6+PD09debMGUVHR2vDhg2y2+3q2LGjlixZorCwMEnSnDlztH79eo0fP14LFizQiRMnNHz4cK1cuVLS5WRfkyZNlJ2dLbPZrMmTJ2vy5MmO+YSHh2vAgAGaM2dO+f0Rb3PmmM2uDgEAAJQTLvYBAABwjQp95uDKlStVvXp17du3TwkJCXrxxRf12muvSZKioqJ04MABbdy4UXv27FFxcbH69OmjixcvymAwqEePHkpOTpYk5efnKzMzU7/++qu+/vprSVJKSoo6deokT09PSdLgwYN18uRJffjhhzp48KDat2+v++67Tz///LMjnqNHj+r999/X2rVrlZ6eroSEBM2dO1eNGjVSXl6e9u/fX2Zzt9vtstlsTgUAAAAAAAAojQq7clCSAgMDtWTJEhkMBrVq1UpffPGFlixZIovFoo0bNyo1NVVdu3aVJK1atUqBgYFav369Bg8eLIvFouXLl0uSduzYoXbt2ikgIEDJyclq3bq1kpOTFRERIenyKsJ9+/bp5MmTMhqNkqRFixZp/fr1WrNmjcaOHSvp8lbiN998U/7+/o4Yvb295ebmpoCAgDKde3x8vOLi4sq0TwAAAAAAAFQtFXrl4N133+10Nl+XLl30zTff6PDhw6pevbruuusux7c6deqoVatWyszMlCRFRETo8OHDOnXqlFJSUmSxWGSxWJScnKyLFy9q9+7dslgskqSMjAwVFBSoTp068vLycpTjx4/r2LFjjjGaNGnilBi8lWJjY2W1Wh0lNze3XMYFAAAAAABA5VGhVw7ejJCQEPn5+SklJUUpKSlasGCBAgIC9Nxzz2n//v26ePGiY9VhQUGB6tev79iG/N98fX0dv2vVqlWisatVq6bi4mKndxcvXixV/Eaj0bGKEQAAAAAAALgRFTo5uHfvXqfnzz77TEFBQWrTpo0uXbqkvXv3OhJ8p0+fVlZWltq0aSPp8gUh3bt314YNG/TVV1/pD3/4gzw9PWW327V8+XJ17NjRkexr3769fvjhB1WvXl1ms/mm4/b393dcfCJJNptNx48fv+l+KxsOJgcAAAAAALi1KvS24pycHE2dOlVZWVl655139NJLL2nSpEkKCgpS//79NWbMGO3atUsZGRl6/PHH1bBhQ/Xv39/R3mKx6J133lF4eLi8vLxUrVo19ejRQ6tWrXKcNyhJPXv2VJcuXTRgwABt3bpV2dnZ2r17t2bMmKEDBw6UOu57771Xb731lnbu3KkvvvhCI0aMkJubW5n8TQAAAAAAAICSqtArB4cPH65ff/1VnTt3lpubmyZNmuS4HCQxMVGTJk1S3759deHCBfXo0UMffPCB3N3dHe0jIiJUWFjoOFtQupww3LBhg9M7g8GgDz74QDNmzNCTTz6pU6dOKSAgQD169FC9evWuGV9SUpJiY2OvqBMbG6vjx4+rb9++MplMys3NLZMViQAAAAAAAEBpGIr/9/C7CsJisSg8PFxLly51dSjX9Ouvv+rs2bO64447JElz5szR+vXrlZ6e7lTPYDBo3bp1GjBgwA2PZbPZZDKZZLVa5ePjcxNRAwAAAAAAoCIrTZ6oQq8cvN3VrFlTNWvWdHUYAAAAAAAAwFWRHCylTZs26fHHH9fp06fl5uam9PR0tWvXTtOnT9fChQslSaNHj9b58+fVs2dPTZ48WWfOnFFSUpLi4uIkXV4pKF3e+hwVFSVJ+umnnzRw4EB99NFHatiwoRYvXqw//vGPLpkjgMrDHLPZ1SEAQIlwERkAAIBrVNgLSZKTk12ypbh79+46e/as0tLSJEkpKSmqW7eukpOTHXVSUlKcziyUpEceeURPP/207rzzTuXl5SkvL0+PPPKI43tcXJyGDBmizz//XH369NGwYcP0888/XzMOu90um83mVAAAAAAAAIDSqLDJQVcxmUwKDw93JAOTk5M1ZcoUpaWlqaCgQN9//72OHj3qdNuxdHmLsZeXl6pXr66AgAAFBAQ4bTmOiorS0KFD1aJFCz377LMqKCjQvn37rhlHfHy8TCaTowQGBt6S+QIAAAAAAKDyIjl4AyIiIpScnKzi4mLt3LlTkZGRCg4O1q5du5SSkqIGDRooKCioVH2GhoY6fteqVUs+Pj46efLkNevHxsbKarU6Sm5u7g3PBwAAAAAAAFUTZw7eAIvFojfeeEMZGRlyd3dX69atZbFYlJycrPz8/CtWDZaEu7u707PBYFBRUdE16xuNRhmNxlKPAwAAAAAAAPyG5OAN+O3cwSVLljgSgRaLRQsXLlR+fr6efvrpq7bz8PBQYWFheYYKoIrjgH8AAAAAwPWwrfgG1K5dW6GhoVq1apXj4pEePXro0KFDOnLkyDVXDprNZh0/flzp6en66aefZLfbyzFqAAAAAAAAwBnJwRsUERGhwsJCR3LQz89Pbdq0UUBAgFq1auWod+nSJRkMBp05c0YPP/ywevfurXvuuUf+/v565513XBQ9AAAAAAAAIBmKi4uLXR1EZWKxWBQeHq6lS5dKunyb8T333KP8/Hz5+vresnFtNptMJpOsVqt8fHxu2TgAAAAAAAC4vZUmT8SZgwAAoEowx2x2dQi4Ds5IBQAAcA22FZehqKgopaSkKCEhQQaDQQaDQdnZ2ZKkgwcPqmPHjvL09FTXrl2VlZXl1HbDhg1q3769atSooWbNmikuLk6XLl1ywSwAAAAAAABQVZAcLEMJCQnq0qWLxowZo7y8POXl5SkwMFCSNGPGDC1evFgHDhxQ9erVNXLkSEe7nTt3avjw4Zo0aZIOHz6s5cuXKykpSQsWLLjmWHa7XTabzakAAAAAAAAApUFysAyZTCZ5eHjI09NTAQEBCggIkJubmyRpwYIFioiIUJs2bRQTE6Pdu3fr/PnzkqS4uDjFxMRoxIgRatasme6//37NmzdPy5cvv+ZY8fHxMplMjvJbEhIAAAAAAAAoKZKD5SQ0NNTxu379+pKkkydPSpIyMjI0d+5ceXl5Ocpvqw9/+eWXq/YXGxsrq9XqKLm5ubd+EgAAAAAAAKhUuJCknLi7uzt+GwwGSVJRUZEkqaCgQHFxcYqMjLyiXY0aNa7an9FolNFovAWRAgBQOXHhBQAAAHAlkoNlzMPDQ4WFhaVq0759e2VlZalFixa3KCoAAAAAAADgSiQHy5jZbNbevXuVnZ0tLy8vx+rA65k1a5b69u2rxo0ba9CgQapWrZoyMjL05Zdfav78+eUQNQAAAAAAAKoizhwsY9HR0XJzc1ObNm3k7++vnJyc323Tq1cvbdq0SVu3blWnTp109913a8mSJWrSpEk5RAwAAAAAAICqylBcXFzs6iBw82w2m0wmk6xWq3x8fFwdDgAAAAAAAFykNHkithX/F4vFopCQELm5uWnlypXy8PDQ/Pnz9dhjj2n8+PFas2aN6tWrp5deekkPPvigCgsLNXbsWH3yySf64Ycf1LhxY40bN06TJk1y9BkVFaUzZ87oD3/4gxYvXqwLFy7o0Ucf1dKlS+Xu7q65c+fqvffe05dffukUS3h4uPr166d58+aV958BAABIMsdsdnUIVQoXxgAAALgG24r/x8qVK1W3bl3t27dPEyZM0J///GcNHjxYXbt21aFDh/TAAw/oiSee0C+//KKioiI1atRI//rXv3T48GHNmjVL//d//6f33nvPqc9PP/1Ux44d06effqqVK1cqKSlJSUlJkqSRI0cqMzNT+/fvd9RPS0vT559/rieffLI8pw4AAAAAAIAqhm3F/8VisaiwsFA7d+6UJBUWFspkMikyMlJvvvmmJOmHH35Q/fr1tWfPHt19991X9DF+/Hj98MMPWrNmjaTLKweTk5N17Ngxubm5SZKGDBmiatWqafXq1ZKkPn36yGw26+WXX5YkTZw4UV988YU+/fTTa8Zqt9tlt9sdzzabTYGBgWwrBgCgjLBysHyxchAAAKDslGZbMSsH/0doaKjjt5ubm+rUqaOQkBDHu3r16kmSTp48KUn6+9//rg4dOsjf319eXl76xz/+ccUlJHfeeacjMShJ9evXd7SXpDFjxuidd97R+fPndeHCBb399tsaOXLkdeOMj4+XyWRylMDAwBufNAAAAAAAAKokkoP/w93d3enZYDA4vTMYDJKkoqIirV69WtHR0Ro1apS2bt2q9PR0Pfnkk7pw4cLv9llUVOR47tevn4xGo9atW6d///vfunjxogYNGnTdOGNjY2W1Wh0lNzf3huYLAAAAAACAqosLSW5CamqqunbtqnHjxjneHTt2rNT9VK9eXSNGjFBiYqI8PDz06KOPqmbNmtdtYzQaZTQaSz0WAAAoGba5AgAAoCogOXgTgoKC9Oabb+qjjz5S06ZN9dZbb2n//v1q2rRpqfsaPXq0goODJV1OOgIAAAAAAAC3GtuKb8JTTz2lyMhIPfLII7rrrrt0+vRpp1WEpREUFKSuXbuqdevWuuuuu8o4UgAAAAAAAOBK3FZ8myguLlZQUJAeeOABvfLKK8rPz5evr2+J25fmFhoAAAAAAABUXtxW7AL/ewlJaZw6dUrLli3TDz/8oAcffLAMowIAAAAAAACujTMHr+Hs2bP605/+pPXr18vHx0fPPPOMNmzYoPDwcC1dulRms1mjRo3SN998o/Xr1ysyMlJJSUnatWuXYmNjdeDAAdWtW1cDBw5UfHy8atWqJUl66623lJCQoKysLNWqVUv33nuv3nnnHdWtW1cLFizQH//4R0lS7dq1JUkjRoxQUlKSq/4MAID/xxyz2dUhAJUaF8AAAAC4BisHr2Hq1KlKTU3Vxo0btW3bNu3cuVOHDh1yqrNo0SKFhYUpLS1Nf/3rX3Xs2DH17t1bDz/8sD7//HO9++672rVrl8aPH+9oc/HiRc2bN08ZGRlav369srOz9eCDD+rUqVMaP3683n//fUlSVlaW8vLylJCQcNX47Ha7bDabUwEAAAAAAABKgzMHr+Ls2bOqU6eO3n77bQ0aNEiSZLVa1aBBA40ZM8axcrBdu3Zat26do93o0aPl5uam5cuXO97t2rVLEREROnfunGrUqHHFWAcOHFCnTp109uxZeXl5KTk5Wffcc8/vnjk4Z84cxcXFXfGeMwcB4NZg5SBwa7FyEAAAoOxw5uBN+vbbb3Xx4kV17tzZ8c5kMqlVq1ZO9Tp27Oj0nJGRoaSkJHl5eTlKr169VFRUpOPHj0uSDh48qH79+qlx48by9vZWRESEJCknJ6dUMcbGxspqtTpKbm7ujUwVAAAAAAAAVRhnDt6E384R/E1BQYGeeuopTZw48Yq6jRs31rlz59SrVy/16tVLq1atkr+/v3JyctSrV69SX2hiNBplNBpvKn4AAAAAAABUbSQHr6JZs2Zyd3fX/v371bhxY0mXt+seOXJEPXr0uGa79u3b6/Dhw2rRosVVv3/xxRc6ffq0Fi5cqMDAQEmXtxX/Nw8PD0lSYWFhWUwFAFBG2PIIAAAAoDJiW/FVeHt7a8SIEZo2bZo+/fRTffXVVxo1apSqVasmg8FwzXbTp0/X7t27NX78eKWnp+ubb77Rhg0bHBeSNG7cWB4eHnrppZf07bffauPGjZo3b55TH02aNJHBYNCmTZt06tQpFRQU3NK5AgAAAAAAoOoiOXgNL774orp06aK+ffuqZ8+e6tatm4KDg696qchvQkNDlZKSoiNHjqh79+5q166dZs2apQYNGkiS/P39lZSUpH/9619q06aNFi5cqEWLFjn10bBhQ8XFxSkmJkb16tVzuukYAAAAAAAAKEvcVlxC586dU8OGDbV48WKNGjXK1eFcoTS30AAAAAAAAKDyKk2eiDMHryEtLU1ff/21OnfuLKvVqrlz50qS+vfv7+LIAAAAAAAAgLJBcvA6Fi1apKysLHl4eKhDhw7auXOn6tat6+qwAAAAKh1zzGZXh1BuuOAIAADcTkgOXkO7du108OBBV4dxTXa7XXa73fFss9lcGA0AAAAAAAAqIi4kqaDi4+NlMpkcJTAw0NUhAQAAAAAAoIIhOVhBxcbGymq1Okpubq6rQwIAAAAAAEAFw7biCspoNMpoNLo6DAAAgDLBOXwAAACuwcpBAAAAAAAAoIoiOQgAAAAAAABUUSQHb1NJSUkyGAyuDgMAAAAAAACVGMnB24zBYND69et1/PhxRUREuDocAAAAAAAAVGJcSHKb+vDDD7Vs2TJXhwEAAFAuzDGbHb+5nAQAAKD8sHKwDL355puqU6eO7Ha70/sBAwboiSeekCRt2LBB7du3V40aNdSsWTPFxcXp0qVLkiSz2SxJGjhwoPbv368hQ4aUa/wAAAAAAACoWkgOlqHBgwersLBQGzdudLw7efKkNm/erJEjR2rnzp0aPny4Jk2apMOHD2v58uVKSkrSggULJEn79++XJCUmJiovL8/xfDV2u102m82pAAAAAAAAAKVBcrAM1axZU4899pgSExMd7/75z3+qcePGslgsiouLU0xMjEaMGKFmzZrp/vvv17x587R8+XJJkr+/vyTJ19dXAQEBjueriY+Pl8lkcpTAwMBbOzkAAAAAAABUOiQHy9iYMWO0detWff/995Iu3zocFRUlg8GgjIwMzZ07V15eXo4yZswY5eXl6ZdffinVOLGxsbJarY6Sm5t7K6YDAAAAAACASowLScpYu3btFBYWpjfffFMPPPCAvvrqK23efPmA7YKCAsXFxSkyMvKKdjVq1CjVOEajUUajsUxiBgAAcDUuIQEAAHANkoO3wOjRo7V06VJ9//336tmzp2PLb/v27ZWVlaUWLVpcs627u7sKCwvLK1QAAAAAAABUYWwrlmSxWDR58mRJl28MXrp0qeObwWDQ+vXrS9XfY489pu+++04rVqzQyJEjHe9nzZqlN998U3Fxcfrqq6+UmZmp1atXa+bMmY46ZrNZ69evl8Fg0I4dO25mWgAAAAAAAMB1kRyUtHbtWs2bN6/M+jOZTHr44Yfl5eWlAQMGON736tVLmzZt0tatW9WpUyfdfffdWrJkiZo0aeKos3jxYu3atUuS9Oijj5ZZTAAAAAAAAMD/YluxJD8/vzLv8/vvv9ewYcOuOBewV69e6tWr1zXb9evXTyEhIWratKk++OCDMo8LAAAAAAAA+A3JQV3eVhweHu60nfhacnNz9fTTT2vr1q2qVq2aunfvroSEBJnNZknSqVOnFBUVpU8++UQHDx5UzZo19cMPP8hqtTq2J2/ZskXz58/Xl19+KTc3N3Xp0kUJCQlq3rz5rZskAADAbcwcs9nVIVRIXOQCAABuFtuKS+HixYvq1auXvL29tXPnTqWmpsrLy0u9e/fWhQsXJEktW7bUhx9+qOHDh+uzzz6TzWa74szCc+fOaerUqTpw4IC2b9+uatWqaeDAgSoqKipxLHa7XTabzakAAAAAAAAApcHKwVJ49913VVRUpNdee00Gg0GSlJiYKF9fXyUnJ+uBBx6Q0WjU888/r+joaEnSsmXLrtge/PDDDzs9v/HGG/L399fhw4fVtm3bEsUSHx+vuLi4MpgVAAAAAAAAqipWDpZCRkaGjh49Km9vb3l5ecnLy0t+fn46f/68jh07JqvVqh9//FGdO3d2tHFzc1OHDh2c+vnmm280dOhQNWvWTD4+Po4tyTk5OSWOJTY2Vlar1VFyc3PLZI4AAAAAAACoOlg5WAoFBQXq0KGDVq1adcU3f3//EvfTr18/NWnSRCtWrFCDBg1UVFSktm3bOrYml4TRaLzishMAAAAAAACgNEgOlkL79u317rvv6o477pCPj89V69SrV0/79+9Xjx49JEmFhYU6dOiQwsPDJUmnT59WVlaWVqxYoe7du0uSdu3aVS7xAwAA3K64WAMAAMA12FZcCsOGDVPdunXVv39/7dy5U8ePH1dycrImTpyo7777TpI0YcIExcfHa8OGDcrKytKkSZOUn5/vOKOwdu3aqlOnjv7xj3/o6NGj+uSTTzR16lRXTgsAAAAAAABVVKVODlosFk2ePLnM+vP09NSOHTvUuHFjRUZGKjg4WKNGjdL58+cdKwmnT5+uoUOHavjw4erSpYu8vLzUrl07rV+/XmfOnFG1atW0evVqHTx4UG3bttWUKVP0wgsvlFmMAAAAAAAAQEmxrVhScnKy43d2drbTt+LiYqfngIAArVy58pp99ezZU+Hh4bJarZKkoqIix4Uj/13n8OHD1xzHbDZfMS4AAAAAAABQ1kgOlrHz58/ryy+/1JEjR2S327Vs2TLl5eW5OiwAAAAAAADgCpV6W/F/s9vtio6OVsOGDVWrVi3dddddTisGk5KS5Ovrq48++kjBwcHy8vJS7969nRJ7ly5d0sSJE+Xr66s6depo+vTpGjFihAYMGCBJioqK0t69e7V9+3a1atVKoaGhOnDggBYtWiRJOnjwoDp27ChPT0917dpVWVlZjr4zMjJ0zz33yNvbWz4+PurQoYMOHDhQLn8bAACAW8Ecs7nEBQAAAK5RZZKD48eP1549e7R69Wp9/vnnGjx4sHr37q1vvvnGUeeXX37RokWL9NZbb2nHjh3KyclRdHS04/tzzz2nVatWKTExUampqbLZbFq/fr3je0JCgrp06aIxY8YoLy9PeXl52rdvn8LCwiRJM2bM0OLFi3XgwAFVr15dI0eOdLQdNmyYGjVqpP379+vgwYOKiYmRu7v7Nedjt9tls9mcCgAAAAAAAFAaVWJbcU5OjhITE5WTk6MGDRpIkqKjo7VlyxYlJibq2WeflSRdvHhRr776qpo3by7pckJx7ty5jn5eeuklxcbGauDAgZKkZcuW6YMPPnB8N5lM8vDwkKenpwICAq6IY8GCBYqIiJAkxcTE6KGHHtL58+dVo0YN5eTkaNq0aWrdurUkKSgo6Lpzio+PV1xc3I3+SQAAAAAAAICqsXLwiy++UGFhoVq2bCkvLy9HSUlJ0bFjxxz1PD09HYlBSapfv75OnjwpSbJarfrxxx/VuXNnx3c3Nzd16NChxHGEhoY69S3J0f/UqVM1evRo9ezZUwsXLnSK62piY2NltVodJTc3t8RxAAAAAAAAAFIVWTlYUFAgNzc3HTx4UG5ubk7fvLy8HL//dxuvwWAo01uD/7t/g8Eg6fJtxpI0Z84cPfbYY9q8ebM+/PBDzZ49W6tXr3asUvxfRqNRRqOxzGIDAAAoa9kLH3J1CAAAAPgdVWLlYLt27VRYWKiTJ0+qRYsWTuVq23+vxmQyqV69etq/f7/jXWFhoQ4dOuRUz8PDQ4WFhTcUZ8uWLTVlyhRt3bpVkZGRSkxMvKF+AAAAAAAAgJKoEsnBli1batiwYRo+fLjWrl2r48ePa9++fYqPj9fmzSW/HW/ChAmKj4/Xhg0blJWVpUmTJik/P9+xClCSzGaz9u7dq+zsbP3000+OlYHX8+uvv2r8+PFKTk7WiRMnlJqaqv379ys4OPiG5gsAAAAAAACURJVIDkpSYmKihg8frqefflqtWrXSgAEDtH//fjVu3LjEfUyfPl1Dhw7V8OHD1aVLF3l5ealXr16qUaOGkpOTZTAYNHbsWLm5ualNmzby9/dXTk7O7/br5uam06dPa/jw4WrZsqWGDBmiBx98kAtHAAAAAAAAcEsZisvyUL0qxGKxKCwsTFu2bNGQIUN033336Z577lF+fr58fX1vuF+z2azJkydr8uTJpWpns9lkMplktVrl4+Nzw+MDAAAAAACgYitNnqhKXEhSVk6cOKGtW7cqIiJCBQUF+uSTT3T8+HE99thj+vHHH10dHgAAqCLMMSU/FqWi4PISAAAA16gy24rLQrVq1ZSUlKS2bdvq4MGD+vLLL3Xx4kW1adNG2dnZkqSDBw+qY8eO8vT0VNeuXZWVleVof+zYMfXv31/16tWTl5eXOnXqpI8//tjx3WKx6MSJE5oyZYoMBoPTWYYAAAAAAABAWSM5WAqBgYFKTU3VqVOn1KVLF40ZM0Z5eXnKy8tTYGCgJGnGjBlavHixDhw4oOrVq2vkyJGO9gUFBerTp4+2b9+utLQ09e7dW/369XOcS7h27Vo1atRIc+fOdfR7LXa7XTabzakAAAAAAAAApUFy8AaYTCZ5eHjI09NTAQEBCggIkJubmyRpwYIFioiIUJs2bRQTE6Pdu3fr/PnzkqSwsDA99dRTatu2rYKCgjRv3jw1b95cGzdulCT5+fnJzc1N3t7ejn6vJT4+XiaTyVF+S04CAAAAAAAAJUVysIyFhoY6ftevX1+SdPLkSUmXVw5GR0crODhYvr6+8vLyUmZmZoluNP5fsbGxslqtjpKbm1s2EwAAAAAAAECVwYUkZczd3d3x+7czA4uKiiRJ0dHR2rZtmxYtWqQWLVqoZs2aGjRokC5cuFDqcYxGo4xGY9kEDQAAKhQu7wAAAEBZITl4gzw8PFRYWFiqNqmpqYqKitLAgQMlXV5J+NtFJjfTLwAAAAAAAHAjqvS24uTkZBkMBp05c6bUbc1ms/bu3avVq1fLYDCU6EKQoKAgrV27Vunp6crIyNBjjz3mWFVoMBi0fv16mc1mbdmyRQaDQZ9++mmp4wIAAAAAAABKqkonB7t27aq8vDyZTCZJUlJSknx9fUvUNjo6Wm5uboqKipIkfffdd7/b5sUXX1Tt2rXVtWtX9evXT7169VL79u2d6sydO9fR17333lvyyQAAAAAAAAClZCguLi52dRC3i6SkJE2ePLlUKwmTk5N1zz33KD8/v8SJxasxGAxat26dBgwYoOzsbDVt2lRpaWkKDw8vUXubzSaTySSr1SofH58bjgMAAAAAAAAVW2nyRJVq5aDFYtGECRM0efJk1a5dW/Xq1dOKFSt07tw5Pfnkk/L29laLFi304YcfSnLeVpycnKwnn3xSVqtVBoNBBoNBc+bMkSTZ7XZNnz5dgYGBMhqNatGihV5//XWnsQ8ePKiOHTvK09NTXbt2VVZWltP3DRs2qH379qpRo4aaNWumuLg4Xbp0qVz+LgAAALc7c8xmRwEAAED5qVTJQUlauXKl6tatq3379mnChAn685//rMGDB6tr1646dOiQHnjgAT3xxBP65ZdfnNp17dpVS5culY+Pj/Ly8pSXl6fo6GhJ0vDhw/XOO+/ob3/7mzIzM7V8+XJ5eXk5tZ8xY4YWL16sAwcOqHr16ho5cqTj286dOzV8+HBNmjRJhw8f1vLly5WUlKQFCxbc8DztdrtsNptTAQAAAAAAAEqj0iUHw8LCNHPmTAUFBSk2NlY1atRQ3bp1NWbMGAUFBWnWrFk6ffq0Pv/8c6d2Hh4eMplMMhgMCggIUEBAgLy8vHTkyBG99957euONNzRw4EA1a9ZM9913nx555BGn9gsWLFBERITatGmjmJgY7d69W+fPn5ckxcXFKSYmRiNGjFCzZs10//33a968eVq+fPkNzzM+Pl4mk8lRAgMDb7gvAAAAAAAAVE2VLjkYGhrq+O3m5qY6deooJCTE8a5evXqSpJMnT5aov/T0dLm5uSkiIqLE49avX99pjIyMDM2dO1deXl6OMmbMGOXl5V2xgrGkYmNjZbVaHSU3N/eG+gEAAAAAAEDVVd3VAZQ1d3d3p2eDweD0zmAwSJKKiopK1F/NmjVLPe7/jlFQUKC4uDhFRkZe0a5GjRol6v9/GY1GGY3GG2oLAAAAAAAASJUwOXgzPDw8VFhY6PQuJCRERUVFSklJUc+ePW+o3/bt2ysrK0stWrQoizABAAAqneyFD7k6BAAAgCqJ5OB/MZvNKigo0Pbt2xUWFiZPT0+ZzWaNGDFCI0eO1N/+9jeFhYXpxIkTOnnypIYMGVKifmfNmqW+ffuqcePGGjRokKpVq6aMjAx9+eWXmj9//i2eFQAAAAAAAHB1le7MwZvRtWtX/elPf9Ijjzwif39/Pf/885KkV155RYMGDdK4cePUunVrjRkzRufOnStxv7169dKmTZu0detWderUSXfffbeWLFmiJk2a3KqpAAAAAAAAAL/LUFxcXOzqIHDzbDabTCaTrFarfHx8XB0OAAAAAAAAXKQ0eSJWDgIAAAAAAABVFGcOltDZs2f1pz/9SevXr5ePj4+eeeYZbdiwQeHh4Vq6dKny8/M1adIk/fvf/5bdbldERIT+9re/KSgoyNHHrl27FBsbqwMHDqhu3boaOHCg4uPjVatWLUnSyy+/rCVLlig3N1cmk0ndu3fXmjVrXDVlAACAcmOO2XzTfXCpCQAAQOmxcrCEpk6dqtTUVG3cuFHbtm3Tzp07dejQIcf3qKgoHThwQBs3btSePXtUXFysPn366OLFi5KkY8eOqXfv3nr44Yf1+eef691339WuXbs0fvx4SdKBAwc0ceJEzZ07V1lZWdqyZYt69OhxzXjsdrtsNptTAQAAAAAAAEqDMwdL4OzZs6pTp47efvttDRo0SJJktVrVoEEDjRkzRn/5y1/UsmVLpaamqmvXrpKk06dPKzAwUCtXrtTgwYM1evRoubm5afny5Y5+d+3apYiICJ07d04ffPCBnnzySX333Xfy9vb+3ZjmzJmjuLi4K95z5iAAAKiIWDkIAABQdjhzsIx9++23unjxojp37ux4ZzKZ1KpVK0lSZmamqlevrrvuusvxvU6dOmrVqpUyMzMlSRkZGUpKSpKXl5ej9OrVS0VFRTp+/Ljuv/9+NWnSRM2aNdMTTzyhVatW6ZdffrlmTLGxsbJarY6Sm5t7i2YPAAAAAACAyoozB8tJQUGBnnrqKU2cOPGKb40bN5aHh4cOHTqk5ORkbd26VbNmzdKcOXO0f/9++fr6XtHGaDTKaDSWQ+QAAAAAAACorEgOlkCzZs3k7u6u/fv3q3HjxpIub989cuSIevTooeDgYF26dEl79+512laclZWlNm3aSJLat2+vw4cPq0WLFtccp3r16urZs6d69uyp2bNny9fXV5988okiIyNv/SQBAABciC3BAAAArkFysAS8vb01YsQITZs2TX5+frrjjjs0e/ZsVatWTQaDQUFBQerfv7/GjBmj5cuXy9vbWzExMWrYsKH69+8vSZo+fbruvvtujR8/XqNHj1atWrV0+PBhbdu2TcuWLdOmTZv07bffqkePHqpdu7Y++OADFRUVObYuAwAAAAAAAGWNMwdL6MUXX1SXLl3Ut29f9ezZU926dVNwcLBq1KghSUpMTFSHDh3Ut29fdenSRcXFxfrggw/k7u4uSQoNDVVKSoqOHDmi7t27q127dpo1a5YaNGggSfL19dXatWt17733Kjg4WK+++qreeecd3XnnnS6bMwAAAAAAACo3biu+QefOnVPDhg21ePFijRo1qsTtLBaLwsPDtXTp0jKNpzS30AAAAAAAAKDyKk2eiG3FJZSWlqavv/5anTt3ltVq1dy5cyXJsW0YAAAAv88cs/mq7zlzEAAAwDXYVlwKixYtUlhYmHr27Klz585p586dqlu3bonbR0VFKSUlRQkJCTIYDDIYDMrOzlZKSoo6d+4so9Go+vXrKyYmRpcuXbqFMwEAAAAAAABYOVhi7dq108GDB2+qj4SEBB05ckRt27Z1rDwsLCxUnz59FBUVpTfffFNff/21xowZoxo1amjOnDnX7Mtut8tutzuebTbbTcUGAAAAAACAqofkYDkymUzy8PCQp6enAgICJEkzZsxQYGCgli1bJoPBoNatW+s///mPpk+frlmzZqlatasv7oyPj1dcXFx5hg8AAAAAAIBKhm3FLpaZmakuXbrIYDA43nXr1k0FBQX67rvvrtkuNjZWVqvVUXJzc8sjXAAAAAAAAFQirBysoIxGo4xGo6vDAAAAKBUuHgEAALi9sHKwnHl4eKiwsNDxHBwcrD179qi4uNjxLjU1Vd7e3mrUqJErQgQAAAAAAEAVQXKwDERFRWnAgAElqms2m7V3715lZ2frp59+0rhx45Sbm6sJEybo66+/1oYNGzR79mxNnTr1mucNAgAAAAAAAGXBUPzfS9ZwQ6xWq4qLi+Xr6/u7dY8cOaIRI0YoIyNDv/76q44fP64TJ05o2rRpysjIUGFhoSIiIvTRRx+pevWS7/q22WwymUyyWq3y8fG5idkAAAAAAACgIitNnogzB8uAyWQqcd2WLVtqz549Tu/MZrP27dvn+N2vX79SJQYBAAAAAACAG8G+1TLw39uKzWazli5d6vQ9PDxcc+bMkSQVFxdrzpw5aty4sYxGoxo0aKCJEydKkiwWi06cOKEpU6bIYDA43WAMAABQmZljNl+1AAAA4NZieVo5e//997VkyRKtXr1ad955p3744QdlZGRIktauXauwsDCNHTtWY8aMcXGkAAAAAAAAqOxIDpaznJwcBQQEqGfPnnJ3d1fjxo3VuXNnSZKfn5/c3Nzk7e2tgICA6/Zjt9tlt9sdzzab7ZbGDQAAAAAAgMqHbcXlbPDgwfr111/VrFkzjRkzRuvWrdOlS5dK3U98fLxMJpOjBAYG3oJoAQAAAAAAUJmRHCxj1apV0/9eAH3x4kXH78DAQGVlZenll19WzZo1NW7cOPXo0cOpTknExsbKarU6Sm5ubpnEDwAAAAAAgKqDbcVlzN/fX3l5eY5nm82m48ePO9WpWbOm+vXrp379+ukvf/mLWrdurS+++ELt27eXh4eHCgsLf3cco9Eoo9FY5vEDAAC4QvbCh1wdAgAAQJVEcrCM3XvvvUpKSlK/fv3k6+urWbNmyc3NzfE9KSlJhYWFuuuuu+Tp6al//vOfqlmzppo0aSLp8m3HO3bs0KOPPiqj0ai6deu6aioAAAAAAACo5NhWXMZiY2MVERGhvn376qGHHtKAAQPUvHlzx3dfX1+tWLFC3bp1U2hoqD7++GP9+9//Vp06dSRJc+fOVXZ2tpo3by5/f39XTQMAAAAAAABVgKH4fw/IQ6kNHTpUbm5u+uc///m7dS0Wi8LDw7V06dIyjcFms8lkMslqtcrHx6dM+wYAAAAAAEDFUZo8ESsHb8KlS5d0+PBh7dmzR3feeaerwwEAAAAAAABKhZWDNyE9PV1du3bVPffco3/+85+qXbv2detHRUVp5cqVTu+OHz+uEydOaNq0acrIyJCfn59GjBih+fPnq3r1kh8JycpBAABQEZhjNl/1PReSAAAAlJ3S5Im4kOQmhIeH65dffilx/YSEBB05ckRt27bV3LlzJUmFhYXq06ePoqKi9Oabb+rrr7/WmDFjVKNGDc2ZM+eafdntdtntdsezzWa74XkAAAAAAACgaiI5WI5MJpM8PDzk6empgIAASdKMGTMUGBioZcuWyWAwqHXr1vrPf/6j6dOna9asWapW7eo7v+Pj4xUXF1ee4QMAAAAAAKCS4cxBF8vMzFSXLl1kMBgc77p166aCggJ9991312wXGxsrq9XqKLm5ueURLgAAAAAAACoRVg5WUEajUUaj0dVhAAAAAAAAoAIjOVjOPDw8VFhY6HgODg7W+++/r+LiYsfqwdTUVHl7e6tRo0auChMAAOCW4OIRAACA2wvbisuZ2WzW3r17lZ2drZ9++knjxo1Tbm6uJkyYoK+//lobNmzQ7NmzNXXq1GueNwgAAAAAAACUBbJPJWCxWDR58uQy6Ss6Olpubm5q06aN/P39dfHiRX3wwQfat2+fwsLC9Kc//UmjRo3SzJkzy2Q8AAAAAAAA4FrYVlzOWrZsqT179ji9M5vN2rdvn4siAgAAAAAAQFXFykEAAAAAAACgiiI5eAM2b94sk8mkVatWKTc3V0OGDJGvr6/8/PzUv39/ZWdnO9V/7bXXFBwcrBo1aqh169Z6+eWXHd+ys7NlMBi0evVqde3aVTVq1FDbtm2VkpJSzrMCAABwHXPM5qsWAAAA3FokB0vp7bff1tChQ7Vq1SoNGTJEvXr1kre3t3bu3KnU1FR5eXmpd+/eunDhgiRp1apVmjVrlhYsWKDMzEw9++yz+utf/6qVK1c69Ttt2jQ9/fTTSktLU5cuXdSvXz+dPn36mnHY7XbZbDanAgAAAAAAAJQGycFS+Pvf/65x48bp3//+t/r27at3331XRUVFeu211xQSEqLg4GAlJiYqJydHycnJkqTZs2dr8eLFioyMVNOmTRUZGakpU6Zo+fLlTn2PHz9eDz/8sIKDg/XKK6/IZDLp9ddfv2Ys8fHxMplMjhIYGHgrpw4AAAAAAIBKiAtJSmjNmjU6efKkUlNT1alTJ0lSRkaGjh49Km9vb6e658+f17Fjx3Tu3DkdO3ZMo0aN0pgxYxzfL126JJPJ5NSmS5cujt/Vq1dXx44dlZmZec14YmNjNXXqVMezzWYjQQgAAAAAAIBSITlYQu3atdOhQ4f0xhtvqGPHjjIYDCooKFCHDh20atWqK+r7+/uroKBAkrRixQrdddddTt/d3NxuKh6j0Sij0XhTfQAAANwushc+5OoQAAAAqiSSgyXUvHlzLV68WBaLRW5ublq2bJnat2+vd999V3fccYd8fHyuaGMymdSgQQN9++23GjZs2HX7/+yzz9SjRw9Jl1cWHjx4UOPHj78lcwEAAAAAAAAkkoOl0rJlS3366aeyWCyqXr26nn32Wb3wwgvq37+/5s6dq0aNGunEiRNau3atnnnmGTVq1EhxcXGaOHGiTCaTevfuLbvdrgMHDig/P99pW/Df//53BQUFKTg4WEuWLFF+fr5GjhzpwtkCAAAAAACgsiM5WEqtWrXSJ5984lhBuGPHDk2fPl2RkZE6e/asGjZsqPvuu0+PPvqoOnbsqKVLl8rT01MvvPCCpk2bplq1aikkJEQ7duxQs2bNFB4eLklauHChFi5cqPT0dLVo0UIbN25U3bp1XTtZAAAAAAAAVGqG4uLiYlcHURlZLBaFh4dr6dKlV/3+ww8/qHbt2srLy1PTpk2VlpbmSBTeCJvNJpPJJKvVetUtzgAAAAAAAKgaSpMnYuWgiwQEBLg6BAAAgBtijtlc5n1yIQkAAIBrVHN1AJVZUVGRnnnmGfn5+SkgIEBz5sxxfDMYDFq/fr3jOT4+XvXr11eNGjXUpEkTxcfHl3/AAAAAAAAAqFJIDt5CK1euVK1atbR37149//zzmjt3rrZt2+ZUx2w264UXXtCePXv03nvvKSsrS6tWrZLZbL5u33a7XTabzakAAAAAAAAApcG24lsoNDRUs2fPliQFBQVp2bJl2r59u+6//36nejk5OQoKCtIf/vAHGQwGNWnS5Hf7jo+PV1xc3C2JGwAAAAAAAFUDKwdvodDQUKfn+vXr6+TJk1fUi4qKUnp6ulq1aqWJEydq69atv9t3bGysrFaro+Tm5pZZ3AAAAAAAAKgaWDl4C7m7uzs9GwwGFRUVXVGvffv2On78uD788EN9/PHHGjJkiHr27Kk1a9Zcs2+j0Sij0VjmMQMAAPweLg8BAACoPEgO3iZ8fHz0yCOP6JFHHtGgQYPUu3dv/fzzz/Lz83N1aAAAAAAAAKikqnRysLi4WE899ZTWrFmj/Px8paWlKTw8vMzHiYqK0pkzZxzPFovF6fuLL76o+vXrq127dqpWrZr+9a9/KSAgQL6+vmUeCwAAAAAAAPCbKp0c3LJli5KSkpScnKxmzZqpbt26t2SchIQEFRcXKyoq6qrfvb299fzzz+ubb76Rm5ubOnXqpA8++EDVqnEkJAAAAAAAAG4dQ3FxcbGrg3CVZcuW6YUXXtCJEyfKdVyLxaLw8HAtXbq0zPq02WwymUyyWq3y8fEps34BAAAAAABQsZQmT1Rll6ZFRUVpwoQJysnJkcFgkNls1pYtW/SHP/xBvr6+qlOnjvr27atjx4452mRnZ8tgMOi9995T9+7dVbNmTXXq1ElHjhzR/v371bFjR3l5eenBBx/UqVOnnMYaMGDAVeOYO3eu2rZte8X78PBw/fWvfy3zeQMAAJQ3c8zm3y0AAABwjSqbHExISNDcuXPVqFEj5eXlaf/+/Tp37pymTp2qAwcOaPv27apWrZoGDhx4xQ3Ds2fP1syZM3Xo0CFVr15djz32mJ555hklJCRo586dOnr0qGbNmlWiOEaOHKnMzEzt37/f8S4tLU2ff/65nnzyyWu2s9vtstlsTgUAAAAAAAAojSp75qDJZJK3t7fc3NwUEBAgSXr44Yed6rzxxhvy9/fX4cOHnVb3RUdHq1evXpKkSZMmaejQodq+fbu6desmSRo1apSSkpJKFEejRo3Uq1cvJSYmqlOnTpKkxMRERUREqFmzZtdsFx8fr7i4uBLPFwAAAAAAAPhfVXbl4NV88803Gjp0qJo1ayYfHx+ZzWZJUk5OjlO90NBQx+969epJkkJCQpzenTx5ssTjjhkzRu+8847Onz+vCxcu6O2339bIkSOv2yY2NlZWq9VRcnNzSzweAAAAAAAAIFXhlYNX069fPzVp0kQrVqxQgwYNVFRUpLZt2+rChQtO9dzd3R2/DQbDVd/971bk3xvXaDRq3bp18vDw0MWLFzVo0KDrtjEajTIajSUeAwAAAAAAAPhfJAf/n9OnTysrK0srVqxQ9+7dJUm7du0ql7GrV6+uESNGKDExUR4eHnr00UdVs2bNchkbAADgVste+JCrQwAAAMA1kBz8f2rXrq06deroH//4h+rXr6+cnBzFxMSU2/ijR49WcHCwJCk1NbXcxgUAAAAAAEDVxZmD/0+1atW0evVqHTx4UG3bttWUKVP0wgsvlLh9aGioli5desPjBwUFqWvXrmrdurXuuuuuG+4HAAAAAAAAKClDcXFxsauDuBEWi0Xh4eE3lZC7EUlJSZo8ebLOnDnj9N5sNmvy5MmaPHnyDfVbXFysoKAgjRs3TlOnTi11e5vNJpPJJKvVKh8fnxuKAQAAAAAAABVfafJEbCu+DZw6dUqrV6/WDz/8oCeffNLx/sKFC/Lw8HBhZAAAAAAAAKjMKuTKwaioKK1cudLp3fHjx3XixAlNmzZNGRkZ8vPz04gRIzR//nxVr345B3r27Fn96U9/0vr16+Xj46NnnnlGGzZscFqBaLfbNWPGDL3zzjs6c+aM2rZtq+eee04Wi0XJycm65557nMadPXu25syZI7PZrLFjx+ro0aP617/+pdq1a2vmzJkaO3aso25ubq6efvppbd26VdWqVVP37t2VkJCgpk2bqm7dugoODpafn586deqkv//97zIajTp+/HiJ/iasHAQAALcDc8zmG2rHpSUAAABlpzR5ogp55mBCQoK6dOmiMWPGKC8vT3l5eXJ3d1efPn3UqVMnZWRk6JVXXtHrr7+u+fPnO9pNnTpVqamp2rhxo7Zt26adO3fq0KFDTn2PHz9ee/bs0erVq/X5559r8ODB6t27t7755ht17dpVS5culY+Pj2Pc6OhoR9vFixerY8eOSktL07hx4/TnP/9ZWVlZkqSLFy+qV69e8vb21s6dO5WamiovLy/17t1bdrtdp06dUrNmzbR9+3ZlZWVp27Zt2rRp0zX/Bna7XTabzakAAAAAAAAApVEhtxWbTCZ5eHjI09NTAQEBkqQZM2YoMDBQy5Ytk8FgUOvWrfWf//xH06dP16xZs3Tu3DmtXLlSb7/9tu677z5JUmJioho0aODoNycnR4mJicrJyXG8j46O1pYtW5SYmKhnn31WJpNJBoPBMe5/69Onj8aNGydJmj59upYsWaJPP/1UrVq10rvvvquioiK99tprMhgMjvF9fX2VnJysBx54QJJUq1Ytvfbaa7+7nTg+Pl5xcXE3+ZcEAAAAAABAVVYhk4NXk5mZqS5dujgSb5LUrVs3FRQU6LvvvlN+fr4uXryozp07O76bTCa1atXK8fzFF1+osLBQLVu2dOrbbrerTp06vxtDaGio4/dvCcSTJ09KkjIyMnT06FF5e3s7tTl//ryOHTvmeA4JCSnROYOxsbFOF5fYbDYFBgb+bjsAAAAAAADgN5UmOVgWCgoK5ObmpoMHD8rNzc3pm5eX1++2d3d3d3o2GAwqKipy9N2hQwetWrXqinb+/v6O37Vq1SpRrEajUUajsUR1AQAAAAAAgKupsMlBDw8PFRYWOp6Dg4P1/vvvq7i42LF6MDU1Vd7e3mrUqJFq164td3d37d+/X40bN5YkWa1WHTlyRD169JAktWvXToWFhTp58qS6d+9eonFLqn379nr33Xd1xx13cGEIAACotLhYBAAAoGKpkBeSSJLZbNb/1969h0Vd5v8ffw0IgwgzipBgouMBFQ+IpZWaSWmapqubndQ18ZiZFpoWs5qKWVjpquV2cstDZfYttbUwM13xlHnWPJBbbMRYmJk6E7oNCvP7w1+zTYqBHAaY5+O67uuazz335/687+H6XNW7+7Bjxw5lZWXp5MmTGjNmjGw2m8aNG6cvv/xS//znPzVt2jRNmDBBfn5+Cg0N1ZAhQzRp0iRt3LhRhw8f1vDhw+Xn5+dOJjZt2lSDBg3SAw88oJUrV+qbb77Rzp07lZqaqrS0NPdzc3NztWHDBp08eVLnzp0rUryDBg1SeHi4+vbtqy1btuibb75Renq6HnnkER07dqzMficAAAAAAACgMJU2OThx4kT5+/urRYsWioiI0Pnz57VmzRrt3LlTbdq00ejRozV8+HBNmTLFfc/f/vY3dejQQb1791a3bt3UqVMnxcbGKigoyN1m0aJFeuCBB/TYY4+pWbNm6tevn8dsw44dO2r06NG67777FBERoeeee65I8QYHB2vz5s2qX7++7rrrLsXGxmr48OH65ZdfmEkIAAAAAAAArzC4XC6Xt4PwlrNnz+raa6/VnDlzNHz4cG+HUyIOh0Nms1l2u51kIwAAAAAAgA8rTp6o0u45eDX27dunL7/8UjfccIPsdrtmzJghSerbt6+XIwMAAPANluS0y9azVyEAAIB3+FRyUJJmz56to0ePKjAwUNdff722bNmi8PBwb4cFAAAAAAAAlDufSg62bdtWe/bs8XYYpcLpdMrpdLqvHQ6HF6MBAAAAAABAZVRpDyTxdampqTKbze4SHR3t7ZAAAAAAAABQyZAcrKSsVqvsdru72Gw2b4cEAAAAAACASsanlhVXJUajUUaj0dthAAAAFAsHjwAAAFQszBwEAAAAAAAAfBTJwQogISFBSUlJHnULFixQ165dvRMQAAAAAAAAfALLiiuAlStXKiAgQJJksViUlJSkM2fOKDMz08uRAQAAAAAAoCpj5mAFEBYWptDQUI+66dOnKysryzsBAQAAAAAAwCcYXC6Xy9tB+LqEhATFx8dr//792rRpk8d3Rf3zOBwOmc1m2e12mUymsggTAAB4gSU5zdshlAsOKgEAACg9xckTMXOwAlm5cqXq1aunGTNmKCcnRzk5Od4OCQAAAAAAAFUYew5WIGFhYfL391doaKgiIyOv2NbpdMrpdLqvHQ5HWYcHAAAAAACAKoaZg5VUamqqzGazu0RHR3s7JAAAAAAAAFQyJAcrKavVKrvd7i42m83bIQEAAAAAAKCSYVlxBRMYGKj8/Pw/bGc0GmU0GsshIgAA4E0c1AEAAICyxMzBCsZisWjz5s367rvvdPLkSW+HAwAAAAAAgCqsSiUHExISlJSUVC7PysrKksFg0P79+0u13xkzZujQoUOqV6+eIiIiSrVvAAAAAAAA4LcMLpfL5e0gSsupU6cUEBCg0NDQMn9Wfn6+fvzxR4WHh6tatdJdnZ2enq5bb71Vp0+fVs2aNYt0j8PhkNlslt1ul8lkKtV4AAAAAAAAUHkUJ09UpfYcDAsLK7dn+fv7KzIystDvXS6X8vPzSz1xCAAAAAAAAJSWKpW5SkhIUHx8vObNmyeLxaJRo0bp66+/1nvvvadatWppypQpGjVqlCQpLy9PEyZM0IoVK3T69GnVqVNHo0ePltVqlSQZDAa99NJLWr16tdLT0xUVFaXnnntOd999t6SLy4obNmyoffv2KT4+3j3bb82aNZoyZYoOHjyodevW6ZZbbtGzzz6r1157TcePH1fTpk315JNPuvuRpDVr1igpKUk2m0033XSThgwZUv4/HgAAV8GSnObtEFBFcPAKAACAd1SpPQd/b86cOWrXrp327dunMWPG6KGHHtLRo0clSS+88IJWr16t//u//9PRo0f19ttvy2KxeNz/5JNPqn///jpw4IAGDRqk+++/XxkZGVd8ZnJysmbNmqWMjAzFxcUpNTVVS5cu1SuvvKLDhw9r/Pjx+stf/qJNmzZJkmw2m+666y716dNH+/fv14gRI5ScnPyHY3M6nXI4HB4FAAAAAAAAKI4qNXPw93r16qUxY8ZIkp544gnNnTtXGzduVLNmzZSdna2YmBjdfPPNMhgMatCgwSX333PPPRoxYoQk6amnntKnn36qF198US+99FKhz5wxY4Zuv/12SRcTeM8884zWr1+vDh06SJIaNWqkrVu36tVXX1WXLl308ssvq3HjxpozZ44kqVmzZjp48KCeffbZK44tNTVVKSkpxf9RAAAAAAAAgP+vSs8cjIuLc382GAyKjIzUiRMnJEmJiYnav3+/mjVrpkceeUTr1q275P5fE3q/vf6jmYPt2rVzf/7666917tw53X777QoJCXGXpUuXKjMzU5KUkZGhG2+88YrPvRyr1Sq73e4uNpvtD+8BAAAAAAAAfqtKzxwMCAjwuDYYDCooKJAkXXfddfrmm2/08ccfa/369br33nvVrVs3vf/++yV6Zo0aNdyfc3NzJUlpaWm69tprPdoZjcYSPcdoNJa4DwAAAAAAAPi2Kp0c/CMmk0n33Xef7rvvPt1999264447dOrUKfepx59//rkeeOABd/vPP/9cbdu2LXL/LVq0kNFoVHZ2trp06XLZNrGxsVq9erVH3eeff34VowEAoPxxiAQAAABQuflscvBvf/uboqKi1LZtW/n5+em9995TZGSkatas6W7z3nvvqV27drr55pv19ttva+fOnXr99deL/IzQ0FBNnDhR48ePV0FBgW6++WbZ7XZt27ZNJpNJQ4YM0ejRozVnzhxNmjRJI0aM0J49e7R48eLSHzAAAAAAAADwOz6bHAwNDdVzzz2nr776Sv7+/mrfvr3WrFkjP7//bcOYkpKi5cuXa8yYMYqKitI777yjFi1aFOs5Tz31lCIiIpSamqr//Oc/qlmzpq677jr99a9/lSTVr19fK1as0Pjx4/Xiiy/qhhtu0DPPPKNhw4aV6ngBAAAAAACA3zO4XC6Xt4OoiAwGg1atWqV+/fp5O5QicTgcMpvNstvtMplM3g4HAAAAAAAAXlKcPFGVPq0YAAAAAAAAQOF8dllxWUlISFDr1q3l7++vJUuWKDAwUDNnztTAgQM1duxYvf/++6pTp45efPFF9ezZU5J06NAhTZo0SVu2bFGNGjXUvXt3zZ07V+Hh4V4eDQAA8DWW5DSvPJfDbQAAALyDmYOFcLlcV72keMmSJQoPD9fOnTs1btw4PfTQQ7rnnnvUsWNH7d27V927d9fgwYN17tw5nTlzRrfddpvatm2r3bt3a+3atfrhhx907733XvEZTqdTDofDowAAAAAAAADFwZ6DpSwhIUH5+fnasmWLJCk/P19ms1l33XWXli5dKkk6fvy4oqKitH37dq1fv15btmzRJ5984u7j2LFjio6O1tGjR9W0adPLPmf69OlKSUm5pJ49BwEAQEkwcxAAAKDyY89BL4uLi3N/9vf3V+3atdW6dWt3XZ06dSRJJ06c0IEDB7Rx40aFhIS4S/PmzSVJmZmZhT7DarXKbre7i81mK6PRAAAAAAAAoKpiz8EyEBAQ4HFtMBg86gwGgySpoKBAubm56tOnj5599tlL+omKiir0GUajUUajsZQiBgAAuIgZfAAAAL6F5KCXXXfddVqxYoUsFouqVePPAQAAAAAAgPLDsmIve/jhh3Xq1CkNGDBAu3btUmZmpj755BMNHTpU+fn53g4PAAAAAAAAVRjJwRJIT0+XwWDQmTNnrrqPunXratu2bcrPz1f37t3VunVrJSUlqWbNmvLz488DAAAAAACAssM61mJISEhQfHy85s2bV2ib9PT0S+qysrIuqfvtIdExMTFauXJlKUQIAAAAAAAAFB3JQQAAAHidJTnN2yFUehwmAwAArgbrVosoMTFRmzZt0vz582UwGGQwGNwzAvfs2aN27dopODhYHTt21NGjRz3u/ec//6nrrrtOQUFBatSokVJSUnThwgX39waDQf/4xz/05z//WcHBwYqJidHq1avLc3gAAAAAAADwQSQHi2j+/Pnq0KGDRo4cqZycHOXk5Cg6OlqSNHnyZM2ZM0e7d+9WtWrVNGzYMPd9W7Zs0QMPPKBHH31UR44c0auvvqrFixfr6aef9ug/JSVF9957r7744gv16tVLgwYN0qlTpwqNx+l0yuFweBQAAAAAAACgOEgOFpHZbFZgYKCCg4MVGRmpyMhI+fv7S5KefvppdenSRS1atFBycrI+++wz/fLLL5IuJv2Sk5M1ZMgQNWrUSLfffrueeuopvfrqqx79JyYmasCAAWrSpImeeeYZ5ebmaufOnYXGk5qaKrPZ7C6/JioBAAAAAACAoiI5WAri4uLcn6OioiRJJ06ckCQdOHBAM2bMUEhIiLv8Ovvw3Llzl+2jRo0aMplM7j4ux2q1ym63u4vNZivtYQEAAAAAAKCK40CSUhAQEOD+bDAYJEkFBQWSpNzcXKWkpOiuu+665L6goKDL9vFrP7/2cTlGo1FGo7FEcQMAAFQUHKYBAADgHSQHiyEwMFD5+fnFuue6667T0aNH1aRJkzKKCgAAAAAAALg6JAeLwWKxaMeOHcrKylJISMgVZ/b9aurUqerdu7fq16+vu+++W35+fjpw4IAOHTqkmTNnFnpfXl6exowZo8TExFIcAQAAAAAAAPA/7DlYDBMnTpS/v79atGihiIgIZWdn/+E9PXr00EcffaR169apffv2uummmzR37lw1aNCgHCIGAAAAAAAACmdwuVwubweBSy1evFhJSUk6c+ZMkdo7HA6ZzWbZ7XaZTKayDQ4AAAAAAAAVVnHyRCwrLgVr167VzJkzdejQIfn7+6tDhw6aP3++GjdurKysLDVs2FArVqzQiy++qB07digmJkavvPKKOnTo4O5j8eLFmjp1qk6ePKkePXro5ptv9uKIAAAAypclOa3IbTm8BAAAoPSwrLgUnD17VhMmTNDu3bu1YcMG+fn56c9//rPHnoSTJ0/WxIkTtX//fjVt2lQDBgzQhQsXJEk7duzQ8OHDNXbsWO3fv1+33nrrFfcjlCSn0ymHw+FRAAAAAAAAgOJgWXEZOHnypCIiInTw4EGFhISoYcOG+sc//qHhw4dLko4cOaKWLVsqIyNDzZs318CBA2W325WW9r//Y37//fdr7dq1hS4rnj59ulJSUi6pZ1kxAACojJg5CAAAUHqKs6yYmYOl4KuvvtKAAQPUqFEjmUwmWSwWSfI4sCQuLs79OSoqSpJ04sQJSVJGRoZuvPFGjz5/u+T4cqxWq+x2u7vYbLbSGAoAAAAAAAB8CHsOloI+ffqoQYMGWrhwoerWrauCggK1atVKeXl57jYBAQHuzwaDQZI8lh0Xl9FolNFovPqgAQAAAAAA4PNIDpbQTz/9pKNHj2rhwoXq3LmzJGnr1q3F6iM2NlY7duzwqPv8889LLUYAAICKjqXCAAAA3kFysIRq1aql2rVr67XXXlNUVJSys7OVnJxcrD4eeeQRderUSbNnz1bfvn31ySefaO3atWUUMQAAAAAAAHARew6WkJ+fn5YvX649e/aoVatWGj9+vJ5//vli9ZGcnKzbbrtN8+fPV5s2bbRu3TpNmTKljCIGAAAAAAAALuK04grg1KlTCggIUGhoqCwWi5KSkpSUlFSsPopzCg0AAAAAAACqruLkiVhWXAGEhYV5OwQAAAAAAAD4IGYOVgAJCQmKj4/X/v37tWnTJo/vivrnYeYgAACozCzJaUVqx8ElAAAAf6w4eSL2HKxAVq5cqXr16mnGjBnKyclRTk5OoW2dTqccDodHAQAAAAAAAIqD5GAFEhYWJn9/f4WGhioyMlKRkZGFtk1NTZXZbHaX6OjocowUAAAAAAAAVQHJwUrKarXKbre7i81m83ZIAAAAAAAAqGQ4kKSSMhqNMhqN3g4DAACgVLCXIAAAgHcwc7CCCQwMVH5+vrfDAAAAAAAAgA8gOVjBWCwWbd68Wd99951Onjzp7XAAAAAAAABQhZEcrGBmzJihrKwsNW7cWBEREd4OBwAAAAAAAFWYweVyubwdBErO4XDIbDbLbrfLZDJ5OxwAAAAAAAB4SXHyRMwcBAAAgNdZktO8HQIAAIBPIjlYTGvXrtXNN9+smjVrqnbt2urdu7cyMzMlSVlZWTIYDPq///s/de7cWdWrV1f79u3173//W7t27VK7du0UEhKinj176scff3T3uWvXLt1+++0KDw+X2WxWly5dtHfvXm8NEQAAAAAAAD6C5GAxnT17VhMmTNDu3bu1YcMG+fn56c9//rMKCgrcbaZNm6YpU6Zo7969qlatmgYOHKjHH39c8+fP15YtW/T1119r6tSp7vY///yzhgwZoq1bt+rzzz9XTEyMevXqpZ9//rnQOJxOpxwOh0cBAAAAAAAAiqOatwOobPr37+9x/cYbbygiIkJHjhxRSEiIJGnixInq0aOHJOnRRx/VgAEDtGHDBnXq1EmSNHz4cC1evNjdx2233ebR52uvvaaaNWtq06ZN6t2792XjSE1NVUpKSmkNCwAAAAAAAD6ImYPF9NVXX2nAgAFq1KiRTCaTLBaLJCk7O9vdJi4uzv25Tp06kqTWrVt71J04ccJ9/cMPP2jkyJGKiYmR2WyWyWRSbm6uR5+/Z7VaZbfb3cVms5XWEAEAAAAAAOAjmDlYTH369FGDBg20cOFC1a1bVwUFBWrVqpXy8vLcbQICAtyfDQbDZet+uwx5yJAh+umnnzR//nw1aNBARqNRHTp08Ojz94xGo4xGY2kODQAAwGuyZt3p7RAAAAB8EsnBYvjpp5909OhRLVy4UJ07d5Ykbd26tcT9btu2TS+99JJ69eolSbLZbDp58mSJ+wUAAAAAAACuhORgMdSqVUu1a9fWa6+9pqioKGVnZys5ObnE/cbExOjNN99Uu3bt5HA4NGnSJFWvXr0UIgYAAAAAAAAK59N7Dv74448KDAzU2bNndf78edWoUaPQff7ee+893XzzzVq+fLm2bt2qpk2bavz48Xr++edLHMfrr7+u06dP67rrrtPgwYP1yCOP6JprrilxvwAAAAAAAMCVGFwul8vbQXjL6tWr9dRTT2nXrl3asWOH7r777kIP9pgwYYL8/f31/PPP69lnn9WhQ4f05ptvlnPEhXM4HDKbzbLb7TKZTN4OBwAAAAAAAF5SnDyRTy8r/uyzz9SpUydJF/cO/PVzYW1/XUK8detW3Xmn56bZiYmJWrJkySX3bdy4UQkJCXI6nZo8ebLeeecdnTlzRq1atdKzzz6rhIQESdK3336rsWPHauvWrcrLy5PFYtHzzz/v3ocQAACgKrMkp5Xofg40AQAAuDo+N3MwOztbcXFxkqRz587J399fRqNR//3vf2UwGBQUFKSBAwfqpZde0rJlyzRmzBhJFzOuNWrUkL+/v37++WdVr15d1apV00svvaSBAwfKbrfrv//9r/s5s2bN0jvvvKMDBw4oMjJSI0eO1JEjRzRr1izVrVtXq1at0pQpU3Tw4EHFxMSod+/eysvL05w5c1SjRg0dOXJEJpNJt9xyy2XH4XQ65XQ63dcOh0PR0dHMHAQAAJUSyUEAAIDSU5yZgz6XHLxw4YKOHTsmh8Ohdu3aaffu3apRo4bi4+OVlpam+vXrKyQkROHh4crNzdXJkye1fv16zZs3Tx999JG++OILjR49Wp999pkkKTw8XCEhIR7PWLlypQYNGqT169erU6dOys7OVqNGjZSdna26deu623Xr1k033HCDnnnmGcXFxal///6aNm1akcYxffp0paSkXFJPchAAAFRGJAcBAABKT3GSgz53IEm1atVksVj05Zdfqn379oqLi9Px48dVp04d3XLLLbJYLAoPD5ckhYSEyGKxaO/eg38kNwAAPahJREFUverbt68sFosOHjyoXr16yWKxyGKxXJIY3LdvnwYPHqwFCxa4lykfPHhQ+fn5atq0qUJCQtxl06ZNyszMlCQ98sgjmjlzpjp16qRp06bpiy++uOI4rFar7Ha7uxS2VyIAAAAAAABQGJ/bc7Bly5b69ttvdf78eRUUFCgkJEQXLlzQhQsXFBISogYNGujw4cPKzs5WixYtJEm//PKLqlWrpvnz58vpdMrPz0/Lly/XX/7yF73yyivuvo8fP64//elPGjFihIYPH+6uz83Nlb+/v/bs2SN/f3+PeH5NLo4YMUI9evRQWlqa1q1bp9TUVM2ZM0fjxo277DiMRqOMRmNp/zwAAAAAAADwIT63rPjXxGDXrl313HPP6frrr9f999+vxMRE3XHHHQoICFCDBg104cIFZWVl6fjx4+rWrZv279+v/Px8xcfHa9u2bQoLC5PJZNI111wj6WICsUuXLjKZTFq7dq1HEvDf//63mjVrps2bN6tz585FitNqtSotLe0PZxD+itOKAQAAAAAAIHFa8RU1aNBAx48f1w8//KC+ffvKYDDo8OHD6t+/v6KiotztqlWrpiZNmmj37t268cYb1bx5c23evFmNGjXSDTfccEm/Dz74oGw2mzZs2KAff/zRXR8WFqamTZtq0KBBeuCBBzRnzhy1bdtWP/74ozZs2KC4uDjdeeedSkpKUs+ePdW0aVOdPn1aGzduVGxsbLn8JgAAAAAAAPBNPpcclKT09HS1b99eQUFB2rJli+rVq+eRGPx9219PDN60aVOhpwdv2rRJOTk57qXIv9q4caMSEhK0aNEizZw5U4899pi+++47hYeH66abblLv3r0lSfn5+Xr44Yd17NgxmUwm3XHHHZo7d24pjhoAAAAAAADw5HPLiqsqlhUDAAAAAABA4rRiAAAAAAAAAEVAcrCUJSQkaNy4cUpKSlKtWrVUp04dLVy4UGfPntXQoUMVGhqqJk2a6OOPP3bfc+jQIfXs2VMhISGqU6eOBg8erJMnT3pxFAAAAGXLkpzmUQAAAOAdJAfLwJIlSxQeHq6dO3dq3Lhxeuihh3TPPfeoY8eO2rt3r7p3767Bgwfr3LlzOnPmjG677Ta1bdtWu3fv1tq1a/XDDz/o3nvvveIznE6nHA6HRwEAAAAAAACKgz0HS1lCQoLy8/O1ZcsWSRcPGjGbzbrrrru0dOlSSdLx48cVFRWl7du3a/369dqyZYs++eQTdx/Hjh1TdHS0jh49qqZNm172OdOnT1dKSsol9ew5CAAAKoPfzxbMmnWnlyIBAACoethz0Mvi4uLcn/39/VW7dm21bt3aXVenTh1J0okTJ3TgwAFt3LhRISEh7tK8eXNJUmZmZqHPsFqtstvt7mKz2cpoNAAAAAAAAKiqqnk7gKooICDA49pgMHjUGQwGSVJBQYFyc3PVp08fPfvss5f0ExUVVegzjEajjEZjKUUMAAAAAAAAX0Ry0Muuu+46rVixQhaLRdWq8ecAAAC+gWXEAAAAFQPLir3s4Ycf1qlTpzRgwADt2rVLmZmZ+uSTTzR06FDl5+d7OzwAAAAAAABUYSQHvaxu3bratm2b8vPz1b17d7Vu3VpJSUmqWbOm/Pz48wAAAAAAAKDscFpxFVGcU2gAAAAAAABQdRUnT8QmdwAAAPA6S3JauT6PPQ8BAAAuYt3qVUpISNAjjzyixx9/XGFhYYqMjNT06dPd32dnZ6tv374KCQmRyWTSvffeqx9++EGSZLfb5e/vr927d0u6eGpxWFiYbrrpJvf9b731lqKjo8t1TAAAAAAAAPAtJAdLYMmSJapRo4Z27Nih5557TjNmzNCnn36qgoIC9e3bV6dOndKmTZv06aef6j//+Y/uu+8+SZLZbFZ8fLzS09MlSQcPHpTBYNC+ffuUm5srSdq0aZO6dOlS6LOdTqccDodHAQAAAAAAAIqD5GAJxMXFadq0aYqJidEDDzygdu3aacOGDdqwYYMOHjyoZcuW6frrr9eNN96opUuXatOmTdq1a5ekizMPf00Opqen6/bbb1dsbKy2bt3qrrtScjA1NVVms9ldmGUIAAAAAACA4iI5WAJxcXEe11FRUTpx4oQyMjIUHR3tkbBr0aKFatasqYyMDElSly5dtHXrVuXn52vTpk1KSEhwJwy///57ff3110pISCj02VarVXa73V1sNluZjBEAAAAAAABVFweSlEBAQIDHtcFgUEFBQZHuveWWW/Tzzz9r79692rx5s5555hlFRkZq1qxZatOmjerWrauYmJhC7zcajTIajSWKHwAAoKLggBAAAADvYOZgGYiNjZXNZvOYzXfkyBGdOXNGLVq0kCTVrFlTcXFxWrBggQICAtS8eXPdcsst2rdvnz766KMrLikGAAAAAAAASgPJwTLQrVs3tW7dWoMGDdLevXu1c+dOPfDAA+rSpYvatWvnbpeQkKC3337bnQgMCwtTbGys3n33XZKDAAAAAAAAKHMkB8uAwWDQP//5T9WqVUu33HKLunXrpkaNGundd9/1aNelSxfl5+d77C2YkJBwSR0AAAAAAABQFgwul8vl7SBQcg6HQ2azWXa7XSaTydvhAAAAAAAAwEuKkyfiQBIAAACUCkty2lXfy4EkAAAA3sGyYgAAAAAAAMBHMXOwknI6nXI6ne5rh8PhxWgAAAAAAABQGTFzsJJKTU2V2Wx2l+joaG+HBAAAAAAAgEqG5GAlZbVaZbfb3cVms3k7JAAAAAAAAFQyLCuupIxGo4xGo7fDAAAAcONQEQAAgMqHmYMV1IIFC9S1a1dvhwEAAAAAAIAqjJmDFUBCQoLi4+M1b948nTt3ToMHD9ZHH32kvLw8nTlzRjVr1vR2iAAAAAAAAKiCSA5WACtXrlRAQIAkacmSJdqyZYv27Nmj8PBwmc1mL0cHAAAAAACAqorkYAUQFhbm/pyZmanY2Fi1atXKixEBAAAAAADAF5AcrAB+XVa8f/9+bdq0SZJkMBjUpUsXpaenezc4AACAcmBJTiuX53BoCgAAgCeSgxXIypUrlZycrEOHDmnlypUKDAwstK3T6ZTT6XRfOxyO8ggRAAAAAAAAVQinFVcgYWFhCg4OVmBgoCIjIz2WG/9eamqqzGazu0RHR5djpAAAAAAAAKgKSA5WUlarVXa73V1sNpu3QwIAAAAAAEAlw7LiSspoNMpoNHo7DAAAAAAAAFRiJAcBAADgdRwUAgAA4B0sKwYAAAAAAAB8FMlBAAAAAAAAwEcZXC6Xy9tBoOQcDofMZrPsdrtMJpO3wwEAAAAAAICXFCdPxMxBAAAAAAAAwEdxIEkJLV26VOPHj9f333/vcXpwv379FBoaqjfffFMvv/yyZs+eLZvNpoYNG2rKlCkaPHiwJCkrK0sNGzbUvn37FB8fL0k6c+aMatWqpY0bNyohIcELowIAAChfluS0Muubw04AAAAKx8zBErrnnnuUn5+v1atXu+tOnDihtLQ0DRs2TKtWrdKjjz6qxx57TIcOHdKDDz6ooUOHauPGjSV6rtPplMPh8CgAAAAAAABAcZAcLKHq1atr4MCBWrRokbvurbfeUv369ZWQkKDZs2crMTFRY8aMUdOmTTVhwgTdddddmj17domem5qaKrPZ7C7R0dElHQoAAAAAAAB8DMnBUjBy5EitW7dO3333nSRp8eLFSkxMlMFgUEZGhjp16uTRvlOnTsrIyCjRM61Wq+x2u7vYbLYS9QcAAAAAAADfw56DpaBt27Zq06aNli5dqu7du+vw4cNKSyvavjl+fhfzs789NPr8+fN/eJ/RaPTY4xAAAKAyY19AAAAA72DmYCkZMWKEFi9erEWLFqlbt27uZb6xsbHatm2bR9tt27apRYsWkqSIiAhJUk5Ojvv7/fv3l0/QAAAAAAAA8GnMHCwlAwcO1MSJE7Vw4UItXbrUXT9p0iTde++9atu2rbp166YPP/xQK1eu1Pr16yVd3LPwpptu0qxZs9SwYUOdOHFCU6ZM8dYwAAAAAAAA4EOYOVhKzGaz+vfvr5CQEPXr189d369fP82fP1+zZ89Wy5Yt9eqrr2rRokVKSEhwt3njjTd04cIFXX/99UpKStLMmTPLfwAAAAAAAADwOQbXbze7Q4l07dpVLVu21AsvvFDivhITE2WxWDR9+vQitXc4HDKbzbLb7TKZTCV+PgAAAAAAACqn4uSJWFZcCk6fPq309HSlp6frpZde8nY4AAAAlY4l+X+HuXE4CQAAQPkhOVgK2rZtq9OnT+vZZ59Vs2bNvB0OAAAAAAAAUCQkB0tBVlZWuT/T6XTK6XS6rx0OR7nHAAAAAAAAgMqN5GAFtXjx4it+n5qaqpSUlPIJBgAAAAAAAFUSpxVXUlarVXa73V1sNpu3QwIAAAAAAEAlw8zBSspoNMpoNHo7DAAAgFLBISQAAADewcxBAAAAAAAAwEeRHAQAAAAAAAB8FMlBAAAAAAAAwEeRHPSyvLw8b4cAAAAAAAAAH8WBJOUsISFBrVq1UrVq1fTWW2+pdevWevHFFzVp0iRt2bJFNWrUUPfu3TV37lyFh4d7O1wAAIByYUlOK7W+ONwEAACg6Jg56AVLlixRYGCgtm3bplmzZum2225T27ZttXv3bq1du1Y//PCD7r333iv24XQ65XA4PAoAAAAAAABQHMwc9IKYmBg999xzkqSZM2eqbdu2euaZZ9zfv/HGG4qOjta///1vNW3a9LJ9pKamKiUlpVziBQAAAAAAQNXEzEEvuP76692fDxw4oI0bNyokJMRdmjdvLknKzMwstA+r1Sq73e4uNputzOMGAAAAAABA1cLMQS+oUaOG+3Nubq769OmjZ5999pJ2UVFRhfZhNBplNBrLJD4AAAAAAAD4BpKDXnbddddpxYoVslgsqlaNPwcAAPBNHCICAADgHSwr9rKHH35Yp06d0oABA7Rr1y5lZmbqk08+0dChQ5Wfn+/t8AAAAAAAAFCFkRwsREJCgpKSkkqlr+nTpys+Pv6y39WtW1fbtm1Tfn6+unfvrtatWyspKUk1a9aUnx9/HgAAAAAAAJQd1rGWs/T09EvqYmJitHLlyvIPBgAAAAAAAD6NqWkAAAAAAACAjyI5WAQGg0EffPCBR13NmjW1ePFi9/WxY8c0YMAAhYWFqUaNGmrXrp127Nhx2f4yMzPVqFEjjR07VikpKWrVqtUlbeLj4/Xkk0+W5jAAAAAqDEtymkcBAACAd7CsuBTk5uaqS5cuuvbaa7V69WpFRkZq7969KigouKTtF198oR49emj48OGaOXOmjh07phkzZmjXrl1q3769JGnfvn364osvrrjU2Ol0yul0uq8dDkfpDwwAAAAAAABVGsnBUrBs2TL9+OOP2rVrl8LCwiRJTZo0uaTdZ599pt69e2vy5Ml67LHHJEn16tVTjx49tGjRIndycNGiRerSpYsaNWpU6DNTU1OVkpJSBqMBAAAAAACAr2BZcSnYv3+/2rZt604MXk52drZuv/12TZ061Z0Y/NXIkSP1zjvv6JdfflFeXp6WLVumYcOGXfGZVqtVdrvdXWw2W6mMBQAAAAAAAL6DmYNFYDAY5HK5POrOnz/v/ly9evU/7CMiIkJ169bVO++8o2HDhslkMrm/69Onj4xGo1atWqXAwECdP39ed9999xX7MxqNMhqNxRwJAAAAAAAA8D8kB4sgIiJCOTk57uuvvvpK586dc1/HxcXpH//4h06dOlXo7MHq1avro48+Uq9evdSjRw+tW7dOoaGhkqRq1appyJAhWrRokQIDA3X//fcXKeEIAABQWWXNutPbIQAAAEAsKy6S2267TQsWLNC+ffu0e/dujR49WgEBAe7vBwwYoMjISPXr10/btm3Tf/7zH61YsULbt2/36KdGjRpKS0tTtWrV1LNnT+Xm5rq/GzFihP71r39p7dq1f7ikGAAAAAAAACgNJAeLYM6cOYqOjlbnzp01cOBATZw4UcHBwe7vAwMDtW7dOl1zzTXq1auXWrdurVmzZsnf3/+SvkJCQvTxxx/L5XLpzjvv1NmzZ7V48WK1b99eHTt2VPPmzXXjjTeW5/AAAAAAAADgowyu32+mh3K3ePFiPfroo4qIiNCYMWM0YcKEYvfhcDhkNptlt9s99jMEAAAAAACAbylOnog9BysAh8OhvLw8HT9+XEOHDvV2OAAAAOXOkpxWovvZwxAAAODqVOllxQUFBUpNTVXDhg1VvXp1tWnTRu+//74kKT09XQaDQRs2bFC7du0UHBysjh076ujRox59vPzyy2rcuLECAwPVrFkzvfnmm+7vsrKyZDAYtH//fnfdmTNnZDAYlJ6e7q5bvXq1YmJiFBQUpFtvvVVLliyRwWDQmTNnJEmPPvqonE6nxo4dq44dOyokJER33HGHxyEoAAAAAAAAQGmr0snB1NRULV26VK+88ooOHz6s8ePH6y9/+Ys2bdrkbjN58mTNmTNHu3fvVrVq1TwOA1m1apUeffRRPfbYYzp06JAefPBBDR06VBs3bixyDN98843uvvtu9evXTwcOHNCDDz6oyZMne7RZtGiRqlWrpj179ujNN9/U5s2blZ2drYkTJxbar9PplMPh8CgAAAAAAABAcVTZZcVOp1PPPPOM1q9frw4dOkiSGjVqpK1bt+rVV1/VqFGjJElPP/20unTpIklKTk7WnXfeqV9++UVBQUGaPXu2EhMTNWbMGEnShAkT9Pnnn2v27Nm69dZbixTHq6++qmbNmun555+XJDVr1kyHDh3S008/7dHu/PnzeuWVV9S4cWNJ0tixYzVjxoxC+01NTVVKSkoxfhEAAAAAAADAU5WdOfj111/r3Llzuv322xUSEuIuS5cuVWZmprtdXFyc+3NUVJQk6cSJE5KkjIwMderUyaPfTp06KSMjo8hxHD16VO3bt/eou+GGGy5pFxwc7E4M/hrLr3FcjtVqld1udxebzVbkmAAAAAAAAACpCs8czM3NlSSlpaXp2muv9fjOaDS6E4QBAQHueoPBIOniXoVF4ed3Mbf62wOfz58/f1Xx/jaOX2O50kHSRqNRRqPxqp4FAABQ0XCgCAAAgHdU2ZmDLVq0kNFoVHZ2tpo0aeJRoqOji9RHbGystm3b5lG3bds2tWjRQpIUEREhSR4Hh/z2cBLp4jLi3bt3e9Tt2rWruMMBAAAAAAAASl2VnTkYGhqqiRMnavz48SooKNDNN98su92ubdu2yWQyqUGDBn/Yx6RJk3Tvvfeqbdu26tatmz788EOtXLlS69evlyRVr15dN910k2bNmqWGDRvqxIkTmjJlikcfDz74oP72t7/piSee0PDhw7V//34tXrxY0v9mKgIAAAAAAADeUGVnDkrSU089pSeffFKpqamKjY3VHXfcobS0NDVs2LBI9/fr10/z58/X7Nmz1bJlS7366qtatGiREhIS3G3eeOMNXbhwQddff72SkpI0c+ZMjz4aNmyo999/XytXrlRcXJxGjRqlmJgYSWJZMAAAAAAAALzK4LrSxnYodQkJCcrLy5PNZivVQ0QcDofMZrPsdrtMJlOp9QsAAAAAAIDKpTh5oiq7rLgieemll9S+fXvNmjVLmzZtctcbDAZ98803+vbbbzVp0iQdOHBAYWFhGjJkiGbOnKlq1fjzAACAqsmSnOZxzYEkAAAA3lGllxVXFF999ZX69u2rtLQ0BQUF6frrr5fNZlNOTo4CAgLUq1cvtW/fXgcOHNDLL7+s119//ZLlyQAAAAAAAEBpY2paOZg7d67mzp0r6eKy4vj4eNWrV0+SNHnyZEVHR2vBggUyGAxq3ry5vv/+ez3xxBOaOnWq/Pwun791Op1yOp3ua4fDUfYDAQAAAAAAQJXCzEEvy8jIUIcOHTxOLu7UqZNyc3N17NixQu9LTU2V2Wx2l+jo6PIIFwAAAAAAAFUIycFKymq1ym63u0tpHm4CAAAAAAAA38Cy4nIWGBio/Px893VsbKxWrFghl8vlnj24bds2hYaGupceX47RaJTRaCzzeAEAAMoCB5AAAABUDMwcLGcWi0U7duxQVlaWTp48qTFjxshms2ncuHH68ssv9c9//lPTpk3ThAkTCt1vEAAAAAAAACgNZJ9KyOVyadSoUQoLC5PBYFDNmjWVlJRUaPuJEyfK399fLVq0UEREhM6fP681a9Zo586datOmjUaPHq27775bKSkp2r9/f7mNAwAAAAAAAL7H4HK5XN4OojL7+OOP1bdvX6Wnp6tRo0by8/NT9erVFRoaetV9ZmVlqWHDhtq3b5/i4+OLdI/D4ZDZbJbdbpfJZLrqZwMAAAAAAKByK06eiD0HSygzM1NRUVHq2LGjt0MBAAAAAAAAioXkYAkkJiZqyZIlkiSDwaAGDRrIYrEoPj5e8+bNk3Rxj8FRo0bp66+/1nvvvadatWppypQpGjVqlLufnTt36sEHH1RGRoZatWqlyZMne2M4AAAAXmNJTitSOw4yAQAAKF3sOVgC8+fP14wZM1SvXj3l5ORo165dl203Z84ctWvXTvv27dOYMWP00EMP6ejRo5Kk3Nxc9e7dWy1atNCePXs0ffp0TZw48Q+f7XQ65XA4PAoAAAAAAABQHCQHS8BsNis0NFT+/v6KjIxURETEZdv16tVLY8aMUZMmTfTEE08oPDxcGzdulCQtW7ZMBQUFev3119WyZUv17t1bkyZN+sNnp6amymw2u0t0dHSpjg0AAAAAAABVH8nBchAXF+f+bDAYFBkZqRMnTkiSMjIyFBcXp6CgIHebDh06/GGfVqtVdrvdXWw2W+kHDgAAAAAAgCqNPQfLQUBAgMe1wWBQQUFBifo0Go0yGo0l6gMAAAAAAAC+jeSgl8XGxurNN9/UL7/84p49+Pnnn3s5KgAAgPLFQSMAAADewbJiLxs4cKAMBoNGjhypI0eOaM2aNZo9e7a3wwIAAAAAAIAPIDnoZSEhIfrwww918OBBtW3bVpMnT9azzz7r7bAAAAAAAADgAwwul8vl7SBQcg6HQ2azWXa7XSaTydvhAAAAAAAAwEuKkydi5iAAAAAAAADgoziQpIJYu3atZs6cqUOHDsnf318dOnTQ/Pnz1bhxY2+HBgAAcEWW5LQS98GBJAAAAN7BzMEK4uzZs5owYYJ2796tDRs2yM/PT3/+859VUFBw2fZOp1MOh8OjAAAAAAAAAMXBzMEKon///h7Xb7zxhiIiInTkyBG1atXqkvapqalKSUkpr/AAAAAAAABQBTFzsIL46quvNGDAADVq1Egmk0kWi0WSlJ2dfdn2VqtVdrvdXWw2WzlGCwAAAAAAgKqAmYMVRJ8+fdSgQQMtXLhQdevWVUFBgVq1aqW8vLzLtjcajTIajeUcJQAAwKXYLxAAAKDyIjlYAfz00086evSoFi5cqM6dO0uStm7d6uWoAAAAAAAAUNWRHKwAatWqpdq1a+u1115TVFSUsrOzlZyc7O2wAAAAAAAAUMWx52AF4Ofnp+XLl2vPnj1q1aqVxo8fr+eff97bYQEAAAAAAKCKY+ZgBdGtWzcdOXLEo87lcnkpGgAAAAAAAPgCkoMAAADwOkty2iV1HHQCAABQ9lhWXAQFBQV67rnn1KRJExmNRtWvX19PP/20JOngwYO67bbbVL16ddWuXVujRo1Sbm6u+97ExET169dPKSkpioiIkMlk0ujRo92nEC9dulS1a9eW0+n0eGa/fv00ePDg8hskAAAAAAAAfA7JwSKwWq2aNWuWnnzySR05ckTLli1TnTp1dPbsWfXo0UO1atXSrl279N5772n9+vUaO3asx/0bNmxQRkaG0tPT9c4772jlypVKSUmRJN1zzz3Kz8/X6tWr3e1PnDihtLQ0DRs2rNCYnE6nHA6HRwEAAAAAAACKg+TgH/j55581f/58PffccxoyZIgaN26sm2++WSNGjNCyZcv0yy+/aOnSpWrVqpVuu+02LViwQG+++aZ++OEHdx+BgYF644031LJlS915552aMWOGXnjhBRUUFKh69eoaOHCgFi1a5G7/1ltvqX79+kpISCg0rtTUVJnNZneJjo4uy58BAAAAAAAAVRDJwT+QkZEhp9Oprl27Xva7Nm3aqEaNGu66Tp06qaCgQEePHnXXtWnTRsHBwe7rDh06KDc3VzabTZI0cuRIrVu3Tt99950kafHixUpMTJTBYCg0LqvVKrvd7i6/9gUAAAAAAAAUFQeS/IHq1auX+TPatm2rNm3aaOnSperevbsOHz6stLRLN+X+LaPRKKPRWOaxAQAAlAcOHwEAAPAOZg7+gZiYGFWvXl0bNmy45LvY2FgdOHBAZ8+edddt27ZNfn5+atasmbvuwIED+u9//+u+/vzzzxUSEuKxFHjEiBFavHixFi1apG7durFMGAAAAAAAAGWO5OAfCAoK0hNPPKHHH39cS5cuVWZmpj7//HO9/vrrGjRokIKCgjRkyBAdOnRIGzdu1Lhx4zR48GDVqVPH3UdeXp6GDx+uI0eOaM2aNZo2bZrGjh0rP7///fwDBw7UsWPHtHDhQnXq1EmtW7dWQECA+vXr54VRAwAAAAAAwBewrLgInnzySVWrVk1Tp07V999/r6ioKI0ePVrBwcH65JNP9Oijj6p9+/YKDg5W//799be//c3j/q5duyomJka33HKLnE6nBgwYoOnTp3u0MZvN6t+/v9LS0vThhx8qPj5eH3/8sUJCQspxpAAAAAAAAPAlBpfL5fJ2EFVZYmKizpw5ow8++OAP23bt2lUtW7bUsmXL9Pzzz2vo0KFFfo7D4ZDZbJbdbpfJZCpBxAAAAAAAAKjMipMnYuagFzidTk2aNEnLly+Xw+FQfHy87rrrLqWnp+tf//qXJGnYsGEaNmyYFi1apMTERO8GDAAAUEKW5CsftsaBJAAAAN7BnoNe8Pjjj2vFihVasmSJ9u7dq0OHDumJJ57Q1KlTlZOTI5PJpHnz5iknJ0f33XffZftwOp1yOBweBQAAAAAAACgOZg6WscWLF3tcnz17Vi+//LIWL16snj17SpJOnz4ti8Wi4OBgRUZGymAwyGw2KzIystB+U1NTlZKSUpahAwAAAAAAoIpj5mA5y8zM1Pnz59WpUyd3XUBAgG644QZlZGQUuR+r1Sq73e4uNputLMIFAAAAAABAFcbMwUrKaDTKaDR6OwwAAAAAAABUYiQHy1njxo0VGBiobdu2qUGDBpKk8+fPa9euXUpKSvJucAAAAGWEA0cAAAAqJpKD5axGjRp66KGHNGnSJIWFhal+/fp67rnndO7cOQ0fPtzb4QEAAAAAAMCHsOdgGUhPT5fBYNCZM2cu+/2sWbNUr1499e7dW9ddd52+/vprffLJJ6pVq1b5BgoAAAAAAACfxszBUpCQkKD4+HjNmzevSO2DgoK0YcMGOZ1O1a5d+5LvC0sqAgAAAAAAAKWJ5KCXhISEKCQkxNthAAAAAAAAwIeRHCyhxMREbdq0SZs2bdL8+fMlSYsWLZIk7dmzR0888YSOHDmi+Ph4LVq0SM2aNZMkTZ8+XR988IH2798v6eJS5Mcff1yHDx9WQECAWrZsqWXLlrkPLQEAAKjKLMlp5fIcDkYBAADwxJ6DJTR//nx16NBBI0eOVE5OjnJychQdHS1Jmjx5subMmaPdu3erWrVqGjZs2GX7uHDhgvr166cuXbroiy++0Pbt2zVq1CgZDIZCn+t0OuVwODwKAAAAAAAAUBzMHCwhs9mswMBABQcHKzIyUpL05ZdfSpKefvppdenSRZKUnJysO++8U7/88ouCgoI8+nA4HLLb7erdu7caN24sSYqNjb3ic1NTU5WSklLawwEAAAAAAIAPYeZgGYqLi3N/joqKkiSdOHHiknZhYWFKTExUjx491KdPH82fP185OTlX7Ntqtcput7uLzWYr3eABAAAAAABQ5TFzsAwFBAS4P/+6RLigoOCybRctWqRHHnlEa9eu1bvvvqspU6bo008/1U033XTZ9kajUUajsfSDBgAA8AL2AgQAAPAOZg6WgsDAQOXn55e4n7Zt28pqteqzzz5Tq1attGzZslKIDgAAAAAAALg8koOlwGKxaMeOHcrKytLJkycLnR1YmG+++UZWq1Xbt2/Xt99+q3Xr1umrr776w30HAQAAAAAAgJIgOVgKJk6cKH9/f7Vo0UIRERHKzs6+Yvvp06frlVdecV8HBwfryy+/VP/+/dW0aVONGjVKDz/8sB588MGyDh0AAAAAAAA+zOByuVzeDsLX5Obmyul0qnbt2qXWp8PhkNlslt1ul8lkKrV+AQAAAAAAULkUJ0/EgSReEBISopCQEG+HAQAAUGFYktO8HUKp4oAVAABQWfj8suKEhASNGzdOSUlJqlWrlurUqaOFCxfq7NmzGjp0qEJDQ9WkSRN9/PHH7ns2bdqkG264QUajUVFRUUpOTtaFCxckSa+99prq1q17yb6Dffv21bBhwyRdXFYcHx/v8f0//vEPxcbGKigoSM2bN9dLL71UtgMHAAAAAACAz/P55KAkLVmyROHh4dq5c6fGjRunhx56SPfcc486duyovXv3qnv37ho8eLDOnTun7777Tr169VL79u114MABvfzyy3r99dc1c+ZMSdI999yjn376SRs3bnT3f+rUKa1du1aDBg267PPffvttTZ06VU8//bQyMjL0zDPP6Mknn9SSJUsKjdnpdMrhcHgUAAAAAAAAoDhIDkpq06aNpkyZopiYGFmtVgUFBSk8PFwjR45UTEyMpk6dqp9++klffPGFXnrpJUVHR2vBggVq3ry5+vXrp5SUFM2ZM0cFBQWqVauWevbsqWXLlrn7f//99xUeHq5bb731ss+fNm2a5syZo7vuuksNGzbUXXfdpfHjx+vVV18tNObU1FSZzWZ3iY6OLvXfBQAAAAAAAFUbyUFJcXFx7s/+/v6qXbu2Wrdu7a6rU6eOJOnEiRPKyMhQhw4dZDAY3N936tRJubm5OnbsmCRp0KBBWrFihZxOp6SLMwPvv/9++fld+nOfPXtWmZmZGj58uHsvwpCQEM2cOVOZmZmFxmy1WmW3293FZrOV7EcAAAAAAACAz+FAEkkBAQEe1waDwaPu10Tg7/cRLEyfPn3kcrmUlpam9u3ba8uWLZo7d+5l2+bm5kqSFi5cqBtvvNHjO39//0KfYTQaZTQaixQPAABARccBHgAAAN5BcrCYYmNjtWLFCrlcLnfScNu2bQoNDVW9evUkSUFBQbrrrrv09ttv6+uvv1azZs103XXXXba/OnXqqG7duvrPf/5T6J6EAAAAAAAAQFkgOVhMY8aM0bx58zRu3DiNHTtWR48e1bRp0zRhwgSPZcODBg1S7969dfjwYf3lL3+5Yp8pKSl65JFHZDabdccdd8jpdGr37t06ffq0JkyYUNZDAgAAAAAAgI8iOVhM1157rdasWaNJkyapTZs2CgsL0/DhwzVlyhSPdrfddpvCwsJ09OhRDRw48Ip9jhgxQsHBwXr++ec1adIk1ahRQ61bt1ZSUlIZjgQAAAAAAAC+zuByuVzeDgIl53A4ZDabZbfbZTKZvB0OAAAAAAAAvKQ4eSJmDgIAAMDrLMlpV30vh5kAAABcPZKDlZTT6ZTT6XRfOxwOL0YDAAAAAACAysjvj5ugIkpNTZXZbHaX6Ohob4cEAAAAAACASobkYCVltVplt9vdxWazeTskAAAAAAAAVDIsK66kjEajjEajt8MAAAAAAABAJUZyEAAAAF7HoSIAAADewbJiAAAAAAAAwEeRHCwjCQkJSkpKuur7Fy9eLIPBUHoBAQAAAAAAAL9DcrCC+uabb9SlSxdvhwEAAAAAAIAqjD0HK6iPP/5YCxYs8HYYAAAAAAAAqMJIDpaCs2fP6qGHHtLKlSsVGhqqiRMnenx/+vRpPfroo/rwww/ldDrVpUsXvfDCC4qJiZF0cQlxUlKS3n33XSUlJclms+nmm29WdHS0N4YDAABQ7izJacW+h0NMAAAASo5lxaVg0qRJ2rRpk/75z39q3bp1Sk9P1969e93fJyYmavfu3Vq9erW2b98ul8ulXr166fz58+42586d0+zZs/Xmm29q8+bNys7OviTJ+FtOp1MOh8OjAAAAAAAAAMXBzMESys3N1euvv6633npLXbt2lSQtWbJE9erVkyR99dVXWr16tbZt26aOHTtKkt5++21FR0frgw8+0D333CNJOn/+vF555RU1btxYkjR27FjNmDGj0OempqYqJSWlLIcGAAAAAACAKo6ZgyWUmZmpvLw83Xjjje66sLAwNWvWTJKUkZGhatWqeXxfu3ZtNWvWTBkZGe664OBgd2JQkqKionTixIlCn2u1WmW3293FZrOV5rAAAAAAAADgA5g5WEEEBAR4XBsMBrlcrkLbG41GGY3Gsg4LAAAAAAAAVRjJwRJq3LixAgICtGPHDtWvX1/SxQNI/v3vf6tLly6KjY3VhQsXtGPHDvey4p9++klHjx5VixYtvBk6AABAhcHhIgAAAN5BcrCEQkJCNHz4cE2aNEm1a9fWNddco8mTJ8vP7+KK7ZiYGPXt21cjR47Uq6++qtDQUCUnJ+vaa69V3759vRw9AAAAAAAAfBnJwVLw/PPPKzc3V3369FFoaKgee+wx2e129/eLFi3So48+qt69eysvL0+33HKL1qxZc8lSYgAAAAAAAKA8GVxX2tgOXpOYmCiLxaLp06cXqb3D4ZDZbJbdbpfJZCrb4AAAAAAAAFBhFSdPxGnFAAAA8DpLcpq3QwAAAPBJJAcBAAAAAAAAH8Weg5WU0+mU0+l0XzscDi9GAwAAAAAAgMqI5GAFtXjx4it+n5qaqpSUlPIJBgAAAAAAAFUSy4orKavVKrvd7i42m83bIQEAAAAAAKCSYeZgJWU0GmU0Gr0dBgAAQKnImnWnt0MAAADwScwcBAAAAAAAAHwUyUEAAAAAAADAR5EcrIASEhKUlJTk7TAAAAAAAABQxZEcBAAAAAAAAHyUweVyubwdBP4nMTFRS5Ys8aj75ptvZLFYrnifw+GQ2WyW3W6XyWQqwwgBAABKnyU5zdsheOCAFAAAUJkVJ0/EacUVzPz58/Xvf/9brVq10owZMyRJERERXo4KAAAAAAAAVRHJwQrGbDYrMDBQwcHBioyMLLSd0+mU0+l0XzscjvIIDwAAAAAAAFUIew5WUqmpqTKbze4SHR3t7ZAAAAAAAABQyZAcrKSsVqvsdru72Gw2b4cEAAAAAACASoZlxRVQYGCg8vPzr9jGaDTKaDSWU0QAAABliwNAAAAAvIOZgxWQxWLRjh07lJWVpZMnT6qgoMDbIQEAAAAAAKAKIjlYhtLT02UwGHTmzJli3Tdx4kT5+/urRYsWioiIUHZ2dtkECAAAAAAAAJ9mcLlcLm8HUVXl5eXp1KlTqlOnjgwGQ5k+y+FwyGw2y263y2QylemzAAAAAAAAUHEVJ0/EnoNlKDAwUJGRkd4OAwAAAAAAALgskoPFkJCQoNatW8vf319LlixRYGCgZs6cqYEDB2rs2LF6//33VadOHb344ovq2bOn0tPTdeutt+r06dOqWbOmvv32W40dO1Zbt25VXl6eLBaLnn/+efXq1UunT5/W2LFjtW7dOuXm5qpevXr661//qqFDh3p72AAAAGXOkpxWKv1wsAkAAEDxkBwspiVLlujxxx/Xzp079e677+qhhx7SqlWr9Oc//1l//etfNXfuXA0ePPiy+wQ+/PDDysvL0+bNm1WjRg0dOXJEISEhkqQnn3xSR44c0ccff6zw8HB9/fXX+u9//1toHE6nU06n033tcDhKf7AAAAAAAACo0kgOFlObNm00ZcoUSZLVatWsWbMUHh6ukSNHSpKmTp2ql19+WV988cUl92ZnZ6t///5q3bq1JKlRo0Ye37Vt21bt2rWTdPHE4itJTU1VSkpKaQwJAAAAAAAAPorTiospLi7O/dnf31+1a9d2J/skqU6dOpKkEydOXHLvI488opkzZ6pTp06aNm2aRwLxoYce0vLlyxUfH6/HH39cn3322RXjsFqtstvt7mKz2Uo6NAAAAAAAAPgYkoPFFBAQ4HFtMBg86n49lbigoOCSe0eMGKH//Oc/Gjx4sA4ePKh27drpxRdflCT17NlT3377rcaPH6/vv/9eXbt21cSJEwuNw2g0ymQyeRQAAAAAAACgOFhWXM6io6M1evRojR49WlarVQsXLtS4ceMkSRERERoyZIiGDBmizp07a9KkSZo9e7aXIwYAACh7HCQCAADgHSQHy1FSUpJ69uyppk2b6vTp09q4caNiY2MlXdyr8Prrr1fLli3ldDr10Ucfub8DAAAAAAAAygLJwXKUn5+vhx9+WMeOHZPJZNIdd9yhuXPnKiEhQXl5eXr//feVlZWl6tWrq3Pnzlq+fLm3QwYAAAAAAEAVZnC5XC5vB+HrTp06pYCAAIWGhspisSgpKUlJSUnF6sPhcMhsNstut7P/IAAAAAAAgA8rTp6ImYMVQFhYmLdDAAAAAAAAgA9i5mAFkJCQoPj4eO3fv1+bNm3y+K6ofx5mDgIAgMrMkpx2VfdxkAkAAMClipMn8iunmFAEK1euVL169TRjxgzl5OQoJyen0LZOp1MOh8OjAAAAAAAAAMVBcrACCQsLk7+/v0JDQxUZGanIyMhC26ampspsNrtLdHR0OUYKAAAAAACAqoDkYCVltVplt9vdxWazeTskAAAAAAAAVDIcSFJJGY1GGY1Gb4cBAABQKtg7EAAAwDuYOVjBBAYGKj8/39thAAAAAAAAwAeQHKxgLBaLNm/erO+++04nT570djgAAAAAAACowkgOVjAzZsxQVlaWGjdurIiICG+HAwAAAAAAgCrM4HK5XN4OAp4SEhIUHx+vefPmFfkeh8Mhs9ksu90uk8lUdsEBAAAAAACgQitOnogDSQAAAFAkluS0MuubA0kAAAC8g2XFAAAAAAAAgI9i5mAl5XQ65XQ63dcOh8OL0QAAAAAAAKAyYuZgJZWamiqz2ewu0dHR3g4JAAAAAAAAlQzJwUrKarXKbre7i81m83ZIAAAAAAAAqGRYVlxJGY1GGY1Gb4cBAAB8CIeGAAAAVD0kByug9PR0b4cAAAAAAAAAH8Cy4stISEiQwWCQwWDQ/v37y+256enp7ue2aNGi3J4LAAAAAAAA30RysBAjR45UTk6OWrVqJUlatWqVbrrpJpnNZoWGhqply5ZKSkpyt1+8eLE7sffbEhQU5G6TmJjorg8MDFSTJk00Y8YMXbhwQZLUsWNH5eTkKDg42OMkYgAAAAAAAKAssKy4EMHBwYqMjJQkbdiwQffdd5+efvpp/elPf5LBYNCRI0f06aefetxjMpl09OhRjzqDweBxfccdd2jRokVyOp1as2aNHn74YQUEBMhqtSowMFCRkZG65557dObMmTIdHwAAAAAAAEBysAg+/PBDderUSZMmTXLXNW3aVP369fNoZzAY3AnFwhiNRnebhx56SKtWrdLq1atltVpLPW4AAAAAAADgSlhWXASRkZE6fPiwDh06VOp9V69eXXl5ecW+z+l0yuFweBQAAAAAAACgOEgOFsG4cePUvn17tW7dWhaLRffff7/eeOONS/YFtNvtCgkJ8Sg9e/a8bJ8ul0vr16/XJ598ottuu63YMaWmpspsNrtLdHT0VY0NAAAAAAAAvotlxUVQo0YNpaWlKTMzUxs3btTnn3+uxx57TPPnz9f27dsVHBwsSQoNDdXevXs97q1evbrH9UcffaSQkBCdP39eBQUFGjhwoKZPn17smKxWqyZMmOC+djgcJAgBAAAAAABQLCQHi6Fx48Zq3LixRowYocmTJ6tp06Z69913NXToUEmSn5+fmjRpcsU+br31Vr388ssKDAxU3bp1Va3a1f0JjEajjEbjVd0LAAAAAAAASCQHr5rFYlFwcLDOnj1brPtq1KjxhwlEAAAAAAAAoDyQHCyC6dOn69y5c+rVq5caNGigM2fO6IUXXtD58+d1++23u9u5XC4dP378kvuvueYa+fmV7faOLpdLkjiYBAAAAAAAwMf9mh/6NV90JSQHi6BLly76+9//rgceeEA//PCDatWqpbZt22rdunVq1qyZu53D4VBUVNQl9+fk5CgyMrJMY/z5558liX0HAQAAAAAAIOlivshsNl+xjcFVlBSij0lISFB8fLzmzZvnlecnJibqzJkz+uCDD4p8T0FBgb7//nuFhobKYDCUXXDwCb8ecGOz2WQymbwdDlBp8O4AV4d3B7g6vDvA1eP9QVXncrn0888/q27dun+4mpWZg4V46aWX9I9//EPbt29X69aty+WZW7ZsUc+ePeV0OnXnnXcW614/Pz/Vq1evjCKDrzKZTPyDErgKvDvA1eHdAa4O7w5w9Xh/UJX90YzBX5EcvIy3335b//3vfyVJ9evXL7fntmvXTvv375ckhYSElNtzAQAAAAAA4JtIDl7Gtdde65XnVq9enZOMAQAAAAAAUG7K9ghdAJWS0WjUtGnTZDQavR0KUKnw7gBXh3cHuDq8O8DV4/0B/ocDSQAAAAAAAAAfxcxBAAAAAAAAwEeRHAQAAAAAAAB8FMlBAAAAAAAAwEeRHAQAAAAAAAB8FMlBADp16pQGDRokk8mkmjVravjw4crNzS3SvS6XSz179pTBYNAHH3xQtoECFVBx359Tp05p3LhxatasmapXr6769evrkUcekd1uL8eogfL397//XRaLRUFBQbrxxhu1c+fOK7Z/77331Lx5cwUFBal169Zas2ZNOUUKVCzFeXcWLlyozp07q1atWqpVq5a6dev2h+8aUJUV9589v1q+fLkMBoP69etXtgECFQTJQQAaNGiQDh8+rE8//VQfffSRNm/erFGjRhXp3nnz5slgMJRxhEDFVdz35/vvv9f333+v2bNn69ChQ1q8eLHWrl2r4cOHl2PUQPl69913NWHCBE2bNk179+5VmzZt1KNHD504ceKy7T/77DMNGDBAw4cP1759+9SvXz/169dPhw4dKufIAe8q7ruTnp6uAQMGaOPGjdq+fbuio6PVvXt3fffdd+UcOeB9xX1/fpWVlaWJEyeqc+fO5RQp4H0Gl8vl8nYQALwnIyNDLVq00K5du9SuXTtJ0tq1a9WrVy8dO3ZMdevWLfTe/fv3q3fv3tq9e7eioqK0atUq/u8afEpJ3p/feu+99/SXv/xFZ8+eVbVq1coyZMArbrzxRrVv314LFiyQJBUUFCg6Olrjxo1TcnLyJe3vu+8+nT17Vh999JG77qabblJ8fLxeeeWVcosb8Lbivju/l5+fr1q1amnBggV64IEHyjpcoEK5mvcnPz9ft9xyi4YNG6YtW7bozJkzrI6CT2DmIODjtm/frpo1a7oTG5LUrVs3+fn5aceOHYXed+7cOQ0cOFB///vfFRkZWR6hAhXO1b4/v2e322UymUgMokrKy8vTnj171K1bN3edn5+funXrpu3bt1/2nu3bt3u0l6QePXoU2h6oiq7m3fm9c+fO6fz58woLCyurMIEK6WrfnxkzZuiaa65hRQd8Dv8VAvi448eP65prrvGoq1atmsLCwnT8+PFC7xs/frw6duyovn37lnWIQIV1te/Pb508eVJPPfVUkZfyA5XNyZMnlZ+frzp16njU16lTR19++eVl7zl+/Phl2xf1vQKqgqt5d37viSeeUN26dS9JtgNV3dW8P1u3btXrr7+u/fv3l0OEQMXCzEGgikpOTpbBYLhiKeq/WP7e6tWr9a9//Uvz5s0r3aCBCqIs35/fcjgcuvPOO9WiRQtNnz695IEDAPD/zZo1S8uXL9eqVasUFBTk7XCACu3nn3/W4MGDtXDhQoWHh3s7HKDcMXMQqKIee+wxJSYmXrFNo0aNFBkZecmmvBcuXNCpU6cKXS78r3/9S5mZmapZs6ZHff/+/dW5c2elp6eXIHLA+8ry/fnVzz//rDvuuEOhoaFatWqVAgICSho2UCGFh4fL399fP/zwg0f9Dz/8UOh7EhkZWaz2QFV0Ne/Or2bPnq1Zs2Zp/fr1iouLK8swgQqpuO9PZmamsrKy1KdPH3ddQUGBpIurQo4eParGjRuXbdCAF5EcBKqoiIgIRURE/GG7Dh066MyZM9qzZ4+uv/56SReTfwUFBbrxxhsve09ycrJGjBjhUde6dWvNnTvX4x+oQGVVlu+PdHHGYI8ePWQ0GrV69WpmdKBKCwwM1PXXX68NGza4D60qKCjQhg0bNHbs2Mve06FDB23YsEFJSUnuuk8//VQdOnQoh4iBiuFq3h1Jeu655/T000/rk08+8dgTF/AlxX1/mjdvroMHD3rUTZkyRT///LPmz5+v6Ojo8ggb8BqSg4CPi42N1R133KGRI0fqlVde0fnz5zV27Fjdf//97pNWv/vuO3Xt2lVLly7VDTfcoMjIyMv+H7f69eurYcOG5T0EwGuu5v1xOBzq3r27zp07p7feeksOh0MOh0PSxaSkv7+/N4cElIkJEyZoyJAhateunW644QbNmzdPZ8+e1dChQyVJDzzwgK699lqlpqZKkh599FF16dJFc+bM0Z133qnly5dr9+7deu2117w5DKDcFffdefbZZzV16lQtW7ZMFovFvU9nSEiIQkJCvDYOwBuK8/4EBQWpVatWHvf/ukrq9/VAVURyEIDefvttjR07Vl27dpWfn5/69++vF154wf39+fPndfToUZ07d86LUQIVU3Hfn71797pPMm7SpIlHX998840sFku5xQ6Ul/vuu08//vijpk6dquPHjys+Pl5r1651bxSfnZ0tP7//bYXdsWNHLVu2TFOmTNFf//pXxcTE6IMPPuA/0OBzivvuvPzyy8rLy9Pdd9/t0c+0adPY2xY+p7jvD+DLDC6Xy+XtIAAAAAAAAACUP9LkAAAAAAAAgI8iOQgAAAAAAAD4KJKDAAAAAAAAgI8iOQgAAAAAAAD4KJKDAAAAAAAAgI8iOQgAAAAAAAD4KJKDAAAAAAAAgI8iOQgAAAAAAAD4KJKDAAAAAAAAgI8iOQgAAAAAAAD4KJKDAAAAAAAAgI8iOQgAAAAAAAD4qP8H4cYOT4qMwWYAAAAASUVORK5CYII=\n"
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "table.iloc[::-1].plot(x=\"tokens\",y=\"score\",kind=\"barh\",figsize=(15,15))"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "3mRIFciFigjI",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 166
+        },
+        "outputId": "4420acec-cc00-49a4-a949-7ef5cc17e2e3"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>0</b></text></td><td><text style=\"padding-right:2em\"><b>LABEL_0 (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>LABEL_0</b></text></td><td><text style=\"padding-right:2em\"><b>-0.41</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> s                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> really                    </font></mark><mark style=\"background-color: hsl(120, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> too                    </font></mark><mark style=\"background-color: hsl(120, 75%, 74%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> bad                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> that                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> nobody                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> knows                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> about                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> think                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> if                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> were                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> just                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> spruce                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##d                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> up                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> little                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> and                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> if                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> weren                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> t                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> so                    </font></mark><mark style=\"background-color: hsl(120, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> low                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> budget                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> think                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> one                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> major                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> film                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> companies                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> might                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> have                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> wanted                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> take                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> first                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> saw                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> when                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> 11                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> and                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> i                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> thought                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(0, 75%, 86%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> was                    </font></mark><mark style=\"background-color: hsl(0, 75%, 92%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> so                    </font></mark><mark style=\"background-color: hsl(0, 75%, 81%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> powerful                    </font></mark><mark style=\"background-color: hsl(0, 75%, 89%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> with                    </font></mark><mark style=\"background-color: hsl(0, 75%, 96%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> the                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> many                    </font></mark><mark style=\"background-color: hsl(0, 75%, 92%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> great                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> yet                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> illegal                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> lengths                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> that                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> mitchell                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> goes                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> just                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> keep                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> his                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> family                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> together                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(0, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> inspired                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> me                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> then                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> and                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ama                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ##zes                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> me                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> now                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> if                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> you                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> re                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> lucky                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> enough                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> to                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> find                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> copy                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> this                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> movie                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> don                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> '                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> t                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> miss                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> it                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> !                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
+            ]
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "html = cls_explainer.visualize()"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### ▶▶ Exercice : chercher les termes corrélés à chaque classe\n",
+        "\n",
+        "- Appliquer le modèle appris sur l'éval de imdb\n",
+        "- Appliquer l'interprétation sur un ensemble d'instances (100 puis 1000) et relever les termes avec les attributions les plus fortes, dans un sens ou dans l'autre. Réduisez la taille des phrases des reviews à 30 tokens.\n",
+        "- Trouvez les éventuels biais du jeu de données\n",
+        "\n"
+      ],
+      "metadata": {
+        "id": "23--_RYHjq-e"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "#### --- CORRECTION"
+      ],
+      "metadata": {
+        "id": "S3402Fm7ju91"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "def get_topk(attributions,k=5,threshold=None):\n",
+        "    \"\"\"recup des k tokens les plus positifs + k tokens les plus négatifs\"\"\"\n",
+        "    table = pds.DataFrame(word_attributions,columns=[\"tokens\",\"score\"])\n",
+        "    high = table.nlargest(k,\"score\")\n",
+        "    low = table.nsmallest(k,\"score\")\n",
+        "    return high,low"
+      ],
+      "metadata": {
+        "id": "G4cN9FVNumeH"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "get_topk(word_attributions)"
+      ],
+      "metadata": {
+        "id": "waGGZz-3wSVg",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "051a3f7c-ba19-4289-fd4e-990cc35f5fe9"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "(   tokens     score\n",
+              " 6     bad  0.528131\n",
+              " 1      it  0.155795\n",
+              " 5     too  0.145401\n",
+              " 32    low  0.136471\n",
+              " 90   then  0.078312,\n",
+              "       tokens     score\n",
+              " 67  powerful -0.491959\n",
+              " 65       was -0.372314\n",
+              " 68      with -0.289319\n",
+              " 71     great -0.209953\n",
+              " 66        so -0.202532)"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 52
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "def cut_sentence(sent,threshold):\n",
+        "  toks = sent.split()[:threshold]\n",
+        "  return \" \".join(toks)\n",
+        "\n",
+        "one = small_eval_dataset[0][\"text\"]\n",
+        "cut_sentence(one,50)"
+      ],
+      "metadata": {
+        "id": "EjKCi-pvxN_a",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 53
+        },
+        "outputId": "723cc365-6784-42cd-d1b5-d1421e58ffe3"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "'<br /><br />When I unsuspectedly rented A Thousand Acres, I thought I was in for an entertaining King Lear story and of course Michelle Pfeiffer was in it, so what could go wrong?<br /><br />Very quickly, however, I realized that this story was about A Thousand Other Things besides just'"
+            ],
+            "application/vnd.google.colaboratory.intrinsic+json": {
+              "type": "string"
+            }
+          },
+          "metadata": {},
+          "execution_count": 53
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "maxseqlength = 30\n",
+        "small_eval_dataset_text = [cut_sentence(one[\"text\"],maxseqlength) for one in small_eval_dataset]"
+      ],
+      "metadata": {
+        "id": "CzVhne2S5typ"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "all_pos = []\n",
+        "all_neg = []\n",
+        "\n",
+        "for sentence in tqdm(small_eval_dataset_text[:100]):\n",
+        "    word_attributions = cls_explainer(sentence)\n",
+        "    label = cls_explainer.predicted_class_name\n",
+        "    high,low = get_topk(word_attributions)\n",
+        "    if label == \"LABEL_1\":\n",
+        "      all_pos.append(high)\n",
+        "    else:\n",
+        "      all_neg.append(high)\n"
+      ],
+      "metadata": {
+        "id": "hP28_7GwuC23",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "98e3424d-2897-47c1-e1d6-e85099d0882a"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "100%|██████████| 100/100 [00:15<00:00,  6.40it/s]\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "df_high = pds.concat(all_pos)\n",
+        "df_low = pds.concat(all_neg)\n",
+        "df_high"
+      ],
+      "metadata": {
+        "id": "Kp0V1zKl6TNo",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 424
+        },
+        "outputId": "94fa679e-c7dc-415e-ff11-493e4f3cfc8f"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "          tokens     score\n",
+              "28  entertaining  0.333611\n",
+              "21             i  0.204222\n",
+              "23             i  0.178905\n",
+              "24           was  0.132996\n",
+              "27            an  0.131660\n",
+              "..           ...       ...\n",
+              "17          very  0.602366\n",
+              "16           was  0.488280\n",
+              "18       pleased  0.333021\n",
+              "19          with  0.326605\n",
+              "13           war  0.192443\n",
+              "\n",
+              "[300 rows x 2 columns]"
+            ],
+            "text/html": [
+              "\n",
+              "  <div id=\"df-6ed4f8a4-c370-4c4f-95e2-54e03ff6436c\" class=\"colab-df-container\">\n",
+              "    <div>\n",
+              "<style scoped>\n",
+              "    .dataframe tbody tr th:only-of-type {\n",
+              "        vertical-align: middle;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe tbody tr th {\n",
+              "        vertical-align: top;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe thead th {\n",
+              "        text-align: right;\n",
+              "    }\n",
+              "</style>\n",
+              "<table border=\"1\" class=\"dataframe\">\n",
+              "  <thead>\n",
+              "    <tr style=\"text-align: right;\">\n",
+              "      <th></th>\n",
+              "      <th>tokens</th>\n",
+              "      <th>score</th>\n",
+              "    </tr>\n",
+              "  </thead>\n",
+              "  <tbody>\n",
+              "    <tr>\n",
+              "      <th>28</th>\n",
+              "      <td>entertaining</td>\n",
+              "      <td>0.333611</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>21</th>\n",
+              "      <td>i</td>\n",
+              "      <td>0.204222</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>23</th>\n",
+              "      <td>i</td>\n",
+              "      <td>0.178905</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>24</th>\n",
+              "      <td>was</td>\n",
+              "      <td>0.132996</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>27</th>\n",
+              "      <td>an</td>\n",
+              "      <td>0.131660</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>...</th>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>17</th>\n",
+              "      <td>very</td>\n",
+              "      <td>0.602366</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>16</th>\n",
+              "      <td>was</td>\n",
+              "      <td>0.488280</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>18</th>\n",
+              "      <td>pleased</td>\n",
+              "      <td>0.333021</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>19</th>\n",
+              "      <td>with</td>\n",
+              "      <td>0.326605</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>13</th>\n",
+              "      <td>war</td>\n",
+              "      <td>0.192443</td>\n",
+              "    </tr>\n",
+              "  </tbody>\n",
+              "</table>\n",
+              "<p>300 rows × 2 columns</p>\n",
+              "</div>\n",
+              "    <div class=\"colab-df-buttons\">\n",
+              "\n",
+              "  <div class=\"colab-df-container\">\n",
+              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6ed4f8a4-c370-4c4f-95e2-54e03ff6436c')\"\n",
+              "            title=\"Convert this dataframe to an interactive table.\"\n",
+              "            style=\"display:none;\">\n",
+              "\n",
+              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
+              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
+              "  </svg>\n",
+              "    </button>\n",
+              "\n",
+              "  <style>\n",
+              "    .colab-df-container {\n",
+              "      display:flex;\n",
+              "      gap: 12px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert {\n",
+              "      background-color: #E8F0FE;\n",
+              "      border: none;\n",
+              "      border-radius: 50%;\n",
+              "      cursor: pointer;\n",
+              "      display: none;\n",
+              "      fill: #1967D2;\n",
+              "      height: 32px;\n",
+              "      padding: 0 0 0 0;\n",
+              "      width: 32px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert:hover {\n",
+              "      background-color: #E2EBFA;\n",
+              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
+              "      fill: #174EA6;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-buttons div {\n",
+              "      margin-bottom: 4px;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert {\n",
+              "      background-color: #3B4455;\n",
+              "      fill: #D2E3FC;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert:hover {\n",
+              "      background-color: #434B5C;\n",
+              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
+              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
+              "      fill: #FFFFFF;\n",
+              "    }\n",
+              "  </style>\n",
+              "\n",
+              "    <script>\n",
+              "      const buttonEl =\n",
+              "        document.querySelector('#df-6ed4f8a4-c370-4c4f-95e2-54e03ff6436c button.colab-df-convert');\n",
+              "      buttonEl.style.display =\n",
+              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
+              "\n",
+              "      async function convertToInteractive(key) {\n",
+              "        const element = document.querySelector('#df-6ed4f8a4-c370-4c4f-95e2-54e03ff6436c');\n",
+              "        const dataTable =\n",
+              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
+              "                                                    [key], {});\n",
+              "        if (!dataTable) return;\n",
+              "\n",
+              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
+              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
+              "          + ' to learn more about interactive tables.';\n",
+              "        element.innerHTML = '';\n",
+              "        dataTable['output_type'] = 'display_data';\n",
+              "        await google.colab.output.renderOutput(dataTable, element);\n",
+              "        const docLink = document.createElement('div');\n",
+              "        docLink.innerHTML = docLinkHtml;\n",
+              "        element.appendChild(docLink);\n",
+              "      }\n",
+              "    </script>\n",
+              "  </div>\n",
+              "\n",
+              "\n",
+              "<div id=\"df-acfdaa46-fa0d-402e-8bb3-05a5054fed61\">\n",
+              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-acfdaa46-fa0d-402e-8bb3-05a5054fed61')\"\n",
+              "            title=\"Suggest charts\"\n",
+              "            style=\"display:none;\">\n",
+              "\n",
+              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
+              "     width=\"24px\">\n",
+              "    <g>\n",
+              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
+              "    </g>\n",
+              "</svg>\n",
+              "  </button>\n",
+              "\n",
+              "<style>\n",
+              "  .colab-df-quickchart {\n",
+              "      --bg-color: #E8F0FE;\n",
+              "      --fill-color: #1967D2;\n",
+              "      --hover-bg-color: #E2EBFA;\n",
+              "      --hover-fill-color: #174EA6;\n",
+              "      --disabled-fill-color: #AAA;\n",
+              "      --disabled-bg-color: #DDD;\n",
+              "  }\n",
+              "\n",
+              "  [theme=dark] .colab-df-quickchart {\n",
+              "      --bg-color: #3B4455;\n",
+              "      --fill-color: #D2E3FC;\n",
+              "      --hover-bg-color: #434B5C;\n",
+              "      --hover-fill-color: #FFFFFF;\n",
+              "      --disabled-bg-color: #3B4455;\n",
+              "      --disabled-fill-color: #666;\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-quickchart {\n",
+              "    background-color: var(--bg-color);\n",
+              "    border: none;\n",
+              "    border-radius: 50%;\n",
+              "    cursor: pointer;\n",
+              "    display: none;\n",
+              "    fill: var(--fill-color);\n",
+              "    height: 32px;\n",
+              "    padding: 0;\n",
+              "    width: 32px;\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-quickchart:hover {\n",
+              "    background-color: var(--hover-bg-color);\n",
+              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
+              "    fill: var(--button-hover-fill-color);\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-quickchart-complete:disabled,\n",
+              "  .colab-df-quickchart-complete:disabled:hover {\n",
+              "    background-color: var(--disabled-bg-color);\n",
+              "    fill: var(--disabled-fill-color);\n",
+              "    box-shadow: none;\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-spinner {\n",
+              "    border: 2px solid var(--fill-color);\n",
+              "    border-color: transparent;\n",
+              "    border-bottom-color: var(--fill-color);\n",
+              "    animation:\n",
+              "      spin 1s steps(1) infinite;\n",
+              "  }\n",
+              "\n",
+              "  @keyframes spin {\n",
+              "    0% {\n",
+              "      border-color: transparent;\n",
+              "      border-bottom-color: var(--fill-color);\n",
+              "      border-left-color: var(--fill-color);\n",
+              "    }\n",
+              "    20% {\n",
+              "      border-color: transparent;\n",
+              "      border-left-color: var(--fill-color);\n",
+              "      border-top-color: var(--fill-color);\n",
+              "    }\n",
+              "    30% {\n",
+              "      border-color: transparent;\n",
+              "      border-left-color: var(--fill-color);\n",
+              "      border-top-color: var(--fill-color);\n",
+              "      border-right-color: var(--fill-color);\n",
+              "    }\n",
+              "    40% {\n",
+              "      border-color: transparent;\n",
+              "      border-right-color: var(--fill-color);\n",
+              "      border-top-color: var(--fill-color);\n",
+              "    }\n",
+              "    60% {\n",
+              "      border-color: transparent;\n",
+              "      border-right-color: var(--fill-color);\n",
+              "    }\n",
+              "    80% {\n",
+              "      border-color: transparent;\n",
+              "      border-right-color: var(--fill-color);\n",
+              "      border-bottom-color: var(--fill-color);\n",
+              "    }\n",
+              "    90% {\n",
+              "      border-color: transparent;\n",
+              "      border-bottom-color: var(--fill-color);\n",
+              "    }\n",
+              "  }\n",
+              "</style>\n",
+              "\n",
+              "  <script>\n",
+              "    async function quickchart(key) {\n",
+              "      const quickchartButtonEl =\n",
+              "        document.querySelector('#' + key + ' button');\n",
+              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
+              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
+              "      try {\n",
+              "        const charts = await google.colab.kernel.invokeFunction(\n",
+              "            'suggestCharts', [key], {});\n",
+              "      } catch (error) {\n",
+              "        console.error('Error during call to suggestCharts:', error);\n",
+              "      }\n",
+              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
+              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
+              "    }\n",
+              "    (() => {\n",
+              "      let quickchartButtonEl =\n",
+              "        document.querySelector('#df-acfdaa46-fa0d-402e-8bb3-05a5054fed61 button');\n",
+              "      quickchartButtonEl.style.display =\n",
+              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
+              "    })();\n",
+              "  </script>\n",
+              "</div>\n",
+              "    </div>\n",
+              "  </div>\n"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 56
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "df_high_avg = df_high.groupby(\"tokens\").mean()\n",
+        "df_low_avg = df_low.groupby(\"tokens\").mean()"
+      ],
+      "metadata": {
+        "id": "becpniSG6jDr"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "df_high_avg.nlargest(20,\"score\")"
+      ],
+      "metadata": {
+        "id": "BRh3UR5Y61nX",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 708
+        },
+        "outputId": "6777b985-7ad6-4dfe-e106-f764f31e0c32"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "               score\n",
+              "tokens              \n",
+              "admire      0.835418\n",
+              "wonderful   0.817557\n",
+              "strength    0.797809\n",
+              "appreciate  0.695525\n",
+              "heart       0.687090\n",
+              "hits        0.683558\n",
+              "fun         0.635072\n",
+              "well        0.628432\n",
+              "gripping    0.613451\n",
+              "great       0.598562\n",
+              "good        0.598064\n",
+              "an          0.583376\n",
+              "to          0.564770\n",
+              "fantastic   0.542234\n",
+              "##que       0.522278\n",
+              "master      0.515073\n",
+              "amazing     0.514078\n",
+              "nice        0.493044\n",
+              "very        0.490768\n",
+              "much        0.488727"
+            ],
+            "text/html": [
+              "\n",
+              "  <div id=\"df-6621b9a9-cfc0-4dcb-9410-cb9e029b0d94\" class=\"colab-df-container\">\n",
+              "    <div>\n",
+              "<style scoped>\n",
+              "    .dataframe tbody tr th:only-of-type {\n",
+              "        vertical-align: middle;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe tbody tr th {\n",
+              "        vertical-align: top;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe thead th {\n",
+              "        text-align: right;\n",
+              "    }\n",
+              "</style>\n",
+              "<table border=\"1\" class=\"dataframe\">\n",
+              "  <thead>\n",
+              "    <tr style=\"text-align: right;\">\n",
+              "      <th></th>\n",
+              "      <th>score</th>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>tokens</th>\n",
+              "      <th></th>\n",
+              "    </tr>\n",
+              "  </thead>\n",
+              "  <tbody>\n",
+              "    <tr>\n",
+              "      <th>admire</th>\n",
+              "      <td>0.835418</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>wonderful</th>\n",
+              "      <td>0.817557</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>strength</th>\n",
+              "      <td>0.797809</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>appreciate</th>\n",
+              "      <td>0.695525</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>heart</th>\n",
+              "      <td>0.687090</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>hits</th>\n",
+              "      <td>0.683558</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>fun</th>\n",
+              "      <td>0.635072</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>well</th>\n",
+              "      <td>0.628432</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>gripping</th>\n",
+              "      <td>0.613451</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>great</th>\n",
+              "      <td>0.598562</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>good</th>\n",
+              "      <td>0.598064</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>an</th>\n",
+              "      <td>0.583376</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>to</th>\n",
+              "      <td>0.564770</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>fantastic</th>\n",
+              "      <td>0.542234</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>##que</th>\n",
+              "      <td>0.522278</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>master</th>\n",
+              "      <td>0.515073</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>amazing</th>\n",
+              "      <td>0.514078</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>nice</th>\n",
+              "      <td>0.493044</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>very</th>\n",
+              "      <td>0.490768</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>much</th>\n",
+              "      <td>0.488727</td>\n",
+              "    </tr>\n",
+              "  </tbody>\n",
+              "</table>\n",
+              "</div>\n",
+              "    <div class=\"colab-df-buttons\">\n",
+              "\n",
+              "  <div class=\"colab-df-container\">\n",
+              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6621b9a9-cfc0-4dcb-9410-cb9e029b0d94')\"\n",
+              "            title=\"Convert this dataframe to an interactive table.\"\n",
+              "            style=\"display:none;\">\n",
+              "\n",
+              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
+              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
+              "  </svg>\n",
+              "    </button>\n",
+              "\n",
+              "  <style>\n",
+              "    .colab-df-container {\n",
+              "      display:flex;\n",
+              "      gap: 12px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert {\n",
+              "      background-color: #E8F0FE;\n",
+              "      border: none;\n",
+              "      border-radius: 50%;\n",
+              "      cursor: pointer;\n",
+              "      display: none;\n",
+              "      fill: #1967D2;\n",
+              "      height: 32px;\n",
+              "      padding: 0 0 0 0;\n",
+              "      width: 32px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert:hover {\n",
+              "      background-color: #E2EBFA;\n",
+              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
+              "      fill: #174EA6;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-buttons div {\n",
+              "      margin-bottom: 4px;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert {\n",
+              "      background-color: #3B4455;\n",
+              "      fill: #D2E3FC;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert:hover {\n",
+              "      background-color: #434B5C;\n",
+              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
+              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
+              "      fill: #FFFFFF;\n",
+              "    }\n",
+              "  </style>\n",
+              "\n",
+              "    <script>\n",
+              "      const buttonEl =\n",
+              "        document.querySelector('#df-6621b9a9-cfc0-4dcb-9410-cb9e029b0d94 button.colab-df-convert');\n",
+              "      buttonEl.style.display =\n",
+              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
+              "\n",
+              "      async function convertToInteractive(key) {\n",
+              "        const element = document.querySelector('#df-6621b9a9-cfc0-4dcb-9410-cb9e029b0d94');\n",
+              "        const dataTable =\n",
+              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
+              "                                                    [key], {});\n",
+              "        if (!dataTable) return;\n",
+              "\n",
+              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
+              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
+              "          + ' to learn more about interactive tables.';\n",
+              "        element.innerHTML = '';\n",
+              "        dataTable['output_type'] = 'display_data';\n",
+              "        await google.colab.output.renderOutput(dataTable, element);\n",
+              "        const docLink = document.createElement('div');\n",
+              "        docLink.innerHTML = docLinkHtml;\n",
+              "        element.appendChild(docLink);\n",
+              "      }\n",
+              "    </script>\n",
+              "  </div>\n",
+              "\n",
+              "\n",
+              "<div id=\"df-1a8471c5-a1b6-4fac-97ea-ad170c200a07\">\n",
+              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-1a8471c5-a1b6-4fac-97ea-ad170c200a07')\"\n",
+              "            title=\"Suggest charts\"\n",
+              "            style=\"display:none;\">\n",
+              "\n",
+              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
+              "     width=\"24px\">\n",
+              "    <g>\n",
+              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
+              "    </g>\n",
+              "</svg>\n",
+              "  </button>\n",
+              "\n",
+              "<style>\n",
+              "  .colab-df-quickchart {\n",
+              "      --bg-color: #E8F0FE;\n",
+              "      --fill-color: #1967D2;\n",
+              "      --hover-bg-color: #E2EBFA;\n",
+              "      --hover-fill-color: #174EA6;\n",
+              "      --disabled-fill-color: #AAA;\n",
+              "      --disabled-bg-color: #DDD;\n",
+              "  }\n",
+              "\n",
+              "  [theme=dark] .colab-df-quickchart {\n",
+              "      --bg-color: #3B4455;\n",
+              "      --fill-color: #D2E3FC;\n",
+              "      --hover-bg-color: #434B5C;\n",
+              "      --hover-fill-color: #FFFFFF;\n",
+              "      --disabled-bg-color: #3B4455;\n",
+              "      --disabled-fill-color: #666;\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-quickchart {\n",
+              "    background-color: var(--bg-color);\n",
+              "    border: none;\n",
+              "    border-radius: 50%;\n",
+              "    cursor: pointer;\n",
+              "    display: none;\n",
+              "    fill: var(--fill-color);\n",
+              "    height: 32px;\n",
+              "    padding: 0;\n",
+              "    width: 32px;\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-quickchart:hover {\n",
+              "    background-color: var(--hover-bg-color);\n",
+              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
+              "    fill: var(--button-hover-fill-color);\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-quickchart-complete:disabled,\n",
+              "  .colab-df-quickchart-complete:disabled:hover {\n",
+              "    background-color: var(--disabled-bg-color);\n",
+              "    fill: var(--disabled-fill-color);\n",
+              "    box-shadow: none;\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-spinner {\n",
+              "    border: 2px solid var(--fill-color);\n",
+              "    border-color: transparent;\n",
+              "    border-bottom-color: var(--fill-color);\n",
+              "    animation:\n",
+              "      spin 1s steps(1) infinite;\n",
+              "  }\n",
+              "\n",
+              "  @keyframes spin {\n",
+              "    0% {\n",
+              "      border-color: transparent;\n",
+              "      border-bottom-color: var(--fill-color);\n",
+              "      border-left-color: var(--fill-color);\n",
+              "    }\n",
+              "    20% {\n",
+              "      border-color: transparent;\n",
+              "      border-left-color: var(--fill-color);\n",
+              "      border-top-color: var(--fill-color);\n",
+              "    }\n",
+              "    30% {\n",
+              "      border-color: transparent;\n",
+              "      border-left-color: var(--fill-color);\n",
+              "      border-top-color: var(--fill-color);\n",
+              "      border-right-color: var(--fill-color);\n",
+              "    }\n",
+              "    40% {\n",
+              "      border-color: transparent;\n",
+              "      border-right-color: var(--fill-color);\n",
+              "      border-top-color: var(--fill-color);\n",
+              "    }\n",
+              "    60% {\n",
+              "      border-color: transparent;\n",
+              "      border-right-color: var(--fill-color);\n",
+              "    }\n",
+              "    80% {\n",
+              "      border-color: transparent;\n",
+              "      border-right-color: var(--fill-color);\n",
+              "      border-bottom-color: var(--fill-color);\n",
+              "    }\n",
+              "    90% {\n",
+              "      border-color: transparent;\n",
+              "      border-bottom-color: var(--fill-color);\n",
+              "    }\n",
+              "  }\n",
+              "</style>\n",
+              "\n",
+              "  <script>\n",
+              "    async function quickchart(key) {\n",
+              "      const quickchartButtonEl =\n",
+              "        document.querySelector('#' + key + ' button');\n",
+              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
+              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
+              "      try {\n",
+              "        const charts = await google.colab.kernel.invokeFunction(\n",
+              "            'suggestCharts', [key], {});\n",
+              "      } catch (error) {\n",
+              "        console.error('Error during call to suggestCharts:', error);\n",
+              "      }\n",
+              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
+              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
+              "    }\n",
+              "    (() => {\n",
+              "      let quickchartButtonEl =\n",
+              "        document.querySelector('#df-1a8471c5-a1b6-4fac-97ea-ad170c200a07 button');\n",
+              "      quickchartButtonEl.style.display =\n",
+              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
+              "    })();\n",
+              "  </script>\n",
+              "</div>\n",
+              "    </div>\n",
+              "  </div>\n"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 58
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "df_low_avg.nlargest(20,\"score\")"
+      ],
+      "metadata": {
+        "id": "szxynupe7LBV",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 708
+        },
+        "outputId": "07a362dd-1a40-4d1c-bdd3-1e5205054478"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "                 score\n",
+              "tokens                \n",
+              "horrible      0.982356\n",
+              "rubbish       0.981237\n",
+              "awful         0.922679\n",
+              "worse         0.779423\n",
+              "out           0.767917\n",
+              "frustrating   0.683065\n",
+              "weak          0.676984\n",
+              "waste         0.640091\n",
+              "bad           0.629067\n",
+              "nobody        0.615250\n",
+              "##ly          0.595729\n",
+              "terrible      0.593029\n",
+              "no            0.590559\n",
+              "forgotten     0.572407\n",
+              "disappointed  0.559698\n",
+              "ashamed       0.558091\n",
+              "un            0.541183\n",
+              "worst         0.529198\n",
+              "##ish         0.526674\n",
+              "wrong         0.522955"
+            ],
+            "text/html": [
+              "\n",
+              "  <div id=\"df-51115c18-876b-4d17-8b13-91dd97c322af\" class=\"colab-df-container\">\n",
+              "    <div>\n",
+              "<style scoped>\n",
+              "    .dataframe tbody tr th:only-of-type {\n",
+              "        vertical-align: middle;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe tbody tr th {\n",
+              "        vertical-align: top;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe thead th {\n",
+              "        text-align: right;\n",
+              "    }\n",
+              "</style>\n",
+              "<table border=\"1\" class=\"dataframe\">\n",
+              "  <thead>\n",
+              "    <tr style=\"text-align: right;\">\n",
+              "      <th></th>\n",
+              "      <th>score</th>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>tokens</th>\n",
+              "      <th></th>\n",
+              "    </tr>\n",
+              "  </thead>\n",
+              "  <tbody>\n",
+              "    <tr>\n",
+              "      <th>horrible</th>\n",
+              "      <td>0.982356</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>rubbish</th>\n",
+              "      <td>0.981237</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>awful</th>\n",
+              "      <td>0.922679</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>worse</th>\n",
+              "      <td>0.779423</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>out</th>\n",
+              "      <td>0.767917</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>frustrating</th>\n",
+              "      <td>0.683065</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>weak</th>\n",
+              "      <td>0.676984</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>waste</th>\n",
+              "      <td>0.640091</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>bad</th>\n",
+              "      <td>0.629067</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>nobody</th>\n",
+              "      <td>0.615250</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>##ly</th>\n",
+              "      <td>0.595729</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>terrible</th>\n",
+              "      <td>0.593029</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>no</th>\n",
+              "      <td>0.590559</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>forgotten</th>\n",
+              "      <td>0.572407</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>disappointed</th>\n",
+              "      <td>0.559698</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>ashamed</th>\n",
+              "      <td>0.558091</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>un</th>\n",
+              "      <td>0.541183</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>worst</th>\n",
+              "      <td>0.529198</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>##ish</th>\n",
+              "      <td>0.526674</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>wrong</th>\n",
+              "      <td>0.522955</td>\n",
+              "    </tr>\n",
+              "  </tbody>\n",
+              "</table>\n",
+              "</div>\n",
+              "    <div class=\"colab-df-buttons\">\n",
+              "\n",
+              "  <div class=\"colab-df-container\">\n",
+              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-51115c18-876b-4d17-8b13-91dd97c322af')\"\n",
+              "            title=\"Convert this dataframe to an interactive table.\"\n",
+              "            style=\"display:none;\">\n",
+              "\n",
+              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
+              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
+              "  </svg>\n",
+              "    </button>\n",
+              "\n",
+              "  <style>\n",
+              "    .colab-df-container {\n",
+              "      display:flex;\n",
+              "      gap: 12px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert {\n",
+              "      background-color: #E8F0FE;\n",
+              "      border: none;\n",
+              "      border-radius: 50%;\n",
+              "      cursor: pointer;\n",
+              "      display: none;\n",
+              "      fill: #1967D2;\n",
+              "      height: 32px;\n",
+              "      padding: 0 0 0 0;\n",
+              "      width: 32px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert:hover {\n",
+              "      background-color: #E2EBFA;\n",
+              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
+              "      fill: #174EA6;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-buttons div {\n",
+              "      margin-bottom: 4px;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert {\n",
+              "      background-color: #3B4455;\n",
+              "      fill: #D2E3FC;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert:hover {\n",
+              "      background-color: #434B5C;\n",
+              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
+              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
+              "      fill: #FFFFFF;\n",
+              "    }\n",
+              "  </style>\n",
+              "\n",
+              "    <script>\n",
+              "      const buttonEl =\n",
+              "        document.querySelector('#df-51115c18-876b-4d17-8b13-91dd97c322af button.colab-df-convert');\n",
+              "      buttonEl.style.display =\n",
+              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
+              "\n",
+              "      async function convertToInteractive(key) {\n",
+              "        const element = document.querySelector('#df-51115c18-876b-4d17-8b13-91dd97c322af');\n",
+              "        const dataTable =\n",
+              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
+              "                                                    [key], {});\n",
+              "        if (!dataTable) return;\n",
+              "\n",
+              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
+              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
+              "          + ' to learn more about interactive tables.';\n",
+              "        element.innerHTML = '';\n",
+              "        dataTable['output_type'] = 'display_data';\n",
+              "        await google.colab.output.renderOutput(dataTable, element);\n",
+              "        const docLink = document.createElement('div');\n",
+              "        docLink.innerHTML = docLinkHtml;\n",
+              "        element.appendChild(docLink);\n",
+              "      }\n",
+              "    </script>\n",
+              "  </div>\n",
+              "\n",
+              "\n",
+              "<div id=\"df-73f23421-0f04-4bd8-b852-51bebd68910a\">\n",
+              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-73f23421-0f04-4bd8-b852-51bebd68910a')\"\n",
+              "            title=\"Suggest charts\"\n",
+              "            style=\"display:none;\">\n",
+              "\n",
+              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
+              "     width=\"24px\">\n",
+              "    <g>\n",
+              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
+              "    </g>\n",
+              "</svg>\n",
+              "  </button>\n",
+              "\n",
+              "<style>\n",
+              "  .colab-df-quickchart {\n",
+              "      --bg-color: #E8F0FE;\n",
+              "      --fill-color: #1967D2;\n",
+              "      --hover-bg-color: #E2EBFA;\n",
+              "      --hover-fill-color: #174EA6;\n",
+              "      --disabled-fill-color: #AAA;\n",
+              "      --disabled-bg-color: #DDD;\n",
+              "  }\n",
+              "\n",
+              "  [theme=dark] .colab-df-quickchart {\n",
+              "      --bg-color: #3B4455;\n",
+              "      --fill-color: #D2E3FC;\n",
+              "      --hover-bg-color: #434B5C;\n",
+              "      --hover-fill-color: #FFFFFF;\n",
+              "      --disabled-bg-color: #3B4455;\n",
+              "      --disabled-fill-color: #666;\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-quickchart {\n",
+              "    background-color: var(--bg-color);\n",
+              "    border: none;\n",
+              "    border-radius: 50%;\n",
+              "    cursor: pointer;\n",
+              "    display: none;\n",
+              "    fill: var(--fill-color);\n",
+              "    height: 32px;\n",
+              "    padding: 0;\n",
+              "    width: 32px;\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-quickchart:hover {\n",
+              "    background-color: var(--hover-bg-color);\n",
+              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
+              "    fill: var(--button-hover-fill-color);\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-quickchart-complete:disabled,\n",
+              "  .colab-df-quickchart-complete:disabled:hover {\n",
+              "    background-color: var(--disabled-bg-color);\n",
+              "    fill: var(--disabled-fill-color);\n",
+              "    box-shadow: none;\n",
+              "  }\n",
+              "\n",
+              "  .colab-df-spinner {\n",
+              "    border: 2px solid var(--fill-color);\n",
+              "    border-color: transparent;\n",
+              "    border-bottom-color: var(--fill-color);\n",
+              "    animation:\n",
+              "      spin 1s steps(1) infinite;\n",
+              "  }\n",
+              "\n",
+              "  @keyframes spin {\n",
+              "    0% {\n",
+              "      border-color: transparent;\n",
+              "      border-bottom-color: var(--fill-color);\n",
+              "      border-left-color: var(--fill-color);\n",
+              "    }\n",
+              "    20% {\n",
+              "      border-color: transparent;\n",
+              "      border-left-color: var(--fill-color);\n",
+              "      border-top-color: var(--fill-color);\n",
+              "    }\n",
+              "    30% {\n",
+              "      border-color: transparent;\n",
+              "      border-left-color: var(--fill-color);\n",
+              "      border-top-color: var(--fill-color);\n",
+              "      border-right-color: var(--fill-color);\n",
+              "    }\n",
+              "    40% {\n",
+              "      border-color: transparent;\n",
+              "      border-right-color: var(--fill-color);\n",
+              "      border-top-color: var(--fill-color);\n",
+              "    }\n",
+              "    60% {\n",
+              "      border-color: transparent;\n",
+              "      border-right-color: var(--fill-color);\n",
+              "    }\n",
+              "    80% {\n",
+              "      border-color: transparent;\n",
+              "      border-right-color: var(--fill-color);\n",
+              "      border-bottom-color: var(--fill-color);\n",
+              "    }\n",
+              "    90% {\n",
+              "      border-color: transparent;\n",
+              "      border-bottom-color: var(--fill-color);\n",
+              "    }\n",
+              "  }\n",
+              "</style>\n",
+              "\n",
+              "  <script>\n",
+              "    async function quickchart(key) {\n",
+              "      const quickchartButtonEl =\n",
+              "        document.querySelector('#' + key + ' button');\n",
+              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
+              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
+              "      try {\n",
+              "        const charts = await google.colab.kernel.invokeFunction(\n",
+              "            'suggestCharts', [key], {});\n",
+              "      } catch (error) {\n",
+              "        console.error('Error during call to suggestCharts:', error);\n",
+              "      }\n",
+              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
+              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
+              "    }\n",
+              "    (() => {\n",
+              "      let quickchartButtonEl =\n",
+              "        document.querySelector('#df-73f23421-0f04-4bd8-b852-51bebd68910a button');\n",
+              "      quickchartButtonEl.style.display =\n",
+              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
+              "    })();\n",
+              "  </script>\n",
+              "</div>\n",
+              "    </div>\n",
+              "  </div>\n"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 59
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "-XRoTAe-50e1"
+      },
+      "source": [
+        "## 3.2 Classification de tokens : entités nommées"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "### ▶▶ Exercice : Explication de modèle de reconnaissance d'entités nommées\n",
+        "\n",
+        "On définit ci-dessous un modèle de reconnaissance d'entités nommées.\n",
+        "Utilisez l'outil d'explicabilité pour une tâche de classification de token, et affichez les attributions pour un exemple."
+      ],
+      "metadata": {
+        "id": "jwvarY88mHD4"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "s881ijMF50e1",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 209,
+          "referenced_widgets": [
+            "08e6f772c65d4eada980375dae81259f",
+            "31bf29818b334168a75ec9a337462211",
+            "0d44d8462c2c4f2f95b9d9eb2e06e033",
+            "88dd551e3ab942ef8171f945d7b3fc97",
+            "43c68cda8daa4d0fb5aed9f7a19023ed",
+            "4cbd720e002049dabd442d0fee387236",
+            "b5a15a13ca644a1ba2d78aada045c191",
+            "daf0062b73754cdf81771bd0fb9dc3f5",
+            "9070511439784c97b2d75480149f5405",
+            "6ca692c111ae464581ec4ecb738145e7",
+            "8cc1192e9b74438dbeec21243e8195a2",
+            "9414c07b44af440f9c8c89b377fc2819",
+            "3a6133b029314bc9b8d722a2d407a2fb",
+            "d5dda96f6aac4060bbe23be05f895a02",
+            "b448d71c92084514bcbca79750cd6aea",
+            "f9a01f86f28a4f83adf1cc9ec87a00ea",
+            "c89685b374aa4754b54f6cbb75a8fd91",
+            "76b88f3c0861464981b9f98986d4911a",
+            "960e3573bed244b0adee04afae0f4012",
+            "83c024d8d5e54a6d993a0b75ee6c2f6e",
+            "3645a4b176b544b09cae2d99cf1df4d9",
+            "169164ce77244fa285f8d90c407f6ef6",
+            "e67f319ac94c4838ab215859e83f6c25",
+            "f45be827bc1d48c68e181e5d1f98d141",
+            "b67340039c5c48caad5186fad10535d3",
+            "9a9b4cf31a0c4c6484dc0235017658d8",
+            "8054f16ad1714415b2324d02bc41920d",
+            "adc82956e5a646ad994d45e2599d31b8",
+            "cd3c218375184f61b3b00edb3b00a4d2",
+            "a8bc863af5da488ba772efe397599e51",
+            "f2c0d45bb76446b3bc4a8c9e8364bfb2",
+            "9d99d5d312604b8b98401a74e7811625",
+            "f37bafd6a86f41f596f141198c8ce7f0",
+            "e1830be1877e49cf9047936dd05bfd47",
+            "b036b7454c9a4718aadeb1f4314c44bb",
+            "d390c97081804e93970884c4a283dca8",
+            "fcf219270cce4f89a5777ea70d32df82",
+            "944f7c858afb4a259cd887087b7fd362",
+            "e534a4cdec8d4d98b449458e1193d5d5",
+            "64f4080dbe4646fd9de6e9bd52afd076",
+            "2762edc54cc64a87a298fb06a1900fca",
+            "fac52dc703fc416f8b8f54f1e589740f",
+            "f10123c614864720ba77b7fe9bc1b89d",
+            "85fd91872bc44097a7054c7e2aeb601a",
+            "ee5d7874399f4913aaa178f98c867eb7",
+            "076c0ecf84554803b8f427dbd855abca",
+            "ee4e32a3e98f4cf4a6e3a0ac27d0d889",
+            "bb16b5f1216d419f8cd2698ef5a76def",
+            "ad2942575af549bb8e2e64aeb6a02b18",
+            "1f6144e7a6f44b18bf42ead61b3c2b5a",
+            "351f94f7bfe4407ab10dffa1a3a14d60",
+            "154a8073a8cb4f61a338c46fda223ccf",
+            "593cb40c331b4f4fa46ade832158fbdd",
+            "87da6b99569b477ea3038514be65a6c0",
+            "820c4a61a44d4b4380a6c2b1595b1e1c",
+            "957774971c744a0487220e6aaa460881",
+            "34700fd836274390ae908ca6e7208a2a",
+            "80a88b42b6074ffe8f28b3c911016f0b",
+            "78c3adb1cd184cb7bcbdd2ef89ec78b7",
+            "35af368852e9462ea2f6596bf81ceaad",
+            "da5fea00a7194001bd58f544432cc9d5",
+            "6043b81d7d7b4267b838a3b6b992b707",
+            "2dceb3916c9a4d888bae1b775e44e21c",
+            "cb12583829cc4a73a83ea6ad55c24fd0",
+            "bc7868fc399d4dd0b4020f1c218e6af5",
+            "a248555af02b43aa889f88b3b685b3c6"
+          ]
+        },
+        "outputId": "95cafd54-c031-4c41-db10-1ca3d0f4e8fb"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "config.json:   0%|          | 0.00/829 [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "08e6f772c65d4eada980375dae81259f"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "model.safetensors:   0%|          | 0.00/433M [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "9414c07b44af440f9c8c89b377fc2819"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "tokenizer_config.json:   0%|          | 0.00/59.0 [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "e67f319ac94c4838ab215859e83f6c25"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "vocab.txt:   0%|          | 0.00/213k [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "e1830be1877e49cf9047936dd05bfd47"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "added_tokens.json:   0%|          | 0.00/2.00 [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "ee5d7874399f4913aaa178f98c867eb7"
+            }
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "special_tokens_map.json:   0%|          | 0.00/112 [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "957774971c744a0487220e6aaa460881"
+            }
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "model_name = 'dslim/bert-base-NER'\n",
+        "model = AutoModelForTokenClassification.from_pretrained(model_name)\n",
+        "tokenizer = AutoTokenizer.from_pretrained(model_name)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "gIBA1tnP50e1"
+      },
+      "outputs": [],
+      "source": [
+        "ner_explainer = TokenClassificationExplainer(model=model, tokenizer=tokenizer)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "D7f05OD550e1"
+      },
+      "outputs": [],
+      "source": [
+        "instance = \"New-York City is a place full of celebrities, like Donald Trump.\""
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "Z4ep0_VL50e2"
+      },
+      "outputs": [],
+      "source": [
+        "attributions = ner_explainer(instance, ignored_labels=['O'])"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "5i5qiujC50e2",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "69620977-df4f-445c-b7ad-59d420515e6a"
+      },
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "{'New': {'label': 'B-LOC',\n",
+              "  'attribution_scores': [('[CLS]', 0.0),\n",
+              "   ('New', 0.11522643309404876),\n",
+              "   ('-', 0.4660375266820166),\n",
+              "   ('York', 0.6893386224540738),\n",
+              "   ('City', 0.5121534890980919),\n",
+              "   ('is', 0.13319079037219464),\n",
+              "   ('a', 0.021819309216920164),\n",
+              "   ('place', 0.10400894025897137),\n",
+              "   ('full', -0.022578397240222346),\n",
+              "   ('of', -0.0020049499590545426),\n",
+              "   ('celebrities', 0.006248924048884846),\n",
+              "   (',', 0.030198105788731115),\n",
+              "   ('like', 0.00976708899951808),\n",
+              "   ('Donald', -0.005156478074569604),\n",
+              "   ('Trump', 0.009757534477472145),\n",
+              "   ('.', 0.0364315553583064),\n",
+              "   ('[SEP]', 0.0)]},\n",
+              " '-': {'label': 'I-LOC',\n",
+              "  'attribution_scores': [('[CLS]', 0.0),\n",
+              "   ('New', 0.8222961678834123),\n",
+              "   ('-', 0.2991284415440371),\n",
+              "   ('York', 0.47518044536973014),\n",
+              "   ('City', -0.03536229543315673),\n",
+              "   ('is', 0.05356118543874819),\n",
+              "   ('a', 0.029608228416299117),\n",
+              "   ('place', -0.017305781697097917),\n",
+              "   ('full', 0.009172988873627353),\n",
+              "   ('of', 0.018796696221034248),\n",
+              "   ('celebrities', -0.02261371100887632),\n",
+              "   (',', 0.0279369651378289),\n",
+              "   ('like', -0.00782480123639375),\n",
+              "   ('Donald', -0.009188002458814567),\n",
+              "   ('Trump', -0.02538115733316795),\n",
+              "   ('.', 0.02720549165812171),\n",
+              "   ('[SEP]', 0.0)]},\n",
+              " 'York': {'label': 'I-LOC',\n",
+              "  'attribution_scores': [('[CLS]', 0.0),\n",
+              "   ('New', 0.5337485188148924),\n",
+              "   ('-', 0.2599878586101721),\n",
+              "   ('York', 0.7606982195385698),\n",
+              "   ('City', 0.24466553813800374),\n",
+              "   ('is', 0.06205637258439966),\n",
+              "   ('a', -0.02758692111790461),\n",
+              "   ('place', 0.02510632074333246),\n",
+              "   ('full', -0.051400225810259104),\n",
+              "   ('of', -0.019691558245979613),\n",
+              "   ('celebrities', -0.006924889291676202),\n",
+              "   (',', -0.012906320693513527),\n",
+              "   ('like', -0.01518390900810952),\n",
+              "   ('Donald', -0.012040381107786127),\n",
+              "   ('Trump', 0.01127966838832772),\n",
+              "   ('.', 0.0025388316891732164),\n",
+              "   ('[SEP]', 0.0)]},\n",
+              " 'City': {'label': 'I-LOC',\n",
+              "  'attribution_scores': [('[CLS]', 0.0),\n",
+              "   ('New', -0.08719342194919136),\n",
+              "   ('-', -0.05248975718332697),\n",
+              "   ('York', 0.586929100512792),\n",
+              "   ('City', 0.7707566106643919),\n",
+              "   ('is', 0.11985667832378603),\n",
+              "   ('a', 0.04739017900177101),\n",
+              "   ('place', 0.18055899918736412),\n",
+              "   ('full', 0.008286903319825954),\n",
+              "   ('of', 0.011989889401706585),\n",
+              "   ('celebrities', -0.003247520306721069),\n",
+              "   (',', 0.03124839314478579),\n",
+              "   ('like', 0.02161510614446926),\n",
+              "   ('Donald', 0.00568036244881266),\n",
+              "   ('Trump', 0.004046146394860746),\n",
+              "   ('.', 0.012740358991386473),\n",
+              "   ('[SEP]', 0.0)]},\n",
+              " 'Donald': {'label': 'B-PER',\n",
+              "  'attribution_scores': [('[CLS]', 0.0),\n",
+              "   ('New', -0.013149714221774965),\n",
+              "   ('-', 0.03789821952772743),\n",
+              "   ('York', 0.025402804030406363),\n",
+              "   ('City', 0.008721879837465873),\n",
+              "   ('is', 0.014231901732516674),\n",
+              "   ('a', 0.027366328925696636),\n",
+              "   ('place', -0.019735029052264017),\n",
+              "   ('full', -0.012471943732158383),\n",
+              "   ('of', 0.03221015109013002),\n",
+              "   ('celebrities', 0.024813110445476703),\n",
+              "   (',', -0.017655974120428027),\n",
+              "   ('like', 0.2729819394960673),\n",
+              "   ('Donald', 0.7191808139073995),\n",
+              "   ('Trump', 0.6334536201748232),\n",
+              "   ('.', -0.03470394203197996),\n",
+              "   ('[SEP]', 0.0)]},\n",
+              " 'Trump': {'label': 'I-PER',\n",
+              "  'attribution_scores': [('[CLS]', 0.0),\n",
+              "   ('New', -0.0013212443968283467),\n",
+              "   ('-', 0.01609338506994575),\n",
+              "   ('York', 0.04688264143343644),\n",
+              "   ('City', 0.01379633074803389),\n",
+              "   ('is', 0.0035909192520868437),\n",
+              "   ('a', 0.02421137229747189),\n",
+              "   ('place', 0.00041611985281236576),\n",
+              "   ('full', -0.000724047071701861),\n",
+              "   ('of', 0.02103577693952245),\n",
+              "   ('celebrities', 0.0181675130835007),\n",
+              "   (',', 0.030742382949491734),\n",
+              "   ('like', 0.15109027194280347),\n",
+              "   ('Donald', 0.7343405887541932),\n",
+              "   ('Trump', 0.6562604431378266),\n",
+              "   ('.', -0.04765876061428272),\n",
+              "   ('[SEP]', 0.0)]}}"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 64
+        }
+      ],
+      "source": [
+        "attributions"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "dm58uxm_50e2",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 252
+        },
+        "outputId": "fafc44bf-4f1d-41ef-ebee-65f84412fc0e"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "<table width: 100%><div style=\"border-top: 1px solid; margin-top: 5px;             padding-top: 5px; display: inline-block\"><b>Legend: </b><span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 60%)\"></span> Negative  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(0, 75%, 100%)\"></span> Neutral  <span style=\"display: inline-block; width: 10px; height: 10px;                 border: 1px solid; background-color:                 hsl(120, 75%, 50%)\"></span> Positive  </div><tr><th>True Label</th><th>Predicted Label</th><th>Attribution Label</th><th>Attribution Score</th><th>Word Importance</th><tr><td><text style=\"padding-right:2em\"><b>B-LOC</b></text></td><td><text style=\"padding-right:2em\"><b>B-LOC (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>New</b></text></td><td><text style=\"padding-right:2em\"><b>2.10</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(120, 75%, 77%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 66%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(120, 75%, 75%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 94%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr><tr><td><text style=\"padding-right:2em\"><b>I-LOC</b></text></td><td><text style=\"padding-right:2em\"><b>I-LOC (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>-</b></text></td><td><text style=\"padding-right:2em\"><b>1.65</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 59%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(120, 75%, 86%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 77%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr><tr><td><text style=\"padding-right:2em\"><b>I-LOC</b></text></td><td><text style=\"padding-right:2em\"><b>I-LOC (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>York</b></text></td><td><text style=\"padding-right:2em\"><b>1.75</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(120, 75%, 74%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(120, 75%, 88%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 62%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(120, 75%, 88%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr><tr><td><text style=\"padding-right:2em\"><b>I-LOC</b></text></td><td><text style=\"padding-right:2em\"><b>I-LOC (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>City</b></text></td><td><text style=\"padding-right:2em\"><b>1.66</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(0, 75%, 97%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(0, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 71%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(120, 75%, 62%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 95%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 91%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr><tr><td><text style=\"padding-right:2em\"><b>B-PER</b></text></td><td><text style=\"padding-right:2em\"><b>B-PER (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>Donald</b></text></td><td><text style=\"padding-right:2em\"><b>1.70</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 87%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(120, 75%, 65%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(120, 75%, 69%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr><tr><td><text style=\"padding-right:2em\"><b>I-PER</b></text></td><td><text style=\"padding-right:2em\"><b>I-PER (1.00)</b></text></td><td><text style=\"padding-right:2em\"><b>Trump</b></text></td><td><text style=\"padding-right:2em\"><b>1.67</b></text></td><td><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [CLS]                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> New                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> -                    </font></mark><mark style=\"background-color: hsl(120, 75%, 98%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> York                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> City                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> is                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> a                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> place                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> full                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> of                    </font></mark><mark style=\"background-color: hsl(120, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> celebrities                    </font></mark><mark style=\"background-color: hsl(120, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> ,                    </font></mark><mark style=\"background-color: hsl(120, 75%, 93%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> like                    </font></mark><mark style=\"background-color: hsl(120, 75%, 64%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Donald                    </font></mark><mark style=\"background-color: hsl(120, 75%, 68%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> Trump                    </font></mark><mark style=\"background-color: hsl(0, 75%, 99%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> .                    </font></mark><mark style=\"background-color: hsl(0, 75%, 100%); opacity:1.0;                     line-height:1.75\"><font color=\"black\"> [SEP]                    </font></mark></td><tr></table>"
+            ]
+          },
+          "metadata": {}
+        }
+      ],
+      "source": [
+        "html = ner_explainer.visualize()"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "VSn32SrQ50e3"
+      },
+      "outputs": [],
+      "source": []
+    }
+  ],
+  "metadata": {
+    "kernelspec": {
+      "display_name": "visual",
+      "language": "python",
+      "name": "visual"
+    },
+    "language_info": {
+      "codemirror_mode": {
+        "name": "ipython",
+        "version": 3
+      },
+      "file_extension": ".py",
+      "mimetype": "text/x-python",
+      "name": "python",
+      "nbconvert_exporter": "python",
+      "pygments_lexer": "ipython3",
+      "version": "3.9.5"
+    },
+    "colab": {
+      "provenance": [],
+      "collapsed_sections": [
+        "-XRoTAe-50e1"
+      ]
+    },
+    "accelerator": "GPU",
+    "gpuClass": "standard",
+    "widgets": {
+      "application/vnd.jupyter.widget-state+json": {
+        "2510c3ab27a44620973fed178c857624": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_c2a2b1998ecf4d5abf1d2d2c6fee99a9",
+              "IPY_MODEL_93af174144ce4061a1387bbea7a3eaa2",
+              "IPY_MODEL_30b2877e864743458d694610613c0e72"
+            ],
+            "layout": "IPY_MODEL_e95fe6d5c3124d3685c0498474ef7769"
+          }
+        },
+        "c2a2b1998ecf4d5abf1d2d2c6fee99a9": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_298dcf539a9a436a885b67531c4f5db1",
+            "placeholder": "​",
+            "style": "IPY_MODEL_81b500da59014755bfc5ba6edf4caa70",
+            "value": "config.json: 100%"
+          }
+        },
+        "93af174144ce4061a1387bbea7a3eaa2": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_d213653bbdcd4cbd84dc4e5b53704260",
+            "max": 483,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_e6bb08793aef45daa60a7203f3c87c8d",
+            "value": 483
+          }
+        },
+        "30b2877e864743458d694610613c0e72": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_b56bb56086524679a0633d88de9c1352",
+            "placeholder": "​",
+            "style": "IPY_MODEL_d0522cac5f9348fea300a7e3b830ba85",
+            "value": " 483/483 [00:00&lt;00:00, 20.4kB/s]"
+          }
+        },
+        "e95fe6d5c3124d3685c0498474ef7769": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "298dcf539a9a436a885b67531c4f5db1": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "81b500da59014755bfc5ba6edf4caa70": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "d213653bbdcd4cbd84dc4e5b53704260": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "e6bb08793aef45daa60a7203f3c87c8d": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "b56bb56086524679a0633d88de9c1352": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "d0522cac5f9348fea300a7e3b830ba85": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "2e45426b4ae246df961f6520dfed0b93": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_d6b5cd81bfd84f259b0fb49a3e636e36",
+              "IPY_MODEL_cc5fa8eca1e844a09a0478b9dd979324",
+              "IPY_MODEL_4f796c588f5b4f37b077da587b9d7208"
+            ],
+            "layout": "IPY_MODEL_3c23bf8d54154fa0bf578756fcf269e0"
+          }
+        },
+        "d6b5cd81bfd84f259b0fb49a3e636e36": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_ccf5e1a5b9174cf68729f2e4f326ed1f",
+            "placeholder": "​",
+            "style": "IPY_MODEL_b65471977a49472c88e94df2df7e7ba0",
+            "value": "model.safetensors: 100%"
+          }
+        },
+        "cc5fa8eca1e844a09a0478b9dd979324": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_8d9c0671536b477d9de75ca172fafcf2",
+            "max": 267954768,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_c9e133301d454f8ea8a9b41a2fc2380b",
+            "value": 267954768
+          }
+        },
+        "4f796c588f5b4f37b077da587b9d7208": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_44c3747f92fa43218ff3deb1190fe5ad",
+            "placeholder": "​",
+            "style": "IPY_MODEL_1d2db15a271945808b24ee82298bd7b9",
+            "value": " 268M/268M [00:01&lt;00:00, 168MB/s]"
+          }
+        },
+        "3c23bf8d54154fa0bf578756fcf269e0": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "ccf5e1a5b9174cf68729f2e4f326ed1f": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "b65471977a49472c88e94df2df7e7ba0": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "8d9c0671536b477d9de75ca172fafcf2": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "c9e133301d454f8ea8a9b41a2fc2380b": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "44c3747f92fa43218ff3deb1190fe5ad": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "1d2db15a271945808b24ee82298bd7b9": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "3186fd963c3a4e278993d791bba04663": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_b5c8c01c033c4366871506bd509751f7",
+              "IPY_MODEL_4f2c348eb9ce4f1aba23b60f3b974deb",
+              "IPY_MODEL_59599059068f4300ab1f671e2a8e75db"
+            ],
+            "layout": "IPY_MODEL_17880c19c7364b70bd8c8029458fc1bb"
+          }
+        },
+        "b5c8c01c033c4366871506bd509751f7": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_16aaf95928c441b9b6ea1d649f33bb77",
+            "placeholder": "​",
+            "style": "IPY_MODEL_a770bef1284547c6847f1ddc1a5caabf",
+            "value": "tokenizer_config.json: 100%"
+          }
+        },
+        "4f2c348eb9ce4f1aba23b60f3b974deb": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_b4c89e35d5064a12a09859e850fb1bbd",
+            "max": 28,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_ab14dd7576274efe98ad5737fff32f75",
+            "value": 28
+          }
+        },
+        "59599059068f4300ab1f671e2a8e75db": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_8e68bbb6f9cc43bf96edf5050ca586ef",
+            "placeholder": "​",
+            "style": "IPY_MODEL_60ef89ec387647fc94a25124c400bed7",
+            "value": " 28.0/28.0 [00:00&lt;00:00, 1.42kB/s]"
+          }
+        },
+        "17880c19c7364b70bd8c8029458fc1bb": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "16aaf95928c441b9b6ea1d649f33bb77": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "a770bef1284547c6847f1ddc1a5caabf": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "b4c89e35d5064a12a09859e850fb1bbd": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "ab14dd7576274efe98ad5737fff32f75": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "8e68bbb6f9cc43bf96edf5050ca586ef": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "60ef89ec387647fc94a25124c400bed7": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "10f5b2a20ed14e82b0829b2cae715077": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_b9e9df89b57e426dae35e368d5c65120",
+              "IPY_MODEL_762d30269884464bbae8bfeaa54ae407",
+              "IPY_MODEL_48df4ff8fa0243df864a6ff602e14b68"
+            ],
+            "layout": "IPY_MODEL_dd969ed1ce414038a8a2b9673e16fabb"
+          }
+        },
+        "b9e9df89b57e426dae35e368d5c65120": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_297f2d23baa643b889b5d9e09077b77b",
+            "placeholder": "​",
+            "style": "IPY_MODEL_19b11b194359428e83891f88a67c9d0d",
+            "value": "vocab.txt: 100%"
+          }
+        },
+        "762d30269884464bbae8bfeaa54ae407": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_d2ae3e31e8ba464c889ffff089ded2b6",
+            "max": 231508,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_1d5c71b2c4fd4d32a95eb248ea12ae0a",
+            "value": 231508
+          }
+        },
+        "48df4ff8fa0243df864a6ff602e14b68": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_91976c5d15a9474d99cc7d1096cc8922",
+            "placeholder": "​",
+            "style": "IPY_MODEL_778ca5d4e56b46df97789271f42e6c2b",
+            "value": " 232k/232k [00:00&lt;00:00, 5.32MB/s]"
+          }
+        },
+        "dd969ed1ce414038a8a2b9673e16fabb": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "297f2d23baa643b889b5d9e09077b77b": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "19b11b194359428e83891f88a67c9d0d": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "d2ae3e31e8ba464c889ffff089ded2b6": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "1d5c71b2c4fd4d32a95eb248ea12ae0a": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "91976c5d15a9474d99cc7d1096cc8922": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "778ca5d4e56b46df97789271f42e6c2b": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "6443b3acfede48f0b08690b0b3d2db26": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_dd41dd9877784625b40899a48f728995",
+              "IPY_MODEL_7badb5468e994bd6b91e9a778e69e866",
+              "IPY_MODEL_a0057ce210fa4ef89a061e2b57b434dd"
+            ],
+            "layout": "IPY_MODEL_43e7a6a3f1e84a0f89ddad588b7fa2b0"
+          }
+        },
+        "dd41dd9877784625b40899a48f728995": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_ff55edef0862452aa0ab244775ee4679",
+            "placeholder": "​",
+            "style": "IPY_MODEL_341f20d8e37f496cad24f0e5cad02886",
+            "value": "tokenizer.json: 100%"
+          }
+        },
+        "7badb5468e994bd6b91e9a778e69e866": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_5c1839ac6e814ec3ac87ea088103f40e",
+            "max": 466062,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_a2b8655d706646d186b615bafac247d0",
+            "value": 466062
+          }
+        },
+        "a0057ce210fa4ef89a061e2b57b434dd": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_5e7e0bf0581e4546b4b6e91db72bc1de",
+            "placeholder": "​",
+            "style": "IPY_MODEL_35f0eed379774389b277c82370528818",
+            "value": " 466k/466k [00:00&lt;00:00, 10.1MB/s]"
+          }
+        },
+        "43e7a6a3f1e84a0f89ddad588b7fa2b0": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "ff55edef0862452aa0ab244775ee4679": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "341f20d8e37f496cad24f0e5cad02886": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "5c1839ac6e814ec3ac87ea088103f40e": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "a2b8655d706646d186b615bafac247d0": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "5e7e0bf0581e4546b4b6e91db72bc1de": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "35f0eed379774389b277c82370528818": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "c7b7658d3ea8483597003f32c7097a0c": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_a2a03483736f4c828077f921c7a0537a",
+              "IPY_MODEL_f18b1b75fb254330a5636f8a14bf9468",
+              "IPY_MODEL_24f7a21873bf41878167c6df02de1ab2"
+            ],
+            "layout": "IPY_MODEL_10b5873f94594c59b4008c389b05550c"
+          }
+        },
+        "a2a03483736f4c828077f921c7a0537a": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_e3f77babf6bd491ab64ba317264342c5",
+            "placeholder": "​",
+            "style": "IPY_MODEL_79163c84a15346bb9c57d599b3c1929a",
+            "value": "Downloading readme: 100%"
+          }
+        },
+        "f18b1b75fb254330a5636f8a14bf9468": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_2d543d2ec78d4232acd064829a038e1a",
+            "max": 7809,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_8b74dca20100461ea08adb99357ea5dd",
+            "value": 7809
+          }
+        },
+        "24f7a21873bf41878167c6df02de1ab2": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_3454ab9fd5f14e40829aaf14eecb1095",
+            "placeholder": "​",
+            "style": "IPY_MODEL_496026ee91f44419ae61d7f0074365e4",
+            "value": " 7.81k/7.81k [00:00&lt;00:00, 196kB/s]"
+          }
+        },
+        "10b5873f94594c59b4008c389b05550c": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "e3f77babf6bd491ab64ba317264342c5": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "79163c84a15346bb9c57d599b3c1929a": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "2d543d2ec78d4232acd064829a038e1a": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "8b74dca20100461ea08adb99357ea5dd": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "3454ab9fd5f14e40829aaf14eecb1095": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "496026ee91f44419ae61d7f0074365e4": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "1cfdb7ae4f0f410695acc3e8910d32f9": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_4f49587dc61d41299080d0461d056fe5",
+              "IPY_MODEL_d09b29f75c464e56b85c35a8ec12fb6d",
+              "IPY_MODEL_6dcaf6f55ef142d68cde56ad7be2ab05"
+            ],
+            "layout": "IPY_MODEL_97c9e2a241204a53806e4ede0d1fa24f"
+          }
+        },
+        "4f49587dc61d41299080d0461d056fe5": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_ddc67b37427942148cb4160f7615496c",
+            "placeholder": "​",
+            "style": "IPY_MODEL_02c4f8037b3d46ff89e55261677da470",
+            "value": "Downloading data: 100%"
+          }
+        },
+        "d09b29f75c464e56b85c35a8ec12fb6d": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_dbc28e25053a4002a03f8cd8f37ac5a3",
+            "max": 20979968,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_ba8905af8cbb48ce9f50d5161e18df62",
+            "value": 20979968
+          }
+        },
+        "6dcaf6f55ef142d68cde56ad7be2ab05": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_a0a2d7271b154de0bcde2aea4d988f10",
+            "placeholder": "​",
+            "style": "IPY_MODEL_fc33f5dc689f41aca1dc2c87e973b68f",
+            "value": " 21.0M/21.0M [00:00&lt;00:00, 39.8MB/s]"
+          }
+        },
+        "97c9e2a241204a53806e4ede0d1fa24f": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "ddc67b37427942148cb4160f7615496c": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "02c4f8037b3d46ff89e55261677da470": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "dbc28e25053a4002a03f8cd8f37ac5a3": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "ba8905af8cbb48ce9f50d5161e18df62": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "a0a2d7271b154de0bcde2aea4d988f10": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "fc33f5dc689f41aca1dc2c87e973b68f": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "ebc4a7aef97049d98a86868bcd84bfff": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_f954b8ccb8b84a0dbd6ee5a5b4dee6f8",
+              "IPY_MODEL_f7b9f21d41034d70a1c53d024996f0ea",
+              "IPY_MODEL_0f433e3a3ccb45e5be37187f1d652846"
+            ],
+            "layout": "IPY_MODEL_7fd0c3dfa2ec4ef1a4a39e49884c3f59"
+          }
+        },
+        "f954b8ccb8b84a0dbd6ee5a5b4dee6f8": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_39988aaa32d8471386cfbe5c8c2d3c5d",
+            "placeholder": "​",
+            "style": "IPY_MODEL_f57c5dedfa0a47408dabde33edb2431e",
+            "value": "Downloading data: 100%"
+          }
+        },
+        "f7b9f21d41034d70a1c53d024996f0ea": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_f032f9879e89492fbcb460054bed33f8",
+            "max": 20470363,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_0a452f28b0bd4bc5b1afbac93145b78e",
+            "value": 20470363
+          }
+        },
+        "0f433e3a3ccb45e5be37187f1d652846": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_4f648fe3ca1148eba652acb7c131dcfc",
+            "placeholder": "​",
+            "style": "IPY_MODEL_c072d55bed844bfaa298618d8799370d",
+            "value": " 20.5M/20.5M [00:00&lt;00:00, 39.6MB/s]"
+          }
+        },
+        "7fd0c3dfa2ec4ef1a4a39e49884c3f59": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "39988aaa32d8471386cfbe5c8c2d3c5d": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "f57c5dedfa0a47408dabde33edb2431e": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "f032f9879e89492fbcb460054bed33f8": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "0a452f28b0bd4bc5b1afbac93145b78e": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "4f648fe3ca1148eba652acb7c131dcfc": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "c072d55bed844bfaa298618d8799370d": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "4ff1385e43fa46438062706edf67d346": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_8831f9847c0e466e80597d5492d548ed",
+              "IPY_MODEL_5ec1ab155a05442d9231e0fd0775c5eb",
+              "IPY_MODEL_266e4d4f90644aa7a57d713a2480f3ec"
+            ],
+            "layout": "IPY_MODEL_d3d7419e423f42019dded6ff0f3d54bd"
+          }
+        },
+        "8831f9847c0e466e80597d5492d548ed": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_8b9db178c0bc4258830c6b1361558cbb",
+            "placeholder": "​",
+            "style": "IPY_MODEL_ecbf3967081c46ccbc49cd7a819f24ef",
+            "value": "Downloading data: 100%"
+          }
+        },
+        "5ec1ab155a05442d9231e0fd0775c5eb": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_44d77b56bd374e3b9336c6add43196ab",
+            "max": 41996509,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_35f8263819c94e399a8779ac2039aac5",
+            "value": 41996509
+          }
+        },
+        "266e4d4f90644aa7a57d713a2480f3ec": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_35bd839b0a2849b2a4991dc51473a260",
+            "placeholder": "​",
+            "style": "IPY_MODEL_e5e56115a1bf43768197ea7c23224f1a",
+            "value": " 42.0M/42.0M [00:01&lt;00:00, 40.2MB/s]"
+          }
+        },
+        "d3d7419e423f42019dded6ff0f3d54bd": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "8b9db178c0bc4258830c6b1361558cbb": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "ecbf3967081c46ccbc49cd7a819f24ef": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "44d77b56bd374e3b9336c6add43196ab": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "35f8263819c94e399a8779ac2039aac5": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "35bd839b0a2849b2a4991dc51473a260": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "e5e56115a1bf43768197ea7c23224f1a": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "838498fcf15a4ff2a2021c433abe945d": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_7db84c7d527d44f2ba6ff011a9aeaec7",
+              "IPY_MODEL_cb427dc59d7f422ba9814d33d8151a92",
+              "IPY_MODEL_5240f5b040a0430b958d312a84a9a618"
+            ],
+            "layout": "IPY_MODEL_45bcc169fba243b3b27f5d1866c39a3a"
+          }
+        },
+        "7db84c7d527d44f2ba6ff011a9aeaec7": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_fed6b109bf8f44ecb7f4c4d6e782ab68",
+            "placeholder": "​",
+            "style": "IPY_MODEL_0ddf9e8cbb2a422697442b36daa7f94e",
+            "value": "Generating train split: 100%"
+          }
+        },
+        "cb427dc59d7f422ba9814d33d8151a92": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_e1ab44da237c4147b8eb22a25ddf2b4e",
+            "max": 25000,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_a9b1dc9eeb684eb3a8d3cd5738f217a6",
+            "value": 25000
+          }
+        },
+        "5240f5b040a0430b958d312a84a9a618": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_0d2b94825a6c47798a00dcc94692b1f5",
+            "placeholder": "​",
+            "style": "IPY_MODEL_c278f5351a954ac293cdd3521e0f4bde",
+            "value": " 25000/25000 [00:00&lt;00:00, 53293.42 examples/s]"
+          }
+        },
+        "45bcc169fba243b3b27f5d1866c39a3a": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "fed6b109bf8f44ecb7f4c4d6e782ab68": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "0ddf9e8cbb2a422697442b36daa7f94e": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "e1ab44da237c4147b8eb22a25ddf2b4e": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "a9b1dc9eeb684eb3a8d3cd5738f217a6": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "0d2b94825a6c47798a00dcc94692b1f5": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "c278f5351a954ac293cdd3521e0f4bde": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "2103dcb2e7394d0ea681e34195d95a0e": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_02758c44144a4da0b4205fdf3ac3b47f",
+              "IPY_MODEL_b1cb66b3a7b94acebe6ef93a7f6a97b9",
+              "IPY_MODEL_38f11ced6bfd456ba0d46e887c8e2045"
+            ],
+            "layout": "IPY_MODEL_2bb85252ae8b4e43ba0775fb72126aa7"
+          }
+        },
+        "02758c44144a4da0b4205fdf3ac3b47f": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_6442016bcd424e26a3325ed2dc3ac454",
+            "placeholder": "​",
+            "style": "IPY_MODEL_ddeac317c92049de9e1cdc304fdb0527",
+            "value": "Generating test split: 100%"
+          }
+        },
+        "b1cb66b3a7b94acebe6ef93a7f6a97b9": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_a0553a42a0c9465aabbee63e7c877258",
+            "max": 25000,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_0204e8a1463048058a3afb096bb17dfc",
+            "value": 25000
+          }
+        },
+        "38f11ced6bfd456ba0d46e887c8e2045": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_b0afc02aa67c45fc898feb59a13a118e",
+            "placeholder": "​",
+            "style": "IPY_MODEL_47a49c8788094e68891e27b9f3881ea5",
+            "value": " 25000/25000 [00:00&lt;00:00, 53919.51 examples/s]"
+          }
+        },
+        "2bb85252ae8b4e43ba0775fb72126aa7": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "6442016bcd424e26a3325ed2dc3ac454": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "ddeac317c92049de9e1cdc304fdb0527": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "a0553a42a0c9465aabbee63e7c877258": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "0204e8a1463048058a3afb096bb17dfc": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "b0afc02aa67c45fc898feb59a13a118e": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "47a49c8788094e68891e27b9f3881ea5": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "e5ad7c6c7d6a4df8b78269006bfb92ef": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_ce3dfaf2b3ac446c9552669b39675d09",
+              "IPY_MODEL_4c797fcd7fe04fd0a58f4da118f4f6c3",
+              "IPY_MODEL_e25e2c294f764f61920e587af4cd45c2"
+            ],
+            "layout": "IPY_MODEL_f79f2cac93d74da49487420401b1123e"
+          }
+        },
+        "ce3dfaf2b3ac446c9552669b39675d09": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_2391f4a0043f41c18c6868d3a1d16bb4",
+            "placeholder": "​",
+            "style": "IPY_MODEL_efaa395dcd5a4d53bf4aa11b625214f2",
+            "value": "Generating unsupervised split: 100%"
+          }
+        },
+        "4c797fcd7fe04fd0a58f4da118f4f6c3": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_248a84db1aaf4f049728a6de9517056d",
+            "max": 50000,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_2f7c41578d6d48648c30cc8f82b3ed8d",
+            "value": 50000
+          }
+        },
+        "e25e2c294f764f61920e587af4cd45c2": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_7011f7d8cee44da3830f1798a92cd70d",
+            "placeholder": "​",
+            "style": "IPY_MODEL_664c9d5c24fe4bd49832ff1b7cd6478a",
+            "value": " 50000/50000 [00:00&lt;00:00, 61968.47 examples/s]"
+          }
+        },
+        "f79f2cac93d74da49487420401b1123e": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "2391f4a0043f41c18c6868d3a1d16bb4": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "efaa395dcd5a4d53bf4aa11b625214f2": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "248a84db1aaf4f049728a6de9517056d": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "2f7c41578d6d48648c30cc8f82b3ed8d": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "7011f7d8cee44da3830f1798a92cd70d": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "664c9d5c24fe4bd49832ff1b7cd6478a": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "47074c1476fe417d8e241255f7ecb40c": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_d9b69cdedef84e0cb402201a70608e3b",
+              "IPY_MODEL_828f568859b641cc9c18e239b90d7f68",
+              "IPY_MODEL_f77676f6cf59489b8bd1161fdbb08fdb"
+            ],
+            "layout": "IPY_MODEL_e1377adda18f47ec90ad4a48ff238d7b"
+          }
+        },
+        "d9b69cdedef84e0cb402201a70608e3b": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_ef2362898b694202a9c963b5fadcc253",
+            "placeholder": "​",
+            "style": "IPY_MODEL_4d3312d279a4439394d24010e7ddc1bd",
+            "value": "Map: 100%"
+          }
+        },
+        "828f568859b641cc9c18e239b90d7f68": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_c0273f64999f4ccf8512fdcbe9f95287",
+            "max": 25000,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_c72ca64c40da4df781d3eb4f5f075ae6",
+            "value": 25000
+          }
+        },
+        "f77676f6cf59489b8bd1161fdbb08fdb": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_62d0d13d912444b291ee72bc29422176",
+            "placeholder": "​",
+            "style": "IPY_MODEL_629d650d0bef4cc88d37ef62f2d86e89",
+            "value": " 25000/25000 [00:36&lt;00:00, 981.63 examples/s]"
+          }
+        },
+        "e1377adda18f47ec90ad4a48ff238d7b": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "ef2362898b694202a9c963b5fadcc253": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "4d3312d279a4439394d24010e7ddc1bd": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "c0273f64999f4ccf8512fdcbe9f95287": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "c72ca64c40da4df781d3eb4f5f075ae6": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "62d0d13d912444b291ee72bc29422176": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "629d650d0bef4cc88d37ef62f2d86e89": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "ba253d39ebe34c9eab6217fa5906d6b4": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_5089c4ead3e54a179b6d0f4b8394e6b2",
+              "IPY_MODEL_6bb7df2e1f794f99a865c12b58253bd0",
+              "IPY_MODEL_84b59bdba0894a74a9c9fca3a2fc580f"
+            ],
+            "layout": "IPY_MODEL_e1636e89c7904963a8515f6bdb674e26"
+          }
+        },
+        "5089c4ead3e54a179b6d0f4b8394e6b2": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_38284d1c15c64c61a19d45270462a2a3",
+            "placeholder": "​",
+            "style": "IPY_MODEL_3a9f6b66db1b46c9b0897da1638bba5a",
+            "value": "Map: 100%"
+          }
+        },
+        "6bb7df2e1f794f99a865c12b58253bd0": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_6e577a97adbb428f85ccf0c375072783",
+            "max": 25000,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_5296a40609b640e998b3ea2c4f95b0fd",
+            "value": 25000
+          }
+        },
+        "84b59bdba0894a74a9c9fca3a2fc580f": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_bd55882d3a0c4d36a866d19641ceb1db",
+            "placeholder": "​",
+            "style": "IPY_MODEL_bcb4ce04a5f94751a7cd9cd8378acb7f",
+            "value": " 25000/25000 [00:22&lt;00:00, 1186.95 examples/s]"
+          }
+        },
+        "e1636e89c7904963a8515f6bdb674e26": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "38284d1c15c64c61a19d45270462a2a3": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "3a9f6b66db1b46c9b0897da1638bba5a": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "6e577a97adbb428f85ccf0c375072783": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "5296a40609b640e998b3ea2c4f95b0fd": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "bd55882d3a0c4d36a866d19641ceb1db": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "bcb4ce04a5f94751a7cd9cd8378acb7f": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "9c9cfe94f2494eaa84d3f89f6a70f156": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_71c39ef50681447e92299dfe71b1a9bb",
+              "IPY_MODEL_b6bd6b8aaa634caeae6e897f7f46b6fc",
+              "IPY_MODEL_bedd627fc34f43b19bdaf0353d1036b2"
+            ],
+            "layout": "IPY_MODEL_11653d9ce39748f09caa85ca10b8d91d"
+          }
+        },
+        "71c39ef50681447e92299dfe71b1a9bb": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_8e4a917af4fe4d9087d58f334eec13b0",
+            "placeholder": "​",
+            "style": "IPY_MODEL_e13e1237018a46e3b0de5f6a2a9bce19",
+            "value": "Map: 100%"
+          }
+        },
+        "b6bd6b8aaa634caeae6e897f7f46b6fc": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_7145e19b39fc4045a790871eb53d97ff",
+            "max": 50000,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_76a624c19e124e1c8d7829199a0af6f5",
+            "value": 50000
+          }
+        },
+        "bedd627fc34f43b19bdaf0353d1036b2": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_16712331735d43a08f63bfee80478e10",
+            "placeholder": "​",
+            "style": "IPY_MODEL_f755a420a7b6401bbf1036b9a75da188",
+            "value": " 50000/50000 [00:49&lt;00:00, 865.21 examples/s]"
+          }
+        },
+        "11653d9ce39748f09caa85ca10b8d91d": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "8e4a917af4fe4d9087d58f334eec13b0": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "e13e1237018a46e3b0de5f6a2a9bce19": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "7145e19b39fc4045a790871eb53d97ff": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "76a624c19e124e1c8d7829199a0af6f5": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "16712331735d43a08f63bfee80478e10": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "f755a420a7b6401bbf1036b9a75da188": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "841e506cf0694e5d9b90870c4b635162": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_10682ec708f541f7bdf02580898532ad",
+              "IPY_MODEL_125f4bb39f224629a90e3a43f0fbd4b6",
+              "IPY_MODEL_d26b3eb0ee2147949db7fc61ff36bb18"
+            ],
+            "layout": "IPY_MODEL_b28ea13a4bb84473b72f71cb26e44456"
+          }
+        },
+        "10682ec708f541f7bdf02580898532ad": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_c9abad929db8437dabbfd86b17b3d058",
+            "placeholder": "​",
+            "style": "IPY_MODEL_bee041f9b31841db89dd14d5c643f4f8",
+            "value": "Downloading builder script: 100%"
+          }
+        },
+        "125f4bb39f224629a90e3a43f0fbd4b6": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_c312b78404ee47a997beec5aa8085291",
+            "max": 4203,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_a704998b8a90405ea57be77328733ce0",
+            "value": 4203
+          }
+        },
+        "d26b3eb0ee2147949db7fc61ff36bb18": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_5fedd72a9d1448b2882733cd5d5c8694",
+            "placeholder": "​",
+            "style": "IPY_MODEL_7b0e1b3d1cce46b79c6f2bf712c54706",
+            "value": " 4.20k/4.20k [00:00&lt;00:00, 118kB/s]"
+          }
+        },
+        "b28ea13a4bb84473b72f71cb26e44456": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "c9abad929db8437dabbfd86b17b3d058": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "bee041f9b31841db89dd14d5c643f4f8": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "c312b78404ee47a997beec5aa8085291": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "a704998b8a90405ea57be77328733ce0": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "5fedd72a9d1448b2882733cd5d5c8694": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "7b0e1b3d1cce46b79c6f2bf712c54706": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "08e6f772c65d4eada980375dae81259f": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_31bf29818b334168a75ec9a337462211",
+              "IPY_MODEL_0d44d8462c2c4f2f95b9d9eb2e06e033",
+              "IPY_MODEL_88dd551e3ab942ef8171f945d7b3fc97"
+            ],
+            "layout": "IPY_MODEL_43c68cda8daa4d0fb5aed9f7a19023ed"
+          }
+        },
+        "31bf29818b334168a75ec9a337462211": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_4cbd720e002049dabd442d0fee387236",
+            "placeholder": "​",
+            "style": "IPY_MODEL_b5a15a13ca644a1ba2d78aada045c191",
+            "value": "config.json: 100%"
+          }
+        },
+        "0d44d8462c2c4f2f95b9d9eb2e06e033": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_daf0062b73754cdf81771bd0fb9dc3f5",
+            "max": 829,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_9070511439784c97b2d75480149f5405",
+            "value": 829
+          }
+        },
+        "88dd551e3ab942ef8171f945d7b3fc97": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_6ca692c111ae464581ec4ecb738145e7",
+            "placeholder": "​",
+            "style": "IPY_MODEL_8cc1192e9b74438dbeec21243e8195a2",
+            "value": " 829/829 [00:00&lt;00:00, 58.9kB/s]"
+          }
+        },
+        "43c68cda8daa4d0fb5aed9f7a19023ed": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "4cbd720e002049dabd442d0fee387236": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "b5a15a13ca644a1ba2d78aada045c191": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "daf0062b73754cdf81771bd0fb9dc3f5": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "9070511439784c97b2d75480149f5405": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "6ca692c111ae464581ec4ecb738145e7": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "8cc1192e9b74438dbeec21243e8195a2": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "9414c07b44af440f9c8c89b377fc2819": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_3a6133b029314bc9b8d722a2d407a2fb",
+              "IPY_MODEL_d5dda96f6aac4060bbe23be05f895a02",
+              "IPY_MODEL_b448d71c92084514bcbca79750cd6aea"
+            ],
+            "layout": "IPY_MODEL_f9a01f86f28a4f83adf1cc9ec87a00ea"
+          }
+        },
+        "3a6133b029314bc9b8d722a2d407a2fb": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_c89685b374aa4754b54f6cbb75a8fd91",
+            "placeholder": "​",
+            "style": "IPY_MODEL_76b88f3c0861464981b9f98986d4911a",
+            "value": "model.safetensors: 100%"
+          }
+        },
+        "d5dda96f6aac4060bbe23be05f895a02": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_960e3573bed244b0adee04afae0f4012",
+            "max": 433292294,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_83c024d8d5e54a6d993a0b75ee6c2f6e",
+            "value": 433292294
+          }
+        },
+        "b448d71c92084514bcbca79750cd6aea": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_3645a4b176b544b09cae2d99cf1df4d9",
+            "placeholder": "​",
+            "style": "IPY_MODEL_169164ce77244fa285f8d90c407f6ef6",
+            "value": " 433M/433M [00:06&lt;00:00, 17.4MB/s]"
+          }
+        },
+        "f9a01f86f28a4f83adf1cc9ec87a00ea": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "c89685b374aa4754b54f6cbb75a8fd91": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "76b88f3c0861464981b9f98986d4911a": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "960e3573bed244b0adee04afae0f4012": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "83c024d8d5e54a6d993a0b75ee6c2f6e": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "3645a4b176b544b09cae2d99cf1df4d9": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "169164ce77244fa285f8d90c407f6ef6": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "e67f319ac94c4838ab215859e83f6c25": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_f45be827bc1d48c68e181e5d1f98d141",
+              "IPY_MODEL_b67340039c5c48caad5186fad10535d3",
+              "IPY_MODEL_9a9b4cf31a0c4c6484dc0235017658d8"
+            ],
+            "layout": "IPY_MODEL_8054f16ad1714415b2324d02bc41920d"
+          }
+        },
+        "f45be827bc1d48c68e181e5d1f98d141": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_adc82956e5a646ad994d45e2599d31b8",
+            "placeholder": "​",
+            "style": "IPY_MODEL_cd3c218375184f61b3b00edb3b00a4d2",
+            "value": "tokenizer_config.json: 100%"
+          }
+        },
+        "b67340039c5c48caad5186fad10535d3": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_a8bc863af5da488ba772efe397599e51",
+            "max": 59,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_f2c0d45bb76446b3bc4a8c9e8364bfb2",
+            "value": 59
+          }
+        },
+        "9a9b4cf31a0c4c6484dc0235017658d8": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_9d99d5d312604b8b98401a74e7811625",
+            "placeholder": "​",
+            "style": "IPY_MODEL_f37bafd6a86f41f596f141198c8ce7f0",
+            "value": " 59.0/59.0 [00:00&lt;00:00, 4.31kB/s]"
+          }
+        },
+        "8054f16ad1714415b2324d02bc41920d": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "adc82956e5a646ad994d45e2599d31b8": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "cd3c218375184f61b3b00edb3b00a4d2": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "a8bc863af5da488ba772efe397599e51": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "f2c0d45bb76446b3bc4a8c9e8364bfb2": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "9d99d5d312604b8b98401a74e7811625": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "f37bafd6a86f41f596f141198c8ce7f0": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "e1830be1877e49cf9047936dd05bfd47": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_b036b7454c9a4718aadeb1f4314c44bb",
+              "IPY_MODEL_d390c97081804e93970884c4a283dca8",
+              "IPY_MODEL_fcf219270cce4f89a5777ea70d32df82"
+            ],
+            "layout": "IPY_MODEL_944f7c858afb4a259cd887087b7fd362"
+          }
+        },
+        "b036b7454c9a4718aadeb1f4314c44bb": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_e534a4cdec8d4d98b449458e1193d5d5",
+            "placeholder": "​",
+            "style": "IPY_MODEL_64f4080dbe4646fd9de6e9bd52afd076",
+            "value": "vocab.txt: 100%"
+          }
+        },
+        "d390c97081804e93970884c4a283dca8": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_2762edc54cc64a87a298fb06a1900fca",
+            "max": 213450,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_fac52dc703fc416f8b8f54f1e589740f",
+            "value": 213450
+          }
+        },
+        "fcf219270cce4f89a5777ea70d32df82": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_f10123c614864720ba77b7fe9bc1b89d",
+            "placeholder": "​",
+            "style": "IPY_MODEL_85fd91872bc44097a7054c7e2aeb601a",
+            "value": " 213k/213k [00:00&lt;00:00, 5.04MB/s]"
+          }
+        },
+        "944f7c858afb4a259cd887087b7fd362": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "e534a4cdec8d4d98b449458e1193d5d5": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "64f4080dbe4646fd9de6e9bd52afd076": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "2762edc54cc64a87a298fb06a1900fca": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "fac52dc703fc416f8b8f54f1e589740f": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "f10123c614864720ba77b7fe9bc1b89d": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "85fd91872bc44097a7054c7e2aeb601a": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "ee5d7874399f4913aaa178f98c867eb7": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_076c0ecf84554803b8f427dbd855abca",
+              "IPY_MODEL_ee4e32a3e98f4cf4a6e3a0ac27d0d889",
+              "IPY_MODEL_bb16b5f1216d419f8cd2698ef5a76def"
+            ],
+            "layout": "IPY_MODEL_ad2942575af549bb8e2e64aeb6a02b18"
+          }
+        },
+        "076c0ecf84554803b8f427dbd855abca": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_1f6144e7a6f44b18bf42ead61b3c2b5a",
+            "placeholder": "​",
+            "style": "IPY_MODEL_351f94f7bfe4407ab10dffa1a3a14d60",
+            "value": "added_tokens.json: 100%"
+          }
+        },
+        "ee4e32a3e98f4cf4a6e3a0ac27d0d889": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_154a8073a8cb4f61a338c46fda223ccf",
+            "max": 2,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_593cb40c331b4f4fa46ade832158fbdd",
+            "value": 2
+          }
+        },
+        "bb16b5f1216d419f8cd2698ef5a76def": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_87da6b99569b477ea3038514be65a6c0",
+            "placeholder": "​",
+            "style": "IPY_MODEL_820c4a61a44d4b4380a6c2b1595b1e1c",
+            "value": " 2.00/2.00 [00:00&lt;00:00, 148B/s]"
+          }
+        },
+        "ad2942575af549bb8e2e64aeb6a02b18": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "1f6144e7a6f44b18bf42ead61b3c2b5a": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "351f94f7bfe4407ab10dffa1a3a14d60": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "154a8073a8cb4f61a338c46fda223ccf": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "593cb40c331b4f4fa46ade832158fbdd": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "87da6b99569b477ea3038514be65a6c0": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "820c4a61a44d4b4380a6c2b1595b1e1c": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "957774971c744a0487220e6aaa460881": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_34700fd836274390ae908ca6e7208a2a",
+              "IPY_MODEL_80a88b42b6074ffe8f28b3c911016f0b",
+              "IPY_MODEL_78c3adb1cd184cb7bcbdd2ef89ec78b7"
+            ],
+            "layout": "IPY_MODEL_35af368852e9462ea2f6596bf81ceaad"
+          }
+        },
+        "34700fd836274390ae908ca6e7208a2a": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_da5fea00a7194001bd58f544432cc9d5",
+            "placeholder": "​",
+            "style": "IPY_MODEL_6043b81d7d7b4267b838a3b6b992b707",
+            "value": "special_tokens_map.json: 100%"
+          }
+        },
+        "80a88b42b6074ffe8f28b3c911016f0b": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_2dceb3916c9a4d888bae1b775e44e21c",
+            "max": 112,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_cb12583829cc4a73a83ea6ad55c24fd0",
+            "value": 112
+          }
+        },
+        "78c3adb1cd184cb7bcbdd2ef89ec78b7": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_bc7868fc399d4dd0b4020f1c218e6af5",
+            "placeholder": "​",
+            "style": "IPY_MODEL_a248555af02b43aa889f88b3b685b3c6",
+            "value": " 112/112 [00:00&lt;00:00, 8.07kB/s]"
+          }
+        },
+        "35af368852e9462ea2f6596bf81ceaad": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "da5fea00a7194001bd58f544432cc9d5": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "6043b81d7d7b4267b838a3b6b992b707": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "2dceb3916c9a4d888bae1b775e44e21c": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "cb12583829cc4a73a83ea6ad55c24fd0": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "bc7868fc399d4dd0b4020f1c218e6af5": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "a248555af02b43aa889f88b3b685b3c6": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        }
+      }
+    }
+  },
+  "nbformat": 4,
+  "nbformat_minor": 0
+}
\ No newline at end of file