Skip to content
Snippets Groups Projects
Commit 1d417964 authored by Pierre LOTTE's avatar Pierre LOTTE
Browse files

Remove old configs and HDBScan

parent 1c063080
No related branches found
No related tags found
No related merge requests found
{
"dimensions": [
{
"kind": "OSC",
"equation": {
"function": "sin",
"amplitude": 0.7,
"frequency": 2.7
},
"noise": {
"mean": 0.0,
"std": 0.1
},
"anomalies": [
{
"kind": "NOISE",
"std": 0.1,
"mean": 0.0,
"length": 5,
"position": "middle"
}
]
},
{
"kind": "CORRELATION",
"dimension": 0,
"equation": {
"step": 0.03,
"sign": -1
},
"noise": {
"mean": 0.0,
"std": 0.1
},
"anomalies": []
}
],
"length": 1000
}
{
"dimensions": [
{
"kind": "OSC",
"equation": {
"function": "covercosine",
"amplitude": 1.5,
"frequency": 2.1
},
"noise": {
"mean": 0.0,
"std": 0.1
},
"anomalies": [
{
"kind": "NOISE",
"std": 0.1,
"mean": 0.0,
"length": 5,
"position": "end"
}
]
},
{
"kind": "CORRELATION",
"dimension": 0,
"equation": {
"step": 0.1,
"sign": 1
},
"noise": {
"mean": 0.0,
"std": 0.1
},
"anomalies": [
{
"kind": "NOISE",
"std": 0.07,
"mean": 0.02,
"length": 5,
"position": "start"
}
]
}
],
"length": 1000
}
{
"dimensions": [
{
"kind": "OSC",
"equation": {
"function": "coversine",
"amplitude": 0.7,
"frequency": 1.3
},
"noise": {
"mean": 0.0,
"std": 0.1
},
"anomalies": [
{
"kind": "NOISE",
"std": 0.1,
"mean": -0.01,
"length": 5,
"position": "end"
}
]
},
{
"kind": "CORRELATION",
"dimension": 0,
"equation": {
"step": 0.05,
"sign": -1
},
"noise": {
"mean": 0.0,
"std": 0.1
},
"anomalies": [
{
"kind": "NOISE",
"std": 0.03,
"mean": -0.02,
"length": 5,
"position": "start"
}
]
}
],
"length": 1000
}
......@@ -9,7 +9,7 @@ import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.cluster import KMeans, HDBSCAN
from sklearn.cluster import KMeans#, HDBSCAN
from sklearn.exceptions import ConvergenceWarning
from sklearn.metrics import silhouette_score
......@@ -46,10 +46,10 @@ class BaseSplitter:
x = self._compute_correlations(w_df)
for i in range(1, len(w_df.columns)):
# km = KMeans(n_clusters=i)
# clusters = km.fit_predict(x)
hdb_scan = HDBSCAN(min_cluster_size=2, allow_single_cluster=True)
clusters = hdb_scan.fit_predict(x)
km = KMeans(n_clusters=i)
clusters = km.fit_predict(x)
# hdb_scan = HDBSCAN(min_cluster_size=2, allow_single_cluster=True)
# clusters = hdb_scan.fit_predict(x)
if len(np.unique(clusters)) == 1:
score = 0.5
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment