diff --git a/SuperTagger/Linker/Linker.py b/SuperTagger/Linker/Linker.py
index b8dbf8c4083b66786bc43e10824e288e2c65aeff..281a7ab2dc74827c3ebee38780c912d5ed64a38a 100644
--- a/SuperTagger/Linker/Linker.py
+++ b/SuperTagger/Linker/Linker.py
@@ -61,11 +61,6 @@ class Linker(Module):
             LayerNorm(self.dim_embedding_atoms, eps=1e-12)
         )
 
-    def make_decoder_mask(self, atoms_batch):
-        decoder_attn_mask = torch.ones_like(atoms_batch, dtype=torch.float64)
-        decoder_attn_mask[atoms_batch.eq(self.padding_id)] = 0.0
-        return decoder_attn_mask.unsqueeze(1).repeat(1, atoms_batch.shape[1], 1)
-
     def forward(self, atoms_batch_tokenized, atoms_polarity_batch, sents_embedding):
         '''
         Parameters :
diff --git a/SuperTagger/Linker/__pycache__/utils.cpython-38.pyc b/SuperTagger/Linker/__pycache__/utils.cpython-38.pyc
index 7f42ae68119786d9252d2c8eac5eb9c7a7083377..b13bf57006d2d3eb78625e40b86218f03e27798c 100644
Binary files a/SuperTagger/Linker/__pycache__/utils.cpython-38.pyc and b/SuperTagger/Linker/__pycache__/utils.cpython-38.pyc differ
diff --git a/SuperTagger/Linker/utils.py b/SuperTagger/Linker/utils.py
index 898a921d77b96113a50513ccb94502e368a7de60..3f8e892a7f693fc58dd6754b11a114091d364480 100644
--- a/SuperTagger/Linker/utils.py
+++ b/SuperTagger/Linker/utils.py
@@ -9,6 +9,7 @@ from SuperTagger.utils import pad_sequence
 
 regex_categories = r'\w+\(\d+,(?:((?R))|(\w+))*,?(?:((?R))|(\w+))*\)'
 
+
 #########################################################################################
 ################################ Liste des atoms avc _i########################################
 #########################################################################################
@@ -26,17 +27,17 @@ def get_axiom_links(max_atoms_in_one_type, atoms_polarity, batch_axiom_links):
                             range(len(atoms_batch))]
 
         linking_plus_to_minus = pad_sequence(
-            [torch.as_tensor([l_polarity_minus[s_idx].index(x) for i, x in enumerate(l_polarity_plus[s_idx])], dtype=torch.long)
-             for s_idx in range(len(atoms_batch))], max_len=max_atoms_in_one_type//2, padding_value=-1)
+            [torch.as_tensor([l_polarity_minus[s_idx].index(x) if x in l_polarity_minus[s_idx] else -1 for i, x in
+                              enumerate(l_polarity_plus[s_idx])], dtype=torch.long)
+             for s_idx in range(len(atoms_batch))], max_len=max_atoms_in_one_type // 2, padding_value=-1)
 
         linking_plus_to_minus_all_types.append(linking_plus_to_minus)
 
     return torch.stack(linking_plus_to_minus_all_types)
 
 
-
 def category_to_atoms_axiom_links(category, categories_to_atoms):
-    res = [bool(re.match(r''+atom_type+"_\d+", category)) for atom_type in atom_map.keys()]
+    res = [bool(re.match(r'' + atom_type + "_\d+", category)) for atom_type in atom_map.keys()]
     if True in res:
         return [category]
     else:
@@ -56,13 +57,14 @@ def get_atoms_links_batch(category_batch):
         batch.append(categories_to_atoms)
     return batch
 
+
 #########################################################################################
 ################################ Liste des atoms ########################################
 #########################################################################################
 
 
 def category_to_atoms(category, categories_to_atoms):
-    res = [bool(re.match(r''+atom_type+"_\d+", category)) for atom_type in atom_map.keys()]
+    res = [bool(re.match(r'' + atom_type + "_\d+", category)) for atom_type in atom_map.keys()]
     if True in res:
         category = re.match(r'([a-zA-Z|_]+)_\d+', category).group(1)
         return [category]
@@ -96,9 +98,9 @@ def category_to_atoms_polarity(category, polarity):
     Boolean Tensor of shape max_symbols_in_word, containing 1 for pos indexes and 0 for neg indexes
     '''
     category_to_polarity = []
-    res = [bool(re.match(r''+atom_type+"_\d+", category)) for atom_type in atom_map.keys()]
+    res = [bool(re.match(r'' + atom_type + "_\d+", category)) for atom_type in atom_map.keys()]
     if True in res or category.startswith("dia") or category.startswith("box"):
-        category_to_polarity.append(not polarity)
+        category_to_polarity.append(False)
     else:
         # dr = /
         if category.startswith("dr"):
@@ -106,15 +108,33 @@ def category_to_atoms_polarity(category, polarity):
             category_cut = [cat for cat in category_cut if cat is not None]
             left_side, right_side = category_cut[0], category_cut[1]
 
-            # for the left side
-            category_to_polarity += category_to_atoms_polarity(left_side, not polarity)
-
-            # for the right side
-            res = [bool(re.match(r'' + atom_type + "_\d+", right_side)) for atom_type in atom_map.keys()]
-            if True in res or right_side.startswith("dia") or right_side.startswith("box"):
-                category_to_polarity.append(polarity)
-            else :
-                category_to_polarity += category_to_atoms_polarity(right_side, not polarity)
+            if polarity == True:
+                # for the left side : normal
+                res = [bool(re.match(r'' + atom_type + "_\d+", left_side)) for atom_type in atom_map.keys()]
+                if True in res or left_side.startswith("dia") or left_side.startswith("box"):
+                    category_to_polarity.append(False)
+                else:
+                    category_to_polarity += category_to_atoms_polarity(left_side, True)
+                # for the right side : change polarity for next right formula
+                res = [bool(re.match(r'' + atom_type + "_\d+", right_side)) for atom_type in atom_map.keys()]
+                if True in res or right_side.startswith("dia") or right_side.startswith("box"):
+                    category_to_polarity.append(True)
+                else:
+                    category_to_polarity += category_to_atoms_polarity(right_side, False)
+
+            else:
+                # for the left side
+                res = [bool(re.match(r'' + atom_type + "_\d+", left_side)) for atom_type in atom_map.keys()]
+                if True in res or left_side.startswith("dia") or left_side.startswith("box"):
+                    category_to_polarity.append(True)
+                else:
+                    category_to_polarity += category_to_atoms_polarity(left_side, False)
+                # for the right side : change polarity for next right formula
+                res = [bool(re.match(r'' + atom_type + "_\d+", right_side)) for atom_type in atom_map.keys()]
+                if True in res or right_side.startswith("dia") or right_side.startswith("box"):
+                    category_to_polarity.append(False)
+                else:
+                    category_to_polarity += category_to_atoms_polarity(right_side, True)
 
         # dl = \
         elif category.startswith("dl"):
@@ -122,15 +142,33 @@ def category_to_atoms_polarity(category, polarity):
             category_cut = [cat for cat in category_cut if cat is not None]
             left_side, right_side = category_cut[0], category_cut[1]
 
-            # for the left side
-            res = [bool(re.match(r'' + atom_type + "_\d+", left_side)) for atom_type in atom_map.keys()]
-            if True in res or left_side.startswith("dia") or left_side.startswith("box"):
-                category_to_polarity.append(polarity)
-            else :
-                category_to_polarity += category_to_atoms_polarity(left_side, not polarity)
-
-            # for the right side
-            category_to_polarity += category_to_atoms_polarity(right_side, not polarity)
+            if polarity == True:
+                # for the left side : change polarity
+                res = [bool(re.match(r'' + atom_type + "_\d+", left_side)) for atom_type in atom_map.keys()]
+                if True in res or left_side.startswith("dia") or left_side.startswith("box"):
+                    category_to_polarity.append(True)
+                else:
+                    category_to_polarity += category_to_atoms_polarity(left_side, False)
+                # for the right side : normal
+                res = [bool(re.match(r'' + atom_type + "_\d+", right_side)) for atom_type in atom_map.keys()]
+                if True in res or right_side.startswith("dia") or right_side.startswith("box"):
+                    category_to_polarity.append(False)
+                else:
+                    category_to_polarity += category_to_atoms_polarity(right_side, True)
+
+            else:
+                # for the left side
+                res = [bool(re.match(r'' + atom_type + "_\d+", left_side)) for atom_type in atom_map.keys()]
+                if True in res or left_side.startswith("dia") or left_side.startswith("box"):
+                    category_to_polarity.append(False)
+                else:
+                    category_to_polarity += category_to_atoms_polarity(left_side, True)
+                # for the right side
+                res = [bool(re.match(r'' + atom_type + "_\d+", right_side)) for atom_type in atom_map.keys()]
+                if True in res or right_side.startswith("dia") or right_side.startswith("box"):
+                    category_to_polarity.append(True)
+                else:
+                    category_to_polarity += category_to_atoms_polarity(right_side, False)
 
     return category_to_polarity
 
@@ -147,13 +185,8 @@ def find_pos_neg_idexes(max_atoms_in_sentence, atoms_batch):
     for sentence in atoms_batch:
         list_atoms = []
         for category in sentence:
-            polarity = True
-            for at in category_to_atoms_polarity(category, polarity):
+            for at in category_to_atoms_polarity(category, True):
                 list_atoms.append(at)
         list_batch.append(torch.as_tensor(list_atoms))
     return pad_sequence([list_batch[i] for i in range(len(list_batch))],
                         max_len=max_atoms_in_sentence, padding_value=0)
-
-atoms_pol = find_pos_neg_idexes(10, [['dr(1,np_1,s_1)', 'dl(1,np_1,s_1)']])
-print(atoms_pol)
-print(get_axiom_links(10, atoms_pol, [['dr(1,np_1,s_1)', 'dl(1,np_1,s_1)']]))
diff --git a/SuperTagger/eval.py b/SuperTagger/eval.py
index 9bfdc85fd5ccf485364c808e9d6410da88f2f391..b287d4b18a382826db7d9695ae566d0fd6df0224 100644
--- a/SuperTagger/eval.py
+++ b/SuperTagger/eval.py
@@ -18,16 +18,16 @@ class SinkhornLoss(Module):
                    for link, perm in zip(predictions, truths))
 
 
-def mesure_accuracy(linking_plus_to_minus, axiom_links_pred):
+def mesure_accuracy(batch_true_links, axiom_links_pred):
     r"""
     batch_axiom_links : (batch_size, ...)
     axiom_links_pred : (batch_size, max_atoms_type_polarity)
     """
     correct_links = torch.ones(axiom_links_pred.size())
-    correct_links[axiom_links_pred != linking_plus_to_minus] = 0
-    correct_links[linking_plus_to_minus == -1] = 1
+    correct_links[axiom_links_pred != batch_true_links] = 0
+    correct_links[batch_true_links == -1] = 1
     num_correct_links = correct_links.sum().item()
-    num_masked_atoms = len(linking_plus_to_minus[linking_plus_to_minus == -1])
+    num_masked_atoms = len(batch_true_links[batch_true_links == -1])
 
     # diviser par nombre de links
     return (num_correct_links - num_masked_atoms)/(axiom_links_pred.size()[0] * axiom_links_pred.size()[1] * axiom_links_pred.size()[2] - num_masked_atoms)
diff --git a/train.py b/train.py
index fced23bdaadd03c2ede10dac3919b65e78584657..05d223f6e3b9710d18cf2f6984e36f3e257209c7 100644
--- a/train.py
+++ b/train.py
@@ -53,9 +53,11 @@ print("atoms_polarity_batch", atoms_polarity_batch.shape)
 
 truth_links_batch = get_axiom_links(max_atoms_in_one_type, atoms_polarity_batch, df_axiom_links["sub_tree"])
 print("truth_links_batch", truth_links_batch.permute(1, 0, 2).shape)
+print(" truth_links_batch example on first sentence class cl_r", truth_links_batch[0][0])
 
 sentences_batch = df_axiom_links["Sentences"]
 
+# Construction tensor dataset
 dataset = TensorDataset(atoms_batch_tokenized, atoms_polarity_batch, truth_links_batch.permute(1, 0, 2))
 
 # Calculate the number of samples to include in each set.