Skip to content
Snippets Groups Projects
Commit 5a15139d authored by Millian Poquet's avatar Millian Poquet
Browse files

prediction notebook: shrink hists (py->R)

parent 8404cc04
Branches
No related tags found
No related merge requests found
......@@ -28,7 +28,7 @@ result_filenames = os.listdir(RESULTS_PATH)
df_all_results = pd.concat([pd.read_csv(RESULTS_PATH+filename, low_memory=False) for filename in result_filenames])
df_all_results = df_all_results.dropna(subset=PRED_COLS)
df_all_results
df_all_results.to_csv('/tmp/allresults-mean.csv', index=False)
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_absolute_percentage_error
......@@ -97,6 +97,7 @@ g.set_ylabel("Prediction Method")
g.set_xlabel("Mean Absolute Percentage Error (MAPE) ")
plt.tight_layout(pad=0)
plt.savefig("./fig3a-pred-mape-mean-power.svg")
plt.savefig("./fig3a-pred-mape-mean-power.pdf")
```
## Processing the max power prediction results
......@@ -122,6 +123,7 @@ result_filenames = os.listdir(RESULTS_PATH)
df_all_results = pd.concat([pd.read_csv(RESULTS_PATH+filename, low_memory=False) for filename in result_filenames])
df_all_results = df_all_results.dropna(subset=PRED_COLS)
df_all_results.to_csv('/tmp/allresults-max.csv', index=False)
#df_all_results
......@@ -193,73 +195,44 @@ g.set_ylabel("Prediction Method")
g.set_xlabel("Mean Absolute Percentage Error (MAPE)")
plt.tight_layout(pad=0)
plt.savefig("./fig3b-pred-mape-max-power.svg")
plt.savefig("./fig3b-pred-mape-max-power.pdf")
```
## Getting the actual mean and max power distributions
### Mean: Figure 2 (a)
```{python}
import matplotlib.pyplot as plt
import seaborn as sns
TINY_SIZE = 2
SMALL_SIZE = 5
MEDIUM_SIZE = 20
BIGGER_SIZE = 50
FIG_WIDTH = 40
FIG_HEIGHT = 10
plt.clf()
plt.rc('figure', figsize=(8, 6))
plt.rc('font', size=MEDIUM_SIZE) # controls default text sizes
plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=MEDIUM_SIZE) # legend fontsize
plt.rc('figure', titlesize=MEDIUM_SIZE) # fontsize of the figure title
plt.rc('figure', figsize=(6,4))
g = sns.histplot(x="total_power_mean_watts", data=df_all_results, bins=25, fill=False)
#g.ax.set_yscale('log')
g.set_xlabel("Total Power (watts)")
g.set_ylabel("Number of Jobs")
plt.xticks(ticks=[0,250,500,750,1000,1250,1500], rotation=30)
plt.tight_layout(pad=0)
plt.savefig("./fig2a-distrib-job-power-mean.svg")
# clear all Python memory
import sys
sys.modules[__name__].__dict__.clear()
import gc
gc.collect()
```
### Max : Figure 2 (b)
```{python}
import matplotlib.pyplot as plt
import seaborn as sns
TINY_SIZE = 2
SMALL_SIZE = 5
MEDIUM_SIZE = 20
BIGGER_SIZE = 50
FIG_WIDTH = 40
FIG_HEIGHT = 10
plt.clf()
plt.rc('figure', figsize=(8, 6))
plt.rc('font', size=MEDIUM_SIZE) # controls default text sizes
plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=MEDIUM_SIZE) # legend fontsize
plt.rc('figure', titlesize=MEDIUM_SIZE) # fontsize of the figure title
plt.rc('figure', figsize=(6,4))
#g = sns.displot(x="total_power_max_watts", data=df_all_results)
g = sns.histplot(x="total_power_max_watts", data=df_all_results, bins=25, fill=False)
#g.ax.set_yscale('log')
g.set_xlabel("Total Power (watts)")
g.set_ylabel("Number of Jobs")
plt.xticks(ticks=[0,250,500,750,1000,1250,1500,1750,2000], rotation=30)
plt.tight_layout(pad=0)
plt.savefig("./fig2b-distrib-job-power-max.svg")
```{R}
library(tidyverse)
data_mean = read_csv('/tmp/allresults-mean.csv')
data_mean %>% ggplot(aes(x=total_power_mean_watts)) +
geom_histogram() +
scale_y_continuous(labels = scales::label_number()) +
theme_bw(base_size=20) +
labs(
x='Total power (W)',
y='Number of jobs'
)
ggsave('./fig2a-distrib-job-power-mean.pdf', width=6, height=3)
ggsave('./fig2a-distrib-job-power-mean.svg', width=6, height=3)
rm(data_mean)
data_max = read_csv('/tmp/allresults-max.csv')
data_max %>% ggplot(aes(x=total_power_max_watts)) +
geom_histogram() +
scale_y_continuous(labels = scales::label_number()) +
theme_bw(base_size=20) +
labs(
x='Total power (W)',
y='Number of jobs'
)
ggsave('./fig2b-distrib-job-power-max.pdf', width=6, height=3)
ggsave('./fig2b-distrib-job-power-max.svg', width=6, height=3)
rm(data_max)
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment