from SuperTagger.SuperTagger import SuperTagger from SuperTagger.Utils.helpers import categorical_accuracy_str #### DATA #### a_s = "( 1 ) parmi les huit \" partants \" acquis ou potentiels , MM. Lacombe , Koehler et Laroze ne sont pas membres " \ "du PCF . " tags_s = [['let', 'dr(0,s,s)', 'let', 'dr(0,dr(0,s,s),np)', 'dr(0,np,n)', 'dr(0,n,n)', 'let', 'n', 'let', 'dl(0,n,n)', 'dr(0,dl(0,dl(0,n,n),dl(0,n,n)),dl(0,n,n))', 'dl(0,n,n)', 'let', 'dr(0,np,np)', 'np', 'dr(0,dl(0,np,np),np)', 'np', 'dr(0,dl(0,np,np),np)', 'np', 'dr(0,dl(0,np,s),dl(0,np,s))', 'dr(0,dl(0,np,s),np)', 'dl(1,s,s)', 'np', 'dr(0,dl(0,np,np),n)', 'n', 'dl(0,s,txt)']] #### MODEL #### tagger = SuperTagger() model = "models/flaubert_super_98%_V2_50e/flaubert_super_98%_V2_50e.pt" tagger.load_weights(model) #### TEST #### _, pred_convert = tagger.predict(a_s) print("Model : ", model) print("\tLen Text : ", len(a_s.split())) print("\tLen tags : ", len(tags_s[0])) print("\tLen pred_convert : ", len(pred_convert[0])) print() print("\tText : ", a_s) print() print("\tTags : ", tags_s[0]) print() print("\tPred_convert : ", pred_convert[0]) print() print("\tScore :", categorical_accuracy_str(pred_convert, tags_s))