Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
artifact-tpds24-sched-lightweight-pred-power-constrained-platf
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
sepia-pub
Open Science
artifact-tpds24-sched-lightweight-pred-power-constrained-platf
Commits
3d14aae9
Commit
3d14aae9
authored
1 year ago
by
Millian Poquet
Browse files
Options
Downloads
Patches
Plain Diff
viz script: paper submission version
parent
7cb90d1f
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
scripts-r/viz-campaign.R
+6
-6
6 additions, 6 deletions
scripts-r/viz-campaign.R
with
6 additions
and
6 deletions
scripts-r/viz-campaign.R
+
6
−
6
View file @
3d14aae9
...
...
@@ -143,8 +143,7 @@ data_nz %>% ggplot(aes(x=powercap_dynamic_value_ratio)) +
geom_line
(
aes
(
y
=
power_p99
/
max_dynamic_power
,
color
=
predictor_name
),
linetype
=
'dotted'
,
show.legend
=
FALSE
)
+
geom_abline
(
slope
=
1
)
+
theme_bw
()
+
theme
(
legend.position
=
'top'
,
legend.title
=
upper_bound
upper_boundt
)
+
theme
(
legend.position
=
'top'
,
legend.title
=
upper_bound
)
+
scale_color_viridis
(
discrete
=
TRUE
)
+
scale_fill_viridis
(
discrete
=
TRUE
)
+
facet_wrap
(
vars
(
start_dt_s
))
+
...
...
@@ -156,6 +155,7 @@ upper_boundt) +
ggsave
(
sprintf
(
"%s/power-consumption-mean-p1-p99-against-powercap-predictor.pdf"
,
output_dir
),
width
=
16
,
height
=
9
)
# distribution of the mean power used for each predictor
#powercap_ratios_values_to_show = c(0.1, 0.25, 0.4, 0.55, 0.7)
powercap_ratios_values_to_show
=
c
(
0.1
,
0.2
,
0.3
,
0.4
,
0.5
,
0.6
,
0.7
)
width_scale
=
0.3
data_nz
%>%
...
...
@@ -178,12 +178,11 @@ data_nz %>%
facet_wrap
(
vars
(
powercap_label
),
nrow
=
1
)
+
labs
(
y
=
"Mean platform power consumption"
,
x
=
"Job power estimator
metrics
"
x
=
"Job power estimator"
)
+
scale_fill_grey
(
start
=
0.8
,
end
=
1
)
scale
=
0.9
ggsave
(
sprintf
(
"%s/sched-mean-power-distribution.pdf"
,
output_dir
),
width
=
8
*
scale
,
height
=
4
*
scale
)
ggsave
(
sprintf
(
"%s/sched-mean-power-distribution.png"
,
output_dir
),
width
=
8
*
scale
,
height
=
4
*
scale
)
# distribution of mean turnaround time diff (EASY) for each predictor
outlier_workload_start_dt_s
=
18474670
# sched metrics are strogly better than EASY there
...
...
@@ -191,6 +190,7 @@ width_scale=0.3
data_nz
%>%
filter
(
start_dt_s
!=
outlier_workload_start_dt_s
)
%>%
filter
(
powercap_dynamic_value_ratio
%in%
powercap_ratios_values_to_show
)
%>%
mutate
(
powercap_label
=
sprintf
(
"pcap=%g"
,
powercap_dynamic_value_ratio
))
%>%
ggplot
()
+
geom_boxplot
(
aes
(
y
=
mean_turnaround_time_minus_zero
,
fill
=
predictor_method
,
x
=
predictor_metrics
),
linewidth
=
width_scale
,
outlier.size
=
width_scale
)
+
theme_bw
()
+
...
...
@@ -202,10 +202,10 @@ data_nz %>%
axis.text.x
=
element_text
(
angle
=
90
,
vjust
=
0.5
,
hjust
=
1
),
)
+
facet_wrap
(
vars
(
powercap_
dynamic_value_ratio
),
nrow
=
1
)
+
facet_wrap
(
vars
(
powercap_
label
),
nrow
=
1
)
+
labs
(
y
=
"Mean turnaround time increase (s)"
,
x
=
"Job power estimator
metrics
"
x
=
"Job power estimator"
)
+
scale_fill_grey
(
start
=
0.8
,
end
=
1
)
scale
=
0.9
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment