From 6f6039fdfe3bdff728cfbe16719400159478d61e Mon Sep 17 00:00:00 2001 From: dlandre2 <dlandre2@univ-fcomte.fr> Date: Mon, 29 Jul 2024 13:55:20 +0200 Subject: [PATCH] maj --- .idea/.name | 1 + README.md | 6 +- characterizationUseCase.py | 3 - .../openTimeSeriesJson.cpython-310.pyc | Bin 0 -> 4377 bytes hpc_case/openTimeSeriesJson.py | 56 +++++++++--------- 5 files changed, 34 insertions(+), 32 deletions(-) create mode 100644 .idea/.name create mode 100644 hpc_case/__pycache__/openTimeSeriesJson.cpython-310.pyc diff --git a/.idea/.name b/.idea/.name new file mode 100644 index 0000000..e347a86 --- /dev/null +++ b/.idea/.name @@ -0,0 +1 @@ +characterizationUseCase.py \ No newline at end of file diff --git a/README.md b/README.md index d65e2a0..976b93e 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,7 @@ #### **Seasonal study of user demand and IT system usage in datacenters artifact** + + **Brief presentation:** This directory contains the data and python files used to obtain the results of the study on the characterization of the seasonality of different time series from 6 HPC workloads and from the Wikipedia workload. The directory consists of the following elements: @@ -10,6 +12,8 @@ This directory contains the data and python files used to obtain the results of - The "characterizationUseCase.py" file allows you to run and obtain the results of the characterization use case example. +Python files were run using python 3. + **Packages needed:** @@ -23,7 +27,7 @@ This directory contains the data and python files used to obtain the results of - sktime (to use the TBATS forecasting method) - scipy (to use the periodogram, the Kruskal-Wallis test and the gaussian_kde method) - scikit_posthocs (to use the Conover-Iman test) -- statsmodels (to use the ADF test, the KPSS test and the lowess, MSTL and STL methods) +- statsmodels (to use the ADF test, the KPSS test and the LOWESS, MSTL and STL methods) diff --git a/characterizationUseCase.py b/characterizationUseCase.py index cb4b7fb..c528805 100644 --- a/characterizationUseCase.py +++ b/characterizationUseCase.py @@ -60,9 +60,6 @@ m = Prophet(seasonality_mode = 'additive', daily_seasonality=True, weekly_seasonality=True, yearly_seasonality=False) - -# m.add_country_holidays(country_name = 'US') # Vacances du pays dans lequel a tourné le workload -# m.add_seasonality(name = 'monthly', period = 84, fourier_order = results[0][1]) # Autre saisonnalité m.fit(df[:-steps]) future = m.make_future_dataframe(periods = steps, freq = 'H') future['floor'] = 0 diff --git a/hpc_case/__pycache__/openTimeSeriesJson.cpython-310.pyc b/hpc_case/__pycache__/openTimeSeriesJson.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f2e34487c6c464ed94a0bac13afbdedb7eed42a1 GIT binary patch literal 4377 zcmd1j<>g{vU|<M7w=C_y00YBg5C<7^FfcGUFfcF_hp;g)q%fo~<}gGtq%cJ>rZS~6 zrZ6`%_47tCr!p*HNo8Kh7{waSkiy8qz{1eX%*c?(VaQM{UCzkJ0D_SWj0`C(IP|e$ z=rc#r$BIKAJBGes6n$(s^l@P5%SX}2jzb?OhQ4kTeH=LSabf6Nj-rnfhdyo$eTPx> zapBO%gQ4#}iau@}`gk$){YKHpgF_!5iat(5h6#+t5-2)(ap>g7qSF*bCm#--0$6kg zq3Gntp;HixPSp4pz@bwJi_RVtI|Xs*6vm=+C5lcV96Cj?=sbp^Qy7O%Q7k$iqv#aD zp;HV)CsQ#4icV1+I>oW*lts}ghC`<W7M)foI>mA5l*FPl97U%D4xLh1be5p#l*FM^ z8jH?}C_1HZ=#;^ta~+CKX&gFbvFJRFqEiNkPB|<(U!dre#i3IkLnm`FD~e7zB%ORn zb%6r1&J@OA21AAk%*DzmdKrTmH057{>Knf*yOPY@)cE4mqRiCd_^jgmy!ecQ<oJ}t zl0<#SoSgjR#FEq$=lr77;^4~SlGI$syd2NGlA_dt%oIJ4>RXIOq#EIznVOqe;#!)M zS_C$NRQ<lGC5g$Yc_l@qxe)zsq<H~JzguQbNor9l#4A<Sq?r@o>FpWd;~D{RggI%N zgFKy`AsTH+(-@kU=~L>Sn3)LCZ9%MV^oXk>S|>()5v>y`q#>?#Al9`=I#J`ulvoo` zW5<wKZHRa=BUTGqj2Pk8=bKnu?3JHXj1d<^=)s5uBJ?1IA|(8+2)hkQ4{FHk6V{6w z=GufcAVS-Kuwt}uHo>jKuQWF)wFqlS6Qv6ytclWv6mpQz#*?!VE=1CW8s2!4EJ8PG zi0cv)B#1D_lY$U7poY4p;w=_%vCol~nUk8An45ZwCBGmw?-mP)e~Tq2KQZN&Jb{V> zy8@&@$F2Y=q;9EWvjRy0EGTcuU{eSSwObO{WI+LROBS09JS=WWqDmuWXmlxLZ=vZz za_=ogR0ENu;9e0!RRZ^f5UM!X`QoTz2!{(}DT8jo1(6*K7esQ)Eoqo`Btf_X1z?hJ zr}4l<z>X4x@es}tMI<!jFhmkYb`p{>lKr=25r!ZM!<{9BkcK;q4<QD2nlOS7cic*b zA{7P(2=S{>KO;XkRX-&sF)yVkRlg*+K)*OOu{b|3F-Nz!q%@^cH$P3cv^cd$HzhSU zF)u|IgfmNYi@~iX-O}R3^i<u<JY7)33e<Q>Eh^RrHMEiwi&OPMIVdDEH#HdC3iB$? z&(kZYyv1RYo1apelWNBZ8VGpAz`(%4z{0}A$ipb}pM{x3niZRRIjA{!Xs|v!@?dvh Kkta)^%6|Ym0uk2$ literal 0 HcmV?d00001 diff --git a/hpc_case/openTimeSeriesJson.py b/hpc_case/openTimeSeriesJson.py index fb6e3ee..d8798f0 100644 --- a/hpc_case/openTimeSeriesJson.py +++ b/hpc_case/openTimeSeriesJson.py @@ -2,120 +2,120 @@ import json ### Maximum number of allocated cores by the system -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresSystemAnlIntrepid.json" +filename = "time_series_json_hpc_data/AllocatedCoresSystemAnlIntrepid.json" with open(filename, 'r') as file: AllocatedCoresSystemAnlIntrepid = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresSystemCiematEuler.json" +filename = "time_series_json_hpc_data/AllocatedCoresSystemCiematEuler.json" with open(filename, 'r') as file: AllocatedCoresSystemCiematEuler = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresSystemMetacentrum.json" +filename = "time_series_json_hpc_data/AllocatedCoresSystemMetacentrum.json" with open(filename, 'r') as file: AllocatedCoresSystemMetacentrum = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresSystemMetacentrumFiltered.json" +filename = "time_series_json_hpc_data/AllocatedCoresSystemMetacentrumFiltered.json" with open(filename, 'r') as file: AllocatedCoresSystemMetacentrumFiltered = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresSystemPIKIPLEX.json" +filename = "time_series_json_hpc_data/AllocatedCoresSystemPIKIPLEX.json" with open(filename, 'r') as file: AllocatedCoresSystemPIKIPLEX = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresSystemRICC.json" +filename = "time_series_json_hpc_data/AllocatedCoresSystemRICC.json" with open(filename, 'r') as file: AllocatedCoresSystemRICC = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresSystemUniLuGaia.json" +filename = "time_series_json_hpc_data/AllocatedCoresSystemUniLuGaia.json" with open(filename, 'r') as file: AllocatedCoresSystemUniLuGaia = json.load(file) ### Maximum number of requested cores by the users -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresAnlIntrepid.json" +filename = "time_series_json_hpc_data/AllocatedCoresAnlIntrepid.json" with open(filename, 'r') as file: AllocatedCoresAnlIntrepid = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresCiematEuler.json" +filename = "time_series_json_hpc_data/AllocatedCoresCiematEuler.json" with open(filename, 'r') as file: AllocatedCoresCiematEuler = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresMetacentrum.json" +filename = "time_series_json_hpc_data/AllocatedCoresMetacentrum.json" with open(filename, 'r') as file: AllocatedCoresMetacentrum = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresMetacentrumFiltered.json" +filename = "time_series_json_hpc_data/AllocatedCoresMetacentrumFiltered.json" with open(filename, 'r') as file: AllocatedCoresMetacentrumFiltered = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresPIKIPLEX.json" +filename = "time_series_json_hpc_data/AllocatedCoresPIKIPLEX.json" with open(filename, 'r') as file: AllocatedCoresPIKIPLEX = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresRICC.json" +filename = "time_series_json_hpc_data/AllocatedCoresRICC.json" with open(filename, 'r') as file: AllocatedCoresRICC = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/AllocatedCoresUniLuGaia.json" +filename = "time_series_json_hpc_data/AllocatedCoresUniLuGaia.json" with open(filename, 'r') as file: AllocatedCoresUniLuGaia = json.load(file) ### Workload mass -filename = "hpc_case/time_series_json_hpc_data/MassJobsAnlIntrepid.json" +filename = "time_series_json_hpc_data/MassJobsAnlIntrepid.json" with open(filename, 'r') as file: MassJobsAnlIntrepid = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/MassJobsCiematEuler.json" +filename = "time_series_json_hpc_data/MassJobsCiematEuler.json" with open(filename, 'r') as file: MassJobsCiematEuler = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/MassJobsMetacentrum.json" +filename = "time_series_json_hpc_data/MassJobsMetacentrum.json" with open(filename, 'r') as file: MassJobsMetacentrum = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/MassJobsMetacentrumFiltered.json" +filename = "time_series_json_hpc_data/MassJobsMetacentrumFiltered.json" with open(filename, 'r') as file: MassJobsMetacentrumFiltered = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/MassJobsPIKIPLEX.json" +filename = "time_series_json_hpc_data/MassJobsPIKIPLEX.json" with open(filename, 'r') as file: MassJobsPIKIPLEX = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/MassJobsRICC.json" +filename = "time_series_json_hpc_data/MassJobsRICC.json" with open(filename, 'r') as file: MassJobsRICC = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/MassJobsUniLuGaia.json" +filename = "time_series_json_hpc_data/MassJobsUniLuGaia.json" with open(filename, 'r') as file: MassJobsUniLuGaia = json.load(file) ### Number of jobs -filename = "hpc_case/time_series_json_hpc_data/NumberJobsAnlIntrepid.json" +filename = "time_series_json_hpc_data/NumberJobsAnlIntrepid.json" with open(filename, 'r') as file: NumberJobsAnlIntrepid = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/NumberJobsCiematEuler.json" +filename = "time_series_json_hpc_data/NumberJobsCiematEuler.json" with open(filename, 'r') as file: NumberJobsCiematEuler = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/NumberJobsMetacentrum.json" +filename = "time_series_json_hpc_data/NumberJobsMetacentrum.json" with open(filename, 'r') as file: NumberJobsMetacentrum = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/NumberJobsMetacentrumFiltered.json" +filename = "time_series_json_hpc_data/NumberJobsMetacentrumFiltered.json" with open(filename, 'r') as file: NumberJobsMetacentrumFiltered = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/NumberJobsPIKIPLEX.json" +filename = "time_series_json_hpc_data/NumberJobsPIKIPLEX.json" with open(filename, 'r') as file: NumberJobsPIKIPLEX = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/NumberJobsRICC.json" +filename = "time_series_json_hpc_data/NumberJobsRICC.json" with open(filename, 'r') as file: NumberJobsRICC = json.load(file) -filename = "hpc_case/time_series_json_hpc_data/NumberJobsUniLuGaia.json" +filename = "time_series_json_hpc_data/NumberJobsUniLuGaia.json" with open(filename, 'r') as file: NumberJobsUniLuGaia = json.load(file) \ No newline at end of file -- GitLab