Skip to content
Snippets Groups Projects
Commit 1b94de2d authored by Caroline DE POURTALES's avatar Caroline DE POURTALES
Browse files

correction print

parent 7a10e2a9
No related branches found
No related tags found
2 merge requests!6Linker with transformer,!5Linker with transformer
...@@ -12,15 +12,14 @@ max_atoms_in_one_type=250 ...@@ -12,15 +12,14 @@ max_atoms_in_one_type=250
dim_encoder = 768 dim_encoder = 768
[MODEL_DECODER] [MODEL_DECODER]
dim_decoder = 16 dim_decoder = 32
num_rnn_layers=1
dropout=0.1 dropout=0.1
teacher_forcing=0.05 teacher_forcing=0.05
[MODEL_LINKER] [MODEL_LINKER]
nhead=4 nhead=4
dim_feedforward=246 dim_feedforward=246
dim_embedding_atoms=16 dim_embedding_atoms=32
dim_polarity_transfo=128 dim_polarity_transfo=128
layer_norm_eps=1e-5 layer_norm_eps=1e-5
dropout=0.1 dropout=0.1
...@@ -29,6 +28,6 @@ sinkhorn_iters=3 ...@@ -29,6 +28,6 @@ sinkhorn_iters=3
[MODEL_TRAINING] [MODEL_TRAINING]
device=cpu device=cpu
batch_size=32 batch_size=32
epoch=20 epoch=25
seed_val=42 seed_val=42
learning_rate=0.005 learning_rate=0.005
\ No newline at end of file
...@@ -189,10 +189,10 @@ class Linker(Module): ...@@ -189,10 +189,10 @@ class Linker(Module):
checkpoint_dir, writer = output_create_dir() checkpoint_dir, writer = output_create_dir()
for epoch_i in range(epochs): for epoch_i in range(epochs):
epoch_acc, epoch_loss = self.train_epoch(training_dataloader) avg_train_loss, avg_accuracy_train = self.train_epoch(training_dataloader)
print("Average Loss on train dataset : ", epoch_loss) print("Average Loss on train dataset : ", avg_train_loss)
print("Average Accuracy on train dataset : ", epoch_acc) print("Average Accuracy on train dataset : ", avg_accuracy_train)
if checkpoint: if checkpoint:
self.__checkpoint_save( self.__checkpoint_save(
...@@ -200,20 +200,20 @@ class Linker(Module): ...@@ -200,20 +200,20 @@ class Linker(Module):
if validation_rate > 0.0: if validation_rate > 0.0:
with torch.no_grad(): with torch.no_grad():
accuracy_test, average_test_loss = self.eval_epoch(validation_dataloader, self.cross_entropy_loss) loss_test, accuracy_test = self.eval_epoch(validation_dataloader, self.cross_entropy_loss)
print("Average Loss on test dataset : ", average_test_loss) print("Average Loss on test dataset : ", loss_test)
print("Average Accuracy on test dataset : ", accuracy_test) print("Average Accuracy on test dataset : ", accuracy_test)
if tensorboard: if tensorboard:
writer.add_scalars(f'Accuracy', { writer.add_scalars(f'Accuracy', {
'Train': epoch_acc}, epoch_i) 'Train': avg_accuracy_train}, epoch_i)
writer.add_scalars(f'Loss', { writer.add_scalars(f'Loss', {
'Train': epoch_loss}, epoch_i) 'Train': avg_train_loss}, epoch_i)
if validation_rate > 0.0: if validation_rate > 0.0:
writer.add_scalars(f'Accuracy', { writer.add_scalars(f'Accuracy', {
'Validation': accuracy_test}, epoch_i) 'Validation': accuracy_test}, epoch_i)
writer.add_scalars(f'Loss', { writer.add_scalars(f'Loss', {
'Validation': average_test_loss}, epoch_i) 'Validation': loss_test}, epoch_i)
print('\n') print('\n')
...@@ -336,7 +336,7 @@ class Linker(Module): ...@@ -336,7 +336,7 @@ class Linker(Module):
accuracy = mesure_accuracy(batch_true_links, axiom_links_pred) accuracy = mesure_accuracy(batch_true_links, axiom_links_pred)
loss = cross_entropy_loss(logits_axiom_links_pred, batch_true_links) loss = cross_entropy_loss(logits_axiom_links_pred, batch_true_links)
return accuracy, loss return loss, accuracy
def eval_epoch(self, dataloader, cross_entropy_loss): def eval_epoch(self, dataloader, cross_entropy_loss):
r"""Average the evaluation of all the batch. r"""Average the evaluation of all the batch.
...@@ -347,11 +347,11 @@ class Linker(Module): ...@@ -347,11 +347,11 @@ class Linker(Module):
accuracy_average = 0 accuracy_average = 0
loss_average = 0 loss_average = 0
for step, batch in enumerate(dataloader): for step, batch in enumerate(dataloader):
accuracy, loss = self.eval_batch(batch, cross_entropy_loss) loss, accuracy = self.eval_batch(batch, cross_entropy_loss)
accuracy_average += accuracy accuracy_average += accuracy
loss_average += loss loss_average += float(loss)
return accuracy_average / len(dataloader), loss_average / len(dataloader) return loss_average / len(dataloader), accuracy_average / len(dataloader)
def load_weights(self, model_file): def load_weights(self, model_file):
print("#" * 15) print("#" * 15)
......
...@@ -6,7 +6,7 @@ from utils import read_csv_pgbar ...@@ -6,7 +6,7 @@ from utils import read_csv_pgbar
torch.cuda.empty_cache() torch.cuda.empty_cache()
batch_size = int(Configuration.modelTrainingConfig['batch_size']) batch_size = int(Configuration.modelTrainingConfig['batch_size'])
nb_sentences = batch_size * 200 nb_sentences = batch_size * 20
epochs = int(Configuration.modelTrainingConfig['epoch']) epochs = int(Configuration.modelTrainingConfig['epoch'])
file_path_axiom_links = 'Datasets/goldANDsilver_dataset_links.csv' file_path_axiom_links = 'Datasets/goldANDsilver_dataset_links.csv'
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment