diff --git a/Linker/Linker.py b/Linker/Linker.py
index ce256406be8271ec9a951af3f08f7cd7995c7a5a..396639195b6381ad699457dbfe78899af4777e9c 100644
--- a/Linker/Linker.py
+++ b/Linker/Linker.py
@@ -68,7 +68,7 @@ class Linker(Module):
 
         self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
-    def __preprocess_data(self, batch_size, df_axiom_links, sentences_tokens, sentences_mask, validation_rate=0.0):
+    def __preprocess_data(self, batch_size, df_axiom_links, validation_rate=0.0):
         r"""
         Args:
             batch_size : int
@@ -79,6 +79,9 @@ class Linker(Module):
         Returns:
             the training dataloader and the validation dataloader. They contains the list of atoms, their polarities, the axiom links, the sentences tokenized, sentence mask
         """
+        sentences_batch = df_axiom_links["Sentences"].tolist()
+        sentences_tokens, sentences_mask = self.supertagger.sent_tokenizer.fit_transform_tensors(sentences_batch)
+
         atoms_batch = get_atoms_batch(df_axiom_links["sub_tree"])
         atom_tokenizer = AtomTokenizer(atom_map, self.max_atoms_in_sentence)
         atoms_batch_tokenized = atom_tokenizer.convert_batchs_to_ids(atoms_batch)
@@ -154,7 +157,7 @@ class Linker(Module):
 
         return F.log_softmax(link_weights_per_batch, dim=3)
 
-    def train_linker(self, df_axiom_links, sentences_tokens, sentences_mask, validation_rate=0.1, epochs=20,
+    def train_linker(self, df_axiom_links, validation_rate=0.1, epochs=20,
                      batch_size=32, checkpoint=True, validate=True):
         r"""
         Args:
@@ -170,7 +173,6 @@ class Linker(Module):
             Final accuracy and final loss
         """
         training_dataloader, validation_dataloader = self.__preprocess_data(batch_size, df_axiom_links,
-                                                                            sentences_tokens, sentences_mask,
                                                                             validation_rate)
         self.to(self.device)
         for epoch_i in range(0, epochs):
diff --git a/train.py b/train.py
index 8505431ecabdd47b68b8cf232f58f92ea5697ea4..4684d3b7fb816ceb1b04b37aaa40add606db6871 100644
--- a/train.py
+++ b/train.py
@@ -21,4 +21,4 @@ print("Linker")
 linker = Linker(supertagger)
 linker = linker.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
 print("Linker Training")
-linker.train_linker(df_axiom_links, sents_tokenized, sents_mask, validation_rate=0.1, epochs=epochs, batch_size=batch_size, checkpoint=True, validate=True)
+linker.train_linker(df_axiom_links, validation_rate=0.1, epochs=epochs, batch_size=batch_size, checkpoint=True, validate=True)