Skip to content
Snippets Groups Projects
Commit 3d14aae9 authored by Millian Poquet's avatar Millian Poquet
Browse files

viz script: paper submission version

parent 7cb90d1f
Branches
Tags
No related merge requests found
......@@ -143,8 +143,7 @@ data_nz %>% ggplot(aes(x=powercap_dynamic_value_ratio)) +
geom_line(aes(y=power_p99/max_dynamic_power, color=predictor_name), linetype='dotted', show.legend = FALSE) +
geom_abline(slope=1) +
theme_bw() +
theme(legend.position='top', legend.title=upper_bound
upper_boundt) +
theme(legend.position='top', legend.title=upper_bound) +
scale_color_viridis(discrete=TRUE) +
scale_fill_viridis(discrete=TRUE) +
facet_wrap(vars(start_dt_s)) +
......@@ -156,6 +155,7 @@ upper_boundt) +
ggsave(sprintf("%s/power-consumption-mean-p1-p99-against-powercap-predictor.pdf", output_dir), width=16, height=9)
# distribution of the mean power used for each predictor
#powercap_ratios_values_to_show = c(0.1, 0.25, 0.4, 0.55, 0.7)
powercap_ratios_values_to_show = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)
width_scale=0.3
data_nz %>%
......@@ -178,12 +178,11 @@ data_nz %>%
facet_wrap(vars(powercap_label), nrow=1) +
labs(
y="Mean platform power consumption",
x="Job power estimator metrics"
x="Job power estimator"
) +
scale_fill_grey(start=0.8, end=1)
scale=0.9
ggsave(sprintf("%s/sched-mean-power-distribution.pdf", output_dir), width=8*scale, height=4*scale)
ggsave(sprintf("%s/sched-mean-power-distribution.png", output_dir), width=8*scale, height=4*scale)
# distribution of mean turnaround time diff (EASY) for each predictor
outlier_workload_start_dt_s = 18474670 # sched metrics are strogly better than EASY there
......@@ -191,6 +190,7 @@ width_scale=0.3
data_nz %>%
filter(start_dt_s != outlier_workload_start_dt_s) %>%
filter(powercap_dynamic_value_ratio %in% powercap_ratios_values_to_show) %>%
mutate(powercap_label = sprintf("pcap=%g", powercap_dynamic_value_ratio)) %>%
ggplot() +
geom_boxplot(aes(y=mean_turnaround_time_minus_zero, fill=predictor_method, x=predictor_metrics), linewidth=width_scale, outlier.size=width_scale) +
theme_bw() +
......@@ -202,10 +202,10 @@ data_nz %>%
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
) +
facet_wrap(vars(powercap_dynamic_value_ratio), nrow=1) +
facet_wrap(vars(powercap_label), nrow=1) +
labs(
y="Mean turnaround time increase (s)",
x="Job power estimator metrics"
x="Job power estimator"
) +
scale_fill_grey(start=0.8, end=1)
scale=0.9
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment