
Review TACLeBench

Heiko Falk

September 29, 2015

Abstract

This document will contain the first review of the TACLeBench code
regarding the topic image coding/encoding algorithms.

1 Image Coding/Encoding

• MediaBench/cjpeg jpe6b transupp

• MediaBench/cjpeg jpeg6b wrbmp

• MediaBench/epic

• MediaBench/h264dec ldecode block

• MediaBench/h264dec ldecode macroblock

• MediaBench/mpeg2

• MiBench/susan

1.1 MediaBench/cjpeg jpe6b transupp

KEEP: Lots of true image processing, rotating and mirroring. Looks unique
and useful.
TODO: At end of C source code, quite some 100’s of lines are commented out. Is
this also the case in the original MediaBench code? If not, why is it commented
out here. . . ?

1.2 MediaBench/cjpeg jpeg6b wrbmp

KEEP: Routines to write JPEG images into some buffer in memory. Looks
unique and useful, is definitely not redundant with MediaBench/cjpeg jpe6b transupp.
TODO: Again, lots of code are commented out at the end. Is this intentional?

1.3 MediaBench/epic

KEEP: Pretty complex and unique code (many original C files merged into a
single one, input data defined as extern and put in separate compilation unit,
size of input arrays left open, deeply-nested and regular loops, lots of DSP code.
epic is known to be a stress-test for timing analyzers and compiler optimizations.
TODO: Includes matrix transpose kernels, convolution filter and DSP code. We

1



need to check whether we can kick out some of the trivial matrix and DSPStone
kernels in favor of this one.

1.4 MediaBench/h264dec ldecode block

REMOVE: Code of rather low complexity (loop nesting level of approx. 3 only,
not too complex code with many array references, only a little bit of arithmetic
– mostly addition/subtraction, a few divisions or modulos; again lots of code
commented out, contains lots of pre-initialized global arrays directly in the C
source code), by far not as complex as epic above.

1.5 MediaBench/h264dec ldecode macroblock

KEEP: Much more complex code and completely different code as compared to
the previous h264 benchmark, more control flow (if-else), more deeply nested
loops; basically, 1 fat C function doing the whole work.

1.6 MediaBench/mpeg2

KEEP: Completely different algorithm than anything else in this category,
should definitely be kept; code structured in various functions, with complex
control flow and quite deeply nested loops inside.
TODO: Input data (fat!!! arrays) directly encoded in C source file, which makes
> 67,000 lines of the 69,000 lines of the entire code.

1.7 MiBench/susan

KEEP: Unique algorithm that is not comparable with anything else in this
category (complex medical image processing algorithm, including inlined library
calls for input/output handling and memcpy; quite some sequences with straight-
line code)

2


