Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
storebuffer
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
tacoq
storebuffer
Commits
d535301a
Commit
d535301a
authored
2 years ago
by
Alban Gruin
Browse files
Options
Downloads
Patches
Plain Diff
correct_store_buffer: base hypothesis for monotonicity proofs
Signed-off-by:
Alban Gruin
<
alban.gruin@irit.fr
>
parent
658b618b
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/correct_store_buffer.v
+36
-0
36 additions, 0 deletions
src/correct_store_buffer.v
with
36 additions
and
0 deletions
src/correct_store_buffer.v
+
36
−
0
View file @
d535301a
...
...
@@ -129,6 +129,42 @@ Definition legal_sb_transitions_P suE suE' sbState sbState' :=
|
false
,
false
,
Empty
=>
sbState
'
=
Empty
end
.
Section
monotonicity
.
Variable
opc
:
opcode
.
Variable
st
:
stage
.
Variable
e
e
'
d
:
instr_kind
.
Variable
t
tpre
tpost
t
'
tpre
'
tpost
'
tc
tc
'
:
trace_kind
.
Variable
i
:
nat
.
Variable
sbState
sbState
'
:
sbStateT
.
Hypothesis
Ht
:
t
=
tpre
++
e
::
tpost
.
Hypothesis
Ht
'
:
t
'
=
tpre
'
++
e
'
::
tpost
'
.
Hypothesis
Hleb
:
pipeline_leb
t
t
'
=
true
.
Hypothesis
Hi
:
i
=
List
.
length
tpre
.
Hypothesis
Hi
'
:
i
=
List
.
length
tpre
'
.
Hypothesis
Hl
:
pipeline_leb
tpre
tpre
'
=
true
.
Hypothesis
Hl
'
:
pipeline_leb
tpost
tpost
'
=
true
.
Hypothesis
Htc
:
tc
=
cycle
sbState
t
.
Hypothesis
Htc
'
:
tc
'
=
cycle
sbState
'
t
'
.
Hypothesis
Hlsbt
:
legal_sb_transitions
st
sbState
sbState
'
.
Hypothesis
HlsbtP
:
legal_sb_transitions_P
(
existsb
is_in_su
t
)
(
existsb
is_in_su
t
'
)
sbState
sbState
'
.
Hypothesis
Hlu
:
forall
st
opc
,
st
=
Lu
->
opc
=
Load
.
Hypothesis
Hsu
:
forall
st
opc
,
st
=
Su
->
opc
=
Store
.
(
*
Long
hypotheses
related
to
stage
occupation
.
*
)
Hypothesis
HfreeLsuPersists
:
free
(
existsb
is_in_su
t
)
sbState
t
(
opc
,
(
Sp
,
0
))
=
true
->
free
(
existsb
is_in_su
t
'
)
sbState
'
t
'
(
opc
,
(
Sp
,
0
))
=
true
.
Hypothesis
HfreeFromLsuPersists
:
free
(
existsb
is_in_su
t
)
sbState
t
(
opc
,
(
Lsu
,
0
))
=
true
->
free
(
existsb
is_in_su
t
'
)
sbState
'
t
'
(
opc
,
(
Lsu
,
0
))
=
true
.
Hypothesis
HbusFree
:
busFree
(
existsb
is_in_su
t
)
sbState
=
true
->
busFree
(
existsb
is_in_su
t
'
)
sbState
'
=
true
.
End
monotonicity
.
Section
constrained
.
Variable
opc
:
opcode
.
Variable
e
d
:
instr_kind
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment