From a539008d26b6bff4ae5b3a51ddd03df1517342b3 Mon Sep 17 00:00:00 2001 From: Caroline DE POURTALES <cdepourt@montana.irit.fr> Date: Wed, 22 Jun 2022 17:00:51 +0200 Subject: [PATCH] change padding handling --- Configuration/config.ini | 5 ++- Linker/Linker.py | 32 ++++++------- Linker/eval.py | 7 +-- Linker/utils_linker.py | 42 +++++++++++------- bash_GPU.sh | 2 +- ...tfevents.1655740922.co2-slurm-ng04.19806.1 | Bin 1142 -> 0 bytes ...tfevents.1655740922.co2-slurm-ng04.19806.3 | Bin 1142 -> 0 bytes ...tfevents.1655740922.co2-slurm-ng04.19806.2 | Bin 1046 -> 0 bytes ...tfevents.1655740922.co2-slurm-ng04.19806.4 | Bin 1046 -> 0 bytes ...tfevents.1655739317.co2-slurm-ng04.19806.0 | Bin 40 -> 0 bytes 10 files changed, 50 insertions(+), 38 deletions(-) delete mode 100644 logs/logs/Accuracy_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.1 delete mode 100644 logs/logs/Accuracy_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.3 delete mode 100644 logs/logs/Loss_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.2 delete mode 100644 logs/logs/Loss_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.4 delete mode 100644 logs/logs/events.out.tfevents.1655739317.co2-slurm-ng04.19806.0 diff --git a/Configuration/config.ini b/Configuration/config.ini index c3ccbc2..61872f4 100644 --- a/Configuration/config.ini +++ b/Configuration/config.ini @@ -5,15 +5,16 @@ transformers = 4.16.2 symbols_vocab_size=26 atom_vocab_size=18 max_len_sentence=290 -max_atoms_in_sentence=874 +max_atoms_in_sentence=875 max_atoms_in_one_type=324 [MODEL_ENCODER] dim_encoder = 768 [MODEL_LINKER] -nhead=4 +nhead=8 dim_emb_atom = 256 +dim_feedforward_transformer = 768 num_layers=2 dim_cat_inter=512 dim_cat_out=256 diff --git a/Linker/Linker.py b/Linker/Linker.py index ee88425..15e775c 100644 --- a/Linker/Linker.py +++ b/Linker/Linker.py @@ -69,6 +69,7 @@ class Linker(Module): # Transformer self.nhead = int(Configuration.modelLinkerConfig['nhead']) self.dim_emb_atom = int(Configuration.modelLinkerConfig['dim_emb_atom']) + self.dim_feedforward_transformer = int(Configuration.modelLinkerConfig['dim_feedforward_transformer']) self.num_layers = int(Configuration.modelLinkerConfig['num_layers']) # torch cat self.dim_cat_inter = int(Configuration.modelLinkerConfig['dim_cat_out']) @@ -78,7 +79,6 @@ class Linker(Module): # sinkhorn self.sinkhorn_iters = int(Configuration.modelLinkerConfig['sinkhorn_iters']) # settings - self.batch_size = int(Configuration.modelTrainingConfig['batch_size']) self.max_len_sentence = int(Configuration.datasetConfig['max_len_sentence']) self.max_atoms_in_sentence = int(Configuration.datasetConfig['max_atoms_in_sentence']) self.max_atoms_in_one_type = int(Configuration.datasetConfig['max_atoms_in_one_type']) @@ -95,11 +95,13 @@ class Linker(Module): # Atoms embedding self.atoms_tokenizer = AtomTokenizer(atom_map, self.max_atoms_in_sentence) self.atom_map_redux = atom_map_redux + self.padding_id = atom_map["[PAD]"] self.sub_atoms_type_list = list(atom_map_redux.keys()) - self.atom_encoder = Embedding(self.max_atoms_in_sentence, self.dim_emb_atom, padding_idx=atom_map["[PAD]"]) + self.atom_encoder = Embedding(atom_vocab_size, self.dim_emb_atom, padding_idx=self.padding_id) self.atom_encoder.weight.data.uniform_(-0.1, 0.1) self.position_encoder = PositionalEncoding(self.dim_emb_atom, 0.1, max_len=self.max_atoms_in_sentence) - encoder_layer = TransformerEncoderLayer(d_model=self.dim_emb_atom, nhead=self.nhead) + encoder_layer = TransformerEncoderLayer(d_model=self.dim_emb_atom, nhead=self.nhead, + dim_feedforward=self.dim_feedforward_transformer, dropout=0.1) self.transformer = TransformerEncoder(encoder_layer, num_layers=self.num_layers) # Concatenation with word embedding @@ -146,8 +148,8 @@ class Linker(Module): num_atoms_per_word = get_num_atoms_batch(df_axiom_links["Z"], self.max_len_sentence) - pos_idx = get_pos_idx(atoms_batch, atoms_polarity_batch, self.max_atoms_in_one_type) - neg_idx = get_pos_idx(atoms_batch, atoms_polarity_batch, self.max_atoms_in_one_type) + pos_idx = get_pos_idx(atoms_batch, atoms_polarity_batch, self.max_atoms_in_one_type, self.max_atoms_in_sentence) + neg_idx = get_pos_idx(atoms_batch, atoms_polarity_batch, self.max_atoms_in_one_type, self.max_atoms_in_sentence) truth_links_batch = get_axiom_links(self.max_atoms_in_one_type, atoms_polarity_batch, df_axiom_links["Y"]) @@ -170,12 +172,11 @@ class Linker(Module): print("End preprocess Data") return training_dataloader, validation_dataloader - def forward(self, batch_num_atoms_per_word, batch_atoms, src_mask, batch_pos_idx, batch_neg_idx, sents_embedding): + def forward(self, batch_num_atoms_per_word, batch_atoms, batch_pos_idx, batch_neg_idx, sents_embedding): r""" Args: batch_num_atoms_per_word : (batch_size, len_sentence) flattened categories batch_atoms : atoms tok - src_mask : atoms mask batch_pos_idx : (batch_size, atom_vocab_size, max atom in one cat) flattened categories polarities batch_neg_idx : (batch_size, atom_vocab_size, max atom in one cat) flattened categories polarities sents_embedding : (batch_size, len_sentence, dim_encoder) output of BERT for context @@ -187,10 +188,14 @@ class Linker(Module): [torch.repeat_interleave(input=sents_embedding[i], repeats=batch_num_atoms_per_word[i], dim=0) for i in range(len(sents_embedding))], max_len=self.max_atoms_in_sentence, padding_value=0) + # atoms emebedding + src_key_padding_mask = torch.eq(batch_atoms, self.padding_id) + src_mask = generate_square_subsequent_mask(self.max_atoms_in_sentence).to(self.device) atoms_embedding = self.atom_encoder(batch_atoms) * math.sqrt(self.dim_emb_atom) atoms_embedding = self.position_encoder(atoms_embedding) atoms_embedding = atoms_embedding.permute(1, 0, 2) - atoms_embedding = self.transformer(atoms_embedding, src_mask) + atoms_embedding = self.transformer(atoms_embedding, src_mask, + src_key_padding_mask=src_key_padding_mask) atoms_embedding = atoms_embedding.permute(1, 0, 2) # cat @@ -280,7 +285,6 @@ class Linker(Module): # For each batch of training data... with tqdm(training_dataloader, unit="batch") as tepoch: - src_mask = generate_square_subsequent_mask(self.max_atoms_in_sentence).to(self.device) for batch in tepoch: # Unpack this training batch from our dataloader batch_num_atoms = batch[0].to(self.device) @@ -297,10 +301,10 @@ class Linker(Module): output = self.Supertagger.forward(batch_sentences_tokens, batch_sentences_mask) # Run the Linker on the atoms - logits_predictions = self(batch_num_atoms, batch_atoms_tok, src_mask, batch_pos_idx, batch_neg_idx, + logits_predictions = self(batch_num_atoms, batch_atoms_tok, batch_pos_idx, batch_neg_idx, output['word_embeding']) - linker_loss = self.cross_entropy_loss(logits_predictions, batch_true_links) + linker_loss = self.cross_entropy_loss(logits_predictions, batch_true_links, self.max_atoms_in_one_type) # Perform a backward pass to calculate the gradients. epoch_loss += float(linker_loss) linker_loss.backward() @@ -334,19 +338,17 @@ class Linker(Module): output = self.Supertagger.forward(batch_sentences_tokens, batch_sentences_mask) - src_mask = generate_square_subsequent_mask(self.max_atoms_in_sentence).to(self.device) - logits_predictions = self(batch_num_atoms, batch_atoms_tok, src_mask, batch_pos_idx, batch_neg_idx, output[ + logits_predictions = self(batch_num_atoms, batch_atoms_tok, batch_pos_idx, batch_neg_idx, output[ 'word_embeding']) # atom_vocab, batch_size, max atoms in one type, max atoms in one type axiom_links_pred = torch.argmax(logits_predictions, dim=3) # atom_vocab, batch_size, max atoms in one type print('\n') - print("Tokens de la phrase : ", batch_sentences_tokens[1]) print("Les vrais liens de la catégorie n : ", batch_true_links[1][2][:100]) print("Les prédictions : ", axiom_links_pred[2][1][:100]) print('\n') accuracy = mesure_accuracy(batch_true_links, axiom_links_pred, self.max_atoms_in_one_type) - loss = self.cross_entropy_loss(logits_predictions, batch_true_links) + loss = self.cross_entropy_loss(logits_predictions, batch_true_links, self.max_atoms_in_one_type) return loss, accuracy diff --git a/Linker/eval.py b/Linker/eval.py index 2c8c578..05c0966 100644 --- a/Linker/eval.py +++ b/Linker/eval.py @@ -1,14 +1,15 @@ import torch from torch.nn import Module from torch.nn.functional import nll_loss +from Linker.atom_map import atom_map, atom_map_redux class SinkhornLoss(Module): def __init__(self): super(SinkhornLoss, self).__init__() - def forward(self, predictions, truths): - return sum(nll_loss(link.flatten(0, 1), perm.flatten(), reduction='mean') + def forward(self, predictions, truths, max_atoms_in_one_type): + return sum(nll_loss(link.flatten(0, 1), perm.flatten(), reduction='mean', ignore_index=-1) for link, perm in zip(predictions, truths.permute(1, 0, 2))) @@ -17,7 +18,7 @@ def mesure_accuracy(batch_true_links, axiom_links_pred, max_atoms_in_one_type): batch_true_links : (atom_vocab_size, batch_size, max_atoms_in_one_cat) contains the index of the negative atoms axiom_links_pred : (atom_vocab_size, batch_size, max_atoms_in_one_cat) contains the index of the negative atoms """ - padding = max_atoms_in_one_type // 2 - 1 + padding = -1 batch_true_links = batch_true_links.permute(1, 0, 2) correct_links = torch.ones(axiom_links_pred.size()) correct_links[axiom_links_pred != batch_true_links] = 0 diff --git a/Linker/utils_linker.py b/Linker/utils_linker.py index f2f418f..8bb55d1 100644 --- a/Linker/utils_linker.py +++ b/Linker/utils_linker.py @@ -45,18 +45,18 @@ def get_axiom_links(max_atoms_in_one_type, atoms_polarity, batch_axiom_links): for atom_type in list(atom_map_redux.keys()): # filtrer sur atom_batch que ce type puis filtrer avec les indices sur atom polarity l_polarity_plus = [[x for i, x in enumerate(atoms_batch[s_idx]) if atoms_polarity[s_idx, i] - and bool(re.match(r"" + atom_type + "(_{1}\w+)?_\d+\Z", atoms_batch[s_idx][i]))] for s_idx in - range(len(atoms_batch))] + and bool(re.match(r"" + atom_type + "(_{1}\w+)?_\d+\Z", atoms_batch[s_idx][i]))] for s_idx + in range(len(atoms_batch))] l_polarity_minus = [[x for i, x in enumerate(atoms_batch[s_idx]) if not atoms_polarity[s_idx, i] - and bool(re.match(r"" + atom_type + "(_{1}\w+)?_\d+\Z", atoms_batch[s_idx][i]))] for s_idx in - range(len(atoms_batch))] + and bool(re.match(r"" + atom_type + "(_{1}\w+)?_\d+\Z", atoms_batch[s_idx][i]))] for s_idx + in range(len(atoms_batch))] linking_plus_to_minus = pad_sequence( [torch.as_tensor( - [l_polarity_minus[s_idx].index(x) if x in l_polarity_minus[s_idx] else max_atoms_in_one_type // 2 - 1 + [l_polarity_minus[s_idx].index(x) if x in l_polarity_minus[s_idx] else -1 for i, x in enumerate(l_polarity_plus[s_idx])], dtype=torch.long) for s_idx in range(len(atoms_batch))], max_len=max_atoms_in_one_type // 2, - padding_value=max_atoms_in_one_type // 2 - 1) + padding_value=-1) linking_plus_to_minus_all_types.append(linking_plus_to_minus) @@ -108,8 +108,12 @@ def get_atoms_links_batch(category_batch): print("test to create links ", - get_axiom_links(20, torch.stack([torch.as_tensor([False, True, False, False, False, True, False, True, False, False, True, False, False, False, True, False, False, True, False, True, False, False, True, False, False, False, True])]), - [['dr(0,np_1,n_2)', 'n_2', 'dr(0,dl(0,np_1,np_3),np_4)', 'dr(0,np_4,n_5)', 'n_6', 'dl(0,n_6,n_5)', 'dr(0,dl(0,np_3,np_7),np_8)', 'dr(0,np_8,np_9)', 'np_9', 'GOAL:np_7']])) + get_axiom_links(20, torch.stack([torch.as_tensor( + [False, True, False, False, False, True, False, True, False, False, True, False, False, False, True, False, + False, True, False, True, False, False, True, False, False, False, True])]), + [['dr(0,np_1,n_2)', 'n_2', 'dr(0,dl(0,np_1,np_3),np_4)', 'dr(0,np_4,n_5)', 'n_6', 'dl(0,n_6,n_5)', + 'dr(0,dl(0,np_3,np_7),np_8)', 'dr(0,np_8,np_9)', 'np_9', 'GOAL:np_7']])) + # endregion @@ -305,8 +309,10 @@ def find_pos_neg_idexes(atoms_batch): return list_batch -print(" test for get polarities for atoms in categories on ['dr(0,np,n)', 'n', 'dr(0,dl(0,np,np),np)', 'dr(0,np,n)', 'n', 'dl(0,n,n)', 'dr(0,dl(0,np,np),np)', 'dr(0,np,np)', 'np']", - find_pos_neg_idexes([['dr(0,np,n)', 'n', 'dr(0,dl(0,np,np),np)', 'dr(0,np,n)', 'n', 'dl(0,n,n)', 'dr(0,dl(0,np,np),np)', 'dr(0,np,np)', 'np']])) +print( + " test for get polarities for atoms in categories on ['dr(0,np,n)', 'n', 'dr(0,dl(0,np,np),np)', 'dr(0,np,n)', 'n', 'dl(0,n,n)', 'dr(0,dl(0,np,np),np)', 'dr(0,np,np)', 'np']", + find_pos_neg_idexes([['dr(0,np,n)', 'n', 'dr(0,dl(0,np,np),np)', 'dr(0,np,n)', 'n', 'dl(0,n,n)', + 'dr(0,dl(0,np,np),np)', 'dr(0,np,np)', 'np']])) # endregion @@ -349,11 +355,12 @@ print(" test for get GOAL on ['dr(0,s,np)', 's']", get_GOAL(12, [["dr(0,s,np)", # region get idx for pos and neg -def get_pos_idx(atoms_batch, atoms_polarity_batch, max_atoms_in_one_type): +def get_pos_idx(atoms_batch, atoms_polarity_batch, max_atoms_in_one_type, max_atoms_in_sentence): atoms_batch_for_polarities = list( map(lambda sentence: sentence.split(" "), atoms_batch)) - pos_idx = [pad_sequence([torch.as_tensor([i for i, x in enumerate(sentence) if bool( - re.match(r"" + atom_type + "(_{1}\w+)?\Z", atoms_batch_for_polarities[s_idx][i])) and + pos_idx = [pad_sequence([torch.as_tensor([i for i, x in enumerate(sentence) if + bool(re.match(r"" + atom_type + "(_{1}\w+)?\Z", + atoms_batch_for_polarities[s_idx][i])) and atoms_polarity_batch[s_idx][i]]) for s_idx, sentence in enumerate(atoms_batch_for_polarities)], max_len=max_atoms_in_one_type // 2, padding_value=-1) @@ -362,11 +369,12 @@ def get_pos_idx(atoms_batch, atoms_polarity_batch, max_atoms_in_one_type): return torch.stack(pos_idx).permute(1, 0, 2) -def get_neg_idx(atoms_batch, atoms_polarity_batch, max_atoms_in_one_type): +def get_neg_idx(atoms_batch, atoms_polarity_batch, max_atoms_in_one_type, max_atoms_in_sentence): atoms_batch_for_polarities = list( map(lambda sentence: sentence.split(" "), atoms_batch)) - pos_idx = [pad_sequence([torch.as_tensor([i for i, x in enumerate(sentence) if bool( - re.match(r"" + atom_type + "(_{1}\w+)?\Z", atoms_batch_for_polarities[s_idx][i])) and not + pos_idx = [pad_sequence([torch.as_tensor([i for i, x in enumerate(sentence) if + bool(re.match(r"" + atom_type + "(_{1}\w+)?\Z", + atoms_batch_for_polarities[s_idx][i])) and not atoms_polarity_batch[s_idx][i]]) for s_idx, sentence in enumerate(atoms_batch_for_polarities)], max_len=max_atoms_in_one_type // 2, padding_value=-1) @@ -380,6 +388,6 @@ print(" test for cut into pos neg on ['s np [SEP] s [SEP] np s s n n']", get_neg [[False, True, False, False, False, False, True, True, False, True, - False, False]]), 10)) + False, False]]), 10, 50)) # endregion diff --git a/bash_GPU.sh b/bash_GPU.sh index 500c732..9969220 100644 --- a/bash_GPU.sh +++ b/bash_GPU.sh @@ -1,6 +1,6 @@ #!/bin/sh #SBATCH --job-name=Deepgrail_Linker -#SBATCH --partition=GPUNodes +#SBATCH --partition=RTX6000Node #SBATCH --gres=gpu:1 #SBATCH --mem=32000 #SBATCH --gres-flags=enforce-binding diff --git a/logs/logs/Accuracy_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.1 b/logs/logs/Accuracy_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.1 deleted file mode 100644 index 09582fa3c93ec31068f014c18ba3bd65ffe59935..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1142 zcmb1OfPlsI-b$SI_ZQTut-0YS#hX-=n3<>NT9%quVr6uG_skX<h%$x~2dBz%a?gXP z(-P$3=i+coPA)A<Os*7let6n$$@;ZZ<)CVB-Vrk5RC7<}*I0AIQGgLmb$`xxyCbaE zqfu0!<C!{N6Qr66P4y2$5qnoov(G51o!7M+XoFNUqp7Y|P_oaf&&@?qeOztI0UeNP z7Btlcue9v5{yTG`sE+mQ4$uRsW<^tN&7o%>t9{%VMRkdU^8<a5YBn_0r-O{_CAgmP zqNvWAxI5nvq?#Q~_4H@P_V=4*-=L_jYrFT~2&9?=P4(I^GyBAknY&O_KjrD{Hvy^U zL{ps+Y;OPUjNu;?)y$5X@@62_TxhCoFI(7ObC@ZDqI&sl=Jn<v)!b;R8G|kDZy2}! zL{Y7>Z?c^wNHq_d>N}2B_FKN+nv0@ZC->i3E0AhlG}UpDR`#DGSD~hpv@I)QZ9uB| z&{S{RWo4h&s}zA^w!k`;x3(bF{Aj90k6GC-&HK)QqWW6UtQvceY5_FWhb*n_g~VL% zqo{tcZacRlNVOoE>QD)5`wP>Vdr?#;$8gPd0;v{4Q?21?ZO_Ve=Oc>h>pbpSE+Eyy zXsSz{tnI^@x6edT-MsnoPFIj>5j53WCD!(4JZIQZRBuQU^l}HO7DZEi%+A{W@^AYW uD5@u>HQe+7sTM<1Z60N9zsRCn5JmOkPaiY9K&r*jR8O63ZEtdmeJ=pRTuC(m diff --git a/logs/logs/Accuracy_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.3 b/logs/logs/Accuracy_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.3 deleted file mode 100644 index 5442af218aa6bb356f2080bc5dd84cdf9ecfb6cc..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1142 zcmb1OfPlsI-b$Q@H!rGFTXVxviZ`h!F*8rkwJbHS#LCE<>4c^XL>a@0gHvTW>!(4~ zX$f-ib8$E(Czlo_CRd8Kcz>|7ShLJR4yyL%9U&vmYTsmjjWstM1sKs(*UaIv&(!bn zLs88oJaxV%NHr6hY7qu?`{hRKT2NHCZD}{q2B~I7Q+@1{o_$Pb)jt%~HM&y{=zvtS zpsBu{WorLExUC6AwNXHKfF4LSE1K#_7fkJs9qBxZqS{N&`GG!2H5;1hpY9g+ERO|$ zqNtueeRsYgNHsf}>bE;A?PG-Ybfc&a@45Hi2&9?=P4zzxD|>Ore*!3~mkM?En}Aev zqNy%>W@X=MG0y=-b+fysyctL}7n*9>PuBM5)!8?rs6P9UdA&JEH8+~-Be^#A8`dmg zKvCUyWU`$lNHq_d>a){q?Cpw5vQbp~7XLeI1yaq6rh5Jz8~Yb!Jq;+TGj^?rwE?N- zLsQ-5XKT;-OY8@V>L*)R-r9mx^P{O=C}?Z%Hfv`kit1I7vuf-?ss+$ge>AqWPYa!V z5=C{)*6rMmAk~6ss(%>S+UKv=*G5s@m&7&O38Y#GP4(k+Tl?8YGasO+{w3tD<pNSI zjHddBr>(umPD|97x7c-grz=Rc2%743mA3ZB%N~29nEgIO(90d9S`<w+yT7e{&(poN uD5{U-G~Dz6sTM<1Z4zv2zdPJyH;QVZpC2>4K&r*jRBsQowf}RX>M#HqYfmiz diff --git a/logs/logs/Loss_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.2 b/logs/logs/Loss_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.2 deleted file mode 100644 index c9b5e3bf3131b8fa559236aa17551dc3f0055839..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1046 zcmb1OfPlsI-b$Qp35)8~*4%KE;!P?_%*@ksElbTSu`=>&5ZHsF&QWS1Se+Ix7dID+ zPkwQ+sD&lB)AMQj?@K|9V-T8sLzlD3Cz)Sk%?(EZMkJM&*twmOqqk?Fs5~e*b-pG@ zB@>d$_7_}ErB|eDQB+Rf+-{%^Qpt>@QvDj2Q|5K)6cm*PI#UklfK;*|shoX;%W1!5 z{0tP8PyD(A^gt?EkyOsx$K@1uWqlHg%2-+F2l^nDY)C3+Z{c!^%=njwqB3XN?tDX# zN_HfbJ2!AS%`gkoLs1#jeeb^!NF@i7%7d%8oV2Gpx}vB&E!f#_0#eC|q%v#;ms5ic z!(tSb)^3{eW+0VZNGe|};c_aUdhZd6$}<m`*PDY>awDlMS<K}m^CIjfic0^(lkF@) zDtVApb}Zy_YTqbSgQ7C9=-*i@kV;-8m3tR(Ii-H;&OuSBwR1(R4M-&)lFH)wTuvIE zsjpE~7H?*GYYS4zkEF7BK9^IE>>&XZmD3_-)!2hn3LvRGIFHMzhOa&mMP<U4?c9za zm4ZkrTjp^&ZP%Ri4n^hEM6TIRAeBN$DjDW+IepjS=tWV<CgiT=0#YfAq*8Dmm(%G3 z8&y$M>g>F{(-ovr1WD!lxm-@aw_2j6`BmwHUhW{3qDU%*=W#iiZQJ$(#muSM4L3bN mD#eggTF&Eg%J7^kf}-;3_m3G~AeG`sDlgCFa(eqHR~7)^FdM@F diff --git a/logs/logs/Loss_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.4 b/logs/logs/Loss_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.4 deleted file mode 100644 index c3af9b258413271b78351acffec0f41824f7cec3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1046 zcmb1OfPlsI-b$SFnHJZnt-0YS#hX-=n3<>NT9%quVrBG>^W+>9b@Hzlfz@g8a&dF9 z_~aKCi|%ISc52-IHb)9#9D~s88@ilUe#!hAYi>9SFe0gp`o!gQgq8Ufipm?pQ|D`f zR5Br{G&{%T^d#(T5{k;qt?dTdAeGEWDp~e%Ib{jneSo6UPjAWr9gs>EB$XBGxtw@T zeDgt3$rjihpa)XPilp-9DlVt4w1a*qDu2m2KhOuMWJ6M^znsfyN|MbC6qOM(cIO*{ zRI($f6j;pVG_k@m7e%FP@4f#<Ae9_QDw7v*IYr9#XrrhM5$^0a0jcCfQYpQF%jqGH z=Oz@Dejb|gW+0VZNGfm4;c}WNb&(52W$z>A_2wXz+(;^S%;9oUH~H6uqB8pEWIIcc zN**MY(zCgoe6=jEp{Nup`FGX|q>>j&W$!F5r+pF+zoMu#-n}B$2BeY?N#&!NTu!$Z zPSi(Hxp^zgTU(Gyek7HvW^y@kO)q$kqOvS%R*gMKr2vx3XEV5*>=sC`KvCJYZ9BIk zNTnc>N}-utPF2RQ&!edHPv)BK1X3x4q>_0ims8*MjL#@4w+Opyxqws(BdL5fgUiYD zq^~oIO4i+%ce;X9iXf@nGlR=X?d@UIkl&pt=;aPlDT<_W?+h-dPvV(cC}uY0Hr(_8 isT4y~d1y!T8Wfc`etyjG0;v>7Qn_;mmy>znmUIBuOdHVv diff --git a/logs/logs/events.out.tfevents.1655739317.co2-slurm-ng04.19806.0 b/logs/logs/events.out.tfevents.1655739317.co2-slurm-ng04.19806.0 deleted file mode 100644 index d8f3c0aa95cc484017700deac105cacffc3cb025..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 40 rcmb1OfPlsI-b$SHFMQsrthwPR#hX-=n3<>NT9%quVrBF?rj{81-X;vt -- GitLab