diff --git a/Configuration/config.ini b/Configuration/config.ini
index c3ccbc2d4759512eb96cb3ae2db0bef7a6d5a939..fedb31786ee8e94c9842dda2a24209c43827183e 100644
--- a/Configuration/config.ini
+++ b/Configuration/config.ini
@@ -5,16 +5,17 @@ transformers = 4.16.2
 symbols_vocab_size=26
 atom_vocab_size=18
 max_len_sentence=290
-max_atoms_in_sentence=874
+max_atoms_in_sentence=875
 max_atoms_in_one_type=324
 
 [MODEL_ENCODER]
 dim_encoder = 768
 
 [MODEL_LINKER]
-nhead=4
+nhead=16
 dim_emb_atom = 256
-num_layers=2
+dim_feedforward_transformer = 512
+num_layers=3
 dim_cat_inter=512
 dim_cat_out=256
 dim_intermediate_FFN=128
@@ -23,7 +24,7 @@ dropout=0.1
 sinkhorn_iters=5
 
 [MODEL_TRAINING]
-batch_size=32
-epoch=25
+batch_size=16
+epoch=30
 seed_val=42
 learning_rate=2e-3
\ No newline at end of file
diff --git a/Linker/Linker.py b/Linker/Linker.py
index ee8842514e241cfe0ec47b9cf68730cebac92050..3012c7e1e58f9693d7556acbccae6611e85b2ec0 100644
--- a/Linker/Linker.py
+++ b/Linker/Linker.py
@@ -22,7 +22,7 @@ from Linker.Sinkhorn import sinkhorn_fn_no_exp as sinkhorn
 from Linker.AtomTokenizer import AtomTokenizer
 from Linker.atom_map import atom_map, atom_map_redux
 from Linker.eval import mesure_accuracy, SinkhornLoss
-from Linker.utils_linker import FFN, get_axiom_links, get_GOAL, get_pos_idx, get_num_atoms_batch
+from Linker.utils_linker import FFN, get_axiom_links, get_GOAL, get_pos_idx, get_num_atoms_batch, get_neg_idx
 from Supertagger import SuperTagger
 from utils import pad_sequence
 
@@ -69,6 +69,7 @@ class Linker(Module):
         # Transformer
         self.nhead = int(Configuration.modelLinkerConfig['nhead'])
         self.dim_emb_atom = int(Configuration.modelLinkerConfig['dim_emb_atom'])
+        self.dim_feedforward_transformer = int(Configuration.modelLinkerConfig['dim_feedforward_transformer'])
         self.num_layers = int(Configuration.modelLinkerConfig['num_layers'])
         # torch cat
         self.dim_cat_inter = int(Configuration.modelLinkerConfig['dim_cat_out'])
@@ -78,7 +79,6 @@ class Linker(Module):
         # sinkhorn
         self.sinkhorn_iters = int(Configuration.modelLinkerConfig['sinkhorn_iters'])
         # settings
-        self.batch_size = int(Configuration.modelTrainingConfig['batch_size'])
         self.max_len_sentence = int(Configuration.datasetConfig['max_len_sentence'])
         self.max_atoms_in_sentence = int(Configuration.datasetConfig['max_atoms_in_sentence'])
         self.max_atoms_in_one_type = int(Configuration.datasetConfig['max_atoms_in_one_type'])
@@ -95,11 +95,13 @@ class Linker(Module):
         # Atoms embedding
         self.atoms_tokenizer = AtomTokenizer(atom_map, self.max_atoms_in_sentence)
         self.atom_map_redux = atom_map_redux
+        self.padding_id = atom_map["[PAD]"]
         self.sub_atoms_type_list = list(atom_map_redux.keys())
-        self.atom_encoder = Embedding(self.max_atoms_in_sentence, self.dim_emb_atom, padding_idx=atom_map["[PAD]"])
+        self.atom_encoder = Embedding(atom_vocab_size, self.dim_emb_atom, padding_idx=self.padding_id)
         self.atom_encoder.weight.data.uniform_(-0.1, 0.1)
         self.position_encoder = PositionalEncoding(self.dim_emb_atom, 0.1, max_len=self.max_atoms_in_sentence)
-        encoder_layer = TransformerEncoderLayer(d_model=self.dim_emb_atom, nhead=self.nhead)
+        encoder_layer = TransformerEncoderLayer(d_model=self.dim_emb_atom, nhead=self.nhead,
+                                                dim_feedforward=self.dim_feedforward_transformer, dropout=0.1)
         self.transformer = TransformerEncoder(encoder_layer, num_layers=self.num_layers)
 
         # Concatenation with word embedding
@@ -146,8 +148,8 @@ class Linker(Module):
 
         num_atoms_per_word = get_num_atoms_batch(df_axiom_links["Z"], self.max_len_sentence)
 
-        pos_idx = get_pos_idx(atoms_batch, atoms_polarity_batch, self.max_atoms_in_one_type)
-        neg_idx = get_pos_idx(atoms_batch, atoms_polarity_batch, self.max_atoms_in_one_type)
+        pos_idx = get_pos_idx(atoms_batch, atoms_polarity_batch, self.max_atoms_in_one_type, self.max_atoms_in_sentence)
+        neg_idx = get_neg_idx(atoms_batch, atoms_polarity_batch, self.max_atoms_in_one_type, self.max_atoms_in_sentence)
 
         truth_links_batch = get_axiom_links(self.max_atoms_in_one_type, atoms_polarity_batch,
                                             df_axiom_links["Y"])
@@ -170,12 +172,11 @@ class Linker(Module):
         print("End preprocess Data")
         return training_dataloader, validation_dataloader
 
-    def forward(self, batch_num_atoms_per_word, batch_atoms, src_mask, batch_pos_idx, batch_neg_idx, sents_embedding):
+    def forward(self, batch_num_atoms_per_word, batch_atoms, batch_pos_idx, batch_neg_idx, sents_embedding):
         r"""
         Args:
             batch_num_atoms_per_word : (batch_size, len_sentence) flattened categories
             batch_atoms : atoms tok
-            src_mask : atoms mask
             batch_pos_idx : (batch_size, atom_vocab_size, max atom in one cat) flattened categories polarities
             batch_neg_idx : (batch_size, atom_vocab_size, max atom in one cat) flattened categories polarities
             sents_embedding : (batch_size, len_sentence, dim_encoder) output of BERT for context
@@ -187,10 +188,14 @@ class Linker(Module):
             [torch.repeat_interleave(input=sents_embedding[i], repeats=batch_num_atoms_per_word[i], dim=0)
              for i in range(len(sents_embedding))], max_len=self.max_atoms_in_sentence, padding_value=0)
 
+        # atoms emebedding
+        src_key_padding_mask = torch.eq(batch_atoms, self.padding_id)
+        src_mask = generate_square_subsequent_mask(self.max_atoms_in_sentence).to(self.device)
         atoms_embedding = self.atom_encoder(batch_atoms) * math.sqrt(self.dim_emb_atom)
         atoms_embedding = self.position_encoder(atoms_embedding)
         atoms_embedding = atoms_embedding.permute(1, 0, 2)
-        atoms_embedding = self.transformer(atoms_embedding, src_mask)
+        atoms_embedding = self.transformer(atoms_embedding, src_mask,
+                                           src_key_padding_mask=src_key_padding_mask)
         atoms_embedding = atoms_embedding.permute(1, 0, 2)
 
         # cat
@@ -280,7 +285,6 @@ class Linker(Module):
 
         # For each batch of training data...
         with tqdm(training_dataloader, unit="batch") as tepoch:
-            src_mask = generate_square_subsequent_mask(self.max_atoms_in_sentence).to(self.device)
             for batch in tepoch:
                 # Unpack this training batch from our dataloader
                 batch_num_atoms = batch[0].to(self.device)
@@ -297,10 +301,10 @@ class Linker(Module):
                 output = self.Supertagger.forward(batch_sentences_tokens, batch_sentences_mask)
 
                 # Run the Linker on the atoms
-                logits_predictions = self(batch_num_atoms, batch_atoms_tok, src_mask, batch_pos_idx, batch_neg_idx,
+                logits_predictions = self(batch_num_atoms, batch_atoms_tok, batch_pos_idx, batch_neg_idx,
                                           output['word_embeding'])
 
-                linker_loss = self.cross_entropy_loss(logits_predictions, batch_true_links)
+                linker_loss = self.cross_entropy_loss(logits_predictions, batch_true_links, self.max_atoms_in_one_type)
                 # Perform a backward pass to calculate the gradients.
                 epoch_loss += float(linker_loss)
                 linker_loss.backward()
@@ -334,19 +338,17 @@ class Linker(Module):
 
         output = self.Supertagger.forward(batch_sentences_tokens, batch_sentences_mask)
 
-        src_mask = generate_square_subsequent_mask(self.max_atoms_in_sentence).to(self.device)
-        logits_predictions = self(batch_num_atoms, batch_atoms_tok, src_mask, batch_pos_idx, batch_neg_idx, output[
+        logits_predictions = self(batch_num_atoms, batch_atoms_tok, batch_pos_idx, batch_neg_idx, output[
             'word_embeding'])  # atom_vocab, batch_size, max atoms in one type, max atoms in one type
         axiom_links_pred = torch.argmax(logits_predictions, dim=3)  # atom_vocab, batch_size, max atoms in one type
 
         print('\n')
-        print("Tokens de la phrase : ", batch_sentences_tokens[1])
         print("Les vrais liens de la catégorie n : ", batch_true_links[1][2][:100])
         print("Les prédictions : ", axiom_links_pred[2][1][:100])
         print('\n')
 
         accuracy = mesure_accuracy(batch_true_links, axiom_links_pred, self.max_atoms_in_one_type)
-        loss = self.cross_entropy_loss(logits_predictions, batch_true_links)
+        loss = self.cross_entropy_loss(logits_predictions, batch_true_links, self.max_atoms_in_one_type)
 
         return loss, accuracy
 
diff --git a/Linker/eval.py b/Linker/eval.py
index 2c8c578687bec168d04fd1ee81e0357ec2f1dac2..05c096639ee2d12f9b6fa38f44833067b4169440 100644
--- a/Linker/eval.py
+++ b/Linker/eval.py
@@ -1,14 +1,15 @@
 import torch
 from torch.nn import Module
 from torch.nn.functional import nll_loss
+from Linker.atom_map import atom_map, atom_map_redux
 
 
 class SinkhornLoss(Module):
     def __init__(self):
         super(SinkhornLoss, self).__init__()
 
-    def forward(self, predictions, truths):
-        return sum(nll_loss(link.flatten(0, 1), perm.flatten(), reduction='mean')
+    def forward(self, predictions, truths, max_atoms_in_one_type):
+        return sum(nll_loss(link.flatten(0, 1), perm.flatten(), reduction='mean', ignore_index=-1)
                    for link, perm in zip(predictions, truths.permute(1, 0, 2)))
 
 
@@ -17,7 +18,7 @@ def mesure_accuracy(batch_true_links, axiom_links_pred, max_atoms_in_one_type):
     batch_true_links : (atom_vocab_size, batch_size, max_atoms_in_one_cat) contains the index of the negative atoms
     axiom_links_pred : (atom_vocab_size, batch_size, max_atoms_in_one_cat) contains the index of the negative atoms
     """
-    padding = max_atoms_in_one_type // 2 - 1
+    padding = -1
     batch_true_links = batch_true_links.permute(1, 0, 2)
     correct_links = torch.ones(axiom_links_pred.size())
     correct_links[axiom_links_pred != batch_true_links] = 0
diff --git a/Linker/utils_linker.py b/Linker/utils_linker.py
index f2f418ff079dc8a17d5fb18094535566c75d58ec..8bb55d1673f82ce8863b8177ce537e26249d52cb 100644
--- a/Linker/utils_linker.py
+++ b/Linker/utils_linker.py
@@ -45,18 +45,18 @@ def get_axiom_links(max_atoms_in_one_type, atoms_polarity, batch_axiom_links):
     for atom_type in list(atom_map_redux.keys()):
         # filtrer sur atom_batch que ce type puis filtrer avec les indices sur atom polarity
         l_polarity_plus = [[x for i, x in enumerate(atoms_batch[s_idx]) if atoms_polarity[s_idx, i]
-                            and bool(re.match(r"" + atom_type + "(_{1}\w+)?_\d+\Z", atoms_batch[s_idx][i]))] for s_idx in
-                           range(len(atoms_batch))]
+                            and bool(re.match(r"" + atom_type + "(_{1}\w+)?_\d+\Z", atoms_batch[s_idx][i]))] for s_idx
+                           in range(len(atoms_batch))]
         l_polarity_minus = [[x for i, x in enumerate(atoms_batch[s_idx]) if not atoms_polarity[s_idx, i]
-                             and bool(re.match(r"" + atom_type + "(_{1}\w+)?_\d+\Z", atoms_batch[s_idx][i]))] for s_idx in
-                            range(len(atoms_batch))]
+                             and bool(re.match(r"" + atom_type + "(_{1}\w+)?_\d+\Z", atoms_batch[s_idx][i]))] for s_idx
+                            in range(len(atoms_batch))]
 
         linking_plus_to_minus = pad_sequence(
             [torch.as_tensor(
-                [l_polarity_minus[s_idx].index(x) if x in l_polarity_minus[s_idx] else max_atoms_in_one_type // 2 - 1
+                [l_polarity_minus[s_idx].index(x) if x in l_polarity_minus[s_idx] else -1
                  for i, x in enumerate(l_polarity_plus[s_idx])], dtype=torch.long)
                 for s_idx in range(len(atoms_batch))], max_len=max_atoms_in_one_type // 2,
-            padding_value=max_atoms_in_one_type // 2 - 1)
+            padding_value=-1)
 
         linking_plus_to_minus_all_types.append(linking_plus_to_minus)
 
@@ -108,8 +108,12 @@ def get_atoms_links_batch(category_batch):
 
 
 print("test to create links ",
-      get_axiom_links(20, torch.stack([torch.as_tensor([False, True, False, False, False, True, False, True, False, False, True, False, False, False, True, False, False, True, False, True, False, False, True, False, False, False, True])]),
-                      [['dr(0,np_1,n_2)', 'n_2', 'dr(0,dl(0,np_1,np_3),np_4)', 'dr(0,np_4,n_5)', 'n_6', 'dl(0,n_6,n_5)', 'dr(0,dl(0,np_3,np_7),np_8)', 'dr(0,np_8,np_9)', 'np_9', 'GOAL:np_7']]))
+      get_axiom_links(20, torch.stack([torch.as_tensor(
+          [False, True, False, False, False, True, False, True, False, False, True, False, False, False, True, False,
+           False, True, False, True, False, False, True, False, False, False, True])]),
+                      [['dr(0,np_1,n_2)', 'n_2', 'dr(0,dl(0,np_1,np_3),np_4)', 'dr(0,np_4,n_5)', 'n_6', 'dl(0,n_6,n_5)',
+                        'dr(0,dl(0,np_3,np_7),np_8)', 'dr(0,np_8,np_9)', 'np_9', 'GOAL:np_7']]))
+
 
 # endregion
 
@@ -305,8 +309,10 @@ def find_pos_neg_idexes(atoms_batch):
     return list_batch
 
 
-print(" test for get polarities for atoms in categories on ['dr(0,np,n)', 'n', 'dr(0,dl(0,np,np),np)', 'dr(0,np,n)', 'n', 'dl(0,n,n)', 'dr(0,dl(0,np,np),np)', 'dr(0,np,np)', 'np']",
-      find_pos_neg_idexes([['dr(0,np,n)', 'n', 'dr(0,dl(0,np,np),np)', 'dr(0,np,n)', 'n', 'dl(0,n,n)', 'dr(0,dl(0,np,np),np)', 'dr(0,np,np)', 'np']]))
+print(
+    " test for get polarities for atoms in categories on ['dr(0,np,n)', 'n', 'dr(0,dl(0,np,np),np)', 'dr(0,np,n)', 'n', 'dl(0,n,n)', 'dr(0,dl(0,np,np),np)', 'dr(0,np,np)', 'np']",
+    find_pos_neg_idexes([['dr(0,np,n)', 'n', 'dr(0,dl(0,np,np),np)', 'dr(0,np,n)', 'n', 'dl(0,n,n)',
+                          'dr(0,dl(0,np,np),np)', 'dr(0,np,np)', 'np']]))
 
 
 # endregion
@@ -349,11 +355,12 @@ print(" test for get GOAL on ['dr(0,s,np)', 's']", get_GOAL(12, [["dr(0,s,np)",
 
 # region get idx for pos and neg
 
-def get_pos_idx(atoms_batch, atoms_polarity_batch, max_atoms_in_one_type):
+def get_pos_idx(atoms_batch, atoms_polarity_batch, max_atoms_in_one_type, max_atoms_in_sentence):
     atoms_batch_for_polarities = list(
         map(lambda sentence: sentence.split(" "), atoms_batch))
-    pos_idx = [pad_sequence([torch.as_tensor([i for i, x in enumerate(sentence) if bool(
-        re.match(r"" + atom_type + "(_{1}\w+)?\Z", atoms_batch_for_polarities[s_idx][i])) and
+    pos_idx = [pad_sequence([torch.as_tensor([i for i, x in enumerate(sentence) if
+                                              bool(re.match(r"" + atom_type + "(_{1}\w+)?\Z",
+                                                            atoms_batch_for_polarities[s_idx][i])) and
                                               atoms_polarity_batch[s_idx][i]])
                              for s_idx, sentence in enumerate(atoms_batch_for_polarities)],
                             max_len=max_atoms_in_one_type // 2, padding_value=-1)
@@ -362,11 +369,12 @@ def get_pos_idx(atoms_batch, atoms_polarity_batch, max_atoms_in_one_type):
     return torch.stack(pos_idx).permute(1, 0, 2)
 
 
-def get_neg_idx(atoms_batch, atoms_polarity_batch, max_atoms_in_one_type):
+def get_neg_idx(atoms_batch, atoms_polarity_batch, max_atoms_in_one_type, max_atoms_in_sentence):
     atoms_batch_for_polarities = list(
         map(lambda sentence: sentence.split(" "), atoms_batch))
-    pos_idx = [pad_sequence([torch.as_tensor([i for i, x in enumerate(sentence) if bool(
-        re.match(r"" + atom_type + "(_{1}\w+)?\Z", atoms_batch_for_polarities[s_idx][i])) and not
+    pos_idx = [pad_sequence([torch.as_tensor([i for i, x in enumerate(sentence) if
+                                              bool(re.match(r"" + atom_type + "(_{1}\w+)?\Z",
+                                                            atoms_batch_for_polarities[s_idx][i])) and not
                                               atoms_polarity_batch[s_idx][i]])
                              for s_idx, sentence in enumerate(atoms_batch_for_polarities)],
                             max_len=max_atoms_in_one_type // 2, padding_value=-1)
@@ -380,6 +388,6 @@ print(" test for cut into pos neg on ['s np [SEP] s [SEP] np s s n n']", get_neg
                                                                                          [[False, True, False, False,
                                                                                            False, False, True, True,
                                                                                            False, True,
-                                                                                           False, False]]), 10))
+                                                                                           False, False]]), 10, 50))
 
 # endregion
diff --git a/bash_GPU.sh b/bash_GPU.sh
index 500c7326f767af683a3c0a31e2e0026f3f2e74d3..99692203e0a64519649244caa479801da0500a2a 100644
--- a/bash_GPU.sh
+++ b/bash_GPU.sh
@@ -1,6 +1,6 @@
 #!/bin/sh
 #SBATCH --job-name=Deepgrail_Linker
-#SBATCH --partition=GPUNodes
+#SBATCH --partition=RTX6000Node
 #SBATCH --gres=gpu:1
 #SBATCH --mem=32000
 #SBATCH --gres-flags=enforce-binding
diff --git a/logs/logs/Accuracy_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.1 b/logs/logs/Accuracy_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.1
deleted file mode 100644
index 09582fa3c93ec31068f014c18ba3bd65ffe59935..0000000000000000000000000000000000000000
Binary files a/logs/logs/Accuracy_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.1 and /dev/null differ
diff --git a/logs/logs/Accuracy_Train/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.1 b/logs/logs/Accuracy_Train/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.1
new file mode 100644
index 0000000000000000000000000000000000000000..836da89cfb7f563cf1ff1108b2eed3dd66ef9ff8
Binary files /dev/null and b/logs/logs/Accuracy_Train/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.1 differ
diff --git a/logs/logs/Accuracy_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.3 b/logs/logs/Accuracy_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.3
deleted file mode 100644
index 5442af218aa6bb356f2080bc5dd84cdf9ecfb6cc..0000000000000000000000000000000000000000
Binary files a/logs/logs/Accuracy_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.3 and /dev/null differ
diff --git a/logs/logs/Accuracy_Validation/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.3 b/logs/logs/Accuracy_Validation/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.3
new file mode 100644
index 0000000000000000000000000000000000000000..1945341e16f8ba0d0acfb9bd7fa891e2b53b9552
Binary files /dev/null and b/logs/logs/Accuracy_Validation/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.3 differ
diff --git a/logs/logs/Loss_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.2 b/logs/logs/Loss_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.2
deleted file mode 100644
index c9b5e3bf3131b8fa559236aa17551dc3f0055839..0000000000000000000000000000000000000000
Binary files a/logs/logs/Loss_Train/events.out.tfevents.1655740922.co2-slurm-ng04.19806.2 and /dev/null differ
diff --git a/logs/logs/Loss_Train/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.2 b/logs/logs/Loss_Train/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.2
new file mode 100644
index 0000000000000000000000000000000000000000..89acad93d838280f7f49a8320892c5c3d1b5440c
Binary files /dev/null and b/logs/logs/Loss_Train/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.2 differ
diff --git a/logs/logs/Loss_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.4 b/logs/logs/Loss_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.4
deleted file mode 100644
index c3af9b258413271b78351acffec0f41824f7cec3..0000000000000000000000000000000000000000
Binary files a/logs/logs/Loss_Validation/events.out.tfevents.1655740922.co2-slurm-ng04.19806.4 and /dev/null differ
diff --git a/logs/logs/Loss_Validation/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.4 b/logs/logs/Loss_Validation/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.4
new file mode 100644
index 0000000000000000000000000000000000000000..27f3fb8fb1adb2f8cb3f308002e5aceb72ce8ff3
Binary files /dev/null and b/logs/logs/Loss_Validation/events.out.tfevents.1656000220.co2-slurm-ngrtx01.97600.4 differ
diff --git a/logs/logs/events.out.tfevents.1655739317.co2-slurm-ng04.19806.0 b/logs/logs/events.out.tfevents.1655739317.co2-slurm-ng04.19806.0
deleted file mode 100644
index d8f3c0aa95cc484017700deac105cacffc3cb025..0000000000000000000000000000000000000000
Binary files a/logs/logs/events.out.tfevents.1655739317.co2-slurm-ng04.19806.0 and /dev/null differ
diff --git a/logs/logs/events.out.tfevents.1655998955.co2-slurm-ngrtx01.97600.0 b/logs/logs/events.out.tfevents.1655998955.co2-slurm-ngrtx01.97600.0
new file mode 100644
index 0000000000000000000000000000000000000000..b701efbbdba2cec059713e10b820c830a690ea70
Binary files /dev/null and b/logs/logs/events.out.tfevents.1655998955.co2-slurm-ngrtx01.97600.0 differ
diff --git a/train.py b/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..fdf3936a593eaf3ceecc042167694b57caec06d2
--- /dev/null
+++ b/train.py
@@ -0,0 +1,17 @@
+import torch
+from Configuration import Configuration
+from Linker import *
+from utils import read_csv_pgbar
+
+torch.cuda.empty_cache()
+batch_size = int(Configuration.modelTrainingConfig['batch_size'])
+nb_sentences = batch_size * 800
+epochs = int(Configuration.modelTrainingConfig['epoch'])
+
+file_path_axiom_links = 'Datasets/goldANDsilver_dataset_links.csv'
+df_axiom_links = read_csv_pgbar(file_path_axiom_links, nb_sentences)
+
+print("Linker")
+linker = Linker("models/flaubert_super_98_V2_50e.pt")
+print("\nLinker Training\n")
+linker.train_linker(df_axiom_links, validation_rate=0.1, epochs=epochs, batch_size=batch_size, checkpoint=False, tensorboard=True)
\ No newline at end of file