diff --git a/README.md b/README.md index dbf2dda22f0ff2d59063ae1867ef1c6be1be3160..363606b1267826970c97cf41010c0f7397525c31 100644 --- a/README.md +++ b/README.md @@ -18,10 +18,12 @@ Méthodes indirectes et directes en contrôle optimal * [Sujet 2 : tp/simple-shooting.ipynb](tp/simple-shooting.ipynb) - Tir simple indirect * [Sujet 3 : tp/direct-indirect.ipynb](tp/direct-indirect.ipynb) - Méthode directe et tir avec structure sur le contrôle +* [Sujet 4 : tp/mpc-navigation.ipynb](tp/mpc-navigation.ipynb) - Méthode MPC pour la navigation marine -Equation différentielle ordinaire +Calcul différentiel et équation différentielle ordinaire -* [Sujet 4 : tp/runge-kutta.ipynb](tp/runge-kutta.ipynb) - Méthodes de Runge-Kutta +* [Sujet 5 : tp/derivative.ipynb](tp/derivative.ipynb) - Calcul de dérivées +* [Sujet 6 : tp/runge-kutta.ipynb](tp/runge-kutta.ipynb) - Méthodes de Runge-Kutta **Notes de cours supplémentaires - ressources** diff --git a/tp/derivative.ipynb b/tp/derivative.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..c03c237a6c51ebd38d388e582fb8c73022548d2f --- /dev/null +++ b/tp/derivative.ipynb @@ -0,0 +1,495 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[<img src=\"https://gitlab.irit.fr/toc/etu-n7/controle-optimal/-/raw/master/ressources/Logo-toulouse-inp-N7.png\" alt=\"N7\" height=\"100\"/>](https://gitlab.irit.fr/toc/etu-n7/controle-optimal)\n", + "\n", + "# Calcul de dérivées\n", + "\n", + "- Date : 2025\n", + "- Durée approximative : 1h15\n", + "\n", + "## Introduction\n", + "\n", + "Il existe plusieurs façon de calculer une dérivée sur un calculateur : \n", + "\n", + "- par différences finies;\n", + "- par différentiation complexe;\n", + "- en utilisant la différentiation automatique;\n", + "- en utilisant le calcul formel et un générateur de code.\n", + "\n", + "Nous allons étudier ici quelques cas.\n", + "\n", + "On notera $\\Vert{\\cdot}\\Vert$ la norme euclidienne usuelle et $\\mathcal{N}(0,1)$ une variable aléatoire Gaussienne centrée réduite." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# load packages\n", + "using DualNumbers\n", + "using DifferentialEquations\n", + "using ForwardDiff\n", + "using LinearAlgebra\n", + "using Plots\n", + "using Plots.Measures\n", + "using Printf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dérivées par différences finies avant\n", + "\n", + "Soit $f$ une fonction lisse de $\\mathbb{R}^{n}$ dans $\\mathbb{R}^{m}$, $x$ un point de $\\mathbb{R}^{n}$ et $v$ un vecteur de $\\mathbb{R}^{n}$. Si on note $g \\colon h \\mapsto f(x+hv)$, alors on a d'après la formule de Taylor-Young :\n", + "$$\n", + " g(h) = \\sum_{i=0}^{n} \\frac{h^i}{i!} g^{(i)}(0) + R_n(h), \\quad R_n(h) = o(h^n),\n", + "$$\n", + "ou d'après Taylor-Lagrange, \n", + "$$\n", + " \\| R_n(h) \\| \\leq \\frac{M_n h^{n+1}}{(n+1)!},\n", + "$$\n", + "de même, \n", + "$$\n", + " g(-h) = \\sum_{i=0}^{n} \\frac{(-h)^i}{i!} g^{(i)}(0) + R_n(h).\n", + "$$\n", + "\n", + "La méthode des différences finies avants consiste à approcher la différentielle de $f$ en $x$ dans la direction $v$ par la formule suivante : \n", + "$$\n", + " \\frac{f(x+hv) - f(x)}{h} = \n", + " \\frac{g(h)-g(0)}{h} = g'(0) + \\frac{h}{2} g^{2}(0) + \\frac{h^2}{6} g^{(3)}(0) + o(h^2).\n", + "$$\n", + "L'approximation ainsi obtenue de $ g'(0) = f'(x) \\cdot v \\in \\mathbb{R}^m$ est d'ordre 1 si $g^{(2)}(0) \\neq 0$ ou au moins d'ordre 2 sinon. \n", + "\n", + "**Remarque.** Sur machine, Les calculs se font en virgule flottante. On note epsilon machine, le plus petit nombre $\\mathrm{eps}_\\mathrm{mach}$ tel que $1+\\mathrm{eps}_\\mathrm{mach}\\ne 1$. Cette quantité dépend des machines et de l'encodage des données. Pour l'optenir en `Julia` il suffit de taper `eps()`. On peut indiquer la précision numérique : `eps(Float64)` ou `eps(Float64(1))` pour les flottants codés sur 64 bits et `eps(Float32(1))` sur 32 bits.\n", + "\n", + "Notons $\\mathrm{num}(g,\\, h)$ la valeur de $g(h)$ calculée numériquement et supposons que l'on puisse majorer l'erreur relative numérique par : \n", + "$$\n", + " \\left\\| \\mathrm{num}(g,h) - g(h) \\right\\| := \\| e_h\\| \\leq \\mathrm{eps}_\\mathrm{mach} L_f,\n", + "$$\n", + "ou $L_f$ est une constante qui dépend de la valeur de $f$ sur le domaine d'intérêt. Ainsi on a : \n", + "\\begin{align*}\n", + " \\left\\| \\frac{\\mathrm{num}(g,h) - \\mathrm{num}(g,0)}{h} - g'(0) \\right\\|\n", + " &= \\left\\| \\frac{g(h) + e_h - g(0) - e_0}{h} - g'(0) \\right\\|, \\\\[1em]\n", + " &= \\left\\| \\frac{R_1(h)}{h} + \\frac{e_h - e_0}{h} \\right\\|, \\\\[1em]\n", + " &\\leq \\left\\| \\frac{R_1(h)}{ h} \\right\\| + \\left\\| \\frac{e_h - e_0}{h} \\right\\|, \\\\[1em]\n", + " & \\leq \n", + " \\underbrace{ \\frac{M_1 h}{2}}_{{\\text{Erreur d'approximation}}} + \n", + " \\underbrace{2 \\frac{\\mathrm{eps}_\\mathrm{mach}L_f}{h}}_{{\\text{Erreur numérique}}}.\n", + "\\end{align*} \n", + "Le majorant trouvé atteint son minimum en \n", + "$$\n", + " h_{*} = 2 \\sqrt{\\frac{\\mathrm{eps}_\\mathrm{mach} L_f }{M_1}}.\n", + "$$\n", + "\n", + "En considérant que $L_f \\simeq M_1$, alors le choix se révélant le plus optimal est \n", + "$$\n", + " h_{*} \\approx \\sqrt{\\mathrm{eps}_\\mathrm{mach}}.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dérivées par différences finies centrées\n", + "\n", + "On peut utiliser un schéma de différences finies centrée pour calculer la dérviée de $g$. \n", + "$$\n", + " \\frac{f(x+hv) - f(x-hv)}{2h} = \\frac{g(h) - g(-h)}{2h} = \n", + " g'(0) + g^{(3)}(0) \\frac{h^2}{6} + \\mathcal{O}(h^4),\n", + "$$\n", + "l'approximation ainsi obtenue de $f'(x) \\cdot v \\in \\mathbb{R}^{m}$ est d'ordre 2 si $g^{(3)}(0) \\neq 0$ ou au moins d'ordre 4 sinon. À noter que ce schéma nécessite plus d'évaluations de la fonction $f$. On peut montrer comme précédemment que le meilleur $h$ est de l'ordre \n", + "$$\n", + " h_* \\approx \\sqrt[3]{\\mathrm{eps}_\\mathrm{mach}}.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dérivées par différentiation complexe\n", + "\n", + "Les formules des schémas avant et centrée sont sensibles aux calculs de la différence $\\Delta f = f(x+h) - f(x)$ ou $\\Delta f = f(x+h) - f(x-h)$. Pour remédier à ce problème, les [différences finies à pas complexe](https://dl.acm.org/doi/10.1145/838250.838251) ont été introduites.\n", + "Si on suppose que la fonction $g$ est holomorphe, c'est-à-dire dérivable au sens complexe,\n", + "on peut considérer un pas complexe $ih$. Un développement limité de $g$ en $0$ s'écrit\n", + "\n", + "$$\n", + " f(x+ih v) = g(ih) = g(0) + ih g'(0) - \\frac{h^2}{2} g^{(2)}(0) - i\\frac{h^3}{6} g^{(3)}(0) + o(h^3),\n", + "$$\n", + "\n", + "On considère alors l'approximation : \n", + "\n", + "$$\n", + " f'(x) \\cdot v = g'(0) \\approx \\frac{\\mathrm{Im}(f(x+ihv))}{h}.\n", + "$$\n", + "\n", + "On peut prouver que l'approximation ci-dessus est au moins d'ordre 2 et aussi démontrer que tout pas inférieur à $h_*$ est optimal, avec \n", + "$$\n", + " h_{*} \\approx \\sqrt{\\mathrm{eps}_{\\mathrm{mach}}}.\n", + "$$\n", + "\n", + "**Remarque.** Utiliser en `Julia` la commande `imag` pour calculer la partie imaginaire d'un nombre complexe et la variable `im` pour représenter l'unité imaginaire." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dérivées par différentiation automatique via les nombres duaux\n", + "\n", + "Les nombres duaux s'écrivent sous la forme $a + b\\, \\varepsilon$ avec $(a,b)\\in \\mathbb{R}^2$ et $\\varepsilon^2 = 0$. Nous allons voir comment nous pouvons les utiliser pour calculer des dérivées.\n", + "\n", + "Soit deux fonctions $f, g \\colon \\mathbb{R} \\to \\mathbb{R}$ dérivables, de dérivées respectives $f'$ et $g'$. On pose\n", + "\n", + "$$\n", + "f(a + b\\, \\varepsilon) := f(a) + f'(a)\\, b\\, \\varepsilon\n", + "$$\n", + "\n", + "et\n", + "\n", + "$$\n", + "g(a + b\\, \\varepsilon) := g(a) + g'(a)\\, b\\, \\varepsilon.\n", + "$$\n", + "\n", + "On a alors automatiquement les propriétés suivantes. Posons $d = x + \\varepsilon$, alors :\n", + "\n", + "- $(f + g)(d) = (f+g)(x) + (f+g)'(x) \\, \\varepsilon$\n", + "- $(fg)(d) = (fg)(x) + (fg)'(x) \\, \\varepsilon$\n", + "- $(g \\circ f)(d) = (g \\circ f)(x) + (g \\circ f)'(x) \\, \\varepsilon$\n", + "\n", + "Voici comment créer un nombre dual en `Julia` et récupérer les parties réelles et duales (avec ce que j'ai défini ci-dessous) :\n", + "\n", + "```julia\n", + "using DualNumbers\n", + "\n", + "# scalar case\n", + "d = 1 + 2ε # ou 1 + 2 * ε ou 1 + ε * 2\n", + "real(d) # 1\n", + "dual(d) # 2\n", + "\n", + "# vector case\n", + "d = [1, 3] + [2, 4]ε # ou [1, 3] + [2, 4] * ε ou [1, 3] + ε * [2, 4] ou [1+2ε, 3+4ε]\n", + "real(d) # [1, 3]\n", + "dual(d) # [2, 4]\n", + "```\n", + "\n", + "**Remarque.** On peut aussi utiliser le package `ForwardDiff` pour calculer des dérivées automatiquement. Il est plus performant que `DualNumbers`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fonctions auxiliaires" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# available methods\n", + "methods = (:forward, :central, :complex, :dual, :forward_ad)\n", + "\n", + "# type of x or its coordinates\n", + "function mytypeof(x::Union{T, Vector{<:T}}) where T<:AbstractFloat\n", + " return T\n", + "end\n", + "\n", + "# default step value\n", + "function _step(x, v, method)\n", + " T = mytypeof(x)\n", + " eps_value = T isa AbstractFloat ? eps(T) : eps(1.)\n", + " if method == :forward\n", + " step = √(eps_value)\n", + " elseif method == :central\n", + " step = (eps_value)^(1/3)\n", + " elseif method == :complex\n", + " step = √(eps_value)\n", + " else\n", + " step = 0.0\n", + " end\n", + " step *= √(max(1., norm(x))) / √(max(1.0, norm(v)))\n", + " return step\n", + "end\n", + "\n", + "# default method value\n", + "function _method()\n", + " return :forward \n", + "end;\n", + "\n", + "# creation of dual number ε\n", + "import Base.*\n", + "*(e::Function, x::Union{Number, Vector{<:Number}}) = e(x)\n", + "*(x::Union{Number, Vector{<:Number}}, e::Function) = e(x)\n", + "ε(x=1) = begin \n", + " if x isa Number\n", + " return Dual.(0.0, x)\n", + " else\n", + " return Dual.(zeros(length(x)), x)\n", + " end\n", + "end\n", + "em = ε\n", + "dual(x::Union{Dual, Vector{<:Dual}}) = dualpart.(x)\n", + "real(x::Union{Dual, Vector{<:Dual}}) = realpart.(x);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## La méthode principale pour le calcul de dérivées\n", + "\n", + "La fonction `derivative` ci-dessous calcule la dérivée directionnelle\n", + "\n", + "$$\n", + " f'(x) \\cdot v.\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "## TO COMPLETE\n", + "\n", + "# compute directional derivative\n", + "function derivative(f, x, v; method=_method(), h=_step(x, v, method))\n", + " if method ∉ methods \n", + " error(\"Choose a valid method in \", methods)\n", + " end\n", + " if method == :forward\n", + " return f(x) # TO UPDATE\n", + " elseif method == :central\n", + " return f(x) # TO UPDATE\n", + " elseif method == :complex\n", + " return f(x) # TO UPDATE\n", + " elseif method == :dual \n", + " return f(x) # TO UPDATE\n", + " elseif method == :forward_ad\n", + " if x isa Number\n", + " return ForwardDiff.derivative(f, x)*v\n", + " else\n", + " return ForwardDiff.jacobian(f, x)*v\n", + " end\n", + " end\n", + "end;" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# function to print derivative values and errors\n", + "function print_derivatives(f, x, v, sol)\n", + "\n", + " println(\"Hand derivative: \", sol, \"\\n\")\n", + "\n", + " for method ∈ methods\n", + " dfv = derivative(f, x, v, method=method)\n", + " println(\"Method: \", method)\n", + " println(\" derivative: \", dfv)\n", + " @printf(\" error: %e\\n\", norm(dfv - sol))\n", + " if method ∈ (:forward, :central, :complex)\n", + " step = _step(x, v, method)\n", + " println(\" step: \", step)\n", + " @printf(\" error/step: %e\\n\", norm(dfv - sol) / step)\n", + " end\n", + " println()\n", + " end\n", + "\n", + "end;" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercice 1\n", + "\n", + "1. Compléter la fonction `derivative` ci-dessus avec les méthodes de différences finies avant, centrée, par différentiation complexe et par différentiation automatique via les nombres duaux.\n", + "2. Exécuter le code ci-dessous et vérifier les résultats obtenus." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Scalar case\n", + "\n", + "# check if the derivatives are correct\n", + "f(x) = cos(x)\n", + "x = π/4\n", + "v = 1.0\n", + "\n", + "# solution\n", + "sol = -sin(x)*v\n", + "\n", + "# print derivatives and errors for each method\n", + "print_derivatives(f, x, v, sol)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Vectorial case\n", + "\n", + "# check if the derivatives are correct\n", + "f(x) = [0.5*(x[1]^2 + x[2]^2); x[1]*x[2]]\n", + "x = [1.0, 2.0]\n", + "v = [1.0, -1.0]\n", + "\n", + "# solution\n", + "sol = [x[1]*v[1]+x[2]*v[2], x[1]*v[2]+x[2]*v[1]]\n", + "\n", + "# print derivatives and errors for each method\n", + "print_derivatives(f, x, v, sol)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pas optimal\n", + "\n", + "On se propose de tester pour la fonction $\\cos$ aux points $x_0=\\pi/3$, $x_1 = 10^6\\times\\pi/3$ et la fonction $\\cos+10^{-8} \\mathcal{N}(0, \\, 1)$ au point $x_0=\\pi/3$ l'erreur entre les différences finies et la dérivée au point considéré en fonction de $h$. On prendra $h=10^{-i}$ pour $i= \\{1,\\ldots,16\\}$ et on tracera ces erreurs dans une échelle logarithmique (en `Julia`, avec le package `Plots` on utilise l'option `scale=:log10`).\n", + "\n", + "## Exercice 2\n", + "\n", + "- Visualiser les différentes erreurs en fonction de $h$ pour les différentes méthodes de calcul de dérivées. Commentaires.\n", + "- Modifier la précision de $x_0$ et $x_1$ en `Float32`. Commentaires." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# affichage des erreurs en fonction de h\n", + "function plot_errors(steps, errors, h_star, title)\n", + "\n", + " steps_save = steps\n", + " ymax = 10^10\n", + "\n", + " # supprimer les erreurs nulles\n", + " non_nul_element = findall(!iszero, errors) \n", + " errors = errors[non_nul_element]\n", + " steps = steps[non_nul_element]\n", + "\n", + " # Courbe des erreurs pour les differents steps en bleu\n", + " plt = plot((10.).^(-steps), errors, xscale=:log10, yscale=:log10, linecolor=:blue, lw=2, legend=false)\n", + "\n", + " # régler xlims pour toujours avoir tous les steps de départ\n", + " plot!(plt, xlims=(10^(-maximum(steps_save)), 10^(-minimum(steps_save))))\n", + "\n", + " # ylims toujours entre 10^-16 et ymax\n", + " plot!(plt, ylims=(10^(-16), ymax))\n", + "\n", + " # Ligne verticale pour situer l'erreur optimale h* en rouge\n", + " plot!(plt,[h_star, h_star], [10^(-16), ymax], linecolor=:red, lw=1, linestyle=:dash)\n", + "\n", + " # titre de la figure et xlabel\n", + " plot!(plt, xlabel = \"h\", title = title, legend=false, titlefontsize=10)\n", + "\n", + " # ajouter des marges en bas de la figure pour mieux voir le xlabel \n", + " plot!(plt, bottom_margin = 5mm)\n", + "\n", + " #\n", + " return plt\n", + "\n", + "end;" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Les differentes fonctions et la dérivée theorique\n", + "fun1(x) = cos(x)\n", + "fun2(x) = cos(x) + 1.e-8*randn()\n", + "dfun(x) = -sin(x);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# method \n", + "method = :forward # TO PLAY WITH\n", + "h_star = √(eps(1.0)) # TO UPDATE ACCORDING TO THE METHOD\n", + "\n", + "# Points pour lesquels on souhaite effectuer les tests\n", + "x0 = π/3\n", + "x1 = 1.e6*π/3\n", + "\n", + "# steps pour faire les tests\n", + "steps = range(1, 16, 16)\n", + "\n", + "# Initialisation des vecteurs d'erreur\n", + "err_x0 = zeros(length(steps))\n", + "err_x0p = zeros(length(steps))\n", + "err_x1 = zeros(length(steps))\n", + "\n", + "# Calcul des erreurs\n", + "for i in 1:length(steps)\n", + " h = 10^(-steps[i])\n", + " err_x0[i] = abs(derivative(fun1, x0, 1.0, h=h, method=method) - (dfun(x0)))\n", + " err_x1[i] = abs(derivative(fun1, x1, 1.0, h=h, method=method) - (dfun(x1)))\n", + " err_x0p[i] = abs(derivative(fun2, x0, 1.0, h=h, method=method) - (dfun(x0)))\n", + "end\n", + "\n", + "# Affichage des erreurs\n", + "p1 = plot_errors(steps, err_x0, h_star, \"cos(x0)\")\n", + "p2 = plot_errors(steps, err_x0p, h_star, \"cos(x0) + perturbation\")\n", + "p3 = plot_errors(steps, err_x1, h_star, \"cos(x1)\")\n", + "\n", + "plot(p1, p2, p3, layout=(1,3), size=(850, 350))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Julia 1.9.0", + "language": "julia", + "name": "julia-1.9" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.9.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tp/mpc-navigation.ipynb b/tp/mpc-navigation.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..99424387f8524f94a5c183f75ed0cea320fc4f70 --- /dev/null +++ b/tp/mpc-navigation.ipynb @@ -0,0 +1,493 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "660275fc", + "metadata": {}, + "source": [ + "<div style=\"display:flex\"> \n", + " <img \n", + " src=\"https://gitlab.irit.fr/toc/etu-n7/controle-optimal/-/raw/master/ressources/Logo-toulouse-inp-N7.png\" \n", + " height=\"100\"\n", + " > \n", + " <img \n", + " src=\"https://gitlab.irit.fr/toc/etu-n7/controle-optimal/-/raw/master/ressources/ship.jpg\"\n", + " style=\"display: block;\n", + " margin-left: auto;\n", + " margin-right: auto;\n", + " width: 50%;\"\n", + " >\n", + "</div> \n", + "\n", + "# Problème de navigation, une approche [MPC](https://en.wikipedia.org/wiki/Model_predictive_control)\n", + "\n", + "- Date : 2025\n", + "- Durée approximative : inconnue\n", + "\n", + "On considère un navire dans un courant constant $w=(w_x,w_y)$, $\\|w\\| \\lt 1$. \n", + "[L'angle de cap](https://fr.wikipedia.org/wiki/Cap_(navigation)) est contrôlé, amenant aux équations différentielles suivantes : \n", + "\n", + "$$ \\begin{array}{rcl}\n", + " \\dot{x}(t) &=& w_x+\\cos\\theta(t),\\quad t \\in [0,t_f]\\\\\n", + " \\dot{y}(t) &=& w_y+\\sin\\theta(t),\\\\\n", + " \\dot{\\theta}(t) &=& u(t). \n", + " \\end{array} $$\n", + "\n", + "La vitesse angulaire est limitée et normalisée : $\\|u(t)\\| \\leq 1$. Il y a des conditions aux limites au temps initial $t = 0$ et au temps final $t = t_f$, sur la position $(x,y)$ et sur l'angle $\\theta$. L'objectif est de minimiser le temps final. Ce sujet est inspiré de ce [TP](https://github.com/pns-mam/commande/tree/main/tp3) dont le problème vient d'une collaboration entre l'Université Côte d'Azur et l'entreprise française [CGG](https://www.cgg.com) qui s'intéresse aux manoeuvres optimales de très gros navires pour la prospection marine.\n", + "\n", + "✏️ **Exercice 1.** On supposera $p^0 = -1$, on se place dans le cas normal.\n", + "\n", + "1. Ecrire le problème de contrôle optimal sous la forme de Mayer.\n", + "2. Donner le pseudo-hamiltonien $H(q, p, u)$, où $q = (x, y, \\theta)$ et $p = (p_x, p_y, p_\\theta)$.\n", + "3. Calculer l'équation adjointe, c'est-à-dire vérifiée par le vecteur adjoint $p$, donnée par le principe du maximum de Pontryagin.\n", + "4. Calculer le contrôle maximisant en fonction de $p_\\theta$ (on pourra l'écrire comme une [fonction multivaluée](https://fr.wikipedia.org/wiki/Fonction_multivaluée)).\n", + "5. Calculer le contrôle singulier, c'est-à-dire celui permettant de vérifier $p_\\theta(t) = 0$ sur un intervalle de temps non réduit à un singleton." + ] + }, + { + "cell_type": "markdown", + "id": "a68c170f", + "metadata": {}, + "source": [ + "## Données du problème" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8dd6f718", + "metadata": {}, + "outputs": [], + "source": [ + "using OptimalControl, NLPModelsIpopt, Plots, OrdinaryDiffEq, LinearAlgebra, Plots.PlotMeasures\n", + "\n", + "t0 = 0.\n", + "x0 = 0. \n", + "y0 = 0.\n", + "θ0 = π/7\n", + "xf = 4.\n", + "yf = 7.\n", + "θf = -π/2\n", + "\n", + "function current(x, y) # current as a function of position\n", + " ε = 1e-1\n", + " w = [ 0.6, 0.4 ]\n", + " δw = ε * [ y, -x ] / sqrt(1+x^2+y^2)\n", + " w = w + δw\n", + " if (w[1]^2 + w[2]^2 >= 1)\n", + " error(\"|w| >= 1\")\n", + " end\n", + " return w\n", + "end\n", + "\n", + "#\n", + "function plot_state!(plt, x, y, θ; color=1)\n", + " plot!(plt, [x], [y], marker=:circle, legend=false, color=color, markerstrokecolor=color, markersize=5, z_order=:front)\n", + " quiver!(plt, [x], [y], quiver=([cos(θ)], [sin(θ)]), color=color, linewidth=2, z_order=:front)\n", + " return plt\n", + "end\n", + "\n", + "function plot_current!(plt; current=current, N=10, scaling=1)\n", + " for x ∈ range(xlims(plt)..., N)\n", + " for y ∈ range(ylims(plt)..., N)\n", + " w = scaling*current(x, y)\n", + " quiver!(plt, [x], [y], quiver=([w[1]], [w[2]]), color=:black, linewidth=0.5, z_order=:back)\n", + " end\n", + " end\n", + " return plt\n", + "end\n", + "\n", + "# on affiche dans le plan de phase augmenté les conditions aux limites et le courant\n", + "plt = plot(\n", + " xlims=(-2, 6), \n", + " ylims=(-1, 8), \n", + " size=(600, 600), \n", + " aspect_ratio=1, \n", + " xlabel=\"x\", \n", + " ylabel=\"y\", \n", + " title=\"Conditions aux limites\",\n", + " leftmargin=5mm, \n", + " bottommargin=5mm,\n", + ")\n", + "\n", + "plot_state!(plt, x0, y0, θ0; color=2)\n", + "plot_state!(plt, xf, yf, θf; color=2)\n", + "plot_current!(plt)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8b4c8930", + "metadata": {}, + "outputs": [], + "source": [ + "function plot_trajectory!(plt, t, x, y, θ; N=5) # N : nombre de points où l'on va afficher θ\n", + "\n", + " # trajectoire\n", + " plot!(plt, x.(t), y.(t), legend=false, color=1, linewidth=2, z_order=:front)\n", + "\n", + " if N > 0\n", + "\n", + " # longueur du trajet\n", + " s = 0\n", + " for i ∈ 2:length(t)\n", + " s += norm([x(t[i]), y(t[i])] - [x(t[i-1]), y(t[i-1])])\n", + " end\n", + "\n", + " # intervalle de longueur\n", + " Δs = s/(N+1)\n", + " tis = []\n", + " s = 0\n", + " for i ∈ 2:length(t)\n", + " s += norm([x(t[i]), y(t[i])] - [x(t[i-1]), y(t[i-1])])\n", + " if s > Δs && length(tis) < N\n", + " push!(tis, t[i])\n", + " s = 0\n", + " end\n", + " end\n", + "\n", + " # affichage des points intermédiaires\n", + " for ti ∈ tis\n", + " plot_state!(plt, x(ti), y(ti), θ(ti); color=1)\n", + " end\n", + "\n", + " end\n", + "\n", + " return plt\n", + " \n", + "end;" + ] + }, + { + "cell_type": "markdown", + "id": "0403331e", + "metadata": {}, + "source": [ + "## Solveur (OptimalControl)\n", + "\n", + "✏️ **Exercice 2.** Coder le problème de contrôle optimal ci-dessous.\n", + "\n", + "On pourra s'insiprer du problème de la [rame de métro à temps minimal](https://control-toolbox.org/OptimalControl.jl/stable/tutorial-double-integrator-time.html) décrit dans la documentation du package OptimalControl pour définir notre problème de manoeuvre de navire ci-après.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a1933e2c", + "metadata": {}, + "outputs": [], + "source": [ + "function solve(t0, x0, y0, θ0, xf, yf, θf, w; \n", + " grid_size=300, tol=1e-8, max_iter=500, print_level=4, display=true)\n", + "\n", + " # ---------------------------------------\n", + " # Définition du problème : TO UPDATE\n", + " ocp = @def begin\n", + "\n", + " end\n", + " # ---------------------------------------\n", + "\n", + " # Initialisation\n", + " tf_init = 1.5*norm([xf, yf]-[x0, y0])\n", + " x_init(t) = [ x0, y0, θ0 ] * (tf_init-t)/(tf_init-t0) + [xf, yf, θf] * (t-t0)/(tf_init-t0)\n", + " u_init = (θf - θ0) / (tf_init-t0)\n", + " init = (state=x_init, control=u_init, variable=tf_init)\n", + "\n", + " # Résolution\n", + " sol = OptimalControl.solve(ocp; \n", + " init=init,\n", + " grid_size=grid_size, \n", + " tol=tol, \n", + " max_iter=max_iter, \n", + " print_level=print_level,\n", + " display=display,\n", + " disc_method=:euler,\n", + " )\n", + "\n", + " # Récupération des données utiles\n", + " t = time_grid(sol)\n", + " q = state(sol)\n", + " x = t -> q(t)[1]\n", + " y = t -> q(t)[2]\n", + " θ = t -> q(t)[3]\n", + " u = control(sol)\n", + " tf = variable(sol)\n", + " \n", + " return t, x, y, θ, u, tf, iterations(sol), sol.solver_infos.constraints_violation\n", + " \n", + "end;" + ] + }, + { + "cell_type": "markdown", + "id": "cc8547d2", + "metadata": {}, + "source": [ + "## Première résolution\n", + "\n", + "On considère ici un vent constant et on résout une première fois le problème." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ffea082a", + "metadata": {}, + "outputs": [], + "source": [ + "# -----------------------------------------------------------------------------------------------------------\n", + "t, x, y, θ, u, tf, iter, cons = solve(t0, x0, y0, θ0, xf, yf, θf, current(x0, y0); display=false);\n", + "\n", + "println(\"Iterations : \", iter)\n", + "println(\"Constraints violation : \", cons)\n", + "println(\"tf : \", tf)\n", + "\n", + "# -----------------------------------------------------------------------------------------------------------\n", + "# affichage\n", + "\n", + "# trajectoire\n", + "plt_q = plot(xlims=(-2, 6), ylims=(-1, 8), aspect_ratio=1, xlabel=\"x\", ylabel=\"y\")\n", + "plot_state!(plt_q, x0, y0, θ0; color=2)\n", + "plot_state!(plt_q, xf, yf, θf; color=2)\n", + "plot_current!(plt_q; current=(x, y) -> current(x0, y0))\n", + "plot_trajectory!(plt_q, t, x, y, θ)\n", + "\n", + "# contrôle\n", + "plt_u = plot(t, u; color=1, legend=false, linewidth=2, xlabel=\"t\", ylabel=\"u\")\n", + "\n", + "#\n", + "plot(plt_q, plt_u; \n", + " layout=(1, 2), \n", + " size=(1200, 600),\n", + " leftmargin=5mm, \n", + " bottommargin=5mm,\n", + " plot_title=\"Simulation courant constant\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "827b18d5", + "metadata": {}, + "source": [ + "## Simulation du système réel\n", + "\n", + "Dans la simulation précédente, nous faisons l'hypothèse que le courant est constant. Cependant, d'un point de vue pratique le courant dépend de la position $(x, y)$. Etant donné un modèle de courant, donné par la fonction `current`, nous pouvons simuler la trajectoire réelle du navire, pourvu que l'on ait la condition initiale et le contrôle au cours du temps." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "25422e2e", + "metadata": {}, + "outputs": [], + "source": [ + "function realistic_trajectory(tf, t0, x0, y0, θ0, u, current; abstol=1e-12, reltol=1e-12, saveat=[])\n", + " \n", + " function rhs!(dq, q, dummy, t)\n", + " x, y, θ = q\n", + " w = current(x, y)\n", + " dq[1] = w[1]+cos(θ)\n", + " dq[2] = w[2]+sin(θ)\n", + " dq[3] = u(t)\n", + " end\n", + " \n", + " q0 = [ x0, y0, θ0 ]\n", + " tspan = (t0, tf)\n", + " ode = ODEProblem(rhs!, q0, tspan)\n", + " sol = OrdinaryDiffEq.solve(ode, Tsit5(), abstol=abstol, reltol=reltol, saveat=saveat)\n", + "\n", + " t = sol.t\n", + " x = t -> sol(t)[1]\n", + " y = t -> sol(t)[2]\n", + " θ = t -> sol(t)[3]\n", + "\n", + " return t, x, y, θ\n", + " \n", + "end;" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "da61110e", + "metadata": {}, + "outputs": [], + "source": [ + "# trajectoire réaliste\n", + "t, x, y, θ = realistic_trajectory(tf, t0, x0, y0, θ0, u, current)\n", + "\n", + "# -----------------------------------------------------------------------------------------------------------\n", + "# affichage\n", + "\n", + "# trajectoire\n", + "plt_q = plot(xlims=(-2, 6), ylims=(-1, 8), aspect_ratio=1, xlabel=\"x\", ylabel=\"y\")\n", + "plot_state!(plt_q, x0, y0, θ0; color=2)\n", + "plot_state!(plt_q, xf, yf, θf; color=2)\n", + "plot_current!(plt_q; current=current)\n", + "plot_trajectory!(plt_q, t, x, y, θ)\n", + "plot_state!(plt_q, x(tf), y(tf), θ(tf); color=3)\n", + "\n", + "# contrôle\n", + "plt_u = plot(t, u; color=1, legend=false, linewidth=2, xlabel=\"t\", ylabel=\"u\")\n", + "\n", + "#\n", + "plot(plt_q, plt_u; \n", + " layout=(1, 2), \n", + " size=(1200, 600),\n", + " leftmargin=5mm, \n", + " bottommargin=5mm,\n", + " plot_title=\"Simulation avec modèle de courant\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "503bd360", + "metadata": {}, + "source": [ + "## Approche MPC\n", + "\n", + "En pratique, nous n'avons pas à l'avance les données réelles du courant sur l'ensemble du trajet, c'est pourquoi nous allons recalculer régulièrement le contrôle optimal. L'idée est de mettre à jour le contrôle optimal à intervalle de temps régulier en prenant en compte le courant à la position où le navire se trouve. On est donc amener à résoudre un certain nombre de problème à courant constant, avec celui-ci mis réguilièremet à jour. Ceci est une introduction aux méthodes dites MPC, pour \"Model Predictive Control\" en anglais." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "563c73fd", + "metadata": {}, + "outputs": [], + "source": [ + "Nmax = 20 # nombre d'itérations max de la méthode MPC\n", + "ε = 1e-1 # rayon sur la condition finale pour stopper les calculs\n", + "Δt = 1.0 # pas de temps fixe de la méthode MPC\n", + "P = 300 # nombre de points de discrétisation pour le solveur\n", + "\n", + "t1 = t0\n", + "x1 = x0\n", + "y1 = y0\n", + "θ1 = θ0\n", + "\n", + "data = []\n", + "\n", + "N = 1\n", + "stop = false\n", + "\n", + "while !stop\n", + " \n", + " # on récupère le courant à la position actuelle\n", + " w = current(x1, y1)\n", + "\n", + " # on résout le problème\n", + " t, x, y, θ, u, tf, iter, cons = solve(t1, x1, y1, θ1, xf, yf, θf, w; grid_size=P, display=false);\n", + "\n", + " # calcul du temps suivant\n", + " if (t1+Δt < tf)\n", + " t2 = t1+Δt\n", + " else\n", + " t2 = tf\n", + " println(\"t2=tf: \", t2)\n", + " stop = true\n", + " end\n", + "\n", + " # on stocke les données: le temps initial courant, le temps suivant, le contrôle\n", + " push!(data, (t2, t1, x(t1), y(t1), θ(t1), u, tf))\n", + "\n", + " # on met à jour les paramètres de la méthode MPC: on simule la réalité\n", + " t, x, y, θ = realistic_trajectory(t2, t1, x1, y1, θ1, u, current)\n", + " t1 = t2\n", + " x1 = x(t1)\n", + " y1 = y(t1)\n", + " θ1 = θ(t1)\n", + "\n", + " # on calcule la distance à la position cible\n", + " distance = norm([ x1, y1, θ1 ] - [ xf, yf, θf ])\n", + " println(\"N: \", N, \"\\t distance: \", distance, \"\\t iterations: \", iter, \"\\t constraints: \", cons, \"\\t tf: \", tf)\n", + " if !((distance > ε) && (N < Nmax))\n", + " stop = true\n", + " end\n", + "\n", + " #\n", + " N += 1\n", + "\n", + "end" + ] + }, + { + "cell_type": "markdown", + "id": "edd803b2", + "metadata": {}, + "source": [ + "## Affichage" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d0292a49", + "metadata": {}, + "outputs": [], + "source": [ + "# trajectoire\n", + "plt_q = plot(xlims=(-2, 6), ylims=(-1, 8), aspect_ratio=1, xlabel=\"x\", ylabel=\"y\")\n", + "\n", + "# condition finale\n", + "plot_state!(plt_q, xf, yf, θf; color=2)\n", + "\n", + "# courant\n", + "plot_current!(plt_q; current=current)\n", + "\n", + "# contrôle\n", + "plt_u = plot(xlabel=\"t\", ylabel=\"u\")\n", + "\n", + "N = 1\n", + "\n", + "for d ∈ data\n", + "\n", + " #\n", + " t2, t1, x1, y1, θ1, u, tf = d\n", + "\n", + " # calcule de la trajectoire réelle\n", + " t, x, y, θ = realistic_trajectory(t2, t1, x1, y1, θ1, u, current)\n", + "\n", + " # trajectoire\n", + " plot_state!(plt_q, x1, y1, θ1; color=2)\n", + " plot_trajectory!(plt_q, t, x, y, θ; N=0)\n", + "\n", + " # contrôle\n", + " plot!(plt_u, t, u; color=1, legend=false, linewidth=2)\n", + "\n", + " N += 1\n", + "\n", + "end\n", + "\n", + "plot_state!(plt_q, x(tf), y(tf), θ(tf); color=3)\n", + "\n", + "#\n", + "plot(plt_q, plt_u; \n", + " layout=(1, 2), \n", + " size=(1200, 600),\n", + " leftmargin=5mm, \n", + " bottommargin=5mm,\n", + " plot_title=\"Simulation avec modèle de courant\"\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Julia 1.11.3", + "language": "julia", + "name": "julia-1.11" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.11.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tp/runge-kutta.ipynb b/tp/rk-explicites.ipynb similarity index 100% rename from tp/runge-kutta.ipynb rename to tp/rk-explicites.ipynb